Concerning groups G having a representation V with $SV \ G$-free.

G abelian $\rightarrow G$ cyclic. In effect, there is an irreducible subrepresentation $W \subset V$ with dim$_R W \leq 2$.

If dim $W = 1$, then G acts on W by sign so $G = \mathbb{Z}/2\mathbb{Z}$.
If dim $W = 2$, then W has a complex structure and G acts via a homomorphism $G \rightarrow \mathbb{C}^*$, hence G is cyclic.

Proposition: Let p be an odd prime and let G be a p-group such that every abelian subgroup of G is cyclic. Then G is cyclic.

Proof: Let G be of minimal order such that the proposition is false; then every subgroup of G is cyclic. Hence G is generated by $2p^k$ elements and so if F is the Frattini subgroup of G, then $Q = G/F$ is a 2-dimensional F_p-vector space.

We define a homomorphism

$$\theta : Q \rightarrow F/pF \cong \mathbb{F}_p$$

as follows. Given $q \in Q$, lift it to $x \in G$ and take x^p. Thus

$$\theta (x^p) \equiv x^p \ mod \ pF.$$

I claim that θ is a homomorphism since p is odd. Indeed
If \(x, y \in G \) and \(xy^{-1}x^{-1}y = z \in F \), then

\[
(xy)^p = xyxy^{-1}x^{-1}y = z^p y^x y^{-p} x^{-1} y^{-1} x^{-1}
\]

\[
= z \cdot y^x y^{-p} z^{-1} = z y^x y^{-p} z^{-1}
\]

\[
= z^{1+2 \cdot (p-1)} y^p x^p
\]

Here we have used that \(z \) is central because \(\langle x, z \rangle \neq \langle y, z \rangle \) are necessarily proper subgroups hence cyclic. As \(p \) is odd

\[
z^{p(\frac{p-1}{2})} \equiv (z^{\frac{p-1}{2}})^p \equiv pF
\]

hence

\[
(xy)^p \equiv x^p y^p x^p \equiv x^p y^p \mod pF.
\]

Now as \(Q \) is 2-dimensional over \(F_p \), \(\exists \gamma \in Q \neq \Theta \neq 0 \) and \(\Theta \gamma = 0 \). Thus \(\exists x \in G \neq x \in F \) and \(x^p \in pF \)

Therefore the subgroup \(\langle x, F \rangle \) is not cyclic and we have a contradiction.

Example to show \(p \) odd is necessary. Take the quaternion group of order 8 with elements \(\pm 1, i, j, k \).

Then every subgroup is cyclic.

Conclusion: If \(G \) is a finite group acting freely on \(SV \), then every odd order subgroup of \(G \) is cyclic.
Example of a group of odd order which acts freely on S^V. Let G be the semidirect product of $\mathbb{Z}/p^n\mathbb{Z}$ and a cyclic group $N = \mathbb{Z}/m\mathbb{Z}$ where $(m, p) = 1$. The $\mathbb{Z}/p^n\mathbb{Z}$ acts on N by an automorphism θ of order p. Let A be the subgroup $\mathbb{Z}/m\mathbb{Z} \times p\mathbb{Z}/p^n\mathbb{Z} \leq G$. Then A is normal abelian cyclic of index p. Let $\chi: A \rightarrow \mathbb{C}^*$ be a faithful character and let V be the induced representation. Now θ acts non-trivially on X hence $\theta^i X$, $0 < i < p$ are all distinct and V is irreducible. I claim that G acts freely on the sphere S^V. To see this, recall that V is endowed with a system of imprimitivity $V = \bigoplus_{x \in G} L_x$ where A acts on L_x with character $\theta^i(x)$. Thus a vector in V is of the form $v = \sum v_i$, $v_i \in L_i$. Clearly A acts freely since if aeA and $\alpha v = v$, then $\left(\theta^i(x)(a) v_i = v_i \right.$ for some $x \in A$) and $\theta^i(x)(a) = 1$ and $a = 1$. If $x \in G$ is not in A and $xv = v$, then x must permute the i. This contradiction, hence G acts freely on S^V.

Special case: $(\mathbb{Z}/7\mathbb{Z}) \times (\mathbb{Z}/9\mathbb{Z}) = G$

$$\begin{cases} xyx^{-1} = y^2 \\ x^7 = y^7 = 1 \end{cases}$$
Relation with periodic cohomology: If G acts freely on a homotopy sphere S of dimension $n-1$, then one has the Lyalin sequence for the sphere fibration

$$S \rightarrow P_G \times_G S \rightarrow B_G$$

which is

$$\rightarrow H^{g-n}(B_G, \mathbb{Z}) \xrightarrow{\text{ve}} H^{g}(B_G, \mathbb{Z}) \rightarrow H^{g}(P_G \times_G S, \mathbb{Z}) \rightarrow \cdots$$

Now $P_G \times_G S \sim S/G$ is a CW complex of dimension $n-1$ so one sees that

$$\text{ve}: H^g_G(\ast, \mathbb{Z}) \xrightarrow{\cong} H^{g+n}_G(\ast, \mathbb{Z}) \quad g > 0$$

and that

$$H^{-n}(S/G, \mathbb{Z}) \xrightarrow{\text{int}_\ast} H^0_G(\ast, \mathbb{Z}) \xrightarrow{\text{ve}} H^n_G(\ast, \mathbb{Z}) \rightarrow 0$$

Thus $H^n_G(\ast, \mathbb{Z}) \cong \mathbb{Z}/g\mathbb{Z}$ with generator e. Therefore the cohomology of G is periodic with period g.

Conversely one knows that if $H^*_G(\ast, \mathbb{Z})$ is periodic of period n, then G acts freely on a finite CW complex of the homotopy type of S^{dn-1} for some d. These results have been made more precise by Wall.

Cohomology of a semi-direct product:

$$G = N \rtimes_C G \quad |N|, |G| \text{ rel. prime}$$
The Hochschild–Serre spec. seq. degenerates yielding split exact sequences

\[H^0(G, \mathbb{Z}) = \mathbb{Z}, \]

\[0 \rightarrow H^1(G, \mathbb{Z}) \rightarrow H^1(G, \mathbb{Z}) \rightarrow H^1(N, \mathbb{Z})^C \rightarrow 0. \]

Suppose that \(N \) and \(C \) are cyclic of orders \(n, c \) respectively. Then

\[H^*(N, \mathbb{Z}) = \mathbb{Z}[\eta]/(\eta^n) \]

where \(\eta \in H^2(N, \mathbb{Z}) \cong \text{Hom}(N, \mathbb{Q}/\mathbb{Z}) \cong \hat{N} \)

is the character with \(\eta(u) = 1/n \mod \mathbb{Z} \) where \(u \) is the generator of \(N \). Thus

\[c \cdot \eta = \eta^b \quad \text{for } b \in (\mathbb{Z}/n\mathbb{Z})^* \]

and so \(\eta^{\varphi(n)} \) is invariant under \(C \). Thus

\[H^2(\varphi(n))(N, \mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z} \]

\[H^2(\varphi(n))(C, \mathbb{Z}) \cong \mathbb{Z}/c\mathbb{Z} \]

and so \(H^2(\varphi(n))(G, \mathbb{Z}) \cong \mathbb{Z}/nc\mathbb{Z} \) since \((n,c) = 1 \).

Therefore one knows that \(H^*(G, \mathbb{Z}) \) is periodic of period \(\varphi(n) \).

Example of a group with periodic cohomology which does not act freely on \(SV \) for any representation \(V \). Take primes \(p, q \) with \(p \nmid q-1 \) and form the semi-direct product

\[G = \mathbb{Z}/p\mathbb{Z} \ltimes \mathbb{Z}/q\mathbb{Z} \]
By the above the cohomology of G is periodic of period 2p: G can't act freely on SV, V irreducible complex (say p,q are odd) because either V is 1-dimensional non-faithful or else V is induced from a non-trivial character of $\mathbb{Z}/p\mathbb{Z}$, whence there is a non-zero $\mathbb{Z}/p\mathbb{Z}$-invariant.

I don't yet know the kind of 2 groups that can act freely on the sphere of a representation. But if G is nilpotent and G_i acts freely on SV_i, V_i irreducible complex, then V is the tensor product of such representations for each Sylow subgroup. In effect if G_i acts freely on $V_i - 0$ and G_i acts freely on $V_i - 0$ and if $|G_1|, |G_2|$ are rel. prime, then $G_1 \times G_2$ acts freely on $V_1 \odot V_2 - 0$.
General facts about G manifolds, G finite odd order

X, G-manifold connected. The principal orbit set manifold is where the isotropy representations are trivial. As G is of odd order, the non-principal part is of codim ≥ 2 so X_{prin} in connected. The map $X_{\text{prin}} \rightarrow \text{subgps of } G$ given by $x \mapsto G_x$ is locally constant, hence constant, hence $G_x = N$ a normal subgp of G for all $x \in X_{\text{prin}}$. G/N acts on X.

Conclusion: If G acts faithfully on X, then X_{prin} is the open subset where G acts freely.

Remark: we recall that the strata of X are all of even codimension, since G being of odd order, all irreducible real representations of G have complex structures.

A neighborhood of an orbit G_x is of the form $G_x \cdot T_x$ where T_x is the tangent space to X at x. Note this result even holds complex-analytically if X is a complex manifold since if m_x is the maximal ideal of O_x the sequence

$$0 \rightarrow m_x^2 \rightarrow m_x \rightarrow m_x/m_x^2 \rightarrow 0$$

splits as a sequence of G-modules, and so
we obtain local coordinates at \(x \), giving an étale map \(U_x \to T_x \) near \(x \).

So to complete local study we replace \(X \) by a representation \(V \) of \(G \) which we suppose is endowed with a complex structure. Assume \(G \) faithful and let \(Z \subset V \) be the singular cone

\[
Z = \{ v \in V | \exists g \neq 1 \Rightarrow gv = v \}.
\]

\(Z \) is the union of a finite set of subspaces of \(V \), namely the fixed point submanifold \(V_g^G \) for each \(g \neq 1 \).

Suppose that \(Z \) is a divisor, i.e. \(Z = \bigcup_{i=1}^{m} W_i \) where the \(W_i \) are distinct hyperplanes contained in \(Z \). Let \(H_i \) be the subgroup of \(G \) fixing \(W_i \), so that \(H_i \neq 1 \), and \(W_i = V_g^G \) for some \(g \neq 1 \). Let \(H_{ij} \) be the subgroup fixing \(W_i \cap W_j \). Then \(H_{ij} \) acts faithfully on \(V/W_i \cap W_j \). As this space is 2-dimensional and \(H_{ij} \) is of odd order, \(H_{ij} \) must be abelian (degree of an irreducible representation divides the order of the group.) \(H_{ij} \) commutes with \(H_i \) and \(H_j \), it normalizes \(W_i/W_i \cap W_j \) and \(W_j/W_i \cap W_j \), and hence these are the two eigenspaces of the representation of \(H_{ij} \). Note that the resulting irreps of \(H_{ij} \) are distinct since they are distinct when restricted to \(H_i \times H_j \).

Assume \(V \) endowed with a unitary structure invariant under \(G \). It follows that \(W_i^G \) and \(W_j^G \) are perpendicular lines for \(i \neq j \). Thus \(V \) contains an invariant subspace.
\[V' = L_1 + \ldots + L_n \]

with complement \((V')^\perp = \bigwedge W_i\).

As \((V')^\perp\) is totally singular for G it is a non-faithful representation of G. Moreover G must act faithfully on \(\mathcal{V}\) since otherwise there would be a singular element of the form \(\sum v_i = 0\), \(v_i \in L_i\), not contained in \(\mathcal{Z}\).

Similarly the singular subset of G acting on \(\mathcal{V}\) is the union of the hyperplanes \(W_i \cap \mathcal{V}\).

Conclusion: If G acts on \(\mathcal{V}\) and \(V_{\text{sing}}\) is a divisor, then \(\mathcal{V} = V' \oplus V''\) where \(V''\) is a non-faithful representation of G and where \(V'\) has a system of imprimitivity \(V' = L_1 + \ldots + L_n\) \(\dim L_i = 1\).

The singular set of \(V'\) is the union of \((L_i)^\perp\) and G permutes the lines giving an exact sequence

\[1 \rightarrow G_0 \rightarrow G \rightarrow \Sigma_n \rightarrow 1 \]

Hence G is a subgroup of the normalizer of a torus.

Note that G odd is essential since consider \(\Sigma_3\) acting on \(V = \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0\}\). Then \(V_{\text{sing}}\) is union of the hyperplanes

\[x = y \]
\[y = z \]
\[x = z \]

which are not mutually perpendicular.
If G acts faithfully on a complex vector space V, then V_{sing} is a union of its irreducible components

$$V_{sing} = \bigcup_{i=1}^{\infty} W_i$$

and each W_i is a subspace. If $H_i = \{ g \in G | W_i = \text{id}_F \}$, then H_i acts freely on $W_i - \{0\}$.

Remarks (added Oct. 7, 1969) In Cartan-Eilenberg one finds the result that a group has periodic cohomology iff all its Sylow subgroups are cyclic for odd primes and generalized quaternion for $p=2$. Consult Milnor's Amer. J. paper on free actions on spheres for a reference to old paper of Zassenhaus where among other things groups which act freely on S^7 are classified. See Zassenhaus's book for classification of groups all of whose Sylow subgroups are cyclic.
Equivariant cobordism revisited:

Let G be an abelian compact Lie group with character group \hat{G} and let us consider a Chern theory Q on the category of G-manifolds (again for proper U-oriented maps) such that $c_1(x) \in \hat{G}$ is a unit in $Q(pt)$ for $x \neq 1$.

Let

$$Q(P^n) = \lim_{\leftarrow V} Q(P^V)$$

$$= \lim_{n} Q(pt)[X]/\prod_{x}(x - c_1(x))^n$$

$$= Q(pt)[X]$$

where n runs over functions from \hat{G} to integers ≥ 0 almost everywhere.

$Q(P^n)$ is a natural transformation from Pic_0 to Q.

Similarly set $Q(P^n \times P^n) = \text{natural transformation from } \text{Pic}_0 \times \text{Pic}_0$ to Q defined $Q = Q(pt)\{X_1, X_2\}$. Then tensor product gives a homomorphism

$$Q(P^n) \longrightarrow Q(P^n \times P^n)$$

$$X \longmapsto F(X_1, X_2)$$

and $F(X_1, X_2)$ is a kind of "formal group law". I like to think of F as defining an abelian group structure on the functor $A \mapsto OA$ where A runs over the category of $Q(pt)$-algebras and where
\[D(A) = \{ a \in A \mid \exists x \text{ with } \prod_{x} (a - c_{i}(x))^{n_{i}} = 0 \} \]

Lemma: \(c_{i}(x) \in \mathbb{Q}(\mathfrak{p}t)^{\times} \) for all \(x \neq 1 \) \(\Rightarrow \) \([c_{i}(x) - c_{i}(x')] \in \mathbb{Q}(\mathfrak{p}t)^{\times} \) for \(x \neq x' \).

Proof: If \(c_{i}(X) - c_{i}(X') \) is not a unit then there is a non-zero \(\mathbb{Q}(\mathfrak{p}t) \)-algebra \(A \) in which \(c_{i}(X) = c_{i}(X') \), whence using the group-structure of \(D(A) \), we have \(c_{i}(X \circ X'^{-1}) = c_{i}(X) \odot c_{i}(X') = c_{i}(X) \odot c_{i}(X) = c_{i}(X) - c_{i}(X) = 0 \). This contradicts fact that \(c_{i}(X \circ X'^{-1}) \in A^{\times} \).

By the Chinese remainder theorem,

\[\mathbb{Q}(\mathfrak{p}t)\{X\} \xrightarrow{\sim} \prod_{X} \mathbb{Q}(\mathfrak{p}t) \left[[X - c_{i}(X)] \right] . \]

Another way of putting this is to say there exists idempotents \(\delta_{x}(X) \) in \(\mathbb{Q}(\mathfrak{p}t)\{X\} \) such that \(\delta_{x}(c_{i}(X')) = \begin{cases} 0 & x' \neq x \\ 1 & x' = x \end{cases} \)

and such that

\[1 = \sum_{X} \delta_{x} \]

as a topological sum in case \(G \) isn't finite. Thus given \(a \in D(A) \) there exists a decomposition of \(1 \) as a sum of orthogonal idempotents

\[1 = \sum_{X} \delta_{x}(a) \quad \text{finite sum} \]

such that

\[a \delta_{x}(a) = c_{i}(X) \]
is nilpotent for each x. Such an decomposition of 1 may be identified with a point of \hat{G} with values in $\text{Spec } A$. There are maps

$$\hat{G}(A) \xrightarrow{\varphi} D(A) \xrightarrow{\pi} \hat{G}(A)$$

$$1 = \sum x \mapsto \sum x^c_1(x)$$

$$a \mapsto 1 = \sum \delta_x(a)$$

whose composition is the identity. These are homomorphisms as one sees by local calculations on $\text{Spec } A$. One thus has an isomorphism of group-valued functors

$$D(A) \xleftarrow{\sim} \hat{G}(A) \times D_0(A)$$

where $D_0(A) =$ nilpotent elements in A.

Next consider what we need to describe the group law on D, the functor D. Locally on $\text{Spec } A$ every element of $D(A)$ is uniquely expressible in the form $c_1(x) + x$ where $X \in \hat{G}$ and x is nilpotent. The group structure is given by formulas

$$x + y = F(x, y) \quad \text{F ordinary formal group law}$$

$$c_1(x) \cdot x = c_1(x) + q_x(x)$$

where $q_x(x)$ is a power series with coefficients in $Q(pt)$ with leading term $a_1 X$, $a_1 \in Q(pt)^*$ (otherwise $x \mapsto q_1(x)x$ wouldn't be an isomorphism).
August 25, 1969:

Analysis of Eysin sequence

\[\rightarrow U^i_{Z_p}(X) \xrightarrow{\cdot \omega} U^{g+2}_{Z_p}(X) \xrightarrow{\pi^*} U^{g+2}_{Z_p}(S^1 \times X) \xrightarrow{\delta^*} U^{g+1}_{Z_p}(X). \]

\[\pi^* \text{ sends a class represented by } \frac{Z}{\text{card } g+2} \]
\[X \xrightarrow{\text{into}} S^1 \times X \xrightarrow{\text{into}} X \times X \]

whereas \(S^1 \times X \)
\[\frac{Z}{\text{card } g+2} \]
\[X \xrightarrow{\text{into}} S^1 \times X \xrightarrow{\text{into}} X \]

The reason \(\delta \pi^* \) is zero is because the map \(S^1 \times X \xrightarrow{pr_2} X \) factors into \(S^1 \times X \xrightarrow{\text{inid}} D^2 \times X \xrightarrow{pr_1} X \) and because integrating a class on \(S^1 \) which comes from \(D^2 \) must give \(0 \). Now note that there is an exact sequence:

\[\rightarrow U^i_{Z_p}(Z_p \times X) \xrightarrow{\cdot \omega} U^i_{Z_p}(S^1 \times X) \xrightarrow{\delta^*} U^i_{Z_p}((S^1 - Z_p) \times X) \rightarrow \]

\[\delta^* \]
\[U^{i-1}_{Z_p}(X) \xrightarrow{\cdot \omega} U^i_{Z_p}(S^1 \times X) \xrightarrow{\delta^*} U^i_{Z_p}((S^1 - Z_p) \times X) \rightarrow \]

\[\delta^* \]
which is a Wang type exact sequence with differential
\[U^0(X) \xrightarrow{\delta} U^0(X) \]
probably given by \(1 - t^* \) where \(t: X \to X \) is the action of the generator of \(\mathbb{Z}_p \) on \(X \). So suppose for simplicity that \(X \) is \(\mathbb{Z}_p \)-trivial whence we obtain isomorphisms
\[U^0_{\mathbb{Z}_p}(S^1 \times X) = \frac{U^0_{\mathbb{Z}_p}(S^1 \times \mathbb{Z}_p \times X)}{U^0_{\mathbb{Z}_p}(S^1 \times \mathbb{Z}_p)} \cong U^0(X) \cdot 1 \oplus U^0(X) \cdot t \cdot 1. \]
The map diagram
\[\begin{array}{ccc}
U^0(X) & \xrightarrow{\cdot 1} & U^0(X) \\
\downarrow \text{incl} & & \downarrow \text{incl} \\
U^0(X) & \xrightarrow{\cdot t} & U^0(X) \\
\end{array} \]
commutes.

\[U^0_{\mathbb{Z}_p}(S^1 \times X) \xrightarrow{\cdot t} U^0_{\mathbb{Z}_p}(S^1 \times X) \]
commutes and so the map \(\delta \) which is the top composition \(x \mapsto t^* x \) is the induction map \(U^0(X) \to U^0_{\mathbb{Z}_p}(X) \). The map
\[\begin{array}{ccc}
U^0(X) & \xrightarrow{\cdot 1} & U^0_{\mathbb{Z}_p}(S^1 \times X) \\
\downarrow \text{incl} & & \downarrow \text{incl} \\
S^1 \times \mathbb{Z}_p & \xrightarrow{\cdot t} & S^1 \times \mathbb{Z}_p \\
\end{array} \]
is zero since \(S^1 \times 2 \xrightarrow{fp_{S^1}} X \) is the boundary of \(D^2 \times 2 \xrightarrow{fp_{D^2}} X \).
Thus the Gysin sequence under consideration appears to be
\[\rightarrow U^0(X) \xrightarrow{\text{ind}} U^0_{Z_p}(X) \xrightarrow{\omega} \tilde{U}^{8+2}_{Z_p}(X) \xrightarrow{\beta} U^{8+1}(X) \rightarrow \ldots \]

where \(\beta \) does as follows:

\[
\begin{array}{ccc}
\text{given} & \text{form} \\
\downarrow & \downarrow \\
X & X \times V \\
\end{array}
\]

and you get

\[
\begin{array}{ccc}
W & \rightarrow & Z \\
\downarrow g & \downarrow \\
S^1 \times X & \rightarrow & X \rightarrow X \times V \\
\downarrow p_2 & \\
S^1 \times Z_p & \rightarrow & X \\
\downarrow p_2 & \\
X & & \\
\end{array}
\]

Therefore \(\beta \) is capping with the homology element in \(U_1^1(BZ_p) \) represented by the free \(Z_p \) manifold \(S^1 \). Note that the image of \(\beta \) is of order \(p \) since

\[U^0(X) \xrightarrow{\text{ind}} U^0_{Z_p}(X) \xrightarrow{\text{rest}} U^0(X) \]

is multiplication by \(p \).

If we ignore \(p \)-torsion, then the map \(\beta \) is zero and \(\frac{1}{p} \text{rest} \) is the left inverse to \(\text{ind} \). Thus we obtain have that \(\omega \) is an isomorphism when restricted to its image and we have a ring isomorphism:

\[
\begin{align*}
U^0_{Z_p}(X)[\frac{1}{p}] & \cong (U^0_{Z_p}(X)[\frac{1}{p}] / \ker \omega) \times U^0(X)[\frac{1}{p}] \\
\end{align*}
\]

\[U^0_{Z_p}(X)[\frac{1}{p}, \omega] \]
Hence it seems that we do not get the unstable operations we need.
August 27, 1969

I know that for each integer $k \geq 0$, there is a unique multiplicative operation

$$\psi^k : U^w(X) \rightarrow U^w(X)[\frac{1}{k}]$$

degree 0

given by

$$\psi^k c_i(L) = c_i(L \otimes^k).$$

It's clear that ψ^k induces the identity on $U^*(pt)$, hence $\psi^k x$ is without denominators whenever x is in the subring $\cup_{i \geq 0} U^i(X)$ generated by $U^*(pt)$ and the Chern classes. According to Novikov, $\psi^k : U^\otimes(X) \rightarrow U^\otimes(X)$ for $k \geq 0$. (This is because $U^\otimes(X) = [X, E_8]$ where E_8 is a space without torsion and only even dimensional cells. One uses the Hurewicz spectral sequence to show $U^\otimes(M)$ has no torsion for $k < r$ and concludes that ψ^k is integral for E_8 by Steenrod-Hatcher.)

It follows that the stable Adams operations $\psi^k : U^w \rightarrow U^{w-k}$ are integral in degrees ≤ 0.

Question: Can $\psi^k : U^w \rightarrow U^{w-k}$ be defined by some Steenrod method.

Try $k=2$:

$$U^w(X) \xrightarrow{Q} U^w_{\mathbb{Z}_2}(X) \rightarrow U^w_{\mathbb{Z}_2}[\omega^k] \xrightarrow{\gamma_0} U(X)[\omega^k, a_1, \ldots]$$
Recall that tom Dieck's localization theorem says that there is an isomorphism
\[U_G(X)[\mathcal{E}] \cong U(X)[e_1^*, e_2^*, a_2^*, a_3^*, \ldots] \text{ in } \hat{\mathcal{E}}. \]

The map from \(U_G(X) \) to the right side comes by regarding the right side as an equivariant theory with equivariant homomorphism \(f_* \) defined for a proper oriented \(G \)-map \(f : X \to Y \) by
\[f_*(x) = f^G_* \{ \varphi(\mu_f) \} \]
where \(\mu_f \) and \(\varphi \) are as follows. Note that without trivial components
\[\mu_f|X^G = \mu_f^G + \mu_f \]
where \(\mu_f \) is a \(G \)-bundle on \(X^G \), hence
\[\mu_f = \bigoplus_{i \in \hat{G}-0} V_i \otimes \mathbb{Q} \mu_f^i. \]

Then
\[\varphi(\mu_f) = \prod_{i \in \hat{G}-0} e_i \text{ rank } \mu_f^i \sum \lambda^a \left[\sum_{a} a^i \cdot c_a(\mu_f^i) \right] \]
or equivalently \(\varphi \) is the multiplicative characteristic class which is given by
\[\varphi(V_i \otimes L) = e_i \sum_{n \geq 0} a^i c_1(L)^n, \quad a^i = 1. \]

Here \(V_i \) is the \(i \)-th irred. rep of \(G \) and \(L \) is a \(G \)-trivial line bundle.

So now consider \(G = \mathbb{Z}_2 \) and let \(\omega = c_1(\eta) \) where \(\eta \) is the non-trivial character of \(\mathbb{Z}_2 \). Then the tom Dieck map associated to the \(\mathbb{Z}_2 \) map \(f^2 : \mathbb{Z}^2 \to \mathbb{X}^2 \) the map \(f : \mathbb{Z} \to \mathbb{X} \) follows.
and the bundle $\mu_f = \eta \otimes V_f$, so one has a commutative diagram

\[
\begin{array}{ccc}
U^0(X) & \xrightarrow{\alpha} & U^0_{\mathbb{Z}_2}(X) \\
\downarrow \lambda & & \downarrow \text{t.o.} \\
U^0(X)[w^{-1}, w, a_1, a_2, \ldots] & & \\
\end{array}
\]

where

\[
\alpha(f, 1) = f \left(w \text{rank } V_f \sum \frac{a}{x} C_x(V_f) \right)
\]

Thus α is in fact the characteristic class map and so we see that all stabilizable operations in $U^0(X)$ can be obtained from the Steenrod procedures.

The operation $\Phi^2 : U^0(X) \to U^0(X)[\frac{1}{2}]$ is obtained as the composition

\[
U^0(X) \xrightarrow{\lambda} U^0(X)[w^{-1}, w, a_1, \ldots] \xrightarrow{\lambda} U^0(X)[\frac{1}{2}]
\]

where λ is the $U^0(X)$ algebra map given by

\[
\lambda \left(\sum_{n \geq 0} a_n x^{n+1} \right) = F^U(X, x),
\]

which of course guarantees that

\[
\lambda \times c_1(L) = \lambda \left(\sum a_n c_1(L)^{n+1} \right) = c_1(L^2).
\]

Observe that λ is uniquely determined by the formula

\[
\lambda \alpha = \Phi^2
\]

since α is in fact the universal stabilizable operation for U^0.

So now our problem to define an integral φ^2 reduces to determining whether or not we can define a \mathcal{I} such that there is a commutative square

\[
\begin{array}{ccc}
U^{eo}_\mathbb{Z}_2(X) & \xrightarrow{\mathcal{I}} & U^{eo}(X) \\
\downarrow \text{t.D.} & & \downarrow \\
U^{eo}(X)[\omega^1_{a_{1}, a_{2}, a_{3}}] & \xrightarrow{\lambda} & U^{eo}(X)[\frac{1}{2}]
\end{array}
\]

For spaces without 2 torsion, \mathcal{I} if it exists, is unique, and is a ring homomorphism. Let's examine the situation when $X = pt$ and use the "formal group law" of $U^{eo}_\mathbb{Z}_2$.

We recall that as the theory $U^{eo}_\mathbb{Z}_2(X)$ satisfies the projective bundle theorem, it has a generalized formal group law which for each $U^{eo}_\mathbb{Z}_2(pt)$ (co understood from now on) Δ-algebra A gives an abelian group structure on

\[
D(A) = \{a \in A | (a(a-w))^n = 0 \text{ some } n\}.
\]

This arises as follows. Given $a \in D(A)$ we have a homomorphism

\[
U^{eo}_\mathbb{Z}_2(P(n(1+\eta))) = U^{eo}_\mathbb{Z}_2(pt) [X]/(X(X-w))^n \longrightarrow A
\]

for some n. Similarly for a'. Now E bundle map

\[
O(i) \boxtimes O(i) \rightarrow O(i)
\]

\[
P(n(1+\eta)) \times P(n'(1+\eta)) \xrightarrow{\mu} P(n^n(1+\eta))
\]

for some n''.

Hence we have:
\[U_2(\text{pt}) [X]/(X(x-y)) \xrightarrow{\mu^*} U_2(P(n+1+\eta) \times P(n'+1+\eta)) \]

\[\cong U_2(\text{pt}) [X',X]/(X(x-w)) \cong (x'(x'-w)) \]

\[\xrightarrow{\rightarrow} A \quad X \mapsto a \quad X' \mapsto a' \]

Then \(a \ast a' \) is the image of \(X \) under the composition of the above maps.

I also recall that if \(w^{-1} \) exists in \(A \), then locally on \(\text{Spec} A \) any element \(a \) of \(D(A) \) is either nilpotent or of the form \(w + x \) where \(x \) is nilpotent and the group law on \(D(A) \) is determined by the rules

\[x \ast y = F^A(x,y) \quad \text{if} \quad x, y \text{ nilpotent} \]

\[w \ast x = w + \sum_{n \geq 0} b_n x^{n+1} \]

where \(b_n \in U_2(\text{pt})[w^{-1}] \) and \(b_0 \) is a unit. I want now to determine in terms of \(w \) and \(a_n \) what are the \(b_n \).

Now if \(L \) is a line bundle over \(X \) and \(\mathbb{Z}_2 \) acts trivially on \(L \), then

\[w \ast c_1(L) = c_1(\eta \otimes L) \]

Under the form Dixmey transform element becomes

\[w \sum_{n \geq 0} a_n c_1(L)^n \]

\[\eta \otimes L \]

\[f^2 = \text{id}, \mu = \mathbb{Z} \]
and therefore we have that
\[b_n = w - a_n \quad \text{for } n \geq 1. \]

The good formula is
\[w \times x = w \sum_{n \geq 0} a_n x^n. \]

(Puzzle: this seems to imply that \(a_1 \) is invertible. \textbf{Disaster:} the projective bundle theorem is false for \(U^*_G \) even when \(G \) is \(\mathbb{Z}_2 \). Everything you've done about formal group laws for \(U_G \) is completely wrong. The place the argument breaks down is as follows: suppose \(E = L_1 + L_2 \) and we want to prove that \(b_1, c_1(\mathcal{O}(1)) \) forms a base for \(U_G(PE) \). So we have
\[\mathcal{P}(L_1) \rightarrow \mathcal{P}(L_1+L_2) \leftarrow \mathcal{P}(L_2) \]
and we know that
\[1 \text{ and } \chi^*1 = c_1(\mathcal{O}(1) \otimes f^*L_2) \]
form a base for \(PE \). Now before you analyzed what happened with \(P^n \) first to construct the formal group law, and then used the group law to show that
\[c_1(\mathcal{O}(1)) - c_1(L_2^*) = c_1(\mathcal{O}(1) \otimes L_2 \{ 1 + \text{nilpotent} \}) \]
so that necessarily \(1 \) and \(c_1(\mathcal{O}(1)) \) were a basis. Here no such argument is possible - the best example is to consider the equivariant theory
\[X \rightarrow H^*(X^G, \mathbb{Z}) [w, w^{-1}] = Q(x) \]
with \(\text{Yssin given by } f_*^G(\omega \cdot \text{dim } E_\mathfrak{g}). \)
Then for a line bundle \(L \) over \(X \) on which \(G \) acts trivially we have
\[
c_1(\eta \otimes L) = \omega = c_1(\eta)
\]
so we would get a contradiction if we could use a group structure on \(D(4) \) and conclude that
\[
c_1(L) = c_1(\eta \otimes (\eta \otimes L)) = \omega \ast \omega = c_1(\eta \otimes \eta) = 0
\]
which is false. Observe what happens for \(Q(\mathbb{P}(\eta + \eta)) \).

The generators are 1 and
\[
c_1(\mathcal{O}(1) \otimes \eta) = c_1(\mathcal{O}(\mathbb{P}(2), 1)) \text{ but }
\]
\[
c_1(\mathcal{O}(1)) = c_1(\eta \otimes \mathcal{O}(\mathbb{P}(2), 1)) = \omega
\]
which lives in \(Q(\text{pt}) \).
August 30, 1969

Impossibility of defining an integral \(\varphi^2 \) on \(U^w \) by the Steenrod method:

We have the following diagram of solid arrows:

\[
\begin{array}{cccc}
\omega \sum_{n=0}^{\infty} a_n x^{n+1} & \rightarrow & F(X, X) \\
\uparrow & & & \\
\varphi^2 & \rightarrow & U(X) & \rightarrow U(X)[\frac{1}{2}] \\
\downarrow & & & \\
U(X)[w, w^5 a_n, \ldots] & \rightarrow & U(X)[\frac{1}{2}] \\
\downarrow & & & \\
U_2(X) & \rightarrow & U_2(X)[\varphi] \\
\downarrow & & & \\
\varphi^2 & \rightarrow & U(X)[w, w^5 a_n, \ldots] \\
\downarrow & & & \\
U_2(X) & \rightarrow & U_2(X)[\varphi] \\
\end{array}
\]

and we would like to know whether there exists a dotted arrow natural in \(X \). We will now show there isn't such a dotted arrow even for \(X = \text{pt} \). The proof is based on the following:

Proposition: The elements \(a_1 = w^{-1} \) and \(a_n \) for \(n \geq 2 \) are in the images of the map \(U_2(\text{pt}) \rightarrow U_2(\text{pt})[w^{-1}, w^5 a_n, \ldots] \).

Proof: According to tom Dieck's integrality theorem we have a map of exact sequences:

\[
\begin{array}{cccc}
? & \rightarrow & U_2(X) & \rightarrow U_2(X)[\varphi] & \rightarrow ? \\
\downarrow S & & \downarrow & & \downarrow S \\
? & \rightarrow & U(\mathcal{B}Z_2 \times X) & \rightarrow U(\mathcal{B}Z_2 \times X)[\varphi] & \rightarrow ?
\end{array}
\]