§2. The K-theory associated to a ring. Let A be a ring with unit but not necessarily commutative.

Let $\text{GL}(A)$ be the infinite general linear group (inductive limit of $\text{GL}_n(A)$) and let $E(A)$ be the subgroup generated by elementary matrices.

Let $B\text{GL}(A)$ be a classifying space for $\text{GL}(A)$ which is a CW complex. Since $E(A) \subset \text{GL}(A) = \pi_1 B\text{GL}(A)$ is perfect we may kill it as in the preceding section obtaining a CW complex $B\text{GL}(A)^+ = B\text{GL}(A)/E(A)$.

We define the algebraic K-groups unique up to homotopy type of the ring A by setting

$$K_i A = \pi_i B\text{GL}(A)^+ \quad i \geq 1$$

and taking $K_0 A$ to be the Grothendieck
group of finitely-generated projective A-modules.

Since $E(A)$ is normal in $GL(A)$, 1.2(i) shows that $K_1A = \frac{GL(A)}{E(A)}$, so our K_1 coincides with that of Bass. By 1.2(ii) there is a cartesian square

$$
\begin{array}{ccc}
BE(A) & \xrightarrow{f'} & BE(A)^+ \\
\downarrow & & \downarrow g \\
BGL(A) & \xrightarrow{f} & BGL(A)^+
\end{array}
$$

where g is the universal covering of $BGL(A)^+$ and where f' induces isomorphisms on homology. Hence by the Hurewicz theorem

$$
K_2A = \pi_2BE(A)^+ = H_2BE(A)^+ = H_2BE(A)
$$

showing that our K_2 coincides with the one defined by Milnor [].
The following illustrates the relation of our K-groups to those of topological K-theory. Let $A = \text{Hom}(X, \mathbb{R})$ be the ring of continuous real-valued functions on a compact space X where Hom denotes the function space with compact-open topology. Then $GL(A) = \varprojlim_{n} \text{Hom}(X, \text{GL}_n(\mathbb{R}))$ is a topological group in a natural way (at least if we work in the category of compactly-generated spaces) and we let $\text{B}^{\text{top}} GL(A)$ as constructed by Segal [1]. In analogy with the definition of $K_1 A$, we define $K_i^{\text{top}} A$ for $i \geq 1$ to be the homotopy groups of a space $\text{B}^{\text{top}} GL(A)^+$. $\text{B}^{\text{top}} GL(A)^+$ endowed with a universal arrow
$f : B^{\text{top}} \text{GL}(A) \to B^{\text{top}} \text{GL}(A)^+ \text{ killing } E(A)$, or more precisely the image of $E(A)$ in $\pi_1 B^{\text{top}} \text{GL}(A)$. But this image is zero since $E(A)$ is contained in the connected component of $\text{GL}(A)$, hence we can take f to be the identity and conclude that

$$K^\text{top}_i \text{Hom}(X, \mathbb{R}) = \lim_{\rightarrow} \pi_{i-1} \text{Hom}(X, \mathbb{R})$$

$$= KO^{-i}(X) \quad i \geq 1.$$
from the algebraic to the topological K-groups.

Similar things hold with C instead of R.

Suppose now that A is a general ring, and set

$$\tilde{K}(X; A) = [X, \text{BGL}(A)^+]$$

for any pointed connected space X. The above example shows that $\text{BGL}(A)^+$ is the analogue in algebraic K-theory of the spaces BO and BU of topological K-theory, hence it is reasonable to think of an element of $\tilde{K}(X; A)$ as a virtual vector bundle for the ring A over X which is reduced, i.e. restricts over the basepoint to zero.

We are now going to develop the properties of this
following the example of topological algebraic K-functor K-theory as closely as possible.

Let $\mathcal{P}(A)$ denote the additive category of finitely-generated projective (left) A-modules. By a representation of a group G over A we shall mean an object P of $\mathcal{P}(A)$ endowed with a linear action of G. By an A-vector bundle over a space X we mean a fibre bundle over X with A-module structures on the fibres which is locally isomorphic to $X \times P$ where P is an object of $\mathcal{P}(A)$ endowed with the discrete topology.

For simplicity we suppose from now on that X is a pointed connected CW complex. Then
associating to an A-vector bundle the natural action of $\pi_1 X$ on the fibre over the basepoint gives an equivalence of the categories of A-vector bundles over X, with fibrewise A-linear maps for morphisms, with the category of representations of $\pi_1 X$ over A.

So from now on we use this equivalence to identify A-vector bundles and representations of the fundamental group.

Call two representations E and E' of G over A stably isomorphic if there are trivial representations P and P', i.e. objects of $P(A)$ with trivial G-action, such that $E \oplus P \cong E' \oplus P'$.
Denote by \(\text{St}(G;A) \) the stable isomorphism classes and by \(\text{cl}(E) \) the isomorphism class of representations of \(G \) of \(E \). \(\text{St}(G;A) \) inherits an abelian monoid structure from the direct sum operation on representations. We call elements of \(\text{St}(G;A) \) stable representations and elements of \(\text{St}(G;X;A) \) stable vector bundles over \(X \).

Let \(E_n A \) be the subgroup of \(\text{Gl}_n A \) generated by elementary matrices. We claim that by associating to a homomorphism \(G \to \text{Gl}_n A \) the corresponding representation of \(G \) on \(A^n \) gives rise to a bijection

\[
(1) \quad \lim_{n \to \infty} \frac{\text{Hom}_{\text{grs.}}(G,\text{Gl}_n A)}{E_n A} \to \text{St}(G;A).
\]

Indeed, the map is surjective because given any representation \(E \) there is a trivial representation \(P \) such that \(E \oplus P \) is a representation on a free \(A \)-module.
For injectivity suppose \(u, u' \) are two homomorphisms \(G \rightarrow \text{GL}_n A \) giving rise to stably isomorphic representations \(E \) and \(E' \). We must show \(u \) and \(u' \) become conjugate in \(\text{GL}_n A \) by an element of \(E_n A \) for some \(N \geq n \). It will suffice to show \(u \) and \(u' \) are conjugate by an element \(\Theta \) of \(\text{GL}_n A \), because then they will be conjugate in \(\text{GL}_2 N A \) by \(\Theta \Theta^{-1} \), which belongs to \(E_{2n} A \) by the Whitehead lemma \([1]\). We are given that \(E \oplus P \) and \(E' \oplus P' \) are isomorphic.

Adding a further trivial representation we can suppose \(P \) is free.
As \(E \) and \(E' \) are representations of \(A \)-modules, \(A^n \oplus P' \cong A^n \oplus P \cong A^m \) on \(A^n \) we have for some \(m \), hence adding \(A^n \) to both \(P \) and \(P' \) yields an isomorphism \(E \oplus A^m \cong E' \oplus A^m \), giving the desired element \(\Theta \) with \(N = n + m \).

We now define a map

\[
\text{St}(\pi_1 X; A) \longrightarrow [X, \text{BGL}(A)^+] = \tilde{K}(X; A)
\]

(2)

\[\text{cl}(E) \longrightarrow [E] \]

which should be thought of as the map associating to a vector bundle the associated reduced virtual vector bundle. According to (1) an element \(\text{cl}(E) \) of \(\text{St}(\pi_1 X; A) \) determines a homomorphism \(\text{cl}(E) : \pi_1 X \rightarrow \text{Gl}(A) \).
which is unique up to conjugacy by elements of $E(A)$. Composing the map $X \rightarrow BGL(A)$ in \mathcal{N}_0 associated to u with the canonical map $f: BGL(A) \rightarrow BGL(A)^+$, which we recall is a quotient for the action of $E(A)$ on $BGL(A)$, we obtain a well-defined map $X \rightarrow BGL(A)^+$ in \mathcal{N}_0, which will be denoted by $\eta[u]$.

Unlike topological K-theory where stable vector bundles and reduced virtual bundles are the same, at least over finite complexes, the map

(2) in algebraic K-theory is not usually an isomorphism, e.g. X simply-connected. Instead we have the following universal property for the arrow
Denote by \mathcal{C} the category of pointed connected finite complexes and homotopy classes of basepoint-preserving maps, and call a functor $F: \mathcal{C} \rightarrow \text{sets}$ representable if it is of the form $F(X) = [X, Z]_0$ for some pointed space Z.

Proposition 2.1: The arrow \((2) \) is a universal morphism of functors from $X \mapsto \text{St}(\pi_1X; A)$ to a representable functor.

Proof: Let A_5 be the alternating group on 5 letters and embed it in the natural way in GL_5A. Let N be the normal subgroup of $\text{GL}(A)$ generated by A_5.

"OKAY, necessary to add diagram of representable functors..."
Then N contains all even permutation matrices, hence $\text{GL}(A) / N$ is abelian since given $x, y \in \text{GL}(A)$ there is an even permutation matrix p such that x commutes with pyp^{-1}. Thus N contains $(\text{GL}(A), \text{GL}(A)) = E(A)$, hence $N = E(A)$ since $A_5 = (A_5, A_5) \subseteq E(A)$. Consequently $B_{\text{GL}(A)^+} = \text{BGL}(A) / A_5$.

If we take $B_{\text{GL}(A)}$ to be the realization of the semi-simplicial set $\tilde{W}(\text{GL}(A))$ (see [1]) then B_{A_5} can be regarded as a sub-complex of
Let $\pi_1 Y_0 = A_5$ be a simple non-abelian group so by attaching one 2-cell and one 3-cell we can construct an embedding $f: Y_0 \to Y_0^+$ inducing an isomorphism on homology with Y_0^+ a finite simply-connected pointed complex, i.e. $Y_0^+ = Y_0 / A_5$ in the notation of §1. Then we can take $BGL(A)^+ = BGL(A) \cup_{Y_0} Y_0^+$ because the inclusion map $f: BGL(A) \to BGL(A)^+$ satisfies (i) and (ii) of 1.2. Let $\{Y_\nu\}$ be the lattice of finite sub-complexes of $BGL(A)$ containing Y_0 and set $Y_\nu^+ = Y_\nu \cup_{Y_0} Y_0^+$. Then $BGL(A) = \bigcup Y_\nu$ and $BGL(A)^+ = \bigcup Y_\nu^+$.
so for any X in \mathcal{C} we have

$$[X, BGL(A)^0] = \varinjlim_{\nu} [X, Y^\nu]_0,$$

$$[X, BGL(A)^+] = \varinjlim_{\nu} [X, Y^{+\nu}]_0.$$

Using () we have

$$St(\pi X, A) = \text{Hom}_{ypo.} (\pi \pi X, GL(A))/E(A)$$

$$= [X, BGL(A)]_0/E(A).$$

Therefore if Z is a pointed space

$$\text{Hom}(\pi X, [?, Z]_0)$$

$$= \text{Hom}([?, BGL(A)]_0/E(A), [?, Z]_0)$$

$$= \text{Hom}([?, BGL(A)]_0/A_5, [?, Z]_0)$$

$$= \varinjlim_{\nu} [Y^\nu, Z]_0^{A_5}$$

$$= \varinjlim_{\nu} [Y^{+\nu}, Z]_0$$

$$= \text{Hom}([?, BGL(A)^+]_0, [?, Z]_0).$$
where \(\text{Hom} \) denotes morphisms in the category of functors from \(\mathcal{C} \) to sets. The proposition follows.

We use this proposition to extend operations on stable representations to operations on \(\tilde{\mathcal{R}}(x, A) \). For example if \(u : A \to A' \) is a ring homomorphism, base extension by \(u : E \to A' \otimes_A E \) gives rise to a natural transformation \(u^* : \mathcal{S}(\pi; A) \to \mathcal{S}(\pi; A') \).

\[
\begin{align*}
\text{map} \; \mathcal{S}(\pi; A') & \to \tilde{\mathcal{R}}(\pi; A') \quad \text{we obtain a } \tilde{\mathcal{R}}(\pi; A) \rightarrow \tilde{\mathcal{R}}(\pi; A') \\
 \text{natural transformation from } \mathcal{S}(\pi; A) \text{ to a representable } \int \mathcal{X} \text{ which by } 2.1 \text{ is obtained from a unique } \\
 \text{natural transformation } u^* : \tilde{\mathcal{R}}(\pi; A) \to \tilde{\mathcal{R}}(\pi; A')
\end{align*}
\]
and by 2.1 there is a unique natural transformation \(u^*: \tilde{\mathcal{K}}(\cdot; A) \to \tilde{\mathcal{K}}(\cdot; A') \) such that the square

\[
\begin{align*}
S^+(\pi_1^*; A) & \longrightarrow S^+(\pi_1^*; A') \\
\downarrow & \downarrow \\
\tilde{\mathcal{K}}(\cdot; A) & \longrightarrow \tilde{\mathcal{K}}(\cdot; A')
\end{align*}
\]

commutes. Similarly if \(A' \) is a finitely-generated projective \(A \)-module there is a "restriction of scalars" map

\[
u_*: \tilde{\mathcal{K}}(\cdot; A) \to \tilde{\mathcal{K}}(\cdot; A').\]

To handle binary operations, we note that the product of the maps \(\pi_1^* \) for

\[
\pi_1^*: \tilde{\mathcal{K}}(\cdot; A) \times \tilde{\mathcal{K}}(\cdot; A) \to \tilde{\mathcal{K}}(\cdot; A).\]
Applying 2.1 to the product $A \times A'$ of two rings we see that
\[
\text{St}(\pi_1; A) \times \text{St}(\pi_1; A') \to \tilde{K}(\cdot; A) \times \tilde{K}(\cdot; A')
\]
is a universal map to a representable functor on C, because this arrow is isomorphic to the arrow (2) for $A \times A'$, since there is an isomorphism in \mathcal{H}_0

\[
BGL(A \times A')^+ \cong \left\{ BGL(A) \times BGL(A') \right\}^+
\]

\[
\cong BGL(A)^+ \times BGL(A)^+
\]

by 1.5. Consequently any binary, tertiary, etc. operation on stable bundles extends uniquely to the \tilde{K}-functor. For example the sum operation on
\[
\text{St}(\pi_1; A)
\]
extends to define an abelian monoid structure on
\(\tilde{K}(\cdot; A) \), the associativity of the extension resulting from the uniqueness. But one sees quite easily by induction on the number of cells of the finite complex \(X \) that the monoid \(\tilde{K}(X; A) \) is in fact an abelian group, so we have proved

Proposition 2.2: There is a unique abelian group structure on \(\tilde{K}(\cdot; A) \) such that the canonical arrow \(\pi_1(\cdot; A) \to \tilde{K}(\cdot; A) \) is a homomorphism of monoids.

Another way of saying that \(\tilde{K}(\cdot; A) \) has a monoid structure is to say that \(BGL(A)^+ \) is a weak H-space. One consequence is that \(BGL(A)^+ \) is a simple space, i.e., the fundamental group acts
trivially on \([X, BGL(A)^+]\) for all \(X\) in \(C\), or equivalently that
\[[X, BGL(A)^+]_0 = [X, BGL(A)^+] \]

Another consequence is a formula for the groups \(K_i A \otimes \mathbb{Q}\) in terms of the rational homology of \(GL(A)\).

Proposition 2.3: The Hurewicz homomorphism for \(BGL(A)^+\) induces an isomorphism of the Hopf algebra \(H_x(BGL(A), \mathbb{Q})\).

This follows from the theorem of Milnor and Moore (LG, appendix).
This follows from a theorem of Milnor and Moore (Ⅵ, appendix), or more precisely from their argument which one can check works for weak H-spaces.

Remainder 2.4: Actually $BGL(A)^+$ is a homotopy commutative and associative H-space, in fact it is an infinite loop space as we shall prove later, by relating it to Segal's theory [Ⅵ]. On a more elementary level one can define the product on $BGL(A)^+$ to be the one induced by the embedding of $GL(A) \times GL(A)$ into $GL(A)$ which one obtains from enumerating $N^+ \sqcup N^+$, where N^+ is the
set of positive integers. To prove the unitarity, associativity, and commutativity one can the following lemma which we state without proof.

Lemma: Let \(u : \text{GL}(A) \rightarrow \text{GL}(A) \) be the embedding associated to an injection of \(\mathbb{N}^+ \) into \(\mathbb{N}^+ \). Then the triangle in \(\mathbb{N} \)

\[
\begin{array}{c}
\text{BGL}(A) \\
\downarrow_{\text{B}(u)} \\
\text{BGL}(A)
\end{array} \quad \xrightarrow{f} \quad \begin{array}{c}
\text{BGL}(A) \\
\downarrow_{\text{BGL}(A)^+}
\end{array}
\]

is commutative.