Lectures courses by Daniel G Quillen

C. Topics in Cyclic Cohomology and K-theory, Trinity Term 1992.

125 pages of notes. The lecture course is concerned with the analogy between de Rham (co)homology for commutative algebras over \mathbf{C} and cyclic homology theory for noncommutative algebras, and considers the following topics. Smooth algebraic varieties; noncommutative analogue of smoothness. Quasi fee algebras. Resolutions of b and b'; Hochschild homology. Laplace operator and spectral resolution of Karoubi operator. Connes's B operator. Connes's exact sequence. Connes–Tsygan double complex. Periodic cyclic homology. Negative cyclic homology. Hodge filtration. Models for cyclic theory. The Fedosov product. Harmonic decomposition. Cartan homotopy formula for complex. Connes notion of a connection. Quasi free extensions of algebras. Goodwillie's theorem. Curvature and Yang–Mills connections. The torsion of the connection. The exponential map.

Editor's remark The lecture notes were taken during lectures at the Mathematical Institute on St Giles in Oxford. There have been subsequent corrections, by whitening out writing errors. The pages are numbered, but there is no general numbering system for theorems and definitions. For the most part, the results are in consecutive order, although in one course the lecturer interrupted the flow to present a self-contained lecture on a topic to be developed further in the subsequent lecture course. The note taker did not record dates of lectures, so it is likely that some lectures were missed in the sequence. The courses typicaly start with common material, then branch out into particular topics. Quillen seldom provided any references during lectures, and the lecture presentation seems simpler than some of the material in the papers.

- D. Quillen, Cyclic cohomology and algebra extensions, K-Theory 3, 205–246.
- D. Quillen, Algebra cochains and cyclic cohomology, *Inst. Hautes Etudes Sci. Publ.* Math. **68** (1988), 139–174.

• J. Cuntz and D. Quillen, Cyclic homology and nonsingularity, J. Amer. Math. Soc. 8 (1995), 373–442.

Commonly used notation

k a field, usually of characteristic zero, often the complex numbers A an associative unital algebra over k, possibly noncommutative $\bar{A} = A/k$ the algebra reduced by the subspace of multiples of the identity $\Omega^n A = A \otimes (\bar{A} \otimes \ldots \otimes \bar{A})$ $\omega = a_0 da_1 \ldots da_n$ an element of $\Omega^n A$

 $\Omega A = \bigoplus_{n=0}^{\infty} \Omega^n A$ the universal algebra of abstract differential forms

e an idempotent in A

- d the formal differential (on bar complex or tensor algebra)
- *b* Hochschild differential
- b', B differentials in the sense of Connes's noncommutative differential geometry
- λ a cyclic permutation operator
- K the Karoubi operator
- the Fedosov product
- ${\cal G}$ the Greens function of abstract Hodge theory
- ${\cal N}$ averaging operator
- ${\cal P}$ the projection in abstract Hodge theory
- ${\cal D}$ an abstract Dirac operator
- ∇ a connection
- I an ideal in A
- \boldsymbol{V} vector space
- M manifold
- ${\cal E}$ vector bundle over manifold
- τ a trace
- $T(A)=\oplus_{n=0}^\infty A^{\otimes n}$ the universal tensor algebra over A

GBlower Meiton Thirity 1992

Volume XIV

Topics in Cyclic Cohomology and K-theory Professor DG Ruillen hudogy between de Rhan (co)-homology for commutative algebras over C and cyclic homology theory for non commutative algebras Commutative picture { finitely generated commutative elgebras A} = { { schemer of finite type ore- 0} A ins Var (A) where Var A = Homoly (A, R) EC" { hypological spaces } Interesting homology is H'(Var A, a) differential forms for a commutative algebra SiA A - AA - AA -> (universal "communicative DGA generated by 4) H'(A) (Ver A nonsingular and A has trived radual)

$= \overline{\sum_{i}} (-1)^{i} (A_{i0},, A_{i}A_{iv},, A_{ni}) + (-1)^{nn} (A_{no1}A_{0}, A_{i},, A_{n}) \underline{b} is the most important operator. B(A_{0} dA_{1} - dA_{n}) = \sum_{i=0}^{n} (-1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} B(A_{0} dA_{1} - dA_{n}) = \sum_{i=0}^{n} (-1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} B(A_{0} dA_{1} - dA_{n}) = \sum_{i=0}^{n} (-1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} B(A_{0} dA_{1} - dA_{n}) = \sum_{i=0}^{n} (-1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} B(A_{0} dA_{1} - dA_{n}) = \sum_{i=0}^{n} (-1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} B(A_{0} dA_{1} - dA_{n}) = \sum_{i=0}^{n} (-1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} dA_{n} dA_{0} dA_{n} dA_{0} dA_{i} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} $ (B(A_{0} - A_{0}) = -1)^{i} dA_{1} (B(A_{0} - A_{0}) = -1)^{i} dA_{1} .	Examples (i) Free algebra $T(V) = (C \oplus V \oplus V^{\oplus 2} \oplus,$ and uppe of polynomial ring. (i) Separable algebra $M_n \subset C$ than commutable and ogue of c(al) H quant free, S separable $\Rightarrow A \otimes S$ quantifie $eg M_n A = M_n \otimes A$ If H is quantifier and M is a projective H bimodule then $T_A M = A \otimes M \oplus (M \otimes_A M) \oplus$ is also quasifier. Triangular imation algebra - driegend algebra is separable. $M \otimes_S M$
Definition: A is quarifies of it satisfies the equivalent properties) My homomorphism A → RII where I is nilpotent lifts to a horn A→ R.) H ⁿ (A, M) = 0 for all bimodules M over A and h72.) I'A is a projective bimodule over A. 4	Definition: $X(H): P_{i} \stackrel{\leftarrow}{=} \frac{b}{B=d} \int_{a}^{2} A / [a^{2}A, H] \stackrel{\circ}{S} M$ This a quotient of $\int_{a}^{a} A \stackrel{b+B}{\neq} \int_{a}^{a} O H B$ Proposition: (Analogue of the de Khaun Theorem) If A is a quantified then $H_{i}(X(H)) = HP_{i}(H)$ 5

Let $(: H \rightarrow E^{\circ} by \ l(a) (q_{0}, q_{n}) = (,,,)$ be the hormomorphism given by left multiplication. Define $l_{X}: \mathcal{R} A \rightarrow \mathcal{E}$ $l_{Y}(\mathcal{A}_{0}, \neg, q_{n}) = la_{0}[d, la_{1}][d, lin_{n}].$ Then $l_{X}(\mathcal{R}) = the Dh subalgebra of \mathcal{E} granted by \mathcal{R} ALet we \mathcal{E} \rightarrow \mathcal{R} A be w \mapsto w(0)la_{0}[d, la_{1}][d, la_{n}](1) = (a_{0},,a_{n})Have L_{X} is injective\therefore l_{X} if an isomorphism of \mathcal{R} A with theD4 A subalgebra of \mathcal{E} gravalled by \mathcal{R} A. The definesA D4 algebra structure on \mathcal{R} A subalgebra structure (1).$	For the case of $(!= LH)$ let QA be SLA with the Federor product and let RA be the even subselgemannice. Steph with product o. Clavin that given any fuero map $p: H \rightarrow R$ Such that $p(i)=1$ where R is an algebra. Then there is a unique homomorphism of algebras $p_{*}: RA \rightarrow R$ Such that $p_{*}(a) = p(a)$ Corollary: $RH \leftarrow TH / (I_{H} - I_{TH})$ (TA = $I \oplus A \oplus H^{\otimes n} \oplus$ tensor algebra) RA = free algebra with generalies the iron identity clements in a basis for H contraining I_{H}
Proof of 2) Uniqueness $U_{4}(40, -, 4n) = U_{4}(40dq, - dq_{n})$ $= U(q_{0}) du(q_{1}) - du(q_{1})$ Excistence follows from the formulae for the products. <u>Applications</u> : the universal enfension of A and Cube dq. <u>Fedosov</u> product. If $\Gamma = \oplus \Gamma^{(n)}$ i q D4 algebra, let $\overline{U_{4}} \chi \circ y = \chi y - (-1)^{(2)} d\chi dy$ intermeded from the homogeneous χ, y by University. $\overline{U_{4}}$ is an anomabic and makes Γ into $\Gamma = \Gamma^{(2)} \oplus \Gamma^{(2)}$ and Γ	Proof: Put $w(q_{i}, q_{i}) = \rho(q_{i}, q_{i}) - \rho(q_{i})\rho(q_{i})$ 'cumulations of ρ ' and put $\rho(q_{i}, q_{i}) - dq_{in}dq_{in}$ # = $\rho(q_{o}) w(q_{i}, q_{i}) - w(q_{in}, q_{in})$ This is well defined because if any $q_{j} = 1$ (j=1) both sides vanish: $\Omega^{in} A = A \otimes \overline{A}^{\otimes in}$ $q_{in} A = R$ $(q_{i}) = 1$

Uniqueren of C* such that C+ is a hom P+(4). (1.1) a, 0a, = a, a, - da, da, = $p(q_{a_0}) w(q_{i_1}q_{i_1}) - w(q_{u_{u_{i_1}}}q_{u_{u_{i_1}}})$ - $w(q_{a_0}) w(q_{i_1}q_{i_1}) - w(q_{u_{u_{i_1}}}q_{u_{u_{i_1}}})$ LP* = $\rho(a)\rho(a_0)w(a_1,a_2) - w(a_{1}a_1,a_{2}a_1)$ $p(a_1)p(a_2) = p(a_1a_2) + p_{a_1}(a_1, da_1)$ = Par(a) Par (aoda, - dain) $= \left(\partial (da_i da_i) = W(a_i, a_i) \right)$ Pount of describing RA like this? Note that $X \circ y = y$ of either of X, y is closed. $\therefore \qquad p_{x}(A \circ dq, \dots dq_{n}) = \qquad (2x(q_{0} \circ (dq, dq_{2}) \circ \dots \circ (dq dq)))$ 0-> I -> R=>A-> O Choose a linear lofting O: H > R P(1) = 1. = $p(a_0) w(a_1, a_1) - \dots w(a_{2n-1}, a_{2n})$. 0-> IA-> RA -> A -> O Note that RA is generated by the elements A & Q°H = H $0 \rightarrow I \rightarrow R \rightarrow A \rightarrow 0$ To show that Q& ia homomorphism when defined by (#). Consider {x ERA : Q. (xoy) = Q. Q. (Q. (y) by! Claim (IA)" = @ kzn I"A IA = @kro likA This is a subalgebra of RA. It suffices to show that a E A is in this subalgebra, since there elements generate. gr^{2A} RA = @ (IA)"/(IA)"" = St A with the unal product. Px(ao(Aoda, _ dazn)) = (Da(a) Po (ao ... dazn) $d \mathfrak{A}^{*} A = \overline{A}^{\otimes \mathfrak{n} + 1}$ Exact formes : dao .- dan (ao, ..., an) P* (aaoda1. - dan) - P* (da dao-dan) 10

$$K^{n} (a \circ da_{i} - da_{i}) = da_{i} - da_{n} a_{0}$$

$$= [Aa_{i} - da_{n}, a_{0}] + q \circ da_{i} - da_{i}, a_{0}]$$

$$= a_{0} da_{i} - da_{n}, a_{0}] + q \circ da_{i} - da_{n} da_{0}$$

$$K^{n(n)} = a_{0} da_{i} - da_{n} + (-i)^{n} b(da_{i} - da_{n} da_{0})$$

$$K^{n(n)} = K((i + b)K^{n}d) = K + bd = i - db$$

$$K^{n(n)} = K((i + b)K^{n}d) = K + bd = i - db$$

$$Fhit bad_{i} fo$$

$$K^{n(n-1)}(K^{n}-i) = C$$

$$As well.$$

$$Connels' Oppositor B$$

$$Ga_{0} da_{i} - da_{n} da_{0} - da_{i} - da_{i}$$

$$E^{n} (Fin) da_{i} - da_{n} da_{0} - da_{i} - da_{i} - db_{0}$$

$$R^{n} = \sum_{j=0}^{n} K^{n} da_{n} da_{0} - da_{i} -$$

Sime
$$|\zeta^{h}-l| = b|\zeta^{-l}d$$
.
 $[\zeta \ i \ of \ adv \ (hvl) \ on \ \Omega^{h} \qquad thin \ given.$
 $|\zeta^{n(nv)}| = \ \Sigma_{0}^{h} \ b \ \zeta^{n(i-1)}d = bB$
Hno
 $|\zeta^{n(nv)}-l| = \ \Sigma_{1,j=0}^{n-1} \ \zeta^{(n-1)j}(\chi^{n+l}-l)$
 $= \ -(\Sigma_{Fo}^{n-1} \ \zeta^{(n+1)j}d)b = -Bb$
Since $|\zeta^{n+l}-l| = -db$ and $[\zeta \ har \ order \ M$
 $M \ db \ \Omega^{h} \le A \ \Omega^{n+l}$
 $b \ B \ x \ Bb = 0$
 $\chi^{nonel} = l - Bd$
K is have of finite order, except in twice cover
 $\int_{A}^{n} \ \Omega^{n} = \ \Omega^{n}A = A \ \Theta \ \overline{A} \ \Theta^{h}$
 $\int_{A}^{n} \ \Omega^{n} = \ \Omega^{n}A = A \ \Theta \ \overline{A} \ \Theta^{h}$
Analogy with themy of hermanic forms
 $Leplanan \qquad bd \ x \ db = l - K$
K (combit operator
Recall thef on a compart Riemanian manifold one has l^{2}

the Laplanian $\Delta = dd^* d^* d$ which has a spectral decomposition $\mathcal{R}(M) = Ke_{\Delta} \oplus \bigoplus_{p>0} Ke_{p}(\Delta - \Lambda)$
Ker A - space of hannonic forms on manifold M
PAROKARICI-N= Ima
and one can introduce the Green's operator G which is the vinene of a on the image of a Let P = spectral prinjection on Kera G = Green's operator { 4-" on Ima 0 on Kera
$\mathcal{L}(M) = Im \mathcal{P} \mathcal{O} (Im \mathcal{P})^{\perp} \qquad \mathcal{P}^{\perp} = I - \mathcal{P}$
[3, a] = 0 $[4, a*] = 0$
Space are invariant under d, d*. (In this care d=d* on Ke a). Im (p ^L) = In d R(M) O d* RM
d*: d R(M) ~> d* R M with minere Gd d: d* SIM ~> d R M with minere Gd*

Diffamelin nornorunlable and is that d, d* needer be zero on Ker A. This uses positivity of Aria (ax(x) = lldnll² + lld^{*}nll² K on R' subrifies (K"-1)(K""-1) = O By theory of Jordan normal form, Sin splits into generalized eigenspess conserponding to the distint woods of the polycomical 21-1/ 21-1-1) which are the not wood of I and the arealst nots of l. The work are distint apart from the double voot 1. ie. J^h=1, or J^hei=1 de) 7() are simple. $\mathfrak{A}^{n} = \operatorname{Ker}(K-1)^{2} \bigoplus \bigoplus_{\substack{j=1\\j=1}}^{n} \operatorname{Ker}(K-1)$ orynu=1 171. Can do this for each in. Hense JL = Ker (K-1)² € € Ker(K-5) The eigenspaces are stable under any operator communiting with K ie. d, b. (Vey are all suburyland Let P be the spectral prijection of 16 for the eigendue! (= generalized mult spece y of I-15) million 19

 $\mathcal{L} = P \mathcal{A} \quad (k-1)^{2} \quad$ <u>Finite</u> order <u>operators</u> Proposition: Let T be an operator on a rector space V setisfying $T^{m} = 1$ with some m7!Then $P_{T} = \frac{1}{m} \sum_{i=0}^{m-1} T^{i}$ Let 9 bette Green's opensor 4 = { (K-1)'on p'R P, 4 wonunke with any openfor commuting with, K. PG= 4P = 0 $4_T = \frac{1}{m} \sum_{i=0}^{m} (\frac{m-i}{2} - i) T'$ $p_{\perp} = G(I-K) = (I-K)G$ are the null space projection and Gueen's operator $I - P = P^{\perp} = G(I - K) = G(bd + db) = b(Gd) + (Gd)b = (Gb)d + d(Gb)$ for Prof: $P_T^L = G_T(\overline{I}-T); P_T G_T = 0$ Hence P¹ is homolopin to zero with respect to either differential d, b. Hence $H(P^{I}R, b) = H(P^{I}Rd) = O$ $I - P_T = \frac{1}{m} \sum_{i=0}^{m-1} (I - T^i) = \frac{1}{m} \sum_{i=0}^{m-1} \sum_{i=0}^{k} T^i (I - T)$ $= \frac{1}{m} \left(\sum_{i=1}^{m} (mr - j) T' \right) (I - T)$ Also pig = Im(b) + Im(d) Note 0= F-T^m = (E-T) ["T^j so that we can introduce G_T as above with the desired properties. $= b P^{t} \mathcal{L} + d P^{t} \mathcal{R}$ where d: 6Ph 3 dPh hay inverse 4b b: dp2 3 612 has miare Gd. K^{n(mu)} = 1- Bd where (Bd)²=0 <u>K</u> is not usually of fisite order Morrodrowny operators "Quain unipotal operators" 20 Recall the identification $d \mathcal{R}^n \cong \tilde{\mathcal{A}}^{\otimes n \pi i}$ $dA_{0--} da_{n} \stackrel{(A_{0}, a_{0}, a_{0})}{|\langle \langle \rangle \rangle} A_{0}$

$$P \iff P_{\lambda} \qquad f \iff P_{\lambda} \quad f \iff P_{\lambda} \quad \overline{H} \stackrel{\text{Ond}}{=} = (H \stackrel{\text{Om}}{=} M)^{1} \qquad Ha = P_{\lambda}^{\perp} \overline{H} \stackrel{\text{Om}}{=} = (H \stackrel{\text{Om}}{=} M)^{1} \qquad Ha = P_{\lambda}^{\perp} \overline{H} \stackrel{\text{Om}}{=} = (H \stackrel{\text{Om}}{=} M)^{1} \qquad Ha = Ha = P_{\lambda}^{\perp} \overline{H} \stackrel{\text{Om}}{=} = (I - \lambda) \stackrel{\text{H}}{=} \stackrel{\text{Om}}{=} M = \frac{1}{N + 1} \sum_{j=0}^{n} K^{j} d$$

$$G d = \frac{1}{N + 1} \sum_{j=0}^{n} K^{j} d$$

$$G d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$G d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_{j=0}^{n} (M - j) K^{j} d$$

$$F d = \frac{1}{N + 1} \sum_$$

$$w = Pw + b 4dw + 4dbw$$

$$Pd = \frac{1}{hel} \sum_{j=0}^{n} k^{j}d = \frac{1}{hel} B$$

$$lhe le definition of B to get B = NPd$$

$$where Nw = |w|w$$

$$Calculate le hundlogy H(PLD) = 0 with$$

$$Spect to b j d. dame$$

$$H(PR, b) = H(R, b) = HH(A)$$

$$H(PR, d) = H(R, d) = C to J (degree 0)$$

$$B = 0 \text{ on } P^{-1}R \quad sume B = NPcl$$

$$H(PR, B) = P^{1}R$$

$$H(PR, B) = H(PR, d) \quad because P = d$$

$$up to hon-zao scalar forters so
H(PR, B) = (I-K)^{2} \oplus Im (I-K)^{2}$$

$$Recall \quad \Omega = Ker (I-K)^{2} \oplus Im (I-K)^{2}$$

$$harmonia my milion \quad \Omega = PR + P^{1}R$$

$$23$$

H(P1, 6, d) = 0 ; B=Oon P1. $H(P_{\Lambda}, b) = H(\Lambda, b) = HH(A)$ H(P, B) = H(P, A) = H(R, A) = C[O]B is nearly exact on P.R. Introduce the reduced spore of differential forms $\overline{\mathfrak{N}} = \underline{\mathfrak{N}} A$ given by 0 - AR - AR - DR - O So that $\overline{\mathcal{R}}A = \mathcal{R}A$ emept in degree O where $\overline{\mathcal{R}}^\circ = \overline{\mathcal{A}}$. This makes $\mathcal{H}(\overline{\mathcal{R}}, d) = O$ $\mathcal{H}(\mathcal{L}) = O$ A = PR OPIA where $P\bar{\Lambda} = P\Lambda/Q$; $P^{\perp}\bar{\Lambda} = P^{\perp}\Lambda$ Now we have B escart on PI, B= Con PIR. Corollary: (Connes' Lemma) In the case of si the inclusion Im B -> Ker B is a 24

quani-isomophism with respect to b. (A quani-croumphism is a map inducing an ismorphism on homology). Proof: Recall $\bar{\mathfrak{N}} = P\bar{\mathfrak{N}} \oplus P'\bar{\mathfrak{N}}$ Ker B = Im B B PLI sine B is exact on PI. Hence Ker B/ Im B = P¹I which is a cyclic with respect to b sure b(Gd) + (Gd)b = 1 is a homotopy to zero. Typical application (conner) Definition: $\overline{H}H(A) = H_n(\overline{\Omega}, b)$ vedueel Hochschild homology. $\overline{H}(n(\theta) = H_n(\overline{n}A/KerB, b)$ vedued cyclic handwgy Application (Comes exact sequence) $\rightarrow \overline{H}C_{1}(A) \longrightarrow \overline{H}H_{2}(A)_{2}$

0 -> Ker B -> I -> I/Kab -ru quis) - - B shifts degree Im B C - - B by 1 The conver exact sequence is the long enact sequence annuated to this short exact sequence. 'quin'- quari-isomorphism. This uses the fast that B: T/KarB -> ImB -> KerB is a quari-isomorphism of degree one. Want to velate veducied cycli homology and homology Augunanted algebras and ununited algebra An auguanted algebra A is a united algebra consigned with a homomorphism ASC A = C @ Ker E Kare is the augmentation ideal. It is a non united algebra. If a is man united, we can adjoin an identity to get $\overline{a} = a \Theta c$ so that a is augmented. Get equivalence of categories. 26

Suppose that A is angunented. $A = \widetilde{C}$ an angunanted. Identify $\widetilde{A} = C = A/C$. ΛⁿA = A ⊗ Ā^{⊗h} ≥ (I ⊕ Q) ⊗ (L^{⊗h} More precisely we have the following ijouwphism $\begin{array}{c} \mathcal{A}^{\otimes n \circ i} \oplus \mathcal{A}^{\otimes n} & \begin{pmatrix} (a_0, \ldots, a_n) \\ (a_1' \ldots a_n') \end{pmatrix} \stackrel{\mu}{\longrightarrow} \begin{array}{c} a_0 da_{i} \ -da_{i} \\ da_{i}' \ -da_{i}' \\ da_{i}' \ -da_{i}' \end{array}$ where aijai' E a Want to see what K, G, P et look like on a. Operators on \$ all on We define: $b(a_{o_1...,a_n}) = \sum_{c=0}^{n} (-i)^c (\dots, q_i q_{ic_{i_1},\dots,i_n}) + (q_n q_{o_1...,a_{n-1}}) + (q_n q_{o_1...,a_{n-1}}) + (q_n q_{o_1...,a_{n-1}})$ $\lambda(q_{o_1...,a_n}) = (-i)^c (q_n, q_{o_1...,a_{n-1}})$ 6'(ao,...,an) = Zi=0(-1)'(..., a;aia,--) Ny(ao, -, an) = Iij=0 N'(ao, .., an) b - not quite the same as before 27

$$\begin{array}{c} \text{Claim that the operative b, d on \mathcal{D}A one quice by}\\ \text{the following matrices on $\Theta(0^{\text{ent}}, f)$ $\Omega(0^{\text{ent}}, f)$ $\Omega(0^{\text{ent}},$$

AA is an auguented DG algebra (= A gives $C = \Omega C \stackrel{<}{=} \Omega A$ Identify $\overline{\mathcal{A}} = \mathcal{A}/\mathcal{A}$ with $Ka(\mathcal{A} \to \mathcal{A}\mathcal{A})$ Then $\mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$ If is easy to see that $\overline{\mathcal{A}} + defined thus if the$ $universal non-unital <math>\mathcal{A} = defined the file$ universal non-unital $\mathcal{A} = defined the file$ universal non-unital $\mathcal{A} = defined the file$ universal non-unital $\mathcal{A} = defined the file$ a unit to unital algebra. A) & B & ~~ IL'A (2) Indele for all n∈Z so long as we set (200 = 0 (note that we are in nonunital category). On IA we have d, b, K, P, B, G On a on we have operators b, A, b', P, G, N, (different b). $b_{\bar{a}} \chi = \chi b_a$ bin \$ = - \$ \$ \$ \$ \$ \$ + Y(1-1)

 $b_{\bar{a}R} = \begin{pmatrix} b_{a} & i-h \\ 0 & -b' \end{pmatrix}$ b(aoda,...dan) = Z, (-1) ~ aoda,...d(a:a:a) - da, + (1) aa, daz ... dan + (-+) an+, 9 oda ... dan b(ao, - ah) = [-1/" ((ao, - a:a: ... - ann)) + (9091, -, 9mai) + (-1) + (9mail 9mail 9m a is a subalgebra of A so the formula follows by replacition. $b_{\bar{s}\bar{l}n}^2 = 0 \implies \left(\begin{array}{c} b_a & l-l\\ 0 & -b' \end{array}\right)^2 = 0$ so $b_a^2 = 0$, $b'^2 = 0$, (1 - A)b' = b(1 - A)b' = b($d = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad K = 1 - (db + bd)$ $K = \begin{pmatrix} \lambda & O \\ b'-b & \lambda \end{pmatrix}$

$$I - P = P^{\perp} = b(4d) + (4d)b$$

$$I = P \neq b(4d) + (4d)b$$
obtrogenal ideopolation
$$b(4d) = \begin{pmatrix} b & 1-h & 0 & 0 \\ 0 & -b^{\perp} & 4h & 0 \end{pmatrix} = \begin{pmatrix} P_{h}^{\perp} & 0 & 0 \\ 0 & -b^{\perp} & 4h & 0 \end{pmatrix} = \begin{pmatrix} P_{h}^{\perp} & 0 & 0 \\ -b^{\perp} & 0 & 0 \end{pmatrix} \begin{pmatrix} b & 1-h \\ 0 & -b^{\perp} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$(4d)b = \begin{pmatrix} 0 & 0 \\ 4h & 0 \end{pmatrix} \begin{pmatrix} b & 1-h \\ 0 & -b^{\perp} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (4d)b & = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (4d)b & = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (4d)b & = & (4h)b^{\perp} - f_{h}^{\mu}b^{\mu}h - f_{h}^{\mu}b^{\mu}h = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (4d)b & = & (4h)b^{\mu}h - f_{h}^{\mu}b^{\mu}h = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (4d)b & = & (4h)b^{\mu}h - f_{h}^{\mu}b^{\mu}h = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (4d)b & = & (4h)b^{\mu}h - f_{h}^{\mu}b^{\mu}h = \begin{pmatrix} 0 & 0 & 0 \\ -b & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -b & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

This consequends to a diagram chare in the bicemplex. Recall the veduced uplic complex of A is C'IA) = JA/ her B JA C JA Comes' lemma gives that the vous are escart. T'(A) can be identified with the quotient complex $(\mathcal{A}^{\otimes(-+1)}, b)/((-n)(\mathbf{H}^{\otimes(-+1)}, b'))$ $\simeq ((\mathcal{A}^{\otimes(\cdot e)})_{A}, b)$ or with the image of NA (a⁽⁺¹⁾, b) $=((1^{\circ}, \cdot \cdot \cdot)^{\prime}, b^{\prime})$ ce $\overline{C}^{(A)} = cyclic compten C^{(A)} of Cl$ Faits (Standard feels from aplie theory based on the cyclic bicompton) 1) There is an obvious augmentation from the total complex of the (first quadrant) cyclic bicomplex to CN(A) which is a quari isomorphism (because Im N_A = Ker(I-N), Im(I-N) = Ker N(A) 39

 D_{μ} Definition $HC_{\mu}(\alpha) = H_{\mu}(C'(\alpha))$ = Hy (updin bieruplan of a) Hochneld homology HH(a) it the homology of (J.A, b) or equivalently the homology of the total compten of the first the column of the cyclic bicompten. Comes Excart Sequence - HCner > HCn > HHner - HCner > HCner This vesulty from the following CC(a) botal complex of the cycli bicauples $0 \rightarrow (\overline{\Lambda}A, b) \rightarrow CC(\alpha) \rightarrow \Sigma^{2}C(\alpha) \rightarrow 0$ Now take the long escart sequence in homology. O→ Z. C'(A) → P.J.A → E^A(A)→O

• }

 $M_2 \stackrel{B}{\longleftarrow} M_1 \stackrel{B}{\longleftarrow} M_0$ <u>Mined complex</u> - graded rector space $M = \Theta_n M_n$ together with operators b of dagree-1, B of degree 1 satisfying $b^2 = B^2 = bB + Bb = D$ 16 16 M. C. M. 16 ES Example M = SIA with b, B as before = J.A Mo Spechal $E' = H' \Rightarrow H(BM)$ AA = PAA OPAA since the decomposition is stable Suppose M is a chain complex $M_n = 0$ (n < 0). We regard b as the primary differential B as extern structure on the complex (M, b). Introduce the differential graded algebra S[B] $D[B] = D \oplus D^{+}B$ $0 \rightarrow (M, b) \rightarrow BM \xrightarrow{s} \mathcal{J}BM \rightarrow 0$ This leads to a Corner exact sequence. (M,6) is a subcomplex due to the particulity. H mixed umplen is the same as a the module over Entered the bicomplan in the negative direction to get a pariochi bicomplen. There are two choices for the total Q[B]. We now introduce carions types of homology groups anomated to a mined compten which are invariant with respect to maps of mined complesses which are quasi-iso morphisms with respect to b. compten. (B^{per}M)_n = D_{pez} M_{n-2p} $(\mathcal{B}\mathcal{M})_n = \mathcal{M}_n \oplus \mathcal{M}_{n-2} \oplus \ldots = \bigoplus_{p \neq 0} \mathcal{M}_{n-2p}$ Hn M - ordinary (M, b) hourdogy. (BPM)n = TTpez Mn-2p (completed) Cyclic homodogy H, M= H, (B, M) Hn (BMM) = Hnerz (Mer - Model) where BM = total complex of the bicomplex 37

Hn (Bre M) = Hnrzz (Me - Modd) $M^{ev} = \Theta_{2v} M_{2u} etc.$ The completed vernin is invariant with verpart to B - quari-iso unplumi. The uncompleted one is not. The periodic cycli hermology $H_i^p \mathcal{H} = H_i(\hat{\mathcal{M}}, b + B)$ $\mathcal{H}_{h+22}^{p}\mathcal{M}=\mathcal{H}_{n+12}\left(\widehat{\mathcal{B}}^{pq}\mathcal{M}\right)$ The first quadrant is a quotient compten of a larger BAR M = lim Z-2n B(M) Sinjertine inverse systems of complemes. This gives a Milmor exact sequience Him tim Hn nei 0 -> lim Hn M -> H: M -> luin Hn M-> O 38

Negative cyclic homology. Ho M= Hn (TT Mn=p, 6+B) (overlap on the first column) Call the family of houndary gurys HEM, HCM, HMM HC-M the cyclin theory ameriated to the mined compton M. Hetematic constructions of the cyclic theory of M using ZAU graded comptones. Consider the ZA(C) graded compton (M, b+B) Introduce the Hodge filbation of M F"M = 6 Mnel @ Mnel @ which is stable upda be B M= F'M > F°M > ... FM/M/FMM = 6Mn+1 OMn+1 6 Mnei E Mnei O 6 Mnei Mnei Mnei Mnei Mnei Mnei Mnei

0 -> Hud -> Hu -> Hund -> Hund -> Hund -> O 6 Mner B Mner 16 Mner $H_i(F^hM(F^{nei}) = \begin{cases} 0 & i = h \in \mathcal{U} \\ H_b^b M & K = h \in \mathcal{U} \end{cases}$ 0 -> Had -> Ha -> Ha -> Had -> O This gives the connes escart sequence Hn M= ImS: Hher -> Hn Definition H' M = H (M/F"M) From $M/F^{\mu}M = M_0 \oplus M, \oplus \dots \oplus M_{n_1} \oplus M_n/6M_{n_n}$ mehas lim MIEnM = TT Mn = M $H_{n-1}^{d}M = H_{n+1+22}(M/F^{*}M)$ Escenise: Show that H. M is the cyclic houndary Him = H, M Define F"M = Lun EnM/EnchM Check that $H_n^{-}M = H(F^{-}M)$ M/EnM = Mo @__ @ Ma/6 Mati One gets a cyclic theory anorited to any tona of 2(2) graded completes Xn+1 ~ Xn ~ Xmer ~ Xn+2 How to denive the Counces excert sequence 0 -> FM/Enny -> M/Fnny -> M/Fnny -> M/Fny -> 0= Hnerz (F"/(="") -> Hnerz (M/Fnoi) -> Hhere (M/Fn) such that H: (Kar(Xner > Xn]) = D iEnt224 $\mathcal{R} = (\mathcal{R}\mathcal{H}, b, B)$ is a mixed complex $\mathcal{P}\mathcal{R}$ and $\mathcal{R}\mathcal{A}$ are quari-isomorphic w.r.t. b (and d) Hunter (M/Fa) = Hneiner (M/Fan) = Hneiner (F-7/Fan) Ha Hnei Hnei Had (I, b,B) is quain-isomorphi to (PI, b,B) with verpert to b

$$\begin{split} & \text{Moo } B \text{ is enset on } P \overline{x} \quad (\text{sume on this s-himsple} \\ & B \text{ is a multiple on } d), \\ & \text{Reall for a univel compton } H_n^{C}(M) = H_{(BN)} \\ & = H_{n+12} \quad (M/F^{-n}) \\ & H_{n+1} \quad (M/F^{-n})$$

$$\begin{cases} \mathcal{D}_{4} \text{ hindludg are } \mathbb{T}(\mathcal{B}_{1}) & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ H \\ \end{array} \right\} & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ H \\ \end{array} \right\} & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ H \\ \end{array} \right\} & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ H \\ \end{array} \right\} & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \\ \end{array} \right\} & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \\ \end{array} \right\} & \longrightarrow \\ \left\{ \begin{array}{c} \mathcal{D}_{4} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \text{ isomoticle}_{1} \\ \mathcal{D}_{4} \text{ isomoticle}_{1} \text{ isomoticle}_{2} \text{ isomoticle}_{1} \text{ isomoticle}_{2} \text{$$

I)

	k=0 even odd
Description of the correspondence	\mathcal{I} $\{M_FM_M\}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A C
Set $Y = \lim_{h \in I \subseteq I} X^{2h}$	$M = C \Theta C F^{*}M =$
$Y^{odd} = \lim_{n} X^{2min}$ $F_{o}Y = X^{o} \qquad F_{n}Y = X^{n} + X^{n-1}$	To go in the opposite direction $\rightarrow M/F^2 \rightarrow M/F' \rightarrow M/F'$ T_{n}
This is a subcompton sume dX" CSX" as dis zero on X(SX.	$0 \rightarrow F^{\rho}(F' \rightarrow M F' \rightarrow M F^{\rho} \rightarrow 0$
Question - If one is given algebra with 5 and from thousanded theay, can one find B?	<u>Cydii homology of A</u> This consists of MMn A, MCn A, MP.A HC_A (Horlindold, cyclic, perodù cyclu, negabuie
the conceptonding filtered complex Y will be	defined by the mined compten (S.H., 6, B). In terms of Zr guaded comptenes
a a c	$HC_{\mu}A = H_{\mu \in 22} (\mathcal{R}A / F' \mathcal{R}A)$
The tower of 21/2 graded complexes is	= $H_{neiz} \left(\mathcal{A}^{*} \mathcal{D}_{-} \mathcal{D} \mathcal{A}^{*} / \mathcal{b} \mathcal{A}^{*} \right)$ b + B
48	49

$HP H = H(\widehat{n}) \stackrel{\circ}{=} H_{i}(\Pi a^{n} \stackrel{\circ}{=} \Pi a^{n})$ $AH[F^{n}\Omega H is the nth approximation to the cyclic theory of A. If HH_{h}H = 0 for h \stackrel{\circ}{=} n then n \stackrel{\circ}{\to} n \stackrel{\circ}$	In this case $S(H/F'S(H)) = G(X) = G(X) = G(X)$ gives the cyclic theory $X(H)$ S(H) plot probe of the de Rhaun $X(H)X(H)$ plot probe of the de Rhaun $X(H)X(H)$ $X(H)$ where $H = R(I)$ where R is M of M where $H = R(I)$ where R is M of M from it. Step 1 - coloudate $H = RH(IH)$ certae Gree of the conversal entencies of H . Program is to calculate X(RH) Structure on X(R) $I)$ product on $R = RBR \rightarrow R$ $2 \cos g \rightarrow 3 m$ $ii)$ pairing $R \otimes R \rightarrow \Omega^{T}R =$ $2 \cos g \rightarrow 5 m$ $iii)$ pairing $R \otimes R \rightarrow \Omega^{T}R =$ $2 \cos g \rightarrow 5 m$ Gree Hich satisfies the $G(X dg(2)) = G(X dg)- unineral one Horbulad cocycle condition for (U, g) = G(Rdg)$
)0	51

(iii) Z/2 graded complex : bd = db = 0 ie. bB = Bb = 0 Fab about RA : Two derministrai	$\chi \rightarrow = 4(n\delta y)$ $\chi \rightarrow = 4(\delta u)$ In genoral, for a free algebra $T(U)$, there is $\Omega^{2}[T(U)] = T(U) \otimes U \otimes T(U)$
 It is the universal algebra agripped with a linear map H → RA sinh that 11-31 2) RA = SEA = ⊕ S²⁴A h₇0 Cquipped with the Federar product SC = SUY - dridy 	sidyy ~ 1 20 1 54 Si ² R is the universal bitmodule with respect to derivations from K to an R-bitmodule. 5) S'(RA) ~ RAOĀ (= Scotel A
Die hara commented entension $IA = (RA \rightarrow A) = \bigoplus_{h>0} \Omega^{24}A$ (negled the terms of degree = 0) The powers $(IA)^{h} = \Sigma_{hzh} \Omega^{2h}A$	4(x da) <1 x da (x da) <1 x da (x) We have an isomorphism of cerber spaces RA $\Omega^{2}(RM)_{4}$
4) $\Omega^2(RA) \doteq RA \otimes \overline{A} \otimes RA$ $\Sigma Say \qquad \Sigma \otimes A \otimes Y$	rev A rev A
Let S be the canonical damation 8: NA-32 KA be the canonical denivation and let the differentials in X(RA) be denoted RA	Find the & openhions in tempt is on uphisms. Noy = my - du dy Take & Calculate B: 204 - 24
52	53

	•
$RA = \frac{B}{\Omega^3(RA)}, \forall (n \delta a)$	o o o o o o o o o o o o o o o o o o o
104-400 8 11 104-400 8 11 0 oddy	so For
[II,a)-dudusdadu Da	Now
y(a - a on = na - dnda - an + dadn= [74] - dinda + dadn	•
$= \pm b(nda) + \pm \frac{d(nda)}{d(xda)}$	4
Therefore $\beta = b \leftarrow (1+k)d$	=
Claim: let X, y & Ran A, let y & R ⁱⁿ A, then	
$4(x \delta y) = -2_{j=0} K^{j} \delta(x \delta y)$	•
t K ⁱⁿ ndy	
Put n=1 to give	
$(5y) = -\frac{5}{6}k^{4}by + (\frac{5}{100}k^{2}dy)$	s Glot
54	

Proof by induction on n
For n=0 we have simply

$$4(2(\delta a) = x da$$
.
Now conside n=0 and y is instanded from
 $y = 2da_1 da_2$ with $2 \in \Omega^{2n-2} H$
 $4(n\delta y) = 4(x \delta (2 da_1 da_1)) = 4(n \delta (2 oda_1 da_1))$
 $= 4((n\delta z) \delta (da_1 da_1)) + 4((da_1 da_2 \circ x) \delta z)$
By indubin, the last ferm is
 $-\sum_{j=0}^{n-2} |C^{2j}| \delta (da_1 da_2 \circ x \circ z)$
 $+ \sum_{j=0}^{2n-3} |C_1^{2j}| \delta (da_1 da_2 \circ x \circ z)$
 $+ \sum_{j=0}^{2n-3} |C_2^{2j}| (da_1 da_2 \circ x \circ z) + K^{2n-2}$
 $da_1 da_1 \circ x \circ z = (de - K^{2}(x \circ d) \circ da_1 da_2)$
 $= 4 i (x \circ z) \delta (a_1 a_2 - a_1 \circ a_2) \}$
 $= 55$

$$= \left\{ \left(\left(2k + 1 \right) \delta \left(2k + 1 \right$$

Recall that on $S_{k}^{t} P$ $K^{h} = 1 + b K^{t} d$ $ C^{hel} = 1 - db$ Conside the general case of $I \leq R$ an ideal I - adic filbabin of R $R = I^{\circ} \supset I' \supset \overline{I}^{2} \supset \dots$ Tonor of algebras $R/I^{2} \longrightarrow R/I \longrightarrow R/R$ $\hat{R} = lim R/I^{hel}$ the I -adic completion Dhe gets a toner of $Z/2 - graded$ completion $\longrightarrow X(R/I^{2}) \longrightarrow X(R/I)$ which are all quotiently of $X(R)$. Fact: i) $\Omega'(R/I) \ll \Omega^{2}R / I[\Omega^{1}R] + I\Omega^{2}R + dI$ $i) (\Omega^{2}(R(I))_{L} \longrightarrow \Omega^{2}R / [R, \Lambda^{1}R] + I\Omega^{2}R + dI$	$X (R/I^{n}): R(I^{n}) \triangleq \Omega^{2}R/(R, 2^{k}) + I^{n}dR$ $\qquad \qquad $
Fact: i) $\Omega'(R/I) = \Omega^{1}R / I(\Omega^{1}R)(\Omega^{1}R)I + dI$ ii) $(\Omega^{1}(R(I))_{ij} = \Omega^{1}R / [R, \Lambda^{1}R] + I\Omega^{1}R + dI$ $dI^{n+1} \in \sum_{j=1}^{n} I^{j}(dI)I^{n-j}$ $\cong I^{n}dI \mod C, T$ $b(I^{n}dI) \in [I^{n}, I]$ 58	$\chi^{k}(\mathcal{H}, \mathbf{I}) \xrightarrow{\sim} \mathcal{R}/\mathcal{F}^{k}\mathcal{\Omega}\mathcal{A}$ where $\mathcal{F}^{k}\mathcal{\Omega}\mathcal{A} \stackrel{\sim}{\rightarrow} \mathcal{I} \stackrel{\sim}{\mathcal{H}} \stackrel{\sim}{\mathcal{H} } \stackrel{\sim}{\mathcal{H}} \stackrel{\sim}{\mathcal{H} } \stackrel{\sim}{\mathcal{H}} \stackrel$

$$\begin{array}{l} \left(\left[\mathbf{I} \mathbf{A} \right]^{\mathbf{h}} S(\mathbf{R} \mathbf{H} \right) = \bigoplus \mathcal{Q}_{k \neq n}^{\mathbf{h} \mathbf{H}}, \ \mathbf{R} \mathbf{H} \text{ is generaled by } \mathbf{q} \in \mathbf{H} \\ \left\{ \mathcal{Q} \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \bigoplus \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathcal{Q} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} \left\{ \mathbf{A} , \mathbf{A} \right\} \right\} = \left\{ \mathbf{A} , \mathbf{A} , \mathbf{A} \right\} = \left\{ \mathbf{A} , \mathbf{A} \right\} = \left\{ \mathbf{A} , \mathbf{A} \right\} = \left\{ \mathbf{A} , \mathbf$$

$$\begin{pmatrix} B = \Sigma^{*}_{*} K^{j} d = (h e l) d \text{ on } \Sigma^{0} \rangle \\ S = -N_{Ri} b + B = -\tilde{\Sigma}^{*}_{*} K^{ij} b t d = -h k + B \text{ on } R^{0}_{*} \\ B = b - \frac{2}{2} K^{ij} d = 0 \text{ or } P_{ij}^{ij} K^{ij} b t d = -h k + B \text{ on } R^{0}_{*} \\ B = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} \Sigma^{int} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} \Sigma^{int} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} \Sigma^{int} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} \Sigma^{int} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} \Sigma^{int} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} \Sigma^{int} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{2}{2} K^{ij} B \text{ on } P_{ij}^{ij} R^{ij} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - \frac{1}{2} K^{ij} B \text{ on } P_{ij}^{ij} R^{ij} H ; S = -h k + B \text{ on } R^{0}_{*} \\ R = b - R \text{ on } R^{ij} R^{ij} H ; R^{ij} R^{ij} H ; R^{ij} R^{ij} R^{ij} R^{ij} H \\ R = b + B \text{ on } R^{0}_{*} R^{ij} R^{ij}$$

Suppose Mig a mined compton with i exact. Lie derivature L= L(4, ú): AR → RS $M_2 \stackrel{B}{\leftarrow} M_i \quad M_a$ L(rodn, _dun) = inodern/_. dunn € M, E M. + 5, "u(no)d(un,). - d(un,). d(un,) 4, L are compatable with d, b, K etc. Total homology of this B^{ree} (M) is the hundred of M with differential b+B. Since the vorus are exact there is a spechal sequence which cornerges H^{hor} (M, B) = 0. Consider L: X(R) -> X(S) -> SIRG - REA SIRG - R $\xrightarrow{1}_{\mathcal{R}_{4}} \xrightarrow{1}_{\overline{b}} \xrightarrow{1}_{\overline{b}}$ If A = R/I where R is quari-free than the toner $\chi^{a}(R, I)$ gives the cyclin theory of the algebra A. In particular $\hat{\chi}(R, I) = \lim_{n \to \infty} \chi^{a}(R, I)$ Here $\varphi: \mathfrak{A}^{\mu} \longrightarrow \mathfrak{A}^{\mu}/\mathfrak{b}\mathfrak{A}^{\mu\nu} = \mathfrak{A}^{\mu}\mathfrak{g}$ and $\overline{\mathfrak{b}}: (\mathfrak{A}^{\mu}\mathfrak{f} \longrightarrow \mathfrak{A}^{\mu\nu})$ is the map induced by $\mathfrak{b}: \mathfrak{A}^{\mu} \longrightarrow \mathfrak{A}^{\mu\nu}$ $(\mathfrak{b}^2=0)$ = lin X (R/Iⁿⁿ) gives HP: (A). Cartan homotopy founda for the X complen Let u: R→S be a homomorphism of algebras and i: R→S be a denischion relative to u L: X(R) -> X(S) amazing that R is quasi free. We have U: IR -> IS DGaly hom : Definition: ((onner) Let E be a right R-module. A connection on E is a map V: E-> EQSTR which is linear and satisfying the Leibniz formula 67 $U_{*}(a_{0}da_{1}...da_{n}) = U(u_{0})du(a_{1}) - du(a_{n})$

The interview product
$$i = i(u, i): SR \rightarrow SS$$
 of degree:
indefined by
indefined by
indefined by
is subject $i = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR = i(u, i): SR \rightarrow SS$ of degree:
is $SR = i(u, i): SR = i(u, i):$

$$\begin{split} & \mathcal{L}(\mathbf{I}) \subset \mathbf{J} \quad \text{and} \quad also \quad \dot{u}(\mathbf{I}) \subset \mathbf{J}, \\ & \text{Read the found of generation of four of generation of four of four$$

We have a family of maps of complexes. Differentiating $\partial_t(u_{t,x}) = L(u_{t,u_t})$ where $u_t = \partial_t u_t$. If right connection ∇_i given on R $L(u_{t,u_t}) = [d], h^{Q}(u_{t,u_t})]$ h^{Q} polynomial family of odd maps $X(R) \rightarrow X(G)$.	Counde JCS an ideal $SEFJ'' = \lim_{M \to \infty} (S/J'''')[EFJ]CSEEFJ]$ This is the subalgebal consisting of power series $ES_{m}f''$ where $S_{n} \in \overline{S}$ and $S_{n} \rightarrow O$ and $w.nf$ the C Hh $S_{n} \in Ke(\overline{S} \rightarrow S/\overline{J}h+1)$ for large \underline{M} . (Avoid the error of $(\overline{J})^{M} \neq \overline{J}^{n}$ $Kar (\overline{S} \rightarrow S/\overline{J}'') = \overline{J}^{n}$
Integrating we have $(U_1)_{R} - U_{0}_{R} = \int 2t(U_1)_{R} dt$ $(U_1)_{R} - (U_0)_{R} = \int dl, \int h^{Q}(u_1, \tilde{u}_1) dt_1$ The conclumin is that two homomorphics U_0, U_1 from R to S which can be jound by a polynomial family U_1 induce homologic maps $X(R) \to X(S)$. It pplication Take $R = T(U)$ free algebra $U_0 = td : R \to R$ $U_1 = T(U) \to T \hookrightarrow T(U)$ $u_1 : T(U) \to T(U)$ $U_1(U) = tU (VEU)$ So $X(R)$ contrasty to $X(I)$. (This was the fait that Q enough for a free algebra) 74	$H = K[I] \qquad R \longrightarrow S$ $S[J] \qquad R[I]^{2} \qquad S[J^{2}$ $U(I) \leq J \qquad I$ $R[I] \qquad S[J] \qquad I[I] \qquad I$ $R[I] \qquad S[J] \qquad I[I] \qquad I$ $R \longrightarrow S \qquad I$ $R \longrightarrow S \qquad A^{I} \qquad I^{I}$ $R \longrightarrow S \qquad A^{I} \qquad I^{I}$ $R \longrightarrow S \qquad A^{I} \qquad I^{I}$ $R \longrightarrow S \qquad A^{I} \qquad I^{I} \qquad $

Given boo (effinit) 40,41; R > 5 of 6 as easy join
Hen by a homotopy A no promotor programming
from by A stiff such deal
founds
$$(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$$

for all geometries X of R .
To and $\in E$ $(L_{1}, 16, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, 0, K)$
 $(L_{1}, K) = (1 + 16, 0, K) + f(4, K)) + f(4, K) + f(4$

$$\begin{array}{c} H_{i}(Ka, \chi^{1,n} \rightarrow \chi^{q}) = \begin{pmatrix} D & i=q \in U \\ HH_{n}H & i=t \in U \in I \end{pmatrix} \\ H_{i}(Ka, \chi^{1,n} \rightarrow \chi^{q}) = \begin{pmatrix} D & i=q \in U \\ HH_{n}H & i=t \in U \in I \end{pmatrix} \\ H_{n}(Ka, \chi^{1,n} \rightarrow \chi^{q}) = \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, J/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, S/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, S/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, S/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(S/J^{n+1}, S/J^{n+1}) \langle q \in U \cap I \rangle \\ \chi^{q}(X, S, T) \rightarrow \chi^{q}(X, S) \rightarrow \chi^{q}(X, S) \\ \chi^{q}(X, S) \rightarrow \chi^{q}(X, S) \end{pmatrix} \\ \begin{array}{c} H_{i}(X, Q) \rightarrow \chi^{q}(X, S) \end{pmatrix} \\ \chi^{q}(X, S) \rightarrow \chi^{q}(X, S) \end{pmatrix} \\ \begin{array}{c} H_{i}(X, Q) \rightarrow \chi^{q}(X, S) \end{pmatrix} \\ \chi^{q}(X, S) \rightarrow \chi^{q}$$

Corollorg3: Suppose
$$V_{\xi}: A \rightarrow A' [\xi]$$
, then
 $(V_{1})_{\mathfrak{F}} = (V_{0})_{\mathfrak{K}}: HP_{i}(A) \rightarrow HP_{i}(A')$
 $HD_{n}(A) \rightarrow HP_{i}(A')$
 $HO_{n}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A)$
 $HO_{n}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A)$
 $HO_{n}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A)$
 $HO_{n}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A)$
 $HO_{n}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A) \rightarrow HP_{i}(A)$

$$\begin{aligned} & Hom_{R^{e}}\left(I_{n}, M\right) = C\left(I_{n}, M\right) \\ & Hom_{R^{e}}\left(I_{n}, M\right) = Hom_{R^{e}}\left(I_{n} \oplus \overline{P}^{\oplus n} \oplus A_{1}, M\right) \\ & = Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Sf(I_{n}, ..., a_{n}): & \text{multibular in } I_{n, -1}, a_{n} \\ & \text{maximized ad : construct of } I_{j} = I \\ & Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Sf(I_{n}, ..., a_{n}): & \text{multibular in } I_{n, -1}, a_{n} \\ & \text{maximized ad : construct of } I_{j} = I \\ & Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Sf(I_{n}, ..., a_{n}): & \text{multibular in } I_{n} = I \\ & \text{maximized ad : construct of } I_{j} = I \\ & Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Sf(I_{n}, ..., a_{n}): & \text{multibular in } I_{n} = I \\ & \text{maximized ad : construct of } I_{j} = I \\ & Hom_{R^{e}}\left(\overline{P}^{\oplus n}, M\right) \\ & = Sf(I_{n}, ..., a_{n}): & \text{multibular in } I_{n} = I \\ & \text{maximized ad : construct of } I_{j} = I \\ & \text{maximized ad : construct of } I_{j} = I \\ & \text{maximized ad : construct of } I_{j} = I \\ & \text{maximized ad : construct of } I_{n} = I \\ & \text{maximized ad : construct of } I_{n} = I \\ & \text{maximized ad : construct } I_{n} = I \\ & \text{maximized ad } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : for } I_{n} = In \\ & \text{maximized ad : In \\ & \text{maximized ad :$$

Definition & proponition \underline{H} is separable if it satisfies the equivalent conditions:) \underline{A} has cohomological dimension $\leq O$ wit. Horinstild cohomology ie. $H^{n}(A,M) = O$ $tan = 1, trm$ (A,M) = O $tan = 1, trm(A,M) = O$ $tan = 1, tan = 1, tan$	Connote remains of $(2) \in 7(3)$: Huny deministrom is stinuer if and only if the universal deniation $d: A \to \Omega^2 H$ is invert $A \to \Omega^2 H$ $da = Eq. YJ$ $Y \in \Omega^2 H$ $M \to \Omega^2 H$ u bismochie uncep $M \to \Omega^2 H$ $da = [a, NY]$ huy sequence zero entension of H is trivial i.e. has a Utiling hormomorphism if and only if there is a Utiling hormomorphism $H \to RH/IA^2$ where $RA/IH^2 = A \oplus \Omega^2 H$ under the Federor product. $O \to I \to R \Leftrightarrow H \to H \to O$ P wien $\int P_* U$ $D(I) = 1$ P_* is the unique election hormomorphism such Recall $P_*(A \circ dq,, dq_{2h}) = P(4e) W(q, q_1) \dots W(q, q_{2h})$ where $W(q_1, q_1) = P(q, q_1) P(q_1)$
58	87

2184 -> 21.4	2) An elemant YE RIA such that da = (9, Y] (46A)
Then we have a map CP(A, L) OCA(A, M) -> CP2A(A, N)	3) An element ZEAOA such best ZE(AOA) (centre of AOA) such that m(Z)=1, calleda separability element for A
f(a1,, ap) Ø g(a1, -, aq) → f(a1, -, ap)·g(apt), - april	Proof 3 2 is equivalent to a binnelule map 5- A-HOA
$(f \cup g)(a_{13} \neg a_{peq}) = f(a_{13} \neg a_{p})g(a_{pe1}, \neg a_{p+q})$ $\delta(f \cup g) = (\delta f \log + (-i)^{lfl} f \cup \delta g$	Such that $MS = 1$ so $3 \ll 11$ Y is equivalent to a bimodule map $p: A \otimes A \rightarrow \mathcal{N}^2 A$ with $pj = 1$, so $2 \ll 11$
$C^{*}(A,L) \oslash C(A,M) \rightarrow C(A,N)$	Note that Y, Z conceptend to the same splitting if and only if I= ip + msm
Ex (a, a) H da, dan is the cup product dud	101 = j(Y) + Z
de c(A, JLA) dvvd is the universal in couple.	$Z = \sum_{i=1}^{n} e_{i} \otimes e_{i}$
Separathe algebras The following and anuivalent	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
i) A binnodude splitting of	$Z = \frac{1}{141} \sum_{g \in G} \frac{1}{g \otimes g^{H}} \in \mathcal{A} \otimes \mathcal{A}$
0- A ² A - ABA -> A-> O	Y = 141 Inger 9°dg
$a_{d}a_{1} \longrightarrow a_{o}(a_{1} \otimes 1 - 2 \otimes a_{1})$	Check $j(Y) = \frac{1}{16} \sum_{g \in S} g^{-1}(g \otimes 1 - 1 \otimes g)$
9, 5 2 90	= I @ 1 - 2 $4]$

j(R(a3) - a (73)) = -(s(a3) - a s(3))	Vr (AW) = a Dow; Dr (va) = (Drw)a + wda
where $\nabla_r(\overline{s}_a) = (\nabla_r \overline{s})(a) + \overline{s}da$	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
Sentra King is called a right connection on E.	(AC) (2) Recall RA/IA ² = A OSLA with the Fedoror product. A linear lifting A -> KA/IA ² sending I to I i of the
Assuming that E is projecture as a left module then the above data emist if and only if E is projecture as a bimodule.	form $a \rightarrow a \neq p(a)$ where $q \neq a$ when map $A \rightarrow \pi^2 A$. When is this (affing a homomorphicia? $(q, - p(q_1)) \circ (q_2 - p(q_2))$
Proposition: The following data are equivalent i) H one cochain $\phi: \overline{A} \rightarrow \mathcal{L}'H$ such that $-\delta \phi = d \cup d$ i.e. $a_1 \phi(q_1) - \phi(q_1 q_2) + \phi(q_1) q_1 + d q_1 d q_2 = 1$	$= a_1 a_1 - da_1 da_1 - p(a_1)a_2 + (d p(a_1)da_1) - a_1 p(a_1) (modulo forms of degree 24)$
2) A lifting homomorphism of A -> RA/ IN-	if and only $t \in S\phi + dvd = 0$.
3) A bimodule splitting of $0 \rightarrow \mathfrak{L}^2 A \rightarrow \mathfrak{L}^2 A \otimes A \xrightarrow{\rightarrow} \mathfrak{SL}^2 A \longrightarrow \mathfrak{SL}^2 A \xrightarrow{\rightarrow} \mathfrak{SL}^2 \xrightarrow{\rightarrow} \mathfrak{SL}^2 A \xrightarrow{\rightarrow} \mathfrak{SL}^2 \xrightarrow{\rightarrow} \mathfrak{SL}^2 A $	$\nabla_{\!$
$j(wda) = wa \otimes I - W \otimes a$	HOH If Pr is linear and compakable with left multiplication
4) H nght conhection $V_r : SLH = SLH$ $(\mathcal{A}^2 \mathcal{A} = \mathcal{A}^2 \mathcal{A} \mathcal{B}_{\mathcal{A}} \mathcal{R}^2 \mathcal{A})$ (99)	$\frac{7}{160} da_{i} = 40 p(a_{i}) $

ulere $\phi: \overline{H} \to S^2 H i g$ applicant linear map. Check that $-\delta \phi = d \cup d \ll \mathcal{D}$ ∇_{F} satisfies the Leibnit rule with respect to right insulty is in Note $S^2 A \mathcal{D} A = A \mathcal{D} \overline{A} \mathcal{O} A$ if free as on A biundente so that there deta exist if and any of $S^2 A$ is a free projective bimodule. where q: A > stit is avoirang linear may. -• са: К_ 96 0

G Blower Maton College Trinty 1992

Volume XV

Examples of quani free algebras: 0 -> SLIA -> ABA -A -C so that A projecture = sith projecture A separable => A quari free If $Y \in \Omega^2 A$ satisfies da = [a, Y]equivalently SY = clThen $\phi = d \cup Y$ is $\phi(a) = (d \cup Y)(a)$ is $\phi(a) = da. Y$ satisfies $\delta \phi = \delta(d \cup Y) = 0$ $= \delta(a) \cup Y + (-1) d \cup \delta(Y)$ $= - d \cup d$ Can also take \$ = - Yud $\begin{array}{l} \alpha \\ Y = \frac{1}{2}(d_{0}Y - Y_{0}d) \end{array}$ Connecte ways of saying A is quairfree 1) I \$\$; A → 1²A - S\$ = dvd 1) I lifting homomorphism & A → RA/IA² 3) I bimodule splitting s of 97

$$0 \rightarrow \mathcal{A}^{2} \mathcal{A}^{a} \rightarrow \mathcal{A}^{T} \mathcal{A} \otimes \mathcal{A}^{c} \rightarrow \mathcal{A}^{T} \mathcal{A} \rightarrow \mathcal{A}^{T} \mathcal{A}$$

$$A) \exists right connection \quad \nabla_{i}: \mathcal{A}^{T} \mathcal{A} \rightarrow \mathcal{A}^{2} \mathcal{A}$$

$$\nabla_{i}(aw) = a \quad \nabla_{i}w$$

$$\mathcal{V}(wa) = (\nabla w)a + wda$$

$$\ln fait \quad Hee dada \quad are \quad equivadat \quad and$$

$$I(a) = a - \phi(a)$$

$$p(a \circ \otimes q, \otimes q_{i}) = a \circ \phi(a_{i})a_{2}$$

$$\nabla(a \circ d_{2}) = a \circ \phi(a_{i})$$

$$i.e. \quad \phi = \nabla d$$

$$Escamples: \quad i) \quad \mathcal{A} \quad sepanable: \quad Let \quad \forall \in \mathcal{R}^{T} \mathcal{A} \quad be \quad such$$

$$Hat \quad SY = d \quad i.e. \quad da = La, Y]$$

$$Han \quad \phi = dvY \quad ov -Yvd \quad ov$$

$$(I-f) \quad dvY \quad * f(-Yvd)$$

$$satisfies \quad -S\phi = dvd$$

$$i) \quad \mathcal{A} = T(v) \quad Hae \quad Hae \quad i.q. \quad canonical \quad Utimg have magning \quad such \quad that$$

$$I(st) = st \quad v \quad tv \in V$$

$$Look \quad at \quad L: \mathcal{A} \rightarrow \mathcal{R} \quad V \quad tv \in V$$

$$Look \quad at \quad L: \mathcal{A} \rightarrow \mathcal{R} = dvd$$

$$\eta S$$

and
$$\varphi(w) = 0$$
 vev
Let ∇ be the convertion
 $\nabla(a \circ dq_i) = A \circ \varphi(a_i)$
 $\varphi(v_1, \dots, v_n) = \nabla d(v_1 - v_n)$
 $= \nabla(\sum_{j=1}^{n} v_{1-} - v_{j-1} dv_j v_{j+1} - v_n)$
 $= \sum_{j=1}^{n} v_{1-} - v_{j-1} ((\nabla dw_j) v_{j+1} - v_n + dw_j d(v_{j+1} - v_n))$
Now $\nabla dw_j = \varphi(w_j) = 0$ ro
 $= \sum_{j=1}^{n-1} v_1 - v_{j-1} dw_j d(v_{j+1} - v_n)$
 $= \sum_{j \in h} v_1 - v_{j-1} dw_j d(v_{j+1} - v_n)$
 $= \sum_{j \in h} v_1 - v_{j-1} dw_j d(v_{j+1} - v_n)$
 $= \sum_{j \in h} v_1 - v_{j-1} dw_j v_{j+1} - v_n$
 $\frac{Fault}{2} [let A = R/I] bela square zero contension. Then
i) Uf A is quaric free then there is a lifting
homomorphism $l: A \to R$
2) If A is repeated that $\exists a \mid \forall dw_1 \mid dw_2 \mid dw_1 \mid dw_1 \mid dw_2 \mid dw_1 \mid dw_2 \mid dw$$

$$g_{0} 4 e g_{0}^{-1} = 46'$$
(ouride
$$\begin{aligned}
H^{A}_{Kg} R & R \\
H^{A}_{Kg}$$

RA = real with o ; RA = RA with o	is already a homomorphins. funtrial
Starting with (1), l is a compatible family of lifting homomorphisms l: A -> KA/IA"+1 (120)	Idea is to mimin Yang Mills theory and look for a k vertor field X on the space of based linear maps
$H_{om}_{alg}(RA, R) = \{p: A \rightarrow R: p \ linear, p(1)=1\}$	Then we show that for the p nilpotent unabuse the trejedary ett c enjts and its limit as t->-20
called the based linear maps.	> "Nists also - p# is this limit.
p* ~~ p	Instead of X we look for a demission D on KA.
where $\mathcal{O}_{a}: \mathcal{R} \mathcal{A} \rightarrow \mathcal{R}$ is the unique homomorphis such that $\mathcal{O}_{a}(\mathcal{A}) = \mathcal{O}(\mathcal{A})$ and	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
p. (a, da, dam) = plao) w (9, 9) w (am, 9m)	is equivalent to a demivation D: RA - RH
Such elements span (IA) & for h7k.	Dis specified by its restriction to A, which
Homody (RA/IA", R) = {p:A -> R: p based lucie map	possibilities are
$v = v_1$	$ba = f_0(a) + f_1(a) + f_2(a) + \dots$
where what (A1, - Armal)= w(A1, A2) w(A3, A4) w(A2MAI, A2MAI,	where $f_n: \overline{A} \to \Omega^{2n} A$
A lifting hornomoupling lin A -> RA/IA" is the same by Yoreda's lemma as functional	We want $D(RA) \subseteq IA$ so that if p is a
p: A + R with whe = O a homomorphism	$f_0 = 0$
$\rho^{\#}: A \rightarrow R$ such that $p^{\#} = \rho$ if ρ_{109}	(05

$$D(du, da_{2}) = D(a_{1}a_{1} - a_{1} \cdot a_{2})$$

$$= D(a_{1}a_{1}) - a_{1} \cdot Da_{2} - (Pa, 1a_{2})$$

$$= D(a_{1}a_{1}) - a_{1}' Da_{2} - (Pa, 1a_{2})$$

$$= da_{1}(a_{1}a_{2}) - a_{1}' Da_{2} - (Pa, 1a_{2})$$

$$= da_{1}(a_{1}a_{2}) - a_{1}f_{1}(a_{2}) - f_{1}a_{1}a_{1}$$

$$= f_{1}(a_{1}a_{1}) - a_{1}f_{1}(a_{2}) - f_{1}a_{1}a_{1}$$

$$= f_{1}(a_{1}a_{1}) - a_{1}f_{1}(a_{2}) - f_{1}a_{1}a_{1}$$

$$= da_{1}da_{1}$$

$$= f_{1}a_{1}a_{1} - a_{1}f_{1}(a_{2}) - f_{1}a_{1}a_{1}$$

$$= da_{1}da_{1}$$

$$= f_{1}a_{1}a_{1} - a_{1}f_{1}(a_{2}) - f_{1}a_{1}a_{1}$$

$$= da_{1}da_{1}$$

$$= D(RA) \neq C$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}a_{1} - a_{1}f_{1}(a_{2}) - f_{2}a_{1}a_{2}$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}a_{1} - a_{1}f_{1}(a_{2}) - f_{2}a_{1}a_{2}$$

$$(D-n)(D-n-1)$$

$$= f_{2}a_{1}a_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{2})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}a_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{2})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}a_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{2})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}a_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}da_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}da_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}da_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1}) - f_{2}(a_{1}a_{1})$$

$$(D-n)(D-n-1)$$

$$= f_{1}a_{1}da_{1} - \delta f = d \cup d \quad i.e.$$

$$= -a_{1}f(a_{2}) + f_{2}a_{1} +$$

would like to integrate to quie
$$e^{AB}$$
 claim that
is defined on $RH(IR^{nei})$ for all h .
 e spabed decomposition of D to give e^{AB}
 $gv^{IH}(RM) = Se^{av} A$ usual product
we have D is a deministrin, $D = I$ on
 $V_{I} = S^{2}A$ $D = 0$ on $gv_{0}A$
 $V_{I} = S^{2}A$ $D = n$ on $S^{2n}A$
 $D(RA) \neq CIA$
 $(D-I)D(RA) \subset (D-I)(IA) \leq IA^{2}$
 $(D-n)(D-n-I) = (D-I)D(RA) < (IA)^{hel}$
 $(D-n)(D-n-I) = (D-I)D(RA) < (IA)^{hel}$
 $(D-n) = (D-I)D = 0$ on RH/IA^{hel}
 $RH/IA^{hel} = \bigoplus_{j=0}^{n} Ker(D-j)$
 $complanded in (IA)^{j}$
 $kA(JA^{hel}) = \bigoplus_{j=0}^{n} L^{2}A$
 $V \leq \sum$ multiplication by j on S^{2j}
 $p = \begin{bmatrix} 0 & 1 \\ 2 & . \end{bmatrix}$ (07)

$$\begin{array}{rcl} \mathbb{R}^{A}/I \mathbb{R}^{n_{11}} = & \bigoplus \ |kv| (P-j)| \\ & T_{nin} \ decomposition is \ compability \ with \ the grading \\ \text{Sinte } \ D \ ind \ downablesin. \\ & (and lumin is that \ n) \ n \rightarrow \infty \ one \ has \ one \\ & (n) \ decomposition \ decomposition \ decompability \ decomposition \ decompability \ decomposition \$$

So
$$e^{-t}He^{t} = H + e^{-t}EH_{e}e^{t}$$

 $= H + e^{-t}\int_{0}^{t}e^{(t+t)t}EH_{t}Ge^{tt}dt$
 $= H + \int_{0}^{t}e^{-tt}EH_{t}Ge^{t}dt$
 $= H + \int_{0}^{t}e^{-tt}Le^{t}dt = H + L = 0$
(his an ebging: calculate in the Lie algebra).
Last time we say that there is a consumal algebra isomorphism
wormpatable with the fithabus
 $RH \cong \Omega^{at}H = TT\Omega^{at}H$
 $D \longrightarrow H$
- consepondance of expansions: espace of H cons to there
of L.
Nemath is that this espensions is given by e^{t}
Fast: D on RH eats of the a demaining on QH
 $QA = A * H = \Omega A$ with o
 $A \longrightarrow \Theta A = A + dA$
 IO

H demiabin of RH is given by A pair it rebutions
to 9/Ai and 0/A; which can be orbitary
demiations from these substants to 24.
Utain that
$$P[QA] = \frac{1}{2} dA + \varphi A + d\varphi A$$

 $p[Q^{*}A] = -\frac{1}{2} dA + \varphi A - d\varphi A$.
Utach that $\frac{p(QA_{1} \circ QA_{1})}{p(QA_{1})} = DQA_{1} \circ DA_{1} + QA_{1} \circ DQA_{1}$
and dro for Q^{*} .
 $DQ(A_{1}A_{1})$
and dro for $Q^{*}A$
 $Claim that there found as define a dematrix D
on RH .
 $p(Q = \frac{1}{2}D(QA \circ Q^{*}A) = \varphi A$
 $\therefore D entends the D we have on RA.$
 $D(QA) = \frac{1}{2} dA + d\varphi A$
 $QH = DA_{1} = T_{1} D^{*}H$
 $QH = DA_{1} = T_{1} D^{*}H$
 $D \leq ---H$.$

Hypere lat H is spacelle. Then, no know
$$0, 0^{+}$$

 $H \rightarrow 0$ With the conjugate in $2N$. To
 $M \rightarrow 0$ With the conjugate in $2N$. To
 $M \rightarrow 0$ With the conjugate in $2N$. To
 $M \rightarrow 0$ With a conjugate from a $V \leq 20^{-N}$.
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1} + 0, 1^{-1} + 0$
 $M = 0, 1^{-1} + 0, 1^{-1$

Connections E right module over \underline{H} connection $P: E \rightarrow E \Theta_A \mathcal{N}^2 A$ $\nabla(3a) = (P3)a + 3da$ This is equivalent to a right module map s: E > E & A such that MS = I where M is the multiplication. Now ∇ enorsh if and only if E is projective. module map E> E BARIA. If E is a left module, a connection $\nabla: E \rightarrow \mathcal{Q}^{2}\mathcal{H} \otimes_{\mathcal{A}} E$ $S: E \xrightarrow{m} \nabla(GS) = a \nabla S + daS$ $S: E \xrightarrow{m} \mathcal{H} \otimes E$ If E is a bimodule, we define the sight connection $V_{F}: E \rightarrow E \mathcal{D}_{A} \mathcal{R}^{2} \mathcal{A}$ $\nabla_{r}(5a) = (\nabla_{r}5)a + 5da$ $\mathcal{D}_{r}(as) = a \mathcal{D}_{r}s$ equivalent to a bimodule liftings with veryal to EOA E

E projecture implies that I, Vr enist. If E is left projecture then E&A is left-projecture and (Vr enists =) E is a projecture bimodente. Left connection Ve: E > AZHØE $V_{e}(a_{1}, \overline{s}a_{1}) = a_{1}(V_{e}\overline{s})a_{1} + da_{1}\overline{s}a_{2}$ This is equivalent to a bimodule loking se wet. ADE" E Depinition: If E is a bimodule, then a (bimodule) connection in E is a pair (Re, R.) consisting of a left and a right convection. ABEDA EBA ABE-me-se 115

polynomial function on E (M) € [(M, E) & Sn ² (P(M, E)) [(M, E) & Ections of dual bundle - obtain the symmetric elgebra. Think of T _H M as the algebra corresponding to the rector bundle. Idea 7 to entand demaking on A (manifed) to domination on T _H M (bundle) <u>Proposition</u> : If (Ne, R.) in a convertion on E there is a convorted way to entand a domination D: P → M where M is a Tate binordule to a demination	Call the composite $\tilde{D}: E \rightarrow M$. Propably $\tilde{D}(1, 3a_2) = a_1 \tilde{D} J a_1 + Da_1 \tilde{J} a_2 + q_1 \tilde{J} Da_2$ This is what you need to see that $\tilde{D}(5_{1-1}, 3u) = \sum_{j=1}^{n} \tilde{J}_{1-1} J_{j-1}(\tilde{D} \tilde{J}_{j}) \tilde{J}_{j+1} \dots \tilde{J}_{n}$ is well defined on $T_{IP} E$. $\tilde{J}_{1-1} = \tilde{J}_{1} \otimes a_{1} \otimes a_{2} \dots \otimes a_{n} \tilde{J}_{n}$ Connections on the binordule $\Omega^{2} A$ are non-computable
$T_{H}E \rightarrow M$ Now P induces an A -bimodule may $P_{X}: \Omega^{2}A \rightarrow M$ $P_{X}(da) = Da$ $E(\overline{Pe, D_{r}}) \rightarrow \Omega^{2}A \otimes_{A} E \oplus E \otimes_{A} \Omega^{2}A$ $p_{X} \otimes I \qquad \qquad$	to a manifold <u>M</u> . $\int T$ vector bundle \leftarrow the algebra $S_{A}(E[(H,E)])$ M $H = C^{\infty}(H)$ $\int T_{A}(E)$ E is a projective bimodule H^{2}

$$T_{n}(\mathfrak{A}^{2}R) = \mathfrak{A}R$$

$$T_{n}(\mathfrak{A}^{2}R) = \mathfrak{A}R$$

$$F_{n}(\mathfrak{A}^{2}R) = \mathfrak{A}^{2}R = \mathfrak{A}^{2}R$$

$$(\mathfrak{A} = \mathfrak{A} - \mathfrak{A}) = \mathfrak{A}^{2}R = \mathfrak{A}$$

Thus a left connection
$$\nabla_{e}$$
 is equivalent for $p: \overline{H} \rightarrow Q^{2}H$
such that
 $\nabla_{e} (A \circ dA_{i}) = d(A \circ dA_{i}) + 4 \circ Y(A_{i})$
 $= dA \circ dA_{i} + 4 \circ Y(A_{i})$
 $= dA \circ dA_{i} + 4 \circ Y(A_{i})$
 $= dA \circ dA_{i} + 4 \circ Y(A_{i})$
 $T_{H}(E)$ bimodule to a deniection $T_{H}(E) \rightarrow H$
 $T_{H}(E)$ bimodule to a deniection $T_{H}(E) \rightarrow H$
 $E \frac{(B \circ P)}{P} \Omega^{2} R \otimes_{A} E \oplus E \otimes_{P} \Omega^{2}H$
 $P_{i} \left[\circ I \right] 200^{+}$
 $P_{i} \left[\circ I$

To the fit order we have

$$a \mapsto \frac{1+e^{x}}{2}a = a + \frac{1}{2}da$$

 $da \mapsto \frac{1-e^{x}}{2}a = -\frac{1}{2}da$
So that α induces on the anomiated graded algebras
the map
 $\mathcal{A}A \to \mathcal{A}A : W \mapsto (-\frac{1}{2})^{[w]}w$

when one completer, the conclusion is that a induceran is o morphism RA ~ SM

.........

C