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William Minicozzi’s talk covered geometric and analytic aspects of the mean
curvature flow problem. This is the problem of understanding the behavior of a family
of hypersurfaces Mt evolving under the differential equation

∂x

∂t
= −Hn

where H is the mean curvature of Mt and n is the unit normal. Two examples of
solutions in R3 are 2-spheres of radius

√
−4t and cylinders of radius

√
−2t (t < 0). In

these cases the evolution equations
are ordinary differential equations. In
both the surfaces are ‘extinquished’ in a
finite time, in the first with the spheres
contracting to a point, in the second,
with the cylinders contracting to a line.

A general feature of mean curvature
flow is that a hypersurface enclosing another cannot overtake the inner one, because
at the point at which they first touched, the inner surface, with larger mean
curvature, would have to be moving faster than the outer one. This is the ‘avoidance
principle’: if hypersurfaces start disjoint, then they must remain disjoint. Any closed
hypersurface must shrink to a point: it must remain inside any enclosing sphere,
which must itself shrink to a point. So singularities must develop. The problem is to
understand them.

In 1984, Huisken dealt with the convex case by proving that a closed convex surface
remains convex and flows smoothly until it disappears to a point. Just before the
extinction time, it looks completely round.

The non-convex case is less straightforward. A thin symmetrical torus, for example,
collapses to a circle. A more
involved example is ‘Grayson’s
dumbell’—two large ‘bells’
connected by a thin bar. Under
the flow, the bells shrink more
slowly than the bar. The result

is that the neck first pinches off; the bells then shrink to points. Because the flow
continues past the first singularity, one needs the notion of a ‘weak solution’ to
understand examples of this sort. One such is given by focusing not a single
hypersurface but on the level sets of a function, all evolving simultaneously under the
flow. Because of the avoidance principle, they remain level sets of a function.

In the mean convex case (i.e. H > 0), an appropriate function is v(x, t) = u(x)− t,
where u(x) is the arrival time, the time at which Mt reaches x. If M0 is mean convex
then Mt moves monotonically inwards and u(x) is well-defined in the domain swept
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out by Mt. It satisfies the degenerate elliptic equation

∆u−Hessu

(
∇u
|∇u|

,
∇u
|∇u|

)
= −1 .

The critical points of u are the singularities of the flow. By using viscosity solutions,
it had been shown that there exists a solution, and that it is Lipschitz. In 2016,
Colding and Minicozzi (CM) showed that u is twice differentiable everwhere and that
at critical points the Hessian matches that of the flow of the cylinder or of the sphere.
That left open the question of whether or not u was actually C2. This CM resolved
in 2016: the solution is C2 if and only if the critical set is either a single point where
the Hessian is spherical or a simple closed C1 curve where the Hessian is cylindrical.

The key to understanding the detailed structure of the singularities is that they are
self-similar under rescaling. This is clear in the cases of spheres and cylinders, but is
true more generally. As we zoom in on a critical point, the level sets are spherical or
cylindrical. For the second derivative to exist, the orientation of the cylinders must
not jump around from point to point, in particular their axes must be aligned. This
‘uniqueness’ was established by CM in 2015, the essential ingredient being the
application of a Lojasiewicz inequality inspired by algebraic geometry.

In the examples (the sphere, the cylinder, the torus, and the dumbbell), the singular
set is made up of points and curves. It is never more than one dimensional. By using
the same ideas White showed in 2000 that generally in the mean convex case it never
exceeds one, in the sense of Hausdorff measure. Again in 2016, CM proved
‘rectifiability’ by showing that the singular set is in fact contained in a union of
compact C1 curves and a countable set of points.

The lecture concluded with a brief review of higher-dimensional results and of the
tools used to prove them. There is a richer set of possibilities for the singularities in
higher dimensions. For example, in the mean convex case it is possible to have the
product of a sphere of any dimension with a plane of complementary dimension. But
otherwise much of the three-dimensional theory extends in a natural way. So, for
example, the singular set is rectifiable with finite measure and contained in the finite
union of compact C1 (n− 1)-manifolds together with a set of dimension not greater
than n− 2. The lower strata are themselves countable unions of C1 manifolds of
lower dimension.
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