Contents

Preface vii

Chapter 1. Overview and physical background 1
 1.1. String theory and sigma models 2
 1.2. The homological approach 14
 1.3. SYZ mirror symmetry and T-duality 19

Chapter 2. D-branes and K-theory in 2D topological field theory 27
 2.1. The sewing theorem 29
 2.2. Solutions of the algebraic conditions: The semisimple case 48
 2.3. Vector bundles, K-theory, and “boundary states” 57
 2.4. Landau-Ginzburg theories 61
 2.5. Going beyond semisimple Frobenius algebras 63
 2.6. Equivariant 2-dimensional topological open and closed theory 68
 2.7. Appendix: Morse theory proof of the sewing theorems 90
 2.8. Notes 108

Chapter 3. Open strings and Dirichlet branes 109
 3.1. Topological quantum mechanics and cohomology theories 110
 3.2. Two-dimensional QFT, CFT and TFT 122
 3.3. Supersymmetric and topological field theories 150
 3.4. Topological sigma models of closed strings 168
 3.5. Boundary CFT 176
 3.6. Supersymmetric and topological boundary conditions 193

Chapter 4. Representation theory, homological algebra and geometry 217
 4.1. Categories (additive and abelian) and functors 220
 4.2. Representations of quivers 231
 4.3. Coherent sheaves 239
 4.4. Derived categories 248
 4.5. The derived category of coherent sheaves 266
 4.6. Fourier-Mukai theory 273
 4.7. The McKay correspondence 282

Chapter 5. Dirichlet branes and stability conditions 293
 5.1. K-theory, intersection product and antibranes 296
 5.2. Preliminaries on stability 302