Euler equations for rotating, Bressvaer stratified fluid (directly applicable to ocean - or atmosphere in pressure coordinates):

Given length scale L, velocity scale U, vertical scale H,
scale $e = U/L$ (Rossby scale), $e^2 = (H/L)^2$ (aspect ratio).
Then if v^e is velocity, p^e pressure, θ^e density,
and $\nabla = (\partial_1, \partial_2, e^2 \partial_3)$,
$v^e = (v_1, v_2, e^2 v_3)$
$\epsilon = (\partial_1 v^e + (v^e \cdot \nabla) v^e)_{12} + \nabla_{12} p^e + J v^e = 0$

$e^2 (\partial_3 v^e + (v^e \cdot \nabla) v^e)_{3} + \partial_3 p^e - \theta^e = 0$

$\nabla \cdot v^e = 0$

$\partial_3 \theta^e + (v^e \cdot \nabla) \theta^e = 0$

where $J = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Solve with v_0, θ_0 will $\epsilon \nabla \cdot \nabla \theta^e$. Consider family of solutions with varying ϵ.

Define the geostrophic velocity by
\[\mathbf{v}_g = (-d_2 \rho, d_1 \rho, 0) \]

Then
\[(\mathbf{v}_e, \mathbf{v}_e \cdot \mathbf{n}) = \mathbf{v}_g + e \left(\frac{d_1}{e_s} \mathbf{v}_e + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_e \right) \]

so
\[\mathbf{v}_e = \mathbf{v}_g + \mathbf{v}_e \frac{\partial}{\partial x} \frac{\partial}{\partial y} \]

Then substitute into Euler to get
\[e \left(\frac{d_1}{e_s} \mathbf{v}_g + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_g \right) + \nabla \mathbf{v}_e \cdot \mathbf{n} - \mathbf{v}_e \cdot \nabla \mathbf{v}_e = \nabla \cdot \mathbf{v}_e = 0 \]

\[\frac{d_1}{e_s} \mathbf{v}_e + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_e = 0 \]

\[\frac{d_1}{e_s} \mathbf{v}_e + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_e = 0 \]

Dropping \(o(\epsilon^3) \) terms gives the full equations

\[\left(\mathbf{v}_e, \mathbf{\Theta} \right) = \left(-d_2 \rho, d_1 \rho, \frac{d_1}{e_s} \rho \right) \]

\[e \left(\frac{d_1}{e_s} \mathbf{v}_g + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_g \right)_{12} + \nabla \mathbf{v}_e + \mathbf{J} \mathbf{v}_e = 0 \]

\[\nabla \cdot \mathbf{v}_e = 0 \]

\[\frac{d_1}{e_s} \mathbf{v}_e + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_e = 0 \]

Can write formally as

\[e \left(\frac{d_1}{e_s} \mathbf{v}_g + (\mathbf{v}_e \cdot \nabla) \mathbf{v}_g \right) \mathbf{v}_e = \left(\begin{array}{c} -d_2 \rho \\ d_1 \rho \\ 0 \end{array} \right) \]
Define new variables
\[P = \mathcal{E}_p + \frac{1}{2} (x_1^2 + x_2^2) \]
\[X = \text{Lagrangian map} \]
\[Y = X_{12} + (e \nu_2 \circ X, -e \nu_1 \circ X, e \Theta_0 X) \]
\[= X_{12} + e \Delta P \circ X \]

SG becomes
\[\Delta P \circ X = Y \]
\[X \# L = L \text{ where } L \text{ is Lebesgue measure on } \Omega \]
\[e \mathcal{E}_Y = J(Y - X) \] (\#)

(\#) can be solved if \(X \) known in terms of \(Y \).
Conserved energy of Euler is
\[\int_{\Omega} \left(\frac{1}{2} \varepsilon (v \varepsilon)_{2}^{2} + \frac{1}{2} \varepsilon^{2} (v \varepsilon)_{3}^{2} - \Theta x_{3} \right) \, dx. \]

If \(S \varepsilon \) is
\[\int_{\Omega} \frac{1}{2} \varepsilon (y \varepsilon)^{2} - \Theta x_{3} \, dx. \]

In Lagrangian variables, this is
\[\varepsilon^{-1} \int_{\Omega} \left(x + y \right)_{2}^{2} - x \varepsilon y_{3} \, dx_{0} \]

\[= \varepsilon^{-1} \int_{\Omega} C(x, y) \, dx_{0}. \]

Now reinterpret (*) as defining a flow map in \(Y \) space.

Given initial mass density \(\sigma_{0} \) in \(Y \) space defined by
\[(y_{0})_{2} = \frac{1}{1} d + \varepsilon (v_{0}, -v), \]
\[(y_{0})_{3} = c \varepsilon \theta_{0}, \]
\[\sigma_{0} = y_{0} \# L. \]

Need to find \(X(t, \cdot) \) as a function of \(Y(t, \cdot) \), write as \(S \varepsilon Y \)
Mass density \(\sigma_{t} \) in \(Y \) space at time \(t \) is \(Y(t, \cdot) \# L. \)
If we require \(S \varepsilon \# \sigma(t, \cdot) = L \), this is consistent with \(X(t, \cdot) \# L = L \).
Choose S_e s.t. the cost

$$\int c(x,y) \sigma_e \, d\Omega$$

is minimised under choices f, S_e s.t. $S_e \neq \sigma_e = \Omega$.

Seek to show that this implies the remaining equation

$$Y = X_{12} + e \nabla p_0 X \quad \text{or} \quad \nabla p_0 X = Y$$

for some p, p.

This is an optimised transport problem. Solved by using the Kantorovich relaxation. Thus seek potentials $f(x), \phi(y)$ whereas $x \in X$ is Edain complete on Ω and $y \in Y$ is Edain complete on Y space Ω.

$$f(x) + \phi(y) \leq C(x,y)$$

and

$$\mathcal{K} = \int_{\Omega} f \, dx + \int_{\Omega} \phi \, dy \quad \text{is minimised}$$

The solution exists under reasonable assumptions and satisfies

$$f(x) + \phi(y) = C(x,y) \quad \forall x \in s(y)$$

In general

$$f(x) = \inf_y (c(x,y) - \phi(y))$$

$$\phi(y) = \inf_x (c(x,y) - f(x))$$

In our case,

$$C(x,y) = \frac{1}{2} (x - y)^2_{1,2} - x_3 y_3$$
In addition, we have
\[
\nabla \phi(x) = \frac{\partial}{\partial x} c(x,y) = (x-y)_2 - y_2
\]
\[
\nabla \psi(y) = \frac{\partial}{\partial y} c(x,y) = (y-x)_2 - x_2
\]
Define \(\epsilon \rho = -\phi \). Then
\[
\epsilon \rho \circ \gamma = \gamma - \gamma_{12} \text{ is required}
\]
and \(\nabla \rho \circ \gamma = \gamma \).

Also, have
\[
\phi(x) - \frac{1}{2} x_{12} = \inf \left(-x_2, y + \frac{1}{2}(y_{12} - y_{13})\right)
\]
so \(\phi(x) - \frac{1}{2} x_{12} = -\rho \) is concave as an infimum over planes. So \(\rho \) is convex and \(\nabla \rho \) is BV as is \(\nabla \rho \).

Similarly, \(R = \frac{1}{2} y_{12}^2 - \psi(y) \) is convex and \(\nabla R \) is BV. Define \(\epsilon = \epsilon \rho \) consistently with the definition of \(\rho \).

Now consider the evolution equation
\[
e \partial_t \gamma = (x_2 - \frac{1}{2}, y - x_1, 0) \in E \nabla \rho \circ \gamma
\]

We can write this as
\[
\partial_t \gamma + \nabla \phi(\gamma - U) = 0
\]
where \(U = \frac{1}{2} \nabla \rho \circ \gamma \) is BV and divergence free.

The aggregation principle shows that \(\gamma(t) \) can be solved.

The calculation of \(X \) for \(Y \) is equivalent to
the solution of a large system equation for \(R \), say
\[
X = \nabla R \circ \gamma
\]