# Book 8 Proposition 5

Οἱ ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσι τὸν συγκείμενον ἐκ τῶν πλευρῶν. Ἔστωσαν ἐπίπεδοι ἀριθμοὶ οἱ Α, Β, καὶ τοῦ μὲν Α πλευραὶ ἔστωσαν οἱ Γ, Δ ἀριθμοί, τοῦ δὲ Β οἱ Ε, Ζ: λέγω, ὅτι ὁ Α πρὸς τὸν Β λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν. Λόγων γὰρ δοθέντων τοῦ τε ὃν ἔχει ὁ Γ πρὸς τὸν Ε καὶ ὁ Δ πρὸς τὸν Ζ εἰλήφθωσαν ἀριθμοὶ ἑξῆς ἐλάχιστοι ἐν τοῖς ΓΕ, ΔΖ λόγοις, οἱ Η, Θ, Κ, ὥστε εἶναι ὡς μὲν τὸν Γ πρὸς τὸν Ε, οὕτως τὸν Η πρὸς τὸν Θ, ὡς δὲ τὸν Δ πρὸς τὸν Ζ, οὕτως τὸν Θ πρὸς τὸν Κ. καὶ ὁ Δ τὸν Ε πολλαπλασιάσας τὸν Λ ποιείτω. Καὶ ἐπεὶ ὁ Δ τὸν μὲν Γ πολλαπλασιάσας τὸν Α πεποίηκεν, τὸν δὲ Ε πολλαπλασιάσας τὸν Λ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Γ πρὸς τὸν Ε, οὕτως ὁ Α πρὸς τὸν Λ. ὡς δὲ ὁ Γ πρὸς τὸν Ε, οὕτως ὁ Η πρὸς τὸν Θ: καὶ ὡς ἄρα ὁ Η πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Λ. πάλιν, ἐπεὶ ὁ Ε τὸν Δ πολλαπλασιάσας τὸν Λ πεποίηκεν, ἀλλὰ μὴν καὶ τὸν Ζ πολλαπλασιάσας τὸν Β πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Λ πρὸς τὸν Β. ἀλλ' ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Θ πρὸς τὸν Κ: καὶ ὡς ἄρα ὁ Θ πρὸς τὸν Κ, οὕτως ὁ Λ πρὸς τὸν Β. ἐδείχθη δὲ καὶ ὡς ὁ Η πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Λ: δι' ἴσου ἄρα ἐστὶν ὡς ὁ Η πρὸς τὸν Κ, [οὕτως] ὁ Α πρὸς τὸν Β, ὁ δὲ Η πρὸς τὸν Κ λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν: καὶ ὁ Α ἄρα πρὸς τὸν Β λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν: ὅπερ ἔδει δεῖξαι.

Plane numbers have to one another the ratio compounded of the ratios of their sides. Let A, B be plane numbers, and let the numbers C, D be the sides of A, and E, F of B; I say that A has to B the ratio compounded of the ratios of the sides. For, the ratios being given which C has to E and D to F, let the least numbers G, H, K that are continuously in the ratios C : E, D : F be taken, so that, as C is to E, so is G to H, and, as D is to F, so is H to K. [VIII. 4] And let D by multiplying E make L. Now, since D by multiplying C has made A, and by multiplying E has made L, therefore, as C is to E, so is A to L. [VII. 17] But, as C is to E, so is G to H; therefore also, as G is to H, so is A to L. Again, since E by multiplying D has made L, and further by multiplying F has made B, therefore, as D is to F, so is L to B. [VII. 17] But, as D is to F, so is H to K; therefore also, as H is to K, so is L to B. But it was also proved that, as G is to H, so is A to L; therefore, ex aequali, as G is to K, so is A to B. [VII. 14]