The Fundamental Lemma for Unitary Groups

Gérard Laumon

CNRS and Université Paris-Sud

and

Ngô Bao Châu

Université Paris-Sud

Introduction

The Fundamental Lemma is a set of combinatorial identities which have been formulated by Langlands-Shelstad.

It is a key tool in proving many cases of Langlands functoriality.

Some earlier works:

- SL(2) by Labesse-Langlands,
- SL(n) by Waldspurger,
- Sp(4) by Hales and Weissauer,
- U(3) by Kottwitz and Rogawsky,
- unramified equal valuation case by Goresky-Kottwitz-MacPherson.

General statement

$$\Delta(\gamma,\delta) O_{\gamma}^{G,\kappa}(1_K) = SO_{\delta}^H(1_{K^H}).$$

Main entries:

- F non archimedean local field $([F:\mathbb{Q}_p] < +\infty \text{ or } [F:\mathbb{F}_p((t))] < +\infty),$
- G reductive group over F,
- H endoscopic group of G,
- $\delta \in H$ elliptic G-regular semisimple,
- $\operatorname{O}_{\gamma}^{G,\kappa}(1_K)$ κ -orbital integral,
- $\mathsf{SO}^H_\delta(\mathsf{1}_{K^H})$ stable orbital integral,
- $\Delta(\gamma, \delta)$ transfer factor.

Orbital integrals for full linear groups

- $(E_i)_{i \in I}$ finite family of finite separable extensions of F,
- $\gamma_i \in E_i^{\times}$ such that $F[\gamma_i] = E_i$,
- $-E = \bigoplus_{i \in I} E_i,$
- $-\gamma = (\gamma_i)_{i \in I} \in T = E^{\times} \subset G = \operatorname{Aut}_F(E),$
- $P_i(t) \in F[t]$ minimal polynomial of γ_i .

Assume $P_i(t) \neq P_j(t) \ \forall i \neq j$, so that T is the centralizer of γ in G.

- 1_K characteristic function of

$$K = \operatorname{Aut}_{\mathcal{O}_F}(\mathcal{O}_E) \subset G$$

⇒ orbital integral

Orbital integrals as counting lattices

- \mathcal{O}_F -lattices L in $E\Leftrightarrow \mathrm{rank}\ n$ (free) \mathcal{O}_F -submodules L of E,
- $[L:\mathcal{O}_E]=\operatorname{Igth}\left(rac{L}{L\cap\mathcal{O}_E}
 ight)-\operatorname{Igth}\left(rac{\mathcal{O}_E}{L\cap\mathcal{O}_E}
 ight)$,
- $\mathcal{L}=\{\mathcal{O}_F\text{-lattices }L\subset E\mid \gamma L=L \text{ and } \ [L:\mathcal{O}_E]=0\},$
- $arpi_{E_i}$ uniformizer of E_i ,
- $\Lambda = \{\lambda \in \mathbb{Z}^I \mid \sum_{i \in I} \lambda_i = 0\}$ acts freely on \mathcal{L} by $\lambda \cdot L = (\varpi_{E_i}^{-\lambda_i})_{i \in I} L$.

LEMMA We have

$$O_{\gamma}^G(1_K) = |\mathcal{L}/\Lambda|.$$

Unitary groups

- F'/F quadratic unramified extension,
- $(E_i)_{i \in I}$ finite family of finite separable extensions of F,
- $c_i \in E_i^{\times}$, $c = (c_i)_{i \in I}$,

Assume E_i disjoint of F'.

$$-E_i'=E_iF',$$

-
$$Gal(E'_i/E_i) = Gal(F'/F) = \{1, \tau\},$$

-
$$\Phi_c(x,y) = \sum_{i \in I} \operatorname{tr}_{E_i'/F'}(c_i \tau(x_i) y_i)$$

non degenerate Hermitian form
on the F' -vector space $E' = \bigoplus_{i \in I} E_i'$.

⇒ unitary group

$$G = \mathsf{U}(\Phi_c) \subset \mathsf{Aut}_{F'}(E').$$

Orbital integrals for unitary groups

$$-E_i^{\prime 1} = \{x_i \in E_i^{\prime \times} \mid \tau(x_i)x_i = 1\},$$

-
$$\gamma_i \in E_i'^1$$
 such that $E_i' = F'[\gamma_i]$,

$$-\gamma = (\gamma_i)_{i \in I} \in T = \prod_{i \in I} E_i^{\prime 1} \subset \mathsf{U}(\Phi_c),$$

- $P_i(t) \in F'[t]$ minimal polynomial of γ_i .

Assume:

-
$$P_i(t) \neq P_j(t) \ \forall i \neq j$$
,

-
$$\operatorname{disc}(c) = \sum_{i \in I} v_F(\operatorname{Nr}_{E_i/F}(c_i))$$
 even.

⇒ orbital integral

$$O_{\gamma}^{G}(1_{K}) = \int_{T \setminus G} 1_{K}(g^{-1}\gamma g) \frac{\mathrm{d}g}{\mathrm{d}t}$$

which is the number \mathcal{O}_{γ}^c of $\mathcal{O}_{F'}$ -lattices $L\subset E'$ such that:

- L is self-dual with respect to Φ_c ,
- $-\gamma L = L.$

Stable conjugacy

Two elements of the unitary group $G = U(\Phi_c) \subset \operatorname{Aut}_{F'}(E')$ are stably conjugate if they are conjugate in $\operatorname{Aut}_{F'}(E')$.

If $|I| \ge 2$ the stable conjugacy class of γ is not equal to its conjugacy class.

Equivalently:

- for each $c' \in E^{\times}$ we have $\gamma \in U(\Phi_{c'})$,
- $\operatorname{disc}(c') \equiv \operatorname{disc}(c) \equiv 0 \mod 2 \Rightarrow$ $\exists \ \iota_{c,c'} : \operatorname{U}(\Phi_{c'}) \xrightarrow{\sim} \operatorname{U}(\Phi_c) = G,$
- but $\iota_{c,c'}(\gamma)$ is not necessarily conjugate to γ in $G=\mathsf{U}(\Phi_c)$.

 κ -orbital integrals

The set of conjugacy classes inside the stable conjugacy class of γ in $G = U(\Phi_c)$ is isomorphic to

$$\{c' \in E^{\times} \mid \operatorname{disc}(c') \text{ even}\}/\operatorname{Nr}_{E'/E}E'^{\times}$$

 $\cong \{\overline{\lambda} \in (\mathbb{Z}/2\mathbb{Z})^{I} \mid \sum_{i \in I} \overline{\lambda}_{i} = 0\} = \overline{\Lambda}$

- $\mathrm{O}_{\gamma}^{c'}=\mathrm{O}_{\gamma}^{\overline{\lambda}}$ only depends on the class $\overline{\lambda}$ of c' in $\overline{\Lambda}$.

 $\kappa:\overline{\Lambda} \to \{\pm 1\}$ character $\Rightarrow \kappa$ -orbital integral

$$O_{\gamma}^{G,\kappa}(1_K) = \sum_{\overline{\lambda} \in \overline{\Lambda}} \kappa(\overline{\lambda}) O_{\gamma}^{\overline{\lambda}}.$$

 $\kappa = 1 \Rightarrow$ stable orbital integral

$$SO_{\gamma}^{G}(1_{K}) = O_{\gamma}^{G,1}(1_{K}).$$

Endoscopic groups

- $\kappa: \overline{\Lambda} \to \{\pm 1\} \Leftrightarrow \text{partition } I = I_1 \dot{\cup} I_2$,
- $c_{I_{\alpha}} = (c_i)_{i \in I_{\alpha}} \in \prod_{i \in I_{\alpha}} E_i^{\times}$,
- replacing I by $I_{\alpha} \Rightarrow$

$$\gamma_{I_{\alpha}}=(\gamma_i)_{i\in I_{\alpha}}\in G_{\alpha}=\mathsf{U}(\Phi_{c_{I_{\alpha}}})$$
,

- $-\delta = (\gamma_{I_1}, \gamma_{I_2}) \in T \subset H,$
- $H = G_1 \times G_2$ endoscopic group determined by κ .
- ⇒ stable orbital integral

$$\mathrm{SO}_{\delta}^{H}(1_{K^{H}}) = \mathrm{SO}_{\gamma_{I_{1}}}^{G_{1}}(1_{K^{G_{1}}}) \\ imes \mathrm{SO}_{\gamma_{I_{2}}}^{G_{2}}(1_{K^{G_{2}}}).$$

Fundamental Lemma for unitary groups

- q = number of elements of the residue field of F,
- $r_{ij} = v_{F'}(\operatorname{Res}(P_i(t), P_j(t))) \ \forall i \neq j \in I$,
- $-r = \sum_{i \in I_1, j \in I_2} r_{ij}.$

THEOREM If p > n = [E : F] we have

$$\Delta(\delta, \gamma) O_{\gamma}^{G, \kappa}(1_K) = SO_{\delta}^{H}(1_{K^H})$$

where $\Delta(\delta, \gamma) = (-q)^{-r}$.

Reduction (Hales, Waldspurger)

- Waldspurger: algorithm computing orbital integrals which only depends on the residue field of F.
- Hales and Waldspurger: the Fundamental Lemma follows from its Lie algebra version.

Lie algebra version of the Fundamental Lemma:

$$-\gamma_{i} \in E_{i}^{\times} \leadsto \gamma_{i} \in E_{i},$$

$$-\tau(\gamma_{i})\gamma_{i} = 1 \leadsto \tau(\gamma_{i}) + \gamma_{i} = 0,$$

$$-\gamma L = L \leadsto \gamma L \subset L.$$

Affine Springer fibers for full linear groups From now on:

- $F = k((\varpi_F))$, $k = \mathbb{F}_q$,
- Fundamental Lemma for Lie algebra.

 $\mathcal{L} = \{L \subset E \mid \gamma L \subset L \text{ (and } [L : \mathcal{O}_E] = 0\}$ is the set of rational points of an algebraic variety, the so-called affine Springer fiber $\mathcal{S}_{\gamma}^{(0)}$, over k.

Grothendieck fixed point formula

- \Rightarrow orbital integral = trace of Frob_q on ℓ -adic cohomology $H^{\bullet}(\mathcal{S}_{\gamma}^{\mathbf{0}})$.
- ⇒ Fundamental Lemma follows from existence of a "Gysin" isomorphism.

"Gysin" isomorphism for full linear groups

$$-I = I_1 \dot{\cup} I_2 \Rightarrow E = E_{I_1} \oplus E_{I_2},$$

- $-\gamma = (\gamma_i)_{i \in I} \Rightarrow \gamma_{I_{\alpha}} = (\gamma_i)_{i \in I_{\alpha}} \Rightarrow \text{ affine}$ Springer fiber $S_{\gamma_{I_{\alpha}}}$,
- closed embedding $\mathcal{S}_{\gamma_{I_1}} \times \mathcal{S}_{\gamma_{I_2}} \hookrightarrow \mathcal{S}_{\gamma}$, $(L_1 \subset E_{I_1}, L_2 \subset E_{I_2}) \mapsto L_1 \oplus L_2 \subset E$,
- $-r = \dim(\mathcal{S}_{\gamma}) \dim(\mathcal{S}_{\gamma_{I_1}} \times \mathcal{S}_{\gamma_{I_2}}).$

Question: Is there a canonical isomorphism

$$H^{\bullet}(\mathcal{S}_{\gamma}) \cong H^{\bullet-2r}(\mathcal{S}_{\gamma_{I_1}} \times \mathcal{S}_{\gamma_{I_2}})(-r)?$$

Problem: S_{γ} is highly singular.

Goresky-Kottwitz-MacPherson strategy

Note:
$$t \cdot L = (t \oplus 1)L \subset E_{I_1} \oplus E_{I_2} = E$$

 $\Rightarrow \mathbb{G}_{m,k}$ acts on \mathcal{S}_{γ} and the fixed point set is $\mathcal{S}_{\gamma_{I_1}} \times \mathcal{S}_{\gamma_{I_2}}$.

Atiyah-Borel-Segal localization in equivariant ℓ -adic cohomology

 $\Rightarrow \mathbb{Q}_{\ell}[x]$ -linear map

$$\iota: H^{\bullet}_{\mathbb{G}_{\mathsf{m},k}}(\mathcal{S}_{\gamma}) \to H^{\bullet}(\mathcal{S}_{\gamma_{I_1}} \times \mathcal{S}_{\gamma_{I_2}})[x].$$

- ⇒ "Gysin" isomorphism if we can
 - (1) prove that ι is injective,
 - (2) compute its image,
 - (3) recover ordinary cohomology from equivariant one.

Purity Conjecture of Goresky-Kottwitz-MacPherson

Points (1) and (3) follow easily from:

CONJECTURE $H^m(S_{\gamma})$ is pure of weight m for all m.

But, any direct approach to point (2) and to the Purity Conjecture seems to be very hard.

Our approach: to try to deform the complicated affine Springer fibers into simpler ones.

Examples of affine Springer fibers

Assume: p > 2.

(i) $E_1 = E_2 = F$, $\gamma_1 = \varpi_F$, $\gamma_2 = -\varpi_F$, \mathcal{S}_{γ}^{0} is an infinite chain of projective lines

(ii) $E=F[x]/(x^2-\varpi_F)$, $\gamma=\varpi_F^3$, \mathcal{S}_{γ}^0 is a single projective line

Problem with affine Springer fibers

The affine Springer fibers don't behave well in families:

- natural to expect that example (i)
 degenerates to example (ii),
- but no algebraic family whose general fiber is a chain of projective lines and whose special fiber is a single projective line.

Solution: to replace affine Springer fibers by compactified Jacobians.

Altman-Kleiman compactified Jacobians

$$A_{\gamma} = \mathcal{O}_{F}[\gamma] \subset \mathcal{O}_{E}, \ P(t) = \prod_{i \in I} P_{i}(t)$$

$$\Rightarrow A_{\gamma} = k[[\varpi_{F}, t]]/(P(t))$$

LEMMA \exists projective geometrically irreducible curve C_{γ} over k and $c_{\gamma} \in C_{\gamma}(k)$ such that $g(C_{\gamma}) = 0$, $C_{\gamma} - \{c_{\gamma}\}$ smooth over k and $\widehat{\mathcal{O}}_{C_{\gamma},c_{\gamma}} = A_{\gamma}$.

Compactified Jacobian $\overline{\operatorname{Jac}}(C_{\gamma})$ of C_{γ} = moduli space of degree 0 rank 1 torsion free coherent $\mathcal{O}_{C_{\gamma}}$ -Modules.

Up to homeomorphisms the affine Springer fiber S_{γ}^{0} is an étale Galois covering of $\overline{\text{Jac}}(C_{\gamma})$ with Galois group Λ .

First approach

Compactified Jacobians behave well in families: deformation of a curve \Rightarrow deformation of its compactified Jacobian.

By deforming C_{γ} as follows

one gets:

Purity Conjecture \Rightarrow Fundamental Lemma for unitary groups.

Problem with compactified Jacobians

Problem: How to get the Purity Conjecture?

In introducing C_{γ} and its compactified Jacobian, we are doing too much algebraic geometry and not enough group theory.

Solution: To replace compactified Jacobians by Hitchin fibers.

Hitchin fibration for full linear groups

Fix:

- X smooth, projective, geometrically connected curve over k,
- D ample effective divisor on X.

Hitchin bundle = (\mathcal{E}, θ) where:

- \mathcal{E} degree 0 rank n vector bundle on X,
- $\theta: \mathcal{E} \to \mathcal{E}(D)$ twisted endomorphism.
- $\mathcal{M} = \{ \text{Hitchin bundles} \},$
- $\mathbb{A} = \bigoplus_{i=1}^n H^0(X, \mathcal{O}_X(iD)),$
- $f: \mathcal{M} \to \mathbb{A}, \ (\mathcal{E}, \theta) \mapsto (a_1, \dots, a_n),$ where $p_a(t) = t^n + a_1 t^{n-1} + \dots + a_n$ is the characteric polynomial of θ .

Hitchin fibers as compactified Jacobians

- Σ total space of the line bundle $\mathcal{O}_X(D)$,
- $\Sigma \to X$ is a ruled surface,
- $\forall a \in \mathbb{A}$, $Y_a = \{p_a(t) = 0\} \subset \Sigma$ is a ramified covering of degree n of X,
- Y_a is called a spectral curve,
- $\mathbb{A}^{\text{red}} = \{a \in \mathbb{A} \mid Y_a \text{ reduced}\}$ open subset in \mathbb{A} .

THEOREM (Hitchin) $\forall a \in \mathbb{A}^{red}$, the Hitchin fiber $\mathcal{M}_a = f^{-1}(a)$ is the compactified Jacobian of Y_a .

What do we do next?

- Fix a unitary group scheme G = U(n) over X and an endoscopic unitary group scheme $H = U(n_1) \times U(n_2)$ of G.
- Construct a commutative diagramm of Hitchin fibrations

$$\begin{array}{ccc} \mathcal{M}_H & \to & \mathcal{M}_G \\ \downarrow & & \downarrow \\ \mathbb{A}_H & \to & \mathbb{A}_G \end{array}$$

- Use a relative version of the Atiyah-Borel-Segal localization.
- Prove a relative version of the Purity
 Conjecture using Deligne's theorem.

• ...