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Introduction

The Fundamental Lemma is a Set of
combinatorial identities which have been
formulated by Langlands-Shelstad.

It is a key tool in proving many cases
of Langlands functoriality.

Some earlier works:

- SL(2) by Labesse-Langlands,

- SL(n) by Waldspurger, |

- Sp(4) by Hales and Weissauer,

- U(3) by Kottwitz and Rogawsky,

- unramified equal valuation case by
Goresky-Kottwitz-MacPherson.



General statement
A(v,6) 05 (1) = SO (1 gcm)-

Main entries:
- F non archimedean local field
([F : Qpl<+oo or [F : Fp((t))] <+o00),
- G reductive group over F,
- H endoscopic group of G,
- § € H elliptic G-regular semisimple,
- oﬁ’“(lK) k-orbital integral,
- SOH(1,.1) stable orbital integral,
- A(v,98) transfer factor.



Orbital integrals for full linear groups

- (E;)ieg finite family of finite
separable extensions of F, |

- v; € EX such that F[v;] = E;,

- B = ®jer £

-y = (nie1 €T = E* C G = Autp(E),

- Py(t) € F[t] minimal polynomial of ~;.

Assume P;(t) # P;(t) Vi # j, so that T
is the centralizer of v in G.

- 1y characteristic function of

K = Aut@F((’)E) CG O, - CO¢ -
e
= orbital integral ' G (igx,g
S

1 \d
Of (1) = [ 1x (g™ 1),

W (W daYe vl (BY ak)-1 3



Orbital integrals as counting lattices

- Op-lattices L in E & rank n (free)

Opr-submodules L of E,

. _ L O
- [L : 0g] = Igth (1:5) — lgth (105-),
- L ={Op-lattices LC E|vL =L and
[L: Og] =0},
- wpg, uniformizer of E;,
-AN={\ € Z! | ;e \; = 0} acts freely
_)\Z-
on Lby A\ L= (sz- )icrL.

LEMMA We have

O%(1x) = |L/N.



Unitary groups

- F'/F quadratic unramified extension,
- (E;);c; finite family of finite separable
extensions of F,
- ¢; € B, ¢ = (¢p)ier
Assume E; disjoint of F’.
- E,Z = E,F’,
- Gal(E!/E;) = Gal(F'/F) = {1,7},
- ®c(z,y) = Siertrgyp(er()yi)
non degenerate Hermitian form
on the F’-vector space E' = ®;c E;.
= unitary group

G = U(de) C Autm(E").



Orbital integrals for unitary groups

- Bt ={z; € B | 7(z)zi = 1},

- ~; € E! such that E} = F'[v],

- v = (W)ier € T = Ter B} C U(Po),

- P;(t) € F'[t] minimal polynomial of ;.

ASsume:

- Pi(t) # Pj(t) Vi # 7,

- disc(c) = Ziervr(Nrg,  r(c;)) even.
= orbital integral

_ d
OY(1g) = fT\G 1k (g 179)-5%

which is the number Of, of Opr-lattices
L C E’ such that:

- L is self-dual with respect to g,

- ~vL = L. |



Stable conjugacy

Two elements of the unitary groyup
G = U(P.) C Autm(E’) are stably
conjugate if they are conjugate in
AUtF/(E’). |

If |I| > 2 the stable conjugacy class of
~ is not equal to its conjugacy class.

Equivalently:
- for each ¢ € E* we have v € U(D ),
- disc(c’) = disc(c¢) = 0 modulo 2 =
F et U(Dy) = U(d,) = G,
- but ¢, #(v) is not necessarily
conjugate to v in G = U(®,).



k-orbital integrals

The set of conjugacy classes inside the
stable conjugacy class of v in G = U(P,)
is isomorphic to |

¢ € E* | disc(c') even}/Nrp pE'™
E'/E

= {Xe(Z/22)' | x X;=0}=A
B el
- Of;' = O3 only depends on the class
X of ¢ in A.
k : N — {£1} character = k-orbital in-
tegral
O "(1g) = ¥ w(N)O3.
eA
k = 1 = stable orbital integral

SO (1x) = O (1k).



Endoscopic groups

- k1 N = {£1} & partition I = I1UI>5,
- cr, = (¢i)iel, € e, Bi
- replacing I by I, =
vr, = (Vi)iel, € Ga = U(P¢p,),
- 6 = (v,v,) €T CH,
- H = G1 x G, endoscopic group
determined by k.
= stable orbital integral
SOH(1pn) = soﬁ;l (106,)

XSO%@_“KGQ)'



Fundamental Lemma for unitary groups

- ¢ = number of elements of the residue
field of F, |

- T = fUF/(ReS(PZ'(t),Pj(t))) V’Z =3 €1,

- T = )iiel,j€l, Tij-

THEOREM If p > n = [E : F] we

have
A(8,7)OS " (1x) = SOF (1 in)

where A(6,7) = (—q)™".
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Reduction (Hales, Waldspurger)

e Waldspurger: algorithm computing
orbital integrals which only depénds on
the residue field of F..

e Hales and Waldspurger: the Funda-
mental Lemma follows from its Lie al-

gebra version.

Lie algebra version of the Fundamental
Lemma:

S E] ~ v € Li,

(v =1 ~ (%) + 7% =0,

-vL =L ~ vL CL.
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Affine Springer fibers for full linear groups

From now on:
- F = k((’CUF)), k= IFC]!
- Fundamental Lemma for Lie algebra.

£={LCE|~LcC L(and [L: Og] = O}
iS the set of rational points of an alge-
braic variety, the so-called affine Springer
fiber 5@) over k.

Grothendieck fixed point formula

= orbital integral = trace of Froby
on ¢-adic cohomology H‘(Sg).

= Fundamental Lemma follows from

existence of a “Gysin” isomorphism.

12



“GQysin’ isomorphism for full linear groups

-1 =1hUl, = E=Ep & Ep,

- v = (idier = V1, = (Wdier, = affine
Springer fiber Sy, ,

- Closed embedding Sy, X Sy, = Sy,
(L1 CEr, Lo CEp)— L1® Ly CE,

- 7 =dim(Sy) — dim(Sy;, X Syp,)-

Question: Is there a canonical isomor-
phism

H®(Sy) & H*™%"(8y;, X Sy, )(—7)?

Problem: S, is highly singular.

13



Goresky-Kottwitz-MacPherson strategy

Note: t-L=(t®1)L C E;, ®E, = E
= Gm 1 acts on Sy and the fixed point
set IS Sy, X Syp,-

Atiyah-Borel-Segal localization in equiv-
ariant /-adic cohomology
= Qg[x]-linear map

L . H((.}m,k(sry) — H.(S’YI]_ X 8712)[$].

= “@ysin” isomorphism if we can
(1) prove that . is injective,
(2) compute its image,
(3) recover ordinary cohomology

from equivariant one.
14



Purity Conjecture of Goresky-Kottwitz-
MacPherson

Points (1) and (3) follow easily from:

CONJECTURE H™(Sy) is pure of
weight m for all m.

But, any direct approach to point (2)
and to the Purity Conjecture seems to

be very hard.

Our approach: to try to deform the
complicated affine Springer fibers into

simpler ones.
15



Examples of affine Springer fibers

~Assume: p > 2.

(i) BEy=E;=F, 1 = wp, 72 = —wF,
S5 is an infinite chain of projective lines

VAV ANV,

(i) E = F[z]/(2? - @p), v =@}, Sy is
a single projective line

16



Problem with affine Springer fibers

The affine Springer fibers don’t behave

well in families:
- natural to expect that example (i)

degenerates to example (ii),
- but no algebraic family whose general

fiber is a chain of projective lines and
whose special fiber is a single

projective line.

Solution: to replace affine Springer fibers

by compactified Jacobians.

17



Altman-Kleiman compactified Jacobians

Ay = Opl[y] C O, P(t) = Iier Pi(?)
= Ay = k[[wp, t]]/(P(t))

LEMMA 3 projective geometrically ir-
reducible curve C- over k and cy € Cy(k)
such that g(Cy) = 0, Cy —{cy} Smooth
over k and O¢, ., = Ay.

Compactified Jacobian Jac(Cy) of Cy
— moduli space of degree O rank 1
torsion free coherent OOV-I\/Iodules.

Up to homeomorphisms the affine
Springer fiber S is an étale Galois cov-
ering of Jac(C~) with Galois group A.

18



First approach

Compactified Jacobians behave well in
families: deformation of a curve = de-
formation of its compactified Jacobian.

By deforming Cy as follows

Cy 14
€15

one gets:

Purity Conjecture = Fundamental

Lemma for unitary groups.
19



Problem with compactified Jacobians

Problem: How to get the Purity Con-
jecture? |

In introducing C, and its compactified
Jacobian, we are doing too much alge-

braic geometry and not enough group
theory.

Solution: To replace compactified Ja-
cobians by Hitchin fibers.

20



Hitchin fibration for full linear groups

Fix:

- X smooth, projective, geometrically
connected curve over k,

- D ample effective divisor on X.

Hitchin bundle = (&,0) where:
- £ degree 0 rank n vector bundle
on X,
-0: & — E(D) twisted endomorphism.

- M = {Hitchin bundles},

- A =@}, HO(X,0x(iD)),

- f:M—=A (£0)- (a1,...,an),
where pg(t) = t" + a1t 1 + -+ an

is the characteric polynomial of 6.
21




Hitchin fibers as compactified Jacobians

- > total space of the line bundle Ox (D),

- 2 — X is a ruled surface, |

-Va €A, Yo={pa(t) =0} C X is a
ramified covering of degree n of X,

- Y, Is called a spectral curve,

- A" = {4 € A | Y, reduced} open

subset in A.

THEOREM (Hitchin) Va € A9 the
Hitchin fiber Mg = f~1(a) is the com-

pactified Jacobian of Y.

22



What do we do next?

e Fix a unitary group scheme G = U(n)
over X and an endoscopic unitaky group
scheme H = U(nq1) x U(no) of G.

e Construct a commutative diagramm
of Hitchin fibrations

MH—-)MG

! !
AH%AG

e Use a relative version of the Atiyah-
Borel-Segal localization.
e Prove a relative version of the Purity

Conjecture using Delighe’s theorem.

o ...
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