Linear equations in the primes: past, present and future

Goldbach (1750): Is every even integer the sum of two primes? e.g. \(5 + 7 = 12, 17 + 19 = 36\).

Vinogradov (1937, building on work of Hardy and Littlewood): Every sufficiently large odd number is the sum of three primes.

Van der Corput (1939): There are infinitely many triples of primes in arithmetic progression. E.g. \((5, 11, 17), (19, 31, 43)\).

Heath-Brown (1981): There are infinitely many 4-term progressions \(q_1 < q_2 < q_3 < q_4\) such that three of the \(q_i\) are prime and the other is either prime or a product of two primes.

G.- Tao (2004): There are arbitrarily long arithmetic progressions of primes.
Erdős-Turán (1936): Do the primes contain arithmetic progressions of length \(k \) on density grounds alone?

Define \(r_k(N) \) to be the size of the largest \(A \subseteq \{1, \ldots, N\} \) containing no \(k \) elements in arithmetic progression. Is \(r_k(N) < N/\log N \)?

Less optimistically, is \(r_k(N) = o(N) \)?

Roth (1953): Yes when \(k = 3 \).
In fact \(r_3(N) = O(N/\log \log N) \).

Szemerédi (1969): Yes when \(k = 4 \).

Szemerédi’s Theorem (1975): Yes for all \(k \).

Furstenberg (1977): Yes for all \(k \), using ergodic theory.

Gowers (1998): Yes for all \(k \), using harmonic analysis. The first “sensible bound” \(r_k(N) = O(N/(\log \log N)^{c(k)}) \).
A relative Szemerédi Theorem?

<table>
<thead>
<tr>
<th>?</th>
<th>{1, \ldots, N}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primes</td>
<td>(A \subseteq {1, \ldots, N}) has density (\alpha > 0).</td>
</tr>
<tr>
<td>G.-Tao 2004</td>
<td>Szemerédi</td>
</tr>
</tbody>
</table>

The mystery object is a function

\[\nu : \{1, \ldots, N\} \rightarrow [0, \infty). \]
The function \(\nu \). Fix \(k = 4 \). We need:

1. \(\nu \) dominates the primes. If \(p \leq N \) is prime then \(\nu(n) \geq 1 \). For all \(n \leq N \), \(\nu(n) \geq 0 \).

2. The primes have positive density in \(\nu \):

\[
\sum_{n \leq N} \nu(n) \leq \frac{100N}{\log N}.
\]

3. \(\nu \) satisfies the correlation and linear forms conditions. For example if \(h_1, \ldots, h_{32} \leq N \) then we can find a nice asymptotic for

\[
\sum_{n \leq N} \nu(n + h_1) \cdots \nu(n + h_{32}).
\]
The appropriate definition of ν, and the verification of properties 1, 2 and 3 comes to us from work of Goldston and Yıldırım.

Set $R := N^{1/20}$ and define

$$\nu(n) := \frac{1}{(\log R)^2} \left(\sum_{d \mid n, d \leq R} \mu(d) \log(R/d) \right)^2$$

if $R < n \leq N$, and $\nu(n) = 1$ otherwise.
Back to arithmetic progressions

Let $A \subseteq \{1, \ldots, N\}$ have size αN. How many 3-term APs does A contain?

In the “random” case, about $\frac{1}{4} \alpha^3 N^2$. Call this the “expected number” of 3-term APs.

The only way that A can have significantly more/less than the expected number of APs is if $A - \alpha$ has linear bias. That means that

$$\sup_{\theta} \left| \sum_{n \leq N} (A(n) - \alpha) e^{2\pi i n \theta} \right| \geq f(\alpha) N.$$
What about the primes? Convenient to weight the primes. The von Mangoldt function is defined by

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else.} \end{cases}$$

Λ has average value 1.

Either

$$\sum_{x,d \leq N} \Lambda(x)\Lambda(x + d)\Lambda(x + 2d) \approx N^2,$$

in which case we are happy, or $\Lambda - 1$ has linear bias, that is

$$\sup_{\theta} \left| \sum_{n \leq N} (\Lambda(n) - 1)e^{2\pi in\theta} \right| \geq cN.$$

To prove this we already need properties of ν.

7
Do the primes have linear bias? Unfortunately, they do.

Most primes are even, so

\[
\left| \sum_{n \leq N} (\Lambda(n) - 1)e^{\pi in} \right|
\]

is very large.

We can remove this "arithmetic" obstruction by quotienting out the small primes. We call this the W-trick. Set $W = 2 \times 3 \times \ldots \times w$, where $w = w(N) \to \infty$ as $N \to \infty$. Define

\[
\tilde{\Lambda}(n) = \frac{\phi(W)}{W} \Lambda(Wn + 1).
\]

This new function $\tilde{\Lambda} - 1$ has no linear bias (Hardy-Littlewood method) and so

\[
\sum_{x, d \leq N} \tilde{\Lambda}(x)\tilde{\Lambda}(x + d)\tilde{\Lambda}(x + 2d) \approx N^2.
\]

Hence lots of 3-term APs of primes.

Remember that $\tilde{\Lambda}$ is basically a weighted version of the primes, with arithmetic irregularities quotiented out.
If $A \subseteq \{1, \ldots, N\}$ has size αN then the "expected" number of 4-term APs is about $\frac{1}{6} \alpha^4 N^2$.

If A has significantly more/less than the expected number of 4-term APs, does $A - \alpha$ have linear bias?

Consider

$$A := \{ n \leq N : -\alpha/2 \leq \lfloor n^2 \sqrt{2} \rfloor \leq \alpha/2 \}.$$

This set has size about αN, $A - \alpha$ does not have linear bias, yet A has about $C \alpha^3 N^2$ four-term arithmetic progressions, which is many more than the expected number.
Somewhat remarkably, such quadratic examples are essentially the only ones.

Theorem (Gowers, Host-Kra, G. – Tao). Suppose that $A \subseteq \{1, \ldots, N\}$ has size αN, but that the number of 4-term arithmetic progressions in A differs from $\frac{1}{6} \alpha^4 N^2$ by at least ηN^2. Then $A - \alpha$ has quadratic bias, which means that

$$\sup_{q \in Q} \left| \sum_{n \leq N} (A(n) - \alpha) e^{2\pi i q(n)} \right| \geq f(\alpha, \eta) N,$$

where Q is the collection of generalised quadratics.

What is a generalised quadratic? We won’t give the precise definition, but they are not just quadratic polynomials. There are also objects like $q(n) = n\sqrt{2}[n\sqrt{3}]$, where square brackets denote the nearest integer.
Can we show that $\tilde{\Lambda} - 1$ does not have quadratic bias, where $\tilde{\Lambda}$ is the modified von Mangoldt function?

Seemingly yes (G. - Tao, work in progress). This would give an asymptotic for the number of 4-term progressions $p_1 < p_2 < p_3 < p_4 \leq N$. However this is difficult and generalising to cubic bias, and so on, will be even harder.

There is a way around this, which we can phrase in the form of an algorithm.
Set $F_0 := 1$ and $f_0 := \tilde{\Lambda} - F_0$.

If f_0 has no quadratic bias then STOP. Otherwise, we have $\langle f, e^{2\pi i q_0} \rangle \geq c(\alpha)N$ for some generalised quadratic q_0. Use q_0 to define a new function F_1. Set $f_1 := \tilde{\Lambda} - F_1$.

Repeat, getting functions F_2, \ldots, F_k and $f_i = \tilde{\Lambda} - F_i$. For all i, $0 \leq F_i(n) \leq 100$ for almost all n, because of the dominating effect of ν. The functions f_i have average value 0.

Key fact: The algorithm STOPS. This is because $\|F_i\|_2$ increases by a fixed amount at each stage, yet $0 \leq F_i(n) \leq 100$ for all almost all n.

When the algorithm STOPS, we have

$$\tilde{\Lambda} = F_k + f_k,$$

where $0 \leq F_k(n) \leq 100$, $\sum_{n \leq N} F_k(n) \approx N$, and f_k has no quadratic bias.
Setting $\tilde{\Lambda} = F_k + f_k$, we can write
\[\sum_{x,d} \tilde{\Lambda}(x)\tilde{\Lambda}(x + d)\tilde{\Lambda}(x + 2d)\tilde{\Lambda}(x + 3d) \]
as a sum of sixteen terms.

Fifteen of these involve f_k, and so are tiny because f_k has no quadratic bias.

The other term is
\[\sum_{x,d} F_k(x)F_k(x + d)F_k(x + 2d)F_k(x + 3d). \] (1)

Think of F_k as being a bit like a subset of $\{1, \ldots, N\}$ with density at least $1/100$. Then Szemerédi’s theorem tells us that (1) is not zero (and in fact, after some combinatorial trickery, quite large).

So we used Szemerédi’s theorem as a “black box”.

Any subset consisting of a positive proportion of the primes contains a 4-term AP.
Generalising to longer progressions: for 5-term progressions we need cubic bias, involving objects like

$$c(n) = n\sqrt{5}[n\sqrt{3}[n\sqrt{2}]] + n\sqrt{7}[n^2\sqrt{11}].$$

Things become \textit{much} easier if we use what I call \textit{surrogate} linear, quadratic, cubic, ... functions.

A surrogate linear function is

$$\sum_{a,b} f(x + a)f(x + b)f(x + a + b).$$

A surrogate quadratic function is

$$\sum_{a,b,c} f(x + a)f(x + b)f(x + c) \times$$

$$\times f(x + a + b)f(x + a + c)f(x + b + c)f(x + a + b)$$

Think of as generalisations of $e^{2\pi i\theta n}$ and $e^{2\pi i q(n)}$ respectively.
Future directions:

- We seem to have shown that $\tilde{\Lambda}$ has no quadratic bias. This gives an asymptotic for the number of solutions of two linear equations in four prime unknowns, all of which are at most N.

- Can we understand this properly, then generalise this to cubic, quartic, and higher biases? This would be a kind of higher-dimensional Hardy-Littlewood method.

- Arithmetic progressions in the set of sums-of-two-squares correspond to points on a variety which as an intersection of two quadratic forms in 8 variables x_1, \ldots, x_8. Can we count points on more general varieties of this type?