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Preface

This volume is based on lectures given at the fourth Clay Mathematics Insti-
tute Summer School entitled “Harmonic Analysis, the Trace Formula, and Shimura
Varieties.” It was held at the Fields Institute in Toronto, Canada, from June 2 to
June 27, 2003.

The main goal of the School was to introduce graduate students and young
mathematicians to three broad and interrelated areas in the theory of automorphic
forms. Much of the volume is comprised of the articles of Arthur, Kottwitz, and
Milne. Although these articles are based on lectures given at the school, the authors
have chosen to go well beyond what was discussed there, in order to provide both a
sense of the underlying structure of the subject and a working knowledge of some
of its techniques. They were written to be self-contained in some places, and to
be used in conjunction with given references in others. We hope the volume will
convey the depth and beauty of this challenging field, in which there yet remains
so much to be discovered—perhaps some of it by you, the reader!

The theory of automorphic forms is formulated in terms of reductive algebraic
groups. This is sometimes a serious obstacle for mathematicians whose background
does not include Lie groups and Lie algebras. The monograph is by no means in-
tended to exclude such mathematicians, even though the theory of reductive groups
was an informal prerequisite for the Summer School. Some modest familiarity with
the language of algebraic groups is often sufficient, at least to get started. For
this reason, we have generally resisted the temptation to work with specific matrix
groups. The short article of Murnaghan contains a summary of some of the basic
properties of reductive algebraic groups that are used elsewhere in the monograph.

Much of the modern theory of automorphic forms is governed by two funda-
mental problems that are at the heart of the Langlands program. One is Lang-
lands’ principle of functoriality. The other is the general analogue of the Shimura-
Taniyama-Weil conjecture on modular elliptic curves. (See [A] and [L, §2].) These
problems are among the deepest questions in mathematics. It is premature to try
to guess what various techniques will play a role in their ultimate resolution. How-
ever, the trace formula and the theory of Shimura varieties are both likely to be
an essential part of the story. They have already been used to establish significant
special cases.

The trace formula has perhaps been more closely identified with the first prob-
lem. Special cases of functoriality arise naturally from the conjectural theory of
endoscopy, in which a comparison of trace formulas would be used to characterize
the internal structure of the automorphic representations of a given group. (See
[Sh] for a discussion of the first case to be investigated.) Likewise, Shimura varieties
are usually associated with the second problem. As higher dimensional analogues
of modular curves, they are attached by definition to certain reductive groups. In
many cases, it has been possible to establish reciprocity laws between �-adic Ga-
lois representations on their cohomology groups and automorphic representations
of the corresponding reductive groups. These laws can be formulated as an ex-
plicit formula for the zeta function of a Shimura variety in terms of automorphic
L-functions. (See [K] for a discussion of the rough form such a formula is expected
to take. The word “rough” should be taken seriously, given the current limitations
of our understanding.)
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viii PREFACE

The work of Wiles that led to a proof of Fermat’s Last Theorem suggests that
the two problems are inextricably linked. This is already apparent in the reciprocity
laws that have been established for Shimura varieties. Indeed, the conjectural for-
mula for the zeta function of a general Shimura variety requires the theory of
endoscopy even to state. Moreover, the proof of these reciprocity laws requires
a comparison of the (automorphic) trace formula with an (�-adic) Lefschetz trace
formula. Some of the most striking parts of the argument are in the comparison
of the various terms in the two formulas. The most sophisticated Shimura vari-
eties for which there are complete results are the so-called Picard modular surfaces.
(See [LR], especially the summary on pp. 255–302.) Picard modular surfaces are
attached to unitary groups in three variables. It is no coincidence that the the-
ory of endoscopy has also been established for these groups, thereby yielding a
classification of their automorphic representations [R].

There is some discussion of these problems in the articles of Arthur and Milne.
However, the articles of both Arthur and Milne really are intended as introductions,
despite their length. The theory of endoscopy, and the automorphic description of
zeta functions of Shimura varieties, are at the forefront of present day research.
They are for the most part beyond the scope of this monograph.

The local terms in the trace formula are essentially analytic objects. They
include the invariant orbital integrals and irreducible characters that are the basis
for Harish-Chandra’s theory of local harmonic analysis. They also include weighted
orbital integrals and weighted characters, objects that arose for the first time with
the trace formula. The article of Kottwitz is devoted to the general study of these
terms at p-adic places. It is a largely self-contained course, which covers many
of Harish-Chandra’s basic results in invariant harmonic analysis, as well as their
weighted, noninvariant analogues.

The article of DeBacker focuses on the phenomenon of homogeneity in invari-
ant harmonic analysis at p-adic places. It concerns quantitative forms of some of
the basic theorems of p-adic harmonic analysis, such as Howe’s finiteness theorem
and Harish-Chandra’s local character expansion. The article also explains how ho-
mogeneity enters into Waldspurger’s analysis of stability for linear combinations of
nilpotent orbital integrals.

There are subtle questions concerning the terms in the trace formula that go
beyond those treated by Kottwitz and DeBacker. The most basic of these is known
as the fundamental lemma, even though it is still largely conjectural.1 The article by
Hales contains a precise statement of the conjecture and some remarks on progress
toward a general proof. The fundamental lemma occupies a unique place in the
theory. It is a critical ingredient in the comparison of trace formulas that is part
of the theory of endoscopy. It has an equally indispensable role in the comparison
of (automorphic and �-adic) trace formulas needed to establish reciprocity laws for
Shimura varieties.

Some Shimura varieties are projective, which is to say that they are compact as
complex varieties. They correspond to reductive groups over Q that are anisotropic.
The trace formula in this case simplifies considerably. It reduces to the Selberg trace
formula for compact quotient. On the other hand, the arithmetic geometry of such
varieties is still very rich. In particular, the comparison of individual terms in the

1Moreover, the term lemma is ultimately a gross understatement.
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two kinds of trace formulas is of major interest. There is a great deal left to be
done, but it is in this case that there has been the most progress.

If the Shimura variety is not projective, the comparison is more sophisticated.
It has to be based on the relationship between L2-cohomology and intersection coho-
mology, conjectured by Zucker, and established by Saper and Stern, and Looijenga.
The article of Goresky describes several compactifications of open Shimura vari-
eties and their relations with associated cohomology groups. Goresky’s article also
serves as an introduction to work of Goresky and MacPherson, in which weighted
cohomology complexes on the reductive Borel-Serre compactification are used to
obtain a Lefschetz formula for the intersection cohomology of the Baily-Borel com-
pactification. According to Zucker’s conjecture, this last formula is equivalent to
the relevant form of the automorphic trace formula. There remains the important
open problem of establishing a corresponding �-adic Lefschetz formula that can be
compared with either one of these two formulas.

The reciprocity laws proved for Picard modular surfaces in [LR] apply to places
of good reduction. The same restriction has been implicit in our discussion of other
Shimura varieties. In the final analysis, one would like to establish reciprocity
laws between �-adic Galois representations and automorphic representations that
apply to all places. The theory of Shimura varieties at places of bad reduction is
considerably less developed, although there has certainly been progress. The article
of Haines is a survey of recent work in this direction, concentrating on the case of
level structures of parahoric type. It also touches upon the problem of comparing
the automorphic trace formula with the Lefschetz formula, now in the context of
bad reduction.

The article of Sarnak concerns the classical Ramanujan conjecture for modular
forms and its higher dimensional analogues. Langlands has shown that the gen-
eralized Ramanujan conjecture is a consequence of the principle of functoriality.
Conversely, it is possible that the generalized Ramanujan conjecture could play a
critical role in the study of those cases of functoriality that are not part of the the-
ory of endoscopy. Sarnak describes the present state of the conjecture and discusses
various techniques that have been successfully applied to special cases.

We have tried to present the contents of the monograph from a unified perspec-
tive. Our description has been centered around two fundamental problems that are
the essential expression of the Langlands program. The two problems ought to
be treated as signposts, which give direction to current work, but which point to
destinations that will not be reached in the foreseeable future. The reader is free to
draw whatever inspiration from them his or her temperament permits. In any case,
many of the questions discussed in the various articles here are of great interest
in their own right. In point of fact, there is probably too much in the monograph
for anyone to learn in a limited period of time. Perhaps the best strategy for a
beginner would be to start with one or two articles of special interest, and try to
master them.

As we have mentioned, participants were encouraged to bring a prior under-
standing of the basic properties of algebraic groups. The theory of reductive groups
is rooted in the structure of complex semisimple Lie algebras, for which [Se] and [H]
are good references. As for algebraic groups themselves, a familiarity with many of
the topics in [B] or [Sp] is certainly desirable, though perhaps not essential.
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Participants were also assumed to have some knowledge of number theory. The
main theorem of class field theory is reviewed without proof in the article of Milne.
A complete treatment can be found in [CF]. Tate’s article on global class field
theory in this reference contains a particularly good introduction to the theory.
The thesis of Tate, reprinted as a separate article in [CF], is also recommended
for its introduction to adeles and its construction of the basic abelian automorphic
L-functions.

A reader might also want to consult other general articles in automorphic forms.
A good introductory reference to the general theory of automorphic forms is the
proceedings of the Edinburgh instructional conference [BK].

This Clay Mathematics Institute Summer School could not have taken place
without the efforts of many people. We deeply appreciate the role of the Clay
Mathematics Institute in making this summer school possible, and thank Vida
Salahi in particular for the care and attention she exercised in bringing the volume
to its final form. We are most grateful to the staff of the Fields Institute, who did
such a superb job of making the School run smoothly. We are equally indebted
to all the lecturers, not only for agreeing to take part in the School, but also for
providing the texts collected in this volume. Last, but surely not least, we would
like to thank the participants, whose enthusiastic response made it all worthwhile.

James Arthur, David Ellwood, Robert Kottwitz.
August, 2005.
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Foreword

These notes are an attempt to provide an entry into a subject that has not
been very accessible. The problems of exposition are twofold. It is important to
present motivation and background for the kind of problems that the trace formula
is designed to solve. However, it is also important to provide the means for acquiring
some of the basic techniques of the subject. I have tried to steer a middle course
between these two sometimes divergent objectives. The reader should refer to earlier
articles [Lab2], [Lan14], and the monographs [Sho], [Ge], for different treatments
of some of the topics in these notes.

I had originally intended to write fifteen sections, corresponding roughly to
fifteen lectures on the trace formula given at the Summer School. These sections
comprise what has become Part I of the notes. They include much introductory
material, and culminate in what we have called the coarse (or unrefined) trace for-
mula. The coarse trace formula applies to a general connected, reductive algebraic
group. However, its terms are too crude to be of much use as they stand.

Part II contains fifteen more sections. It has two purposes. One is to transform
the trace formula of Part I into a refined formula, capable of yielding interesting
information about automorphic representations. The other is to discuss some of
the applications of the refined formula. The sections of Part II are considerably
longer and more advanced. I hope that a familiarity with the concepts of Part I
will allow a reader to deal with the more difficult topics in Part II. In fact, the later
sections still include some introductory material. For example, §16, §22, and §27
contain heuristic discussions of three general problems, each of which requires a
further refinement of the trace formula. Section 26 contains a general introduction
to Langlands’ principle of functoriality, to which many of the applications of the
trace formula are directed.

We begin with a discussion of some constructions that are part of the founda-
tions of the subject. In §1 we review the Selberg trace formula for compact quotient.
In §2 we introduce the ring A = AF of adeles. We also try to illustrate why adelic
algebraic groups G(A), and their quotients G(F )\G(A), are more concrete objects
than they might appear at first sight. Section 3 is devoted to examples related to
§1 and §2. It includes a brief description of the Jacquet-Langlands correspondence
between quaternion algebras and GL(2). This correspondence is a striking example
of the kind of application of which the trace formula is capable. It also illustrates
the need for a trace formula for noncompact quotient.

In §4, we begin the study of noncompact quotient. We work with a general
algebraic group G, since this was a prerequisite for the Summer School. However,
we have tried to proceed gently, giving illustrations of a number of basic notions.
For example, §5 contains a discussion of roots and weights, and the related objects
needed for the study of noncompact quotient. To lend Part I an added appearance
of simplicity, we work over the ground field Q, instead of a general number field F .

The rest of Part I is devoted to the general theme of truncation. The problem is
to modify divergent integrals so that they converge. At the risk of oversimplifying

3



4 JAMES ARTHUR

matters, we have tried to center the techniques of Part I around one basic result,
Theorem 6.1. Corollary 10.1 and Theorem 11.1, for example, are direct corollaries
of Theorem 6.1, as well as essential steps in the overall construction. Other results
in Part I also depend in an essential way on either the statement of Theorem 6.1
or a key aspect of its proof. Theorem 6.1 itself asserts that a truncation of the
function

K(x, x) =
∑

γ∈G(Q)

f(x−1γx), f ∈ C∞
c

(
G(A)

)
,

is integrable. It is the integral of this function over G(Q)\G(A) that yields a trace
formula in the case of compact quotient. The integral of its truncation in the general
case is what leads eventually to the coarse trace formula at the end of Part I.

After stating Theorem 6.1 in §6, we summarize the steps required to convert
the truncated integral into some semblance of a trace formula. We sketch the proof
of Theorem 6.1 in §8. The arguments here, as well as in the rest of Part I, are
both geometric and combinatorial. We present them at varying levels of generality.
However, with the notable exception of the review of Eisenstein series in §7, we have
tried in all cases to give some feeling for what is the essential idea. For example,
we often illustrate geometric points with simple diagrams, usually for the special
case G = SL(3). The geometry for SL(3) is simple enough to visualize, but often
complicated enough to capture the essential point in a general argument. I am
indebted to Bill Casselman, and his flair for computer graphics, for the diagrams.
The combinatorial arguments are used in conjunction with the geometric arguments
to eliminate divergent terms from truncated functions. They rely ultimately on that
simplest of cancellation laws, the binomial identity

∑
F⊂S

(−1)|F | =

{
0, if S �= ∅,
1, if S = ∅,

which holds for any finite set S (Identity 6.2).
The parallel sections §11 and §15 from the later stages of Part I anticipate the

general discussion of §16–21 in Part II. They provide refined formulas for “generic”
terms in the coarse trace formula. These formulas are explicit expressions, whose
local dependence on the given test function f is relatively transparent. The first
problem of refinement is to establish similar formulas for all of the terms. Because
the remaining terms are indexed by conjugacy classes and representations that are
singular, this problem is more difficult than any encountered in Part I. The solution
requires new analytic techniques, both local and global. It also requires extensions
of the combinatorial techniques of Part I, which are formulated in §17 as properties
of (G,M)-families. We refer the reader to §16–21 for descriptions of the various
results, as well as fairly substantial portions of their proofs.

The solution of the first problem yields a refined trace formula. We summarize
this new formula in §22, in order to examine why it is still not satisfactory. The
problem here is that its terms are not invariant under conjugation of f by elements
in G(A). They are in consequence not determined by the values taken by f at
irreducible characters. We describe the solution of this second problem in §23. It
yields an invariant trace formula, which we derive by modifying the terms in the
refined, noninvariant trace formula so that they become invariant in f .
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In §24–26 we pause to give three applications of the invariant trace formula.
They are, respectively, a finite closed formula for the traces of Hecke operators on
certain spaces, a term by term comparison of invariant trace formulas for general
linear groups and central simple algebras, and cyclic base change of prime order for
GL(n). It is our discussion of base change that provides the opportunity to review
Langlands’ principle of functoriality.

The comparisons of invariant trace formulas in §25 and §26 are directed at
special cases of functoriality. To study more general cases of functoriality, one
requires a third refinement of the trace formula.

The remaining problem is that the terms of the invariant trace formula are not
stable as linear forms in f . Stability is a subtler notion than invariance, and is
part of Langlands’ conjectural theory of endoscopy. We review it in §27. In §28
and §29 we describe the last of our three refinements. This gives rise to a stable
trace formula, each of whose terms is stable in f . Taken together, the results of
§29 can be regarded as a stabilization process, by which the invariant trace formula
is decomposed into a stable trace formula, and an error term composed of stable
trace formulas on smaller groups. The results are conditional upon the fundamental
lemma. The proofs, conditional as they may be, are still too difficult to permit more
than passing comment in §29.

The general theory of endoscopy includes a significant number of cases of func-
toriality. However, its avowed purpose is somewhat different. The principal aim of
the theory is to analyze the internal structure of representations of a given group.
Our last application is a broad illustration of what can be expected. In §30 we
describe a classification of representations of quasisplit classical groups, both local
and global, into packets. These results depend on the stable trace formula, and
the fundamental lemma in particular. They also presuppose an extension of the
stabilization of §29 to twisted groups.

As a means for investigating the general principle of functoriality, the theory
of endoscopy has very definite limitations. We have devoted a word after §30 to
some recent ideas of Langlands. The ideas are speculative, but they seem also to
represent the best hope for attacking the general problem. They entail using the
trace formula in ways that are completely new.

These notes are really somewhat of an experiment. The style varies from section
to section, ranging between the technical and the discursive. The more difficult
topics typically come in later sections. However, the progression is not always
linear, or even monotonic. For example, the material in §13–§15, §19–§21, §23, and
§25 is no doubt harder than much of the broader discussion in §16, §22, §26, and
§27. The last few sections of Part II tend to be more discursive, but they are also
highly compressed. This is the price we have had to pay for trying to get close to
the frontiers. The reader should feel free to bypass the more demanding passages,
at least initially, in order to develop an overall sense of the subject.

It would not have been possible to go very far by insisting on complete proofs.
On the other hand, a survey of the results might have left a reader no closer
to acquiring any of the basic techniques. The compromise has been to include
something representative of as many arguments as possible. It might be a sketch of
the general proof, a suggestive proof of some special case, or a geometric illustration
by a diagram. For obvious reasons, the usual heading “PROOF” does not appear
in the notes. However, each stated result is eventually followed by a small box
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�, when the discussion that passes for a proof has come to an end. This ought to
make the structure of each section more transparent. My hope is that a determined
reader will be able to learn the subject by reinforcing the partial arguments here,
when necessary, with the complete proofs in the given references.



Part I. The Unrefined Trace Formula

1. The Selberg trace formula for compact quotient

Suppose that H is a locally compact, unimodular topological group, and that Γ
is a discrete subgroup of H. The space Γ\H of right cosets has a right H-invariant
Borel measure. Let R be the unitary representation of H by right translation on
the corresponding Hilbert space L2(Γ\H). Thus,

(
R(y)φ

)
(x) = φ(xy), φ ∈ L2(Γ\H), x, y ∈ H.

It is a fundamental problem to decompose R explicitly into irreducible unitary
representations. This should be regarded as a theoretical guidepost rather than a
concrete goal, since one does not expect an explicit solution in general. In fact,
even to state the problem precisely requires the theory of direct integrals.

The problem has an obvious meaning when the decomposition of R is discrete.
Suppose for example that H is the additive group R, and that Γ is the subgroup
of integers. The irreducible unitary representations of R are the one dimensional
characters x→ eλx, where λ ranges over the imaginary axis iR. The representation
R decomposes as direct sum over such characters, as λ ranges over the subset 2πiZ
of iR. More precisely, let R̂ be the unitary representation of R on L2(Z) defined by

(
R̂(y)c

)
(n) = e2πinyc(n), c ∈ L2(Z).

The correspondence that maps φ ∈ L2(Z\R) to its set of Fourier coefficients

φ̂(n) =
∫

Z\R

φ(x)e−2πinxdx, n ∈ Z,

is then a unitary isomorphism from L2(Z\R) onto L2(Z), which intertwines the
representations R and R̂. This is of course the Plancherel theorem for Fourier
series.

The other basic example to keep in mind occurs where H = R and Γ = {1}.
In this case the decomposition of R is continuous, and is given by the Plancherel
theorem for Fourier transforms. The general intuition that can inform us is as
follows. For arbitrary H and Γ, there will be some parts of R that decompose
discretely, and therefore behave qualitatively like the theory of Fourier series, and
others that decompose continuously, and behave qualitatively like the theory of
Fourier transforms.

In the general case, we can study R by integrating it against a test function
f ∈ Cc(H). That is, we form the operator

R(f) =
∫

H

f(y)R(y)dy

7
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on L2(Γ\H). We obtain

(
R(f)φ

)
(x) =

∫
H

(
f(y)R(y)φ

)
(x)dy

=
∫

H

f(y)φ(xy)dy

=
∫

H

f(x−1y)φ(y)dy

=
∫

Γ\H

(∑
γ∈Γ

f(x−1γy)
)
φ(y)dy,

for any φ ∈ L2(Γ\H) and x ∈ H. It follows that R(f) is an integral operator with
kernel

(1.1) K(x, y) =
∑
γ∈Γ

f(x−1γy), x, y ∈ Γ\H.

The sum over γ is finite for any x and y, since it may be taken over the intersection
of the discrete group Γ with the compact subset

x supp(f)y−1

of H.
For the rest of the section, we consider the special case that Γ\H is compact.

The operator R(f) then acquires two properties that allow us to investigate it
further. The first is that R decomposes discretely into irreducible representations
π, with finite multiplicities m(π,R). This is not hard to deduce from the spectral
theorem for compact operators. Since the kernel K(x, y) is a continuous function on
the compact space (Γ\H)×(Γ\H), and is hence square integrable, the corresponding
operator R(f) is of Hilbert-Schmidt class. One applies the spectral theorem to the
compact self adjoint operators attached to functions of the form

f(x) = (g ∗ g∗)(x) =
∫

H

g(y)g(x−1y)dy, g ∈ Cc(H).

The second property is that for many functions, the operator R(f) is actually of
trace class, with

(1.2) trR(f) =
∫

Γ\H

K(x, x)dx.

If H is a Lie group, for example, one can require that f be smooth as well as
compactly supported. Then R(f) becomes an integral operator with smooth kernel
on the compact manifold Γ\H. It is well known that (1.2) holds for such operators.

Suppose that f is such that (1.2) holds. Let {Γ} be a set of representatives of
conjugacy classes in Γ. For any γ ∈ Γ and any subset Ω of H, we write Ωγ for the
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centralizer of γ in Ω. We can then write

tr
(
R(f)

)
=

∫
Γ\H

K(x, x)dx

=
∫

Γ\H

∑
γ∈Γ

f(x−1γx)dx

=
∫

Γ\H

∑
γ∈{Γ}

∑
δ∈Γγ\Γ

f(x−1δ−1γδx)dx

=
∑

γ∈{Γ}

∫
Γγ\H

f(x−1γx)dx

=
∑

γ∈{Γ}

∫
Hγ\H

∫
Γγ\Hγ

f(x−1u−1γux)du dx

=
∑

γ∈{Γ}
vol(Γγ\Hγ)

∫
Hγ\H

f(x−1γx)dx.

These manipulations follow from Fubini’s theorem, and the fact that for any se-
quence H1 ⊂ H2 ⊂ H of unimodular groups, a right invariant measure on H1\H
can be written as the product of right invariant measures on H2\H and H1\H2

respectively. We have obtained what may be regarded as a geometric expansion
of tr

(
R(f)

)
in terms of conjugacy classes γ in Γ. By restricting R(f) to the irre-

ducible subspaces of L2(Γ\H), we obtain a spectral expansion of R(f) in terms of
irreducible unitary representations π of H.

The two expansions tr
(
R(f)

)
provide an identity of linear forms

(1.3)
∑

γ

aH
Γ (γ)fH(γ) =

∑
π

aH
Γ (π)fH(π),

where γ is summed over (a set of representatives of) conjugacy classes in Γ, and
π is summed over (equivalence classes of) irreducible unitary representatives of H.
The linear forms on the geometric side are invariant orbital integrals

(1.4) fH(γ) =
∫

Hγ\H

f(x−1γx)dx,

with coefficients
aH
Γ (γ) = vol(Γγ\Hγ),

while the linear forms on the spectral side are irreducible characters

(1.5) fH(π) = tr
(
π(f)

)
= tr

(∫
H

f(y)π(y)dy
)
,

with coefficients
aH
Γ (π) = m(π,R).

This is the Selberg trace formula for compact quotient.
We note that if H = R and Γ = Z, the trace formula (1.3) reduces to the

Poisson summation formula. For another example, we could take H to be a finite
group and f(x) to be the character trπ(x) of an irreducible representation π of H.
In this case, (1.3) reduces to a special case of the Frobenius reciprocity theorem,
which applies to the trivial one dimensional representation of the subgroup Γ of H.
(A minor extension of (1.3) specializes to the general form of Frobenius reciprocity.)
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Some of Selberg’s most striking applications of (1.3) were to the group H =
SL(2,R) of real, (2×2)-matrices of determinant one. Suppose that X is a compact
Riemann surface of genus greater than 1. The universal covering surface of X
is then the upper half plane, which we identify as usual with the space of cosets
SL(2,R)/SO(2,R). (Recall that the compact orthogonal group K = SO(2,R) is
the stabilizer of

√
−1 under the transitive action of SL(2,R) on the upper half

plane by linear fractional transformations.) The Riemann surface becomes a space
of double cosets

X = Γ\H/K,

where Γ is the fundamental group of X, embedding in SL(2,R) as a discrete sub-
group with compact quotient. By choosing left and right K-invariant functions
f ∈ C∞

c (H), Selberg was able to apply (1.3) to both the geometry and analysis of
X.

For example, closed geodesics on X are easily seen to be bijective with conju-
gacy classes in Γ. Given a large positive integer N , Selberg chose f so that the left
hand side of (1.3) approximated the number g(N) of closed geodesics of length less
than N . An analysis of the corresponding right hand side gave him an asymptotic
formula for g(N), with a sharp error term. Another example concerns the Laplace-
Beltrami operator ∆ attached to X. In this case, Selberg chose f so that the right
hand side of (1.3) approximated the number h(N) of eigenvalues of ∆ less than N .
An analysis of the corresponding left hand side then provided a sharp asymptotic
estimate for h(N).

The best known discrete subgroup of H = SL(2,R) is the group Γ = SL(2,Z)
of unimodular integral matrices. In this case, the quotient Γ\H is not compact.
The example of Γ = SL(2,Z) is of special significance because it comes with the
supplementary operators introduced by Hecke. Hecke operators include a family of
commuting operators {Tp} on L2(Γ\H), parametrized by prime numbers p, which
commute also with the action of the group H = SL(2,R). The families {cp}
of simultaneous eigenvalues of Hecke operators on L2(Γ\H) are known to be of
fundamental arithmetic significance. Selberg was able to extend his trace formula
(1.3) to this example, and indeed to many other quotients of rank 1. He also
included traces of Hecke operators in his formulation. In particular, he obtained a
finite closed formula for the trace of Tp on any space of classical modular forms.

Selberg worked directly with Riemann surfaces and more general locally sym-
metric spaces, so the role of group theory in his papers is less explicit. We can
refer the reader to the basic articles [Sel1] and [Sel2]. However, many of Selberg’s
results remain unpublished. The later articles [DL] and [JL, §16] used the language
of group theory to formulate and extend Selberg’s results for the upper half plane.

In the next section, we shall see how to incorporate the theory of Hecke oper-
ators into the general framework of (1.1). The connection is through adele groups,
where Hecke operators arise in a most natural way. Our ultimate goal is to describe
a general trace formula that applies to any adele group. The modern role of such
a trace formula has changed somewhat from the original focus of Selberg. Rather
than studying geometric and spectral data attached to a given group in isolation,
one tries to compare such data for different groups. In particular, one would like
to establish reciprocity laws among the fundamental arithmetic data associated to
Hecke operators on different groups.
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2. Algebraic groups and adeles

Suppose that G is a connected reductive algebraic group over a number field
F . For example, we could take G to be the multiplicative group GL(n) of invertible
(n × n)-matrices, and F to be the rational field Q. Our interest is in the general
setting of the last section, with Γ equal to G(F ). It is easy to imagine that this
group could have arithmetic significance. However, it might not be at all clear
how to embed Γ discretely into a locally compact group H. To do so, we have to
introduce the adele ring of F .

Suppose for simplicity that F equals the rational field Q. We have the usual
absolute value v∞(·) = | · |∞ on Q, and its corresponding completion Qv∞ = Q∞ =
R. For each prime number p, there is also a p-adic absolute value vp(·) = | · |p on
Q, defined by

|t|p = p−r, t = prab−1,

for integers r, a and b with (a, p) = (b, p) = 1. One constructs its completion
Qvp

= Qp by a process identical to that of R. As a matter of fact, | · |p satisfies an
enhanced form of the triangle inequality

|t1 + t2|p ≤ max
{
|t1|p, |t2|p

}
, t1, t2 ∈ Q.

This has the effect of giving the compact “unit ball”

Zp =
{
tp ∈ Qp : |tp|p ≤ 1

}
in Qp the structure of a subring of Qp. The completions Qv are all locally compact
fields. However, there are infinitely many of them, so their direct product is not
locally compact. One forms instead the restricted direct product

A =
rest∏
v

Qv = R×
rest∏
p

Qp = R× Afin

=
{
t = (tv) : tp = tvp

∈ Zp for almost all p
}
.

Endowed with the natural direct limit topology, A = AQ becomes a locally compact
ring, called the adele ring of Q. The diagonal image of Q in A is easily seen to be
discrete. It follows that H = G(A) is a locally compact group, in which Γ = G(Q)
embeds as a discrete subgroup. (See [Tam2].)

A similar construction applies to a general number field F , and gives rise to a
locally compact ring AF . The diagonal embedding

Γ = G(F ) ⊂ G(AF ) = H

exhibits G(F ) as a discrete subgroup of the locally compact group G(AF ). However,
we may as well continue to assume that F = Q. This represents no loss of generality,
since one can pass from F to Q by restriction of scalars. To be precise, if G1 is
the algebraic group over Q obtained by restriction of scalars from F to Q, then
Γ = G(F ) = G1(Q), and H = G(AF ) = G1(A).

We can define an automorphic representation π of G(A) informally to be an
irreducible representation of G(A) that “occurs in” the decomposition of R. This
definition is not precise for the reason mentioned in §1, namely that there could be
a part of R that decomposes continuously. The formal definition [Lan6] is in fact
quite broad. It includes not only irreducible unitary representations of G(A) in the
continuous spectrum, but also analytic continuations of such representations.
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The introduction of adele groups appears to have imposed a new and perhaps
unwelcome level of abstraction onto the subject. The appearance is illusory. Sup-
pose for example that G is a simple group over Q. There are two possibilities:
either G(R) is noncompact (as in the case G = SL(2)), or it is not. If G(R) is
noncompact, the adelic theory for G may be reduced to the study of of arithmetic
quotients of G(R). As in the case G = SL(2) discussed at the end of §1, this is
closely related to the theory of Laplace-Beltrami operators on locally symmetric
Riemannian spaces attached to G(R). If G(R) is compact, the adelic theory re-
duces to the study of arithmetic quotients of a p-adic group G(Qp). This in turn is
closely related to the spectral theory of combinatorial Laplace operators on locally
symmetric hypergraphs attached to the Bruhat-Tits building of G(Qp).

These remarks are consequences of the theorem of strong approximation. Sup-
pose that S is a finite set of valuations of Q that contains the archimedean valuation
v∞. For any G, the product

G(QS) =
∏
v∈S

G(Qv)

is a locally compact group. Let KS be an open compact subgroup of G(AS), where

AS =
{
t ∈ A : tv = 0, v ∈ S

}
is the ring theoretic complement of QS in A. Then G(FS)KS is an open subgroup
of G(A).

Theorem 2.1. (a) (Strong approximation) Suppose that G is simply connected,
in the sense that the topological space G(C) is simply connected, and that G′(QS)
is noncompact for every simple factor G′ of G over Q. Then

G(A) = G(Q) ·G(QS)KS .

(b) Assume only that G′(QS) is noncompact for every simple quotient G′ of G
over Q. Then the set of double cosets

G(Q)\G(A)/G(QS)KS

is finite.

For a proof of (a) in the special case G = SL(2) and S = {v∞}, see [Shim,
Lemma 6.15]. The reader might then refer to [Kne] for a sketch of the general
argument, and to [P] for a comprehensive treatment. Part (b) is essentially a
corollary of (a). �

According to (b), we can write G(A) as a disjoint union

G(A) =
n∐

i=1

G(Q) · xi ·G(QS)KS ,

for elements x1 = 1, x2, . . . , xn in G(AS). We can therefore write

G(Q)\G(A)/KS =
n∐

i=1

(
G(Q)\G(Q) · xi ·G(QS)KS/KS

)
∼=

n∐
i=1

(
Γi

S\G(QS)
)
,
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for discrete subgroups

Γi
S = G(QS) ∩

(
G(Q) · xiKS(xi)−1

)
of G(QS). We obtain a G(QS)-isomorphism of Hilbert spaces

(2.1) L2
(
G(Q)\G(A)/KS

) ∼= n⊕
i=1

L2
(
Γi

S\G(QS)
)
.

The action of G(QS) on the two spaces on each side of (2.1) is of course by right
translation. It corresponds to the action by right convolution on either space by
functions in the algebra Cc

(
G(QS)

)
. There is a supplementary convolution algebra,

the Hecke algebra H
(
G(AS),KS

)
of compactly supported functions on G(AS) that

are left and right invariant under translation by KS . This algebra acts by right
convolution on the left hand side of (2.1), in a way that clearly commutes with the
action of G(QS). The corresponding action ofH

(
G(AS),KS

)
on the right hand side

of (2.1) includes general analogues of the operators defined by Hecke on classical
modular forms.

This becomes more concrete if S = {v∞}. Then AS equals the subring Afin =
{t ∈ A : t∞ = 0} of “finite adeles” in A. If G satisfies the associated noncompact-
ness criterion of Theorem 2.1(b), and K0 is an open compact subgroup of G(Afin),
we have a G(R)-isomorphism of Hilbert spaces

L2
(
G(Q)\G(A)/K0

) ∼= n⊕
i=1

L2
(
Γi\G(R)

)
,

for discrete subgroups Γ1, . . . ,Γn of G(R). The Hecke algebra H
(
G(Afin),K0

)
acts

by convolution on the left hand side, and hence also on the right hand side.
Hecke operators are really at the heart of the theory. Their properties can be

formulated in representation theoretic terms. Any automorphic representation π of
G(A) can be decomposed as a restricted tensor product

(2.2) π =
⊗

v

πv,

where πv is an irreducible representation of the group G(Qv). Moreover, for every
valuation v = vp outside some finite set S, the representation πp = πvp

is unramified,
in the sense that its restriction to a suitable maximal compact subgroup Kp of
G(Qp) contains the trivial representation. (See [F]. It is known that the trivial
representation of Kp occurs in πp with multiplicity at most one.) This gives rise to
a maximal compact subgroup KS =

∏
p/∈S

Kp, a Hecke algebra

HS =
⊗
p/∈S

Hp =
⊗
p/∈S

H
(
G(Qp),Kp

)
that is actually abelian, and an algebra homomorphism

(2.3) c(πS) =
⊗
p/∈S

c(πp) : HS =
⊗
p/∈S

Hp −→ C.
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Indeed, if vS =
⊗
p/∈S

vp belongs to the one-dimensional space of KS-fixed vectors for

the representation πS =
⊗
p/∈S

πp, and hS =
⊗
p/∈S

hp belongs to HS , the vector

πS(hS)vS =
⊗
p/∈S

(
πp(hp)vp

)
equals

c(πS , hS)vS =
⊗
p/∈S

(
c(πp, hp)vp

)
.

This formula defines the homomorphism (2.3) in terms of the unramified represen-
tation πS . Conversely, for any homomorphism HS → C, it is easy to see that there
is a unique unramified representation πS of G(AS) for which the formula holds.

The decomposition (2.2) actually holds for general irreducible representations
π of G(A). In this case, the components can be arbitrary. However, the condition
that π be automorphic is highly rigid. It imposes deep relationships among the
different unramified components πp, or equivalently, the different homomorphisms
c(πp) : Hp → C. These relationships are expected to be of fundamental arithmetic
significance. They are summarized by Langlands’s principle of functoriality [Lan3],
and his conjecture that relates automorphic representations to motives [Lan7].
(For an elementary introduction to these conjectures, see [A28]. We shall review
the principle of functoriality and its relationship with unramified representations
in §26.) The general trace formula provides a means for analyzing some of the
relationships.

The group G(A) can be written as a direct product of the real group G(R) with
the totally disconnected group G(Afin). We define

C∞
c

(
G(A)

)
= C∞

c

(
G(R)

)
⊗ C∞

c

(
G(Afin)

)
,

where C∞
c

(
G(R)

)
is the usual space of smooth, compactly supported functions on

the Lie group G(R), and C∞
c

(
G(Afin)

)
is the space of locally constant, compactly

supported, complex valued functions on the totally disconnected group G(Afin).
The vector space C∞

c

(
G(A)

)
is an algebra under convolution, which is of course

contained in the algebra Cc

(
G(A)

)
of continuous, compactly supported functions

on G(A).
Suppose that f belongs to C∞

c

(
G(A)

)
. We can choose a finite set of valuations

S satisfying the condition of Theorem 2.1(b), an open compact subgroup KS of
G(AS), and an open compact subgroup K0,S of the product

G(Q∞
S ) =

∏
v∈S−{v∞}

G(Qv)

such that f is bi-invariant under the open compact subgroup K0 = K0,SK
S of

G(Afin). In particular, the operator R(f) vanishes on the orthogonal complement
of L2

(
G(Q)\G(A)/KS

)
in L2

(
G(Q)\G(A)

)
. We leave the reader the exercise of

using (1.1) and (2.1) to identify R(f) with an integral operator with smooth kernel
on a finite disjoint union of quotients of G(R).

Suppose, in particular, that G(Q)\G(A) happens to be compact. Then R(f)
may be identified with an integral operator with smooth kernel on a compact man-
ifold. It follows that R(f) is an operator of trace class, whose trace is given by
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(1.2). The Selberg trace formula (1.3) is therefore valid for f , with Γ = G(Q) and
H = G(A). (See [Tam1].)

3. Simple examples

We have tried to introduce adele groups as gently as possible, using the re-
lations between Hecke operators and automorphic representations as motivation.
Nevertheless, for a reader unfamiliar with such matters, it might take some time to
feel comfortable with the general theory. To supplement the discussion of §2, and
to acquire some sense of what one might hope to obtain in general, we shall look
at a few concrete examples.

Consider first the simplest example of all, the case that G equals the multi-
plicative group GL(1). Then G(Q) = Q∗, while

G(A) = A∗ =
{
x ∈ A : |x| �= 0, |xp|p = 1 for almost all p

}
is the multiplicative group of ideles for Q. If N is a positive integer with prime
factorization N =

∏
p
pep(N), we write

KN =
{
k ∈ G(Afin) = A∗

fin : |kp − 1|p ≤ p−ep(N) for all p
}
.

A simple exercise for a reader unfamiliar with adeles is to check directly that KN

is an open compact subgroup of A∗
fin, that any open compact subgroup K0 contains

KN for some N , and that the abelian group

G(Q)\G(A)/G(R)KN = Q∗\A∗/R∗KN

is finite. The quotient G(Q)\G(A) = Q∗\A∗ is not compact. This is because the
mapping

x −→ |x| =
∏
v

|xv|v, x ∈ A∗,

is a continuous surjective homomorphism from A∗ to the multiplicative group (R∗)0

of positive real numbers, whose kernel

A1 =
{
x ∈ A : |x| = 1

}
contains Q∗. The quotient Q∗\A1 is compact. Moreover, we can write the group
A∗ as a canonical direct product of A1 with the group (R∗)0. The failure of Q∗\A∗

to be compact is therefore entirely governed by the multiplicative group (R∗)0 of
positive real numbers.

An irreducible unitary representation of the abelian group GL(1,A) = A∗ is a
homomorphism

π : A∗ −→ U(1) =
{
z ∈ C∗ : |z| = 1

}
.

There is a free action

s : π −→ πs(x) = π(x)|x|s, s ∈ iR,

of the additive group iR on the set of such π. The orbits of iR are bijective
under the restriction mapping from A∗ to A1 with the set of irreducible unitary
representations of A1. A similar statement applies to the larger set of irreducible
(not necessarily unitary) representations of A∗, except that one has to replace iR
with the additive group C.

Returning to the case of a general group over Q, we write AG for the largest cen-
tral subgroup of G over Q that is a Q-split torus. In other words, AG is Q-isomorphic
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to a direct product GL(1)k of several copies of GL(1). The connected component
AG(R)0 of 1 in AG(R) is isomorphic to the multiplicative group

(
(R∗)0

)k, which
in turn is isomorphic to the additive group Rk. We write X(G)Q for the additive
group of homomorphisms χ : g → gχ from G to GL(1) that are defined over Q.
Then X(G)Q is a free abelian group of rank k. We also form the real vector space

aG = HomZ

(
X(G)Q,R

)
of dimension k. There is then a surjective homomorphism

HG : G(A) −→ aG,

defined by 〈
HG(x), χ

〉
=
∣∣ log(xχ)

∣∣, x ∈ G(A), χ ∈ X(G)Q.

The group G(A) is a direct product of the normal subgroup

G(A)1 =
{
x ∈ G(A) : HG(x) = 0

}
with AG(R)0.

We also have the dual vector space a∗G = X(G)Q⊗Z R, and its complexification
a∗G,C = X(G)Q ⊗ C. If π is an irreducible unitary representation of G(A) and λ
belongs to ia∗G, the product

πλ(x) = π(x)eλ(HG(x)), x ∈ G(A),

is another irreducible unitary representation of G(A). The set of associated ia∗G-
orbits is in bijective correspondence under the restriction mapping from G(A) to
G(A)1 with the set of irreducible unitary representations of G(A)1. A similar as-
sertion applies the larger set of irreducible (not necessary unitary) representations,
except that one has to replace ia∗G with the complex vector space a∗G,C.

In the case G = GL(n), for example, we have

AGL(n) =


z 0

. . .
0 z

 : z ∈ GL(1)

 ∼= GL(1).

The abelian group X
(
GL(n)

)
Q

is isomorphic to Z, with canonical generator given
by the determinant mapping from GL(n) to GL(1). The adelic group GL(n,A) is
a direct product of the two groups

GL(n,A)1 =
{
x ∈ GL(n,A) : | det(x)| = 1

}
and

AGL(n)(R)0 =


r 0

. . .
0 r

 : r ∈ (R∗)0

 .

In general, G(Q) is contained in the subgroup G(A)1 of G(A). The group
AG(R)0 is therefore an immediate obstruction to G(Q)\G(A) being compact, as
indeed it was in the simplest example of G = GL(1). The real question is then
whether the quotient G(Q)\G(A)1 is compact. When the answer is affirmative, the
discussion above tells us that the trace formula (1.3) can be applied. It holds for
Γ = G(Q) and H = G(A)1, with f being the restriction to G(A)1 of a function in
C∞

c

(
G(A)

)
.



3. SIMPLE EXAMPLES 17

The simplest nonabelian example that gives compact quotient is the multiplica-
tive group

G = {x ∈ A : x �= 0}
of a quaternion algebra over Q. By definition, A is a four dimensional division
algebra over Q, with center Q. It can be written in the form

A =
{
x = x0 + x1i + x2j + x3k : xα ∈ Q

}
,

where the basis elements 1, i, j and k satisfy

ij = −ji = k, i2 = a, j2 = b,

for nonzero elements a, b ∈ Q∗. Conversely, for any pair a, b ∈ Q∗, the Q-algebra
defined in this way is either a quaternion algebra or is isomorphic to the matrix
algebra M2(Q). For example, if a = b = −1, A is a quaternion algebra, since
A⊗Q R is the classical Hamiltonian quaternion algebra over R. On the other hand,
if a = b = 1, the mapping

x −→ x0

(
1 0
0 1

)
+ x1

(
1 0
0 −1

)
+ x2

(
0 1
1 0

)
+ x3

(
0 1
−1 0

)
is an isomorphism from A onto M2(Q). For any A, one defines an automorphism

x −→ x̄ = x0 − x1i− x2j − x3k

of A, and a multiplicative mapping

x −→ N(x) = xx̄ = x0 − ax2
1 − bx2

2 + abx2
3

from A to Q. If N(x) �= 0, x−1 equals N(x)−1x̄. It follows that x ∈ A is a unit if
and only if N(x) �= 0.

The description of a quaternion algebra A in terms of rational numbers a, b ∈ Q∗

has the obvious attraction of being explicit. However, it is ultimately unsatisfactory.
Among other things, different pairs a and b can yield the same algebra A. There
is a more canonical characterization in terms of the completions Av = A⊗Q Qv at
valuations v of Q. If v = v∞, we know that Av is isomorphic to either the matrix
ring M2(R) or the Hamiltonian quaternion algebra over R. A similar property
holds for any other v. Namely, there is exactly one isomorphism class of quaternion
algebras over Qv, so there are again two possibilities for Av. Let V be the set of
valuations v such that Av is a quaternion algebra. It is then known that V is a
finite set of even order. Conversely, for any nonempty set V of even order, there
is a unique isomorphism class of quaternion algebras A over Q such that Av is a
quaternion algebra for each v ∈ V and a matrix algebra M2(Qv) for each v outside
V .

We digress for a moment to note that this characterization of quaternion al-
gebras is part of a larger classification of reductive algebraic groups. The general
classification over a number field F , and its completions Fv, is a beautiful union of
class field theory with the structure theory of reductive groups. One begins with a
group G∗

s over F that is split, in the sense that it has a maximal torus that splits
over F . By a basic theorem of Chevalley, the groups G∗

s are in bijective correspon-
dence with reductive groups over an algebraic closure F of F , the classification
of which reduces largely to that of complex semisimple Lie algebras. The general
group G over F is obtained from G∗

s by twisting the action of the Galois group
Gal(F/F ) by automorphisms of G∗

s . It is a two stage process. One first constructs
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an “outer twist” G∗ of G∗
s that is quasisplit, in the sense that it has a Borel sub-

group that is defined over F . This is the easier step. It reduces to a knowledge
of the group of outer automorphisms of G∗

s , something that is easy to describe in
terms of the general structure of reductive groups. One then constructs an “inner
twist” G

ψ−→ G∗, where ψ is an isomorphism such that for each σ ∈ Gal(F/F ), the
composition

α(σ) = ψ ◦ σ(ψ)−1

belongs to the group Int(G∗) of inner automorphisms of G∗. The role of class field
theory is to classify the functions σ → α(σ). More precisely, class field theory
allows us to characterize the equivalence classes of such functions defined by the
Galois cohomology set

H1
(
F, Int(G∗)

)
= H1

(
Gal(F/F ), Int(G)∗(F )

)
.

It provides a classification of the finite sets of local inner twists H1
(
Fv, Int(G∗

v)
)
,

and a characterization of the image of the map

H1
(
F, Int(G∗)

)
↪→
∏
v

H1
(
F, Int(G∗

v)
)

in terms of an explicit generalization of the parity condition for quaternion algebras.
The map is injective, by the Hasse principle for the adjoint group Int(G∗). Its image
therefore classifies the isomorphism classes of inner twists G of G∗ over F .

In the special case above, the classification of quaternion algebras A is equiva-
lent to that of the algebraic groups A∗. In this case, G∗ = G∗

s = GL(2). In general,
the theory is not especially well known, and goes beyond what we are assuming for
this course. However, as a structural foundation for the Langlands program, it is
well worth learning. A concise reference for a part of the theory is [Ko5, §1-2].

Let G be the multiplicative group of a quaternion algebra A over Q, as above.
The restriction of the norm mapping N to G is a generator of the group X(G)Q.
In particular,

G(A)1 =
{
x ∈ G(A) : |N(x)| = 1

}
.

It is then not hard to see that the quotient G(Q)\G(A)1 is compact. (The reason
is that G has no proper parabolic subgroup over Q, a point we shall discuss in
the next section.) The Selberg trace formula (1.3) therefore holds for Γ = G(Q),
H = G(A)1, and f the restriction to G(A)1 of a function in C∞

c

(
G(A)

)
. If Γ(G)

denotes the set of conjugacy classes in G(Q), and Π(G) is the set of equivalence
classes of automorphic representations of G (or more properly, restrictions to G(A)1

of automorphic representations of G(A)), we have

(3.1)
∑

γ∈Γ(G)

aG(γ)fG(γ) =
∑

π∈Π(G)

aG(π)fG(π), f ∈ C∞
c

(
G(A)

)
,

for the volume aG(γ) = aH
Γ (γ), the multiplicity aG(π) = aH

Γ (π), the orbital integral
fG(γ) = fH(γ), and the character fG(π) = fH(π). Jacquet and Langlands gave a
striking application of this formula in §16 of their monograph [JL].

Any function in C∞
c

(
G(A)

)
is a finite linear combination of products

f =
∏
v

fv, fv ∈ C∞
c

(
G(Qv)

)
.

Assume that f is of this form. Then fG(γ) is a product of local orbital integrals
fv,G(γv), where γv is the image of γ in the set Γ(Gv) of conjugacy classes in G(Qv),
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and fG(π) is a product of local characters fv,G(πv), where πv is the component of
π in the set Π(Gv) of equivalence classes of irreducible representations of G(Qv).
Let V be the even set of valuations v such that G is not isomorphic to the group
G∗ = GL(2) over Qv. If v does not belong to V , the Qv-isomorphism from G to
G∗ is determined up to inner automorphisms. There is consequently a canonical
bijection γv → γ∗

v from Γ(Gv) to Γ(G∗
v), and a canonical bijection πv → π∗

v from
Π(Gv) to Π(G∗

v). One can therefore define a function f∗
v ∈ C∞

c (G∗
v) for every v /∈ V

such that
f∗

v,G∗(γ∗
v) = fv,G(γv)

and
f∗

v,G∗(π∗
v) = fv,G(πv),

for every γv ∈ Γ(Gv) and πv ∈ Π(Gv). This suggested to Jacquet and Langlands
the possibility of comparing (3.1) with the trace formula Selberg had obtained for
the group G∗ = GL(2) with noncompact quotient.

If v belongs to V , G(Qv) is the multiplicative group of a quaternion algebra
over Qv. In this case, there is a canonical bijection γv → γ∗

v from Γ(Gv) onto the
set Γell(G∗

v) of semisimple conjugacy classes in G∗(Qv) that are either central, or
do not have eigenvalues in Qv. Moreover, there is a global bijection γ → γ∗ from
Γ(G) onto the set of semisimple conjugacy classes γ∗ ∈ Γ(G∗) such that for every
v ∈ V , γ∗

v belongs to Γell(G∗
v). For each v ∈ V , Jacquet and Langlands assigned a

function f∗
v ∈ C∞

c

(
G∗(Qv)

)
to fv such that

(3.2) f∗
v,G∗(γ∗

v) =

{
fv,G(γv), if γ∗

v ∈ Γell(G∗
v),

0, otherwise,

for every (strongly) regular class γ∗
v ∈ Γreg(G∗

v). (An element is strongly regular if
its centralizer is a maximal torus. The strongly regular orbital integrals of f∗

v are
known to determine the value taken by f∗

v at any invariant distribution on G∗(Qv).)
This allowed them to attach a function

f∗ =
∏
v

f∗
v

in C∞
c

(
G∗(A)

)
to the original function f . They then observed that

(3.3) f∗
G∗(γ∗) =

{
fG(γ), if γ∗ is the image of γ ∈ Γ(G),
0, otherwise,

for any class γ∗ ∈ Γ(G∗).
It happens that Selberg’s formula for the group G∗ = GL(2) contains a number

of supplementary terms, in addition to analogues of the terms in (3.1). However,
Jacquet and Langlands observed that the local vanishing conditions (3.2) force all
of the supplementary terms to vanish. They then used (3.3) to deduce that the
remaining terms on the geometric side equaled the corresponding terms on the
geometric side of (3.1). This left only a spectral identity

(3.4)
∑

π∈Π(G)

m(π,R)tr
(
π(f)

)
=

∑
π∗∈Π(G∗)

m(π∗, R∗
disc)tr

(
π∗(f∗)

)
,

where R∗
disc is the subrepresentation of the regular representation of G∗(A)1 on

L2
(
G∗(Q)\G∗(A)1

)
that decomposes discretely. By setting f = fSf

S , for a fixed fi-
nite set S of valuations containing V ∪{v∞}, and a fixed function fS ∈ C∞

c

(
G(QS)

)
,
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one can treat (3.4) as an identity of linear forms in a variable function fS belong-
ing to the Hecke algebra H(GS ,KS). Jacquet and Langlands used it to establish
an injective global correspondence π → π∗ of automorphic representations, with
π∗

v = πv for each v /∈ V . They also obtained an injective local correspondence
πv → π∗

v of irreducible representations for each v ∈ V , which is compatible with
the global correspondence, and also the local correspondence fv → f∗

v of functions.
Finally, they gave a simple description of the images of both the local and global
correspondences of representations.

The Jacquet-Langlands correspondence is remarkable for both the power of its
assertions and the simplicity of its proof. It tells us that the arithmetic information
carried by unramified components πp of automorphic representations π of G(A),
whatever form it might take, is included in the information carried by automorphic
representations π∗ of G∗(A). In the case v∞ /∈ V , it also implies a correspondence
between spectra of Laplacians on certain compact Riemann surfaces, and discrete
spectra of Laplacians on noncompact surfaces. The Jacquet-Langlands correspon-
dence is a simple prototype of the higher reciprocity laws one might hope to deduce
from the trace formula. In particular, it is a clear illustration of the importance of
having a trace formula for noncompact quotient.

4. Noncompact quotient and parabolic subgroups

If G(Q)\G(A)1 is not compact, the two properties that allowed us to derive
the trace formula (1.3) fail. The regular representation R does not decompose
discretely, and the operators R(f) are not of trace class. The two properties are
closely related, and are responsible for the fact that the integral (1.2) generally
diverges. To see what goes wrong, consider the case that G = GL(2), and take f
to be the restriction to H = G(A)1 of a nonnegative function in C∞

c

(
G(A)

)
. If the

integral (1.2) were to converge, the double integral∫
G(Q)\G(A)1

∑
γ∈G(Q)

f(x−1γx)dx

would be finite. Using Fubini’s theorem to justify again the manipulations of §1,
we would then be able to write the double integral as∑

γ∈{G(Q)}
vol
(
G(Q)γ\G(A)1γ

) ∫
G(A)1γ\G(A)1

f(x−1γx)dx.

As it happens, however, the summand corresponding to γ is often infinite.

Sometimes the volume of G(Q)γ\G(A)1γ is infinite. Suppose that γ =
(
γ1 0
0 γ2

)
,

for a pair of distinct elements γ1 and γ2 in Q∗. Then

Gγ =
{(

y1 0
0 y2

)
: y1, y2 ∈ GL(1)

}
∼= GL(1)×GL(1),

so that
G(A)1γ ∼=

{
(y1, y2) ∈ (A∗)2 : |y1||y2| = 1

}
,

and
G(Q)γ\G(A)1γ ∼= (Q∗\A1)× (Q∗\A∗) ∼= (Q∗\A1)2 × (R∗)0.
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An invariant measure on the left hand quotient therefore corresponds to a Haar
measure on the abelian group on the right. Since this group is noncompact, the
quotient has infinite volume.

Sometimes the integral over G(A)1γ\G(A)1 diverges. Suppose that γ =
(

1 1
0 1

)
.

Then

G(A)γ =
{(

z y
0 z

)
: y ∈ A, z ∈ A∗

}
The computation of the integral∫

G(A)1γ\G(A)1
f(x−1γx)dx =

∫
G(A)γ\G(A)

f(x−1γx)dx

is a good exercise in understanding relations among the Haar measures d∗a, du and
dx on A∗, A, and G(A), respectively. One finds that the integral equals∫

Gγ(A)\P0(A)

∫
P0(A)\G(A)

f(k−1p−1γpk)d�pdk,

where P0(A) is the subgroup of upper triangular matrices{
p =

(
a∗ u
0 b∗

)
: a∗, b∗ ∈ A∗, u ∈ A

}
,

with left Haar measure
d�p = |a∗|−1da∗db∗du,

and dk is a Borel measure on the compact space P0(A)\G(A). The integral then
reduces to an expression

c(f)
∏
p

(1− p−1)−1 = c(f)

( ∞∑
n=1

1
n

)
,

where

c(f) = c0

∫
P0(A)\G(A)

∫
A

f

(
k−1

(
1 u
0 1

)
k

)
dudk,

for a positive constant c0. In particular, the integral is generally infinite.
Observe that the nonconvergent terms in the case G = GL(2) both come from

conjugacy classes in GL(2,Q) that intersect the parabolic subgroup P0 of upper
triangular matrices. This suggests that rational parabolic subgroups are responsible
for the difficulties encountered in dealing with noncompact quotient. Our suspicion
is reinforced by the following characterization, discovered independently by Borel
and Harish-Chandra [BH] and Mostow and Tamagawa [MT]. For a general group
G over Q, the quotient G(Q)\G(A)1 is noncompact if and only if G has a proper
parabolic subgroup P defined over Q.

We review some basic properties of parabolic subgroups, many of which are
discussed in the chapter [Mur] in this volume. We are assuming now that G
is a general connected reductive group over Q. A parabolic subgroup of G is an
algebraic subgroup P such that P (C)\G(C) is compact. We consider only parabolic
subgroups P that are defined over Q. Any such P has a Levi decomposition P =
MNP , which is a semidirect product of a reductive subgroup M of G over Q
with a normal unipotent subgroup NP of G over Q. The unipotent radical NP is
uniquely determined by P , while the Levi component M is uniquely determined up
to conjugation by P (Q).
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Let P0 be a fixed minimal parabolic subgroup of G over Q, with a fixed Levi
decomposition P0 = M0N0. Any subgroup P of G that contains P0 is a parabolic
subgroup that is defined over Q. It is called a standard parabolic subgroup (relative
to P0). The set of standard parabolic subgroups of G is finite, and is a set of
representatives of the set of all G(Q)-conjugacy classes of parabolic subgroups over
Q. A standard parabolic subgroup P has a canonical Levi decomposition P =
MPNP , where MP is the unique Levi component of P that contains M0. Given
P , we can form the central subgroup AP = AMP

of MP , the real vector space
aP = aMP

, and the surjective homomorphism HP = HMP
from MP (A) onto aP .

In case P = P0, we often write A0 = AP0 , a0 = aP0 and H0 = HP0 .
In the example G = GL(n), one takes P0 to be the Borel subgroup of upper

triangular matrices. The unipotent radical N0 of P0 is the subgroup of unipotent
upper triangular matrices. For the Levi component M0, one takes the subgroup of
diagonal matrices. There is then a bijection

P ←→ (n1, . . . , np)

between standard parabolic subgroups P of G = GL(n) and partitions (n1, . . . , np)
of n. The group P is the subgroup of block upper triangular matrices associated
to (n1, . . . , np). The unipotent radical of P is the corresponding subgroup

NP =


In1 | ∗

. . .
0 |Inp




of block unipotent matrices, the canonical Levi component is the subgroup

MP =

m =

m1| 0
. . .

0 |mp

 : mi ∈ GL(ni)


of block diagonal matrices, while

AP =

a =

a1In1 | 0
. . .

0 |apInp

 : ai ∈ GL(1)

 .

Naturally, Ik stands here for the identity matrix of rank k. The free abelian group
X(MP )Q attached to MP has a canonical basis of rational characters

χi : m −→ det(mi), m ∈MP , 1 ≤ i ≤ p.

We are free to use the basis 1
n1

χ1, . . . ,
1

np
χp of the vector space a∗P , and the corre-

sponding dual basis of aP , to identify both a∗P and aP with Rp. With this interpre-
tation, the mapping HP takes the form

HP (m) =
(

1
n1

log | det m1|, . . . ,
1
np

log | det mp|
)
, m ∈MP (A).

It follows that

HP (a) =
(
log |a1|, . . . , log |ap|

)
, a ∈ AP (A).
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For general G, we have a variant of the regular representation R for any
standard parabolic subgroup P . It is the regular representation RP of G(A) on
L2
(
NP (A)MP (Q)\G(A)

)
, defined by(

RP (y)φ
)
(x) = φ(xy), φ ∈ L2

(
NP (A)MP (Q)\G(A)

)
, x, y ∈ G(A).

Using the language of induced representations, we can write

RP = IndG(A)
NP (A)MP (Q)(1NP (A)MP (Q)) ∼= IndG(A)

P (A)(1NP (A) ⊗RMP
),

where IndH
K(·) denotes a representation of H induced from a subgroup K, and 1K

denotes the trivial one dimensional representation of K. We can of course integrate
RP against any function f ∈ C∞

c

(
G(A)

)
. This gives an operator RP (f) on the

Hilbert space L2
(
NP (A)MP (Q)\G(A)

)
. Arguing as in the special case R = RG of

§1, we find that RP (f) is an integral operator with kernel

(4.1) KP (x, y) =
∫

NP (A)

∑
γ∈MP (Q)

f(x−1γny)dn, x, y ∈ NP (A)MP (Q)\G(A).

We have seen that the diagonal value K(x, x) = KG(x, x) of the original kernel
need not be integrable over x ∈ G(Q)\G(A)1. We have also suggested that parabolic
subgroups are somehow responsible for this failure. It makes sense to try to modify
K(x, x) by adding correction terms indexed by proper parabolic subgroups P . The
correction terms ought to be supported on some small neighbourhood of infinity, so
that they do not affect the values taken by K(x, x) on some large compact subset
of G(Q)\G(A)1. The diagonal value KP (x, x) of the kernel of RP (f) provides a
natural function for any P . However, KP (x, x) is invariant under left translation
of x by the group NP (A)MP (Q), rather than G(Q). One could try to rectify this
defect by summing KP (δx, δx) over elements δ in P (Q)\G(Q). However, this sum
does not generally converge. Even if it did, the resulting function on G(Q)\G(A)1

would not be supported on a small neighbourhood of infinity. The way around
this difficulty will be to multiply KP (x, x) by a certain characteristic function on
NP (A)MP (Q)\G(A) that is supported on a small neighbourhood of infinity, and
which depends on a choice of maximal compact subgroup K of G(A).

In case G = GL(n), the product

K = O(n,R)×
∏
p

GL(n,Zp)

is a maximal compact subgroup of G(A). According to the Gramm-Schmidt or-
thogonalization lemma of linear algebra, we can write

GL(n,R) = P0(R)O(n,R).

A variant of this process, applied to the height function

‖v‖p = max{|vi|p : 1 ≤ i ≤ n}, v ∈ Qn
p ,

on Qn
p instead of the standard inner product on Rn, gives a decomposition

GL(n,Qp) = P0(Qp)GL(n,Zp),

for any p. It follows that GL(n,A) equals P0(A)K.
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These properties carry over to our general group G. We choose a suitable
maximal compact subgroup

K =
∏
v

Kv, Kv ⊂ G(Qv),

of G(A), with G(A) = P0(A)K [Ti, (3.3.2), (3.9], [A5, p. 9]. We fix K, and
consider a standard parabolic subgroup P of G. Since P contains P0, we obtain a
decomposition

G(A) = P (A)K = NP (A)MP (A)K = NP (A)MP (A)1AP (R)0K.

We then define a continuous mapping

HP : G(A) −→ aP

by setting

HP (nmk) = HMP
(m), n ∈ NP (A), m ∈MP (A), k ∈ K.

We shall multiply the kernel KP (x, x) by the preimage under HP of the character-
istic function of a certain cone in aP .

5. Roots and weights

We have fixed a minimal parabolic subgroup P0 of G, and a maximal compact
subgroup K of G(A). We want to use these objects to modify the kernel function
K(x, x) so that it becomes integrable. To prepare for the construction, as well as
for future geometric arguments, we review some properties of roots and weights.

The restriction homomorphism X(G)Q → X(AG)Q is injective, and has finite
cokernel. If G = GL(n), for example, the homomorphism corresponds to the injec-
tion z → nz of Z into itself. We therefore obtain a canonical linear isomorphism

(5.1) a
∗
P = X(MP )Q ⊗ R

∼−→ X(AP )Q ⊗ R.

Now suppose that P1 and P2 are two standard parabolic subgroups, with P1 ⊂
P2. There are then Q-rational embeddings

AP2 ⊂ AP1 ⊂MP1 ⊂MP2 .

The restriction homomorphism X(MP2)Q → X(MP1)Q is injective. It provides
a linear injection a∗P2

↪→ a∗P1
and a dual linear surjection aP1 �→ aP2 . We write

a
P2
P1

⊂ aP1 for the kernel of the latter mapping. The restriction homomorphism
X(AP1)Q → X(AP2)Q is surjective, and extends to a surjective mapping from
X(AP1)Q ⊗ R to X(AP2)Q ⊗ R. It thus provides a linear surjection a∗P1

�→ a∗P2
,

and a dual linear injection aP2 ↪→ aP1 . Taken together, the four linear mappings
yield split exact sequences

0 −→ a
∗
P2

� a
∗
P1

−→ a
∗
P1
/a∗P2

−→ 0

and
0 −→ a

P2
P1

−→ aP1 � aP2 −→ 0
of real vector spaces. We may therefore write

aP1 = aP2 ⊕ a
P2
P1

and
a
∗
P1

= a
∗
P2
⊕ (aP2

P1
)∗.
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For any P , we write ΦP for the set of roots of (P,AP ). We also write nP for
the Lie algebra of NP . Then ΦP is a finite subset of nonzero elements in X(AP )Q

that parametrizes the decomposition

nP =
⊕

α∈ΦP

nα

of nP into eigenspaces under the adjoint action

Ad : AP −→ GL(nP )

of AP . By definition,

nα =
{
Xα ∈ nP : Ad(a)Xα = aαXα, a ∈ AP

}
,

for any α ∈ ΦP . We identify ΦP with a subset of a∗P under the canonical mappings

ΦP ⊂ X(AP )Q ⊂ X(AP )Q ⊗ R � a
∗
P .

If H belongs to the subspace aG of aP , α(H) = 0 for each α ∈ ΦP , so ΦP is
contained in the subspace (aG

P )∗ of a∗P . As is customary, we define a vector

ρP =
1
2

∑
α∈ΦP

(dim nα)α

in (aG
P )∗. We leave the reader to check that left and right Haar measures on the

group P (A) are related by

d�p = e2ρ(HP (p))drp, p ∈ P (A).

In particular, the group P (A) is not unimodular, if P �= G.
We write Φ0 = ΦP0 . The pair

(V,R) =
(
(aG

P0
)∗,Φ0 ∪ (−Φ0)

)
is a root system [Ser2], for which Φ0 is a system of positive roots. We write
W0 = WG

0 for the Weyl group of (V,R). It is the finite group generated by reflections
about elements in Φ0, and acts on the vector spaces V = (aG

P0
)∗, a∗0 = a∗P0

, and
a0 = aP0 . We also write ∆0 ⊂ Φ0 for the set of simple roots attached to Φ0. Then
∆0 is a basis of the real vector space (aG

0 )∗ = (aG
P0

)∗. Any element β ∈ Φ0 can be
written uniquely

β =
∑

α∈∆0

nαα,

for nonnegative integers nα. The corresponding set

∆∨
0 = {α∨ : α ∈ ∆0}

of simple coroots is a basis of the vector space aG
0 = aG

P0
. We write

∆̂0 = {�α : α ∈ ∆0}

for the set of simple weights, and

∆̂∨
0 = {�∨

α : α ∈ ∆0}

for the set of simple co-weights. In other words, ∆̂0 is the basis of (aG
0 )∗ dual to

∆∨
0 , and ∆̂∨

0 is the basis of aG
0 dual to ∆0.
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Standard parabolic subgroups are parametrized by subsets of ∆0. More pre-
cisely, there is an order reversing bijection P ↔ ∆P

0 between standard parabolic
subgroups P of G and subsets ∆P

0 of ∆0, such that

aP =
{
H ∈ a0 : α(H) = 0, α ∈ ∆P

0

}
.

For any P , ∆P
0 is a basis of the space aP

P0
= aP

0 . Let ∆P be the set of linear forms
on aP obtained by restriction of elements in the complement ∆0−∆P

0 of ∆P
0 in ∆0.

Then ∆P is bijective with ∆0 −∆P
0 , and any root in ΦP can be written uniquely

as a nonnegative integral linear combination of elements in ∆P . The set ∆P is a
basis of (aG

P )∗. We obtain a second basis of (aG
P )∗ by taking the subset

∆̂P = {�α : α ∈ ∆0 −∆P
0 }

of ∆̂0. We shall write
∆∨

P = {α∨ : α ∈ ∆P }
for the basis of aG

P dual to ∆̂P , and

∆̂∨
P = {�∨

α : α ∈ ∆P }
for the basis of aG

P dual to ∆P . We should point out that this notation is not
standard if P �= P0. For in this case, a general element α ∈ ∆P is not part of a
root system (as defined in [Ser2]), so that α∨ is not a coroot. Rather, if α is the
restriction to aP of the simple root β ∈ ∆0 −∆P

0 , α∨ is the projection onto aP of
the coroot β∨.

We have constructed two bases ∆P and ∆̂P of (aG
P )∗, and corresponding dual

bases ∆̂∨
P and ∆∨

P of aG
P , for any P . More generally, suppose that P1 ⊂ P2 are two

standard parabolic subgroups. Then we can form two bases ∆P2
P1

and ∆̂P2
P1

of (aP2
P1

)∗,
and corresponding dual bases (∆̂P2

P1
)∨ and (∆P2

P1
)∨ of a

P2
P1

. The construction proceeds
in the obvious way from the bases we have already defined. For example, ∆P2

P1
is

the set of linear forms on the subspace a
P2
P1

of aP1 obtained by restricting elements
in ∆P2

0 −∆P1
0 , while ∆̂P2

P1
is the set of linear forms on a

P2
P1

obtained by restricting
elements in ∆̂P1 − ∆̂P2 . We note that P1∩MP2 is a standard parabolic subgroup of
the reductive group MP2 , relative to the fixed minimal parabolic subgroup P0∩MP2 .
It follows from the definitions that

aP1∩MP2
= aP1 , a

MP2
P1∩MP2

= a
P2
P1
, ∆P1∩MP2

= ∆P2
P1
,

and
∆̂P1∩MP2

= ∆̂P2
P1
.

Consider again the example of G = GL(n). Its Lie algebra is the space Mn of
(n× n)-matrices, with the Lie bracket

[X,Y ] = XY − Y X,

and the adjoint action

Ad(g) : X −→ gXg−1, g ∈ G, X ∈Mn,

of G. The group

A0 =

a =

a1 0
. . .

0 an

 : ai ∈ GL(1)
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acts by conjugation on the Lie algebra

n0 = nP0 =




0 ∗ · · · ∗

. . . . . .
...

. . . ∗
0 0




of NP0 , and
Φ0 = {βij : a −→ aia

−1
j , i < j}.

As linear functionals on the vector space

a0 =

u :

u1 0
. . .

0 un

 : ui ∈ R

 ,

the roots Φ0 take the form

βij(u) = ui − uj , i < j.

The decomposition of a general root in terms of the subset

∆0 = {βi = βi,i+1 : 1 ≤ i ≤ n− 1},
of simple roots is given by

βij = βi + · · ·+ βj−1, i < j.

The set of coroots equals

Φ∨
0 =

{
β∨

ij = ei − ej = (

j︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0,−1, 0, . . . , 0) : i < j
}
,

where we have identified a0 with the vector space Rn, equipped with the standard
basis e1, . . . , en. The simple coroots form the basis

∆∨
0 = {β∨

i = ei − ei+1 : 1 ≤ i ≤ n− 1}
of the subspace

a
G
0 = {u ∈ Rn :

∑
ui = 0}.

The simple weights give the dual basis

∆̂0 = {�i : 1 ≤ i ≤ n− 1},
where

�i(u) =
n− i

n
(u1 + · · ·+ ui)−

( i
n

)
(ui+1 + · · ·+ un).

The Weyl group W0 of the root system for GL(n) is the symmetric group Sn, acting
by permutation of the coordinates of vectors in the space a0

∼= Rn. The dot product
on Rn give a W -invariant inner product 〈·, ·〉 on both a0 and a∗0. It is obvious that

〈βi, βj〉 ≤ 0, i �= j.

We leave to the reader the exercise of showing that

〈�i, �j〉 ≥ 0, 1 ≤ i, j ≤ n− 1.
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Suppose that P ⊂ GL(n) corresponds to the partition (n1, . . . , np) of n. The
general embedding aP ↪→ a0 we have defined corresponds to the embedding

t −→
(
t1, . . . , t1︸ ︷︷ ︸

n1

, t2, . . . , t2︸ ︷︷ ︸
n2

, . . . , tp, . . . , tp︸ ︷︷ ︸
np

)
, t ∈ Rp,

of Rp into Rn. It follows that

∆P
0 = {βi : i �= n1 + · · ·+ nk, 1 ≤ k ≤ p− 1}.

Since ∆P is the set of restrictions to aP ⊂ a0 of elements in the set

∆0 −∆P
0 = {βn1 , βn1+n2 , . . .},

we see that
∆P = {αi : t→ ti − ti+1, 1 ≤ i ≤ p− 1, t ∈ Rp}.

The example of G = GL(n) provides algebraic intuition. It is useful for readers
less familiar with general algebraic groups. However, the truncation of the kernel
also requires geometric intuition. For this, the example of G = SL(3) is often
sufficient.

The root system for SL(3) is the same as for GL(3). In other words, we can
identify a0 with the two dimensional subspace

{u ∈ R3 :
∑

ui = 0}

of R3, in which case

∆0 = {β1, β2} ⊂ Φ0 = {β1, β2, β1 + β2},
in the notation above. We can also identify a0 isometrically with the two dimension
Euclidean plane. The singular (one-dimensional) hyperplanes, the coroots Φ∨

0 , and
the simple coweights (∆̂0)∨ are then illustrated in the familiar Figures 5.1 and 5.2.

β∨
1

β∨
2

β∨
1 + β∨

2

aP1

aP2

Figure 5.1. The two simple coroots β∨
1 and β∨

2 are orthogonal to
the respective subspaces aP2 and aP1 of a0. Their inner product is
negative, and they span an obtuse angled cone.

There are four standard parabolic subgroups P0, P1, P2, and G, with P1 and P2

being the maximal parabolic subgroups such that ∆P1
0 = {β2} and ∆P2

0 = {β1}.



6. STATEMENT AND DISCUSSION OF A THEOREM 29

�∨
1

�∨
2

Figure 5.2. The two simple coweights �∨
1 and �∨

2 lie in the respec-
tive subspaces aP1 and aP2 . Their inner product is positive, and they
span an acute angled cone.

6. Statement and discussion of a theorem

Returning to the general case, we can now describe how to modify the function
K(x, x) on G(Q)\G(A). For a given standard parabolic subgroup P , we write τP

for the characteristic function of the subset

a
+
P = {t ∈ aP : α(t) > 0, α ∈ ∆P }

of aP . In the case G = SL(3), this subset is the open cone generated by �∨
1 and

�∨
2 in Figure 5.2 above. We also write τ̂P for the characteristic function of the

subset
{t ∈ aP : �(t) > 0, � ∈ ∆̂P }

of aP . In case G = SL(3), this subset is the open cone generated by β∨
1 and β∨

2 in
Figure 5.1.

The truncation of K(x, x) depends on a parameter T in the cone a
+
0 = a

+
P0

that
is suitably regular, in the sense that β(T ) is large for each root β ∈ ∆0. For any
given T , we define
(6.1)
kT (x) = kT (x, f) =

∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx)τ̂P

(
HP (δx)− T

)
.

This is the modified kernel, on which the general trace formula is based. A few
remarks might help to put it into perspective.

One has to show that for any x, the sum over δ in (6.1) may be taken over a
finite set. In the case G = SL(2), the reader can verify the property as an exercise in
reduction theory for modular forms. In general, it is a straightforward consequence
[A3, Lemma 5.1] of the Bruhat decomposition for G and the construction by Borel
and Harish-Chandra of an approximate fundamental domain for G(Q)\G(A). (We
shall recall both of these results later.) Thus, kT (x) is given by a double sum over
(P, δ) in a finite set. It is a well defined function of x ∈ G(Q)\G(A).

Observe that the term in (6.1) corresponding to P = G is just K(x, x). In
case G(Q)\G(A)1 is compact, there are no proper parabolic subgroups P (over
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Q). Therefore kT (x) equals K(x, x) in this case, and the truncation operation is
trivial. In general, the terms with P �= G represent functions on G(Q)\G(A)1 that
are supported on some neighbourhood of infinity. Otherwise said, kT (x) equals
K(x, x) for x in some large compact subset of G(Q)\G(A)1 that depends on T .

Recall that G(A) is a direct product of G(A)1 with AG(R)0. Observe also that
kT (x) is invariant under translation of x by AG(R)0. It therefore suffices to study
kT (x) as a function of x in G(Q)\G(A)1.

Theorem 6.1. The integral

(6.2) JT (f) =
∫

G(Q)\G(A)1
kT (x, f)dx

converges absolutely.

Theorem 6.1 does not in itself provide a trace formula. It is really just a first
step. We are giving it a central place in our discussion for two reasons. The state-
ment of the theorem serves as a reference point for outlining the general strategy.
In addition, the techniques required to prove it will be an essential part of many
other arguments.

Let us pause for a moment to outline the general steps that will take us to
the end of Part I. We shall describe informally what needs to be done in order to
convert Theorem 6.1 into some semblance of a trace formula.
Step 1. Find spectral expansions for the functions K(x, y) and kT (x) that are
parallel to the geometric expansions (1.1) and (6.1).

This step is based on Langlands’s theory of Eisenstein series. We shall describe
it in the next section.
Step 2. Prove Theorem 6.1.

We shall sketch the argument in §8.
Step 3. Show that the function

T −→ JT (f),

defined a priori for points T ∈ a
+
0 that are highly regular, extends to a polynomial

in T ∈ a0.
This step allows us to define JT (f) for any T ∈ a0. It turns out that there is a

canonical point T0 ∈ a0, depending on the choice of K, such that the distribution
J(f) = JT0(f) is independent of the choice of P0 (though still dependent of the
choice of K). For example, if G = GL(n) and K is the standard maximal compact
subgroup of GL(n,A), T0 = 0. We shall discuss these matters in §9, making full
use of Theorem 6.1.
Step 4. Convert the expansion (6.1) of kT (x) in terms of rational conjugacy classes
into a geometric expansion of J(f) = JT0(f).

We shall give a provisional solution to this problem in §10, as a direct corollary
of the proof of Theorem 6.1.
Step 5. Convert the expansion of kT (x) in §7 in terms of automorphic represen-
tations into a spectral expansion of J(f) = JT0(f).

This problem turns out to be somewhat harder than the last one. We shall
give a provisional solution in §14, as an application of a truncation operator on
functions on G(Q)\G(A)1.
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We shall call the provisional solutions we obtain for the problems of Steps 4
and 5 the coarse geometric expansion and the coarse spectral expansion, following
[CLL]. The identity of these two expansions can be regarded as a first attempt at
a general trace formula. However, because the terms in the two expansions are still
of an essentially global nature, the identity is of little use as it stands. The general
problem of refining the two expansions into more tractible local terms will be left
until Part II. In order to give some idea of what to expect, we shall deal with the
easiest terms near the end of Part I.

In §11, we will rewrite the geometric terms attached to certain semisimple
conjugacy classes in G(Q). The distributions so obtained are interesting new linear
forms in f , known as weighted orbital integrals. In §15, we will rewrite the spectral
terms attached to certain induced cuspidal automorphic representations of G(A).
The resulting distributions are again new linear forms in f , known as weighted
characters. This will set the stage for Part II, where one of the main tasks will be
to write the entire geometric expansion in terms of weighted orbital integrals, and
the entire spectral expansion in terms of weighted characters.

There is a common thread to Part I. It is the proof of Theorem 6.1. For
example, the proofs of Corollary 10.1, Theorem 11.1, Proposition 12.2 and parts
(ii) and (iii) of Theorem 14.1 either follow directly from, or are strongly motivated
by, the proof of Theorem 6.1. Moreover, the actual assertion of Theorem 6.1 is the
essential ingredient in the proofs of Theorems 9.1 and 9.4, as well as their geometric
analogues in §10 and their spectral analogues in §14. We have tried to emphasize
this pattern in order to give the reader some overview of the techniques.

The proof of Theorem 6.1 itself has both geometric and analytic components.
However, its essence is largely combinatorial. This is due to the cancellation in
(6.1) implicit in the alternating sum over P . At the heart of the proof is the
simplest of all cancellation laws, the identity obtained from the binomial expansion
of
(
1 + (−1)

)n.

Identity 6.2. Suppose that S is a finite set. Then

(6.3)
∑
F⊂S

(−1)|S|−|F | =

{
1 if S = ∅,
0 otherwise.

�

7. Eisenstein series

Eisenstein series are responsible for the greatest discrepancy between what we
need and what we can prove here. Either of the two main references [Lan5] or
[MW2] presents an enormous challenge to anyone starting to learn the subject.
Langlands’s survey article [Lan1] is a possible entry point. For the trace formula,
one can usually make do with a statement of the main theorems on Eisenstein
series. We give a summary, following [A2, §2].

The role of Eisenstein series is to provide a spectral expansion for the kernel
K(x, y). In general, the regular representation R of G(A) on L2

(
G(Q)\G(A)

)
does

not decompose discretely. Eisenstein series describe the continuous part of the
spectrum.

We write RG,disc for the restriction of the regular representation of G(A)1 to
the subspace L2

disc

(
G(Q)\G(A)1

)
of L2

(
G(Q)\G(A)1

)
that decomposes discretely.
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Since G(A) is a direct product of G(A)1 with AG(R)0, we can identify RG,disc

with the representation of G(A) on the subspace L2
disc

(
G(Q)AG(R)0\G(A)

)
of

L2
(
G(Q)AG(R)0\G(A)

)
that decomposes discretely. For any point λ ∈ a∗G,C, the

tensor product

RG,disc,λ(x) = RG,disc(x)eλ(HG(x)), x ∈ G(A),

is then a representation of G(A), which is unitary if λ lies in ia∗G.
We have assumed from the beginning that the invariant measures in use satisfy

any obvious compatibility conditions. For example, if P is a standard parabolic
subgroup, it is easy to check that the Haar measures on the relevant subgroups of
G(A) can be chosen so that∫

G(A)

f(x)dx

=
∫

K

∫
P (A)

f(pk)d�pdk

=
∫

K

∫
MP (A)

∫
NP (A)

f(mnk)dndmdk

=
∫

K

∫
MP (A)1

∫
AP (R)0

∫
NP (A)

f(mank)dndadmdk,

for any f ∈ C∞
c

(
G(A)

)
. We are assuming implicitly that the Haar measures on

K and NP (A) are normalized so that the spaces K and NP (Q)\NP (A) each have
volume 1. The Haar measure dx on G(A) is then determined by Haar measures dm
and da on the groups MP (A)1 and AP (R)0. We write dH for the Haar measure on
aP that corresponds to da under the exponential map. We then write dλ for the
Haar measure on ia∗P that is dual to dH, in the sense that∫

ia∗
P

∫
aP

h(H)e−λ(H)dHdλ = h(0),

for any function h ∈ C∞
c (aP ).

Suppose that P is a standard parabolic subgroup of G, and that λ lies in a∗P,C.
We write

y −→ IP (λ, y), y ∈ G(A),

for the induced representation

IndG(A)
P (A)(INP (A) ⊗RMP ,disc,λ)

of G(A) obtained from λ and the discrete spectrum of the reductive group MP .
This representation acts on the Hilbert space HP of measurable functions

φ : NP (A)MP (Q)AP (R)0\G(A) −→ C

such that the function

φx : m −→ φ(mx), m ∈MP (Q)\MP (A)1,

belongs to L2
disc

(
MP (Q)\MP (A)1

)
for any x ∈ G(A), and such that

‖φ‖2 =
∫

K

∫
MP (Q)\MP (A)1

|φ(mk)|2dmdk <∞.
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For any y ∈ G(A), IP (λ, y) maps a function φ ∈ HP to the function(
IP (λ, y)φ

)
(x) = φ(xy)e(λ+ρP )(HP (xy))e−(λ+ρP )(HP (x)).

We have put the twist by λ into the operator IP (λ, y) rather than the underlying
Hilbert space HP , in order that HP be independent of λ. Recall that the function
eρP (HP (·)) is the square root of the modular function of the group P (A). It is in-
cluded in the definition in order that the representation IP (λ) be unitary whenever
the inducing representation is unitary, which is to say, whenever λ belongs to the
subset ia∗P of a∗P,C.

Suppose that

RMP ,disc
∼=
⊕

π

π ∼=
⊕

π

(⊗
v

πv

)
is the decomposition of RMP ,disc into irreducible representations π =

⊗
v
πv of

MP (A)/AP (R)0. The induced representation IP (λ) then has a corresponding de-
composition

IP (λ) ∼=
⊕

π

IP (πλ) ∼=
⊕

π

(⊗
v

IP (πv,λ)
)

in terms of induced representations IP (πv,λ) of the local groups G(Qv). This follows
from the definition of induced representation, and the fact that

eλ(HMP
(m)) =

∏
v

eλ(HMP
(mv)),

for any point m =
∏
v
mv in MP (A). If λ ∈ ia∗P is in general position, all of

the induced representations IP (πv,λ) are irreducible. Thus, if we understand the
decomposition of the discrete spectrum of MP into irreducible representations of
the local groups MP (Qv), we understand the decomposition of the generic induced
representations IP (λ) into irreducible representations of the local groups G(Qv).

The aim of the theory of Eisenstein series is to construct intertwining operators
between the induced representations IP (λ) and the continuous part of the regular
representation R of G(A). The problem includes being able to construct intertwin-
ing operators among the representations IP (λ), as P and λ vary. The symmetries
among pairs (P, λ) are given by the Weyl sets W (aP , aP ′) of Langlands. For a given
pair P and P ′ of standard parabolic subgroups, W (aP , aP ′) is defined as the set of
distinct linear isomorphisms from aP ⊂ a0 onto aP ′ ⊂ a0 obtained by restriction
of elements in the Weyl group W0. Suppose, for example that G = GL(n). If
P and P ′ correspond to the partitions (n1, . . . , np) and (n′

1, . . . , n
′
p′) of n, the set

W (aP , aP ′) is empty unless p = p′, in which case

W (aP , aP ′) ∼= {s ∈ Sp : n′
i = ns(i), 1 ≤ i ≤ p}.

In general, we say that P and P ′ are associated if the set W (aP , aP ′) is nonempty.
We would expect a pair of induced representations IP (λ) and IP ′(λ′) to be equiva-
lent if P and P ′ belong to the same associated class, and λ′ = sλ for some element
s ∈W (aP , aP ′).

The formal definitions apply to any elements x ∈ G(A), φ ∈ HP , and λ ∈ a∗M,C.
The associated Eisenstein series is

(7.1) E(x, φ, λ) =
∑

δ∈P (Q)\G(Q)

φ(δx)e(λ+ρP )(HP (δx)).
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If s belongs to W (aP , aP ′), the operator

M(s, λ) : HP −→ HP ′

that intertwines IP (λ) with IP ′(sλ) is defined by

(7.2)
(
M(s, λ)φ

)
(x) =

∫
φ(w−1

s nx)e(λ+ρP )(HP (w−1
s nx)e(−sλ+ρP ′ )(HP ′ (x))dn,

where the integral is taken over the quotient

NP ′(A) ∩ wsNP (A)w−1
s \NP ′(A),

and ws is any representative of s in G(Q). A reader so inclined could motivate both
definitions in terms of finite group theory. Each definition is a formal analogue of
a general construction by Mackey [Ma] for the space of intertwining operators
between two induced representations IndH

H1
(ρ1) and IndH

H2
(ρ2) of a finite group H.

It follows formally from the definitions that

E
(
x, IP (λ, y)φ, λ

)
= E(xy, φ, λ)

and
M(s, λ)IP (λ, y) = IP ′(sλ, y)M(s, λ).

These are the desired intertwining properties. However, (7.1) and (7.2) are defined
by sums and integrals over noncompact spaces. They do not generally converge. It
is this fact that makes the theory of Eisenstein series so difficult.

Let H0
P be the subspace of vectors φ ∈ HP that are K-finite, in the sense that

the subset
{IP (λ, k)φ : k ∈ K}

of HP spans a finite dimensional space, and that lie in a finite sum of irreducible
subspaces ofHP under the action IP (λ) of G(A). The two conditions do not depend
on the choice of λ. Taken together, they are equivalent to the requirement that the
function

φ(x∞xfin), x∞ ∈ G(R), xfin ∈ G(Afin),

be locally constant in xfin, and smooth, KR-finite and Z∞-finite in x∞, where Z∞
denotes the algebra of bi-invariant differential operators on G(R). The space H0

P

is dense in HP .
For any P , we can form the chamber

(a∗P )+ =
{
Λ ∈ a

∗
P : Λ(α∨) > 0, α ∈ ∆P

}
in a∗P .

Lemma 7.1 (Langlands). Suppose that φ ∈ H0
P and that λ lies in the open

subset {
λ ∈ a

∗
P,C : Re(λ) ∈ ρP + (a∗P )+

}
of a∗P,C. Then the sum (7.1) and integral (7.2) that define E(x, φ, λ) and(
M(s, λ)φ

)
(x) both converge absolutely to analytic functions of λ. �

For spectral theory, one is interested in points λ such that IP (λ) is unitary,
which is to say that λ belongs to the real subspace ia∗P of a∗P,C. This is outside the
domain of absolute convergence for (7.1) and (7.2). The problem is to show that
the functions E(x, φ, λ) and M(s, λ)φ have analytic continuation to this space. The
following theorem summarizes Langlands’ main results on Eisenstein series.
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Theorem 7.2 (Langlands). (a) Suppose that φ ∈ H0
P . Then E(x, φ, λ) and

M(s, λ)φ can be analytically continued to meromorphic functions of λ ∈ a∗P,C that
satisfy the functional equations

(7.3) E
(
x,M(s, λ)φ, sλ

)
= E(x, φ, λ)

and

(7.4) M(ts, λ) = M(t, sλ)M(s, λ), t ∈W (aP ′ , aP ′′).

If λ ∈ ia∗P , both E(x, φ, λ) and M(s, λ) are analytic, and M(s, λ) extends to a
unitary operator from HP to HP ′ .

(b) Given an associated class P = {P}, define L̂P to be the Hilbert space of
families of measurable functions

F = {FP : ia∗P −→ HP , P ∈ P}
that satisfy the symmetry condition

FP ′(sλ) = M(s, λ)FP (λ), s ∈W (aP , aP ′),

and the finiteness condition

‖F‖2 =
∑
P∈P

n−1
P

∫
ia∗

P

‖FP (λ)‖2dλ <∞,

where
nP =

∑
P ′∈P

|W (aP , aP ′)|

for any P ∈ P. Then the mapping that sends F to the function∑
P∈P

n−1
P

∫
ia∗

P

E
(
x, FP (λ), λ

)
dλ, x ∈ G(A),

defined whenever FP (λ) is a smooth, compactly supported function of λ with values
in a finite dimensional subspace of H0

P , extends to a unitary mapping from L̂P onto
a closed G(A)-invariant subspace L2

P
(
G(Q)\G(A)

)
of L2

(
G(Q)\G(A)

)
. Moreover,

the original space L2
(
G(Q)\G(A)

)
has an orthogonal direct sum decomposition

(7.5) L2
(
G(Q)\G(A)

)
=
⊕
P

L2
P
(
G(Q)\G(A)

)
.

�

Theorem 7.2(b) gives a qualitative description of the decomposition of R. It
provides a finite decomposition

R =
⊕
P

RP ,

where RP is the restriction of R to the invariant subspace L2
P
(
G(Q)\G(A)

)
of

L2
(
G(Q)\G(A)

)
. It also provides a unitary intertwining operator from RP onto

the representation R̂P of G(A) on L̂P defined by(
R̂P(y)F

)
P

(λ) = IP (λ, y)FP (λ), F ∈ L̂2
P , P ∈ P.

The theorem is thus compatible with the general intuition we retain from the theory
of Fourier series and Fourier transforms.
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Let BP be an orthonormal basis of the Hilbert space HP . We assume that
every φ ∈ BP lies in the dense subspace H0

P . It is a direct consequence of Theorem
7.2 that the kernel

K(x, y) =
∑

γ∈G(Q)

f(x−1γy), f ∈ C∞
c

(
G(A)

)
,

of R(f) also has a formal expansion

(7.6)
∑
P

n−1
P

∫
ia∗

P

∑
φ∈BP

E
(
x, IP (λ, f)φ, λ

)
E(y, φ, λ)dλ

in terms of Eisenstein series. A reader to whom this assertion is not clear might
consider the analogous assertion for the case H = R and Γ = {1}. If f belongs to
C∞

c (R), the spectral expansion

K(x, y) = f(−x + y) =
1

2πi

∫
iR

πλ(f)eλxeλydλ, f ∈ C∞
c (R),

of the kernel of R(f), in which

πλ(f) =
∫

R

f(u)eλudu,

is just the inverse Fourier transform of f .
In the case of Eisenstein series, one has to show that the spectral expansion of

K(x, y) converges in order to make the formal argument rigorous. In general, it is
not feasible to estimate E(x, φ, λ) as a function of λ ∈ ia∗P . What saves the day is
the following simple idea of Selberg, which exploits only the underlying functional
analysis.

One first shows that f may be written as a finite linear combination of con-
volutions h1 ∗ h2 of functions hi ∈ Cr

c

(
G(A)

)
, whose archimedean components are

differentiable of arbitrarily high order r. An application of the Holder inequality to
the formal expansion (7.6) establishes that it is enough to prove the convergence in
the special case that f = hi ∗h∗

i , where h∗
i (x) = hi(x−1), and x = y. The integrand

in (7.6) is then easily seen to be nonnegative. In fact, the double integral over λ and
φ can be expressed as an increasing limit of nonnegative functions, each of which
is the kernel of the restriction of R(f) to an invariant subspace. Since this limit is
bounded by the nonnegative function

Ki(x, x) =
∑

γ∈G(Q)

(hi ∗ h∗
i )(x

−1γx),

the integral converges. (See [A3, p. 928–934].)
There is also a spectral expansion for the kernel

KQ(x, y) =
∫

NQ(A)

∑
γ∈MQ(Q)

f(x−1γny)dn

of RQ(f), for any standard parabolic subgroup Q. One has only to replace the
multiplicity nP = nG

P and the Eisenstein series E(x, φ, λ) = EG
P (x, φ, λ) in (7.6) by

their relative analogues nQ
P = nMQ∩P and

EQ
P (x, φ, λ) =

∑
δ∈P (Q)\Q(Q)

φ(δx)e(λ+ρP )(HP (δx)),
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for each P ⊂ Q. Since P\Q = MQ∩P\MQ, the analytic continuation of EQ
P (x, φ, λ)

follows from Theorem 7.2(a), with (MQ,MQ ∩ P ) in place of (G,P ). The spectral
expansion of KQ(x, y) is∑

P⊂Q

(nQ
P )−1

∫
ia∗

P

∑
φ∈BP

EQ
P

(
x, IP (λ, f)φ, λ

)
EQ

P (y, φ, λ)dλ.

If we substitute this formula into (6.1), we obtain a spectral expansion for the
truncated kernel kT (x). The two expansions of kT (x) ultimately give rise to two
formulas for the integral JT (f). They are thus the source of the trace formula.

8. On the proof of the theorem

Theorem 6.1 represents a significant step in the direction of a trace formula.
It is time now to discuss its proof. We shall outline the main argument, proving
as much as possible. There are some lemmas whose full justification will be left to
the references. However, in these cases we shall try to give the basic geometric idea
behind the proof.

Suppose that T1 belongs to the real vector space a0, and that ω is a compact
subset of NP0(A)MP0(A)1. The subset

SG(T1) = SG(T1, ω)

=
{
x = pak : p ∈ ω, a ∈ A0(R)0, k ∈ K, β

(
HP0(a)− T1

)
> 0, β ∈ ∆0

}
of G(A) is called the Siegel set attached to T1 and ω. The inequality in the definition
amounts to the assertion that

τP0

(
HP0(x)− T1

)
= τP0

(
HP0(a)− T1

)
= 1.

For example, if G = SL(3), the condition is that the point HP0(x) in the two
dimensional vector space a0 lies in the open cone in Figure 8.1.

Theorem 8.1 (Borel, Harish-Chandra). One can choose T1 and ω so that

G(A) = G(Q)SG(T1, ω).

This is one of the main results in the foundational paper [BH] of Borel and
Harish-Chandra. It was formulated in the adelic terms stated here in [Bor1]. The
best reference might be the monograph [Bor2]. �

From now on, T1 and ω are to be fixed as in Theorem 8.1. Suppose that T ∈ a0

is a truncation parameter, in the earlier sense that β(T ) is large for each β ∈ ∆0.
We then form the truncated Siegel set

SG(T1, T ) = SG(T1, T, ω) =
{
x ∈ SG(T1, ω) : �

(
HP0(x)− T

)
≤ 0, � ∈ ∆̂0

}
.

For example, if G = SL(3), SG(T1, T ) is the set of elements x ∈ SG(T1) such that
HP0(x) lies in the relatively compact subset of a0 illustrated in Figure 8.2.

We write FG(x, T ) for the characteristic function in x of the projection of
SG(T1, T ) onto G(Q)\G(A). Since G(A)1 ∩ SG(T1, T ) is compact, FG(·, T ) has
compact support on G(Q)\G(A)1, and is invariant under translation by AG(R)0.

More generally, suppose that P is a standard parabolic subgroup. We define
the sets SP (T1) = SP (T1, ω) and SP (T1, T ) = SP (T1, T, ω) and the characteristic
function FP (x, T ) exactly as above, but with ∆P0 , ∆̂P0 and G(Q)\G(A) replaced by
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T1

Figure 8.1. The shaded region is the projection onto a0 of a Siegel
set for G = SL(3). It is the translate of the open cone a

+
P0

by a point

T1 ∈ a0. If T1 is sufficiently regular in the negative cone (−a
+
P0

), the
Siegel set is an approximate fundamental domain.

T1

T

Figure 8.2. The shaded region represents a truncation of the Siegel
set at a point T ∈ a

+
P0

. The image of the truncated Siegel set in
SL(3,Q)\SL(3,A) is compact.

∆P
P0

, ∆̂P
P0

and P (Q)\G(A) respectively. In particular, FP (x, T ) is the characteristic
function of a subset of P (Q)\G(A). More precisely, if

x = nmak, n ∈ NP (A), m ∈MP (A)1, a ∈ AP (R)0, k ∈ K,

then
FP (x, T ) = FP (m,T ) = FMP (m,T ).

Lemma 8.2. For any x ∈ G(A), we have∑
P

∑
δ∈P (Q)\G(Q)

FP (δx, T )τP

(
HP (δx)

)
= 1.
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In case G = SL(2), the lemma follows directly from classical reduction theory,
as we shall see in Figure 8.3 below. The general proof is established from properties
of finite dimensional Q-rational representations of G. (See [A3, Lemma 6.4], a result
that is implicit in Langlands monograph, for example in [Lan5, Lemma 2.12].)

Lemma 8.2 can be restated geometrically in terms of the subsets

GP (T ) =
{
x ∈ P (Q)\G(A) : FP (x, T ) = 1, τP

(
HP (x)− T

)
= 1
}

of P (Q)\G(A). The lemma asserts that for any P , the projection of P (Q)\G(A)
onto G(Q)\G(A) maps GP (T ) injectively onto a subset GP (T ) of G(Q)\G(A),
and that G(Q)\G(A) is a disjoint union over P of the sets GP (T ). Otherwise
said, G(Q)\G(A)1 has a partition parametrized by the set of standard parabolic
subgroups, which separates the problem of noncompactness from the topological
complexity of G(Q)\G(A)1. The subset corresponding to P = G is compact but
topologically complex, while the subset corresponding to P = P0 is topologically
simple but highly noncompact. The subset corresponding to a group P �∈ {P0, G} is
mixed, being a product of a compact set of intermediate complexity with a simple
set of intermediate degree of noncompactness. The partition of G(Q)\G(A)1 is,
incidentally, closely related to the compactification of this space defined by Borel
and Serre.

Consider the case that G = SL(2). If K is the standard maximal compact
subgroup of SL(2,A), Theorem 2.1(a) tells us that

SL(2,Q)\SL(2,A)/K ∼= SL(2,Z)\SL(2,R)/SO(2) ∼= SL(2,Z)\H,

where H ∼= SL(2,R)/SO(2) is the upper half plane. Since they are right K-
invariant, the two sets GP (T ) in this case may be identified with subsets of
SL(2,Z)\H, which we illustrate in Figure 8.3. The darker region in the figure
represents the standard fundamental domain for SL(2,Z) in H. Its intersection
with the lower bounded rectangle equals GG(T ), while its intersection with the
upper unbounded rectangle equals GP0(T ). The larger unbounded rectangle repre-
sents a Siegel set, and its associated truncation. These facts, together with Lemma
8.2, follow in this case from a basic fact from classical reduction theory. Namely,
if γ ∈ SL(2,Z) and z ∈ H are such that the y-coordinates of both z and γz are
greater than eT , then γ is upper triangular.

For another example, consider the case that G = SL(3). In this case there
are four sets, corresponding to the four standard parabolic subgroups P0, P1, P2

and G. In Figure 8.4, we illustrate the partition of G(Q)\G(A)1 by describing the
corresponding partition of the image in a0 of the Siegel set S(T1). �

Lemma 8.2 is a critical first step in the proof of Theorem 6.1. We shall actually
apply it in a slightly different form. Suppose that P1 ⊂ P . Then

P1\P = (P1 ∩MP )NP \MPNP
∼= P1 ∩MP \MP .

We write τP
P1

= τP1∩MP
and τ̂P

P1
= τ̂P1∩MP

. We shall regard these two functions as
characteristic functions on a0 that depend only on the projection of a0 onto a

P2
P1

,
relative to the decomposition

a0 = a
P1
0 ⊕ a

P2
P1
⊕ aP2 .



40 JAMES ARTHUR

1/2−1/2 1−1

y = eT

y = eT1

GG(T )

GP0(T )

Figure 8.3. An illustration for H = SL(2,R)/SO(2,R) of a stan-
dard fundamental domain and its truncation at a large positive num-
ber T , together with the more tractible Siegel set and its associated
truncation.

T1

T

P = P0

P = P2

P = P1P = G

Figure 8.4. A partition of the region in Figure 8.1 into four sets,
parametrized by the four standard parabolic subgroups P of SL(3).
The set corresponding to P = P0 is the truncated region in Figure
8.2.

If P is fixed, we obtain the identity

(8.1)
∑

{P1:P1⊂P}

∑
δ1∈P1(Q)\P (Q)

FP1(δ1x, T )τP
P1

(
HP1(δ1x)− T

)
= 1
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by applying Lemma 8.2 to MP instead of G, noting at the same time that

FP1(y, T ) = FMP1 (m,T )

and
HP1(y) = HMP1

(m),
for any point

y = nmk, n ∈ NP (A), m ∈MP (A), k ∈ K.

We can now begin the proof of Theorem 6.1. We write

kT (x) =
∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx)τ̂P

(
HP (δx)− T

)
=
∑
P

(−1)dim(AP /AG)
∑

δ

( ∑
P1⊂P

∑
δ1∈P1(Q)\P (Q)

FP1(δ1δx, T )τP
P1

(
HP1(δ1δx)− T

))
· τ̂P

(
HP (δx)− T

)
KP (δx, δx),

by substituting (8.1) into the definition of kT (x). We then write

KP (δx, δx) = KP (δ1δx, δ1δx)

and
τ̂P

(
HP (δx)− T

)
= τ̂P

(
HP (δ1δx)− T

)
,

since both functions are left P (Q)-invariant. Combining the double sum over δ and
δ1 into a single sum over δ ∈ P1(Q)\G(Q), we write kT (x) as the sum over pairs
P1 ⊂ P of the product of (−1)dim(AP /AG) with∑

δ∈P1(Q)\G(Q)

FP1(δx, T )τP
P1

(
HP1(δx)− T

)
τ̂P

(
HP (δx)− T

)
KP (δx, δx).

The next step is to consider the product

τP
P1

(
HP1(δx)− T

)
τ̂P

(
HP (δx)− T

)
= τP

P1
(H1)τ̂P (H1),

for the vector
H1 = HP1(δx)− TP1

in aP1 . (We have written TP1 for the projection of T onto aP1 .) We claim that

τP
P1

(H1)τ̂P (H1) =
∑

{P2,Q:P⊂P2⊂Q}
(−1)dim(AP2/AQ)τQ

P1
(H1)τ̂Q(H1),

for fixed groups P1 ⊂ P . Indeed, for a given pair of parabolic subgroups P ⊂ Q,
the set of P2 with P ⊂ P2 ⊂ Q is bijective with the collection of subsets ∆P2

P of
∆Q

P . Since

(−1)dim(AP2/AQ) = (−1)|∆
Q
P |−|∆P2

P |,

the claim follows from Identity 6.2. We can therefore write

(8.2) τP
P1

(H1)τ̂P (H1) =
∑

{P2:P2⊃P}
σP2

P1
(H1),

where
σP2

P1
(H1) =

∑
{Q:Q⊃P2}

(−1)dim(AP2/AQ)τQ
P1

(H1)τ̂Q(H1).
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Lemma 8.3. Suppose that P1 ⊂ P2, and that

H1 = H2
1 + H2, H2

1 ∈ a
P2
P1
, H2 ∈ aG

P2
,

is a point in the space aG
P1

= a
P2
P1
⊕aG

P2
. The function σP2

P1
(H1) then has the following

properties.
(a) σP2

P1
(H1) equals 0 or 1.

(b) If σP2
P1

(H1) = 1, then τP2
P1

(H2
1 ) = 1, and ‖H2‖ ≤ c‖H2

1‖, for a positive
constant c that depends only on P1 and P2.

The proof of Lemma 8.3 is a straightforward analysis of roots and weights. It
is based on the intuition gained from the example of G = SL(3), P1 = P0, and P2 a
(standard) maximal parabolic subgroup. For the general case, we refer the reader
to Lemma 6.1 of [A3], which gives an explicit description of the function σP2

P1
from

which the conditions (a) and (b) are easily inferred. In the case of the example, Q
is summed over the set {P2, G}, and we obtain a difference

σP2
P1

(H1) = σP2
P0

(H1) = τP2
P0

(H1)τ̂P2(H1)− τP0(H1)

of two characteristic functions. The first characteristic function is supported on
the open cone generated by the vectors β∨

1 and �∨
2 in Figure 8.5. The second

characteristic function is supported on the open cone generated by �∨
1 and �∨

2 .
The difference σP2

P1
(H1) is therefore the characteristic function of the half open cone

generated by β∨
1 and �∨

1 , the region shaded in Figure 8.5. It is obvious that this
function satisfies the conditions (i) and (ii).

β∨
1

�∨
2

�∨
1

HH2

H2
1

Figure 8.5. The shaded region is the complement in the upper right
hand quadrant of the acute angled cone spanned by �∨

1 and �∨
2 . It

represents the support of the characteristic function σP2
P1

(H1) attached
to G = SL(3), P1 = P0 minimal, and P2 maximal. This function has
compact support in the horizontal component H2 of H1, and semi-
infinite support in the vertical component H2

1 .

�
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We have established that kT (x) equals∑
P1⊂P

(−1)dim(AP /AG)
∑

δ∈P1(Q)\G(Q)

FP1(δx, T )·

·
( ∑

{P2:P2⊃P}
σP2

P1

(
HP1(δx)− T

))
KP (δx, δx).

Therefore kT (x) = kT (x, f) has an expansion

(8.3)
∑

P1⊂P2

∑
δ∈P1(Q)\G(Q)

FP1(δx, T )σP2
P1

(
HP1(δx)− T

)
kP1,P2(δx),

where kP1,P2(x) = kP1,P2(x, f) is the value at y = x of the alternating sum

KP1,P2(x, y) =
∑

{P :P1⊂P⊂P2}
(−1)dim(AP /AG)KP (x, y)(8.4)

=
∑
P

(−1)dim(AP /AG)
∑

γ∈MP (Q)

∫
NP (A)

f(x−1γny)dn.

The function

χT (x) = χT
P1,P2

(x) = FP1(x, T )σP2
P1

(
HP1(x)− T

)
takes values 0 or 1. We can therefore write

|kT (x)| ≤
∑

P1⊂P2

∑
δ∈P1(Q)\G(Q)

χT (δx)|kP1,P2(δx)|.

It follows that

(8.5)
∫

G(Q)\G(A)1
|kT (x)|dx ≤

∑
P1⊂P2

∫
P1(Q)\G(A)1

χT (x)|kP1,P2(x)|dx.

Suppose that the variable of integration x ∈ P1(Q)\G(A)1 on the right hand side
of this inequality is decomposed as

(8.6) x = p1a1k,

and

(8.7) HP1(a1) = H2
1 + H2, H2

1 ∈ a
P2
P1
, H2 ∈ aG

P2
,

where p1 ∈ P1(Q)\MP1(A)1NP1(A), a1 ∈ AP1(R)0 ∩ G(A)1, and k ∈ K. The
integrand is then compactly supported in p1, k and H2. We need only study its
behaviour in H2

1 , for points H2
1 with τP2

P1
(H2

1 − T ) > 0. This is the heart of the
proof. It is where we exploit the cancellation implicit in the alternating sum over
P .

We claim that the sum over γ ∈MP (Q) in the formula for

kP1,P2(x) = KP1,P2(x, x)

can be restricted to the subset P1(Q) ∩MP (Q) of MP (Q). More precisely, given
standard parabolic subgroups P1 ⊂ P ⊂ P2, a point T ∈ a

+
0 with β(T ) large

(relative to the support of f) for each β ∈ ∆0, and a point x ∈ P1(Q)\G(A)1 with
χT (x) �= 0, we claim that ∫

NP (A)

f(x−1γnx)dn = 0,
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for any element γ in the complement of P1(Q) in MP (Q).
Consider the example that G = SL(2), P1 = P0, and P = P2 = G. Then

NP = NG = {1}. Suppose that γ belongs to the set

MP (Q)− P1(Q) = G(Q)− P0(Q).

Then γ is of the form
(
∗ ∗
c ∗

)
, for some element c ∈ Q∗. Suppose that x is such

that χT (x) �= 0. Then

x = p1a1k, p1 =
(
u1 ∗
0 u−1

1

)
, a1 =

(
er 0
0 e−r

)
, k ∈ K,

for an element u1 ∈ A∗ with |u1| = 1 and a real number r that is large. We see that∫
NP (A)

f(x−1γnx)dn = f(x−1γx)

= f

(
k−1

(
er 0
0 e−r

)−1(
u1 0
0 u−1

1

)−1(∗ ∗
c ∗

)(
u1 ∗
0 u−1

1

)(
er 0
0 e−r

)
k

)

= f

(
k−1

(
∗ ∗

u2
1e

2rc ∗

)
k

)
.

Since f is compactly supported, and |u2
1e2rc| = e2r is large, the last expression

vanishes. The claim therefore holds in the special case under consideration.
The claim in general is established on p. 944 of [A3]. Taking it now for granted,

we can then replace the sum over MP (Q) in the expression for kP1,P2(x) by a
sum over P1(Q) ∩ MP (Q). But P1(Q) ∩ MP (Q) equals MP1(Q)NP

P1
(Q), where

NP
P1

= NP1 ∩MP is the unipotent radical of the parabolic subgroup P1 ∩MP of
MP . We may therefore write kP1,P2(x) as∑

{P :P1⊂P⊂P2}
(−1)dim(AP /AG)

∑
µ∈MP1 (Q)

∑
ν∈NP

P1
(Q)

∫
NP (A)

f(x−1µνnx)dn.

Now the restriction of the exponential map

exp : nP1 = n
P
P1
⊕ nP −→ NP1 = NP

P1
NP

is an isomorphism of algebraic varieties over Q, which maps the Haar measure dx1

on nP1(A) to the Haar measure dn1 on NP1(A). This allows us to write kP1,P2(x)
as ∑

µ∈MP1 (Q)

( ∑
P :P1⊂P⊂P2}

(−1)dim(AP /AG)
∑

ζ∈nP
P1

(Q)

∫
nP (A)

f
(
x−1µ exp(ζ + X)x

)
dX
)
.

There is one more operation to be performed on our expression for kP1,P2(x).
We shall apply the Poisson summation formula for the locally compact abelian
group nP

P1
(A) to the sum over the discrete cocompact subgroup nP

P1
(Q). We identify

nP
P1

with dim(nP
P1

)-copies of the additive group by choosing a rational basis of root
vectors. We can then identify nP

P1
(A) with its dual group by means of the standard

bilinear form 〈·, ·〉 on Adim(nP
P1

) and a nontrivial additive character ψ on A/Q. We
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obtain an expression∑
µ

∑
P

(−1)dim(AP /AG)
∑

ξ∈nP
P1

(Q)

∫
nP1 (A)

f
(
x−1µ exp(X1)x

)
ψ
(
〈ξ,X1〉

)
dX1

for kP1,P2(x). But nP
P1

(Q) is contained in n
P2
P1

(Q), for any P with P1 ⊂ P ⊂ P2. As
P varies, certain summands will occur more than once, with differing signs. This
allows us at last to effect the cancellation given by the alternating sum over P . Set

n
P2
P1

(Q)′ =
{
ξ ∈ n

P2
P1

(Q) : ξ /∈ n
P
P1

(Q), for any P � P2

}
.

It then follows from Identity 6.2 that kP1,P2(x) equals
(8.8)

(−1)dim(AP2/AG)
∑

µ∈MP1 (Q)

∑
ξ∈n

P2
P1

(Q)′

(∫
nP1 (A)

f(x−1µ expX1x)ψ
(
〈ξ,X1〉

)
dX1

)
.

We have now obtained an expression for kP1,P2(x, x) that will be rapidly de-
creasing in the coordinate H2

1 of x, relative to the decompositions (8.6) and (8.7).
The main reason is that the integral

hx,µ(Y1) =
∫

nP1 (A)

f(x−1µ expX1x)ψ
(
〈Y1, X1〉

)
dX1

is a Schwartz-Bruhat function of Y1 ∈ nP1(A). This function varies smoothly with
x ∈ G(A), and is finitely supported in µ ∈ MP1(Q), independently of x in any
compact set.

We substitute the formula (8.8) for kP1,P2(x) into the right hand side of (8.5),
and then decompose the integral over x according to the (8.6). We deduce that the
the integral ∫

G(Q)\G(A)1
|kT (x)|dx

is bounded by a constant multiple of

(8.9)
∑

P1⊂P2

∑
µ∈MP1 (Q)

∑
ξ∈n

P2
P1

(Q)′

sup
y

∫ ∣∣hy,µ

(
Ad(a1)ξ

)∣∣da1,

where the integral is taken over the set of elements a1 in AP1(R)0 ∩ G(A)1 with
σP2

P1

(
HP1(a1) − T

)
= 1, and the supremum is taken over the compact subset of

elements

y = a−1
1 p1a1k, p1 ∈ P1(Q)\MP1(A)1NP1(A), a ∈ AP1(R)0 ∩G(A)1, k ∈ K,

in G(A)1 with FP1(p1, T ) = σP2
P1

(
HP1(a1) − T

)
= 1. We have used two changes

of variables of integration here, with complementary Radon-Nikodym derivatives,
which together have allowed us to write

dX1dx = d(a−1
1 X1a1)dp1da1dk, x = p1a1k.

The mapping Ad(a1) in (8.9) acts by dilation on ξ. We leave the reader to show
that this property implies that (8.9) is finite, and hence that the integral of |kT (x)|
converges. (See [A3, Theorem 7.1].) This completes our discussion of the proof of
Theorem 6.1. �
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We have seen that Lemma 8.3 is an essential step in the proof of Theorem
6.1. There is a particularly simple case of this lemma that is important for other
combinatorial arguments. It is the identity

(8.10)
∑

{P :P1⊂P}
(−1)dim(AP1/AP )τP

P1
(H1)τ̂P (H1) =

{
0, if P1 �= G,
1, if P1 = G,

obtained by setting P2 = P1. The identity holds for any standard parabolic sub-
group P1 and any point H1 ∈ aP1 . Indeed, the left hand side of (8.10) equals
σP1

P1
(H1), so the identity follows from condition (ii) of Lemma 8.3.
There is also a parallel identity

(8.11)
∑

{P :P1⊂P}
(−1)dim(AP1/AP )τ̂P

P1
(H1)τP (H1) =

{
0, if P1 �= G,
1, if P1 = G,

related by inversion to (8.10). To see this, it is enough to consider the case that P1

is proper in G. One can then derive (8.11) from (8.10) by evaluating the expression∑
{P,Q:P1⊂P⊂Q}

(−1)dim(AP /AQ)τ̂P
P1

(H1)τ
Q
P (H1)τ̂Q(H1)

as two different iterated sums. For if one takes Q to index the inner sum, and
assumes inductively that (8.11) holds whenever G is replaced by a proper Levi
subgroup, one finds that the expression equals the sum of τ̂P1(H1) with the left
hand side of (8.11). On the other hand, by taking the inner sum to be over P ,
one sees from (8.10) that the expression reduces simply to τ̂P1(H1). It follows that
the left hand side of (8.11) vanishes, as required. In the case that G = SL(3) and
P1 = P0 is minimal, the reader can view the left hand side of (8.11) (or of (8.10)) as
an algebraic sum of four convex cones, formed in the obvious way from Figure 5.1.
In general, (8.11) is only one of several identities that can be deduced from (8.10).
We shall describe these identities, known collectively as Langlands’ combinatorial
lemma, in §17.

9. Qualitative behaviour of JT (f)

Theorem 6.1 allows us to define the linear form

JT (f) = JG,T (f) =
∫

G(Q)\G(A)1
kT (x, f)dx, f ∈ C∞

c

(
G(A)

)
,

on C∞
c

(
G(A)

)
. We are still a long way from converting the geometric and spectral

expansions of kT (x, f) to an explicit trace formula. We put this question aside for
the moment, in order to investigate two qualitative properties of JT (f).

The first property concerns the behaviour of JT (f) as a function of T .

Theorem 9.1. For any f ∈ C∞
c

(
G(A)

)
, the function

T −→ JT (f),

defined for T ∈ a
+
0 sufficiently regular, is a polynomial in T whose degree is bounded

by the dimension of aG
0 .
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We shall sketch the proof of Theorem 9.1. Let T1 be a fixed point in a0 with
β(T1) large for every β ∈ ∆0, and let T ∈ a0 be a variable point with β(T −T1) > 0
for each β. It would be enough to show that the function

T −→ JT (f)− JT1(f) =
∫

G(Q)\G(A)1

(
kT (x)− kT1(x)

)
dx

is a polynomial in T . If we substitute the definition (6.1) for the two functions in
the integrand, we see that the only terms in the resulting expression that depend
on T and T1 are differences of characteristic functions

τ̂P

(
HP (δx)− T

)
− τ̂P

(
HP (δx)− T1

)
.

We need to compare the supports of these two functions. We shall do so by ex-
panding the first function in terms of analogues of the second function for smaller
groups.

Suppose that H and X range over points in aG
0 . We define functions

Γ′
P (H,X), P ⊃ P0,

inductively on dim(AP /AG) by setting

(9.1) τ̂P (H −X) =
∑

{Q:Q⊃P}
(−1)dim(AQ/AG)τ̂Q

P (H)Γ′
Q(H,X),

for any P . Since the summand with Q = P equals the product of (−1)dim(AP /AG)

with Γ′
P (H,X), (9.1) does indeed give an inductive definition of Γ′

P (H,X) in terms
of functions Γ′

Q(H,X) with dim(AQ/AG) less than dim(AP /AG). It follows induc-
tively from the definition that Γ′

P (H,X) depends only on the projections HP and
TP of H and T onto aG

P .

Lemma 9.2. (a) For any X and P , the function

H −→ Γ′
P (H,X), H ∈ aG

P ,

is compactly supported.
(b) The function

X −→
∫

aG
P

Γ′
P (H,X)dH, X ∈ aG

P ,

is a homogeneous polynomial of degree equal to dim(aG
P ).

Once again, we shall be content to motivate the lemma geometrically in some
special cases. For the general case, we refer the reader to [A5, Lemmas 2.1 and
2.2].

The simplest case is when aG
P is one-dimensional. Suppose for example that

G = SL(3) and P = P1 is a maximal parabolic subgroup. Then Q is summed over
the set {P1, G}. Taking X to be a fixed point in positive chamber in aG

P , we see
that H → Γ′

P (H,X) is the difference of characteristic functions of two open half
lines, and is hence the characteristic function of the bounded half open interval in
Figure 9.1.

Suppose that G = SL(3) and P = P0. Then Q is summed over the set
{P0, P1, P2, G}, where P1 and P2 are the maximal parabolic subgroups represented
in Figure 5.1. If X is a fixed point in the positive chamber a

+
0 in aG

P = a0, we
can describe the summands in (9.1) corresponding to P1 and P2 with the help of
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0 X

Γ′
P (H,X) = 1 Γ′

P (H,X) = 0
a

G
P

Figure 9.1. The half open, bounded interval represents the support
of a characteristic function Γ′

P (H,X) of H, for a maximal parabolic
subgroup P ⊂ G. It is the complement of one open half line in
another.

Figure 9.1. We see that the function H → Γ′
P (H,X) is a signed sum of character-

istic functions of four regions, two obtuse cones and two semi-infinite rectangles.
Keeping track of the signed contribution of each region in Figure 9.2, we see that
Γ′

P (H,X) is the characteristic function of the bounded shaded region in the figure.
It is clear that the area of this figure is a homogeneous polynomial of degree 2 in
the coordinates of X.

X

+1− 1

+1− 1

+1− 1

+1 + 1− 1

0

Figure 9.2. The bounded shaded region represents the support of
the characteristic function Γ′

P (H,X) of H, for the minimal parabolic
subgroup P = P0 of SL(3). It is an algebraic sum of four unbounded
regions, the two obtuse angled cones with vertices 0 and X, and the
two semi-infinite rectangles defined by 0 and the projections of X onto
the two spaces aP1 and aP2 .

�

Let us use Lemma 9.2 to prove Theorem 9.1. We set H = HP (δx) − T1 and
X = T − T1. Then H −X equals HP (δx)− T , and the expansion (9.1) is

τ̂P

(
HP (δx)−T

)
=
∑
Q⊃P

(−1)dim(AQ/AG)τ̂Q
P

(
HP (δx)−T1

)
Γ′

Q

(
HP (δx)−T1, T −T1

)
.
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Substituting the right hand side of this formula into the definition of JT (f), we
obtain

JT (f) =
∫

G(Q)\G(A)1

∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

∑
Q⊃P

(−1)dim(AQ/AG)C(δx)dx

=
∑
Q

∫
G(Q)\G(A)1

∑
P⊂Q

(−1)dim(AP /AQ)
∑

δ∈Q(Q)\G(Q)

∑
η∈P (Q)\Q(Q)

C(ηδx)dx

=
∑
Q

∫
Q(Q)\G(A)1

∑
P⊂Q

(−1)dim(AP /AQ)
∑

η∈P (Q)∩MQ(Q)\MQ(Q)

C(ηx)dx,

where

C(y) = KP (y, y)τ̂Q
P

(
HP (y)− T1

)
Γ′

Q

(
HQ(y)− T1, T − T1

)
.

We are going to make a change of variables in the integral over x in Q(Q)\G(A)1.
Since the expression we ultimately obtain will be absolutely convergent, this change
of variables, as well as the ones above, will be justified by Fubini’s theorem.

We write x = nQmQaQk, for variables nQ,mQ, aQ and k in NQ(Q)\NQ(A),
MQ(Q)\MQ(A)1, AQ(R)0∩G(A)1, and K respectively. The invariant measures are
then related by

dx = δQ(aQ)dnQdmQdaQdk.

The three factors in the product C(ηx) become

Γ′
Q

(
HQ(ηx)− T1, T − T1

)
= Γ′

Q

(
HQ(x)− T1, T − T1

)
= Γ′

Q

(
HQ(aQ)− T1, T − T1

)
,

τ̂Q
P

(
HP (ηx)− T1

)
= τ̂Q

P

(
HP (ηmQ)− T1

)
,

and

KP (ηx, ηx) =
∫

NP (A)

∑
γ∈MP (Q)

f(k−1m−1
Q a−1

Q n−1
Q η−1 · γn · ηnQaQmQk)dn.

In this last integrand, the element η normalizes the variables nQ and aQ without
changing the measures. The same is true of the element γ. We can therefore absorb
both variables in the integral over n. Since

δQ(aQ)dn = d(a−1
Q n−1

Q nnQaQ),

the product of δQ(aQ) with KP (ηx, ηx) equals

(9.2)
∫

NP (A)

∑
γ∈MP (Q)

f(k−1m−1
Q η−1 · γn · ηmQk)dn.

The original variable nQ has now disappeared from all three factors, so we may as
well write

dn = d(nQnQ) = dnQdnQ, nQ ∈ NQ
P (A), nQ ∈ NQ(A),
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for the decomposition of the measure in NP (A). The last expression (9.2) is the
only factor that depends on the original variable k. Its integral over k equals∫

K

∫
NQ(A)

∫
NQ

P (A)

∑
γ∈MP (Q)

f(k−1m−1
Q η−1 · γnQnQ · ηmQk)dnQdnQdk

=
∫

NQ
P (A)

∑
γ∈MP (Q)

∫
K

∫
NQ(A)

f(k−1m−1
Q η−1 · γnQ · ηmQnQk)dnQdkdnQ

=
∫

NQ
P (A)

∑
γ∈MP (Q)

fQ(m−1
Q η−1 · γnQ · ηmQ)dnQ

= KP∩MQ
(ηmQ, ηmQ),

where

fQ(m) = δQ(m)
1
2

∫
K

∫
NQ(A)

f(k−1mnQk)dnQdk, m ∈MQ(A),

and KP∩MQ
(·, ·) is the induced kernel (4.1), but with G, P , and f replaced by MQ,

P ∩MQ, and fQ respectively. We have used the facts that

dnQ = d
(
(ηmQ)−1nQ(ηmQ)

)
,

for η and mQ as above, and that

δQ(m) = e2ρQ(HQ(m)) = 1,

when m = γ lies in MQ(Q). The correspondence f → fQ is a continuous linear
mapping from C∞

c

(
G(A)

)
to C∞

c

(
MQ(A)

)
. It was introduced originally by Harish-

Chandra to study questions of descent.
We now collect the various terms in the formula for JT (f). We see that JT (f)

equals the sum over Q and the integral over mQ in MQ(Q)\MQ(A)1 of the product
of∑
P⊂Q

(−1)dim(AP /AQ)
∑

η∈P (Q)∩MQ(Q)\MQ(Q)

KP∩MQ
(ηmQ, ηmQ)τ̂Q

P

(
HP (ηmQ)− T1

)
with the factor

pQ(T1, T ) =
∫

AQ(R)0∩G(R)1
Γ′

Q

(
HQ(aQ)− T1, T − T1

)
da

=
∫

aG
Q

Γ′
Q(H − T1, T − T1)dH.

By Lemma 9.2, the last factor is a polynomial in T of degree equal to dim(aG
Q). To

analyze the first factor, we note that

dim(AP /AQ) = dim(AP∩MQ
/AMQ

)

and
τ̂Q
P

(
HP (ηmQ)− T1

)
= τ̂

MQ

P∩MQ

(
HP∩MQ

(ηmQ)− T1

)
,

and that the mapping P → P ∩MQ is a bijection from the set of standard parabolic
subgroups P of G with P ⊂ Q onto the set of standard parabolic subgroups of MQ.
The first factor therefore equals the analogue kT1(mQ, fQ) for T1, mQ and fQ of the
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truncated kernel kT (x, f). Its integral over mQ equals JMQ,T1(fQ). We conclude
that

(9.3) JT (f) =
∑

Q⊃P0

JMQ,T1(fQ)pQ(T1, T ).

Therefore JT (f) is a polynomial in T whose degree is bounded by the dimension
of aG

0 . This completes the proof of Theorem 9.1. �
Having established Theorem 9.1, we are now free to define JT (f) at any point T

in a0. We could always set T = 0. However, it turns out that there is a better choice
in general. The question is related to the choice of minimal parabolic subgroup P0.

We write P(M0) for the set of (minimal) parabolic subgroups of G with Levi
component M0. The mapping

s −→ sP0 = wsP0w
−1
s , s ∈W0,

is then a bijection from W0 to P(M0). We recall that ws is a representative of s
in G(Q). If G = GL(n), we can take ws to be a permutation matrix, an element
in G(Q) that also happens to lie in the standard maximal compact subgroup K of
G(A). In general, however, s might require a separate representative w̃s in K. The
quotient w−1

s w̃s does belong to M0(A), so the point

HP0(w
−1
s ) = HM0(w

−1
s w̃s)

in a0 is independent of the choice of P0. By arguing inductively on the length of
s ∈W0, one shows that there is a unique point T0 ∈ aG

0 such that

(9.4) HP0(w
−1
s ) = T0 − s−1T0,

for every s ∈W0. (See [A5, Lemma 1.1].) In the case that G equals GL(n) and K
is the standard maximal compact subgroup of GL(n,A), T0 = 0.

Proposition 9.3. The linear form

J(f) = JG(f), f ∈ C∞
c

(
G(A)

)
,

defined as the value of the polynomial

JT (f) = JG,T (f)

at T = T0, is independent of the choice of P0 ∈ P(M0).

The proof of Proposition 9.3 is a straightforward exercise. If T ∈ a0 is highly
regular relative to P0, sT is highly regular relative to the group P ′

0 = sP0 in P(M0).
The mapping

P −→ P ′ = sP = wsPw−1
s , P ⊃ P0,

is a bijection between the relevant families {P ⊃ P0} and {P ′ ⊃ P ′
0} of standard

parabolic subgroups. For any P , the mapping δ → δ′ = wsδ is a bijection from
P (Q)\G(Q) onto P ′(Q)\G(Q). It follows from the definitions that

τ̂P

(
HP (δx)− T

)
= τ̂P ′

(
sHP (w−1

s δ′x)− sT
)

= τ̂P ′
(
sHP (w̃−1

s δ′x) + sHP0(w
−1
s )− sT

)
= τ̂P ′

(
HP ′(δ′x)− (sT − sT0 + T0)

)
.

Comparing the definition (6.1) of the truncated kernel with its analogue for P ′
0 =

sP0, we see that
JT

P0
(f) = JsT−sT0+T0

sP0
(f),
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where the subscripts indicate the minimal parabolic subgroups with respect to
which the linear forms have been defined. Each side of this identity extends to a
polynomial function of T ∈ a0. Setting T = T0, we see that the linear form

J(f) = JT0
P0

(f) = JT0
sP0

(f)

is indeed independent of the choice of P0. (See [A5, p. 18–19].) �
The second qualitative property of JT (f) concerns its behaviour under con-

jugation by G(A). A distribution on G(A) is a linear form I on C∞
c

(
G(A)

)
that

is continuous with respect to the natural topology. The distribution is said to be
invariant if

I(fy) = I(f), f ∈ C∞
c

(
G(A)

)
, y ∈ G(A),

where
fy(x) = f(yxy−1).

The proof of Theorem 6.1 implies that f → JT (f) is a distribution if T ∈ a
+
P0

is
sufficiently regular. Since JT (f) is a polynomial in T , its coefficients are also dis-
tributions. In particular, f → J(f) is a distribution on G(A), which is independent
of the choice of P0 ∈ P(M0). We would like to compute its obstruction to being
invariant.

Consider a point y ∈ G(A), a function f ∈ C∞
c

(
G(A)

)
, and a highly regular

point T ∈ a
+
0 . We are interested in the difference JT (fy)− JT (f).

To calculate JT (fy), we have to replace the factor

KP (δx, δx) =
∑

γ∈MP (Q)

∫
NP (A)

f(x−1δ−1γnδx)dn

in the truncated kernel (6.1) by the expression∑
γ∈MP (Q)

∫
NP (A)

fy(x−1δ−1γnγx)dn = KP (δxy−1, δxy−1).

The last expression is invariant under translation of y by the central subgroup
AG(R)0. We may as well therefore assume that y belongs to the subgroup G(A)1

of G(A). With this condition, we can make a change of variables x → xy in the
integral over G(Q)\G(A)1 that defines JT (fy). We see that JT (fy) equals∫

G(Q)\G(A)1

(∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx)τ̂P

(
HP (δxy)− T

))
dx.

If δx = nmak, for elements n, m, a, and k in NP (A), MP (A)1, AP (R)0 ∩ G(A)1,
and K respectively, set kP (δx) = k. We can then write

τ̂P

(
HP (δxy)− T

)
= τ̂P

(
HP (a) + HP (ky)− T

)
= τ̂P

(
HP (δx)− T + HP (kP (δx)y)

)
.

The last expression has an expansion∑
Q⊃P

(−1)dim(AQ/AG)τ̂Q
P

(
HP (δx)− T

)
Γ′

Q

(
HP (δx)− T,−HP (kP (δx)y)

)
given by (9.1), which we can substitute into the formula above for JT (fy).
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The discussion now is identical to that of the proof of Theorem 9.1. Set

u′
Q(k, y) =

∫
aG

Q

Γ′
Q

(
H,−HQ(ky)

)
dH, k ∈ K,

and

fQ,y(m) = δQ(m)
1
2

∫
K

∫
NQ(A)

f(k−1mnk)u′
Q(k, y)dndk, m ∈MQ(A).

The transformation f → fQ,y is a continuous linear mapping from C∞
c

(
G(A)

)
to C∞

c

(
MQ(A)

)
, which varies smoothly with y ∈ G(A), and depends only on the

image of y in G(A)1. The proof of Theorem 9.1 then leads directly to the following
analogue

(9.5) JT (fy) =
∑

Q⊃P0

JMQ,T (fQ,y)

of (9.3). Since we have taken KQ = K ∩MQ(A) as maximal compact subgroup of
MQ(A), HP0(w

−1
s ) equals HP0∩MQ

(w−1
s ) for any s in the subgroup WM

0 of W0 =
WG

0 . The canonical point T0 ∈ aG
0 , defined for G by (9.4), therefore projects onto

the canonical point in a
Q
0 attached to MQ. Setting T = T0 in (9.5), we obtain the

following result.

Theorem 9.4. The distribution J satisfies the formula

J(fy) =
∑

Q⊃P0

JMQ(fQ,y)

for conjugation of f ∈ C∞
c

(
G(A)

)
by y ∈ G(A). �

10. The coarse geometric expansion

We have constructed a distribution J on G(A) from the truncated kernel
kT (x) = kT (x, f). The next step is to transform the geometric expansion for kT (x)
into a geometric expansion for J(f). The problem is more subtle than it might
first appear. This is because the truncation kT (x) of K(x, x) is not completely
compatible with the decomposition of K(x, x) according to conjugacy classes. The
difficulty comes from those conjugacy classes in G(Q) that are particular to the
case of noncompact quotient, namely the classes that are not semisimple.

In this section we shall deal with the easy part of the problem. We shall give
a geometric expansion of J(f) into terms parametrized by semisimple conjugacy
classes in G(Q). The proof requires only minor variations of the discussion of the
last two sections.

Recall that any element γ in G(Q) has a Jordan decomposition γ = µν. It is
the unique decomposition of γ into a product of a semisimple element µ = γs in
G(Q), with a unipotent element ν = γu in G(Q) that commutes with γs. We define
two elements γ and γ′ in G(Q) to be O-equivalent if their semisimple parts γs and
γ′

s are G(Q)-conjugate. We then write O = OG for the set of such equivalence
classes. A class o ∈ O is thus a union of conjugacy classes in G(Q).

The set O is in obvious bijection with the semisimple conjugacy classes in G(Q).
We shall say that a semisimple conjugacy class in G(Q) is anisotropic if it does not
intersect P (Q), for any P � G. Then γ ∈ G(Q) represents an anisotropic class if
and only if AG is the maximal Q-split torus in the connected centralizer H of γ in
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G. (Such classes were called elliptic in [A3, §2]. However, the term elliptic is better
reserved for semisimple elements γ in G(Q) such as 1, for which AG is the maximal
split torus in the center of H.) We can define an anisotropic rational datum to be
an equivalence class of pairs (P, α), where P ⊂ G is a standard parabolic subgroup,
and α is an anisotropic conjugacy class in MP (Q). The equivalence relation is
just conjugacy, which for standard parabolic subgroups is given by the Weyl sets
W (aP , aP ′) of §7. In other words, (P ′, α′) is equivalent to (P, α) if α = w−1

s α′ws for
some element s ∈ W (aP , aP ′). The mapping that sends {(P, α)} to the conjugacy
class of α in G(Q) is a bijection onto the set of semisimple conjugacy classes in G(Q).
We therefore have a canonical bijection from the set of anisotropic rational data
and our set O. Anisotropic rational data will not be needed for the constructions of
this section. We mention them in order to be able to recognize the formal relations
between these constructions and their spectral analogues in §12.

In case G = GL(n), the classes O are related to basic notions from linear
algebra. The Jordan decomposition is given by Jordan normal form. Two elements
γ and γ′ in GL(n,Q) are O-equivalent if and only if they have the same set of
complex eigenvalues (with multiplicity). This is the same as saying that γ and
γ′ have the same characteristic polynomial. The set O of equivalence classes in
GL(n,Q) is thus bijective with the set of rational monic polynomials of degree
n with nonzero constant term. If o ∈ O is an equivalence class, the intersection
o ∩ P (Q) is empty for all P �= G if and only if the characteristic polynomial of o

is irreducible over Q. This is the condition that o consist of a single anisotropic
conjugacy class in G(Q). A general equivalence class o ∈ O consists of only one
conjugacy class if and only if the elements in o are all semisimple, which in turn is
equivalent to saying that the characteristic polynomial of o has distinct irreducible
factors over Q. We leave the reader to verify these properties from linear algebra.

If G is arbitrary, we have a decomposition

(10.1) K(x, x) =
∑
o∈O

Ko(x, x),

where

Ko(x, x) =
∑
γ∈o

f(x−1γx).

More generally, we can write

KP (x, x) =
∑

γ∈MP (Q)

∫
NP (A)

f(x−1γnx)dn =
∑
o∈O

KP,o(x, x)

for any P , where

KP,o(x, x) =
∑

γ∈MP (Q)∩o

∫
NP (A)

f(x−1γnx)dn.

We therefore have a decomposition

(10.2) kT (x) =
∑
o∈O

kT
o (x)
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of the truncated kernel, where

kT
o (x) = kT

o (x, f)

=
∑
P

(−1)dim(AP /AG)

∫
δ∈P (Q)\G(Q)

KP,o(δx, δx)τ̂P

(
HP (δx)− T

)
.

The following extension of Theorem 6.1 can be regarded as a corollary of its proof.

Corollary 10.1. The double integral

(10.3)
∑
o∈O

∫
G(Q)\G(A)1

kT
o (x, f)dx

converges absolutely.

The proof of Corollary 10.1 is in fact identical to the proof of Theorem 6.1
sketched in §8, but for one point. The discrepancy arises when we apply the Poisson
summation formula to the lattice nP

P1
(Q), for standard parabolic subgroups P1 ⊂ P .

To do so, we require a sum over the lattice, or what amounts to the same thing, a
sum over elements ν ∈ NP

P1
(Q). In the proof of Theorem 6.1, we recall that such a

sum arose from the property

P1(Q) ∩MP (Q) = MP1(Q)NP
P1

(Q).

That it also occurs in treating a class o ∈ O is a consequence of the parallel property

(10.4) P1(Q) ∩MP (Q) ∩ o =
(
MP1(Q) ∩ o

)
NP

P1
(Q).

This is in turn a consequence of the first assertion of the next lemma.

Lemma 10.2. Suppose that P ⊃ P0, γ ∈M(Q), and φ ∈ Cc

(
NP (A)

)
. Then∑

δ∈NP (Q)γs\NP (Q)

∑
η∈NP (Q)γs

φ(γ−1δ−1γηδ) =
∑

ν∈NP (Q)

φ(ν)

and ∫
NP (A)γs\NP (A)

∫
NP (A)γs

φ(γ−1n−1
1 γn2n1)dn2dn1 =

∫
NP (A)

φ(n)dn,

where NP (·)γs
denotes the centralizer of γs in NP (·).

The proof of Lemma 10.2 is a typical change of variable argument for unipotent
groups. The first assertion represents a decomposition of a sum over NP (Q), while
the second is the corresponding decomposition of an adelic integral over NP (A).
(See [A3, Lemmas 2.1 and 2.2].) �

The first assertion of the lemma implies that P (Q) ∩ o equals(
MP (Q) ∩ o

)
NP (Q). If we apply it to the pair (MP , P1 ∩MP ) in place of (G,P ),

we obtain the required relation (10.4). We then obtain Corollary 10.1 by following
step by step the proof of Theorem 6.1. (Theorem 7.1 of [A3] was actually stated
and proved directly for the functions kT

o (x) rather than their sum kT (x).) �
Once we have Corollary 10.1, we can apply Fubini’s theorem to double integral

(10.3). We obtain an absolutely convergent expansion

JT (f) =
∑
o∈O

JT
o (f),
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whose terms are given by absolutely convergent integrals

(10.5) JT
o (f) =

∫
G(Q)\G(A)1

kT
o (x, f)dx, o ∈ O.

The behaviour of JT
o (f) as a function of T is similar to that of JT (f). We have

only to apply the proof of Theorem 9.1 to the absolutely convergent integral (10.5).
This tells us that for any f ∈ C∞

c

(
G(A)

)
and o ∈ O, the function

T −→ JT
o (f),

defined for T ∈ a
+
0 sufficiently regular in a sense that is independent of o, is a

polynomial in T of degree bounded by the dimension of aG
0 . We can therefore

define JT
o (f) for all values of T ∈ a0 by its polynomial extension. We then set

Jo(f) = JT0
o (f), o ∈ O,

for the point T0 ∈ aG
0 given by (9.4). The proof of Proposition 9.3 tells us that

Jo(f) is independent of the choice of minimal parabolic subgroup P0 ∈ P(M0).
The distributions Jo(f) = JG

o (f) can sometimes be invariant, though they are
not generally so. To see this, we apply the proof of Theorem 9.4 to the absolutely
convergent integral (10.5). For any Q ⊃ P0 and h ∈ C∞

c

(
MQ(A)

)
, set

J
MQ
o (h) =

∑
oQ

J
MQ
oQ (h), o ∈ O,

where oQ ranges over the finite preimage of o in OMQ under the obvious mapping
of OMQ into O = OG. We then obtain the variance property

(10.6) Jo(fy) =
∑

Q⊃P0

J
MQ
o (fQ,y), o ∈ O, y ∈ G(A),

in the notation of Theorem 9.4. Observe that o need not lie in the image the map
OMQ → O attached to any proper parabolic subgroup Q � G. This is so precisely
when o is anisotropic, in the sense that it consists of a single anisotropic (semisimple)
conjugacy class. It is in this case that the distribution Jo(f) is invariant.

The expansion of JT (f) in terms of distributions JT
o (f) extends by polynomial

interpolation to all values of T . Setting T = T0, we obtain an identity

(10.7) J(f) =
∑
o∈O

Jo(f), f ∈ C∞
c

(
G(A)

)
,

of distributions. This is what we will call the coarse geometric expansion. The
distributions Jo(f) for which o is anisotropic are to be regarded as general analogues
of the geometric terms in the trace formula for compact quotient.

11. Weighted orbital integrals

The summands Jo(f) in the coarse geometric expansion of J(f) were defined
in global terms. We need ultimately to describe them more explicitly. For example,
we would like to have a formula for Jo(f) in which the dependence on the local
components fv of f is more transparent. In this section, we shall solve the problem
for “generic” classes o ∈ O. For such classes, we shall express Jo(f) as a weighted
orbital integral of f .



11. WEIGHTED ORBITAL INTEGRALS 57

We fix a class o ∈ O, which for the moment we take to be arbitrary. Recall
that

KP,o(x, y) =
∑

γ∈MP (Q)∩o

∫
NP (A)

f(x−1γny)dn,

for any P ⊃ P0. Lemma 10.2 provides a decomposition of the integral over NP (A)
onto a double integral. We define a modified function

(11.1) K̃P,o(x, y) =
∑

γ∈MP (Q)∩o

∑
η∈NP (Q)γs\NP (Q)

∫
NP (A)γs

f(x−1η−1γnηy)dn

by replacing the outer adelic integral of the lemma with a corresponding sum of
rational points. We then define a modified kernel k̃T

o (x) = k̃T
o (x, f) by replac-

ing the function KP,o(δx, δx) in the formula for kT
o (x) with the modified function

K̃P,o(δx, δx). That is,

k̃T
o (x, f) =

∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

K̃P,o(δx, δx)τ̂P

(
HP (δx)− T

)
.

Theorem 11.1. If T ∈ a
+
P0

is highly regular, the integral

(11.2)
∫

G(Q)\G(A)1
k̃T

o (x, f)dx

converges absolutely, and equals JT
o (f).

The proof of Theorem 11.1 is again similar to that of Theorem 6.1, or rather
its modification for the class o discussed in §10. Copying the formal manipulations
from the first half of §8, we write

(11.3)
∫

G(Q)\G(A)1
k̃T

o (x)dx =
∑

P1⊂P2

∫
P1(Q)\G(A)1

χT (x)k̃P1,P2,o(x)dx,

where χT (x) is as in (8.5), and

k̃P1,P2,o(x) =
∑

{P :P1⊂P⊂P2}
(−1)dim(AP /AG)K̃P,o(x, x).

To justify these manipulations, we have to show that for any P1 ⊂ P2, the integral

(11.4)
∫

P1(Q)\G(A)1
χT (x)|k̃P1,P2,o(x)|dx

is finite. This would also establish the absolute convergence assertion of the theo-
rem.

We estimate the integral (11.4) as in the second half of §8. We shall be content
simply to mention the main steps. The first is to show that if T is sufficiently
regular and χT (x) �= 0, the summands in the formula for K̃P,o(x, x) vanish for
elements γ in the complement of P1(Q)∩MP (Q)∩ o in MP (Q)∩ o. The next step
is to write P1(Q) ∩MP (Q) ∩ o as a product

(
MP1(Q) ∩ o

)
NP

P1
(Q), by appealing to

Lemma 10.2. We then have to apply Lemma 10.2 again, with (MP , P1 ∩MP ) in
place of (G,P ), to the resulting sum over (µ, ν) in the product of MP1(Q)∩ o with
NP

P1
(Q). This yields a threefold sum, one of which is taken over the set

NP
P1

(Q)µs
= exp

(
n

P
P1

(Q)µs

)
,



58 JAMES ARTHUR

where nP
P1

(Q)µs
denotes the centralizer of µs in the Lie algebra nP

P1
(Q). The last

step is to apply the Poisson summation formula to the lattice nP
P1

(Q)µs
in nP

P1
(A)µs

.
The resulting cancellation from the alternating sum over P then yields a formula
for k̃P1,P2,o(x) analogous to the formula (8.8) for kP1,P2(x). Namely, k̃P1,P2,o(x)
equals the product of (−1)dim(AP2/AG) with the sum over µ ∈MP1(Q) ∩ o of∑

η∈NP1 (Q)µs\NP1 (Q)

∑
ξ∈n

P2
P1

(Q)′µs

(∫
nP1 (A)µs

f
(
x−1η−1µ exp(X1)ηx

)
ψ
(
〈ξ,X1〉

)
dX1

)
,

where n
P2
P1

(Q)′µs
is the intersection of n

P2
P1

(Q)µs
with the set n

P2
P1

(Q)′ in (8.8). The
convergence of the integral (11.4) is then proved as at the end of §8. (See [A3,
p. 948–949].)

Once we have shown that the integrals (11.4) are finite, we know that the
identity (11.3) is valid. The remaining step is to compare it with the corresponding
identity ∫

G(Q)\G(A)1
kT

o (x)dx =
∑

P1⊂P2

∫
P1(Q)\G(A)1

χT (x)kP1,P2,o(x)dx,

which we obtain by modifying the proof of Theorem 6.1 as in the last section.
Suppose that P1 ⊂ P2 are fixed. We can then write∫

P1(Q)\G(A)1
χT (x)k̃P1,P2,o(x)dx

=
∫

MP1 (Q)NP1 (A)\G(A)1
χT (x)

(∫
NP1 (Q)\NP1 (A)

k̃P1,P2,o(n1x)dn1

)
dx,

since χT (x) is left NP1(A)-invariant. The integral of k̃P1,P2,o(n1x) over n1 is equal
to the sum over pairs

(P, µ), P1 ⊂ P ⊂ P2, µ ∈MP1(Q) ∩ o,

of the product of the sign (−1)dim(AP /AG) with the expression∫
NP1 (Q)\NP1 (A)

∑
η∈NP (Q)µs\NP (Q)

(∫
NP (A)µs

f(x−1n−1
1 η−1µnηn1x)dn

)
dn1.

If we replace the variable n1 by νn1, and then integrate over ν in NP (Q)\NP (A),
we can change the sum over η to an integral over ν in NP (Q)µs

\NP (A). Since
the resulting integrand is invariant under left translation of ν by elements in the
larger group NP (A)µs

, we can in fact integrate ν over NP (A)µs
\NP (A). We can

thus change the sum of η in the expression to an adelic integral over ν. Applying
Lemma 10.2 to the resulting double integral over ν and n, we see that the expression
equals ∫

NP1 (Q)\NP1 (A)

∫
NP (A)

f(x−1n−1
1 µnn1x)dndn1.

The signed sum over (P, µ) of this last expression equals∫
NP1 (Q)\NP1 (A)

kP1,P2,o(n1x)dn1.
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We conclude that∫
P1(Q)\G(A)1

χT (x)k̃P1,P2,o(x)dx

=
∫

MP1 (Q)NP1 (A)\G(A)1
χT (x)

(∫
NP1 (Q)\NP1 (A)

kP1,P2,o(n1x)dn1

)
dx

=
∫

P1(Q)\G(A)1
χT (x)kP1,P2,o(x)dx.

We have shown that the summands corresponding to P1 ⊂ P2 in the two
identities are equal. It follows that∫

G(Q)\G(A)1
k̃T

o (x)dx =
∫

G(Q)\G(A)1
kT

o (x)dx = JT
o (f).

This is the second assertion of Theorem 11.1. �
The formula (11.2) for JT

o (f) is better suited to computation. As an example,
we consider the special case that the class o ∈ O consists entirely of semisimple
elements. Then o is a semisimple conjugacy class in G(Q), and for any element
γ ∈ o, the centralizer G(Q)γ of γ = γs contains no nontrivial unipotent elements.
In particular, the group NP (Q)γs

= NP (Q)γ attached to any P is trivial. It follows
that

K̃P,o(x, x) =
∑

γ∈MP (Q)∩o

∑
η∈NP (Q)

f(x−1η−1γηx).

To proceed, we need to characterize the intersection MP (Q) ∩ o.
In §7, we introduced the Weyl set W (aP1 , aP ′

1
) attached to any pair of standard

parabolic subgroups P1 and P ′
1. Suppose that P1 is fixed. If P is any other standard

parabolic subgroup, we define W (P1;P ) to be the set of elements s in the union over
P ′

1 ⊂ P of the sets W (aP1 , aP ′
1
) such that s−1α > 0 for every root α in the subset

∆P
P ′

1
of ∆P ′

1
. In other words, s−1α belongs to the set ΦP1 for every such α. Suppose

for example that G = GL(n), and that P1 corresponds to the partition (ν1, . . . , νp1)
of n. We noted in §7 that each of the sets W (aP1 , aP ′

1
) is identified with a subset of

the symmetric group Sp1 . The union over P ′
1 of these sets is identified with the full

group Sp1 . If P corresponds to the partition (n1, . . . , np) of n, W (P1;P ) becomes
the set of elements s ∈ Sp1 such that (νs(1), . . . , νs(p1)) is finer than (n1, . . . , np),
and such that s−1(i) < s−1(i + 1), for any i that is not of the form n1 + · · · + nk

for some k.
The problem is simpler if we impose a second condition on o. Suppose that

(P1, α1) represents the anisotropic rational datum attached to o in the last section,
and that γ1 belongs to the anisotropic conjugacy class α1 in MP1(Q). Then γ1

represents the semisimple conjugacy class in o. We know that the group H, obtained
by taking the connected component of 1 in the centralizer of γ1 in G, is contained
in MP1 . For H would otherwise have a proper parabolic subgroup over Q, and
H(Q) would contain a nontrivial unipotent element, contradicting the condition
that o consist entirely of semisimple elements. The group H(Q) is of finite index in
G(Q)γ . We shall say that o is unramified if G(Q)γ is also contained in MP1 . This
is equivalent to asking that the stabilizer of the conjugacy class α1 in W (aP1 , aP1)
be equal to {1}. In the case G = GL(n), the condition is automatically satisfied,
since any centralizer is connected.



60 JAMES ARTHUR

Assume that o is unramified, and that (P1, α1) and γ1 ∈ α1 are fixed as above.
The condition that o be unramified implies that if (P ′

1, α
′
1) is any other representa-

tive of the anisotropic rational datum of o, there is a unique element in W (aP1 , aP ′
1
)

that maps α1 to α′
1. Suppose that P is any standard parabolic subgroup and that

γ is an element in MP ∩ o. It follows easily from this discussion that γ can be
expressed uniquely in the form

γ = µ−1wsγ1w
−1
s µ, s ∈W (P1;P ), µ ∈MP (Q)wsγ1w−1

s
\MP (Q),

where as usual,

MP (Q)wsγ1w−1
s

= MP,wsγ1w−1
s

(Q)

is the centralizer of wsγ1w
−1
s in MP (Q). (See [A3, p. 950].)

Having characterized the intersection MP (Q) ∩ o, we can write

K̃P,o(x, x)

=
∑

s∈W (P1;P )

∑
µ

∑
η∈NP (Q)

f(x−1η−1µ−1wsγ1w
−1
s µηx)

=
∑

s

∑
π

f(x−1π−1wsγ1w
−1
s πx),

where µ and π are summed over the right cosets of MP (Q)wsγw−1
s

in MP (Q) and

P (Q) respectively. Therefore k̃T
o (x) equals the expression∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

K̃P,o(δx, δx)τ̂P

(
HP (δx)− T

)
=
∑
P

(−1)dim(AP /AG)
∑

s∈W (P1;P )

∑
δ

f(x−1δ−1wsγ1w
−1
s δx)τ̂P

(
HP (δx)− T

)
,

where δ is summed over the right cosets of MP (Q)wsγ1w−1
s

in G(Q). Set δ1 = w−1
s δ.

Since

w−1
s

(
MP (Q)wsγ1w−1

s

)
ws = G(Q)γ1 = MP1(Q)γ1 ,

we obtain

k̃T
o (x)

=
∑
P

(−1)dim(AP /AG)
∑

s∈W (P1;P )

∑
δ1

f(x−1δ−1
1 γ1δ1x)τ̂P

(
HP (wsδ1x)− T

)
=
∑
δ1

f(x−1δ−1
1 γ1δ1x)ψT (δ1x),

where δ1 is summed over right cosets of MP1(Q)γ1 in G(Q), and

ψT (y) = ψT
P1

(y) =
∑
P

(−1)dim(AP /AG)
∑

s∈W (P1;P )

τ̂P

(
HP (wsy)− T

)
=
∑
P ′

1

∑
s∈W (aP1 ,aP ′

1
)

∑
{P :s∈W (P1;P )}

(−1)dim(AP /AG)τ̂P

(
HP ′

1
(wsy)− T

)
.
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Therefore

JT
o (f) =

∫
G(Q)\G(A)1

k̃T
o (x, f)dx

=
∫

MP1 (Q)γ1\G(A)1
f(x−1γx)ψT (x)dx.

The convergence of the second integral follows from the convergence of the first
integral (Theorem 11.1), and the fact (implied by Lemma 11.2 below) that the
function χT is nonnegative.

We can write

MP1(Q)γ1\G(A)1 ∼=
(
MP1(Q)γ1\MP1(A)1γ1

)
×
(
MP1(A)1γ1

\G(A)1
)
,

where MP1(A)1γ1
is the centralizer of γ1 in the group MP1(A)1. Since the centralizer

of γ1 in MP1(A) equals its centralizer G(A)γ1 in G(A), we can also write

MP1(A)1γ1
\G(A)1 ∼=

(
AP1(R)0 ∩G(R)1

)
×
(
G(A)γ1\G(A)

)
.

In the formula for JT
o (f) we have just obtained, we are therefore free to decompose

the variable of integration as

x = may, m ∈MP1(Q)γ1\MP1(A)1γ1
, a ∈ AP1(R)0∩G(R)1, y ∈ G(A)γ1\G(A).

Then f(x−1γ1x) = f(y−1γ1y) and ψT (x) = ψT (ay). Therefore

(11.5) JT
o (f) = vol

(
MP1(Q)γ1\MP1(A)1γ1

) ∫
G(A)γ1\G(A)

f(y−1γ1y)vT
P1

(y)dy,

where

vT
P1

(y) =
∫

AP1 (R)0∩G(R)1
ψT (ay)da =

∫
aG

P1

ψT (expH · y)dH.

It remains to evaluate the function vT
P1

(y).
For any parabolic subgroup Q ⊃ P0 and any point Λ ∈ a∗Q, define εQ(Λ) to

be the sign +1 or −1 according to whether the number of roots α ∈ ∆Q with
Λ(α∨) ≤ 0 is even or odd. Let

H −→ φQ(Λ, H), H ∈ aQ,

be the characteristic function of the set of H such that for any α ∈ ∆Q, �α(H) > 0
if Λ(α∨) ≤ 0, and �α(H) ≤ 0 if Λ(α∨) > 0. These functions were introduced
by Langlands [Lan1], and are useful for studying certain convex polytopes. We
apply them to the discussion above by taking Q = P ′

1 and Λ = sΛ1, for an element
s ∈W (aP1 , aP ′

1
) and a point Λ1 in the chamber

(a∗P1
)+ =

{
Λ1 ∈ a

∗
P1

: Λ1(α∨) > 0, α ∈ ∆P1

}
.

Suppose that s belongs to any one of the sets W (aP1 , aP ′
1
). We claim that for

any point H ′ ∈ aP ′
1
, the expression

(11.6)
∑

{P :s∈W (P1;P )}
(−1)dim(AP /AG)τ̂P (H ′)

that occurs in the definition of ψT (y) equals

(11.7) εP ′
1
(sΛ1)φP ′

1
(sΛ1, H

′), Λ1 ∈ (a∗P1
)+.
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To see this, define a parabolic subgroup P s ⊃ P ′
1 by setting

∆P s

P ′
1

= {α ∈ ∆P ′
1

: s−1α > 0}.

The element s then lies in W (P1;P ) if and only if P ′
1 ⊂ P ⊂ P s. The expression

(11.6) therefore equals ∑
{P :P ′

1⊂P⊂P s}
(−1)dim(AP /AG)τ̂P (H ′).

If we write the projection of H ′ onto aG
P ′

1
in the form∑

α

cαα
∨, α ∈ ∆P ′

1
, cα ∈ R,

we can apply (6.3) to the alternating sum over P . We see that the expression
equals the sign εP ′

1
(sΛ1) if H ′ lies in the support of the function φP ′

1
(sΛ1, H

′), and
vanishes otherwise. The claim is therefore valid.

The function ψT (expH · y) equals∑
P ′

1

∑
s∈W (aP1 ,aP ′

1
)

∑
{P :s∈W (P1;P )}

(−1)dim(AP /AG)τ̂P

(
sH + HP ′

1
(wsy)− TP ′

1

)
,

where TP ′
1

is the projection of T onto aP ′
1
. This in turn equals

(11.8)
∑
P ′

1

∑
s∈W (aP1 ,aP ′

1
)

εP ′
1
(sΛ1)φP ′

1

(
sΛ1, sH + HP ′

1
(wsy)− TP ′

1

)
,

by what we have just established. Now as a function H ∈ aG
P1

, (11.8) would appear
to be complicated. It is not! One shows in fact that (11.8) equals the characteristic
function of the projection onto aG

P1
of the convex hull of{

Ys = s−1
(
TP ′

1
−HP ′

1
(wsy)

)
: s ∈W (aP1 , aP ′

1
), P ′

1 ⊃ P0

}
.

The proof of this fact [A1, Lemma 3.2] uses elementary properties of convex hulls
and a combinatorial lemma of Langlands [A1, §2]. We shall discuss it in greater
generality later, in §17. In the meantime, we shall illustrate the property geomet-
rically in the special case that G = SL(3).

Assume for the moment then that G = SL(3) and P1 = P0. In this case, the
signed sum of characteristic functions

φP ′
1

(
sΛ1, sH + HP ′

1
(wsy)− T

)
= φP ′

1

(
sΛ1, s(H − Ys)

)
, H ∈ aP1 = aG

P1
,

is over elements s parametrized by the symmetric group S3. We have of course the
simple roots ∆P1 = {α1, α2}, and the basis {α∨

1 , α
∨
2 } of aP1 dual to ∆̂P1 . Writing

s(H − Ys) = t1α
∨
1 + t2α

∨
2 , ti ∈ R,

we see that φP ′
1

(
sΛ1, s(H − Ys)

)
is the characteristic function of the affine cone{

H = Ys + t1s
−1(α∨

1 ) + t2s
−1(α∨

2 ) : ti > 0 if s−1(αi) < 0; ti ≤ 0 if s−1(αi) > 0
}
.

In Figure 11.1, we plot the six vertices {Ys}, the associated six cones, and the signs

εP ′
1
(sΛ1) = (−1)|{i:s−1(αi)<0}|, s ∈ S3,

by which the corresponding characteristic functions have to be multiplied. We then
observe that the signs cancel in every region of the plane except the convex hull of
the set of vertices.
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Y1

Ys1

Ys2

+1

+1− 1

+1− 1

+1− 1 + 1− 1

+1− 1 + 1− 1

+1− 1 + 1− 1

+1− 1

+1− 1

Figure 11.1. The shaded region is the convex hull of six points
{Ys} in the two dimensional vector space a0 attached to SL(3). It is
a signed sum of six cones, with vertices at each of the six points.

Returning to the general case, we take for granted the assertion that (11.8)
is equal to the characteristic function of the convex hull. Then vT

P1
(y) equals the

volume of the given convex hull. In particular, the manipulations used to derive
the formula (11.5) for JT

o (f) are justified. Observe that

Ys = s−1
(
TP ′

1
−HP ′

1
(wsy)

)
= s−1

(
TP ′

1
−HP ′

1
(w̃sy)−HP ′

1
(wsw̃

−1
s )
)

= s−1
(
TP ′

1
−HP ′

1
(w̃sy)− (T0)P ′

1
+ s(T0)P1

)
.

When T = T0, the point Ys equals

−s−1HP ′
1
(w̃sy) + (T0)P1 .

The point (T0)P1 is independent of s, and consequently represents a fixed translate
of the convex hull. Since it has no effect on the volume, it may be removed from
consideration.

We have established the following result, which we state with P and γ in place
of P1 and γ1.

Theorem 11.2. Suppose that o ∈ O is an unramified class, with anisotropic
rational datum represented by a pair (P, α). Then

(11.9) Jo(f) = vol
(
MP (Q)γ\MP (A)1γ

) ∫
G(A)γ\G(A)

f(x−1γx)vP (x)dx,

where γ is any element in the MP (Q)-conjugacy class α, and vP (x) is the volume
of the projection onto aG

P of the convex hull of{
− s−1HP ′(w̃sx) : s ∈W (aP , aP ′), P ′ ⊃ P0

}
.

�
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12. Cuspidal automorphic data

We shall temporarily put aside the finer analysis of the geometric expansion
in order to develop the spectral side. We are looking for spectral analogues of
the geometric results we have already obtained. In this section, we introduce a
set X that will serve as the analogue of the set O of §10. Its existence is a basic
consequence of Langlands’ theory of Eisenstein series.

A function φ in L2
(
G(Q)\G(A)1

)
is said to be cuspidal if

(12.1)
∫

NP (A)

φ(nx)dn = 0,

for every P �= G and almost every x ∈ G(A)1. This condition is a general analogue
of the vanishing of the constant term of a classical modular form, which character-
izes space of cusp forms. The subspace L2

cusp

(
G(Q)\G(A)1

)
of cuspidal functions

in L2
(
G(Q)\G(A)1

)
is closed and invariant under right translation by G(A)1. The

following property of this subspace is one of the foundations of the subject.

Theorem 12.1 (Gelfand, Piatetski-Shapiro). The space L2
cusp

(
G(Q)\G(A)1

)
decomposes under the action of G(A)1 into a discrete sum of irreducible represen-
tations with finite multiplicities. In particular, L2

cusp

(
G(Q)\G(A)1

)
is a subspace

of L2
disc

(
G(Q)\G(A)1

)
.

The proof is similar to that of the discreteness of the decomposition of R,
in the case of compact quotient. For if G(Q)\G(A)1 is compact, there are no
proper parabolic subgroups, by the criterion of Borel and Harish-Chandra, and
L2

cusp

(
G(Q)\G(A)1

)
equals L2

(
G(Q)\G(A)1

)
. In general, one combines the van-

ishing condition (12.1) with the approximate fundamental domain of Theorem
8.1 to show that for any f ∈ C∞

c

(
G(A)1

)
, the restriction Rcusp(f) of R(f) to

L2
cusp

(
G(Q)\G(A)1

)
is of Hilbert-Schmidt class. In particular, if f(x) = f(x−1),

Rcusp(f) is a compact self-adjoint operator. One then uses the spectral theorem to
show that L2

cusp

(
G(Q)\G(A)1

)
decomposes discretely. See [Lan5] and [Har4]. �

The theorem provides a G(A)1-invariant orthogonal decomposition

L2
cusp

(
G(Q)\G(A)1

)
=
⊕

σ

L2
cusp,σ

(
G(Q)\G(A)1

)
,

where σ ranges over irreducible unitary representations of G(A)1, and
L2

cusp,σ

(
G(Q)\G(A)

)
is G(A)1-isomorphic to a finite number of copies of σ. We

define a cuspidal automorphic datum to be an equivalence class of pairs (P, σ),
where P ⊂ G is a standard parabolic subgroup of G, and σ is an irreducible rep-
resentation of MP (A)1 such that the space L2

cusp,σ

(
MP (Q)\MP (A)1

)
is nonzero.

The equivalence relation is defined by the conjugacy, which for standard parabolic
groups is given by the Weyl sets W (aP , aP ′). In other words, (P ′, σ′) is equivalent
to (P, σ) if there is an element s ∈W (aP , aP ′) such that the representation

s−1σ′ : m −→ σ′(wsmw−1
s ), m ∈MP (A)1,

of MP (A)1 is equivalent to σ. We write X = XG for the set of cuspidal automorphic
data χ = {(P, σ)}.
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Cuspidal functions do not appear explicitly in Theorem 7.2, but they are an
essential ingredient of Langlands’s proof. For example, they give rise to a decom-
position

(12.2) L2
(
G(Q)\G(A)

)
=
⊕
P

L2
P-cusp

(
G(Q)\G(A)

)
,

which is based on cuspidal automorphic data, and is more elementary than the
spectral decomposition (7.5). Let us describe it.

For any P , we have defined the right G(A)-invariant Hilbert space HP of func-
tions on G(A), and the dense subspace H0

P . Let HP,cusp be the subspace of vectors
φ ∈ HP such that for almost all x ∈ G(A), the function φx(m) = φ(mx) on
MP (Q)\MP (A)1 lies in the space L2

cusp

(
MP (Q)\MP (A)1

)
. Then

HP,cusp =
⊕

σ

HP,cusp,σ,

where for any irreducible unitary representation σ of MP (A)1, HP,cusp,σ is the
subspace of vectors φ ∈ HP,cusp such that each of the functions φx lies in the
space L2

cusp,σ

(
MP (Q)\MP (A)1

)
. We write H0

P,cusp and H0
P,cusp,σ for the respective

intersections of HP,cusp and HP,cusp,σ with H0
P .

Suppose that Ψ(λ) is an entire function of λ ∈ a∗P,C of Paley-Wiener type, with
values in a finite dimensional subspace of functions x→ Ψ(λ, x) in H0

P,cusp,σ. Then
Ψ(λ, x) is the Fourier transform in λ of a smooth, compactly supported function
on aP . This means that for any point Λ ∈ a∗P , the function

ψ(x) =
∫

Λ+ia∗
P

e(λ+ρP )(HP (x))Ψ(λ, x)dλ

of x ∈ NP (A)MP (Q)\G(A) is compactly supported in HP (x).

Lemma 12.2 (Langlands). The function

(Eψ)(x) =
∑

δ∈P (Q)\G(Q)

ψ(δx), x ∈ G(Q)\G(A),

lies in L2
(
G(Q)\G(A)

)
.

Lemma 12.3 (Langlands). Suppose that Ψ′(λ′, x) is a second such function,
attached to a pair (P ′, σ′). Then the inner product formula

(12.3) (Eψ,Eψ′) =
∫

Λ+ia∗
P

∑
s∈W (aP ,aP ′ )

(
M(s, λ)Ψ(λ),Ψ′(−sλ)

)
dλ

holds if Λ is any point in a∗P such that (Λ− ρP )(α∨) > 0 for every α ∈ ∆P .

If χ is the class in X represented by a pair (P, σ), let L2
χ

(
G(Q)\G(A)

)
be the

closed, G(A)-invariant subspace of L2
(
G(Q)\G(A)

)
generated by the functions Eψ

attached to (P, σ).

Lemma 12.4 (Langlands). There is an orthogonal decomposition

(12.4) L2
(
G(Q)\G(A)

)
=
⊕
χ∈X

L2
χ

(
G(Q)\G(A)

)
.
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Lemmas 12.2–12.4 are discussed in the early part of Langlands’s survey article
[Lan1]. They are the foundations for the rest of the theory, and for Theorem 7.2
in particular. We refer the reader to [Lan1] for brief remarks on the proofs, which
are relatively elementary. �

The inner product formula (12.3) is especially important. It is used in the
proof of both the analytic continuation (a) and the spectral decomposition (b) in
Theorem 7.2. Observe that the domain of integration in (12.3) is contained in the
region of absolute convergence of the cuspidal operator valued function M(s, λ) in
the integrand. Once he had proved the meromorphic continuation of this func-
tion, Langlands was able to use (12.3) to establish the remaining analytic contin-
uation assertions of Theorem 7.2(a), and the spectral decomposition of the space
L2

χ

(
G(Q)\G(A)

)
. His method was based on a change contour of integration from

Λ+ ia∗P to ia∗P , and an elaborate analysis of the resulting residues. It was a tour de
force, the details of which comprise the notoriously difficult Chapter 7 of [Lan5].

Any class χ = {(P, σ)} in X determines an associated class Pχ = {P} of
standard parabolic subgroups. We then obtain a decomposition (12.2) from (12.4)
by setting

L2
P-cusp

(
G(Q)\G(A)

)
=

⊕
{χ∈X:Pχ=P}

L2
χ

(
G(Q)\G(A)

)
.

However, it is the finer decomposition (12.4) that is more often used. We shall
actually apply the obvious variant of (12.4) that holds for G(A)1 in place of G(A),
or rather its restriction

(12.5) L2
disc

(
G(Q)\G(A)1

)
=
⊕
χ∈X

L2
disc,χ

(
G(Q)\G(A)1

)
to the discrete spectrum, in which

L2
disc,χ

(
G(Q)\G(A)1

)
= L2

disc

(
G(Q)\G(A)1

)
∩ L2

χ

(
G(Q)\G(A)1

)
.

If P is a standard parabolic subgroup, the correspondence

(P1 ∩MP , σ1) −→ (P1, σ1), P1 ⊂ P, {(P1 ∩MP , σ1)} ∈ XMP ,

yields a mapping χP → χ from XMP to the set X = XG. We can then write

L2
disc

(
MP (Q)\MP (A)1

)
=
⊕
χ∈X

L2
disc,χ

(
MP (Q)\MP (A)1

)
,

where L2
disc,χ

(
MP (Q)\MP (A)1

)
is the sum of those subspaces of

L2
disc

(
MP (Q)\MP (A)1

)
attached to classes χP ∈ XMP in the fibre of χ. Let HP,χ

be the subspace of functions φ in the Hilbert space HP such that for almost all
x, the function φx(m) = φ(mx) lies in L2

disc,χ

(
MP (Q)\MP (A)1

)
. There is then an

orthogonal direct sum
HP =

⊕
χ

HP,χ.

There is also an algebraic direct sum

(12.6) H0
P =

⊕
χ

H0
P,χ,

where H0
P,χ is the intersection of HP,χ with H0

P . For any λ and f , we shall write
IP,χ(λ, f) for the restriction of the operator IP (λ, f) to the invariant subspace HP,χ

of HP .
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At the end of §7, we described the spectral expansions for both the kernel
K(x, y) and the truncated function kT (x) in terms of Eisenstein series. They were
defined by means of an orthonormal basis BP of HP . We can assume that BP is
compatible with the algebraic direct sum (12.6). In other words,

BP =
∐
χ∈X

BP,χ,

where BP,χ is the intersection of BP with H0
P,χ. For any χ ∈ X we set

(12.7) Kχ(x, y) =
∑
P

n−1
P

∫
ia∗

P

∑
φ∈BP,χ

E
(
x, IP,χ(λ, f)φ, λ

)
E(y, φ, λ)dλ,

where nP is the integer defined in Theorem 7.2(b). It is a consequence of Lang-
lands’ construction of the spectral decomposition (7.5) from the more elementary
decomposition (12.4) that Kχ(x, y) is the kernel of the restriction of R(f) to the
invariant subspace L2

χ

(
G(Q)\G(A)

)
of L2

(
G(Q)\G(A)

)
. It follows, either from this

or from the definition (12.7), that

(12.8) K(x, y) =
∑
χ∈X

Kχ(x, y).

This is the spectral analogue of the geometric decomposition (10.1).
More generally, suppose that we fix P , and use P1 ⊂ P in place of P to index

the orthonormal bases. Then we have

KP (x, y) =
∑
χ∈X

KP,χ(x, y),

where KP,χ(x, y) is equal to∑
P1⊂P

(nP
P1

)−1

∫
ia∗

P

∑
φ∈BP1,χ

EP
P1

(
x, IP1,χ(λ, f)φ, λ

)
EP

P1
(y, φ, λ)dλ.

We obtain a decomposition

(12.9) kT (x) =
∑
χ∈X

kT
χ (x),

where

kT
χ (x) = kT

χ (x, f)

=
∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP,χ(δx, δx)τ̂P

(
HP (δx)− T

)
.

This is the spectral analogue of the geometric decomposition (10.2) of the truncated
kernel.

We have given spectral versions of the constructions at the beginning of §10.
However, the spectral analogue of the coarse geometric expansion (10.7) is more
difficult. The problem is to obtain an analogue of Corollary 10.1. We know from
Theorem 6.1 that∫

G(Q)\G(A)1

∣∣∣∑
χ

kT
χ (x)

∣∣∣dx =
∫

G(Q)\G(A)1
|kT (x)|dx <∞.
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To obtain a corresponding expansion for JT (f), we would need the stronger asser-
tion that the double integral∫

G(Q)\G(A)1

∑
χ

|kT
χ (x)|dx

is finite. Unlike the geometric case of Corollary 10.1, this is not an immediate
consequence of the proof of Theorem 6.1. It requires some new methods.

13. A truncation operator

The process that assigns the modified function kT (x) = kT (x, f) to the original
kernel K(x, x) can be regarded as a construction that is based on the adjoint action
of G on itself. It is compatible with the geometry of classes o ∈ O. The process
is less compatible with the spectral properties of classes χ ∈ X. However, we still
have to deal with the spectral expansion (12.9) of kT (x). We do so by introducing
an operator that systematically truncates functions on G(Q)\G(A)1.

The operator depends on the same parameter T used to define kT (x). It
acts on the space Bloc

(
G(Q)\G(A)1

)
of locally bounded, measurable functions

on G(Q)\G(A)1. For any suitably regular point T ∈ a
+
0 and any function φ ∈

Bloc

(
G(Q)\G(A)1

)
, we define ΛTφ to be the function in Bloc

(
G(Q)\G(A)1

)
whose

value at x equals

(13.1)
∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

∫
NP (Q)\NP (A)

φ(nδx)τ̂P

(
HP (δx)− T

)
dn.

The inner sum may be taken over a finite set (that depends on x), while the
integrand is a bounded function of n. Notice the formal similarity of the definition
with that of kT (x) in §6. Notice also that if φ belongs to L2

cusp

(
G(Q)\G(A)1

)
, then

ΛTφ = φ.
There are three basic properties of the operator ΛT to be discussed in this

section. The first is that ΛT is an orthogonal projection.

Proposition 13.1. (a) For any P1, any φ1 ∈ Bloc

(
G(Q)\G(A)1

)
, and any

x1 ∈ G(A)1, the integral ∫
NP1 (Q)\NP1 (A)

(ΛTφ1)(n1x1)dn1

vanishes unless �
(
HP1(x1)− T

)
≤ 0 for every � ∈ ∆̂P1 .

(b) ΛT ◦ ΛT = ΛT .
(c) The operator ΛT is self-adjoint, in the sense that it satisfies the inner prod-

uct formula
(ΛTφ1, φ2) = (φ1,ΛTφ2),

for functions φ1 ∈ Bloc

(
G(Q)\G(A)1

)
and φ2 ∈ Cc

(
G(Q)\G(A)1

)
.

The first assertion of the proposition is Lemma 1.1 of [A4]. (The symbol <
in the statement of this lemma should in fact be ≤.) In the case G = SL(2), it
follows directly from classical reduction theory, as illustrated in the earlier Figure
8.3. In general, one has to apply the Bruhat decomposition to elements in the sum
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over P (Q)\G(Q) that occurs in the definition of ΛTφ. We recall that the Bruhat
decomposition is a double coset decomposition

G(Q) =
∐

s∈W0

(
B0(Q)wsN0(Q)

)
of G(Q), which in turn leads easily to a characterization

P (Q)\G(Q) ∼=
∐

s∈W M
0 \W0

(
w−1

s N0(Q)ws ∩N0(Q)\N0(Q)
)

of P (Q)\G(Q). Various manipulations, which we will not reproduce here, reduce
the assertion of (i) to Identity 6.2.

The assertion (ii) follows from (i). Indeed,
(
ΛT (ΛTφ)

)
(x) equals the sum over

P1 ⊃ P0 and δ1 ∈ P1(Q)\G(Q) of∫
NP1 (Q)\NP1 (A)

(ΛTφ)(n1δ1x)τ̂P1

(
HP1(δ1x)− T

)
dn1.

The term corresponding to P1 = G equals (ΛTφ)(x), while if P1 �= G, the term
vanishes by (i) and the definition of τ̂P1 .

To establish (iii), we observe that

(ΛTφ1, φ2)

=
∫

G(Q)\G(A)1

∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

·

·
∫

NP (Q)\NP (A)

φ1(nδx)τ̂P

(
HP (δx)− T

)
φ2(x)dndx

=
∑
P

(−1)dim(AP /AG)

∫
NP (Q)\NP (A)

∫
P (Q)\G(A)1

φ1(nx)φ2(x)τ̂P

(
HP (x)− T

)
dxdn

=
∑
P

(−1)dim(AP /AG)

∫
NP (Q)\NP (A)

∫
P (Q)\G(A)1

φ1(x)φ2(nx)τ̂P

(
HP (x)− T

)
dxdn

=
∫

G(Q)\G(A)1

∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

·

·
∫

NP (Q)\NP (A)

φ1(x)φ2(nδx)τ̂P

(
HP (δx)− T

)
dndx

= (φ1,ΛTφ2). �

It is not hard to show from (ii) and (iii) that ΛT extends to an orthogonal
projection from the space L2

(
G(Q)\G(A)

)
to itself. It is also easy to see that ΛT

preserves each of the spaces L2
P-cusp

(
G(Q)\G(A)1

)
in the cuspidal decomposition

(12.2). On the other hand, ΛT is decidedly not compatible with the spectral decom-
position (7.5). It is an operator built upon the cuspidal properties of §12, rather
than the more sensitive spectral properties of Theorem 7.2.

The second property of the operator ΛT is that it transforms uniformly tem-
pered functions to rapidly decreasing functions. To describe this property quanti-
tatively, we need to choose a height function ‖ · ‖ on G(A).
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Suppose first that G is a general linear group GL(m), and that x = (xij) is a
matrix in GL(m,A). We define

‖xv‖v = max
i,j

|xij,v|v

if v is a p-adic valuation, and

‖xv‖v =
(∑

i,j

|xij,v|2v
) 1

2

if v is the archimedean valuation. Then ‖xv‖v = 1 for almost all v. The height
function

‖x‖ =
∏
v

‖xv‖v

is therefore defined by a finite product. For arbitrary G, we fix a Q-rational injection
r: G→ GL(m), and define

‖x‖ = ‖r(x)‖.
By choosing r appropriately, we can assume that the set of points x ∈ G(A) with
‖x‖ ≤ t is compact, for any t > 0. The chosen height function ‖ · ‖ on G(A) then
satisfies

(13.2) ‖xy‖ ≤ ‖x‖‖y‖, x, y ∈ G(A),

(13.3) ‖x−1‖ ≤ C0‖x‖N0 , x ∈ G(A),

and

(13.4)
∣∣{x ∈ G(Q) : ‖x‖ ≤ t

}∣∣ ≤ C0t
N0 , t ≥ 0,

for positive contants C0 and N0. (See [Bor2].)
We shall say that a function φ on G(Q)\G(A)1 is rapidly decreasing if for any

positive integer N and any Siegel set S = SG(T1) for G(A), there is a positive
constant C such that

|φ(x)| ≤ C‖x‖−N

for every x in S1 = S ∩ G(A)1. The notion of uniformly tempered applies to the
space of smooth functions

C∞(G(Q)\G(A)1
)

= lim−→
K0

C∞(G(Q)\G(A)1/K0

)
.

By definition, C∞(G(Q)\G(A)1/K0

)
is the space of functions on G(Q)\G(A)1 that

are right invariant under the open compact subgroup K0 of G(Afin), and are infin-
itely differentiable as functions on the subgroup G(R)1 = G(R) ∩G(A)1 of G(A)1.
We can of course also define the larger space Cr

(
G(Q)\G(A)1

)
of functions of dif-

ferentiability class Cr in the same way. If X is a left invariant differential operator
on G(R)1 of degree k ≤ r, and φ lies in Cr

(
G(Q)\G(A)1/K0

)
, Xφ is a function in

Cr−k
(
G(Q)\G(A)1/K0

)
. Let us say that a function φ ∈ C∞(G(Q)\G(A)1

)
is uni-

formly tempered if there is an N0 ≥ 0 with the property that for every left invariant
differentiable operator X on G(R)1, there is a constant cX such that

|(Xφ)(x)| ≤ cX‖x‖N0 ,

for every x ∈ G(A)1.
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Proposition 13.2. (a) If φ ∈ C∞(G(Q)\G(A)1
)

is uniformly tempered, the
function ΛTφ is rapidly decreasing.

(b) Given a Siegel set S, positive integers N and N0, and an open compact
subgroup K0 of G(Afin), we can choose a finite set {Xi} of left invariant differential
operators on G(R)1 and a positive integer r with the property that if (Ω, dω) is
a measure space, and φ(ω): x → φ(ω, x) is any measurable function from Ω to
Cr
(
G(Q)\G(A)1/K0

)
, the supremum

(13.5) sup
x∈S1

(
‖x‖N

∫
Ω

|ΛTφ(ω, x)|dω
)

is bounded by

(13.6) sup
y∈G(A)1

(
‖y‖−N0

∑
i

∫
Ω

|Xiφ(ω, y)|dω
)
.

It is enough to prove (ii), since it is a refined version of (i). This assertion is
Lemma 1.4 of [A4], the proof of which is reminiscent of that of Theorem 6.1. The
initial stages of the two proofs are in fact identical. We multiply the summand
corresponding to P in

ΛTφ(ω, x)

=
∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

∫
NP (Q)\NP (A)

φ(ω, nδx)dn · τ̂P

(
HP (δx)− T

)
by the left hand side of (8.1). We then apply the definition (8.2) to the product of
functions τP

P1
and τ̂P that occurs in the resulting expansion. The function ΛTφ(σ, x)

becomes the sum over pairs P1 ⊂ P2 and elements δ ∈ P1(Q)\G(Q) of the product

FP1(δx, T )σP2
P1

(
HP1(δx)− T

)
φP1,P2(ω, δx),

where

(13.7) φP1,P2(ω, y) =
∑

{P :P1⊂P⊂P2}
(−1)dim(AP /AG)

∫
NP (Q)\NP (A)

φ(ω, ny)dn.

Suppose that y = δx is such that the first two factors in the last product are
both nonzero. Replacing δ by a left P1(Q)-translate, if necessary, we can assume
that

y = δx = n∗n
∗mak,

for k ∈ K, elements n∗, n∗ and m in fixed compact subsets of NP2(A), NP2
P1

(A)
and MP1(A)1 respectively, and a point a ∈ AP1(R)0 with σP2

P1

(
HP1(a) − T

)
�= 0.

Therefore
y = δx = n∗a · a−1n∗amk = n∗ab,

where b belongs to a fixed compact subset of G(A)1 that depends only on G. The
next step is to extract an estimate of rapid decrease for the function

φP1,P2(ω, y) = φP1,P2(ω, δx) = φP1,P2(ω, ab)

from the alternating sum over P in (13.7).
At this point the argument diverges slightly from that of Theorem 6.1. The

quantitative nature of the assertion (ii) represents only a superficial difference,
since similar estimates are implicit in the discussion of §8. However, the integrals
in (13.7) are over quotients NP (Q)\NP (A) rather than groups NP (A), a reflection
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of the left G(Q)-invariance of the underlying function y → φ(σ, y). This alters the
way we realize the cancellation in the alternating sum over P . It entails having
to apply the Fourier inversion formula to a product of groups Q\A, in place of
the Poisson summation formula for a product of groups A. The problem is that
the quotient n

P2
P1

(Q)\nP2
P1

(A) does not correspond with NP2
P1

(Q)\NP2
P1

(A) under the
exponential mapping. However, the problem may be resolved by a straightforward
combinatorial argument that appears in [Har4, Lemma 11]. One constructs a finite
set of pairs

(N−
I , NI), NP2 ⊂ N−

I ⊂ NI ⊂ NP1 ,

of Q-rational groups, where N−
I is normal in NI with abelian quotient N I . Each

index I parametrizes a subset{
βI,α ∈ ΦP2

P1
: α ∈ ∆P2

P1

}
of roots of the parabolic subgroup MP2 ∩P1 of MP2 such that βI,α contains α in its
decomposition into simple roots. If XI,α ∈ nP1(Q) stands for a root vector relative
to βI,α, the space

n
I(Q) =

⊕
α∈∆

P2
P1

QXI,α

becomes a linear complement for the Lie algebra of N−
I (Q) in that of NI(Q). The

combinatorial argument yields an expansion of φP1,P2(ω, ab) as linear combination
over I of functions

(13.8)
∑

ξ∈nI(Q)′

∫
nI(Q)\nI(A)

∫
N−

I (Q)\N−
I (A)

φ
(
ω, u exp(X)ab

)
ψ
(
〈X, ξ〉

)
dudX,

where
n

I(Q)′ =
{
ξ =

∑
α∈∆

P2
P1

rαXI,α : rα ∈ Q∗
}
.

(See [A4, p. 94].)
One can estimate (13.8) as in the proof of Theorem 6.1. In fact, it is not hard

to show that for any positive integer n, the product of en‖HP1 (a)‖ with the integral
of the absolute value of (13.8) over ω has a bound of the form (13.6). But

en‖HP0 (a)‖ ≥ c1‖a‖nε ≥ c2‖n∗ab‖nε = c2‖δx‖nε,

for positive constants c1, c2 and ε. Moreover, it is known that there is a positive
constant c such that

‖δx‖ ≥ c‖x‖,
for any x in the Siegel set S, and any δ ∈ G(Q). It follows that the supremum

sup
x∈S

sup
δ∈P1(Q)\G(Q)

(
‖x‖nε

∫
Ω

∣∣φP1,P2(ω, δx)
∣∣dω)

has a bound of the form (13.6). Since this supremum is independent of δ, we have
only to estimate the sum∑

δ∈P1(Q)\G(Q)

FP1(δx, T )σP2
P1

(
HP1(δx)− T

)
.

It follows from the definition (8.3) and the fact that both FP1(·, T ) and σP2
P1

(·)
are characteristic functions that the summand corresponding to δ is bounded by



13. A TRUNCATION OPERATOR 73

τ̂P1

(
HP1(δx) − T

)
. In §6 we invoked Lemma 5.1 of [A3] in order to say that the

sum over δ in (6.1) could be taken over a finite set. The lemma actually asserts
that ∑

δ∈P1(Q)\G(Q)

τ̂P1

(
HP1(δx)− T

)
≤ cT ‖x‖N1 ,

for positive constants cT and N1. We obtain an estimate (13.6) for (13.5) by
choosing n ≥ ε−1(N + N1). �

The proof of Proposition 13.2 we have just sketched is that of [A4, Lemma
1.4]. The details in [A4] are a little hard to follow, thanks to less than perfect
exposition and some typographical errors. Perhaps the discussion above will make
them easier to read.

The most immediate application of Proposition 13.2 is to an Eisenstein series
x→ E(x, φ, λ). Among the many properties established by Langlands in the course
of proving Theorem 7.2 was the fact that Eisenstein series are uniformly slowly
increasing. More precisely, there is a positive integer N0 such that for any vector φ ∈
H0

P and any left invariant differential operator X on G(R)1, there is an inequality

|XE(x, φ, λ)| ≤ cX,φ(λ)‖x‖N0 , x ∈ G(A),

in which cX,φ(λ) is a locally bounded function on the set of λ ∈ a∗P,C at which
E(x, φ, λ) is analytic. It follows from Proposition 13.2 that for any N and any
Siegel set S, there is a locally bounded function cN,φ(λ) on the set of λ at which
E(x, φ, λ) is analytic such that

(13.9) |ΛTE(x, φ, λ)| ≤ cN,φ(λ)‖x‖−N ,

for every x ∈ S1. In particular, the truncated Eisenstein series ΛTE(x, φ, λ) is
square integrable on G(Q)\G(A)1. As we shall see, the spectral expansion of the
trace formula depends on being able to evaluate the inner product of two truncated
Eisenstein series.

The third property of the truncation operator is one of cancellation. It concerns
the partial truncation operator ΛT,P1 attached to a standard parabolic subgroup
P1 ⊃ P0. If φ is any function in Bloc

(
P1(Q)\G(A)1

)
, we define ΛT,P1φ to be the

function in Bloc

(
MP1(Q)NP1(A)\G(A)1

)
whose value at x equals∑

{Q:P0⊂Q⊂P1}
(−1)dim(AQ/AP1 )

∑
δ∈Q(Q)\P1(Q)

∫
NQ(Q)\NQ(A)

φ(nδx)τ̂P1
Q

(
HQ(δx)− T

)
.

Proposition 13.3. If φ belongs to Bloc

(
G(Q)\G(A)1

)
, then∑

P1⊃P0

∑
δ∈P1(Q)\G(Q)

ΛT,P1φ(δx)τP1

(
HP1(δx)− T

)
= φ(x).

More generally, if φ belongs to Bloc

(
P (Q)\G(A)1

)
for some P ⊃ P0, the sum

(13.10)
∑

{P1:P0⊂P1⊂P}

∑
δ∈P1(Q)\P (Q)

ΛT,P1φ(δx)τP
P1

(
HP1(δx)− T

)
equals ∫

NP (Q)\NP (A)

φ(nx)dn.
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If we substitute the definition of ΛT,P1φ into (13.10), we obtain a double sum
over Q and P1. Combining the double sum over Q(Q)\P1(Q) and P1(Q)\P (Q) into
a single sum over Q(Q)\P (Q), we write (13.10) as the sum over parabolic subgroups
Q, with P0 ⊂ Q ⊂ P , and elements δ ∈ Q(Q)\P (Q) of the product of∫

NQ(Q)\NQ(A)

φ(nδx)

with ∑
{P1:Q⊂P1⊂P}

(−1)dim(AQ/AP1 )τ̂P1
Q

(
HQ(δx)− T

)
τP
P1

(
HP1(δx)− T

)
.

Since τP
P1

(
HP1(δx)−T

)
= τP

P1

(
HQ(δx)−T

)
, we can apply (8.11) to the alternating

sum over P1. This proves that the alternating sum vanishes unless Q = P , in which
case it is trivially equal to 1. The formula of the lemma follows. (See [A4, Lemma
1.5].) �

14. The coarse spectral expansion

The truncation operator ΛT acts on functions on G(Q)\G(A)1. If h is a function
of two variables and Λ is a linear operator on any space of functions in G(A), we
write Λ1h and Λ2h for the transforms of h obtained by letting Λ act separately
on the first and second variables respectively. We want to consider the case that
Λ = ΛT , and h(x, y) equals the χ-component Kχ(x, y) of the kernel K(x, y) of R(f).
We recall that the parameter T in both the operator ΛT and the modified kernel
kT (x) is a suitably regular point in a

+
0 .

Theorem 14.1. (a) The double integral

(14.1)
∑
χ∈X

∫
G(Q)\G(A)1

ΛT
2 Kχ(x, x)dx

converges absolutely.
(b) If T is suitably regular, in a sense that depends only on the support of f ,

the double integral

(14.2)
∑
χ∈X

∫
G(Q)\G(A)1

kT
χ (x)dx

also converges absolutely.
(c) If T is as in (ii), we have∫

G(Q)\G(A)1
kT

χ (x)dx =
∫

G(Q)\G(A)1
ΛT

2 Kχ(x, x)dx,

for any χ ∈ X.

The assertions of Theorem 14.1 are among the main results of [A4]. Their
proof is given in §2 of that paper. We shall try to give some idea of the argument.

The assertion (i) requires a quantitative estimate for the spectral expansion of
the kernel

K(x, y) =
∑

γ∈G(Q)

f(x−1γy).
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The sum here can obviously be taken over elements γ in the support of the function
u→ f(x−1uy). Since the support equals x ·suppf ·y−1, we can apply the properties
(13.2)–(13.4) of the height function ‖ · ‖. We see that

|K(x, y)| ≤ c(f)‖x‖N1‖y‖N1 ,

for a positive number N1 that depends only on G. For any χ ∈ X, Kχ(x, y) is
the kernel of the restriction of R(f) to the invariant subspace L2

χ

(
G(Q)\G(A)

)
of

L2
(
G(Q)\G(A)

)
. It follows from the discussion at the end of §7 that the sum

∑
χ∈X

|Kχ(x, y)|

of absolute values is bounded by a finite sum of products

(∑
χ

Kχ,1(x, x)
) 1

2
(∑

χ

Kχ,2(y, y)
) 1

2
=
(
K1(x, x)

) 1
2
(
K2(y, y)

) 1
2 .

of kernels Ki(·, ·) attached positive definite functions

fi = hi ∗ h∗
i , hi ∈ Cr

c

(
G(A)

)
.

It follows that ∑
χ

|Kχ(x, y)| = c(f)‖x‖N1‖y‖N1 , x, y ∈ G(A),

for some constant c(f) depending on f .
A similar estimate holds for derivatives of the kernel. Suppose that X and Y

are left invariant differential operators on G(R) of degrees d1 and d2. Suppose that
f belongs to Cr

c

(
G(A)

)
, for some large positive integer r. The corresponding kernel

then satisfies

X1Y2Kχ(x, y) = KX,Y
χ (x, y), χ ∈ X,

where KX,Y (x, y) is the kernel attached to a function fX,Y in Cr−d1−d2
c

(
G(A)

)
. It

follows that ∑
χ∈X

|X1Y2Kχ(x, y)| ≤ c(fX,Y )‖x‖N1‖y‖N1 ,

for all x, y ∈ G(A).
We combine the last estimate with Proposition 13.2(b). Choose the objects S,

N , N0 and K0 of Proposition 13.2(b) so that G(A) = G(Q)S, N is large, N0 = N1,
and f is biinvariant under K0. We can then find a finite set {Yi} of left invariant
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differential operators on G(R) such that

sup
y∈S

(
‖y‖N

∑
χ

|ΛT
2 Kχ(x, y)|

)
≤ sup

y∈G(A)

(∑
χ

‖y‖−N0

∣∣∣∑
i

(Yi)2Kχ(x, y)
∣∣∣)

≤ sup
y∈G(A)

(∑
i

‖y‖−N0
∑

χ

|(Yi)2Kχ(x, y)|
)

≤ sup
y∈G(A)

(∑
i

‖y‖−N0c(f1,Yi
)‖x‖N1‖y‖N1

)
≤
(∑

i

c(f1,Yi
)
)
‖x‖N1 ,

for any x ∈ G(A). Setting x = y, we see that there is a constant c1 = c1(f) such
that ∑

χ

|ΛT
2 Kχ(x, x)| ≤ c1‖x‖N1−N ,

for any x ∈ S. Since any bounded function is integrable over S1 = S ∩ G(A)1,
we conclude that the sum over χ of the functions |ΛT

2 Kχ(x, x)| is integrable over
G(Q)\G(A)1. This is the assertion (a).

The proof of (b) and (c) begins with an expansion of the function kT
χ (x) =

kT
χ (x, f). We are not thinking of the χ-form of the expansion (8.3) of kT (x), but

rather a parallel expansion in terms of partial truncation operators. We shall derive
it as in §8, using Proposition 13.3 in place of Lemma 8.2.

The kernel KP,χ(x, y) defined in §12 is invariant under left translation of either
variable by NP (A). In particular, we can write

KP,χ(x, y) =
∫

NP (Q)\NP (A)

KP,χ(x, ny)dn.

It follows from the definition in §12 that kT
χ (x) equals∑

P

(−1)(AP /AG)
∑

δ∈P (Q)\G(Q)

τ̂P

(
HP (δx)− T

) ∫
NP (Q)\NP (A)

KP,χ(δx, nδx)dn.

The integral over n can then be expanded according to Proposition 13.3. The
resulting sum over P1(Q)\P (Q) combines with that over P (Q)\G(Q) to give an
expression∑
P1⊂P

(−1)dim(AP /AG)
∑

δ∈P1(Q)\G(Q)

τ̂P

(
HP (δx)−T

)
τP
P1

(
HP1(δx)−T

)
ΛT,P1

2 KP,χ(δx, δx)

for kT
χ (x). Applying the expansion (8.2), we write

τ̂P

(
HP (δx)− T

)
τP
P1

(
HP1(δx)− T

)
=τ̂P

(
HP1(δx)− T

)
τP
P1

(
HP1(δx)− T

)
=

∑
{P2:P2⊃P}

σP2
P1

(
HP1(δx)− T

)
.
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It follows that kT
χ (x) has an expansion

(14.3)
∑

P1⊂P2

∑
δ∈P1(Q)\G(Q)

σP2
P1

(
HP1(δx)− T

)
ΛT,P1

2 KP1,P2,χ(δx, δx),

where
KP1,P2,χ(x, y) =

∑
{P :P1⊂P⊂P2}

(−1)dim(AP /AG)KP,χ(x, y).

Observe that (14.3) is the same as the expansion (8.3) (or rather its χ-analogue),
except that the partial “cut-off” function FP1(·, T ) has been replaced by the partial
truncation operator ΛT,P1

2 .
We recall from Lemma 8.3 that σP2

P1
vanishes if P1 = P2 �= G, so the corre-

sponding summand in (14.3) equals 0. If P1 = P2 = G, σP2
P1

equals 1, and the
corresponding summand in (14.3) equals ΛT

2 Kχ(x, x). It follows that the difference

kT
χ (x)− ΛT

2 Kχ(x, x)

equals the modified expression (14.3) obtained by taking the first sum over P1 � P2.
Consider the integral over G(Q)\G(A)1 of the absolute value of this difference. The
absolute value is of course bounded by the corresponding double sum of absolute
values, in which we can combine the integral with the sum over P1(Q)\G(Q). It
follows that the double integral∑

χ∈X

∫
G(Q)\G(A)1

|kT
χ (x)− ΛT

2 Kχ(x, x)|dx

is bounded by

(14.4)
∑
χ∈X

∑
P1�P2

∫
P1(Q)\G(A)1

σP2
P1

(
HP1(x)− T

)
|ΛT,P1

2 KP1,P2,χ(x, x)|dx.

The assertion (ii) would follow from (i) if it could be shown that (14.4) is finite. In
fact, one shows that for T highly regular, the integrand in (14.4) actually vanishes.
This obviously suffices to establish both (ii) and (iii).

Consider the integrand in (14.4) attached to a fixed pair P1 � P2. In order to
treat the factor ΛT,P1

2 KP1,P2,χ, one studies the function∫
NP1 (Q)\NP1 (A)

KP1,P2(x, n1y)dn1

=
∑

{P :P1⊂P⊂P2}
(−1)dim(AP /AG)

∫
NP1 (Q)\NP1 (A)

KP (x, n1y)dn1

=
∑
P

(−1)dim(AP /AG)

∫
NP1 (Q)\NP1 (A)

∫
NP (A)

∑
γ∈MP (Q)

f(x−1γnn1y)dndn1.

In the last summand corresponding to P , we change the triple integral to a double
integral over the product

MP (Q)NP (A)/NP1(Q)×NP1(A).

This in turn can be written as a triple integral over the product(
MP (Q)/MP (Q) ∩NP1(Q)

)
×
(
NP (A)/NP (Q)

)
×NP1(A).
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The integral over NP (A)/NP (Q) can then be absorbed in the integral over NP1(A).
Since

MP (Q)/MP (Q) ∩NP1(Q) ∼= P (Q)/P1(Q)×MP1(Q),

the sum over P takes the form∑
P

(−1)dim(AP /AG)
∑

γ∈P1(Q)\P (Q)

∫
NP1 (A)

∑
γ1∈MP1 (Q)

f(x−1γ−1γ1n1y)dn1

=
∑
P

(−1)dim(AP /AG)
∑

γ∈P1(Q)\P (Q)

KP1(γx, y).

Let F (P1, P2) be the set of elements in P1(Q)\P2(Q) which do not lie in P1(Q)\P (Q)
for any P with P1 ⊂ P � P2. The alternating sum over P and γ then reduces to a
sum over γ ∈ F (P1, P2), by Identity 6.2. We have established that

(14.5)
∫

NP1 (Q)\NP1 (A)

KP1,P2(x, n1y)dn1 = (−1)dim(AP2/AG)
∑

γ∈F (P1,P2)

KP1(γx, y).

There remain two steps to showing that the integrand in (14.4) vanishes. The
first is to show that for any x and y, ΛT,P1

2 KP1,P2,χ(x, y) depends linearly on the
function of m ∈ MP1(Q)\MP1(A)1 obtained from the left hand side of (14.5) by
replacing y by my. This is related to the decompositions of §12, and is easily
established from the estimates we have discussed. The other is to show that if T is
highly regular relative to supp(f), and σP2

P1

(
HP1(x)−T

)
�= 0, then KP1(γx,mx) = 0

for all m and any γ ∈ F (P1, P2). This is a consequence of the Bruhat decomposition
for G(Q). In the interests of simplicity (rather than efficiency), we shall illustrate
the ideas in the concrete example of G = GL(2), referring the reader to [A4, §2]
for the general case.

Assume that G = GL(2), P1 = P0 and P2 = G. The partial truncation operator
ΛT,P1 is then given simply by an integral over NP0(Q)\NP0(A). Therefore

ΛT,P1
2 KP1,P2,χ(x, y) =

∫
NP0 (Q)\NP0 (A)

(
Kχ(x, ny)−KP0,χ(x, ny)

)
dn.

If χ = (G, π), the integral of Kχ(x, ny) over n vanishes, since π is a cuspidal
automorphic representation of G(A), while KP0,χ(x, ny) vanishes by definition. The
integrand in (14.4) thus vanishes in this case for any T .

For G = GL(2), we have reduced the problem to the remaining case that χ
is represented by a pair (P0, σ0). Since MP0 is the group of diagonal matrices in
GL(2), we can identify σ0 with a pair of characters on the group Q∗\A1. It follows
directly from the definitions that∫

NP0 (Q)\NP0 (A)

KP0,χ(x, ny)dn = KP0,χ(x, y)

=
∫

MP0 (Q)\MP0 (A)1
KP0(x,my)σ0(m)dm.
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The spectral decomposition of the kernel K(x, y) also leads to a formula∫
NP0 (Q)\NP0 (A)

Kχ(x, ny)dn

=
∫

MP0 (Q)\MP0 (A)1

∫
NP0 (Q)\NP0 (A)

K(x, nmy)σ0(m)dndm.

Indeed, the required contribution from the terms in K(x, y) corresponding to the
Hilbert space HG can be inferred from the fact that the representation of G(A)
on HG is a sum of cuspidal automorphic representations and one-dimensional au-
tomorphic representations. To obtain the contribution from the terms in K(x, y)
corresponding to HP0 , we use the fact that for any φ ∈ H0

P0
, the function

y −→
∫

NP0 (Q)\NP0 (A)

E(ny, φ, λ)dn

also belongs to H0
P0

. Combining the two formulas, we see that

ΛT,P1
2 KP1,P2,χ(x, y)

=
∫

MP0 (Q)\MP0 (A)1

∫
NP0 (Q)\NP0 (A)

KP1,P2(x, nmy)σ0(m)dndm

=
∫

MP0 (Q)\MP0 (A)1

∑
γ∈F (P1,P2)

KP1(γx,my)σ0(m)dm,

for any x and y. This completes the first step in the case of G = GL(2).
For the second step, we note that

F (P1, P2) = F (P0, G) = P0(Q)\
(
G(Q)− P0(A)

)
=
{
MP0(Q)

(
0 1
1 0

)
NP0(Q)

}
,

by the Bruhat decomposition for GL(2). Setting y = x, we write∑
γ∈F (P1,P2)

KP1(γx,mx)

=
∑

γ∈F (P1,P2)

∫
NP0 (A)

f(x−1γ−1nmx)dn

=
∫

NP0 (A)

∑
ν∈NP0 (Q)

∑
µ∈MP0 (Q)

f
(
x−1ν

(
0 1
1 0

)
µnmx

)
dn,

for any m ∈ MP (A)1. We need to show that if T is highly regular relative to
supp(f), the product of any summand with σP2

P1

(
HP1(x) − T

)
vanishes for each

x ∈ G(A)1. Assume the contrary, and write

x = n1

(
r 0
0 r−1

)
m1k1, n1 ∈ NP0(A), r ∈ (R∗)0, m1 ∈MP0(A)1, k1 ∈ K.

On the one hand, the number

σP2
P1

(
HP1(x)− T

)
= σG

P0

(
HP0(x)− T

)
= τP0

(
HP0

(
r 0
0 r−1

)
− T
)
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is positive, so that r is large relative to supp(f). On the other hand, it follows from
the discussion above that the point

x−1ν

(
0 1
1 0

)
µnmx

belongs to supp(f), for some ν ∈ NP0(Q), µ ∈ MP0(Q), n ∈ NP0(A), and m ∈
MP0(A)1. Substituting for x, we see that there is a point

(
a b
c d

)
in GL(2,A)1, with

|c| = r2, which lies in the fixed compact set K · supp f ·K. This is a contradiction.
The argument in the case of G = GL(2) is thus complete. �

We have finished our remarks on the proof of Theorem 14.1. We can now
treat the double integral (14.2) as we did its geometric analogue (10.3) in §10. By
Fubini’s theorem, we obtain an absolutely convergent expression

JT (f) =
∑
χ∈X

JT
χ (f)

whose terms are given by absolutely convergent integrals

(14.6) JT
χ (f) =

∫
G(Q)\G(A)1

kT
χ (x, f)dx, χ ∈ X.

Following the discussion of §10, we analyze JT
χ (f) as a function of T by means

of the proof of Theorem 9.1. Defined initially for T ∈ a
+
0 sufficiently regular, we

see that JT
χ (f) extends to any T ∈ a0 as a polynomial function whose degree is

bounded by the dimension of aG
0 . We then set

Jχ(f) = JT0
χ (f), χ ∈ X,

for the point T0 ∈ aG
0 given by (9.4). By the proof of Proposition 9.3, each distribu-

tion Jχ(f) is independent of the choice of minimal parabolic subgroup P0 ∈ P(M0).
The new distributions Jχ(f) = JG

χ (f) are again generally not invariant. Ap-
plying the proof of Theorem 9.4 to the absolutely convergent integral (14.6), we
obtain the variance property

(14.7) Jχ(fy) =
∑

Q⊃P0

JMQ
χ (fQ,y), χ ∈ X, y ∈ G(A).

As before, JMQ
χ (fQ,y) is defined as a finite sum of distributions JMQ

χQ (fQ,y), in which
χQ ranges over the preimage of χ in XMQ under the mapping of XMQ to X. Once
again, χ need not lie in the image of the map XMQ → X attached to any proper
parabolic subgroup Q � G. This is the case precisely when χ is cuspidal, in the
sense that it is defined by a pair (G, σ). When χ is cuspidal, the distribution Jχ(f)
is in fact invariant.

The expansion of JT (f) in terms of distributions JT
χ (f) extends by polynomial

interpolation to all values of T . Setting T = T0, we obtain an identity

(14.8) J(f) =
∑
χ∈X

Jχ(f), f ∈ C∞
c

(
G(A)

)
.

This is what we will call the coarse spectral expansion. The distributions Jχ(f) for
which χ is cuspidal are to be regarded as general analogues of the spectral terms
in the trace formula for compact quotient.
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15. Weighted characters

This section is parallel to §11. It is aimed at the problem of describing the
summands Jχ(f) in the coarse spectral expansion more explicitly. At this point,
we can give a partial solution. We shall express Jχ(f) as a weighted character for
“generic” classes χ ∈ X.

For any χ ∈ X, JT
χ (f) is defined by the formula (14.6). However, Theorem

14.1(iii) and the definition (12.7) provide another expression

JT
χ (f) =

∫
G(Q)\G(A)1

ΛT
2 Kχ(x, x)dx

=
∑
P

n−1
P

∫
G(Q)\G(A)1

(∫
ia∗

P

∑
φ∈BP,χ

E
(
x, IP (λ, f)φ, λ

)
ΛTE(x, φ, λ)dλ

)
dx

for JT
χ (f). This second formula is better suited to computation.
Suppose that λ ∈ ia∗P . The function E(x, φ′, λ) is slowly increasing for any

φ′ ∈ H0
P,χ, while the function ΛTE(x, φ, λ) is rapidly decreasing by (13.9). The

integral ∫
G(Q)\G(A)1

E(x, φ′, λ)ΛTE(x, φ, λ)dx

therefore converges, and consequently defines a Hermitian bilinear form on H0
P,χ.

By the intertwining property of Eisenstein series, this bilinear form behaves in the
natural way under the the actions of K and Z∞ on H0

P,χ. It may therefore be
written as (

MT
P,χ(λ)φ′, φ

)
,

for a linear operator MT
P,χ(λ) on H0

P,χ. Since ΛT is a self-adjoint projection, by
Proposition 13.1, we see that

(15.1)
(
MT

P,χ(λ)φ′, φ
)

=
∫

G(Q)\G(A)1
ΛTE(x, φ′, λ)ΛTE(x, φ, λ)dx,

for any vectors φ′ and φ in H0
P,χ. It follows that the operator MT

P,χ(λ) is self-adjoint
and positive definite.

The following result can be regarded as a spectral analogue of Theorem 11.1.

Theorem 15.1. If T ∈ a
+
P0

is suitably regular, in a sense that depends only on
the support of f , the double integral

(15.2)
∑
P

n−1
P

∫
ia∗

P

tr
(
MT

P,χ(λ)IP,χ(λ, f)
)
dλ

converges absolutely, and equals JT
χ (f).

This is Theorem 3.2 of [A4]. It includes the implicit assertion that the operator
in the integrand is of trace class, as well as that of the absolute convergence of
the integral. The precise assertion is Theorem 3.1 of [A4], which states that the
expression ∑

χ

∑
P

∫
ia∗

P

‖MT
P,χ(λ)IP,χ(λ, f)‖1dλ

is finite. As usual, ‖ · ‖1 denotes the trace class norm, taken here for operators on
the Hilbert space HP,χ.
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Apart from the last convergence assertion, Theorem 15.1 is a formal conse-
quence of the expression above for JT

χ (f). It follows from the definition of MT
P,χ(λ),

once we know that the integral over G(Q)\G(A)1 in the expression can be taken in-
side the integral over λ and the sum over φ. The convergence assertion is a modest
extension of Theorem 14.1(i). Its proof combines the same two techniques, namely
the estimates for K(x, y) obtained from Selberg’s positivity argument, and the
estimates for ΛT given by Proposition 13.2. We refer the reader to §3 of [A4]. �

Suppose that P is fixed. Since the inner product (15.1) depends only on the
image of T in the intersection (aG

P0
)+ of a

+
P0

with aG
P0

, we shall assume for the rest
of this section that T actually lies in (aG

P0
)+. It turns out that the inner product

can be computed explicitly for cuspidal Eisenstein series. The underlying reason
for this is that the constant term∫

NQ(Q)\NQ(A)

E(nx, φ, λ)dn, φ ∈ H0
P , λ ∈ a∗P,C,

defined for any standard Q ⊃ P0, has a relatively simple formula if φ is cuspidal.
Suppose that φ belongs to H0

P,cusp and that λ lies in a∗P,C. If Q is associated to
P , we have the basic formula∫

NQ(Q)\NQ(A)

E(nx, φ, λ)dn =
∑

s∈W (aP ,aQ)

(
M(s, λ)φ

)
(x)e(sλ+ρQ)(HQ(x))

This is established in the domain of absolute convergence of Eisenstein series from
the integral formula for M(s, λ)φ and the Bruhat decomposition for G(Q) [Lan1,
Lemma 3]. More generally, suppose that Q is arbitrary. Then

(15.3)
∫

NQ(Q)\NQ(A)

E(nx, φ, λ)dn =
∑

s∈W (P ;Q)

EQ
(
x,M(s, λ)φ, sλ

)
,

where we have written EQ(·, ·, ·) = EQ
P1

(·, ·, ·), for the group P1 such that s belongs
to W (aP , aP1). This is established inductively from the first formula by showing
that for any Q′ � Q, the Q′-constant terms of each sides are equal. The formula
(15.3) allows us to express the truncated Eisenstein series ΛTE(x, φ, λ), for λ in
its domain of absolute convergence, in terms of the signs εQ and characteristic
functions φQ defined in §11.

Lemma 15.2. Suppose that φ ∈ H0
P,cusp and λ ∈ Λ + ia∗P , where Λ is any point

in the affine chamber ρP + (a∗P )+. Then

(15.4) ΛTE(x, φ, λ) =
∑

Q⊃P0

∑
δ∈Q(Q)\G(Q)

ψQ(δx),

where for any y ∈ G(A), ψQ(y) is the sum over s ∈W (aP , aQ) of the expression

(15.5) εQ(sΛ)φQ

(
sΛ, HQ(δx)− TQ

)
e(sλ+ρQ)(HQ(y))

(
M(s, λ)φ

)
(y).

This is Lemma 4.1 of [A4]. To prove it, we note that for any Q, s, and δ, the
expression

εQ(sΛ)φQ

(
sΛ, HQ(δx)− TQ

)
equals ∑

{R⊃Q:s∈W (P ;R)}
(−1)dim(AR/AG)τ̂R

(
HR(δx)− TR

)
,
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by the identity of (11.7) and (11.6) established in §11. We substitute this into
the formula (15.5) for ψQ(δx). We then take the sum over δ in (15.4) inside the
resulting sums over s and R. This allows us to decompose it into a double sum
over ξ ∈ Q(Q)\R(Q) and δ ∈ R(Q)\G(Q). The sum∑

ξ∈Q(Q)\R(Q)

e(sλ+ρQ)(HQ(ξδx)
(
M(s, λ)φ

)
(ξδx)

converges absolutely to ER
(
δx,M(s, λ)φ, sλ

)
. It follows that the right hand side

of (15.4) equals∑
R

(−1)dim(AR/AG)
∑

δ

{∑
s

ER
(
δx,M(s, λ)φ, sλ

)}
τ̂R

(
HR(δx)− TR

)
,

with δ and s summed over R(Q)\G(Q) and W (P ;R) respectively. Moreover, the
last expression in the brackets equals∫

NR(Q)\NR(A)

E(nδx, φ, λ)dn,

by (15.3). It then follows from the definition (13.1) that the right hand side of
(15.4) equals the truncated Eisenstein series on the right hand side of (15.4). (The
elementary convergence arguments needed to justify these manipulations are given
on p. 114 of [A4].) �

For any Q, we treat the sum ψQ in the last lemma as a function on
NQ(A)MQ(Q)\G(A)1. It then follows from the definition of the characteristic func-
tions φQ(sΛ, ·) and our choice of Λ that ψQ(x) is rapidly decreasing in HQ(x). This
is slightly weaker than the condition of compact support imposed on the function ψ
in §12. However, we shall still express the right hand side of (15.4) as the sum over
Q of functions (EψQ)(x), following the notation of Lemma 12.2. In fact, the inner
product formula (12.3) is easily seen to hold under the slightly weaker conditions
here. We shall sketch how to use it to compute the inner product of truncated
Eisenstein series.

One has first to compute the Fourier transform

ΨQ(µ, x) =
∫

AQ(R)0∩G(A)1
e−(µ+ρQ)(HQ(ax))ψQ(ax)da,

for any µ ∈ ia∗Q. This entails computing the integral∫
AQ(R)0∩G(A)1

e(sλ−µ)(HQ(ax))εQ(sΛ)φQ

(
sΛ, HQ(ax)− TQ

)
da,

which can be written as∫
aG

Q

e(sλ−µ)(H)εQ(sΛ)φQ(sΛ, H − TQ)dH,

after the obvious change of variables. A second change of variables

H =
∑

α∈∆Q

tαα
∨, tα ∈ R,

simplifies the integral further. It becomes a product of integrals of rapidly decreasing
exponential functions over half lines, each of which contributes a linear form in sλ−µ
to the denominator. We have of course to multiply the resulting expression by the
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relevant Jacobian determinant, which equals the volume of aG
Q modulo the lattice

Z(∆∨
Q) generated by ∆∨

Q. The result is

(15.6) ΨQ(µ, x) =
∑

s∈W (aP ,aQ)

e(sλ−µ)(T )
(
M(s, λ)φ

)
(x)θQ(sλ− µ)−1,

where

(15.7) θQ(sλ− µ) = vol
(
a

G
Q/Z(∆∨

Q)
)−1 ∏

α∈∆Q

(sλ− µ)(α∨).

It is worth emphasizing that ΨQ(µ, x) is a rather simple function of µ, namely
a linear combination of products of exponentials with quotients of polynomials. We
have taken the real part Λ of λ to be any point in ρP + (a∗P )+. Assume from now
on that it is also highly regular, in the sense that Λ(α∨) is large for every α ∈ ∆P .
Then ΨQ(µ, x) is an analytic function of µ in the tube in a∗Q,C over a ball BQ around
0 in a∗Q of large radius. Moreover, for any ΛQ ∈ BQ,

ΨQ(µ) : x −→ ΨQ(µ, x), µ ∈ ΛQ + i(aG
Q)∗,

is a square integrable function of µ with values in a finite dimensional subspace of
H0

Q,cusp.
Consider another set of data P ′, φ′ ∈ H0

P ′,cusp and λ′ ∈ Λ′ + ia∗P ′ , where P ′ is
associated to P and Λ′ is a highly regular point in ρP ′ + (a∗P ′)+. These give rise
to a corresponding pair of functions ψQ′(x) and ΨQ′(µ′, x), for each standard Q′

associated to P ′. Following the notation of Lemma 12.2, we write the inner product

(15.8)
∫

G(Q)\G(A)1
ΛTE(x, φ, λ)ΛTE(x, φ′, λ′)dx

as ∑
Q,Q′

∫
G(Q)\G(A)1

(EψQ)(x)(EψQ′)(x)dx.

We are taking for granted the extension of Lemma 12.3 to the rapidly decreasing
functions ψQ and ψQ′ . It yields the further expression∑

Q,Q′

∫
ΛQ+i(aG

Q)∗

∑
t∈W (aQ,aQ′ )

(
M(t, µ)ΨQ(µ),ΨQ′(−tµ)

)
dµ

for the inner product, where ΛQ is any point in the intersection of ρQ + (aG
Q)∗

with the ball BQ. It follows from (15.6) (and its analogue for P ′) that the inner
product (15.8) equals the sum over Q and s ∈ W (aP , aQ), and the integral over
µ ∈ ΛQ + i(aG

Q)∗, of the product of

(15.9) θQ(sλ− µ)−1e(sλ−µ)(T )

with

(15.10)
∑
Q′

∑
t

∑
s′

θQ′(s′λ̄′ + tµ)−1e(s′λ̄′+tµ)(T )
(
M(t, µ)M(s, λ)φ,M(s′, λ′)φ′).

The inner sums in (15.10) are over elements t ∈W (aQ, aQ′) and s′ ∈W (aP ′ , aQ′).
There are three more steps. The first is to show that (15.10) is an analytic

function of µ if the real part of µ is any point in ρQ + (a∗Q)+. The operator valued
functions M(t, µ) are certainly analytic, since the integral formula (7.2) converges
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uniformly in the given domain. The remaining functions θQ(s′λ̄′ + tµ)−1 of µ have
singularities along hyperplanes

{µ : (s′λ̄′ + tµ)(α∨) = 0}, α ∈ ∆Q′ ,

for fixed Q′, t, s′ and λ′. However, each such hyperplane occurs twice in the sum
(15.10), corresponding to a pair of multi-indices (Q′, t, s′) and (Q′

α, sαt, sαs
′) that

differ by a simple reflection about α. (By definition, Q′
α is the standard parabolic

subgroup such that sα belongs to W (aQ′ , aQ′
α
).) It is a consequence of the functional

equations (7.4) that(
M(sαt, µ)M(s, λ)φ,M(sαs

′, λ′)φ′) =
(
M(t, µ)M(s, λ)φ,M(s′, λ′)φ′),

whenever (s′λ̄′ + tµ)(α∨) = 0. It then follows that the singularities cancel from
the sum (15.10), and therefore that (15.10) is analytic in the given domain. (This
argument is a basic part of the theory of (G,M)-families, to be discussed in §17.)

The second step is to show that if s �= 1, the integral over µ of the product
of (15.9) and (15.10) vanishes. For any such s, there is a root α ∈ ∆Q′ such that
(sΛQ)(α∨) < 0. As a function of µ, (15.9) is analytic on any of the affine spaces

(ΛQ + r�α) + i(aG
Q)∗, 0 ≤ r <∞.

We have just seen that the same property holds for the function (15.10). We can
therefore deform the contour of integration from ΛQ + i(aG

Q)∗ to the affine space
attached to any r. The function M(t, µ) is bounded independently of r on this
affine space, as is the product

e−µ(T )e(tµ)(T ).

This leaves only the product

θQ(sλ− µ)−1θQ′(s′λ̄′ + tµ)−1,

which is the inverse of a polynomial in µ of degree twice the dimension of the affine
space. The integral attached to r therefore approaches 0 as r approaches infinity.
The original integral therefore vanishes.

The final step is to set s = 1 in (15.9) and (15.10), and then integrate the
product of the resulting two expressions over µ in ΛQ + i(aG

Q)∗. The group Q

actually equals P when s equals 1. However, the point ΛQ in (aG
Q)∗ = (aG

P )∗ does
not equal the real part Λ of λ. Indeed, the conditions we have imposed imply that
(Λ − ΛQ)(α∨) > 0 for each α ∈ ∆Q. We change the contour of integration from
ΛQ + i(aG

Q)∗ to the affine space

ΛQ + rρP + i(aG
Q)∗,

for a large positive number r. As in the second step, the integral approaches 0 as
r approaches infinity. In this case, however, the function

θQ(sλ− µ) = θP (λ− µ)

contributes a multidimensional residue at µ = λ. Using a change of variables

µ =
∑

α∈∆P

zα�α, zα ∈ C,

one sees without difficulty that the residue equals the value of (15.10) at s = 1 and
µ = λ. This value is therefore equal to the original inner product (15.8). Since
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the original indices of summation Q and s have disappeared, we may as well re-
introduce them in place of the indices Q′ and t in (15.9). We then have the following
inner product formula.

Proposition 15.3 (Langlands). Suppose that φ ∈ H0
P,cusp and φ′ ∈ H0

P ′,cusp,
for standard parabolic subgroups P and P ′. The inner product∫

G(Q)\G(A)1
ΛTE(x, φ, λ)ΛTE(x, φ′, λ′)dx

is then equal to the sum

(15.11)
∑
Q

∑
s

∑
s′

θQ(sλ + s′λ̄′)−1e(sλ+s′λ̄′)(T )
(
M(s, λ)φ,M(s′, λ′)φ′),

taken over Q ⊃ P0, s ∈W (aP , aQ) and s′ ∈W (aP ′ , aQ), as meromorphic functions
of λ ∈ a∗P,C and λ′ ∈ a∗P ′,C.

The discussion above has been rather dense. However, it does yield the required
formula if the real parts of λ and λ′ are suitably regular points in (a∗P )+ and (a∗P ′)+

respectively. Since both sides are meromorphic in λ and λ̄′, the formula holds in
general. �

The argument we have given was taken from §4 of [A4]. The formula stated
by Langlands [Lan1, §9] actually differs slightly from (15.11). It contains an extra
signed sum over the ordered partitions p of the set ∆Q. The reader might find it
an interesting combinatorial exercise to prove directly that this formula reduces to
(15.11).

We shall say that a class χ ∈ X is unramified if for every pair (P, π) in χ, the
stabilizer of π in W (aP , aP ) is {1}. This is obviously completely parallel to the
corresponding geometric definition in §11. Assume that χ is unramified, and that
(P, π) is a fixed pair in χ. We shall use Proposition 15.3 to evaluate the distribution
Jχ(f).

Suppose that φ and φ′ are two vectors in the subspace H0
P,cusp,π of HP . This

represents the special case of Proposition 15.3 with P ′ = P . The factor(
M(s, λ)φ,M(s′, λ′)φ′)

in (15.11) vanishes if s �= s′, since M(s, λ)φ and M(s′, λ′)φ′ lie in the orthogonal
subspaces HQ,cusp,sπ and HQ,cusp,s′π of HQ. We use the resulting simplification
to compute the inner product (15.1). We have of course to interchange the roles
of (φ, λ) and (φ′, λ′), and then let λ′ approach a fixed point λ ∈ ia∗P . Writing
λ′ = λ + ζ, for a small point ζ ∈ ia∗P in general position, we obtain(

MT
P,χ(λ)φ′, φ

)
= lim

ζ→0

∫
G(Q)\G(A)1

ΛTE(x, φ′, λ + ζ)ΛTE(x, φ, λ)dx

= lim
ζ→0

∑
Q

∑
s∈W (aP ,aQ)

θQ(sζ)−1e(sζ)(T )
(
M(s, λ + ζ)φ′,M(s, λ)φ

)
.

In particular, the last limit exists, and takes values in a finite dimensional space of
functions of the highly regular point T ∈ (aG

0 )+. (This is also easy to show directly.)
We can therefore extend both the limit and the operator MT

P,χ(λ) to all values of
T ∈ aG

P0
so that the identity remains valid. Now, let M(w̃s, λ) be the operator on

HP defined by analytic continuation from the analogue of (7.2) in which ws has
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been replaced by the representative w̃s of s in K. Since M(s, λ) is unitary, we see
easily from the definition (9.4) that(

M(s, λ + ζ)φ′,M(s, λ)φ
)

=
(
M(s, λ)−1M(s, λ + ζ)φ′, φ

)
= e−(sζ)(T0)

(
M(w̃s, λ)−1M(w̃s, λ + ζ)φ′, φ

)
.

It follows that(
MT0

P,χ(λ)φ′, φ
)

= lim
ζ→0

∑
Q

∑
s

θQ(sζ)−1
(
M(w̃s, λ)−1M(w̃s, λ + ζ)φ′, φ

)
.

This formula does not depend on the choice of π. To compute the value

(15.12) tr
(
MT0

P,χ(λ)IP,χ(λ, f)
)

at T = T0 of the integrand in (15.2), we need only replace φ′ by IP,χ(λ, f)φ, and
then sum φ over a suitable orthonormal basis of HP,χ.

Recall that IP (πλ) denotes the representation of G(A) obtained by parabolic
induction from the representation

πλ(m) = π(m)eλ(HP (m)), m ∈M(A),

of MP (A). We can also write M(w̃s, πλ) for the intertwining operator from IP (πλ)
to IQ(sπλ) associated to an element s ∈ W (aP , aQ). Finally, let mcusp(π) denote
the multiplicity of π in the representation RMP ,cusp. Since

HP,χ =
⊕

s∈W (aP ,aP )

HP,cusp,sπ,

the representation IP,χ(λ) is then isomorphic to a direct sum of

(15.13) |W (aP , aP )|mcusp(π)

copies of the representation IP (πλ). The trace (15.12) is therefore equal to the
product of (15.13) with

tr
(
MP (πλ)IP (πλ, f)

)
,

where MP (πλ) is the operator on underlying Hilbert space of IP (πλ) defined ex-
plicitly in terms of intertwining operators by

(15.14) MP (πλ) = lim
ζ→0

(∑
Q

∑
s∈W (aP ,aQ)

θQ(sλ)−1M(w̃s, πλ)−1M(w̃s, πλ+ζ)
)
.

Since P has been fixed, we shall let P1 index the sum over standard parabolic
subgroups in the formula (15.2) for JT

χ (f). If P1 does not belong to Pχ, it turns
out that HP1,χ = {0}. This is a consequence of Langlands’s construction [Lan5,
§7] of the full discrete spectrum in terms of residues of cuspidal Eisenstein series.
For the construction includes a description of the inner product on the residual
discrete spectrum in terms of residues of cuspidal self-intertwining operators. Since
χ is unramified, there are no such operators, and the residual discrete spectrum
associated to χ is automatically zero. This leaves only groups P1 in the set Pχ. For
any such P1, the value at T = T0 of the corresponding integral in (15.2) equals the
integral over λ ∈ ia∗M of (15.11). Since

n−1
P |Pχ||W (aP , aP )| = 1,

we obtain the following theorem.



88 JAMES ARTHUR

Theorem 15.4. Suppose that χ = {(P, π)} is unramified. Then

(15.15) Jχ(f) = mcusp(π)
∫

ia∗
P

tr
(
MP (πλ)IP (πλ, f)

)
dλ.

�



Part II. Refinements and Applications

16. The first problem of refinement

We have completed the general steps outlined in §6. The coarse geometric
expansion of §10 and the coarse spectral expansion of §14 give us an identity

(16.1)
∑
o∈O

Jo(f) =
∑
χ∈X

Jχ(f), f ∈ C∞
c

(
G(A)

)
,

that holds for any reductive group G. We have also seen how to evaluate the
distributions Jo(f) and Jχ(f) explicitly for unramified classes o and χ.

From now on, we shall generally work over an arbitrary number field F , whose
adele ring AF we denote simply by A. We write S∞ for the set of archimedean
valuations of F , and we let qv denote the order of the residue class field of the
nonarchimedean completion Fv attached to any v �∈ S∞. We are now taking G to
be a fixed, connected reductive algebraic group over F . We write Sram = Sram(G)
for the finite set of valuations of F outside of which G is unramified. Thus, for any
v �∈ Sram, G is quasisplit over Fv, and splits over some finite unramified extension
of Fv.

The notation of Part I carries over with F in place of Q. So do the results, since
they are valid for the group G1 = RF/QG over Q obtained from G by restriction
of scalars. For example, the real vector space aG1 is canonically isomorphic to its
analogue aG for G. The kernel G(A)1 of the canonical mapping HG: G(A) → aG

is isomorphic to G1(A)1. It is a factor in a direct product decomposition

G(A) = G(A)1 ×A+
∞,

whose other factor
A+

∞ = AG1(R)0

embeds diagonally in the connected, abelian Lie group∏
v∈S∞

AG(Fv)0.

We shall apply the notation and results of Part I without further comment.
The results in Part I that culminate in the identity (16.1) are the content

of the papers [A3], [A4] and [A5, §1–3], and a part of [A1, §1–3]. We note in
passing that there is another possible approach to the problem, which was used
more recently in a local context [A19]. It exploits the cruder truncation operation
of simply multiplying functions by the local analogue of the characteristic function
FG(·, T ). Although the methods of [A19] have not been applied globally, they could
conceivably shorten some of the arguments. On the other hand, such methods are
perhaps less natural in the global context. They would lead to functions of T that
are asymptotic to the relevant polynomials, rather than being actually equal to
them.

The identity (16.1) can be regarded as a first approximation to a general trace
formula. Let us write Xcusp for the set of cuspidal classes in X . A class χ ∈ Xcusp is
thus of the form (G, π), where π is a cuspidal automorphic representation of G(A)1.
For any such χ, the explicit formula of §15 specializes to

Jχ(f) = aG(π)fG(π),

89
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where
fG(π) = tr

(
π(f)

)
= tr

(∫
G(A)1

f(x)π(x)dx
)

and
aG(π) = mcusp(π).

Recall that mcusp(π) is the multiplicity of π in the representation Rcusp of G(A)1

on L2
cusp

(
G(Q)\G(A)1

)
. In particular,

tr
(
Rcusp(f)

)
=

∑
χ∈Xcusp

Jχ(f).

The identity (16.1) can thus be written as a trace formula

(16.1)′ tr
(
Rcusp(f)

)
=
∑
o∈O

Jo(f)−
∑

χ∈X−Xcusp

Jχ(f).

The problem is that the explicit formulas we have obtained so far do not apply to
all of the terms on the right.

It is also easy to see that (16.1) generalizes the Selberg trace formula (1.3) for
compact quotient. Let us write Oanis for the set of anisotropic classes in O. A class
o ∈ Oanis is thus of form {γ}, where γ represents an anisotropic conjugacy class in
G(Q). (Recall that an anisotropic class is one that does not intersect P (Q) for any
proper P � G.) For any such o, the explicit formula of §11 specializes to

Jo(f) = aG(γ)fG(γ),

where
fG(γ) =

∫
G(A)γ\G(A)

f(x−1γx)dx

and
aG(γ) = vol

(
G(F )γ\G(A)1γ

)
.

The identity (16.1) can therefore be written
(16.1)′′∑
γ∈Γanis(G)

aG(γ)fG(γ)+
∑

o∈O−Oanis

Jo(f) =
∑

π∈Πcusp(G)

aG(π)fG(π)+
∑

χ∈X−Xcusp

Jχ(f),

where Γanis(G) is the set of conjugacy classes in G(F ) that do not intersect any
proper group P (F ), and Πcusp(G) is the set of equivalence classes of cuspidal au-
tomorphic representations of G(A)1. Recall that G(F )\G(A)1 is compact if and
only if G has no proper rational parabolic subgroup P . In this case O = Oanis and
X = Xcusp, and (16.1)′′ reduces to the trace formula for compact quotient discussed
in §1.

For general G, the equivalent formulas (16.1), (16.1)′, and (16.1)′′ are of limited
use as they stand. Without explicit expressions for all of the distributions Jo(f) and
Jχ(f), one cannot get much information about the discrete (or cuspidal) spectrum.
In the language of [CLL], we need to refine the coarse geometric and spectral
expansions we have constructed.

What exactly are we looking for? The unramified cases solved in §11 and §15
will serve as guidelines.

The weighted orbital integral on the right hand side of the formula (11.9) is
defined explicitly in terms of f . It is easier to handle than the original global
construction of the distribution Jo(f) on the left hand side of the formula. We
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would like to have a similar formula in general. The problem is that the right hand
side of (11.9) does not make sense for more general classes o ∈ O. It is in fact not
so simple to define weighted orbital integrals for arbitrary elements in M . We shall
do so in §18. Then in §19, we shall describe a general formula for Jo(f) as a linear
combination of weighted orbital integrals.

The weighted character on the right hand side of (15.15) is also defined ex-
plicitly in terms of f . It is again easier to handle than the global construction
of the distribution Jχ(f) on the left hand side. Weighted characters are actually
rather easy to define in general. However, this advantage is accompanied by a del-
icate analytic problem that does not occur on the geometric side. It concerns an
interchange of two limits that arises when one tries to evaluate Jχ(f) for general
classes χ ∈ X . We shall describe the solution of the analytic problem in §20. In
§21 we shall give a general formula for Jχ(f) as a linear combination of weighted
characters.

We adjust our focus slightly in Part II, which is to say, for the rest of the paper.
We have already agreed to work over a general number field F instead of Q. We
shall make three further changes, all minor, in the conventions of Part I.

The first is a small change of notation. If H is a connected algebraic group over
a given field k, and γ belongs to H(k), we shall denote the centralizer of γ in H by
Hγ,+ instead of Hγ . We reserve the symbol Hγ for the Zariski connected component
of 1 in Hγ,+. Then Hγ is a connected algebraic group over k, which is reductive if
H is reductive and γ is semisimple. This convention leads to a slightly different way
of writing the formula (11.9) for unramified classes o ∈ O. In particular, suppose
that o is anisotropic. Then

Jo(f) = aG(γ)fG(γ),

where we now write
aG(γ) = vol

(
Gγ(F )\Gγ(A)1

)
and

fG(γ) =
∫

Gγ(A)\G(A)

f(x−1γx)dx.

This would seem to be in conflict with the notation of (16.1)′′, since the group
Gγ(A)1 here is of finite index in the group denoted G(A)1γ above. There is in fact
no discrepancy, for the reason that the two factors aG(γ) and fG(γ) depend in
either case on an implicit and unrestricted choice of Haar measure on the given
isotropy group.

The second change is to make the discussion more canonical by allowing the
minimal parabolic subgroup P0 to vary. We have, after all, shown that the distribu-
tions Jo(f) and Jχ(f) are independent of P0. Some new notation is required, which
we may as well formulate for an arbitrary field k that contains F . We can of course
regard G as a reductive algebraic group over k. Parabolic subgroups certainly make
sense in this context, as do other algebraic objects we have discussed.

By a Levi subgroup of G over k, we mean an k-rational Levi component of
some k-rational parabolic subgroup of G. Any such group M is reductive, and
comes with a maximal k-split central torus AM , and a corresponding real vector
space aM . (A Levi subgroup M of G over F is also a Levi subgroup over k, but
AM and aM depend on the choice of base field. Failure to remember this can lead
to embarrassing errors!) Given M , we write L(M) = LG(M) for the set of Levi



92 JAMES ARTHUR

subgroups of G over k that contain M , and F(M) = FG(M) for the set of parabolic
subgroups of G over k that contain M . Any element Q ∈ F(M) has a unique Levi
component MQ in L(M), and hence a canonical Levi decomposition Q = MQNQ.
We write P(M) for the subset of groups Q ∈ F(M) such that MQ = M . For any
P ∈ P(M), the roots of (P,AM ) determine an open chamber a

+
P in the vector space

aM . Similarly, the corresponding coroots determine a chamber (a∗M )+P in the dual
space a∗M .

The sets P(M), L(M) and F(M) are all finite. They can be described in terms
of the geometry on the space aM . To see this, we use the singular hyperplanes in
aM defined by the roots of (G,AM ). For example, the correspondence P → a

+
P is

a bijection from P(M) onto the set of connected components in the complement in
aM of the set of singular hyperplanes. We shall say that two groups P, P ′ ∈ P(M)
are adjacent if their chambers share a common wall. The mapping L → aL is
a bijection from L(M) onto the set of subspaces of aM obtained by intersecting
singular hyperplanes. The third set F(M) is clearly the disjoint union over L ∈
L(M) of the sets P(L). The mapping Q → a

+
Q is therefore a bijection from F(M)

onto the set of “facets” in aM , obtained from chambers of subspaces aL. Since any
element in aM belongs to a unique facet, there is a surjective mapping from aM to
F(M).

Suppose for example that G is the split group SL(3), that k is any field, and that
M = M0 is the standard minimal Levi subgroup. The singular hyperplanes in the
two dimensional space aM are illustrated in Figure 16.1. The set P(M) is bijective
with the six open chambers in the diagram. The set L(M) has five elements,
consisting of the two-dimensional space aM , the three one-dimensional lines, and
the zero-dimensional origin. The set F(M) has thirteen elements, consisting of six
open chambers, six half lines, and the origin. The intuition gained from Figure
16.1, simple though it is, is often useful in understanding operations we perform in
general.

Figure 16.1. The three singular hyperplanes in the two dimensional
space aM = a0 attached to G = SL(3).

Suppose now that k = F . Even though we do not fix the minimal parabolic
subgroup as in Part I, we shall work with a fixed minimal Levi subgroup M0 of G
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over Q. We denote the associated sets L(M0) and F(M0) by L = LG and F = FG,
respectively.

The variance formulas (10.6) and (14.7) can be written without reference to P0.
The reason is that for a given P0 ∈ P(M0), any group R ∈ F is the image under
some element in the restricted Weyl group W0 = WG

0 of a unique group Q ∈ F
with Q ⊃ P0. It is an easy consequence of the definitions that JMR

o (fR,y) equals
J

MQ
o (fQ,y) for any o, and that JMR

χ (fR,y) equals J
MQ
χ (fQ,y) for any χ. The order

of the preimage of Q in F is equal to the quotient |WMQ

0 ||WG
0 |−1. Letting Q now

stand for an arbitrary group in F , we can write the earlier formulas as

(16.2) Jo(fy) =
∑
Q∈F

|WMQ

0 ||WG
0 |−1J

MQ
o (fQ,y), o ∈ O,

and

(16.3) Jχ(fy) =
∑
Q∈F

|WMQ

0 ||WG
0 |−1JMQ

χ (fQ,y), χ ∈ X .

The third point is a slight change of emphasis. The distributions Jo(f) and
Jχ(f) in (16.1) depend only on the restriction of f to G(A)1. We have in fact
identified f implicitly with its restriction to G(A)1, in writing Rcusp(f) above for
example. Let us now formalize the convention by setting C∞

c

(
G(A)1

)
equal to the

space of functions on G(A)1 obtained by restriction of functions in C∞
c

(
G(A)

)
. We

can then take the test function f to be an element in C∞
c

(
G(A)1

)
rather than

C∞
c

(
G(A)

)
, thereby regarding (16.1) as an identity of distributions on G(A)1. This

adjustment is obviously quite trivial. However, as we shall see in §22, it raises an
interesting philosophical question that is at the heart of some key operations on
the trace formula.

17. (G,M)-families

The terms in the refined trace formula will have some interesting combinato-
rial properties. To analyze them, one introduces the notion of a (G,M)-family of
functions. We shall see that among other things, (G,M)-families provide a partial
unification of the study of weighted orbital integrals and weighted characters.

We are now working in the setting of the last section. Then G is defined over
the fixed number field F , and hence over any given extension k of F . Let M be a
Levi subgroup of G over k. Suppose that for each P ∈ P(M),

cP (λ), λ ∈ ia∗M ,

is a smooth function on the real vector space ia∗M . The collection

{cP (λ) : P ∈ P(M)}

is called a (G,M)-family if cP (λ) = cP ′(λ), for any pair of adjacent groups P, P ′ ∈
P(M), and any point λ in the hyperplane spanned by the common wall of the
chambers i(a∗M )+P and i(a∗M )+P ′ . We shall describe a basic operation that assigns a
supplementary smooth function cM (λ) on ia∗M to any (G,M)-family {cP (λ)}.

The algebraic definitions of §4 and §5 of course hold with the field k in place of
Q. In particular, for any P ∈ P(M) we have the simple roots ∆P of (P,AM ), and
the associated sets ∆∨

P , ∆̂P and (∆̂P )∨. We are assuming we have fixed a suitable
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Haar measure on the subspace aG
M = aG

P of aM . We then define a homogeneous
polynomial

θP (λ) = vol
(
a

G
M/Z(∆∨

P )
)−1 ·

∏
α∈∆P

λ(α∨), λ ∈ ia∗M ,

on ia∗M , where Z(∆∨
P ) is the lattice spanned by the basis ∆∨

P of aG
M .

Lemma 17.1. For any (G,M)-family {cP (λ)}, the sum

(17.1) cM (λ) =
∑

P∈P(M)

cP (λ)θP (λ)−1

extends to a smooth function of λ ∈ ia∗M .

The only possible singularities of cM (λ) are simple poles along hyperplanes
in ia∗M of the form λ(α∨) = 0. These in turn come from adjacent pairs P and
P ′ for which α and α′ = (−α) are respective simple roots. Using the fact that
cP (λ) = cP ′(λ) for any λ on the hyperplane, one sees directly that the simple poles
cancel, and therefore that cM (λ) does extend to a smooth function. (See [A5,
Lemma 6.2].) �

We often write cM = cM (0) for the value of cM (λ) at λ = 0. It is in this form
that the (G,M)-families from harmonic analysis usually appear.

We shall first describe a basic example that provides useful geometric intuition.
Suppose that

Y = {YP : P ∈ P(M)}
is a family of points in aM parametrized by P(M). We say that Y is a positive,
(G,M)-orthogonal set if for every pair P and P ′ of adjacent groups in P(M),
whose chambers share the wall determined by the uniquely determined simple root
α ∈ ∆P ,

YP − YP ′ = rαα
∨,

for a nonnegative number rα. Assume that this condition holds. The collection

(17.2) cP (λ,Y) = eλ(YP ), λ ∈ ia∗M , P ∈ P(M),

is then a (G,M)-family of functions, which extend analytically to all points λ in the
complex space a∗M,C. As with any (G,M)-family, the associated smooth function
cM (λ,Y) depends on the choice of Haar measure on aG

M . In this case, the function
has a simple interpretation.

Observe first that

YP = Y G
P + YG, Y G

P ∈ aG
P , YG ∈ aG,

where YG is independent of the choice of P ∈ P(M). Subtracting the fixed point
YG ∈ aG from each YP , we can assume that YP ∈ aG

M . Now in §11, we attached
a sign εP (Λ) and a characteristic function φP (Λ, ·) on aM to each P ∈ P(M) and
Λ ∈ aM . Suppose that Λ is in general position, and that λ is any point in a∗M,C

whose real part equals Λ. The function

εP (Λ)φP (Λ, H − YP )eλ(H), H ∈ aG
M ,

is then rapidly decreasing. By writing

H =
∑

α∈∆P

tαα
∨, tα ∈ R,
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we deduce easily that the integral of this function over H equals

eλ(YP )θP (λ)−1 = cP (λ,Y)θP (λ)−1.

It then follows that

(17.3)
∑

P∈P(M)

eλ(YP )θP (λ)−1 =
∫

aG
M

ψM (H,Y)eλ(H)dH,

where
ψM (H,Y) =

∑
P∈P(M)

εP (Λ)φP (Λ, H − YP ).

Lemma 17.2. The function

H −→ ψM (H,Y), H ∈ aG
M ,

is the characteristic function of the convex hull in aG
M of Y.

The main step in the proof of Lemma 17.2 is the combinatorial lemma of
Langlands mentioned at the end of §8. This result asserts that

(17.4)
∑
Q⊃P

εQ
P (Λ)φQ

P (Λ, H)τQ(H) =

{
1, if Λ(α∨) > 0, α ∈ ∆P ,
0, otherwise,

for any P ∈ P(M) and H ∈ aM , where εQ
P and φQ

P denote objects attached to
the parabolic subgroup P ∩MQ of MQ. Langlands’s geometric proof of (17.4) was
reproduced in [A1, §2]. There is a different combinatorial proof [A3, Corollary
6.3], which combines an induction argument with (8.10) and Identity 6.2. Given
the formula (17.4), one then observes that ψM (H,Y) is independent of the point
Λ. This follows inductively from the expression obtained by summing the left hand
side of (17.4) over P ∈ P(M) [A1, Lemma 3.1]. Finally, by varying Λ, one shows
that

ψM (H,Y) =

{
1, if �(H − YP ) ≤ 0, � = ∆̂P , P ∈ P(M),
0, otherwise.

The inequalities on the right characterize the convex hull of Y, according to the
Krein-Millman theorem. (See [A1, Lemma 3.2].) �

The convex hull of Y is of course compact. It follows that the integral on the
right hand side of (17.3) converges absolutely, uniformly for λ ∈ ia∗M,C. We can
therefore identify the smooth function cM (λ,Y) with the Fourier transform of the
characteristic function of the convex hull of Y. Its value cM (Y) at λ = 0 is simply
the volume of the convex hull. We have actually been assuming that the point
YG ∈ aG attached to Y equals zero. However, if YG is nonzero, the convex hull of
Y represents a compactly supported distribution in the affine subspace YG + aG

M of
aM . The last two assertions therefore remain valid for any Y.

Consider the case that G = SL(3) and M equals the standard minimal Levi
subgroup. The convex hull of a typical set Y is illustrated in Figure 17.1, a diagram
on which one could superimpose six convex cones, as in the earlier special case of
Figure 11.1. The six points YP are the six vertices in the diagram. We have chosen
them here to lie in the associated chambers a

+
P . Notice that with this condition,

the intersection of the convex hull with the closure of a chamber a
+
P equals a set

of the kind illustrated in Figure 9.2. This suggests that the characteristic function
ψM (H,Y) is closely related to the functions Γ′

P (·, YP ) defined in §9.
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YP

Figure 17.1. The convex hull of six points {YP } in the two dimen-
sional space a0 attached to SL(3). Observe that its intersection with
any of the six chambers a

+
P in the diagram is a region like that in

Figure 9.2.

Suppose that X is any point in aG
M . According to Lemma 9.2, the function

H → Γ′
P (H,X) on aG

M is compactly supported for any P ∈ P(M). The integral

(17.5)
∫

aG
M

Γ′
P (H,X)eλ(H)dH

therefore converges uniformly to an analytic function of λ ∈ a∗M,C. To compute it,
we first note that for any P ∈ P(M),∑

Q⊃P

(−1)dim(AQ/AG)τQ
P (H)τ̂Q(H −X)

=
∑
Q⊃P

(−1)dim(AQ/AG)τQ
P (H)

∑
Q′⊃Q

(−1)dim(AQ′/AG)τ̂Q′

Q (H)Γ′
Q′(H,X)

=
∑

Q′⊃P

( ∑
{Q:P⊂Q⊂Q′}

(−1)dim(AQ/AQ′ )τQ
P (H)τ̂Q′

Q (H)
)
Γ′

Q(H,X)

=Γ′
P (H,X),

by the inductive definition (9.1) and the formula (8.10). Suppose that the real part
of λ lies in the negative chamber −(a∗M )+P . Then the integral∫

aG
M

τQ
P (H)τ̂Q(H −X)eλ(H)dH

converges. Changing variables by writing

H =
∑

�∈b∆Q
P

t��∨ +
∑

α∈∆Q

tαα
∨, t�, tα ∈ R,

one sees without difficulty that the integral equals

(−1)dim(AP /AG)eλQ(X)θ̂Q
P (λ)−1θQ(λQ)−1,

where λQ is the projection of λ onto a∗Q,C, and

θ̂Q
P (λ) = θ̂P∩MQ

(λ) = vol
(
a

Q
P /Z

(
(∆̂Q

P )∨
))−1 ∏

�∈b∆Q
P

λ(�∨).
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(See [A5, p. 15].) It follows that the original integral (17.5) equals

(17.6)
∑
Q⊃P

(−1)dim(AP /AQ)eλQ(X)θ̂Q
P (λ)−1θQ(λQ)−1.

In particular, the function (17.6) extends to an analytic function of λ ∈ a∗M,C.
Suppose now that for a given P ∈ P(M), cP (λ) is an arbitrary smooth function

of λ ∈ ia∗M . Motivated by the computation above, we set

(17.7) c′P (λ) =
∑
Q⊃P

(−1)dim(AP /AQ)cQ(λQ)θ̂Q
P (λ)−1θQ(λQ)−1,

where cQ is the restriction of cP to ia∗Q, and λQ is again the projection of λ onto
ia∗Q. Then c′P is defined on the complement of a finite set of hyperplanes in ia∗M .

Lemma 17.3. c′Q(λ) extends to a smooth function of λ ∈ ia∗M .

The lemma is not surprising, given what we have established in the special case
that cP (λ) = eλ(X). One can either adapt the discussion above to the more general
case, as in [A3, Lemma 6.1], or approximate cP (λ) by functions of the form eλ(X),
and apply the results above directly. �

Assume now that {cP (λ) : P ∈ P(M)} is a general (G,M)-family. There
are two restriction operations that give rise to two new families. Suppose that
Q ∈ F(M). If R belongs to PMQ(M), we set

cQ
R(λ) = cQ(R)(λ),

where Q(R) is the unique group in P(M) that is contained in Q, and whose inter-
section with MQ equals R. Then {cQ

R(λ) : R ∈ PMQ(M)} is an (MQ,M)-family.
The other restriction operation applies to a given group L ∈ L(M). If λ lies in the
subspace ia∗L of ia∗M , and Q is any group in P(L), we set

cQ(λ) = cP (λ),

for any group P ∈ P(M) with P ⊂ Q. Since we started with a (G,M)-family, this
function is independent of the choice of P , and the resulting collection
{cQ(λ) : Q ∈ P(L)} is a (G,L)-family. Observe that the definition (17.7) can
be applied to any Q. It yields a smooth function c′Q(λ) on ia∗L that depends only
on cQ(λ). Again, we often write d′Q = d′Q(0) for the value of d′Q(λ) at λ = 0.

Let {dP (λ) : P ∈ P(M)} be a second (G,M)-family. Then the pointwise
product

(cd)P (λ) = cP (λ)dP (λ), P ∈ P(M),

is also a (G,M)-family.

Lemma 17.4. The product (G,M)-family satisfies the splitting formula

(cd)M (λ) =
∑

Q∈P(M)

cQ
M (λ)d′Q(λQ).

In particular the values at λ = 0 of the functions in the formula satisfy

(17.8) (cd)M =
∑

Q∈F(M)

cQ
Md′Q.
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The lemma is an easy consequence of a formula

(17.9) cP (λ)θP (λ)−1 =
∑
Q⊃P

c′Q(λQ)θQ
P (λ)−1, P ∈ P(M),

where θQ
P = θP∩MQ

, which we obtain by inverting the definition (17.7). To derive
(17.9), we write∑

Q⊃P

c′Q(λQ)θQ
P (λ)−1

=
∑
Q⊃P

∑
Q′⊃Q

(−1)dim(AQ/AQ′ )cQ′(λQ′)θ̂Q′

Q (λQ)−1θQ′(λQ′)−1θQ
P (λ)−1

=
∑

Q′⊃P

cQ′(λQ′)θQ′(λQ′)−1
( ∑

{Q:P⊂Q⊂Q′}
(−1)dim(AQ/AQ′ )θQ

P (λ)−1θ̂Q′

Q (λQ)−1
)
.

The expression in the brackets may be written as a Fourier transform∫
a

Q′
P

( ∑
{Q:P⊂Q⊂Q′}

(−1)dim(AP /AQ)τ̂Q
P (H)τQ′

Q (H)
)
eλ(H)dH,

provided that the real part of λ lies in −(a∗M )+P . The identity (8.11) tells us that
the expression equals 0 or 1, according to whether Q′ properly contains P or not.
The formula (17.9) follows. Once we have (17.9), we see that

(cd)M (λ) =
∑

P∈P(M)

cP (λ)dP (λ)θP (λ)−1

=
∑
P

cP (λ)
∑
Q⊃P

d′Q(λQ)θQ
P (λ)−1

=
∑

Q∈F(M)

( ∑
{P∈P(M):P⊂Q}

cP (λ)θQ
P (λ)−1

)
d′Q(λQ)

=
∑

Q∈F(M)

cQ
M (λ)d′Q(λQ),

as required. (See [A3, Lemma 6.3].) �
Suppose for example that cP (λ) = 1 for each P and λ. This is the family

attached to the trivial positive (G,M)-orthogonal set Y = 0. Then cQ
M (λ) equals

0 unless Q lies in the subset P(M) of F(M), in which case it equals 1. It follows
that

(17.10) dM (λ) =
∑

P∈P(M)

d′P (λ).

In the case that dP (λ) is of the special form (17.2), this formula matches the
intuition we obtained from Figure 17.1 and Figure 9.2. For general {dP (λ)}, and
for {cP (λ)} subject only to a supplementary condition that the numbers

(17.11) cL
M = cQ

M , L ∈ L(M), Q ∈ P(L),

be independent of the choice of Q, (17.10) can be applied to the splitting formula
(17.8). We obtain a simpler splitting formula

(17.12) (cd)M =
∑

L∈L(M)

cL
MdL
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Suppose that {cP (λ)} and {dP (λ)} correspond to positive (G,M)-orthogonal
sets Y = {YP } and Z = {ZP }. Then the product family {(cd)P (λ)} corresponds
to the sum Y+Z = {YP +ZP }. In this case, (17.8) is similar to a classical formula
for mixed volumes. In the case that G = SL(3) and M is minimal, it is illustrated
in Figure 17.2.

Figure 17.2. The entire region is the convex hull of six points {YP +
ZP } in the two dimensional space a0 attached to SL(3). The inner
shaded region is the convex hull of the six points {YP }. For any P ,
the area of the darker shaded region with vertex YP equals the area
of a region in Figure 9.2. The areas of the six rectangular regions
represent mixed volumes between the sets {YP } and {ZP }.

In addition to the splitting formula (17.8), there is a descent formula that relates
the two restriction operations we have defined. It applies in fact to a generalization
of the second operation.

Suppose that M contains a Levi subgroup M1 of G over some extension k1 of
k. Then aM is contained in the vector space aM1 attached to M1. Suppose that
{cP1(λ1) : P1 ∈ P(M1)} is a (G1,M1)-family. If P belongs to P(M) and λ lies in
the subspace ia∗M of ia∗M1

, we set

cP (λ) = cP1(λ)

for any P1 ∈ P(M1) with P1 ⊂ P . This function is independent of the choice
of P1, and the resulting collection {cP (λ) : P ∈ P(M)} is a (G,M)-family. We
would like to express the supplementary function cM (λ) in terms of corresponding
functions cQ1

M1
(λ1) attached to groups Q1 ∈ F(M1). A necessary step is of course

to fix Haar measures on each of the spaces a
L1
M1

, as L1 = LQ1 ranges over L(M1).
For example, we could fix a suitable Euclidean inner product on the space aM1 ,
and then take the Haar measure on a

L1
M1

attached to the restricted inner product.
For each L1, we introduce a nonnegative number dG

M1
(M,L1) to make the relevant

measures compatible. We define dG
M1

(M,L1) to be 0 unless the natural map

a
M
M1

⊕ a
L1
M1

−→ a
G
M1
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is an isomorphism, in which case dG
M1

(M,L1) is the factor by which the product
Haar measure on aL

M1
⊕ a

L1
M1

must be multiplied in order to be equal to the Haar
measure on aG

M1
. (The measure on aM

M1
is the quotient of the chosen measures on

aG
M1

and aG
M .)

There is one other choice to be made. Given M and M1, we select a small
vector ξ in general position in aM

M1
. If L1 is any group L(M1) with dG

M1
(M,L1) �= 0,

the affine space ξ + aG
M intersects aG

L1
at one point. This point is nonsingular, and

so belongs to a chamber a
+
Q1

, for a unique group Q1 ∈ P(L1). The point ξ thus
determines a section

L1 −→ Q1, L1 ∈ L(M1), dG
M1

(M,L1) �= 0,

from L1 to its fibre P(L1).

Lemma 17.5. For F1 ⊃ F , M1 ⊂M , and {cP1(λ1)} as above, we have

cM (λ) =
∑

L1∈L(M1)

dG
M1

(M,L1)c
Q1
M1

(λ), λ ∈ ia∗M .

In particular, the values at λ = 0 of these functions satisfy

(17.13) cM =
∑

L1∈L(M1)

dG
M1

(M,L1)c
Q1
M1

.

Lemma 17.5 is proved under slightly more general conditions in [A13, Propo-
sition 7.1]. We shall be content to illustrate it geometrically in a very special case.
Suppose that k = k1, G = SL(3), M is a maximal Levi subgroup, M1 is a minimal
Levi subgroup, and {cP1(λ1)} is of the special form (17.2). The points {YP1} are
the six vertices of the polytope in Figure 17.3. They are of course bijective with the
set of minimal parabolic subgroups P1 ∈ P(M1). The six edges in the polytope are
bijective with the six maximal parabolic subgroups Q1 ∈ F(M1). The two vertical
edges are perpendicular to aM , so the corresponding coefficients dG

M1
(M,L1) van-

ish. The remaining four edges occur in pairs, corresponding to two pairs of groups
Q1 ∈ P(L1) attached to the two maximal Levi subgroups L1 �= M . However, the
upward pointing vector ξ ∈ aM

M1
singles out the upper two edges. The projections of

these two edges onto the line aM are disjoint (apart from the interior vertex), with
union equal to the line segment obtained by intersecting aM with the polytope.
The length of this line segment is the sum of the lengths of the two upper edges,
scaled in each case by the associated coefficient dG

M1
(M,L1).

If this simple example is not persuasive, the reader could perform some slightly
more complicated geometric experiments. Suppose that dim(aM1) = 3 and {cP1(λ1)}
is of the special form (17.2), but that k, G, k1, and M1 are otherwise arbitrary. It
is interesting to convince oneself geometrically of the validity of the lemma in the
two cases dim aM = 1 and dim aM = 2. The motivation for the general proof is
based on these examples. �

We sometimes use a variant of Lemma 17.5, which is included in the general
formulation of [A13, Propositon 7.1]. It concerns the case that F = F1, but where
M is embedded diagonally in the Levi subgroup M = M ×M of G = G×G. Then
aM is embedded diagonally in the space aM = aM ⊕aM . Elements in L(M) consist
of pairs L = (L1, L2), for Levi subgroups L1, L2 ∈ L(M) of G. (We have written
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aM

a
M
M1

ξ

Figure 17.3. An illustration of the proof of Lemma 17.5, with
G = SL(3), M maximal, and M1 = M0 minimal. The two up-
per edges of the polytope project onto the two interior intervals on
the horizontal axis. In each case, the projection contracts the length
by the appropriate determinant dG

M1
(M,L1).

M, G, and L in place of M1, G1, and L1, since we are now using L1 to denote the
first component of L.) The corresponding coefficient in (17.13) satisfies

dGM(M,L) = 2
1
2 dim(aG

M )dG
M (L1, L2),

while if P belongs to P(M), the pair P = (P, P ) in P(M) satisfies

θP(λ) = 2
1
2 dim(aG

M )θP (λ), λ ∈ ia∗M .

We choose a small point ξ in general position in the space

a
M
M = {(H,−H) : H ∈ aM},

and let

(L1, L2) −→ (Q1, Q2), L1, L2 ∈ L(M), dG
M (L1, L2) �= 0,

be the corresponding section from (L1, L2) to its fibre P(L1)×P(L2). If ξ is written
in the form 1

2ξ1−
1
2ξ2, Qi is in fact the group in P(Li) such that ξi belongs to a

+
Qi

.

Lemma 17.6. The product (G,M)-family of Lemma 17.4 satisfies the alternate
splitting formula

(cd)M (λ) =
∑

L1,L2∈L(M)

dG
M (L1, L2)c

Q1
M (λ)cQ2

M (λ).

In particular, the values at λ = 0 of the functions in the formula satisfy

(17.14) (cd)M =
∑

L1,L2∈L(M)

dG
M (L1, L2)c

Q1
M dQ1

M .

(See [A13, Corollary 7.4].) �
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18. Local behaviour of weighted orbital integrals

We now consider the refinement of the coarse geometric expansion (10.7). In
this section, we shall construct the general weighted orbital integrals that are to be
the local ingredients. In the next section, we shall describe how to expand J(f) as
a linear combination of weighted orbital integrals, with certain global coefficients.

Recall that invariant orbital integrals (1.4) arose naturally at the beginning of
the article. Weighted orbital integrals are noninvariant analogues of these distribu-
tions. We define them by scaling the invariant measure dx with a function vM (x)
obtained from a certain (G,M)-family.

The simplest case concerns the setting at the end of §16, in which k is a com-
pletion Fv of F . Then M is a Levi subgroup of G over Fv. We also have to fix a
suitable maximal compact subgroup Kv of G(k) = G(Fv). If xv is an element in
G(Fv), and P belongs to P(M), we form the point HP (xv) in aM as in §4. It is a
consequence of the definitions that

{YP = −HP (xv) : P ∈ P(M)}.
is a positive (G,M)-orthogonal set. The functions

vP (λ, xv) = e−λ(HP (xv), λ ∈ ia∗M , P ∈ P(M),

then form a (G,M)-family. The associated smooth function

vM (λ, xv) =
∑

P∈P(M)

vP (λ, xv)θP (λ)−1

is the Fourier transform of the characteristic function of the convex hull in aG
M of

the projection onto aG
M of the points {−HP (xv) : P ∈ P(M)}. The number

vM (xv) = vM (0, xv) = lim
λ→0

∑
P∈P(M)

vP (λ, xv)θP (λ)−1

equals the volume of this convex hull.
For the trace formula, we need to consider the global case that k = F . Until

further notice, the maximal compact subgroup K =
∏

Kv of G(A) will remain
fixed. Suppose that M is a Levi subgroup in the finite set L = L(M0), and that x
belongs to G(A). The collection

(18.1) vP (λ, x) = e−λ(HP (x)), λ ∈ ia∗M , P ∈ P(M),

is then a (G,M)-family of functions. The limit

(18.2) vM (x) = lim
λ→0

∑
P∈P(M)

vP (λ, x)θP (λ)−1

exists and equals the volume of the convex hull in aG
M of the projection of the points

{−HP (x) : P ∈ P(M)}. To see how this function is related to the discussion of
§11, choose a parabolic subgroup P ∈ P(M), and a minimal parabolic subgroup P0

of G over Q that is contained in P . The correspondence

(P ′, s) −→ Q = w−1
s P ′ws, P ′ ⊃ P0, s ∈W (aP , aP ′),

is then a bijection from the disjoint union over P ′ of the sets W (aP , aP ′) onto the
set P(M), with the property that

s−1HP ′(w̃sx) = HQ(x).

It follows that vM (x) equals the weight function vP (x) of Theorem 11.2.



18. LOCAL BEHAVIOUR OF WEIGHTED ORBITAL INTEGRALS 103

The local and global cases are of course related. For any x ∈ G(A), we can
write

HP (x) =
∑

v

HP (xv), P ∈ P(M),

where xv is the component of x in G(Fv). For almost every valuation v, xv lies in
Kv, and HP (xv) = 0. We obtain a finite sum

HP (x) =
∑
v∈S

HP (xv),

where S is a finite set of valuations that contains the set S∞ of archimedean valu-
ations. We may therefore fix S, and take x to be a point in the product

G(FS) =
∏
v∈S

G(Fv).

The (G,M)-family {vP (λ, x)} decomposes into a pointwise product

vP (λ, x) =
∏
v∈S

vP (λ, xv), λ ∈ ia∗M , P ∈ P(M),

of (G,M)-families {vP (λ, xv)}. We can therefore use the splitting formula (17.14)
and the descent formula (17.13) (with k = F and k1 = Fv) to express the volume
vM (x) in terms of volumes associated to the points xv ∈ G(Fv).

We fix the Levi subgroup M of G over F . We also fix an arbitrary finite set S
of valuations, and write KS =

∏
v∈S

Kv for the maximal compact subgroup of G(FS).

Suppose that γ =
∏

γv is an element in M(FS). Our goal is to construct a weighted
orbital integral of a function f ∈ C∞

c

(
G(FS)

)
over the space of FS-valued points

in the conjugacy class of G induced from γ. More precisely, let γG be the union
of those conjugacy classes in G(FS) that for any P ∈ P(M) intersect γNP (FS) in
a nonempty open set. We shall define the weighted orbital integral attached to M
and γ by means of a canonical, noninvariant Borel measure on γG.

For any v, the connected centralizer Gγv
is an algebraic group over Fv. We

regard the product Gγ =
∏

v∈S

Gγv
as a scheme over FS , which is to say simply that

Gγ(FS) =
∏
v∈S

Gγv
(Fv).

It is known [R] that this group is unimodular, and hence that there is a right invari-
ant measure dx on the quotient Gγ(FS)\G(FS). The correspondence
x→ x−1γx is a surjective mapping from Gγ(FS)\G(FS) onto the conjugacy class of
γ in G(FS), with finite fibres (corresponding to the connected components in the full
centralizer Gγ,+(FS)). Now if γ is not semisimple, the preimage in Gγ(FS)\G(FS)
of a compact subset of the conjugacy class of γ (in the topology induced from
G(FS)) need not be compact. Nevertheless, a theorem of Deligne and Rao [R] as-
serts that the measure dx defines a G(FS)-invariant Borel measure on the conjugacy
class of γ. We obtain a continuous G(FS)-invariant linear form

f −→
∫

Gγ(FS)\G(FS)

f(x−1γx)dx, f ∈ C∞
c (FS),

on C∞
c

(
G(FS)

)
.
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Suppose first that Gγ is contained in M . In other words, Gγ = Mγ . This
condition holds for example if γ is the image in M(FS) of an element in M(F ) that
represents an unramified class o ∈ O, as in Theorem 11.2. With this condition, we
define the weighted orbital integral

JM (γ, f) = JG
M (γ, f)

of f ∈ C∞
c

(
G(FS)

)
at γ by

(18.3) JM (γ, f) = |D(γ)| 12
∫

Gγ(FS)\G(FS)

f(x−1γx)vM (x)dx.

The normalizing factor

D(γ) = DG(γ) =
∏
v∈S

DG(γv)

is the generalized Weyl discriminant∏
v∈S

det
(
1−Ad(σv)

)
g/gσv

,

where σv is the semisimple part of γv, and gσv
is the Lie algebra of Gσv

. Its presence
in the definition simplifies some formulas. Since Gγ is contained in M , and vM (mx)
equals vM (x) for any m ∈M(FS), the integral is well defined.

Lemma 18.1. Suppose that y is any point in G(FS). Then

(18.4) JM (γ, fy) =
∑

Q∈F(M)

J
MQ

M (γ, fQ,y),

where

(18.5) fQ,y(m) = δQ(m)
1
2

∫
KS

∫
NQ(FS)

f(k−1mnk)u′
Q(k, y)dndk,

for m ∈MQ(FS), and

(18.6) u′
Q(k, y) =

∫
aG

Q

Γ′
Q

(
H,−HQ(ky)

)
dH.

This formula is Lemma 8.2 of [A5]. It probably does not come as a surprise,
since the global distributions Jo(f) satisfy a similar formula (16.2), and Theorem
11.2 tells us that for many o, Jo(f) is a weighted orbital integral.

To prove the lemma, we first write

JM (γ, fy) = |D(γ)| 12
∫

Gγ(FS)\G(FS)

f(yx−1γxy−1)vM (x)dx

= |D(γ)| 12
∫

Gγ(FS)\G(FS)

f(x−1γx)vM (xy)dx.

We then observe that

vP (λ, xy) = e−λ(HP (xy)) = e−λ(HP (x))e−λ(HP (kP (x)y))

= vP (λ, x)uP (λ, x, y),

where
uP (λ, x, y) = e−λ(HP (kP (x)y)),
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and kP (x) is the point KS such that xkP (x)−1 belongs to P (FS). It is a consequence
of Lemma 17.4 that

vM (xy) =
∑

Q∈F(M)

vQ
M (x)u′

Q(x, y).

If k belongs to KS , it follows from the definition (18.6) of u′
Q(k, y), and the equality

of (17.5) with (17.6) established in §17, that u′
Q(k, y) is indeed of the form (17.7).

Making two standard changes of variables in the integral over x in Gγ(FS)\G(FS),
we write

|D(γ)| 12
∫

f(x−1γx)vM (xy)dx

=
∑

Q∈F(M)

|D(γ)| 12
∫

f(x−1γx)vQ
M (x)u′

Q(x, y)dx

=
∑
Q

|D(γ)| 12
∫ ∫ ∫

f(k−1n−1m−1γmnk)vQ
M (m)u′

Q(k, y)dmdndk

=
∑
Q

|DM (γ)| 12 δQ(γ)
1
2

∫ ∫ ∫
f(k−1m−1γmnk)vQ

M (m)u′
Q(k, y)dndkdm

=
∑
Q

|DM (γ)| 12
∫

fQ,y(m−1γm)vQ
M (m)dm,

for integrals over m, n, and k in MQ,γ(FS)\MQ(F ), NQ(FS), and KS respectively.
This equals the right hand side of (18.4), as required. �

The distribution (18.3) is to be regarded as a local object, despite the fact that
M is a Levi subgroup of G over F . It can be reduced to the more elementary
distributions

JMv
(γv, fv), γv ∈Mv(Fv), fv ∈ C∞

c

(
G(Fv)

)
,

defined for Levi subgroups Mv of G over Fv by the obvious analogues of (18.3).
Suppose for example that S is a disjoint union of two sets of valuations S1 and

S2. Suppose that

f = f1f2, fi ∈ C∞
c

(
G(FSi

)
)

and that

γ = γ1γ2, γi ∈M(FSi
).

We continue to assume that Gγ = Mγ , so that Gγi
= Mγi

for i = 1, 2. We apply
the general splitting formula (17.14) to the (G,M)-family

vP (λ, x1, x2) = vP (λ, x1)vP (λ, x2), P ∈ P(M), xi ∈ G(FSi
).

We then deduce from (18.3) that

(18.7) JM (γ, f) =
∑

L1,L2∈L(M)

dG
M (L1, L2)JL1

M (γ1, fQ1)J
L2
M (γ2, fQ2),

where (L1, L2) → (Q1, Q2) is the section in (17.14), and

fi,Qi
(mi) = δQi

(mi)
1
2

∫
KSi

∫
NQi

(FSi
)

fi(k−1
i miniki), dnidki,
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for mi ∈MQi
(FSi

). If we apply this result inductively, we can reduce the compound
distributions (18.3) to the simple case that S contains one element.

Suppose that S does consist of one element v. Assume that Mv is a Levi
subgroup of G over Fv, and that γv is an element in Mv(Fv) with Gγv

= Mv,γv
.

Then Mv,γv
= Mγv

and Mγv
= Gγv

. The first of these conditions implies that the
induced class γM

v equals the conjugacy class of γv in M(Fv). The second implies
that the distribution

JM (γM
v , fv) = JM (γv, fv)

is defined by (18.3), for any fv ∈ C∞
c

(
G(Fv)

)
. We apply the general descent formula

(17.13) to the (G,M)-family

vP (λ, xv), P ∈ P(M), xv ∈ G(Fv).

We then deduce from (18.3) that

(18.8) JM (γM
v , fv) =

∑
Lv∈L(Mv)

dG
Mv

(M,Lv)JLv

Mv
(γv, fv,Qv

),

where Lv → Qv is the section in (17.13). The two formulas (18.7) and (18.8)
together provide the required reduction of (18.3).

Suppose now that γ ∈ M(FS) is arbitrary. In the most extreme case, for
example, γ could be the identity element in M(FS). The problem of defining a
weighted orbital integral is now much harder. We cannot form the integral (18.3),
since vM (x) is no longer a well defined function on Gγ(FS)\G(FS). Nor can we
change the domain of integration to Mγ(FS)\G(FS), since the integral might then
not converge.

What we do instead is to replace γ by a point aγ, for a small variable point
a ∈ AM (FS) in general position. Then Gaγ = Maγ , so we can define JM (aγ, f) by
the integral (18.3). The idea is to construct a distribution JM (γ, f) from the values
taken by JM (aγ, f) around a = 1. This is somewhat subtle. To get an idea of what
happens, let us consider the special case of GL(2).

Assume that F = Q, G = GL(2), M = M0 is minimal, S is the archimedean

valuation v∞, and γ = 1. Then aγ = a =
(
t1 0
0 t2

)
, for distinct positive real

numbers t1 and t2. Since

Gaγ(R)\G(R) = M(R)\P (R)KR
∼= NP (R)KR,

where P is the standard Borel subgroup of upper triangular matrices, the integral
(18.3) can be written as

(18.9) JM (a, f) = |D(a)| 12
∫

KR

∫
NP (R)

f(k−1n−1ank)vM (n)dndk.

It is easy to compute the function vM (n). We first write

vM (n) = lim
λ→0

(
e−λ(HP (n))θP (λ)−1 + e−λ(HP (n))θP (λ)−1

)
= lim

λ→0
(1− e−λ(HP̄ (n)))θP (λ)−1

= lim
λ→0

λ
(
HP (n)

)
λ(α∨)−1vol

(
a

G
M/Z(α∨)

)
= e∗1

(
HP (n)

)
,
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where P is the Borel subgroup of lower triangular matrices, α is the simple root
of (P,AP ), e∗1 is the linear form on aM

∼= R2 defined by projecting R2 onto the
first component, and the measure on aG

M =
{
(H,−H) : H ∈ R

}
is defined by

Lebesgue measure on R. We then note that n lies in a set NP (R)
(
u 0
0 u−1

)
KR,

for a positive real number u, and hence that

e∗1
(
HP (n)

)
= log |u| = log ‖(1, 0)n‖.

It follows that if n =
(

1 x
0 1

)
, then

(18.10) vM (n) = log ‖(1, x)‖ =
1
2

log(1 + x2).

We make the standard change of variables

(18.11) n −→ ν = a−1n−1an =
(

1 x(1− t−1
1 t2)

0 1

)
=
(

1 ξ
0 1

)
in the last integral over NP (R). This entails multiplying the factor |D(a)| 12 by the
Jacobian determinant

|D(a)|− 1
2 eρP (a) = |D(a)|− 1

2 (t1t−1
2 )

1
2

of the transformation. We conclude that JM (a, f) equals

(t1t−1
2 )

1
2

∫
KR

∫
R

f
(
k−1

(
t1 0
0 t2

)(
1 ξ
0 1

)
k
)(1

2
log
(
1 + ξ2(1− t−1

1 t2)−2
))

dξdk.

The logarithmic factor in the last expression for JM (a, f) blows up at a = 1.
However, we can modify it by adding a logarithmic factor

rG
M (a) = log |α(a)− α(a)−1| = log |t1t−1

2 − t−1
1 t2|

that is independent of ξ. This yields a locally integrable function

ξ −→ 1
2

log
(
(t1t−1

2 + 1)2
(
(1− t−1

1 t2)2 + ξ2
))

, ξ ∈ R,

whose integral over any compact subset of R is bounded near a = 1. Observe that

(t1t−1
2 )

1
2

∫
KR

∫
R

f
(
k−1

(
t1 0
0 t2

)(
1 ξ
0 1

)
k
)
dξdk

= |D(a)| 12
∫

KR

∫
NP (R)

f(k−1n−1ank)dndk

= JG(a, f).

It follows from the dominated convergence theorem that the limit

lim
a→1

(
JM (a, f) + rG

M (a)JG(a, f)
)

exists, and equals the integral

JM (1, f) =
∫

KR

∫
R

f
(
k−1

(
1 ξ
0 1

)
k
)

log(2|ξ|)dξdk.

This is how we define the weighted orbital integral in the case G = GL(2). As
a distribution on GL(2,R), it is given by a noninvariant Borel measure on the

conjugacy class 1G of the matrix
(

1 1
0 1

)
.
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For arbitrary F , G, M , S, and γ, the techniques are more elaborate. However,
the basic method is similar. One begins with the general analogue of the formula
(18.9), valid for a fixed group P ∈ P(M). One then computes the function vM (n) as
above, using a variable irreducible right G-module over F in place of the standard
two-dimensional GL(2)-module, and a highest weight vector in place of (1, 0). If

ν −→ n = n(ν, γa)

is the inverse of the bijection n→ (γa)−1n−1(γa)n of NP (R), the problem becomes
that of understanding the behaviour of the function

vM

(
n(ν, γa)

)
near a = 1. This leads to general analogues of the factor rG

M (a) defined above for
GL(2).

Theorem 18.2. For any F , G, M , S, and γ ∈ M(FS), there are canonical
functions

rL
M (γ, a), L ∈ L(M),

defined for small points a ∈ AM (FS) in general position, such that the limit

(18.12) JM (γ, f) = lim
a→1

∑
L∈L(M)

rL
M (γ, a)JL(aγ, f)

exists and equals the integral of f with respect to a Borel measure on the set γG.

This is Theorem 5.2 of [A12], one of the principal results of [A12]. There are
two basic steps in its proof. The first is construct the functions rL

M (γ, a). The
second is to establish the existence and properties of the limit.

The function rL
M (γ, a) is understood to depend only on L, M , γ, and a (and

not G), so we need only construct it when L = G. In this case, the function is
defined as the limit

rG
M (γ, a) = lim

λ→0

( ∑
P∈P(M)

rP (λ, γ, a)θP (λ)−1
)

associated to a certain (G,M)-family

rP (λ, γ, a) =
∏
v∈S

∏
βv

rβv

(
1
2λ, uv, av

)
, λ ∈ ia∗M .

The factors in this last product are defined in terms of the Jordan decomposition
γv = σvuv of the v-component of γ. Let Pσv

be the parabolic subgroup P ∩Gσv
of

Gσv
. The indices βv then range over the reduced roots of (Pσv

, AMσv
). Any such

βv determines a Levi subgroup Gσv,βv
of Gσv

, and a maximal parabolic subgroup
Pσv,βv

= Pσv
∩ Gσv,βv

of Gσv,βv
with Levi component Mσv

. We will not describe
the factors in the product further, except to say that they are of the form

rβv
(Λ, uv, av) = |aβv

v − a−βv
v |ρ(βv,uv)Λ(β∨

v ), Λ = 1
2λ,

for positive constants ρ(βv, uv), and that they are defined by subjecting Gσv,βv
,

Mσv
, and uv to an analysis similar to that of the special case GL(2), M0, and 1

(with v = v∞) above.
The existence of the limit (18.12) is more subtle. The functions rβv

(Λ, uv, av)
are defined so as to make the associated limits for Gσv,βv

, Mσv
, and uv exist.
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However, these limits are simpler. They concern a variable av that is essentially one-
dimensional (since Mσv

is a maximal Levi subgroup in Gσv,βv
), while the variable

a in (18.12) is multidimensional (since M is an arbitrary Levi subgroup of G).
The existence of the general limit depends on algebraic geometry, specifically a
surprising application by Langlands of Zariski’s main theorem [A12, §4], and some
elementary analysis [A12, Lemma 6.1]. The fact that the resulting distribution
f → JM (γ, f) is a measure is a consequence of the proof of the existence of the
limit. �

Once we have defined the general distributions JM (γ, f), we can extend the
properties established in the special case that Gγ = Mγ . First of all, we note that
JM (γ, f) depends only on the conjugacy class of γ in M(FS). It is also easy to see
from the definition (18.12) that

JM1(γ1, f) = JM (γ, f),

where γ1 = wsγw
−1
s = w̃sγw̃

−1
s and M1 = wsMw−1

s , for elements γ ∈ M(FS) and
s ∈W0.

Suppose that y lies in G(FS), and that γ ∈M(FS) is arbitrary. It then follows
from (18.12) and Lemma 18.1 that

JM (γ, fy) = lim
a→1

∑
L∈L(M)

rL
M (γ, a)JL(aγ, fy)

= lim
a→1

∑
L∈L(M)

∑
Q∈F(L)

rL
M (γ, a)JMQ

L (aγ, fQ,y)

= lim
a→1

∑
Q∈F(M)

( ∑
L∈LMQ (M)

rL
M (γ, a)JMQ

L (aγ, fQ,y)
)

=
∑

Q∈F(L)

J
MQ

M (γ, fQ,y).

The formula (18.4) therefore holds in general.
The splitting formula (18.7) and the descent formula (18.8) also hold in gen-

eral. In particular, the general distributions JM (γ, f) can be reduced to the more
elementary local distributions JMv

(γv, fv). The proof entails application to the
general definition (18.12) of the special cases of these formulas already established.
One has to also apply Lemmas 17.5 and 17.6 to the coefficients rL

M (γ, a) in (18.12).
The argument is not difficult, but is more complicated than the general proof of
(18.4) above. We refer the reader to the proofs of Theorem 8.1 and Proposition 9.1
of [A13].

19. The fine geometric expansion

We now turn to the global side of the problem. It would be enough to express
the distribution Jo(f) in explicit terms, for any o ∈ O. We solved the problem
for unramified classes o in §11 by writing Jo(f) as a weighted orbital integral. We
would like to have a similar formula that applies to an arbitrary class o.

The general weighted orbital integrals defined in the last section are linear
forms on the space C∞

c

(
G(FS)

)
, where S is any finite set of valuations. Assume

that S is a large finite set that contains the archimedean valuations S∞, and write
C∞

c

(
G(FS)1

)
for the space of functions on G(FS)1 = G(FS) ∩ G(A)1 obtained by

restriction of functions in C∞
c

(
G(FS)

)
. If γ belongs to the intersection of M(FS)
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with G(FS)1, we can obviously define the corresponding weighted orbital integral
as a linear form on C∞

c

(
G(FS)1

)
. Let

χS =
∏
v �∈S

χv

be the characteristic function of the maximal compact subgroup

KS =
∏
v �∈S

Kv

of G(AS). The mapping f → fχS is then an injection of C∞
c

(
G(FS)1

)
into

C∞
c

(
G(A)1

)
. We shall identify C∞

c

(
G(FS)1

)
with its image in C∞

c

(
G(A)1

)
. We

can thus form the distribution Jo(f) for any f ∈ C∞
c

(
G(FS)1

)
. Our goal is to write

it explicitly in terms of weighted orbital integrals of f .
Suppose first that o consists entirely of unipotent elements. Then o = ounip =

UG(F ), where UG is the closed variety of unipotent elements in G. It is this class
in O that is furthest from being unramified, and which is consequently the most
difficult to handle. In general, there are infinitely many G(F )-conjugacy classes in
UG(F ). However, we say that two elements γ1, γ2 ∈ UG(F ) are (G,S)-equivalent if
they are G(FS)-conjugate. The associated set

(
UG(F )

)
G,S

of equivalence classes is
then finite. The next theorem gives an expansion of the distribution

Junip(f) = JG
unip(f) = JG

ounip
(f)

whose terms are indexed by the finite sets
(
UM (F )

)
M,S

.

Theorem 19.1. For any S as above, there are uniquely determined coefficients

aM (S, u), M ∈ L, u ∈
(
UM (F )

)
M,S

,

with

(19.1) aM (S, 1) = vol
(
M(F )\M(A)1

)
,

such that

(19.2) Junip(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
u∈(UM (F ))M,S

aM (S, u)JM (u, f),

for any f ∈ C∞
c

(
G(FS)1

)
.

This is the main result, Theorem 8.1, of the paper [A10]. The full proof is too
long for the space we have here. However, the basic idea is easy to describe.

Assume inductively that the theorem is valid if G is replaced by any proper
Levi subgroup. It is understood that the coefficients aM (S, u) depend only on M
(and not G). The induction hypothesis therefore implies that the coefficients have
been defined whenever M is proper in G. We can therefore set

Tunip(f) = Junip(f)−
∑
M∈L
M �=G

|WM
0 ||WG

0 |−1
∑

u∈(UM (F ))M,S

aM (S, u)JM (u, f),

for any f ∈ C∞
c

(
G(FS)1

)
. Suppose that y ∈ G(FS). By (16.2) and (18.4), we can

write the difference
Tunip(fy)− Tunip(f)
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as the difference between the global expression

Junip(fy)− Junip(f) =
∑
Q∈F
Q�=G

|WMQ

0 ||WG
0 |−1J

MQ

unip(fQ,y)

and the local expression∑
M �=G

|WM
0 ||WG

0 |−1
∑

u∈(UM (Q))M,S

aM (S, u)
(
JM (u, fy)− JM (u, f)

)
=
∑

M �=G

∑
Q∈F(M)

Q�=G

|WMQ

0 ||WG
0 |−1

∑
u

|WM
0 ||WMQ

0 |−1aM (S, u)JMQ

M (u, fQ,y).

The difference between Tunip(fy) and Tunip(f) is therefore equal to the sum over
Q ∈ F with Q �= G of the product of |WMQ

0 ||WG
0 |−1 with the expression

J
MQ

unip(fQ,y)−
∑

M∈LMQ

|WM
0 ||WMQ

0 |−1
∑

u∈(UM (F ))M,S

aM (S, u)JMQ

M (u, fQ,y).

The last expression vanishes by our induction assumption. It follows that Tunip(fy)
equals Tunip(f), and therefore that the distribution Tunip on G(FS)1 is invariant.

Recall that Junip(f) is the value at T = T0 of the polynomial

JT
unip(f) =

∫
G(F )\G(A)1

kT
unip(x, f)dx,

where

kT
unip(x, f) =

∑
P⊃P0

(−1)dim(AP /AG)
∑

δ∈P (F )\G(F )

KP,unip(δx, δx)τ̂P

(
HP (δx)− T

)
and

KP,unip(δx, δx) =
∑

u∈UM (F )

∫
NP (A)

f(x−1δ−1unδx)dn.

It follows that Junip(f) vanishes for any function f ∈ C∞
c

(
G(A)1

)
that vanishes

on the unipotent set in G(FS)1. For any such function, the distributions JM (u, f)
all vanish as well, according to Theorem 18.2. We conclude that the invariant
distribution Tunip annihilates any function in C∞

c

(
G(FS)1

)
that vanishes on the

unipotent set. It follows from this that

Tunip(f) =
∑

u

aG(S, u)JG(u, f),

for coefficients aG(S, u) parametrized by unipotent classes u in G(FS).
It remains to show that aG(S, u) vanishes unless u is the image of a unipotent

class in G(F ), and to evaluate aG(S, u) explicitly as a Tamagawa number in the case
that u = 1. This is the hard part. The two assertions are plausible enough. The
integrand kT

unip(x, f) above is supported on the space of G(A)-conjugacy classes that
come from F -rational unipotent classes. Moreover, the contribution to kT

unip(x, f)
from the class 1 equals f(1), which is obviously independent of x and T . The
integral over G(F )\G(A)1 of this contribution converges, and equals the product

vol
(
G(F )\G(A)1

)
f(1) = vol

(
G(F )\G(A)1

)
JG(1, f).

However, Junip(f) is defined in terms of the polynomial JT
unip(f), which depends

on a fixed minimal parabolic subgroup P0 ∈ P(M0), and is equal to an integral
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whose convergence we can control only for suitably regular points T ∈ a
+
P0

. Among
other difficulties, the dependence of JT

unip(f) on the local components fv is not at
all transparent. It is therefore not trivial to deduce the remaining two assertions
from the intuition we have.

There are two steps. The first is to approximate JT
unip(f) by the integral of the

function
Kunip(x, x) =

∑
u∈UG(F )

f(x−1ux)

over a compact set. The assertion is that

(19.3)
∣∣∣JT

unip(f)−
∫

G(F )\G(A)1
FG(x, T )Kunip(x, x)dx

∣∣∣ ≤ e−
1
2 dP0 (T ),

where FG(·, T ) is the compactly supported function on G(F )\G(A)1 defined in §8,
and

dP0(T ) = inf
α∈∆P0

α(T ).

This inequality is Theorem 3.1 of [A10]. Its proof includes an assertion that
FG(·, T ) equals the image of the constant function 1 on G(F )\G(A)1 under the
truncation operator ΛT [A10, Lemma 2.1]. The estimate (19.3), incidentally, is
reminiscent of our remarks on the local trace formula at the beginning of §16.

The second step is to solve a kind of lattice point problem. Let U be a unipotent
conjugacy class in G(F ). If v is a valuation in S and ε > 0, one can define a function
fε

U,v ∈ C∞
c

(
G(A)1

)
that, roughly speaking, truncates the function f(x) whenever

the distance from xv to the G(Fv)-conjugacy class of U is greater than ε. (See the
beginning of §4 of [A10]. The function fε

U,v equals f at any point in G(A)1 that
is conjugate to any point in U(F ), where U is the Zariski closure of U .) One then
establishes an inequality

(19.4)
∫

G(F )\G(A)1
FG(x, T )

∑
γ∈G(F )−U(F )

|fε
U,v(x−1γx)|dx ≤ εr‖f‖(1 + ‖T‖)d0 ,

where ‖ · ‖ is a continuous seminorm on C∞
c

(
G(A)1

)
, and d0 = dim(a0). This

inequality is the main technical result, Lemma 4.1, of the paper [A10]. Its proof
in §5-6 of [A10] relies on that traditional technique for lattice point problems, the
Poisson summation formula.

The inequalities (19.3) and (19.4) are easily combined. By letting ε approach
0, one deduces the remaining two assertions of Theorem 19.1 from the definition of
Junip(f) = JT0

unip(f) in terms of JT
unip(f). (See [A10, §4].) �

Remark. The explicit formula (19.1) for aM (S, 1) is independent of the set
S. For nontrivial elements u ∈ UM (F ), the coefficients aM (S, u) do depend on S.
One sees this in the case G = GL(2) from the term (v) on p. 516 of [JL]. As
a matter of fact, it is only in the case G = GL(2) that the general coefficients
aM (S, u) have been evaluated. It would be very interesting to understand them
better in other examples, although this does not seem to be necessary for presently
conceived applications of the trace formula.

The case o = ounip we have just discussed is the the most difficult. It is the
furthest from the unramified case solved explicitly in §11. For a general class o, one
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fashions a descent argument from the techniques of §11. This reduces the problem
of computing Jo(f) to the unipotent case of Theorem 19.1.

We need a couple of definitions before we can state the general result. We say
that a semisimple element σ ∈ G(F ) is F -elliptic if AGσ

equals AG. In the case
G = GL(n), for example, a diagonal element σ in G(F ) is F -elliptic if and only if
it is a scalar.

Suppose that γ is an element in G(F ) with semisimple Jordan component σ,
and that S is a large finite set of valuations of F that contains S∞. We shall say
that a second element γ′ in G(F ) is (G,S)-equivalent to γ if there is a δ ∈ G(F )
with the following two properties.

(i) σ is also the semisimple Jordan component of δ−1γ′δ.
(ii) The unipotent elements σ−1γ and σ−1δ−1γ′δ in Gσ(F ) are (Gσ, S)-equivalent,

in the sense of the earlier definition.

There could be several classes u ∈
(
UGσ

(F )
)
Gσ,S

such that σu is (G,S)-equivalent
to γ. The set of such u, which we write simply as {u : σu ∼ γ}, has a transitive
action under the finite group

ιG(σ) = Gσ,+(F )/Gσ(F ).

We define

(19.5) aG(S, γ) = εG(σ)|ιG(σ)|−1
∑

{u:σu∼γ}
aGσ (S, u),

where

εG(σ) =

{
1, if σ is F -elliptic in G,
0, otherwise.

Then aG(S, γ) depends only on the (G,S)-equivalence class of γ. If γ is semisimple,
we can use (19.1) to express aG(S, γ). In this case, we see that

(19.6) aG(S, γ) = εG(γ)|ιG(γ)|−1vol
(
Gγ(F )\Gγ(A)1

)
,

and in particular, that aG(S, γ) is independent of S.

Theorem 19.2. Suppose that o is any class in O. Then there is a finite set So

of valuations of F that contains S∞ such that for any finite set S ⊃ So and any
function f ∈ C∞

c

(
G(FS)1

)
,

(19.7) Jo(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈(M(F )∩o)M,S

aM (S, γ)JM (γ, f),

where
(
M(F ) ∩ o

)
M,S

is the finite set of (M,S)-equivalence classes in M(F ) ∩ o,
and JM (γ, f) is the general weighted orbital integral of f defined in §18.

This is the main result, Theorem 8.1, of the paper [A11]. The strategy is to
establish formulas of descent that reduce each side of the putative formula (19.7)
to the unipotent case (19.2). We are speaking of what might be called “semisimple
descent” here. It pertains to the Jordan decomposition, and is therefore different
from the property of “parabolic descent” in the formula (18.8). We shall attempt
to give a brief idea of the proof.
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The reduction is actually a generalization of the unramified case treated in §11.
In particular, it begins with the formula

JT
o (f) =

∫
G(F )\G(A)1

k̃T
o (x, f)dx

of Theorem 11.1. We recall that

k̃T
o (x, f) =

∑
P⊃P0

(−1)dim(AP /AG)
∑

δ∈P (F )\G(F )

K̃P,o(δx, δx)τ̂P

(
HP (δx)− T

)
,

where P0 ∈ P(M0) is a fixed minimal parabolic subgroup. The definition (11.1)
expresses K̃P,o(δx, δx) in terms of f , and the Jordan decomposition of elements
γ ∈MP ∩ o. The formula contains integrals over unipotent adelic groups NR(A) =
NP (A)γs

, where R is the parabolic subgroup P ∩Gγs
of Gγs

. It is therefore quite
plausible that JT

o (f) can be reduced to unipotent distributions JH,TH

unip (Φ) attached
to reductive subgroups H of G, and functions Φ ∈ C∞

c

(
H(A)1

)
obtained from

f and T by descent. However, the combinatorics of the reduction are somewhat
complicated.

One begins as in §11 by fixing a pair (P1, α1) that represents the anisotropic
rational datum of o. Then P1 is a parabolic subgroup, which is standard relative
to the fixed minimal parabolic subgroup P0 ∈ P(M0) used to construct Jo(f). One
also fixes an element σ = γ1 in the anisotropic (semisimple) conjugacy class α1 in
MP1(F ). Then P1σ = P1 ∩ Gσ is a minimal parabolic subgroup of Gσ, with Levi
component M1σ = MP1 ∩Gσ. The groups H above are Levi subgroups Mσ of Gσ

in the finite set Lσ = LGσ (M1σ). The corresponding functions Φ = Φy of descent
in C∞

c

(
Mσ(A)1

)
depend on T , and among other things, a set of representatives y

of Gσ(A)\G(A) in G(A). (See [A11, p. 199].)
We take So to be any finite set of valuations of F that contains S∞, and such

that any v �∈ So satisfies the following four conditions.

(i) |DG(σ)|v = 1.
(ii) The intersection Kσ,v = Kv ∩Gσ(Fv) is an admissible maximal compact

subgroup of Gσ(Fv).
(iii) σKvσ

−1 = Kv.
(iv) If yv ∈ G(Fv) is such that y−1

v σUGσ
(Fv)yv meets σKv, then yv belongs to

Gσ(Fv)Kv.

(See [A11, p. 203].) We choose S ⊃ So and f ∈ C∞
c

(
G(F )1

)
, as in the statement

of the theorem. It then turns out that for any group Mσ ∈ Lσ, the corresponding
functions of descent Φy all lie in the subspace C∞

c

(
Mσ(FS)1

)
of C∞

c

(
Mσ(A)1

)
.

Recall that Jo(f) is the value at T = T0 of the polynomial JT (f). The unipotent
distribution JMσ

unip(Φy) is the value of a polynomial JMσ,Tσ

unip (Φy) of Tσ in a subspace
a1σ of a0 at a fixed point T0σ. In the descent formula, the groups Mσ are of the
form MR, where R ranges over the set Fσ = FGσ(M1σ). The formula is

(19.8) Jo(f) = |ιG(σ)|−1

∫
Gσ(A)\G(A)

( ∑
R∈Fσ

|WMR
0 ||WGσ

0 |−1JMR

unip(ΦR,y,T1)
)
dy,

where ΦR,y,T1 is obtained from the general descent function Φy by specializing T
to the point T1 = T0 − T0σ [A11, Lemma 6.2]. Since the general functions Φy

and their specializations ΦR,y,T1 are somewhat technical, we have not attempted to
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define them. However, their construction is formally like that of the functions fQ,y

in (18.5). In particular, it relies on the splitting formula of Lemma 17.4.
The formula (19.8) of geometric descent has an analogue for weighted orbital

integrals. Suppose that M is a Levi subgroup of G that contains M1 = MP1 . Then
σ is contained in M(F ). Set γ = σu, where u is a unipotent element in Mσ(FS).
The formula is

(19.9) JM (γ, f) =
∫

Gσ(FS)\G(FS)

( ∑
R∈Fσ(Mσ)

JMR

Mσ
(u,ΦR,y,T1)

)
dy,

where f is any function in C∞
c

(
G(FS)1

)
, and Fσ(Mσ) = FGσ(Mσ) ([A11, Corol-

lary 8.7]).
The formulas (19.8) and (19.9) of geometric descent must seem rather murky,

given the limited extent of our discussion. However, the reader will no doubt agree
that the existence of such formulas is plausible. Taking them for granted, one
can well imagine that an application of Theorem 19.1 to the distributions in these
formulas would lead to an expansion of Jo(f). The required formula (19.7) for Jo(f)
does indeed follow from Theorem 19.1, used in conjunction with the definition (19.5)
of the coefficients aM (S, γ). �

If ∆ is a compact neighbourhood of 1 in G(A)1, we write C∞
∆

(
G(A)1

)
for the

subspace of functions in C∞
c

(
G(A)1

)
that are supported on ∆. For example, we

could take ∆ to be the set

∆N = {x ∈ G(A) : log ‖x‖ ≤ N}
attached to a positive number N . In this case we write C∞

N

(
G(A)1

)
in place of

C∞
∆N

(
G(A)1

)
. For any ∆, we can certainly find a finite set S of valuations of F

containing S∞, such that ∆ is the product of a compact neighbourhood of 1 in
G(FS)1 with KS . We write S0

∆ for the minimal such set. We also write

C∞
∆

(
G(FS)1

)
= C∞

∆

(
G(A)1

)
∩ C∞

c

(
G(FS)1

)
,

for any finite set S ⊃ S0
∆. The fine geometric expansion is given by the following

corollary of the last theorem.

Corollary 19.3. Given a compact neighbourhood ∆ of 1 in G(A)1, we can
find a finite set S∆ ⊃ S0

∆ of valuations of F such that for any finite set S ⊃ S∆,
and any f ∈ C∞

∆

(
G(FS)1

)
,

(19.10) J(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈(M(F ))M,S

aM (S, γ)JM (γ, f),

where
(
M(F )

)
M,S

is the set of (M,S)-equivalence classes in M(F ). The summands
on the right hand side of (19.10) vanish for all but finite many γ.

The corollary is Theorem 9.2 of [A11]. It follows immediately from Theorem
19.2 above, once we know that there is a finite subset of O outside of which Jo(f)
vanishes for any f ∈ C∞

∆

(
G(A)1

)
. This property follows immediately from [A11,

Lemma 9.1], which asserts that there are only finitely many classes o ∈ O such that
the set

{x−1γx : x ∈ G(A), γ ∈ o}
meets ∆, and is proved in the appendix of [A11]. �
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20. Application of a Paley-Wiener theorem

The next two sections will be devoted to the refinement of the coarse spectral
expansion (14.8). These sections are longer and more intricate than anything so
far. For one reason, there are results from a number of different sources that we
need to discuss. Moreover, we have included more details than in some of the
earlier arguments. The refined spectral expansion is deeper than its geometric
counterpart, dependent as it is on Eisenstein series, and we need to get a feeling for
the techniques. In particular, it is important to understand how global intertwining
operators intervene in the “discrete part” of the spectral expansion.

The spectral side is complicated by the presence of a delicate analytic problem,
with origins in the theory of Eisenstein series. It can be described as that of
interchanging two limits. We shall see how to resolve the problem in this section.
The computations of the fine spectral expansion will then be treated in the next
section.

In order to use the results of Part I, we shall work for the time being with a
fixed minimal parabolic subgroup P0 ∈ P(M0). Suppose that χ ∈ X indexes one
of the summands in the coarse spectral expansion. According to Theorem 15.1,

JT
χ (f) =

∑
P⊃P0

n−1
P

∫
ia∗

P

tr
(
MT

P,χ(λ)IP,χ(λ, f)
)
dλ,

where T ∈ a
+
P0

is suitably regular, and MT
P,χ(λ) is the operator on HP,χ defined

by the inner product (15.1) of truncated Eisenstein series. In the next section,
we shall see that the explicit inner product formula for truncated Eisenstein series
in Proposition 15.3 holds in general, provided it is interpreted as an asymptotic
formula in T . We might therefore hope to compute JT

χ (f) as an explicit polynomial
in T by letting the distance

dP0(T ) = inf
α∈∆P0

α(T )

approach infinity. However, any such computation seems to require estimates for
the derivatives of MT

P,χ(λ) that are uniform in λ. This would amount to estimating
derivatives in λ of Eisenstein series outside the domain of absolute convergence,
something that is highly problematical. On the other hand, if we could multiply
the integrand in the formula for JT

χ (f) above by a smooth, compactly supported
cut-off function in λ, the computations ought to be manageable. The analytic
problem is to show that one can indeed insert such a cut-off function.

In the formula for JT
χ(f) we have just quoted from Part I, f belongs to

C∞
c

(
G(A)

)
. We are now taking f to be a function in C∞

c

(
G(A)1

)
. For any such f ,

the integrand in the formula is a well defined function of λ in ia∗P /ia
∗
G. The

formula remains valid for f ∈ C∞
c

(
G(A)1

)
, so long as we take the integral over

λ ∈ ia∗P /ia
∗
G.

The class χ ∈ X will be fixed for the rest of this section. We shall first state
three preliminary lemmas, all of which are consequences of Theorem 14.1 and its
proof. For any P ⊃ P0, we write

HP,χ =
⊕

π

HP,χ,π,

where π ranges over the set Πunit

(
MP (A)1

)
of equivalence classes of irreducible

unitary representations of MP (A)1, and HP,χ,π is the intersection of HP,χ with
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the subspace HP,π of vectors φ ∈ HP such that for each x ∈ G(A), the function
φx(m) = φ(mx) in L2

disc

(
MP (Q)\MP (A)1

)
is a matrix coefficient of π. We write

IP,χ,π(λ, f) for the restriction of IP,χ(λ, f) to HP,χ,π. We then set

ΨT
π (λ, f) = n−1

P tr
(
MT

P,χ(λ)IP,χ,π(λ, f)
)
,

for any f ∈ C∞
c

(
G(A)1

)
and λ ∈ ia∗P /ia

∗
G.

Lemma 20.1. There are positive constants C0 and d0 such that for any
f ∈ C∞

c

(
G(A)1

)
, any n ≥ 0, and any T ∈ a0 with dP0(T ) > C0,∑

P⊃P0

∫
ia∗

P /ia∗
G

∑
π

|ΨT
π (λ, f)|(1 + ‖λ‖)ndλ ≤ cn,f (1 + ‖T‖)d0 ,

for a constant cn,f that is independent of T .

The lemma is a variant of Proposition 14.1(a). One obtains the factor
(1 + ‖λ‖)n in the estimate by choosing a suitable differentiable operator ∆ on
G(R), and applying the arguments of Theorem 14.1(a) to ∆f in place of f . (See
[A7, Proposition 2.1]. One can in fact take d0 = dim a0.) �

Lemma 20.2. There is a constant C0 such that for any N > 0 and any
f ∈ C∞

N

(
G(A)1

)
, the expression

(20.1)
∑

P⊃P0

∑
π

∫
ia∗

P /ia∗
G

ΨT
π (λ, f)dλ

equals JT
χ (f), and is hence a polynomial in T of degree bounded by d0 = dim a0,

whenever

dP0(T ) > C0(1 + N).

The expression equals∫
G(F )\G(A)1

ΛT
1 ΛT

2 Kχ(x, x)dx =
∫

G(F )\G(A)1
ΛT

2 Kχ(x, x)dx.

The lemma follows from Theorem 14.1(c), and an analysis of how the proof of this
result depends quantitatively on the support of f . (See [A7, Proposition 2.2].) �

If τ1, τ2 ∈ Πunit(KR) are irreducible unitary representations of KR, set

fτ1,τ2(x) =
∫

KR

∫
KR

tr
(
τ1(k1)

)
f(k−1

1 xk−1
2 )tr

(
τ2(k2)

)
dk1dk2,

for any function f ∈ C∞
c

(
G(A)1

)
. Then

f(x) =
∑
τ1,τ2

fτ1,τ2(x).

Lemma 20.3. There is a decomposition

JT
χ (f) =

∑
τ1,τ2

JT
χ (fτ1,τ2).
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The lemma follows easily from an inspection of how the estimates of the proof
of Theorem 14.1 depend on left and right translation of f by KR. (See [A7, Propo-
sition 2.3].) �

The last three lemmas form the backdrop for our discussion of the analytic
problem. The third lemma allows us to assume that f belongs to the Hecke algebra

H(G) = H
(
G(A)1

)
= H

(
G(A)1,K

)
of K-finite functions in C∞

c

(
G(A)1

)
. We recall that f is K-finite if the space of

functions on G(A)1 spanned by left and right K-translates of f is finite dimensional.
The second lemma describes the qualitative behaviour of JT

χ (f) as a function of T ,
quantitatively in terms of the support of f . If we could somehow construct a family
of new functions in H(G) in terms of the operators IP,χ,π(f), with some control
over their supports, we might be able to bring this lemma to bear on our analytic
difficulties.

Our rescue comes in the form of a Paley-Wiener theorem, or rather a corollary
of the theorem that deals with multipliers. Multipliers are defined in terms of
infinitesimal characters. To describe them, we have to fix an appropriate Cartan
subalgebra.

For each archimedean valuation v ∈ S∞ of F , we fix a real vector space

hv = ibv ⊕ a0,

where bv is a Cartan subalgebra of the compact Lie group Kv ∩M0(Fv). We then
set

h = h∞ =
⊕

v∈S∞

hv.

This space can be identified with a split Cartan subalgebra of the Lie group G∗
s(F∞),

where
F∞ = FS∞ =

⊕
v∈S∞

Fv,

and G∗
s is a split F -form of the group G. In particular, the complex Weyl group

W = W∞ of the Lie group G(F∞) acts on h. The space h comes with a canonical
projection h �→ aP , for any standard parabolic subgroup P ⊃ P0, whose transpose
is an injection a∗P ⊂ h∗ of dual spaces. It is convenient to fix a positive definite,
W -invariant inner product (·, ·) of h. The corresponding Euclidean norm ‖ · ‖ on h

restricts to a W0-invariant Euclidean norm on a0. We assume that it is dominated
by the height function on G(A) fixed earlier, in the sense that

‖H‖ ≤ log ‖ exp H‖, H ∈ a0.

The infinitesimal character of an irreducible representation π∞ ∈ Π
(
G(F∞)

)
is

represented by a W -orbit νπ∞ in the complex dual space h∗C of h. It satisfies

π∞(zf∞) = 〈h(z), νπ∞〉π∞(f∞), z ∈ Z∞, f∞ ∈ C∞
c

(
G(F∞)

)
,

where h: Z∞ → S(hC)W is the isomorphism of Harish-Chandra, from the algebra
Z∞ of bi-invariant differential operators on G(F∞) onto the algebra of W -invariant
polynomials on h∗

C, that plays a central role in his work on representations of real
groups. The algebra Z∞ acts on the Hecke algebra H

(
G(A)

)
of G(A) through

the G(F∞)-component of a given function f . However, the space of functions zf ,
z ∈ Z∞, is not rich enough for us to exploit Lemma 20.2.
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Let E(h)W be the convolution algebra of W -invariant, compactly supported
distributions on h. According to the classical Paley-Wiener theorem, the adjoint
Fourier transform α→ α̂ is an isomorphism from E(h)W onto the algebra of entire,
W -invariant functions α̂(ν) on h∗C of exponential type that are slowly increasing on
cylinders

{ν ∈ h
∗
C : ‖Re(ν)‖ ≤ r}, r ≥ 0.

The subalgebra C∞
c (h)W is mapped onto the subalgebra of functions α̂ that are

rapidly decreasing on cylinders. (By the adjoint Fourier transform α̂ we mean
the transpose-inverse of the standard Fourier transform on functions, rather than
simply the transpose. In other words,

α̂(ν) =
∫

h

α(H)eν(H)dH,

in case α is a function.)
We writeH

(
G(F∞)

)
= H

(
G(F∞),K∞

)
for the Hecke algebra of K∞ =

∏
v∈S∞

Kv

finite functions in C∞
c

(
G(F∞)

)
, and HN

(
G(F∞)

)
for the subspace of functions in

H
(
G(F∞)

)
supported on the set

{x∞ ∈ G(F∞) : log ‖x∞‖ ≤ N}.

Theorem 20.4. There is a canonical action

α : f∞ −→ f∞,α, α ∈ E(h)W , f∞ ∈ H
(
G(F∞)

)
,

of E(h)W on H
(
G(F∞)

)
with the property that

π∞(f∞,α) = α̂(νπ∞)π∞(f∞),

for any π∞ ∈ Π
(
G(F∞)

)
. Moreover, if f∞ belongs to HN

(
G(F∞)

)
and α is

supported on the subset of points H ∈ h with ‖H‖ ≤ Nα, then f∞,α lies in
HN+Nα

(
G(F∞)

)
.

(See [A9, Theorem 4.2].) �
This is the multiplier theorem we will apply to the expression (20.1). We shall

treat (20.1) as a linear functional of f in the Hecke algebra H(G) = H
(
G(A)1

)
. If

h1 is the subspace of points in h whose projection onto aG vanishes, we shall take
α to be in the subspace E(h1)W of distributions in E(h)W supported on h1. If f
belongs to the Hecke algebra H

(
G(A)

)
on G(A), we define fα to be the function

in H
(
G(A)

)
obtained by letting α act on the archimedean component of f . The

restriction of fα to G(A)1 will then depend only on the restriction of f to G(A)1. In
other words, fα ∈ H(G) is defined for any f ∈ H(G). We shall substitute functions
of this form into (20.1).

Suppose that P ⊃ P0 and π ∈ Πunit

(
MP (A)1

)
are as in (20.1). Then π is the

restriction to MP (A)1 of a unitary representation

π∞ ⊗ πfin, π∞ ∈ Πunit

(
MP (F∞)

)
, πfin ∈ Πunit

(
MP (Afin)

)
,

of MP (A). We obtain a linear form νπ = νπ∞ on hC, which we decompose

νπ = Xπ + iYπ, Xπ, Yπ ∈ h∗,

into real and imaginary parts. These points actually stand for orbits in h∗ of the
complex Weyl group of MP (F∞), but we can take them to be fixed representatives
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of the corresponding orbits. Then Xπ is uniquely determined by π, while the
imaginary part Yπ is determined by π only modulo a∗P . However, we may as well
identify Yπ with the unique representative in h∗ of the coset in h∗/a∗P of smallest
norm ‖Yπ‖. This amounts to taking the representation π∞ of MP (F∞) to be
invariant under the subgroup A+

MP ,∞ of MP (F∞), a convention that is already
implicit in the notation HP,π above.

If B is any W -invariant function on ih∗, we define a function

Bπ(λ) = B(iYπ + λ), λ ∈ ia∗P ,

on ia∗P . We also write

Bε(ν) = B(εν), ν ∈ ih∗,

for any ε > 0. We shall want B to be rapidly decreasing on ih∗/ia∗G. An obvious can-
didate would be the Paley-Wiener function α̂ attached to a function α ∈ C∞

c (h1)W .
However, the point of this exercise is to allow B to be an arbitrary element in the
space S(ih∗/ia∗G)W of W -invariant Schwartz functions on ih∗/ia∗G.

The next theorem provides the way out of our analytic difficulties.

Theorem 20.5. (a) For any B ∈ S(ih∗/ia∗G)W and f ∈ H(G), there is a unique
polynomial PT (B, f) in T such that the difference

(20.2)
∑

P⊃P0

∫
ia∗

P /ia∗
G

∑
π

ΨT
π (λ, f)Bπ(λ)dλ− PT (B, f)

approaches 0 as T approaches infinity in any cone

a
r
P0

= {T ∈ a0 : dP0(T ) > r‖T‖}, r > 0.

(b) If B(0) = 1, then

JT
χ (f) = lim

ε→0
PT (Bε, f).

This is the main result, Theorem 6.3, of the paper [A7]. We shall sketch the
proof.

The idea is to approximate B by Paley-Wiener functions α̂, for α ∈ C∞
c (h1)W .

Assume that f belongs to the space

HN (G) = H(G) ∩ C∞
N

(
G(A)1

)
,

for some fixed N > 0, and that α is a general element in E(h1)W . Then fα lies in
HN+Nα

(G). For any P ⊃ P0 and λ ∈ ia∗P , IP (λ, fα) is an operator on HP whose
restriction to HP,χ,π equals

α̂(νπ + λ)IP,χ,π(λ, f).

Applying Lemma 20.2 with fα in place of f , we see that the expression

(20.3)
∑

P⊃P0

∫
ia∗

P /ia∗
G

∑
π

α̂(νπ + λ)ΨT
π (λ, f)dλ

equals JT
χ (fα) whenever dP0(T ) > C0(1+N +Nα), and is hence a polynomial in T

in this range. The sum over π in (20.3) can actually be taken over a finite set that
depends only on χ and f . This is implicit in Langlands’s proof of Theorem 7.2,
specifically his construction of the full discrete spectrum from residues of cuspidal
Eisenstein series.
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Suppose that α belongs to the subspace C∞
c (h1)W of E(h1)W . Then JT

χ (fα)
equals ∑

P⊃P0

∫
ia∗

P /ia∗
G

∑
π

∫
h1

ΨT
π (λ, f)e(νπ+λ)(H)α(H)dHdλ.

By Lemma 20.1, integral

ψT
π (H, f) =

∫
ia∗

P /ia∗
G

ΨT
π (λ, f)eλ(H)dλ

converges to a bounded, smooth function of H ∈ h1. It follows that

JT
χ (fα) =

∫
h1

( ∑
P⊃P0

∑
π

ψT
π (H, f)eνπ(H)

)
α(H)dH,

whenever dP0(T ) > C0(1+N +Nα). Since C∞
c (h1)W is dense in E(h1) (in the weak

topology), the assertion actually holds for any α ∈ E(h1)W (with the integral being
interpreted as evaluation of the distribution α).

If H is any point in h1, let δH be the Dirac measure on h1 at H. The sym-
metrization

αH = |W |−1
∑
s∈W

δs−1H

belongs to E(h1)W . The function

pT (H, f) = JT
χ (fαH

)

is therefore a well defined polynomial in T , of degree bounded by d0. The support
of αH is contained in the ball about the origin of radius ‖H‖, so we can take
NαH

= ‖H‖. It follows that

(20.4) pT (H, f) =
∑

P⊃P0

∑
π

|W |−1
∑
s∈W

ψT
π (s−1H, f)eνπ(s−1H),

for all H and T with dP0(T ) > C0(1 + N + ‖H‖). The right hand expression may
be regarded as a triple sum over a finite set. It follows that pT (H, f) is a smooth
function of H ∈ h1 for all T in the given domain, and hence for all T , by polynomial
interpolation. Observe that α0 = δ0, and therefore that fα0 = f . It follows that

pT (0, f) = JT
χ (f).

To study the right hand side of (20.4), we group the nonzero summands with
a given real exponent Xπ. More precisely, we define an equivalence relation on the
triple indices of summation in (20.4) by setting (P ′, π′, s′) ∼ (P, π, s) if s′Xπ′ =
sXπ. If Γ is any equivalence class, we set XΓ = sXπ, for any (P, π, s) ∈ Γ. We also
define

ψT
Γ (H, f) = |W |−1

∑
(P,π,s)∈Γ

eiYπ(s−1H)ψT
π (s−1H, f).

Then ψT
Γ (H, f) is a bounded, smooth function of H ∈ h1 that is defined for all T

with dP0(T ) greater than some absolute constant. In fact, Lemma 20.1 implies that
for any invariant differential operator D on h1, there is a constant cD,f such that

(20.5) |DψT
Γ (H, f)| ≤ cD,f (1 + ‖T‖)d0 , H ∈ h1, dP0(T ) > C0,

for constants C0 and d0 independent of f . In particular, we can assume that the
constants C0 in (20.4) and (20.5) are the same. Let E = Ef be the finite set of
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equivalence classes Γ such that the function ψT
Γ (H, f) is not identically zero. It

then follows from (20.4) that∑
Γ∈E

eXΓ(H)ψT
Γ (H, f)− pT (H, f) = 0,

whenever dP0(T ) > C0(1 + N + ‖H‖). The proof of Theorem 20.5 rests on an
argument that combines this last identity with the inequality (20.5). We shall
describe it in detail for a special case.

Suppose that there is only one class Γ, and that XΓ = 0. In other words, if π
indexes a nonzero summand in (20.4), Xπ vanishes. The identity (20.4) becomes

(20.6) ψT
Γ (H, f)− pT (H, f) = 0, dP0(T ) > C0(1 + N + ‖H‖).

It is easy to deduce in this case that pT (H, f) is a slowly increasing function of H.
In fact, we claim that for every invariant differential operator D on h1, there is a
constant cD,f such that

(20.7) |DpT (H, f)| ≤ cD,f (1 + ‖H‖)d0(1 + ‖T‖)d0 ,

for all H ∈ h1 and T ∈ a0. Since pT (H, f) is a polynomial in T whose degree
is bounded by d0, it would be enough to establish an estimate for each of the
coefficients of pT (H, f) as functions of H. For any H, we choose T so that dP0(T )
is greater than C0(1 + N + ‖H‖), but so that ‖T‖ is less than C1(1 + ‖H‖), for
some large constant C1 (depending on C0 and N). It follows from (20.6) and (20.5)
that

|DpT (H, f)| = |DψT
Γ (H, f)| ≤ cD,f (1 + ‖T‖)d0

≤ cD,f

(
1 + C1(1 + ‖H‖)

)d0 ≤ c′D,f (1 + ‖H‖)d0 ,

for some constant c′D,f . Letting T vary within the chosen domain, we obtain a sim-
ilar estimate for each of the coefficients of pT (H, f) by interpolation. The claimed
inequality (20.7) follows.

We shall now prove Theorem 20.5(a), in the special case under consideration.
We can write

B(ν) =
∫

h1

eν(H)β(H)dH,

where β ∈ S(h1)W is the standard Fourier transform B̂ of the given function B ∈
S(ih∗/ia∗G)W . We then form the integral

PT (B, f) = pT (β, f) =
∫

h1
pT (H, f)β(H)dH,

which converges by (20.7). This is the required polynomial in T . We have to show
that it is asymptotic to the expression

(20.8)
∑

P⊃P0

∫
ia∗

P /ia∗
G

∑
π

ΨT
π (λ, f)Bπ(λ)dλ.
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We write the expression (20.8) as∑
P

∫
ia∗

P /ia∗
G

∑
π

ΨT
π (λ, f)

∫
h1

e(iYπ+λ)(H)β(H)dHdλ

=
∫

h1

∑
P

∑
π

ψT
π (H, f)eiYπ(H)β(H)dH

=
∫

h1

∑
P

∑
π

|W |−1
∑
s∈W

ψT
π (s−1H, f)eiYπ(s−1H)β(H)dH

=
∫

h1
ψT

Γ (H, f)β(H)dH,

by the definition of Bπ(λ), the definition of ψT
π (H, f), the fact that β(H) is W -

symmetric, and our assumption that XΓ = 0. It follows that the difference (20.2)
between pT (B, f) and (20.8) has absolute value bounded by the integral∫

h1
|ψT

Γ (H, f)− pT (H, f)||β(H)|dH.

We can assume that T lies in a fixed cone ar
P0

, and is large. If dP0(T ) is greater
than C0(1+N +‖H‖), the integrand vanishes by (20.6). We may therefore restrict
the domain of integration to the subset of points H ∈ h1 with

‖H‖ ≥ C−1
0 dP0(T )− (1 + N) ≥ C−1

0 r‖T‖ − (1 + N) ≥ r1‖T‖,

for some fixed positive number r1. For any such H, we have

|ψT
Γ (H, f)− pT (H, f)| ≤ |ψT

Γ (H, f)|+ |pT (H, f)|
≤ c1(1 + ‖H‖)2d0 ,

for some c1 > 0, by (20.5) and (20.7). We also have

|β(H)| ≤ c2(1 + ‖H‖)−(1+2d0+2 dim h
1), H ∈ h1,

for some c2 > 0. The integral is therefore bounded by

c1c2

∫
‖H‖≥r1‖T‖

(1 + ‖H‖)2d0(1 + ‖H‖)−(1+2d0+2 dim h
1)dH,

a quantity that is in turn bounded by an expression

c1c2r
−1
1 ‖T‖−1

∫
h1

(1 + ‖H‖)−2 dim h
1
dH

that approaches 0 as T approaches infinity. It follows that the difference (20.2)
approaches 0 as T approaches infinity in ar

P0
. We have established Theorem 20.5(a),

in the special case under consideration, by combining (20.5), (20.6), and (20.7).
Next we prove Theorem 20.5(b), in the given special case. Recall that JT

χ (f)
is the value of pT (H, f) at H = 0. We have to show that this equals the limit of
PT (Bε, f) as ε approaches 0, under the assumption that B(0) = 1. Now

(B̂ε)(H) = (B̂)ε(H) = βε(H),

where
βε(H) = ε−(dim h

1)β(ε−1H).
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Therefore

PT (Bε, f) = pT (βε, f) =
∫

h1
pT (H, f)βε(H)dH

= JT
χ (f) +

∫
h1

(
pT (H, f)− pT (0, f)

)
βε(H)dH,

since JT
χ (f) = pT (0, f), and

∫
βε = Bε(0) = 1. But if we combine the mean value

theorem with (20.7), we see that

|pT (H, f)− pT (0, f)| ≤ c‖H‖(1 + ‖H‖)d0(1 + ‖T‖)d0 ,

for some fixed c > 0, and all H and T . We can assume that ε ≤ 1. Then∫
h1
|pT (H, f)− pT (0, f)||βε(H)|dH

= ε− dim(h1)

∫
h1
|pT (H, f)− pT (0, f)||β(ε−1H)|dH

=
∫

h1
|pT (εH, f)− pT (0, f)||β(H)|dH

≤ c

∫
h1

ε‖H‖(1 + ‖εH‖)d0(1 + ‖T‖)d0 |β(H)|dH

≤ c′ε(1 + ‖T‖)d0 ,

where

c′ = c

∫
h1
‖H‖(1 + ‖H‖)d0 |β(H)|dH.

It follows that
lim
ε→0

(
pT (Bε, f)− JT

χ (f)
)

= 0,

as required.
We have established Theorem 20.5 in the special case that there is only one

class Γ ∈ E , and that XΓ = 0. In general, there are several classes, so there can be
nonzero points XΓ. In place of (20.6), we have the more general identity∑

Γ

eXΓ(H)ψT
Γ (H, f)− pT (H, f) = 0, dP0(T ) > C0(1 + N + ‖H‖).

In particular, pT (H, f) can have exponential growth in H, and need not be tem-
pered. It cannot be integrated against a Schwartz function β of H. Now each
function ψT

Γ (H, f) is tempered in H, by (20.7). The question is whether it is as-
ymptotic to a polynomial in T . In other words, does the polynomial pT (H, f) have
a Γ-component eXΓ(H)pT

Γ (H, f)?
To answer the question, we take HΓ to be the point in h1 such that the inner

product (HΓ, H) equals XΓ(H), for each H ∈ h. We claim that for fixed H, the
function

t −→ ψT
Γ (tHΓ + H, f), t ∈ R,

is a finite linear combination of unitary exponential functions. To see this, we first
note that the function equals

|W |−1
∑

(P,π,s)∈Γ

eiYπ(s−1(tHΓ+H))ψT
π

(
s−1(tHΓ + H), f

)
.
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For any (P, π, s) ∈ Γ, the linear form Xπ = s−1XΓ is the real part of the in-
finitestimal character of a unitary representation π of MP (A)1. It follows that the
corresponding point s−1HΓ in h1 lies in the kernel hP of the projection of h onto
aP . On the other hand, the function

ψT
π (H, f) =

∫
ia∗

P /ia∗
G

ΨT
π (λ, f)eλ(H)dλ

is invariant under translation by hP . Consequently

ψT
π

(
s−1(tHΓ + H)

)
= ψT

π (s−1H).

The claim follows.
It is now pretty clear that we can construct the Γ-component of the polynomial

pT (H, f) =
∑
Γ∈E

eXΓ(H)ψT
Γ (H, f), dP0(T ) ≥ C0(1 + N + ‖H‖),

in terms of its direction of real exponential growth. If one examines the question
more closely, taking into consideration the derivation of (20.7) above, one obtains
the following lemma.

Lemma 20.6. There are functions

pT
Γ (H, f) H ∈ h1, Γ ∈ E ,

which are smooth in H and polynomials in T of degree at most d0, such that

pT (H, f) =
∑
Γ∈E

eXΓ(H)pT
Γ (H, f),

and such that if D is any invariant differential operator on h1, then

(20.6)′
∣∣D(ψT

Γ (H, f)− pT
Γ (H, f)

)∣∣ ≤ cD,fe−δdP0 (T )(1 + ‖T‖)d0 ,

for all H and T with dP0(T ) > C0(1 + N + ‖H‖), and

(20.7)′ |DpT
Γ (H, f)| ≤ cD,f (1 + ‖H‖)d0(1 + ‖T‖)d0 ,

for all H and T , with C0, δ and cD,f being positive constants.

See [A7, Proposition 5.1]. �
Given Lemma 20.6, we set

pT
Γ (β, f) =

∫
h1

pT
Γ (H, f)β(H)dH,

for any function β ∈ S(h1)W and any Γ ∈ E . We then argue as above, using the
inequalities (20.5), (20.6)′ and (20.7)′ in place of (20.5), (20.6), and (20.7). We
deduce that for any Γ and β,

(20.9(a)) lim
T→∞

(∫
h1

ψT
Γ (H, f)β(H)dH − pT

Γ (β, f)
)

= 0, T ∈ a
r
P0
,

and that

(20.9(b)) lim
ε→0

pT
Γ (βε, f) = pT

Γ (0, f),

if
∫
β = 1, exactly as in the proofs of (a) and (b) in the special case of Theorem

20.5 above. (See [A7, Lemmas 6.2 and 6.1].)
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To establish Theorem 20.5 in general, we set

PT (B, f) =
∑
Γ∈E

pT
Γ (β, f), β = B̂.

Then, as in the proof of the special case of Theorem 20.5(a) above, we deduce that∑
P

∫
ia∗

P /ia∗
G

∑
π

ΨT
π (λ, f)Bπ(λ)dλ =

∑
Γ∈E

∫
h1

ψT
Γ (H, f)β(H)dH.

It follows from (20.9(a)) that the difference between the expression on the right
hand side of this identity and PT (B, f) approaches 0 as T approaches infinity in
ar

P0
. The same is therefore true of the difference between the expression on the left

hand side of the identity and PT (B, f). This gives Theorem 20.5(a). For Theorem
20.5(b), we use (20.9(b)) to write

lim
ε→0

PT (Bε, f) = lim
ε→0

∑
Γ∈E

pT
Γ (βε, f)

=
∑
Γ∈E

pT
Γ (0, f) = pT (0, f) = JT

χ (f),

if B(0) =
∫
β = 1. This completes our discussion of the proof of Theorem 20.5. �

21. The fine spectral expansion

We have taken care of the primary analytic obstruction to computing the distri-
butions Jχ(f). Its resolution is contained in Theorem 20.5, which applies to objects
χ ∈ X , P0 ∈ P(M0), f ∈ H(G), and B ∈ S(ih∗/ia∗G)W , with B(0) = 1. We take B
to be compactly supported. The function

Bπ(λ) = B(iYπ + λ), λ ∈ ia∗P ,

attached to any P ⊃ P0 and π ∈ Πunit

(
MP (A)1

)
then belongs to C∞

c (ia∗P /ia
∗
G).

Suppose that aT and bT are two functions defined on some cone dP0(T ) > C0

in a0. We shall write aT ∼ bT if aT − bT approaches 0 as T approaches infinity in
any cone ar

P0
. Theorem 20.5(a) tells us that

PT (B, f) ∼
∑

P⊃P0

∫
ia∗

P /ia∗
G

∑
π

ΨT
π (λ, f)Bπ(λ)dλ

=
∑

P⊃P0

n−1
P

∑
π

∫
ia∗

P /ia∗
G

tr
(
MT

P,χ(λ)IP,χ,π(λ, f)
)
Bπ(λ)dλ,

where PT (B, f) is a polynomial in T that depends linearly on B. The fact that
each Bπ(λ) has compact support is critical. It removes the analytic problem of
reconciling an asymptotic limit in T with an integral in λ over a noncompact space.
Our task is to compute PT (B, f) explicitly, as a bilinear form in the functions
{Bπ(λ)} and the operators {IP,χ,π(λ, f)}. We will then obtain an explicit formula
for JT

χ (f) from the assertion

JT
χ (f) = lim

ε→0
PT (Bε, f)

of Theorem 20.5(b).
The operator MT

P,χ(λ) is defined by (15.1) in terms of an inner product of
truncated Eisenstein series attached to P . Proposition 15.3 gives the explicit inner
product formula of Langlands, which applies to the special case that the Eisenstein
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series are cuspidal. It turns out that the same formula holds asymptotically in T
for arbitrary Eisenstein series.

Theorem 21.1. Suppose that φ ∈ H0
P and φ′ ∈ H0

P ′ , for standard parabolic
subgroups P, P ′ ⊃ P0. Then the difference between the inner product∫

G(F )\G(A)1
ΛTE(x, φ, λ)ΛTE(x, φ′, λ′)dx

and the sum

(21.1)
∑
Q

∑
s

∑
s′

θQ(sλ + s′λ
′
)−1e(sλ+s′λ

′
)(T )
(
M(s, λ)φ,M(s′, λ′)φ′)

over Q ⊃ P0, s ∈W (aP , aQ), and s′ ∈W (aP ′ , aQ) is bounded by a product

c(λ, λ′, φ, φ′)e−εdP0 (T ),

where ε > 0, and c(λ, λ′, φ, φ′) is a locally bounded function on the set of points
λ ∈ a∗P,C and λ′ ∈ a∗P ′,C at which the Eisenstein series are analytic.

This is [A6, Theorem 9.1], which is the main result of the paper [A6]. The
proof begins with the special case already established for cuspidal Eisenstein series
in Proposition 15.3. One then uses the results of Langlands in [Lan5, §7], which
express arbitrary Eisenstein series in terms of residues of cuspidal Eisenstein series.
This process is not canonical in general. Nevertheless, one can still show that (21.1)
is an asymptotic approximation for the expression obtained from the appropriate
residues of the corresponding formula for cuspidal Eisenstein series. �

Let us write ωT (λ, λ′, φ, φ′) for the expression (21.1). If Bχ is any function in
C∞

c (ia∗P /ia
∗
G), the theorem tells us that∫

ia∗
P /ia∗

G

(
MT

P,χ(λ)IP,χ(λ, f)φ, φ
)
Bχ(λ)dλ

∼
∫

ia∗
P /ia∗

G

ωT
(
λ, λ, IP,χ(λ, f)φ, φ

)
Bχ(λ)dλ.

We shall apply this asymptotic formula to the functions Bχ = Bπ. Since f is K-
finite, IP,χ(λ, f)φ vanishes for all but finitely many vectors φ in the orthonormal
basis BP,χ of HP,χ. This is a consequence of Langlands’ construction of the discrete
spectrum, as we have noted earlier. We assume that BP,χ is a disjoint union of
orthonormal bases BP,χ,π of the spaces HP,χ,π. It then follows that

PT (B, f)

∼
∑

P⊃P0

n−1
P

∑
π

(∫
ia∗

P /ia∗
G

∑
φ∈BP,χ,π

ωT
(
λ, λ, IP,χ,π(λ, f)φ, φ

)
Bπ(λ)dλ

)
.

The problem is to find an explicit polynomial function of T , for any P and π, which
is asymptotic in T to the expression in the brackets.

Suppose that P , π, and φ are fixed, and that λ lies in ia∗P . Changing the indices
of summation in the definition (21.1), we write

ωT
(
λ, λ, IP,χ,π(λ, f)φ, φ

)
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as the limit as λ′ approaches λ of the expression

ωT
(
λ′, λ, IP (λ, f)φ, φ

)
=
∑
P1

∑
t′

∑
t

θP1(t
′λ′ − tλ)−1e(t′λ′−tλ)(T )

(
M(t′, λ′)IP (λ, f)φ,M(t, λ)φ

)
=
∑

s

∑
P1

∑
t

θP1

(
t(sλ′ − λ)

)−1e(t(sλ′−λ))(T )
(
M(ts, λ′)IP (λ, f)φ,M(t, λ)φ

)
,

for sums over P1 ⊃ P0 and t′, t ∈ W (aP , aP1), and for s = t−1t′ ranging over
the group W (MP ) = W (aP , aP ). Since λ is purely imaginary, the adjoint of the
operator M(t, λ) equals M(t, λ)−1. The sum

(21.2)
∑

φ∈BP,χ,π

ωT
(
λ, λ, IP,χ,π(λ, f)φ, φ

)
therefore equals the limit as λ′ approaches λ of∑

s

∑
(P1,t)

θP1

(
t(sλ′ − λ)

)−1e(t(sλ′−λ))(T )tr
(
M(t, λ)−1M(ts, λ′)IP,χ,π(λ, f)

)
.

Set M = MP . The correspondence

(P1, t) −→ Q = w−1
t P1wt, P1 ⊃ P0, t ∈W (aP , aP1),

is then a bijection from the set of pairs (P1, t) in the last sum onto the set P(M). For
any group Q ∈ P(M) and any element s ∈ W (M), there is a unitary intertwining
operator

MQ|P (s, λ) : HP −→ HQ, λ ∈ ia∗M .

It is defined by analytic continuation from the analogue of the integral formula
(7.2), in which P ′ is replaced by Q. If (P1, t) is the preimage of Q, it is easy to see
from the definitions that

M(ts, λ′) = tMQ|P (s, λ′)e(sλ′+ρQ)(T0−t−1T0),

where t: HQ → HP1 is the operator defined by

(tφ)(x) = φ(w−1
t x), φ ∈ HP .

The point T0 is used as in §15 to measure the discrepancy between the two repre-
sentatives wt and w̃t of the element t ∈W0. (See [A8, (1.4)].) It follows that

M(t, λ)−1M(ts, λ′) = MQ|P (λ)−1MQ|P (s, λ′)e(sλ′−λ)(T0−t−1T0),

where MQ|P (λ) = MQ|P (1, λ). Next, we define a point YQ(T ) to be the projection
onto aM of the point

t−1(T − T0) + T0.

Then
e(t(sλ′−λ))(T )e(sλ′−λ)(T0−t−1T0) = e(sλ′−λ)(YQ(T )).

Finally, it is clear that

θP1

(
t(sλ′ − λ)

)−1 = θQ(sλ′ − λ)−1.

It follows that (21.2) equals the limit as λ′ approaches λ of the sum over s ∈W (M)
of

(21.3)
∑

Q∈P(M)

tr
(
MQ|P (λ)−1MQ|P (s, λ′)IP,χ,π(λ, f)

)
e(sλ′−λ)(YQ(T ))θQ(sλ′−λ)−1.
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The expression (21.3) looks rather like the basic function (17.1) we have at-
tached to any (G,M)-family. We shall therefore study it as a function of the
variable

Λ = sλ′ − λ.

The expression becomes ∑
Q∈P(M)

cQ(Λ)dQ(Λ)θQ(Λ)−1,

where
cQ(Λ) = eΛ(YQ(T )),

and
dQ(Λ) = tr

(
MQ|P (λ)−1MQ|P (s, λ′)IP,χ,π(λ, f)

)
.

It follows easily from the definition of YQ(T ) that {cQ(Λ)} is a (G,M)-family. The
operators MQ|P (s, λ′) in the second factor satisfy a functional equation

MQ′|P (s, λ′) = MQ′|Q(sλ′)MQ|P (s, λ′), Q′ ∈ P(M).

It follows easily from this that {dQ(Λ)} is also a (G,M)-family. (See [A8, p. 1298].
Of course dQ(Λ) depends on the kernel of the mapping (λ′, λ) → Λ as well as on Λ,
but at the moment we are only interested in the variable Λ.) The expression (21.3)
therefore reduces to something we have studied, namely the function (cd)M (Λ)
attached to the (G,M)-family {(cd)Q(Λ)}. By Lemma 17.1, the function has no
singularities in Λ. It follows that the expression (21.3) extends to a smooth function
of (λ′, λ) in ia∗M × ia∗M .

Remember that we are supposed to take the limit, as λ′ approaches λ, of the
sum over s ∈W (M) of (21.3). We will then want to integrate the product of Bπ(λ)
with the resulting function of λ over the space ia∗M/ia∗G. From what we have just
observed, the integral and limit may be taken inside the sum over s. It turns out
that the asymptotic limit in T may also be taken inside the sum over s. In other
words, it is possible to find an explicit polynomial in T that is asymptotic to the
integral over λ of the product Bπ(λ) with value at λ′ = λ of (21.3). We shall
describe how to do this, using the product formula of Lemma 17.4.

Suppose that s ∈W (M) is fixed. Let L be the smallest Levi subgroup in L(M)
that contains a representative of s. Then aL equals the kernel of s in aM . The
element s therefore belongs to the subset

WL(M)reg = {t ∈WL(M) : ker(t) = aL},
of regular elements in WL(M). Given s, we set λ′ = λ+ ζ, where ζ is restricted to
lie in the subspace ia∗L of ia∗M associated to s. Then sζ = ζ, and

Λ = (sλ− λ) + ζ

is the decomposition of Λ relative to the direct sum

ia∗M = i(aL
M )∗ ⊕ ia∗L.

If λL is the projection of λ onto ia∗L, the mapping

(λ, ζ) −→ (Λ, λL), λ ∈ ia∗M , ζ ∈ ia∗L,

is a linear automorphism of the vector space ia∗M ⊕ ia∗L. In particular, the points λ
and λ′ = λ + ζ are uniquely determined by Λ and λL. Let us write

cQ(Λ, T ) = eΛ(YQ(T ))



130 JAMES ARTHUR

and
dQ(Λ, λL) = tr

(
MQ|P (λ)−1MQ|P (s, λ + ζ)IP,χ,π(λ, f)

)
,

in order to keep track of our two (G,M)-families on the supplementary variables.
They of course remain (G,M)-families in the variable Λ. For λ′ = λ + ζ as above,
the expression (21.3) equals∑

Q∈F(M)

cQ(Λ, T )dQ(Λ, λL)θQ(Λ)−1 =
∑

S∈F(M)

cS
M (Λ, T )d′S(ΛS , λL),

by the product formula of Lemma 17.4. To evaluate (21.3) at λ′ = λ, we set ζ = 0.
This entails simply replacing Λ by sλ− λ. The value of (21.3) at λ′ = λ therefore
equals ∑

S∈F(M)

cS
M (sλ− λ, T )d′S

(
(sλ− λ)S , λL

)
.

We have therefore to consider the integral

(21.4)
∫

ia∗
M /ia∗

G

( ∑
S∈F(M)

cS
M (sλ− λ, T )d′S

(
(sλ− λ)S , λL

))
Bπ(λ)dλ,

for M = MP , π ∈ Πunit

(
M(A)1

)
, L ∈ L(M) and s ∈ WL(M)reg, and for T in a

fixed domain ar
P0

. We need to show that the integral is asymptotic to an explicit
polynomial in T . This will allow us to construct PT (B) simply by summing the
product of this polynomial with n−1

P over P ⊃ P0, π, L, and s.
We first decompose the integral (21.4) into a double integral over i(aL

M )∗ and
ia∗L/ia

∗
G. If λ belongs to ia∗M , sλ − λ depends only on the projection µ of λ onto

i(aL
M )∗. Since the mapping

Fs : µ −→ sµ− µ

is a linear isomorphism of i(aL
M )∗, (21.4) equals the product of the inverse

| det(s− 1)aL
M
|−1

of the determinant of this mapping with the sum over S ∈ F(M) of

(21.5)
∫

i(aL
M )∗

∫
ia∗

L/ia∗
G

cS
M (µ, T )d′S(µS , λ)Bπ

(
F−1

s (µ) + λ
)
dλdµ.

Next, we note that the dependence of the integral on T is through the term
cS
M (µ, T ). For fixed S, the set

YS
M (T ) = {YS(R)(T ) : R ∈ PMS (M)}

is a positive (MS ,M)-orthogonal set of points in aM , which all project to a common
point YS(T ) in aS . It follows from Lemma 17.2 that

cS
M (µ, T ) =

∫
YS(T )+a

MS
M

ψS
M (H,T )eµ(H)dH,

where ψS
M (·, T ) is the characteristic function of the convex hull in aM of YS

M (T ).
We can therefore write (21.5) as

(21.6)
∫

YS(T )+a
MS
M

ψS
M (H,T )φS(H)dH,



21. THE FINE SPECTRAL EXPANSION 131

where

φS(H) =
∫

i(aL
M )∗

∫
ia∗

L/ia∗
G

eµ(H)d′S(µS , λ)Bπ

(
F−1

s (µ) + λ
)
dλdµ,

for any H ∈ aM . Since d′S(·, ·) is smooth, and Bπ(·) is both smooth and compactly
supported, φS(H) is a Schwartz function on aM/aL.

There are two cases to consider. Suppose first that S does not belong to the
subset F(L) of F(M). Then aS is not contained in aL, and YS(T ) projects to a
nonzero point YS(T )L

M in aL
M . In fact, it follows easily from the fact that T lies in

ar
P0

that
‖YS(T )L

M‖ ≥ r1‖T‖,
for some r1 > 0. The function ψS

M (·, T ) is supported on a compact subset of the
affine space YS(T ) + a

MS

M whose volume is bounded by a polynomial in T . One
combines this with the fact that φS(H) is a Schwartz function on aM/aL to show
that (21.6) approaches 0 as T approaches infinity in ar

P0
. (See [A8, p. 1306].)

We can therefore assume that S belongs to F(L). Then

a
MS

M = a
L
M ⊕ a

MS

L .

Since φS is aL-invariant, we are free to write (21.6) as∫
YS(T )+a

MS
L

(∫
aL

M

φS(U)ψS
M (U + H,T )dU

)
dH.

As it turns out, we can simplify matters further by replacing

ψS
M (U + H,T )

with ψS
L(H,T ), where ψS

L(H,T ) is the characteristic function in aL of the set YS
L(T )

obtained in the obvious way from YS
M (T ). More precisely, the difference between

the last expression and the product

(21.7)
∫

aL
M

φS(U)dU ·
∫

YS(T )+a
MS
L

ψS
L(H,T )dH

approaches 0 as T approaches infinity in ar
P0

. Suppose for example that G = SL(3),
M = M0 is minimal, MS = G, and that L is a standard maximal Levi subgroup
M1. Then YS(T ) = 0, and the difference

ψS
L(H,T )− ψS

M (U + H,T ), U ∈ aL
M , H ∈ aL,

is the characteristic function of the darker shaded region in Figure 21.1. Since
φS(U) is rapidly decreasing on the vertical aL

M -axis in the figure, the integral over
(U,H) of its product with the difference above does indeed approach 0. In the
general case, the lemmas in [A8, §3] show that the convex hull of YS

M (T ) has the
same qualitative behaviour as is Figure 21.1. (See [A8, p. 1307–1308].)

The problem thus reduces to the computation of the product (21.7), for any
element S ∈ F(L). The first factor in the product can be written as∫

aL
M

φS(U)dU =
∫

ia∗
L/ia∗

G

d′S(0, λ)Bπ(λ)dλ,

by the Fourier inversion formula in aL
M . The second factor equals∫

YS(T )+a
MS
L

ψS
L(H,T )dH = cS

L(0, T )
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aL

a
L
M

YP0(T ) = T

Figure 21.1. The vertices represent the six points YP (T ), as P
ranges over P(M0). Since T ranges over a set ar

P0
, the distance from

any vertex to the horizontal aL-axis is bounded below by a positive
multiple of ‖T‖.

by Lemma 17.2, and is therefore a polynomial in T . In particular, (21.7) is already
a polynomial in T . To express its contribution to the asymptotic value of (21.4), we
need only sum S over F(L). We conclude that (21.4) differs from the polynomial

(21.8)
∣∣det(s− 1)aL

M

∣∣−1
∫

ia∗
L/ia∗

G

( ∑
S∈F(L)

cS
L(0, T )d′S(0, λ)

)
Bπ(λ)dλ

by an expression that approaches 0 as T approaches infinity in ar
P0

.
The sum

(21.9)
∑

S∈F(L)

cS
L(0, T )d′S(0, λ)

in (21.8) comes from a product

cQ1(Λ, T )dQ1(Λ, λ), Q1 ∈ P(L), Λ ∈ ia∗L,

of (G,L)-families. By Lemma 17.4, it equals the value at Λ = 0 of the sum∑
Q1∈P(L)

cQ1(Λ, T )dQ1(Λ, λ)θQ1(Λ)−1.

Recall the definition of the (G,M)-family {dQ(Λ, λ)} of which the (G,L)-family
{dQ1(Λ, λ)} is the restriction. Since λ and Λ lie in the subspace ia∗L of ia∗M , λL

equals λ, and
ζ = Λ− (sλ− λ) = Λ.

It follows from the definitions and the functional equations of the global intertwining
operators that

dQ(Λ, λ) = tr
(
MQ|P (λ)−1MQ|P (s, λ + Λ)IP,χ,π(λ, f)

)
= tr

(
MQ|P (λ)−1MQ|P (λ + Λ)MP |P (s, λ + Λ)IP,χ,π(λ, f)

)
,
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for any Q ∈ P(M). Since the point λ + Λ lies in the space ia∗L fixed by s, the
operator

MP (s, 0) = MP |P (s, λ + Λ)

is independent of λ and Λ. To deal with the other operators, we define

MQ(Λ, λ, P ) = MQ|P (λ)−1MQ|P (λ + Λ),

and

MT
Q(Λ, λ, P ) = eΛ(YQ(T ))MQ|P (λ)−1MQ|P (λ + Λ)

= cQ(Λ, T )MQ(Λ, λ, P ),

for any Q ∈ P(M). As functions of Λ in the larger domain ia∗M , these objects form
two (G,M)-families as Q varies over P(M). With Λ restricted to ia∗L as above, the
functions

MT
Q1

(Λ, λ, P ) = MT
Q(Λ, λ, P ), Q1 ∈ P(L), Q ⊂ Q1,

form a (G,L)-family as Q1 varies over P(L). It follows from the definitions that
(21.9) equals

lim
Λ→0

∑
Q1∈P(L)

cQ1(Λ, T )dQ1(Λ, λ)θQ1(Λ)−1

= lim
Λ→0

∑
Q1∈P(L)

tr
(
MT

Q1
(Λ, λ, P )MP (s, 0)IP,χ,π(λ, f)

)
θQ1(Λ)−1

= lim
Λ→0

tr
(
MT

L(Λ, λ, P )MP (s, 0)IP,χ,π(λ, f)
)

= tr
(
MT

L(λ, P )MP (s, 0)IP,χ,π(λ, f)
)
.

We substitute this formula into (21.8). The resulting expression is the required
polynomial approximation to (21.4).

The following proposition is Theorem 4.1 of [A8]. We have completed a rea-
sonably comprehensive sketch of its proof.

Proposition 21.2. For any f ∈ H(G) and B ∈ C∞
c (ih∗/ia∗G)W , the polyno-

mial PT (B, f) equals the sum over P ⊃ P0, π ∈ Πunit

(
MP (A)1

)
, L ∈ L(MP ), and

s ∈WL(MP )reg of the product of

n−1
P | det(s− 1)aL

P
|−1

with ∫
ia∗

L/ia∗
G

tr
(
MT

L(λ, P )MP (s, 0)IP,χ,π(λ, f)
)
Bπ(λ)dλ. �

Recall that
JT

χ (f) = lim
ε→0

PT (Bε, f),

where Bε(ν) = B(εν), and B(0) is assumed to be 1. Therefore

Jχ(f) = JT0
χ (f) = lim

ε→0
PT0(Bε, f).
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Now

MT0
L (λ, P ) = lim

Λ→0

∑
Q1∈P(L)

cQ1(Λ, T0)MQ1(Λ, λ, P )θQ1(Λ)−1

= lim
Λ→0

∑
Q1∈P(L)

eΛ(YQ1 (T0))MQ1(Λ, λ, P )θQ1(Λ)−1

= lim
Λ→0

eΛ(T0)
∑

Q1∈P(L)

MQ1(Λ, λ, P )θQ1(Λ)−1

= ML(λ, P ),

since YQ1(T0) is just the projection of T0 onto aL. We substitute this into the
formula above. The canonical point T0 ∈ a0 is independent of the minimal parabolic
subgroup P0 ∈ P(M0) we fixed at the beginning of the section. Moreover, if M =
MP , the function

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
is easily seen to be independent of the choice of P ∈ P(M). We can therefore
rewrite the formula of Proposition 21.2 in terms of Levi subgroups M ∈ L rather
than standard parabolic subgroups P ⊃ P0. Making the appropriate adjustments
to the coefficients, one obtains the following formula as a corollary of the last one.
(See [A8, Theorem 5.2].)

Corollary 21.3. For any f ∈ H(G), the linear form Jχ(f) equals the limit as
ε approaches 0 of the expression obtained by taking the sum over M ∈ L, L ∈ L(M),
π ∈ Πunit

(
M(A)1

)
, and s ∈WL(M)reg of the product of

|WM
0 ||WG

0 |−1| det(s− 1)aL
M
|−1

with ∫
ia∗

L/ia∗
G

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
Bε

π(λ)dλ. �

The final step is to get rid of the function BE
π and the associated limit in ε.

Recall that B had the indispensable role of truncating the support of integrals that
would otherwise be unmanageable. The function

Bε
π(λ) = B

(
ε(iYπ + λ)

)
is compactly supported in λ ∈ ia∗L/ia

∗
G, but converges pointwise to 1 as ε approaches

0. If we can show that the integral

(21.10)
∫

ia∗
L/ia∗

G

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
dλ

converges absolutely, we could remove the limit in ε by an appeal to the dominated
convergence theorem. One establishes absolute convergence by normalizing the
intertwining operators from which the operator ML(λ, P ) is constructed.

Suppose that πv ∈ Π
(
M(Fv)

)
is an irreducible representation of M(Fv), for a

Levi subgroup M ∈ L and a valuation v of F . We write

πv,λ(mv) = πv(mv)eλ(HM (mv)), mv ∈M(Fv),

as usual, for the twist of πv by an element λ ∈ a∗M,C. If P ∈ P(M), IP (πv,λ)
denotes the corresponding induced representation of G(Fv), acting on a Hilbert
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space HP (πv) of vector valued functions on Kv. If Q ∈ P(M) is another parabolic
subgroup, and φ belongs to HP (πv), the integral∫

NQ(Fv)∩NP (Fv)\NQ(Fv)

φ(nvxv)e(λ+ρP )(HP (nvxv))e−(λ+ρQ)(HQ(xv))dnv

converges if the real part of λ is highly regular in the chamber (a∗M )+P . It defines
an operator

JQ|P (πv,λ) : HP (πv) −→ HQ(πv)

that intertwines the local induced representations IP (πv,λ) and IQ(πv,λ). One
knows that JQ|P (πv,λ) can be analytically continued to a meromorphic function of
λ ∈ a∗M,C with values in the corresponding space of intertwining operators. (See
[Har5], [KnS], and [Sha1].) This is a local analogue of Langlands’ analytic contin-
uation of the global operators MQ|P (λ). Unlike the operators MQ|P (λ), however,
the local operators JQ|P (πv,λ) are not transitive in Q and P . For example, if P is
the group in P(M) opposite to P , Harish-Chandra has proved that

JP |P̄ (πv,λ)JP̄ |P (πv,λ) = µM (πv,λ)−1,

where µM (πv,λ) is a meromorphic scalar valued function that is closely related to
the Plancherel density. To make the operators JQ|P (πv,λ) have better properties,
one must multiply them by suitable scalar normalizing factors.

Theorem 21.4. For any M , v, and πv ∈ Π
(
M(Fv)

)
, one can choose mero-

morphic scalar valued functions

rQ|P (πv,λ), λ ∈ a∗M,C, P,Q ∈ P(M),

such that the normalized intertwining operators

(21.11) RQ|P (πv,λ) = rQ|P (πv,λ)−1JQ|P (πv,λ)

have the following properties.
(i) RQ′|P (πv,λ) = RQ′|Q(πv,λ)RQ|P (πv,λ), Q′, Q, P ∈ P(M).

(ii) The Kv-finite matrix coefficients of RQ|P (πv,λ) are rational functions of
the variables {λ(α∨) : α ∈ ∆P } if v is archimedean, and the variables
{q−λ(α∨)

v : α ∈ ∆P } if v is nonarchimedean.
(iii) If πv is unitary, the operator RQ|P (πv,λ) is unitary for λ ∈ ia∗M , and

hence analytic.
(iv) If G is unramified at v, and φ ∈ H(πv) is the characteristic function of

Kv, RQ|P (πv,λ)φ equals φ.

See [A15, Theorem 2.1] and [CLL, Lecture 15]. The factors rQ|P (πv,λ) are
defined as products, over reduced roots β of (Q,AM ) that are not roots of (P,AM ),
of meromorphic functions rβ(πλ) that depend only on λ(β∨). The main step is to
establish the property

(21.12) rP |P̄ (πv,λ)rP̄ |P (πv,λ) = µM (πv,λ)−1,

in the case that M is maximal. �

Remarks. 1. The assertions of the theorem are purely local. They can be
formulated for Levi subgroups and parabolic subgroups that are defined over Fv.
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2. Suppose that
⊗
v
πv is an irreducible representation of M(A), whose restric-

tion to M(A)1 we denote by π. The product

(21.13) RQ|P (πλ) =
⊗

v

RQ|P (πv,λ)

is then a well defined transformation of the dense subspace H0
P (π) of K-finite

vectors in HP (π). Indeed, for any φ ∈ H0
P (π), RQ|P (πλ)φ can be expressed as a

finite product by (iv). If π is unitary and λ ∈ ia∗M , RQ|P (πλ) extends to a unitary
transformation of the entire Hilbert space HP (π).

Suppose that π ∈ Πunit

(
M(A)1

)
is any representation that occurs in the dis-

crete part RM,disc of RM . In other words, the subspace HP,π of HP is nonzero. The
restriction of the global intertwining operator MQ|P (λ) to HP,π can be expressed in
terms of the local intertwining operators above. It is isomorphic to mdisc(π)-copies
of the operator

JQ|P (πλ) =
⊗

v

JQ|P (πv,λ),

defined for any unitary extension
⊗
v
πv of π to M(A) by analytic continuation in

λ. If {rQ|P (πv,λ)} is any family of local normalizing factors that for each v satisfy
the conditions of Theorem 21.4, the scalar-valued product

(21.14) rQ|P (πλ) =
∏
v

rQ|P (πv,λ)

is also defined by analytic continuation in λ, and is analytic for λ ∈ ia∗M . Let
RQ|P (λ) be the operator on HP whose restriction to any subspace HP,π equals
the product of rQ|P (πλ)−1 with the restriction of MQ|P (λ). In other words, the
restriction of RQ|P (λ) to HP,π is isomorphic to mdisc(π)-copies of the operator
(2.13). We define

(21.15) rQ(Λ, πλ, P ) = rQ|P (πλ)−1rQ|P (πλ+Λ), HP,π �= {0},
and

RQ(Λ, λ, P ) = RQ|P (λ)−1RQ|P (λ + Λ),
for points Λ and λ in ia∗M . Then {rQ(Λ, πλ)} and {RQ(Λ, λ, P )} are new (G,M)-
families of Λ. They give rise to functions rL(πλ, P ) and RL(λ, P ) of λ for any
L ∈ L(M). We write rL(πλ) = rL(πλ, P ), since this function is easily seen to be
independent of the choice of P .

Lemma 21.5. (a) There is a positive integer n such that∫
ia∗

M /ia∗
G

|rL(πλ)|(1 + ‖λ‖)−ndλ <∞.

(b) The integral (21.10) converges absolutely.

The integrand in (21.10) depends only on the restriction ML(λ, P )χ,π of the
operator ML(λ, P ) to HP,χ,π. But ML(λ, P )χ,π can be defined in terms of the
product of the two new (G,M)-families above. Moreover, we are free to apply
the simpler version (17.12) of the usual splitting formula. This is because for any
S ∈ F(L) and Q ∈ P(S), the number

rS
L(πλ) = rQ

L (πλ)
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is independent of the choice of Q [A8, Corollary 7.4]. Therefore

ML(λ, P )χ,π =
∑

S∈F(L)

rS
L(πλ)RS(λ, P )χ,π,

where RS(λ, P )χ,π denotes the restriction of RS(λ, P ) to HP,χ,π. The integral
(21.10) can therefore be decomposed as a sum

(21.16)
∑

S∈F(L)

∫
ia∗

L/ia∗
G

rS
L(πλ)tr

(
RS(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
dλ.

Since f lies in the Hecke algebra H(G), the operator IP,χ,π(λ, f) is supported on
a finite dimensional subspace of HP,χ,π. Moreover, it is an easy consequence of
the conditions (ii)–(iv) of Theorem 21.4 that any matrix coefficient of the operator
RS(λ, P ) is a rational function in finitely many complex variables {λ(α∨), q−λ(α∨)

v },
which is analytic for λ ∈ ia∗M . Since IP,χ,π(λ, f) is rapidly decreasing in λ, part (b)
of the lemma follows inductively from (a). (See [A8, §8].)

It is enough to establish part (a) in the case that M is a maximal Levi subgroup.
This is because for general M and L, rL

M (πλ) can be written as a finite linear
combination of products

rM1
M (πλ) . . . rMp

M (πλ),

for Levi subgroups M1, . . . ,Mp in L(M), with dim(aM/aMi
) = 1, such that the

mapping

aM/aG −→
p⊕

i=1

(aM/aMi
)

is an isomorphism. (See [A8, §7].) In case M is maximal, one combines (21.16) with
estimates based on Selberg’s positivity argument used to prove Theorem 14.1(a).
(See [A8, §8–9].) �

It is a consequence of Langlands’ construction of the discrete spectrum of M in
terms of residues of cuspidal Eisenstein series that the sum over π ∈ Πunit

(
M(A)1

)
in Corollary 21.3 can be taken over a finite set. Lemma 21.5(b) asserts that for any
π, the integral (21.10) converges absolutely. Combining the dominated convergence
theorem with the formula of Corollary 21.3, we obtain the following theorem.

Theorem 21.6. For any f ∈ H(G), the linear form Jχ(f) equals the sum over
M ∈ L, L ∈ L(M), π ∈ Πunit

(
M(A)1

)
, and s ∈WL(M)reg of the product of

(21.17) |WM
0 ||WG

0 |−1| det(s− 1)aG
M
|−1

with ∫
ia∗

L/ia∗
G

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
dλ.

(See [A8, Theorem 8.2].) �
Remarks. 3. There is an error in [A8, §8]. It is the ill-considered inequality

stated on p. 1329 of [A8], three lines above the expression (8.4), which was taken
from [A5, (7.6)]. The inequality seems to be false if f lies in the complement of
H(G) in C∞

c

(
G(A)1

)
, and π is nontempered. Consequently, the last formula for

Jχ(f) does not hold if f lies in the complement of H(G) in C∞
c

(
G(A)1

)
.
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The fine spectral expansion of J(f) is the sum over χ ∈ X of the formulas for
Jχ(f) provided by the last theorem. It is convenient to express this expansion in
terms of infinitesimal characters.

A representation π ∈ Πunit

(
M(A)1

)
has an archimedean infinitesimal character,

consisting of a W -orbit of points νπ = Xπ + iYπ in h∗C/ia
∗
G. The imaginary part Yπ

is really an a∗M -coset in h∗, but as in §20, we can identify it with the unique point
in the coset for which the norm ‖Yπ‖ is minimal. We then define

Πt,unit

(
M(A)1

)
=
{
π ∈ Πunit

(
M(A)1

)
: ‖Im(νπ)‖ = ‖Yπ‖ = t

}
,

for any nonnegative real number t.
Recall that a class χ ∈ X is a W0-orbit of pairs (M1, π1), with π1 being a

cuspidal automorphic representation of M1(A)1. Setting νχ = νπ1 , we define a
linear form

Jt(f) =
∑

{χ∈X :‖Im(νχ)‖=t}
Jχ(f), t ≥ 0, f ∈ H(G),

in which the sum may be taken over a finite set. Then

J(f) =
∑
t≥0

Jt(f).

We also write IP,t(λ, f) for the restriction of the operator IP (λ, f) to the invariant
subspace

HP,t =
⊕

{(χ,π):‖Im(νχ)‖=t}
HP,χ,π,

ofHP . It is again a consequence of Langlands’ construction of the discrete spectrum
that if ‖Im(νχ)‖ = t, the space HP,χ,π vanishes unless π belongs to Πt,unit

(
M(A)1

)
.

In other words, the representation IP,t(λ) is equivalent to a direct sum of induced
representations of the form IP (πλ), for π ∈ Πt,unit

(
M(A)1

)
. The fine spectral

expansion is then given by the following corollary of Theorem 21.6.

Corollary 21.7. For any f ∈ H(G), the linear form J(f) equals the sum
over t ≥ 0, M ∈ L, L ∈ L(M), and s ∈WL(M)reg of the product of the coefficient
(21.17) with the linear form

(21.18)
∫

ia∗
L/ia∗

G

tr
(
ML(λ, P )MP (s, 0)IP,t(λ, f)

)
dλ. �

The fine spectral expansion is thus an explicit sum of integrals. Among these
integrals, the ones that are discrete have special significance. They correspond to
the terms with L = G. The discrete part of the fine spectral expansion attached to
any t equals the linear form
(21.19)
It,disc(f) =

∑
M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (M)reg

| det(s− 1)aG
M
|−1tr

(
MP (s, 0)IP,t(0, f)

)
.

It contains the t-part of the discrete spectrum, as well as singular points in the t-
parts of continuous spectra. Observe that we have not shown that the sum over t of
these distributions converges. To do so, one would need to extend Müller’s solution
of the trace class conjecture [Mul], as has been done in the case G = GL(n) by
Müller and Speh [MS]. It is only after It,disc(f) has been enlarged to the linear
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form Jt(f), by including the corresponding continuous terms, that the spectral
arguments we have discussed yield the absolute convergence of the sum over t.
However, it turns out that this circumstance does not effect our ability to use trace
formulas to compare discrete spectra on different groups.

22. The problem of invariance

In the last four sections, we have refined both the geometric and spectral sides
of the original formula (16.1). Let us now step back for a moment to assess the
present state of affairs. The fine geometric expansion of Corollary 19.3 is transpar-
ent in its overall structure. It is a simple linear combination of weighted orbital
integrals, taken over Levi subgroups M ∈ L. The fine spectral expansion of Corol-
lary 21.7 is also quite explicit, but it contains a more complicated double sum over
Levi subgroups M ⊂ L. In order to focus our discussion on the next stage of devel-
opment, we need to rewrite the spectral side so that it is parallel to the geometric
side.

We shall first revisit the fine geometric expansion. This expansion is a sum
of products of local distributions JM (γ, f) with global coefficients aM (S, γ), where
S ⊃ Sram is a large finite set of valuations depending on the support of f , and
γ ∈

(
M(F )

)
M,S

is an (M,S)-equivalence class. Let us write

(22.1) Γ(M)S =
(
M(F )

)
M,S

, S ⊃ Sram,

in order to emphasize that this set is a quotient of the set Γ(M) of conjugacy
classes in M(F ). The semi-simple component γs of a class γ ∈ Γ(M)S can be
identified with a semisimple conjugacy class in M(F ). By choosing S to be large,
we guarantee that for any class γ with JM (γ, f) �= 0, the set

Int
(
M(AS)

)
γs = {m−1γsm : m ∈M(AS)}

intersects the maximal compact subgroup KS
M of M(AS). If S is any finite set

containing Sram, and γ is a class in Γ(M)S , we shall write

(22.2) aM (γ) =

{
aM (S, γ), if Int

(
M(AS)

)
γs ∩KS

M �= 0,
0, otherwise.

If f belongs to H(G) = H
(
G(A)1

)
, we also write

JM (γ, f) = JM (γ, fS),

where fS is the restriction of f to the subgroup G(FS)1 of G(A)1. We can then write
the fine geometric expansion slightly more elegantly as the limit over increasing sets
S of expressions ∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈Γ(M)S

aM (γ)IM (γ, f).

The limit stabilizes for large finite sets S.
To write the spectral expansion in parallel form, we have first to introduce

suitable weighted characters JM (π, f). Suppose that π belongs to Πunit

(
M(A)1

)
.

Then π can be identified with an orbit πλ of ia∗M in Πunit

(
M(A)

)
. In the last

section, we defined normalized intertwining operators RQ|P (πλ) in terms (21.11)
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and (21.13) of a suitable choice of local normalizing factors {rQ|P (πv,λ)}. We now
introduce the corresponding (G,M)-family

RQ(Λ, πλ, P ) = RQ|P (πλ)−1RQ|P (πλ+Λ), Q ∈ P(M), Λ ∈ ia∗M ,

of operators on HP (π), which we use to define the linear form

(22.3) JM (πλ, f̃) = tr
(
RM (πλ, P )IP (πλ, f̃)

)
f̃ ∈ H

(
G(A)

)
,

on H
(
G(A)

)
. We then set

(22.4) JM (π, f) =
∫

ia∗
M

JM (πλ, f̃)dλ, f ∈ H(G),

where f̃ is any function in H
(
G(A)

)
whose restriction to G(A)1 equals f . The

last linear form does indeed depend only on π and f . It is the required weighted
character.

The core of the fine spectral expansion is the t-discrete part It,disc(f), defined
for any t ≥ 0 and f ∈ H(G) by (21.19). The term “discrete” refers obviously to the
fact that we can write the distribution as a linear combination

(22.5) It,disc(f) =
∑

π∈Πt,unit(G(A)1)

aG
disc(π)fG(π)

of irreducible characters, with complex coefficients aG
disc(π). It is a consequence of

Langlands’ construction of the discrete spectrum that for any f , the sum may be
taken over a finite set. (See [A14, Lemmas 4.1 and 4.2].) Let Πt,disc(G) be the
subset of irreducible constituents of induced representations

σG
λ , M ∈ L, σ ∈ Πt,unit

(
M(A)1

)
, λ ∈ ia∗M/ia∗G,

of G(A)1, where the representation σλ of M(A)∩G(A)1 satisfies the two conditions.
(i) aM

disc(σ) �= 0.
(ii) there is an element s ∈WG(aM )reg such that sσλ = σλ.

As a discrete subset of Πt,unit

(
G(A)1

)
, Πt,disc(G) is a convenient domain for the

coefficients aG
disc(π).

It is also useful to introduce a manageable domain of induced representations
in Πt,unit

(
G(A)1

)
. We define a set

(22.6) Πt(G) = {πG
λ : M ∈ L, π ∈ Πt,disc(M), λ ∈ ia∗M/ia∗G},

equipped with the measure dπG
λ for which

(22.7)
∫

Πt(G)

φ(πG
λ )dπG

λ =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
π∈Πt,disc(M)

∫
ia∗

M /ia∗
G

φ(πG
λ )dλ,

for any reasonable function φ on Πt(G). If π belongs to a set Πt,disc(M), the global
normalizing factors rQ|P (πλ) can be defined by analytic continuation of a product
(21.14). We can therefore form the (G,M)-family {rQ(Λ, πλ)} as in (21.15). The
associated function rM (πλ) = rG

M (πλ) is analytic in λ, and satisfies the estimate of
Lemma 21.5(a). We define a coefficient function on Πt(G) by setting

(22.8) aG(πG
λ ) = aM

disc(π)rG
M (πλ), M ∈ L, π ∈ Πt,disc(M), λ ∈ ia∗M/ia∗G.

It is not hard to show that the right hand side of this expression depends only on
the induced representation πG

λ , at least on the complement of a set of measure 0 in
Πt(G).
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For any M ∈ L, we write Π(M) for the union over t ≥ 0 of the sets Πt(M).
The analogues of (22.7) and (22.8) for M provide a measure dπ and a function
aM (π) on Π(M). Since we have now terminated our relationship with the earlier
parameter of truncation, we allow ourselves henceforth to let T stand for a positive
real number. With this notation, we write Π(M)T for the union over t ≤ T of the
sets Πt(M). The refined spectral expansion then takes the form of a limit, as T
approaches infinity, of a sum of integrals over the sets Π(M)T .

We can now formulate the refined trace formula as an identity between two
parallel expansions. We state it as a corollary of the results at the end of §19 and
§21.

Corollary 22.1. For any f ∈ H(G), J(f) has a geometric expansion

(22.9) J(f) = lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)JM (γ, f)

and a spectral expansion

(22.10) J(f) = lim
T

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Π(M)T

aM (π)JM (π, f)dπ.

The geometric expansion (22.9) is essentially that of Corollary 19.3, as we
noted above. The spectral expansion (22.10) is a straightforward reformulation of
the expansion of Corollary 21.7, which is established in the first part of the proof
of Theorem 4.4 of [A14]. One applies the appropriate analogue of the splitting
formula (21.16) to the integral (21.18). This gives an expansion of Jt(f) as a triple
sum over Levi subgroups M ⊂ L ⊂ S and a simple sum over s ∈WL(aM )reg. One
then observes that the sum over M gives rise to a form of the distribution IL

t,disc,
for which one can substitute the analogue of (22.5). Having removed the original
sum over M , we are free to write M in place of the index S. The expression (21.18)
becomes a sum over M ∈ L(L) and an integral over λ ∈ ia∗L/ia

∗
G. The last step

is to rewrite the integral as a double integral over the product of ia∗L/ia
∗
M with

ia∗M/ia∗G. The spectral expansion (22.10) then follows from the definitions of the
linear forms JM (π, f), the coefficients aM (π), and the measure dπ. �

Although the refined trace formula of Corollary 22.1 is a considerable improve-
ment over its predecessor (16.1), it still has defects. There are of course the ques-
tions inherent in the two limits. These difficulties were mentioned briefly in §19 (in
the remark following Theorem 19.1) and in §21 (at the end of the section). The
spectral problem has been solved for GL(n), while the geometric problem is open
for any group other than GL(2). Both problems will be relevant to any attempt to
exploit the trace formula of G in isolation. However, they seem to have no bearing
on our ability to compare trace formulas on different groups. We shall not discuss
them further.

Our concern here is with the failure of the linear forms JM (γ, f) and JM (π, f)
to be invariant. There is also the disconcerting fact that they depend on a non-
canonical choice of maximal compact subgroup K of G(A). Of course, the domain
H(G) of the linear forms already depends on K, through its archimedean com-
ponent K∞. However, even when we can extend the linear forms to the larger
domain C∞

c

(
G(A)1

)
, which we can invariably do in the geometric case, they are

still fundamentally dependent on K.
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To see why the lack of invariance is a concern, we recall the Jacquet-Langlands
correspondence described in §3. Their mapping π → π∗ of automorphic repre-
sentations was governed by a correspondence f → f∗ from functions f on the
multiplicative group G(A) of an adelic quaternion algebra, and functions f∗ on
the adelic group G∗(A) attached to G∗ = GL(2). The correspondence of functions
was defined by identifying invariant orbital integrals. It is expected that for any
G, the set of strongly regular invariant orbital integrals spans a dense subspace
of the entire space of invariant distributions. (The same is expected of the set of
irreducible tempered characters.) We might therefore be able to transfer invariant
distributions between suitably related groups. However, we cannot expect to be
able to transfer distributions that are not invariant.

The problem is to transform the identity between the expansions (22.9) and
(22.10) into a more canonical formula, whose terms are invariant distributions. How
can we do this? The first thing to observe is that the weighted orbital integrals in
(22.9) and the weighted characters in (22.10) fail to be invariant in a similar way.
By the construction of §18, the weighted orbital integrals satisfy the relation

JM (γ, fy) =
∑

Q∈F(M)

J
MQ

M (γ, fQ,y),

for any f ∈ C∞
c

(
G(A)1

)
, γ ∈ Γ(M)S , and y ∈ G(A). A minor technical lacuna

arises here when we restrict f to the domain H(G) of the weighted characters, since
the transformation f → fy does not send H(G) to itself. However, the convolutions
Lhf = h ∗ f and Rhf = f ∗ h of f by a fixed function h ∈ H(G) do preserve H(G).
We define a linear form on H(G) to be invariant if for any such h it assumes the
same values at Lhf and Rhf . The relation above is equivalent to a formula

(22.11) JM (γ, Lhf) =
∑

Q∈F(M)

J
MQ

M (γ,RQ,hf),

where

RQ,hf =
∫

G(A)1
h(y)(Ry−1f)Q,hdy

and (Ry−1f)(x) = f(xy), which applies equally well to functions f in either
C∞

c

(
G(A)1

)
or H(G). It is no surprise to discover that the weighted characters sat-

isfy a similar formula, since we know that the original distributions Jo(f) and Jχ(f)
satisfy the parallel variance formulas (16.2) and (16.3). It follows from Lemma 6.2
of [A15] that

(22.12) JM (π, Lhf) =
∑

Q∈F(M)

J
MQ

M (π,RQ,hf),

for any f ∈ H(G), π ∈ Π(M) and h ∈ H(G).
We have just seen that the two families of linear forms in the trace formula

satisfy parallel variance formulas. It seems entirely plausible that we could con-
struct an invariant distribution by taking a typical noninvariant distribution from
one of the two families, and subtracting from it some combination of noninvariant
distributions from the other family. Two questions arise. What would be the pre-
cise mechanics of the process? At a more philosophical level, should we subtract
some combination of weighted characters from a given weighted orbital integral, or
should we start with a weighted character and subtract from it some combination
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of weighted orbital integrals? We shall discuss the second question in the rest of
this section, leaving the first question for the beginning of the next section.

Consider the example that G = GL(2), and M is the minimal Levi subgroup
GL(1) × GL(1) of the diagonal matrices. Suppose that f ∈ H(G), and that S
is a large finite set of valuations. We can then identify f with a function on
H
(
G(FS)1

)
. The weighted orbital integral γ → JM (γ, f) is a compactly supported,

locally integrable function on the group

M(FS)1 = {(a, b) ∈ FS × FS : |a| = |b| = 1}.
The weighted character π → JM (π, f) is a Schwartz function on the group
Πunit

(
M(FS)1

)
of unitary characters on M(FS)1. We could form the distribution

(22.13) JM (γ, f)−
∫

Πunit(M(FS)1)

π(γ−1)JM (π, f)dπ, γ ∈M(FS)1,

by modifying the weighted orbital integral. We could also form the distribution

(22.14) JM (π, f)−
∫

M(FS)1
π(γ)JM (γ, f)dγ, π ∈ Πunit

(
M(FS)1

)
,

by modifying the weighted character. According to the variance formulas above,
each of these distributions is invariant. Which one should we take?

The terms in the trace formula for G = GL(2) that are not invariant are the
ones attached to our minimal Levi subgroup M . They can be written as

1
2
vol
(
M(oS)\M(FS)1

) ∑
γ∈M(oS)

JM (γ, f)

and
1
2

∑
π∈Π(M(oS)\M(FS)1)

JM (π, f)

respectively, for the discrete, cocompact subring

oS = {γ ∈ F : |γ|v ≤ 1, v �∈ S}
of FS . Can we apply the Poisson summation formula to either of these expressions?
Such an application to the first expression would yield an invariant trace formula
for GL(2) with terms of the form (22.14). An application of Poisson summation
to the second expression would yield an invariant trace formula with terms of the
form (22.13).

We need to be careful. Continuing with the example G = GL(2), suppose
that f̃ lies in the Hecke algebra H

(
G(FS)

)
on G(FS), and consider JM (γ, f̃) and

JM (π, f̃) as functions on the larger groups M(FS) and Πunit

(
M(FS)

)
respectively.

The function JM (γ, f̃) is still compactly supported. However, it has singularities
at points γ whose eigenvalues at some place v ∈ S are equal. Indeed, in the
example v = R examined in §18, we saw that the weighted orbital integral had a
logarithmic singularity. If the logarithmic term is removed, the resulting function
of γ is bounded, but it still fails to be smooth. Langlands showed that the function
was nevertheless well enough behaved to be able to apply the Poisson summation
formula. He made the trace formula for GL(2) invariant in this way, using the
distributions (22.14) in his proof of base change for GL(2) [Lan9]. A particular
advantage of this approach is a formulation of the contribution of weighted orbital
integrals in terms of a continuous spectral variable, which can be separated from the
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discrete spectrum. For groups of higher rank, however, the singularities of weighted
orbital integrals seem to be quite unmanageable.

The other function JM (π, f̃) belongs to the Schwartz space on Πunit

(
M(FS)

)
,

but it need not lie in the Paley-Wiener space. This is because the operator-valued
weight factor

RM (π, P ), π ∈ Πunit

(
M(FS)

)
,

is a rational function in the continuous parameters of π, which acquires poles in the
complex domain Π

(
M(FS)

)
. Therefore JM (π, f̃) is not the Fourier transform of a

compactly supported function on M(FS). This again does not preclude applying
Poisson summation in the case under consideration. However, it does not seem to
bode well for higher rank.

What is one to do? I would argue that it is more natural in general to work with
the geometric invariant distributions (22.13) than with their spectral counterparts
(22.14). Weighted characters satisfy splitting formulas analogous to (18.7). In the
example under consideration, the formula is

JM (π, f̃) =
∑
v∈S

(
JM (πv, fv) ·

∏
w �=v

fw,G(πw)
)
,

where π =
⊗
v∈S

πv and f̃ =
∏

v∈S

fv, and JM (πv, fv) is the local weighted character

defined by the obvious analogue of (22.3). It follows from this that the Fourier
transform

J∧
M (γ, f̃) =

∫
Πunit(M(FS))

π∨(γ)JM (π, f̃)dπ, γ ∈M(FS),

of JM (π, f̃) is equal to a sum of products

J∧
M (γ, f̃) =

∑
v∈S

(
J∧

M (γv, fv) ·
∏
w �=v

fw,G(γw)
)
,

for γ =
∏

v∈S

γv. The invariant orbital integrals fw,G(γw) are all compactly sup-

ported, even though the functions J∧
M (γv, fv) are not. Remember that we are

supposed to take the Poisson summation formula for the diagonal subgroup

M(FS)1 =
{
γ ∈M(FS) : HM (γ) =

∑
v∈S

HM (γv) = 0
}

of M(FS). The intersection of this subgroup with any set that is a product of a
noncompact subset of M(Fv) with compact subsets of each of the complementary
groups M(Fw) is compact. It follows that if f belongs to H

(
G(FS)1

)
, the weighted

character

JM (π, f) =
∫

ia∗
M

JM (πλ, f̃)dλ, π ∈ Πunit

(
M(FS)1

)
,

that actually occurs in the trace formula belongs to the Paley-Wiener space on
Πunit

(
M(FS)1

)
after all.

Suppose now that G is arbitrary. It turns out that the phenomenon we have
just described for GL(2) holds in general. The underlying reason again is the fact
that the weighted characters occur on the spectral side in the form of integrals
(22.4), rather than as a discrete sum of linear forms (22.3). Otherwise said, the fine



23. THE INVARIANT TRACE FORMULA 145

spectral expansion of Corollary 21.7 is composed of continuous integrals (21.18),
while the fine geometric expansion of Corollary 19.3 is given by a discrete sum.

What if it had been the other way around? What if the weighted orbital
integrals had occurred on the geometric side in the form of integrals∫

A+
M,∞

JM (γa, f̃)da, f ∈ H(G), γ ∈ Γ(M)S,

over the subgroup A+
M,∞ of M(A), with f̃ now being a function in H

(
G(A)

)
such

that

f(x) =
∫

A+
M,∞

f̃(xz)dz,

while the weighted characters had occurred as a discrete sum of distributions (22.4)?
It would then have been more natural to work with the general analogues of the
spectral invariant distributions (22.14), rather than their geometric counterparts
(22.13). Were this the case, we might want to identify f ∈ H(G) with a function
on the quotient A+

G,∞\G(A). We would then identify Π(M) with a family of rep-
resentations of A+

M,∞\M(A). In the example G = GL(2) above, this would lead to
an application of the Poisson summation formula to the discrete image of M(oS)
in A+

M,∞\M(A), rather than to the discrete subgroup M(oS) of M(A)1.
These questions are not completely hypothetical. In the local trace formula

[A19], which we do not have space to discuss here, weighted characters and weighted
orbital integrals both occur continuously. One could therefore make the local trace
formula invariant in one of two natural ways. One could equally well work with
the general analogues of either of the two families (22.13) or (22.14) of invariant
distributions.

23. The invariant trace formula

We have settled on trying to make the trace formula invariant by adding com-
binations of weighted characters to a given weighted orbital integral. We can now
focus on the mechanics of the process.

For flexibility, we take S to be any finite set of valuations of F . The trace
formula applies to the case that S is large, and contains Sram. In the example of
G = GL(2) in §22, the correction term in the invariant distribution (22.13) is a
Fourier transform of the function

JM (π, f), π ∈ Πunit

(
M(FS)

)
.

In the general case, M of course need not be abelian. The appropriate analogue of
the abelian dual group is not the set Πunit

(
M(FS)

)
of all unitary representations.

It is rather the subset Πtemp

(
M(FS)

)
of representations π ∈ Πunit

(
M(FS)

)
that

are tempered, in the sense that the distributional character f → fG(π) on G(FS)
extends to a continuous linear form on Harish-Chandra’s Schwartz space C

(
G(FS)

)
.

Tempered representations are the spectral ingredients of Harish-Chandra’s general
theory of local harmonic analysis. They can be characterized as irreducible con-
stituents of representations obtained by unitary induction from discrete series of
Levi subgroups.

The tempered characters provide a mapping

f −→ fG(π), f ∈ H
(
G(FS)

)
, π ∈ Πtemp

(
G(FS)

)
,
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from H
(
G(FS)

)
onto a space I

(
G(FS)

)
of complex-valued functions on

Πtemp

(
G(FS)

)
. The image of this mapping has been characterized in terms of the in-

ternal parameters of Πtemp

(
G(FS)

)
([CD], [BDK]). Roughly speaking, I

(
G(FS)

)
is the space of all functions in Πtemp

(
G(FS)

)
that have finite support in all discrete

parameters, and lie in the relevant Paley-Wiener space in each continuous param-
eter. Consider a linear form i on I

(
G(FS)

)
that is continuous with respect to the

natural topology. The corresponding linear form

f −→ i(fG), f ∈ H
(
G(FS)

)
,

on H
(
G(FS)

)
is both continuous and invariant. Conversely, suppose that I is any

continuous, invariant linear form on H
(
G(FS)

)
. We say that I is supported on

characters if I(f) = 0 for any f ∈ H
(
G(FS)

)
with fG = 0. If this is so, there is a

continuous linear form Î on I
(
G(FS)

)
such that

Î(fG) = I(f), f ∈ H
(
G(FS)

)
.

We refer to Î as the invariant Fourier transform of I. It is believed that every
continuous, invariant linear form on I

(
G(FS)

)
is supported on characters. This

property is known to hold in many cases, but I do not have a comprehensive refer-
ence. The point is actually not so important here, since in making the trace formula
invariant, one can show directly that the relevant invariant forms are supported on
characters.

We want to apply these notions to Levi subgroups M of G. In particular, we
use the associated embedding Î → I of distributions as a substitute for the Fourier
transform of functions in (22.13). However, we have first to take care of the problem
mentioned in the last section. Stated in the language of this section, the problem
is that the function

π −→ JM (π, f), π ∈ Πtemp

(
M(FS)

)
,

attached to any f ∈ H
(
G(FS)

)
does not generally lie in I

(
M(FS)

)
. To deal with

it, we introduce a variant of the space I
(
M(FS)

)
.

We shall say that a set S has the closure property if it either contains an
archimedean valuation v, or contains only nonarchimedean valuations with a com-
mon residual characteristic. We assume until further notice that S has this property.
The image

aG,S = HG

(
G(FS)

)
of G(FS) in aG is then a closed subgroup of aG. It equals aG if S contains an
archimedean place, and is a lattice in aG otherwise. In spectral terms, the action
π → πλ of ia∗G on Πtemp

(
G(FS)

)
lifts to the quotient

ia∗G,S = i(a∗G/a
∨
G,S), a∨G,S = Hom(aG,S , 2πZ),

of ia∗G. If φ belongs to I
(
G(FS)

)
, we set

φ(π, Z) =
∫

ia∗
G,S

φ(πλ)e−λ(Z)dλ π ∈ Πtemp

(
G(FS)

)
, Z ∈ aG,S .

This allows us to identify I
(
G(FS)

)
with a space of functions φ on Πtemp

(
G(FS)

)
×

aG,S such that
φ(πλ, Z) = eλ(Z)φ(π, Z).
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If f belongs to H
(
G(FS)

)
, we have

fG(π, Z) = tr
(
π(fZ)

)
= tr

(∫
G(FS)Z

f(x)π(x)dx
)
,

where fZ is the restriction of f to the closed subset

G(FS)Z = {x ∈ G(FS) : HG(x) = Z}

of G(FS). In particular, fG(π, 0) is the character of the restriction of π to the
subgroup G(FS)1 of G(FS).

We use the interpretation of I
(
G(FS)

)
as a space of functions on G(FS)×aG,S

to define a larger space Iac

(
G(FS)

)
. It is clear that

I
(
G(FS)

)
= lim−→

Γ

I
(
G(FS)

)
Γ
,

where Γ ranges over finite sets of irreducible representations of the compact group
KS =

∏
v∈S

Kv, and I
(
G(FS)

)
Γ

is the space of functions φ ∈ I
(
G(FS)

)
such that

φ(π, Z) vanishes for any π ∈ Πtemp

(
G(FS)

)
whose restriction to KS does not con-

tain some representation in Γ. For any Γ, we define Iac

(
G(FS)

)
Γ

to be the space of
functions φ on G(FS)×aG,S with the property that for any function b ∈ C∞

c (aG,S),
the product

φ(π, Z)b(Z), π ∈ Πtemp

(
G(FS)

)
, Z ∈ aG,S ,

lies in I
(
G(FS)

)
Γ
. We then set

Iac

(
G(FS)

)
= lim−→

Γ

Iac

(
G(FS)

)
Γ
.

It is also clear that
H
(
G(FS)

)
= lim−→

Γ

H
(
G(FS)

)
Γ
,

where H
(
G(FS)

)
Γ

is the subspace of functions in H
(
G(FS)

)
that transform on each

side under KS according to representations in Γ. We define Hac

(
G(FS)

)
Γ

to be the
space of functions f on G(FS) such that each product

f(x)b
(
HG(x)

)
, x ∈ G(FS), b ∈ C∞

c (aG,S),

belongs to H
(
G(FS)

)
Γ
. We then set

Hac

(
G(FS)

)
= lim−→

Γ

Hac

(
G(FS)

)
Γ
.

The functions f ∈ Hac

(
G(FS)

)
thus have “almost compact support”, in the sense

that fZ has compact support for any Z ∈ aG,S . If f belongs to Hac

(
G(FS)

)
, we

set

fG(π, Z) = tr
(
π(fZ)

)
, π ∈ Πtemp

(
G(FS)

)
, Z ∈ aG,S .

Then f → fG is a continuous linear mapping from Hac

(
G(FS)

)
onto Iac

(
G(FS)

)
.

The mapping I → Î can obviously be extended to an isomorphism from the space
of continuous linear forms on Hac

(
G(FS)

)
that are supported on characters, and

the space of continuous linear forms on Iac

(
G(FS)

)
.
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Having completed these preliminary remarks, we are now in a position to in-
terpret the set of weighted characters attached to M as a transform of functions.
Suppose that f ∈ Hac

(
G(FS)

)
. We first attach a general meromorphic function

(23.1) JM (πλ, f
Z) = tr

(
RM (πλ, P )IP (πλ, f

Z)
)
, λ ∈ a∗M,C,

to any M ∈ L, π ∈ Π
(
M(FS)

)
and Z ∈ aG,S . We can then attach a natural linear

form JM (π,X, f) to any X ∈ aM,S . For example, if JM (πλ, f
Z) is analytic for

λ ∈ ia∗M , we set

(23.2) JM (π,X, f) =
∫

ia∗
M,S/ia∗

G,S

JM (πλ, f
Z)e−λ(X)dλ,

where Z is the image of X in aG,S . (In general, one must take a linear combination
of integrals over contours εP + ia∗M,S/ia

∗
G,S , for groups P ∈ P(M) and small points

εP ∈ (a∗M )+P . See [A15, §7].) The premise underlying (23.2) holds if π is unitary. If
in addition, S ⊃ Sram and X = 0, (23.2) reduces to the earlier definition (22.4). Our
transform is given by the special case that π belongs to the subset Πtemp

(
M(FS)

)
of Πunit

(
M(FS)

)
. We define φM (f) to be the function

(π,X) −→ φM (f, π,X) = JM (π,X, f), π ∈ Πtemp

(
M(FS)

)
, X ∈ aM,S ,

on Πtemp

(
M(FS)

)
× aM,S .

Proposition 23.1. The mapping

f −→ φM (f), f ∈ Hac

(
G(FS)

)
,

is a continuous linear transformation from Hac

(
G(FS)

)
to Iac

(
M(FS)

)
.

This is Theorem 12.1 of [A15]. The proof in [A15] is based on a study of the
residues of the meromorphic functions

λ −→ JM (πλ, f
Z), λ ∈ a∗M,C, π ∈ Πtemp

(
M(FS)

)
.

A somewhat simpler proof is implicit in the results of [A13]. (See the remark on
p. 370 of [A13].) It is based on the splitting and descent formulas for the functions
(23.1), which are parallel to (18.7) and (18.8), and are consequences of Lemmas
17.5 and 17.6. These formulas in turn yield splitting and descent formulas for the
linear forms (23.2), and consequently, for the functions φM (f, π,X). They reduce
the problem to the special case that S contains one element v, M is replaced by a
Levi subgroup Mv over Fv, and π is replaced by a tempered representation πv of
Mv(Fv) that is not properly induced. The family of such representations can be
parametrized by a set that is discrete modulo the action of the connected group
ia∗Mv,Fv

= ia∗Mv,{v}. The proposition can then be established from the definition of
Iac

(
M(FS)

)
. �

It is the mappings φM that allow us to transform the various noninvariant
linear forms to invariant forms. We state the construction as a pair of parallel
theorems, to be followed by an extended series of remarks. The first theorem
describes the general analogues of the invariant linear forms (22.13). The second
theorem describes associated spectral objects. Both theorems apply to a fixed finite
set of valuations S with the closure property, and a Levi subgroup M ∈ L.
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Theorem 23.2. There are invariant linear forms

IM (γ, f) = IG
M (γ, f), γ ∈M(FS), f ∈ Hac

(
G(FS)

)
,

that are supported on characters, and satisfy

(23.3) IM (γ, f) = JM (γ, f)−
∑

L∈L(M)
L�=G

ÎL
M

(
γ, φL(f)

)
.

Theorem 23.3. There are invariant linear forms

IM (π,X, f) = IG
M (π,X, f), π ∈ Π

(
M(FS)

)
, X ∈ aM,S , f ∈ Hac

(
G(FS)

)
,

that are supported on characters, and satisfy

(23.4) IM (π,X, f) = JM (π,X, f)−
∑

L∈L(M)
L�=G

ÎL
M

(
π,X, φL(f)

)
.

Remarks. 1. In the special case that G equals GL(2), M is minimal, and S
contains the set Sram = S∞, the right hand side of (23.3) reduces to the original
expression (22.13). For in this case, the value of φM (π,X, f) at X = 0 equals the
function JM (π, f) in (22.13). Since the linear form IM

M (γ) in this case is just the
evaluation map of a function on M(FS)1 at γ, ÎM

M

(
γ, φM (f)

)
reduces to the integral

in (23.13) by the Fourier inversion formula for the abelian group M(FS)1.
2. The formulas (23.3) and (23.4) amount to inductive definitions of IM (γ, f)

and IM (π,X, f). We need to know that these linear forms are supported on char-
acters in order that the summands on the right hand sides of the two formulas be
defined.

3. The theorems give nothing new in the case that M = G and X = Z. For it
follows immediately from the definitions that

IG(γ, f) = JG(γ, f) = fG(γ)

and
IG(π, Z, f) = JG(π, Z, f) = fG(π, Z).

4. The linear forms IM (γ, f) of Theorem 23.2 are really the primary ob-
jects. We see inductively from (23.3) that IM (γ, f) depends only on fZ , where
Z = HG(γ). In particular, IM (γ, f) is determined by its restriction to the subspace
H
(
G(FS)

)
ofHac

(
G(FS)

)
. One can in fact show that as a continuous linear form on

H
(
G(FS)

)
, IM (γ, f) extends continuously to the Schwartz space C

(
G(FS)

)
[A21].

In other words, IM (γ, f) is a tempered distribution. It has an independent role in
local harmonic analysis.

5. The linear forms IM (π,X, f) of Theorem 23.3 are secondary objects, but
they are still interesting. We see inductively from (23.4) that IM (π,X, f) depends
only on fZ , where Z is the image of X in aG,S , so IM (π,X, f) is also determined
by its restriction to H

(
G(FS)

)
. However, it is not a tempered distribution. If π is

tempered,
JM (π,X, f) = φM (f, π,X) = ÎM

M

(
π,X, φM (f)

)
,

by definition. It follows inductively from (23.4) that

(23.5) IM (π,X, f) =

{
fG(π, Z), if M = G,

0, otherwise,
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in this case. But if π is nontempered, IM (π,X, f) is considerably more complicated.
Suppose for example that G is semisimple, M is maximal, F = Q, S = {v∞}, and
π = σµ, for σ ∈ Πtemp

(
M(R)

)
and µ ∈ a∗M,C. We assume that Re(µ) is in general

position. Then

JM (π,X, f) =
∫

ia∗
M

JM (σµ+λ, f)e−λ(X)dλ,

while
φM (f, π,X) = eµ(X)

∫
ia∗

M

JM (σλ, f)e−λ(X)dλ.

It follows that IM (π,X, f) is the finite sum of residues∑
η

Res
Λ=η

(
JM (σΛ, f)e(µ−Λ)(X)

)
,

obtained in deforming one contour of integration to the other. In general, IM (π,X, f)
is a more elaborate combination of residues of general functions JL2

L1
(σΛ, f).

6. The linear forms JM (γ, f) and JM (π,X, f) are strongly dependent on the
choice of maximal compact subgroup KS =

∏
v∈S

Kv of G(FS). However, it turns

out that the invariant forms IM (γ, f) and IM (π,X, f) are independent of KS . The
proof of this fact is closely related to that of invariance, which we will discuss
presently. (See [A24, Lemma 3.4].) The invariant linear forms are thus canonical
objects, even though their construction is quite indirect.

7. The trace formula concerns the case that S ⊃ Sram, γ ∈ M(FS)1, and
X = 0. In this case, the summands corresponding to L in (23.3) and (23.4) depend
only on the image of φL(f) in the invariant Hecke algebra I

(
L(FS)1

)
on L(FS)1.

We can therefore take f to be a function in H
(
G(FS)1

)
, and treat φM as the

mapping from H
(
G(FS)1

)
to I

(
L(FS)1

)
implicit in Proposition 23.1. In fact, since

these spaces both embed in the corresponding adelic spaces, we can take f to be a
function in the space H(G) = H

(
G(A)1

)
, and φM to be a mapping from H(G) to

the adelic space I(M) = I
(
M(A)1

)
. This is of course the setting of the invariant

trace formula. Recall that on the geometric side, γ represents a class in the subset
Γ(M)S of conjugacy classes in M(FS). We write

(23.6) IM (γ, f) = IM (γ, fS)

as before, where fS is the restriction of f to the subgroup G(FS)1 of G(A)1. On
the spectral side, π is a representation in the subset Π(M) of Πunit

(
M(A)1

)
. In

this case, we write

(23.7) IM (π, f) = IM (πS , 0, fS),

where S ⊃ Sram is any finite set outside of which both f and π are unramified, and
πS ∈ Πunit

(
M(FS)1

)
is the M(FS)1-component of π, or rather a representative in

Πunit

(
M(A)

)
of that component.

8. The distributions IM (γ, f) satisfy splitting and descent formulas. We have

(23.8) IM (γ, f) =
∑

L1,L2∈L(M)

dG
M (L1, L2)ÎL1

M (γ1, f1,L1)Î
L2
M (γ2, f2,L2),

and

(23.9) IM (γM
v , fv) =

∑
Lv∈L(Mv)

dG
Mv

(M,Lv)ÎLv

Mv
(γv, fv,Lv

),
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under the respective conditions of (18.7) and (18.8). (In (23.8), we of course have
also to ask each of the two subsets S1 and S2 of S satisfy the closure property.) The
formulas are established from the inductive definition (23.3), the formulas (18.7)
and (18.8), and corresponding formulas for the functions JM (πλ, f). (See [A13,
Proposition 9.1 and Corollary 8.2]. If f belongs to H

(
G(FS)

)
and L ∈ L(M), fL

is the function

π −→ fL(π) = fG(πG), π ∈ Πtemp

(
L(FS)

)
,

in I
(
L(FS)

)
. It is the image in I

(
L(FS)

)
of any of the functions fQ ∈ H

(
G(FS)

)
,

but is independent of the choice of Q ∈ P(L).) The linear forms JM (π,X, f) satisfy
their own splitting and descent formulas. Since these are slightly more complicated
to state, we simply refer the reader to [A13, Proposition 9.4 and Corollary 8.5].
One often needs to apply the splitting and descent formulas to the linear forms
(23.6) and (23.7) that are relevant to the trace formula. This is why one has to
formulate the definitions in terms of spacesHac

(
G(FS)

)
and Iac

(
L(FS)

)
, for general

sets S, even though the objects (23.6) and (23.7) can be constructed in terms of
the simpler spaces H(G) and I(L).

The two theorems are really just definitions, apart from the assertions that
the linear forms are supported on characters. These assertions can be established
globally, by exploiting the invariant trace formula of which they are the terms. In
so doing, one discovers relations between the linear forms (23.3) and (23.4) that
are essential for comparing traces on different groups. We shall therefore state the
invariant trace formula as a third theorem, which is proved at the same time as the
other two.

The invariant trace formula is completely parallel to the refined noninvariant
formula of Corollary 22.1. It consists of two different expansions of a linear form
I(f) = IG(f) on H(G) that is the invariant analogue of the original form J(f). We
assume inductively that for any L ∈ L with L �= G, IL has been defined, and is
supported on characters. We can then define I(f) inductively in terms of J(f) by
setting

(23.10) I(f) = J(f)−
∑
L∈L
L�=G

|WL
0 ||WG

0 |−1ÎL
(
φL(f)

)
, f ∈ H(G).

The (refined) invariant trace formula is then stated as follows.

Theorem 23.4. For any f ∈ H(G), I(f) has a geometric expansion

(23.11) I(f) = lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γ, f),

and a spectral expansion

(23.12) I(f) = lim
T

∑
M∈S

|WM
0 ||WG

0 |−1

∫
Π(M)T

aM (π)IM (π, f)dπ.

Remarks. 9. The limit in (23.11) stabilizes for large S. Moreover, for any
such S, the corresponding sums over γ can be taken over finite sets. One can in
fact be more precise. Suppose that f belongs to the subspace H

(
G(FV )1

)
of H(G),

for some finite set V ⊃ Sram, and is supported on a compact subset ∆ of G(A)1.
Then the double sum in (23.11) is independent of S, so long as S is large in a
sense that depends only on V and ∆. Moreover, for any such S, each sum over
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γ can be taken over a finite set that depends only on V and ∆. These facts can
be established by induction from the corresponding properties of the noninvariant
geometric expansion (22.9). Alternatively, they can be established directly from
[A14, Lemma 3.2], as on p. 513 of [A14].

10. For any T , the integral in (23.12) converges absolutely. This follows by
induction from the corresponding property of the noninvariant spectral expansion
(22.10). There is a weak quantitative estimate for the convergence of the limit,
which is to say the convergence of the sum

I(f) =
∑
t≥0

It(f)

of the linear forms

It(f) = IG
t (f) =

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Πt(M)

aM (π)IM (π, f)dπ,

in terms of the multipliers of §20. For any r ≥ 0, set

h
∗
u(r, T ) = {ν ∈ h

∗
u : ‖Re(ν)‖ ≤ r, ‖Im ν‖ ≥ T},

where h∗u is a subset of h∗
C/ia

∗
G that is defined as on p. 536 of [A14], and contains

the infinitesimal characters of all unitary representations of G(F∞)1. Then for any
f ∈ H(G), there are positive constants C, k and r with the following property. For
any positive numbers T and N , and any α in the subspace

C∞
N (h1)W = {α ∈ C∞

c (h1)W : ‖suppα‖ ≤ N}

of E(h1)W , the estimate

(23.13)
∑
t>T

|It(fα)| ≤ CekT sup
ν∈h∗

u(r,T )

(
|α̂(ν)|

)
holds. (See [A14, Lemma 6.3].) This “weak multiplier estimate” serves as a sub-
stitute for the absolute convergence of the spectral expansion. It is critical for
applications.

As we noted above, the three theorems are proved together. We assume induc-
tively that they all hold if G is replaced by a proper Levi subgroup L.

It is easy to establish that the various linear forms are invariant. Fix S and
M as in the first two theorems, and let h be any function in H

(
G(FS)

)
. It follows

easily from (22.12) that

φL(Lhf) =
∑

Q∈F(L)

φ
MQ

L (RQ,hf), f ∈ Hac

(
G(FS)

)
,

for any L ∈ L(M). It then follows from (22.11) and the definition (23.3) that

IM (γ, Lhf)

=
∑

Q∈F(M)

J
MQ

M (γ,RQ,hf)−
∑

L∈L(M)
L�=G

∑
Q∈F(L)

ÎL
M

(
γ, φ

MQ

L (RQ,hf)
)

=
∑

Q∈F(M)

(
J

MQ

M (γ,RQ,hf)−
∑

L∈LMQ (M)
L�=G

ÎL
M

(
γ, φ

MQ

L (RQ,hf)
))

,



23. THE INVARIANT TRACE FORMULA 153

for any element γ ∈M(FS). If Q �= G, the associated summand can be written

J
MQ

M (γ,RQ,hf)−
∑

L∈LMQ (M)

ÎL
M

(
γ, φ

MQ

L (RQ,hf)
)

=
(
J

MQ

M (γ,RQ,hf)−
∑

L∈LMQ (M)
L�=MQ

ÎL
M

(
γ, φ

MQ

L (RQ,hf)
))
− I

MQ

M (γ,RQ,hf).

It therefore vanishes by (23.3). If Q = G, the corresponding summand equals

IG
M (γ,RG,hf) = IM (γ,Rhf),

again by (23.3). Therefore IM (γ, Lhf) equals IM (γ,Rhf). It follows that IM (γ, ·)
is an invariant distribution. Similarly, IM (π,X, ·) is an invariant linear form for
any π ∈ Π

(
M(FS)

)
and X ∈ aM,S . A minor variant of the argument establishes

that the linear form I in (23.10) is invariant as well.
It is also easy to establish the required expansions of Theorem 23.4. To derive

the geometric expansion (23.11), we apply what we already know to the terms on
the right hand side of the definition (23.10). That is, we substitute the geomet-
ric expansion (22.9) for J(f), and we apply (23.11) inductively to the summand
ÎL
(
φL(f)

)
attached to any L �= G. We see that I(f) equals the difference between

the expressions

lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)JM (γ, f)

and

lim
S

∑
L�=G

|WL
0 ||WG

0 |−1
∑

M∈LL

|WM
0 ||WL

0 |−1
∑

γ∈Γ(M)S

aM (γ)ÎL
M

(
γ, φL(f)

)
.

The second expression can be written as

lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
∑

L∈L(M)
L�=G

ÎL
M

(
γ, φL(f)

)
.

Therefore I(f) equals

lim
S

∑
M

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
(
JM (γ, f)−

∑
L∈L(M)

L�=G

ÎL
M

(
γ, φL(f)

))
= lim

S

∑
M

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γ, f),

by (23.3). This is the required geometric expansion (23.11). An identical argument
yields the spectral expansion (23.12).

We have established the required expansions of Theorem 23.4. We have also
shown that the terms in the expansions are invariant linear forms. The identity
between the two expansions can thus be regarded as an invariant trace formula. If
we knew that any invariant linear form was supported on characters, the inductive
definitions of Theorem 23.2 and Theorem 23.3 would be complete, and we would be
finished. Lacking such knowledge, we use the invariant trace formula to establish
the property directly for the specific invariant linear forms in question.
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Proposition 23.5. The linear forms of Theorem 23.3 can be expressed in
terms of those of Theorem 23.2. In particular, if the linear forms {IM (γ)} are
all supported on characters, so are the linear forms {IM (π,X)}.

The first assertion of the proposition might be more informative if it contained
the phrase “in principle”, since the algorithm is quite complicated. It is based on
the fact that the various residues that determine the linear forms {IM (π,X)} are
themselves determined by the asymptotic values in γ of the linear forms {IM (γ)}.
We shall be content to illustrate the idea in a very special case.

Suppose that G = SL(2), and that M is minimal. Since M is also maximal, the
observations of Remark 5 above are relevant. Assume then that F = Q, S = {v∞},
and π = σµ, as earlier. For simplicity, we assume also that f ∈ H

(
G(R)

)
is invariant

under the central element
(
−1 0
0 −1

)
, and that σ is the trivial representation of

M(R). It then follows from Remark 5 that for any X ∈ aM , IM (π,X, f) equals the
sum of residues of the function

(23.14) Λ −→
(
JM (σΛ, f)e(µ−Λ)(X)

)
obtained in deforming a contour of integration from (µ + ia∗M ) to ia∗M .

On the other hand,

IM (γ, f) = JM (γ, f)− ÎM
M

(
γ, φM (f)

)
= JM (γ, f)−

∫
ia∗

M

JM (σλ, f)e−λ(HM (γ))dλ,

for any γ ∈M(R). Given X, we choose γ so that HM (γ) = X. Since f is compactly
supported, JM (γ, f) is compactly supported in X. However, the integral over ia∗M is
not generally compactly supported in X, since its inverse transform λ→ JM (σλ, f)
can have poles in the complex domain. Therefore IM (γ, f) need not be compactly
supported in X. In fact, it is the failure of IM (γ, f) to have compact support that
determines the residues of the function (23.14). For if we apply the proof of the
classical Paley-Wiener theorem to the integral over ia∗M , we see that the family of
functions

γ −→ IM (γ1γ, f), γ1 ∈ C,

in which C is a suitable compact subset of M(R) and γ is large relative to C
and f , spans a finite dimensional vector space. Moreover, it is easy to see that
this space is canonically isomorphic to the space of functions of X spanned by the
space of residues of (23.14). It follows that the distributions IM (γ, f) determine the
residues (23.14), and hence the linear forms IM (π,X, f). In particular, if IM (γ, f)
vanishes for all such γ, then IM (π,X, f) vanishes for all X. Applied to the case
that fG = 0, this gives the second assertion of the proposition in the special case
under consideration.

For general G and M , the ideas are similar, but the details are considerably
more elaborate. When the dimension of aM/aG is greater than 1, we have to be
concerned with partial residues and with functions whose support is compact in
various directions. These are best handled with the supplementary mappings and
linear forms of [A13, §4]. The first assertion of the proposition is implicit in the
results of [A13, §4–5]. The second assertion is part of Theorem 6.1 of [A13]. �
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It remains to show that the distributions of Theorem 23.2 are supported on
characters. From the splitting formula (23.8), one sees easily that it is enough
to treat the case that S contains one valuation v. We therefore fix a function
fv ∈ H

(
G(Fv)

)
with fv,G = 0. The problem is to show that IM (γv, fv) = 0, for any

M ∈ L and γv ∈ M(Fv). How can we use the invariant trace formula to do this?
We begin by choosing an arbitrary function fv ∈ H

(
G(Av)

)
and letting f be the

restriction of fvf
v to G(A)1. We have then to isolate the corresponding geometric

expansion (23.11) in the invariant trace formula. But how is this possible, when
our control of the spectral side provided by Proposition 23.5 requires an a priori
knowledge of the terms on the geometric side?

The point is that the terms on the spectral side are not arbitrary members
of the family defined by Theorem 23.3. They are of the form IM (π, 0, f), where
S ⊃ Sram is large enough that f belongs toH

(
G(FS)1

)
, and π ∈ Πunit

(
M(FS)

)
. We

need to show only that these terms vanish. Combining an induction argument with
the splitting formula [A13, Proposition 9.4], one reduces the problem to showing
that IM (πv, Xv, fv) vanishes for any πv ∈ Πunit

(
M(Fv)

)
and Xv ∈ aMv,Fv

. The
fact that πv is unitary is critical. The representation need not be tempered, but
within the Grothendieck group it can be expressed as an integral linear combination
of induced (standard) representations

σM
v,Λ, σv ∈ Πtemp(Mv), Λ ∈ (aM

Mv
)∗,

for Levi subgroups Mv of M over Fv. If Mv = M , Λ equals 0, and

IM (σM
v,Λ, Xv, fv) = IM (σv, Xv, fv) = 0,

by (23.5). If Mv �= M , we use the descent formula [A13, Corollary 8.5] to write
IM (σM

v,Λ, Xv, fv) in terms of linear forms

ÎLv

Mv
(σv,Λ, Yv, fv,Lv

), Yv ∈ aMv,Fv
,

for Levi subgroups Lv ∈ L(Mv) with Lv �= G. It follows from Proposition 23.5
and our induction hypotheses that IM (σM

v,Λ, Xv, fv) again equals 0. Therefore
IM (πv, Xv, fv) vanishes, and so therefore do the integrands on the spectral side.

We conclude that for the given function f , the spectral expansion (23.12) of
I(f) vanishes. Therefore the geometric expansion (23.11) of I(f) also vanishes. In
dealing with the distributions IM (γ, f) in this expansion, we are free to apply the
splitting formula (23.8) recursively to the valuations v ∈ S. If L ∈ L(M) is a proper
Levi subgroup of G, the induction hypotheses imply that ÎL

M (γv, fv) vanishes for
any element γv ∈M(Fv). It follows that

IM (γ, f) = IM (γv, fv)fv
M (γv), γ ∈ Γ(M)S,

where γ = γvγ
v is the decomposition of γ relative to the product

M(FS) = M(Fv)×M(F v
S ).

Therefore

(23.15) lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γv, fv)fv
M (γv) = 0.

We are attempting to show that IM (γv, fv) = 0, for any M ∈ L and
γv ∈ M(Fv). The definition (18.12) reduces the problem to the case that Mγv

=
Gγv

. A further reduction based on invariant orbital integrals on M(Fv) allows us
to assume that γv is strongly G-regular, in the sense that its centralizer in G is a
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maximal torus Tv. Finally, in view of the descent formula (23.9), we can assume
that Tv is elliptic in M over Fv, which is to say that Tv lies in no proper Levi sub-
group of M over Fv. The problem is of course local. To solve it, one should really
start with objects G1, M1, and T1 over a local field F1, together with a function
f1 ∈ H

(
G1(F1)

)
such that f1,G1 = 0. One then chooses global objects F , G, M ,

and T such that F1 = Fv, G1 = Gv, M1 = Mv, and T1 = Tv for some valuation
v of F , as for example on p. 526 of [A14]. Among the general constraints on the
choice of G, M , and T is a condition that T (F ) be dense in T (Fv). This reduces the
problem to showing that IM (δ, fv) vanishes for any G-regular element δ ∈ T (F ).

We can now sketch the proof of the remaining global argument. To exploit the
identity (23.15), we have to allow the complementary function fv ∈ H

(
G(Av)

)
to

vary. We first fix a large finite set V of valuations containing v, outside of which
G and T are unramified. We then restrict fv to functions of the form fv

V fV , with
fV being the product over w �∈ V of characteristic functions of Kw, whose support
is contained in a fixed compact neighbourhood ∆v of δv in G(Av). According to
Remark 9, the sums over γ ∈ Γ(M)S can be then taken over finite sets that are
independent of fv, for a fixed finite set of valuations S ⊃ V that is also independent
of fv. Since the factors fv

M (γv) in (23.15) are actually distributions, we can allow
fv

V to be a function in C∞
c

(
G(F v

V )
)
. We choose this function so that it is supported

on a small neighborhood of the image δv
V of δv in G(F v

V ), and so that fv
M (δv) = 1.

It is then easy to see that (23.15) reduces to an identity∑
γ

c(γ)IM (γv, fv) = 0,

where γ is summed over the conjugacy classes in M(F ) that are G(Fw)-conjugate
to δ for any w ∈ V − {v} and are G(Fw)-conjugate to a point in Kw for every
w �∈ V , and where each coefficient c(γ) is positive. A final argument, based on the
Galois cohomology of T , establishes that any such γ is actually G(F )-conjugate to
δ. This means that γ = w−1

s δws for some element ws ∈W (M), and hence that

IM (γ, fv) = IM (δ, fv).

(See [A14, pp. 527–529].) It follows that

IM (δ, fv) = 0,

as required.
We have completed our sketch of the proof that the linear forms of Theorems

23.2 and 23.3 are supported on characters. The proof is a generalization of an
argument introduced by Kazhdan to study invariant orbital integrals. (See [Ka1],
[Ka2].) With its completion, we have also finished the collective proof of the three
theorems. �

We have just devoted what might seem to be a disproportionate amount of
space to a fairly arcane point. We have done so deliberately. Our proof that the
linear forms IM (γ, f) and IM (π,X, f) are supported on characters can serve as a
model for a family of more sophisticated arguments that are part of the general
comparison of trace formulas. Instead of showing that IM (γ, f) and IM (π,X, f)
vanish for certain functions f , as we have done here, one has to establish identities
among corresponding linear forms for suitably related functions on different groups.

The invariant trace formula of Theorem 23.4 simplifies if we impose local van-
ishing conditions on the function f . We say that a function f ∈ H(G) is cuspidal
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at a place w if it is the restriction to G(A)1 of a finite sum of functions
∏
v
fv whose

w-component fw is cuspidal. This means that for any proper Levi subgroup Mw of
G over Fw, the function

fw,Mw
(πw) = fw,G(πG

w ), πw ∈ Πtemp

(
M(Fw)

)
,

in I
(
Mw(Fw)

)
vanishes.

Corollary 23.6. (a) If f is cuspidal at one place w, then

I(f) = lim
T

∫
Πdisc(G)T

aG
disc(π)fG(π),

where Πdisc(G)T is the intersection of Πdisc(G) with Π(G)T .
(b) If f is cuspidal at two places w1 and w2, then

I(f) = lim
S

∑
γ∈Γ(G)S

aG(γ)fG(γ).

To establish the simple form of the spectral expansion in (a), one applies the
splitting formula [A13, Proposition 9.4] to the linear forms IM (π, f) in (23.12).
Combined with an argument similar to that following Proposition 23.5 above, this
establishes that IM (π, f) = 0, for any M �= G, and for f as in (a). Since the
distribution

fG(π) = IG(π, f)

vanishes for any π in the complement of Πdisc(G)T in Π(G)T , the expansion (a)
follows. To establish the simple form of the spectral expansion in (b), one applies
the splitting formula (23.8) to the terms IM (γ, f) in (23.11). This establishes that
IM (γ, f) = 0, for any M �= G, and for f as in (b). The expansion in (b) follows.
(See the proof of Theorem 7.1 of [A14].) �

24. A closed formula for the traces of Hecke operators

In the next three sections, we shall give three applications of the invariant
trace formula. The application in this section might be called the “finite case” of
the trace formula. It is a finite closed formula for the traces of Hecke operators on
general spaces of automorphic forms. The result can be regarded as an analogue
for higher rank of Selberg’s explicit formula for the traces of Hecke operators on
classical spaces of modular forms.

In this section, we revert to the setting that F = Q, in order to match standard
notation for Shimura varieties. We also assume for simplicity that AG is the split
component of G over R as well as over Q. The group

G(R)1 = G(R) ∩G(A)1

then has compact center. The finite case of the trace formula is obtained by special-
izing the archimedean component of the function f ∈ H(G) in the general invariant
trace formula. Before we do so, we shall formulate the problem in terms somewhat
more elementary than those of recent sections.

Suppose that πR ∈ Πunit

(
G(R)

)
is an irreducible unitary representation of

G(R), and that K0 is an open compact subgroup of G(Afin). We can write

(24.1) L2
disc

(
πR, G(Q)\G(A)1/K0

)
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for the πR-isotypical component of L2
disc

(
G(Q)\G(A)1/K0

)
, which is to say, the

largest subspace of L2
disc

(
G(Q)\G(A)1/K0

)
that decomposes under the action of

G(R)1 into a sum of copies of the restriction of πR to G(R)1. We can also write

L2
disc(πR,K0) = L2

disc

(
πR, G(Q)\G(A)/K0, ζR

)
for the space of functions φ on G(Q)\G(A)/K0 such that

φ(zx) = ξR(z)φ(x), z ∈ AG(R)0,

where ζR is the central character of πR on AG(R)0, and such that the restriction
of φ to G(A)1 lies in the space (24.1). The restriction mapping from G(A) to
G(A)1 is then a G(R)1-isomorphism from L2

disc(πR,K0) onto the space (24.1). The
action of G(R) by right translation on L2

disc(πR,K0) is isomorphic to a direct sum
of copies of πR, with finite multiplicity mdisc(πR,K0). One would like to compute
the nonnegative integer mdisc(πR,K0).

More generally, suppose that h belongs to the nonarchimedean Hecke algebra
H
(
G(Afin),K0

)
attached to K0. Let Rdisc(πR, h) be the operator on L2

disc(πR,K0)
obtained by right convolution of h. As an endomorphism of the G(R)-module
L2

disc(πR,K0), Rdisc(πR, h) can be regarded as a square matrix of rank equal to
mdisc(πR,K0). One would like a finite closed formula for its trace.

The problem just posed is too broad. However, it is reasonable to consider the
question when πR belongs to a restricted class of representations. We shall assume
that πR belongs to the subset Πtemp,2

(
G(R)

)
of representations in Πunit

(
G(R)

)
that

are square integrable modulo the center of G(R). Selberg’s formula [Sel1] describes
the solution to this problem in the case that G = SL(2), K0 = Kfin is maximal,
and πR is any representation in the set Π2

(
G(R)

)
= Πtemp,2

(
G(R)

)
that is also

integrable.
The set Πtemp,2

(
G(R)

)
is known as the discrete series, since it consists of those

unitary representations of G(R) whose restrictions to G(R)1 occur discretely in the
local spectral decomposition of L2

(
G(R)1

)
. The set is nonempty if and only if G

has a maximal torus TG that is elliptic over R, which is to say that TG(R)/AG(R)
is compact. Assume for the rest of this section that TG exists, and that TG(R) is
contained in the subgroup KRAG(R) of G(R). Then Πtemp,2

(
G(R)

)
is a disjoint

union of finite sets Π2(µ), parametrized by the irreducible finite dimensional repre-
sentations µ of G(R) with unitary central character. For any such µ, the set Π2(µ)
consists of those representations in Πtemp,2

(
G(R)

)
with the same infinitesimal char-

acter and central character as µ. It is noncanonically bijective with the set of right
cosets of the Weyl group W (KR, TG) of KR in the Weyl group W (G, TG) of G. In
particular, the number of elements in any packet Π2(µ) equals the quotient

w(G) = |W (KR, TG)|−1|W (G, TG)|.
The facts we have just stated are part of Harish-Chandra’s classification of

discrete series. The classification depends on a deep theory of characters that
Harish-Chandra developed expressly for the purpose. We recall that the character
of an arbitrary irreducible representation πR of G(R) is defined initially as the
distribution

fR −→ fR,G(πR) = tr
(
πR(fR)

)
, fR ∈ C∞

c

(
G(R)

)
,

on G(R). Harish-Chandra proved the fundamental theorem that a character equals
a locally integrable function Θ(πR, ·) on G(R), whose restriction to the open dense
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set Greg(R) of strongly regular elements in G(R) is analytic [Har1], [Har2]. That
is,

fR,G(πR) =
∫

Greg(R)

fR(x)Θ(πR, x)dx, fR ∈ C∞
c

(
G(R)

)
.

After he established his character theorem, Harish-Chandra was able to prove
a simple formula for the character values of any representation πR ∈ Πtemp,2

(
G(R)

)
in the discrete series on the regular elliptic set

TG,reg(R) = TG(R) ∩Greg.

The formula is a signed sum of exponential functions that is remarkably similar
to the formula of Weyl for the character of a finite dimensional representation µ.
However, there are two essential differences. The first is that the sum over the
full Weyl group W (G, TG) in Weyl’s formula is replaced by a sum over the Weyl
group W (KR, TG) of KR. This is the reason that there are w(G) representations
πR associated to µ. The second difference is that the real group G(R) generally
has several conjugacy classes of maximal tori T (R) over R. This means that the
character of πR has also to be specified on tori other than TG. Harish-Chandra gave
an algorithm for computing the values of Θ(πR, ·) on any set Treg(R) in terms of
its values on TG,reg(R). The resulting expression is again a linear combination of
exponential functions, but now with more general integral coefficients, which can
be computed explicitly from Harish-Chandra’s algorithm. (For a different way of
looking at the algorithm, see [GKM].)

We return to the problem we have been discussing. We are going to impose
another restriction. Rather than evaluating the trace of a single matrix Rdisc(πR, h),
we have to be content at this point with a formula for the sum of such traces, taken
over πR in a packet Π2(µ). (Given µ, we shall actually sum over the packet Π2(µ∨),
where

µ∨(x) = tµ(x)−1, x ∈ G(R),

is the contragredient of µ.) This restriction is dictated by the present state of
the invariant trace formula. There is a further refinement of the trace formula,
the stable trace formula, which we shall discuss in §29. It is expected that if the
stable trace formula is combined with the results we are about to describe, explicit
formulas for the individual traces can be established.

We fix the irreducible finite dimensional representation µ of G(R). The formula
for the corresponding traces of Hecke operators is obtained by specializing the
general invariant trace formula. In particular, it will retain the general structure of
a sum over groups M ∈ L. Each summand contains a product of three new factors,
which we now describe.

The most interesting factor is a local function

Φ′
M (µ, γR), γR ∈M(R),

on M(R) attached to the archimedean valuation v∞. Assume first that γR lies in
TM (R)∩Greg, where TM is a maximal torus in M over R such that TM (R)/AM (R)
is compact. In this case, we set

(24.2) Φ′
M (µ, γR) = |DG

M (γR)| 12
∑

πR∈Π2(µ)

Θ(πR, γR),
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where
DG

M (γR) = DG(γR)DM (γR)−1

is the relative Weyl discriminant. It is a straightforward consequence of the charac-
ter formulas for discrete series that Φ′

M (µ, γR) extends to a continuous function on
the torus TM (R). (See [A16, Lemma 4.2].) If γR ∈ M(R) does not belong to any
such torus, we set Φ′

M (µ, γR) = 0. The function Φ′
M (µ, γR) on M(R) is complicated

enough to be interesting (because it involves characters of discrete series on nonel-
liptic tori in G(R)), but simple enough to be given explicitly (because there are
concrete formulas for such characters). It is supported on the semisimple elements
in M(R), and is invariant under conjugation by M(R).

The second factor is a local term attached to the nonarchimedean valuations.
If γ is any semisimple element in M(Q), we write
(24.3)

h′
M (γ) = δP (γfin)

1
2

∫
Kfin

∫
NP (Afin)

∫
Mγ(Afin)\M(Afin)

h(k−1m−1γmnk)dndndk,

where P is any group in P(M), δP (γfin) is the modular function on P (Afin), and
Kfin is our maximal compact subgroup of G(Afin).

(
In [A16], this function was

denoted hM (γ) rather than h′
M (γ). However, the symbol hM (γ) has since been

used to denote the normalized orbital integral

hM (γ) = |DM (γfin)| 12h′
M (γ).

)
Since the integrals in (24.3) reduce to finite linear combinations of values assumed
by the locally constant function h, h′

M (γ) can in principle by computed explicitly.
The third factor is a global term. It is defined only for semisimple elements

γ ∈ M(Q) that lie in TM (R), for a maximal torus TM in M over R such that
TM (R)/AM (R) is compact. For any such γ, we set

(24.4) χ(Mγ) = (−1)q(Mγ)vol
(
Mγ(Q)\Mγ(Afin)

)
w(Mγ),

where
q(Mγ) =

1
2

dim
(
Mγ(R)/Kγ,RAM (R)0

)
is one-half the dimension of the symmetric space attached to Mγ , while Mγ is an
inner twist of Mγ over Q such that Mγ(R)/AM (R)0 is compact, and w(Mγ) is the
analogue for Mγ of the positive integer w(G) defined for G above. The volume
in the product χ(Mγ) is taken with respect to the inner twist of a chosen Haar
measure on Mγ(Afin). We note that the product of the Haar measure on Mγ(Afin)
with the invariant measures in the definition of h′

M (γ) determines a Haar measure
on G(Afin). This measure is supposed to coincide with the Haar measure used to
define the original operator Rdisc(πR, h) by right convolution of h on G(A).

Theorem 24.1. Suppose that the highest weight of the finite dimensional rep-
resentation µ of G(R) is nonsingular. Then for any element h ∈ H

(
G(Afin),K0

)
,

the sum

(24.5)
∑

πR∈Π2(µ∨)

tr
(
Rdisc(πR, h)

)
equals the geometric expansion

(24.6)
∑

M∈L
(−1)dim(AM /AG)|WM

0 ||WG
0 |−1

∑
γ∈Γ(M)

|ιM (γ)|−1χ(Mγ)Φ′
M (µ, γ)h′

M (γ).
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To establish the formula, one has to specialize the function f in the general
invariant trace formula. The finite dimensional representation µ satisfies

µ(zx) = ζR(z)−1µ(x), z ∈ AG(R)0, x ∈ G(R),

for a unitary character ζR on AG(R)0. Its contragredient µ∨ has central character ζR

on AG(R)0. The associated packet Π2(µ∨) is contained in the set Πtemp

(
G(R), ζR

)
of tempered representations of G(R) whose central character on AG(R)0 equals ζR.
Now the characterization [CD] of the invariant image I

(
G(R)

)
of H

(
G(R)

)
applies

equally well to the ζ−1
R -equivariant analogue H

(
G(R), ζR

)
of the Hecke algebra. It

implies that there is a function fR in H
(
G(R), ζR

)
such that

(24.7) fR,G(πR) =

{
1, if πR ∈ Π2(µ∨),
0, otherwise,

for any representation πR ∈ Πtemp

(
G(R), ζR

)
. The restriction f of the product fRh

to G(A)1 is then a function in H(G). We shall substitute it into the invariant trace
formula.

Since fR,G vanishes on the complement of the discrete series in Πtemp

(
G(R), ζR

)
,

fR is cuspidal. By Corollary 23.6(a), the spectral expansion of I(f) simplifies. We
obtain

I(f) = lim
T

∑
π∈Πdisc(G)T

aG
disc(π)fG(π)

=
∑

t

It,disc(f)

=
∑

t

∑
M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (M)reg

| det(s− 1)aG
M
|−1tr

(
MP (s, 0)IP,t(0, f)

)
.

The irreducible constituents of the representation IP,t(0, f) could well be nontem-
pered. However, given that s ∈W (M) is regular, and that the tempered support of
fR,G contains no representation with singular infinitesimal character, one deduces
that

tr
(
MP (s, 0)IP,t(0, f)

)
= 0,

as long as M �= G. (See [A16, p. 268].) The terms with M �= G therefore vanish.
The expansion reduces simply to

(24.8) I(f) =
∑

t

∑
π∈Πt,disc(G)

mdisc(π)tr
(
π(fRh)

)
,

the contribution from the discrete spectrum. There can of course be nontempered
representations π with mdisc(π) �= 0. But the condition that the highest weight of
µ be nonsingular is stronger than the conditions on fR,G used to derive (24.8). It
can be seen to imply that the summands in (24.8) corresponding to nontempered
archimedean components πR vanish. (The proof on p. 283 on [A16], which uses the
classification of unitary representations πR with cohomology, anticipates Corollary
24.2 below.) It follows that

I(f) =
∑

t

∑
{π:πR∈Π2(µ∨)}

mdisc(π)fR,G(πR)hM (πfin).

This in turn implies that I(f) equals the sum (24.5).
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The problem is then to compute the geometric expansion (23.11) of I(f), for
the chosen function f defined by fRh. Consider the terms

IM (γ, f), M ∈ L, γ ∈ Γ(M)S,

in (23.11). We apply the splitting formula (23.8) successively to the valuations in S.
If L ∈ L(M) is proper in G, the contribution ÎL

M (γR, fR,L) to the formula vanishes.
It follows that

IM (γ, f) = IM (γR, fR)hM (γfin).
The sum of traces (24.5) therefore equals

(24.9) lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γR, fR)hM (γfin).

The problem reduces to that of computing the archimedean component IM (γR, fR),
for elements γR ∈M(R).

Suppose that γR = tR is strongly G-regular. In this case, the main theorem
of [A1] provides a formula for IM (tR, fR) in terms of character values of discrete
series at tR. The proof uses differential equations and boundary conditions satisfied
by IM (tR, fR) to reduce the problem to the case M = G, which had been solved
earlier by Harish-Chandra [Har3]. A more conceptual proof of the same formula
came later, as a consequence of the local trace formula [A20, Theorem 5.1]. (A p-
adic analogue for Lie algebras of this result is contained in the lectures of Kottwitz
[Ko8].) If tR is elliptic in M(R), the formula asserts that IM (tR, fR) equals the
product of

(−1)dim(AM /AG)vol
(
TM (R)/AM (R)0

)−1

with ∑
πR∈Π2(G(R),ζR)

|DG(tR)| 12 Θ(πR, tR)fR,G(πR),

where TM is the centralizer of tR. It follows that
(24.10)

IM (tR, fR) = (−1)dim(AM /AG)vol
(
TM (R)/AM (R)0

)−1|DM (tR)| 12 Φ′
M (µ, tR).

If tR is not elliptic in M(R), the formula of [A1] (or just the descent formula (23.9))
tells us that IM (tR, fR) vanishes. Since Φ′

M (µ, tR) vanishes by definition in this case,
(24.10) holds for any strongly G-regular element tR.

It remains to sketch a generalization of (24.10) to arbitrary elements
γR ∈M(R). From the definitions (18.12) and (23.3), we deduce that

IM (γR, fR) = lim
aR→1

∑
L∈L(M)

rL
M (γR, aR)IL(aRγR, fR),

for small points aR ∈ AM (R) in general position. Since fR is cuspidal, the descent
formula (23.9) implies that the summands on the right with L �= M vanish. Re-
placing γR by aRγR, if necessary, we can therefore assume that the centralizer of γR

in G is contained in M . In this case, IM (γR, fR) can be approximated by functions
IM (tR, fR), for G-regular elements tR in M(R) that are close to the semisimple part
σR of γR. We can actually assume that σR lies in an elliptic torus TM , again by the
descent formula (23.9). The approximation of IM (γR, fR) then takes the form of a
limit formula

IM (γR, fR) = lim
tR→σR

(
∂(huR

)IM (tR, fR)
)
,
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where ∂(huR
) is a harmonic differential operator on TM (R) attached to the unipotent

part uR of γR [A16, Lemma 5.2]. One can compute the limit from the properties
of the function Φ′

M (µ, tR) on the right hand side of (24.10). The fact that this
function is constructed from a sum of characters of discrete series in the packet
Π2(µ) is critical. One uses it to show that the limit vanishes unless uR = 1. The
conclusion [A16, Theorem 5.1] is that

IM (γR, fR) = (−1)dim(AM /AG)v(MγR
)−1|DM (γR)| 12 Φ′

M (µ, γR),

where
v(MγR

) = (−1)q(MγR
)vol
(
MγR

(R)/AM (R)0
)
w(MγR

)−1.

In particular, IM (γR, fR) vanishes unless γR is semisimple and lies in an elliptic
maximal torus TM .

We substitute the general formula for IM (γR, fR) into the expression (24.9) for
I(f). We see that the summand in (24.9) corresponding to γ ∈ Γ(M)S vanishes
unless γ is semisimple. Since (M,S)-equivalence of semisimple elements in Γ(M)S

is the same as M(Q)-conjugacy, we can sum γ over the set Γ(M) instead of Γ(M)S ,
removing the limit over S at the same time. We can also write

|DM (γR)| 12 Φ′
M (µ, γR)hM (γfin)

= |DM (γR)DM (γfin)| 12 Φ′
M (µ, γR)h′

M (γfin)

= Φ′
M (µ, γ)h′

M (γ),

for any semisimple element γ ∈ M(Q), by the product formula for Q. Finally,
it follows from the definitions (19.5) and (22.2) of aM (γ), together with the main
theorem of [Ko6], that

aM (γ)v(MγR
)−1 = χ(Mγ)|ιM (γ)|−1,

again for any semisimple element γ ∈ M(Q). We conclude that I(f) is equal to
the required expression (24.6). Since it is also equal to the original sum (24.5), the
theorem follows. �

Remarks. 1. The theorem from [Ko6] we have just appealed to is that the
coefficient

aG(1) = vol
(
G(F )\G(A)1

)
is invariant under inner twisting of G. Kottwitz was able to match the terms with
M = G and γ = 1 in the fine geometric expansion (22.9) for any two groups related
by inner twisting. This completed the proof of the Weil conjecture on Tamagawa
numbers, following a suggestion from [JL, §16]. It represents a different and quite
striking application of the general trace formula, which clearly illustrates the need
for a fine geometric expansion. Unfortunately, we do not have space to discuss it
further.

2. The condition that the highest weight of µ be nonsingular was studied by
F. Williams [Wi], in connection with multiplicity formulas for compact quotient.
It is weaker than the condition that the relevant discrete series representations
be integrable, which was used in the original multiplicity formulas of Langlands
[Lan2].

If our condition on the highest weight of µ is removed, the expression (24.6)
still makes sense. To what does it correspond?
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Assume that
µ : G −→ GL(V )

is an irreducible finite dimensional representation of G that is defined over Q. This
represents a slight change of perspective. On the one hand, we are asking that the
restriction of µ to the center of G be algebraic, and that the representation itself
be defined over Q. On the other, we are relaxing the condition that the central
character ζ−1

R of µ on AG(R)0 be unitary. The corresponding packet Π2(µ) still
exists, but it is now contained only in the set Π2

(
G(R)

)
of general (not necessarily

tempered) representations of G(R) that are square integrable modulo the center.
We define the function Φ′

M (γR, µ) exactly as before.
If K ′

R = KRAG(R)0, the quotient

X = G(R)/K′
R

is a globally symmetric space with respect to a fixed left G(R)-invariant metric. Let
us assume that none of the simple factors of G is anisotropic over R. We assume
also that the open compact subgroup K0 ⊂ G(Afin) is small enough that the action
of G(Q) on the product of X with G(Afin)/K0 has no fixed points. The quotient

M(K0) = G(Q)\
(
X ×G(Afin)/K0

)
is then a finite union of locally symmetric spaces. Moreover, the restriction of the
representation µ to G(Q) determines a locally constant sheaf

Fµ(K0) = V (C) ×
G(Q)

(
X ×G(Afin)/K0

)
on M(K0).

One can form the L2-cohomology

H∗
(2)

(
M(K0),Fµ(K0)

)
=
⊕
q≥0

Hq
(2)

(
M(K0),Fµ(K0)

)
of M(K0) with values in Fµ. It is a finite dimensional graded vector space, which
reduces to ordinary de Rham cohomology in the case that M(K0) is compact. The
element h in the Hecke algebra H

(
G(Afin),K0

)
acts by right convolution on any

reasonable space of functions or differential forms on M(K0). It yields an operator

H∗
(2)

(
h,Fµ(K0)

)
=
⊕

q

Hq
(2)

(
h,Fµ(K0)

)
on the L2-cohomology space. Let

(24.11) Lµ(h) =
∑

q

(−1)qtr
(
Hq

(2)

(
h,Fµ(K0)

))
be its Lefschetz number.

Corollary 24.2. The Lefschetz number Lµ(h) equals the product of (−1)q(G)

with the geometric expression (24.6).

The reduction of the corollary to the formula of the theorem depends on the
spectral decomposition of L2-cohomology [BC], and the Vogan-Zuckermann clas-
sification [VZ] of unitary representations of G(R) with

(
g(R),K′

R

)
-cohomology.

These matters are discussed in §2 of [A16]. We shall include only a few words here.
The space Hq

(2)

(
M(K0),Fµ(K0)

)
is defined by square-integrable differential q-

forms on M(K0). Consider the case that M(K0) is compact. Elements in the space
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are then defined by smooth, differential q-forms on M(K0) with values in Fµ(K0).
By thinking carefully about the nature of such objects, one is led to a canonical
isomorphism

Hq
(2)

(
M(K0),Fµ(K0)

) ∼= ⊕
π∈Πunit(G(A),ζR)

mdisc(π)
(
Hq
(
g(R),K ′

R;πR ⊗ µ
)
⊗ πK0

fin

)
,

in which Πunit

(
G(A), ζR

)
denotes the set of representations in Π

(
G(A), ζR

)
that are

unitary modulo AG(R)0, Hq
(
g(R),K ′

R; ·
)

represents the
(
g(R),K ′

R

)
-cohomology

groups defined in [BW, Chapter II], for example, and πK0
fin stands for the space of

K0-invariant vectors for the finite component πfin of π. (See [BW, Chapter VII].)
This isomorphism is compatible with the canonical action of the Hecke algebra
H
(
G(Afin),K0

)
on each side. It follows that there is a canonical isomorphism of

operators

Hq
(2)

(
h;Fµ(K0)

) ∼= ⊕
π∈Πunit(G(A),ζR)

mdisc(π) · dim
(
Hq
(
g(R),K ′

R;πR ⊗ µ
))
· πfin(h).

In the paper [BC], Borel and Casselman show that this isomorphism carries over
to the case of noncompact quotient (with our assumption that G(R) has discrete
series). Define

χµ(πR) =
∑

q

(−1)q dim
(
Hq
(
g(R),K ′

R;πR ⊗ µ
))
,

for any unitary representation πR of G(R). It then follows that

(24.12) Lµ(h) =
∑

π∈Πunit(G(A),ζR)

mdisc(π)χµ(πR)tr
(
πfin(h)

)
.

The second step is to describe the integers χµ(πR). This is done in [CD]. The
result can be expressed as an identity

χµ(πR) = (−1)q(G)fR,G(πR), πR ∈ Πunit

(
G(R), ζR

)
,

where fR ∈ H
(
G(R), ζR

)
is a function that satisfies (24.7). It follows that if π is as

in (24.8), then

χµ(πR)tr
(
πfin(h)

)
= (−1)q(G)tr

(
πR(fR)

)
tr
(
πfin(h)

)
= (−1)q(G)tr

(
π(fRh)

)
,

where πR⊗πfin is the representation in Πunit

(
G(A), ζR

)
whose restriction to G(A)1

equals π. It follows from (24.8) and (24.12) that

Lµ(h) = (−1)q(G)I(f).

Since we have already seen that I(f) equals the geometric expression (24.6), the
corollary follows. �

The formula of Corollary 24.2 is relevant to Shimura varieties. The reader will
recall from the lectures of Milne [Mi] that with further conditions on G, the space
M(K0) becomes the set of complex points of a Shimura variety. It is a fundamen-
tal problem for Shimura varieties to establish reciprocity laws between the analytic
data contained in Hecke operators on L2-cohomology, and the arithmetic data con-
tained in �-adic representations of Galois groups on étale cohomology. Following
the strategy that was successful for GL(2) [Lan4], one would try to compare geo-
metric sides of two Lefschetz formulas. Much progress has been made in the case
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that M(K0) is compact [Ko7]. In the general case, the formula of Corollary 24.2
could serve as the basic analytic Lefschetz formula. (One still has to “stabilize” this
formula, a problem closely related to that of computing the individual summands
in (24.5), as opposed to their sum.) The other ingredient would be a Lefschetz trace
formula for Frobenius-Hecke correspondences on the �-adic intersection cohomol-
ogy of the Bailey-Borel compactification M(K0), and a comparison of its gemetric
terms with those of the analytic formula.

The general problem is still far from being solved. However, Goresky, Kottwitz,
and Macpherson have taken an important step. They have established a formula
for the Lefschetz numbers of Hecke correspondences in the complex intersection
cohomology of M(K0), whose geometric terms match those of the analytic formula
[GKM]. Since one knows that the spectral sides of the two formulas match, by
Zucker’s conjecture [Lo], [SS], the results of Goresky, Kottwitz, and Macpherson
can be regarded as a topological proof of the formula of Corollary 24.2. It is hoped
that their methods can be applied to �-adic intersection cohomology.

25. Inner forms of GL(n)

The other two applications each entail a comparison of trace formulas. They
concern higher rank analogues of the Jacquet-Langlands correspondence, and the
theorem of Saito-Shintani and Langlands on base change for GL(2). These two
applications are the essential content of the monograph [AC]. Since we are devoting
only limited space to them here, our discussion will have to be somewhat selective.

The two comparisons were treated together in [AC]. However, it is more in-
structive to discuss them separately. In this section we will discuss a partial gen-
eralization of the Jacquet-Langlands correspondence from GL(2) to GL(n). We
shall describe a term by term comparison of the invariant trace formula of the
multiplicative group of a central simple algebra with that of GL(n).

We return to the general setting of Part II, in which G is defined over a number
field F . In this section, G∗ will stand for the general linear group GL(n) over F .
We take G to be an inner twist of G∗ over F . This means that G is equipped with
an isomorphism ψ: G→ G∗ such that for every element τ in ΓF = Gal(F/F ), the
relation

ψ ◦ τ(ψ)−1 = Int
(
a(τ)

)
holds for some element a(τ) in G∗.

The general classification of reductive groups over local and global fields assigns
a family of invariants {

invv = invv(G,ψ)
}

to (G,ψ), parametrized by the valuations v of F . The local invariant invv is at-
tached to the localization of (G,ψ) at Fv, and takes values in the cyclic group
(Z/nZ). It can assume any value if v is nonarchimedean, but satisfies the con-
straints 2invv = 0 if Fv

∼= R, and invv = 0 if Fv
∼= C. The elements in the family

{invv} vanish for almost all v, and satisfy the global constraint∑
v

invv = 0.

Conversely, given G∗ and any set of invariants {invv} in Z/nZ with these con-
straints, there is an essentially unique inner twist (G,ψ) of G∗ with the given
invariants. These assertions are special cases of Theorems 1.2 and 2.2 of [Ko5].
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(To see this, one has to identify (Z/nZ) with the group of characters on the center
Ẑsc of the complex dual group SL(n,C) of G∗

ad = PGL(n).) We write n = dvmv,
where dv is the order of the element invv in (Z/nZ), and n = dm, where d is the
least common multiple of the integers dv.

The notation {invv} is taken from the older theory of central simple algebras.
Since the inner automorphisms Int

(
a(τ)

)
of G∗ extend to the matrix algebra Mn(F ),

one sees easily that ψ extends to an isomorphism from A
⊗

F to Mn(F ), where A
is a central simple algebra over F such that

G(k) = (A
⊗

k)∗,

for any k ⊃ F , and the tensor products are taken over F . It is a consequence
of the theory of such algebras [We] that A is isomorphic to Mm(D), where D
is a division algebra over F of degree d. Similarly, for any v, the local algebra
Av = A

⊗
Fv is isomorphic to Mmv

(Dv). It follows that G(F ) ∼= GL(m,D) and
G(Fv) ∼= GL(mv, Dv). (These facts can also be deduced from the two theorems
quoted from [Ko5].) In particular, the minimal Levi subgroup M0 of G we suppose
to be fixed is isomorphic to a product of m copies of multiplicative groups of D.

It is easy to see that by replacing ψ with some conjugate

Int(g)−1 ◦ ψ, g ∈ G∗(F ),

if necessary, we can assume that the image M∗
0 = ψ(M0) is defined over F . The

mapping

M −→ M∗ = ψ(M), M ∈ L,
is then a bijection from L onto the set of Levi subgroups L(M∗

0 ) in G∗. For any
M ∈ L, there is a bijection P → P ∗ from P(M) to P(M∗). Similar remarks apply
to any completion Fv of F . We can choose a point gv ∈ M∗

0 (Fv) such that the
conjugate

ψv = Int(gv)−1 ◦ ψ
maps a fixed minimal Levi subgroup Mv0 ⊂ M0 over Fv to a Levi subgroup
M∗

v0 ⊂M∗
0 over Fv. The mapping Mv →M∗

v is then a bijection from Lv = L(Mv0)
to L(M∗

v0). In the special case that invv = 0, the isomorphism ψv from G to G∗ is
defined over Fv.

In order to transfer functions from G to G∗, one has first to be able to transfer
conjugacy classes. Working with a general field k ⊃ F , we start with a semisimple
conjugacy class σ ∈ Γss

(
G(k)

)
in G(k). The image ψ(σ) of σ in G∗ generates a

semisimple conjugacy class in G(k). Since

τ
(
ψ(σ)

)
= τ(ψ)

(
τ(σ)

)
= Int

(
a(τ)

)−1
ψ(σ),

for any element τ ∈ Gal(k/k), the characteristic polynomial of this conjugacy class
has coefficients in k. It follows from rational canonical form that the conjugacy class
of ψ(σ) intersects G(k). It therefore determines a canonical semisimple conjugacy
class σ∗ ∈ Γss

(
G∗(k)

)
. We thus obtain a canonical injection σ → σ∗ from Γss

(
G(k)

)
into Γss

(
G∗(k)

)
. Now if σ is a semisimple element in G(k), it is easy to see that

Gσ(k) is isomorphic to GL(mσ, Dσ), where Dσ is a division algebra of rank dσ

over an extension field kσ of degree eσ over k, with n = dσeσmσ, while G∗
σ∗(k)

is isomorphic to GL(dσmσ, kσ). The unipotent classes u in Gσ(k) correspond to
partitions of mσ. For any such u, let u∗ be the unipotent class in G∗

σ∗(k) that
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corresponds to the partition of dσmσ obtained by multiplying the components of
the first partition by dσ. Then

γ = σu −→ γ∗ = σ∗u∗

is a canonical injection from the set Γ
(
G(k)

)
of all conjugacy classes in G(k) into

the corresponding set Γ
(
G∗(k)

)
in G∗(k).

Suppose that k = F . If M ∈ L, ψ restricts to an inner twist from M to the
Levi subgroup M∗ of G∗. It therefore defines an injection γM → γ∗

M from Γ(M) to
Γ(M∗), by the prescription above. If γ ∈ Γ(G) is the induced class γG

M , it follows
immediately from the definitions that γ∗ is the induced class (γ∗

M )G∗
in Γ(G∗).

For the transfer of functions, we need to take k to be a completion Fv of F ,
and γ to be a strongly regular class γv ∈ Γreg

(
G(Fv)

)
in G(Fv). Suppose that fv

is a function in H
(
G(Fv)

)
. We define a function f∗

v on Γreg

(
G∗(Fv)

)
by setting

f∗
v (γ∗

v) =

{
fv,G(γv), if γv maps to γ∗

v ,

0, if γ∗
v is not in the image of Γ

(
G(Fv)

)
,

for any class γ∗
v ∈ Γreg

(
G∗(Fv)

)
. In the case that invv = 0, f∗

v is the image in
I
(
G∗(Fv)

)
of the function fv ◦ψ−1

v in H
(
G∗(Fv)

)
. In particular, if v is also nonar-

chimedean (so that G is unramified at v), and fv is the characteristic function of the
maximal compact subgroup Kv, f∗

v is the image in I
(
G∗(Fv)

)
of the characteristic

function of the maximal compact subgroup K∗
v = ψ(Kv) of G∗(Fv).

The next theorem applies to any valuation v of F .

Theorem 25.1. (Deligne, Kazhdan, Vigneras)
(a) For any fv ∈ H

(
G(Fv)

)
, the function f∗

v belongs to I
(
G∗(Fv)

)
. In other

words, f∗
v represents the set of strongly regular orbital integrals of some function in

H
(
G∗(Fv)

)
.

(b) There is a canonical injection πv → π∗
v from Πtemp

(
G(Fv)

)
into

Πtemp

(
G∗(Fv)

)
such that

f∗
v (π∗

v) = e(Gv)fv,G(πv), fv ∈ H
(
G(Fv)

)
,

where e(Gv) is the sign attached to the reductive group G over Fv by Kottwitz [Ko2].

These results were established in [DKV]. The largely global argument makes
use of a simple version of the trace formula, such as the formula provided by Corol-
lary 23.6 for functions f ∈ H(G) that are cuspidal at two places. Part (a) is
Theorem B.2.c of [DKV]. Part (b) follows from Theorems B.2.a, B.2.c, and B.2.d
of [DKV]. �

The assertions of the theorem remain valid if G is replaced by a Levi subgroup.
This is because a Levi subgroup is itself a product of groups attached to central
semisimple algebras.

Recall that the invariant trace formula depends on a choice of normalizing
factors for local intertwining operators. In the case of the group G∗ = GL(n),
Shahidi [Sha2] has shown that Langlands’ conjectural definition of normalizing
factors in terms of L-functions satisfies the required properties. Now if we are
to be able to compare terms in the general trace formulas of G and G∗, we will
need a set of local normalizing factors for G that are compatible with those of G∗.
Suppose then that v is a valuation, and that Mv ∈ Lv. It is enough to define
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normalizing factors rP |Q(πv,λ) for tempered representations πv ∈ Πtemp

(
M(Fv)

)
,

by [A15, Theorem 2.1]. We set

(25.1) rP |Q(πv,λ) = rP∗|Q∗(π∗
v,λ), πv ∈ Πtemp

(
M(Fv)

)
, P,Q ∈ P(M),

where the right hand side is Langlands’ canonical normalizing factor for GL(n).

Lemma 25.2. The functions (25.1) give valid normalizing factors for G.

This is [AC, Lemma 2.2.1]. One has to show that the functions (25.1) satisfy
the conditions of Theorem 21.4. The main point is to establish the basic iden-
tity (21.12) that relates the normalizing factors to Harish-Chandra’s µ-function
µM (πv,λ). To establish this identity, one first deduces that

µM (πv,λ) = µM∗(π∗
v,λ)

from the formula

fv(1) = e(Gv)f∗
v (1), fv ∈ H

(
G(Fv)

)
,

the Plancherel formulas for G(Fv) and G∗(Fv), and the relationship between µ-
functions and corresponding Plancherel densities. The required identity for G then
follows from its analogue for G∗ established by Shahidi. �

Suppose that f is the restriction to G(A)1 of a function in H
(
G(A)

)
of the

form
∏

fv. Let f∗ be the corresponding restriction of the function
∏

f∗
v . Then

f → f∗ extends to a linear mapping from H(G) to I(G∗). It takes any subspace
H
(
G(FS)1

)
of H(G) to the corresponding subspace I

(
G∗(FS)1

)
of I(G).

We define

IE(f) = Î∗(f∗), f ∈ H(G∗),

where I∗ = IG∗
is the distribution given by either side of the invariant trace formula

for G∗. We of course also have the corresponding distribution I = IG from the trace
formula for G. One of the main problems is to show that IE(f) = I(f). There
seems to be no direct way to do this. One employs instead an indirect strategy of
comparing terms, both geometric and spectral, in the two trace formulas.

If S is a finite set of valuations of F that contains Sram, and γ belongs to
Γ(M)S , we define

(25.2) aM,E(γ) = aM∗
(γ∗), M ∈ L,

and

(25.3) IEM (γ, f) = ÎM∗(γ∗, f∗), f ∈ H(G).

More generally, the definition (25.3) applies to any finite set of valuations S
with the closure property, any conjugacy class γ in M(FS), and any function
f ∈ Hac

(
G(FS)

)
.

Lemma 25.3. There is an expansion

(25.4) IE(f) = lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM,E(γ)IEM (γ, f).
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This is Proposition 2.5.1 of [AC]. By definition,

IE(f) = Î∗(f∗)

= lim
S

∑
L∈L∗

|WL
0 ||WG

0 |−1
∑

β∈Γ(L)S

aL(β)ÎL(β, f∗),

where L∗ is the finite set of Levi subgroups of G∗ that contain the standard minimal
Levi subgroup. This can in turn be written

lim
S

∑
{L}

|WG∗
(L)|−1

∑
β∈Γ(L)S

aL(β)ÎL(β, f∗),

where {L} is a fixed set of representations of conjugacy classes in L∗. A global
vanishing property [A5, Proposition 8.1] asserts that ÎL(β, f∗) vanishes unless the
pair (L, β) comes from G, in the sense that it is conjugate to the image (M∗, γ∗)
of a pair (M,γ). We can assume in this case that our representative L actually
equals M∗. Moreover, M∗ is G∗-conjugate to another group M∗

1 if and only if M
is G-conjugate to M1. Since WG∗

(M∗) = WG(M), we see that

IE(f) = lim
S

∑
{M}

|WG(M)|−1
∑

γ∈Γ(M)S

aM∗
(γ∗)ÎM∗(γ∗, f∗)

= lim
S

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM∗
(γ∗)ÎM∗(γ∗, f∗),

where {M} is a fixed set of representatives of conjugacy classes in L. This in turn
equals the right hand side of (25.4). �

If we could somehow establish identities between the terms in (25.4) and their
analogues in the geometric expansion of I(f), we would know that IE(f) equals
I(f). We could then try to compare the spectral expansions. In practice, one has
to consider the two kinds of expansions simultaneously. Before we try to do this,
however, we must first establish a spectral expansion of IE(f) in terms of objects
associated with G. The process is slightly more subtle than the geometric case just
treated. This is because the local correspondence πv → π∗

v works only for tempered
representations, while nontempered representations occur on the two spectral sides.

We have been writing Π
(
G(A)1

)
for the set of irreducible representations of

G(A)1. If τ belongs to the corresponding set for G∗, we can write

f∗
G(τ) =

∑
π∈Π(G(A)1)

δG(τ, π)fG(π), f ∈ H(G),

for uniquely determined complex numbers δG(τ, π). This definition would be su-
perfluous if we were concerned only with the tempered case. For if τ and π are
tempered,

δG(τ, π) =

{
1, if τ = π∗,

0, otherwise,

since the product
∏
v
e(Gv) of signs equals 1. If τ and π are nontempered, how-

ever, δ(τ, π) could be more complicated. This is because the decompositions of
irreducible representations into standard representations for G and G∗ might not
be compatible.



25. INNER FORMS OF GL(n) 171

If π ∈ Π
(
G(A)1

)
, we define

(25.5) aG,E
disc(π) =

∑
τ∈Πdisc(G∗)

aG∗

disc(τ)δG(τ, π).

It is not hard to show that the sum may be taken over a finite set [AC, Lemma
2.9.1]. Using the coefficients aG,E

disc(π) in place of aG
disc(π), we modify the definition

of the set Πt,disc(G) in §22. This gives us a discrete subset ΠE
t,disc(G) of Π

(
G(A)1

)
for every t ≥ 0. We then form the larger subset

ΠE
t (G) =

{
πG

λ : M ∈ L, π ∈ ΠE
t,disc(M), λ ∈ ia∗M/ia∗G

}
of Π

(
G(A)1

)
, equipped with a measure dπG

λ defined as in (22.7). Finally, we define
a function aG,E on ΠE

t (G) by setting

(25.6) aG,E(πG
λ ) = aM,E

disc (π)rG
M (πλ),

as in (22.8). The ultimate aim, in some sense, is to show that the discrete coefficients
aG,E
disc(π) and aG

disc(π) match. We now assume inductively that this is true if G is
replaced by any proper Levi subgroup M . Then ΠE

t,disc(M) equals Πt,disc(M), and
in particular, consists of unitary representations of M(A)1. It follows that the
function aG,E(πG

λ ) is analytic, and slowly increasing in the sense of Lemma 21.5.
The extra complication arises when we try to describe the function aG,E as a

pullback of the corresponding function for G∗. Suppose that π ∈ Π
(
M(A)1

)
and

τ ∈ Π
(
M∗(A)1

)
are representations with δM (τ, π) �= 0. Given a point λ ∈ ia∗M/ia∗G

in general position, and groups P,Q ∈ P(M), we set

rQ|P (τλ, πλ) = rQ∗|P∗(τS,λ)−1rQ|P (πS,λ),

where S ⊃ Sram is a large finite set of valuations, and τS and πS are the S-
components of τ and π. The condition that δM (τ, π) �= 0 implies that τv

∼= πv for
almost all v [AC, Corollary 2.8.3], so that rQ|P (τλ, πλ) is independent of the choice
of S. Moreover, rQ|P (τλ, πλ) is a rational function in the relevant variables λ(α∨)

or q
−λ(α∨)
v attached to valuations v in S [A15, Proposition 5.2]. As Q varies, we

obtain a (G,M)-family of functions

rQ(Λ, τλ, πλ, P ) = δM (τ, π)rQ|P (τλ+Λ, πλ+Λ)rQ|P (τλ, πλ)−1

of Λ ∈ ia∗M , which we define for any τ and π.
Assume now that π belongs to ΠE

t,disc(M). For any representation τ ∈ Π
(
M∗(A)1

)
,

the (G,M)-family of global normalizing factors

δM (τ, π)rQ(Λ, πλ, P ), Q ∈ P(M),

is defined, and equals the product of (G,M)-families

rQ∗(Λ, τλ, P
∗)rQ(Λ, τλ, πλ, P ), Q ∈ P(M).

It follows from the product formula (17.12) that

δM (τ, π)rG
M (πλ) =

∑
L∈L(M)

rL∗

M∗(τλ)rG
L (τλ, πλ).

Multiplying each side of this last identity by aM∗

disc(τ), and then summing over τ , we
obtain an identity

(25.7) aG,E
M (πG

λ ) =
∑

τ∈Πt,disc(M∗)

∑
L∈L(M)

aL∗

M∗(τL∗

λ )rG
L (τλ, πλ).
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The description of the coefficient aG,E
M (πG

λ ) as a pullback of coefficients from
G∗ is thus more elaborate than its geometric counterpart. This has to be reflected
in the construction of the corresponding linear forms that occur in the spectral
expansion of IE(f). Suppose that S is any finite set of valuations with the closure
property. The function rL

M (τλ, πλ) can obviously be defined for representations
τ ∈ Π

(
M∗(FS)

)
and π ∈ Π

(
M(FS)

)
. If either τ or π is in general position,

rL
M (τλ, πλ) is an analytic function of λ in ia∗M,S/ia

∗
L,S . In this case, we define linear

forms

IEM (π,X, f), X ∈ aM,S , f ∈ Hac

(
G(FS)

)
,

inductively by setting
(25.8)

ÎM∗(τ,X, f∗) =
∑

L∈L(M)

∑
π∈Π(M(FS))

∫
ia∗

M,S/ia∗
L,S

rL
M (τλ, πλ)IEL(πL

λ , XL, f)e−λ(X)dλ,

for any τ . (For arbitrary τ and π, the functions rL
M (τλ, πλ) can acquire poles in

the domain of integration, and one has to take a linear combination of integrals
over contours εP + ia∗M,S/ia

∗
L,S . See [AC, pp. 124–126]. The general definition

in [AC] avoids induction, but is a three stage process that is based on standard
representations.) It is of course the summands with L �= M in (25.8) that we
assume inductively to be defined. The summand of L = M equals∑

π∈Π(M(FS))

δM (τ, π)IEM (π,X, f).

By applying the local vanishing property [AC, Proposition 2.10.3] to the left
hand side of the relation (25.8), one shows without difficulty that IEM (π,X, f) is
well defined by this relation. We extend the definition to adelic representations
π ∈ Π

(
M(A)1

)
and functions f ∈ H(G) by taking S ⊃ Sram to be large. If in

addition, π is unitary, we write

IEM (π, f) = IEM (π, 0, f),

as before.

Lemma 25.4. There is an expansion

(25.9) IE(f) = lim
T

∑
M∈L

|WM
0 ||WG

0 |−1

∫
ΠE(M)T

aM,E(π)IEM (π, f)dπ.

This is Proposition 2.12.2 of [AC]. The inductive definition (25.8) we have
given here leads to a two step proof. The first step is a duplication of the proof of
Lemma 25.3, while the second is an application of the formulas (25.7) and (25.8).

We begin by writing

IE(f) = Î∗(f∗)

= lim
T

∑
L∈L∗

|WL
0 ||WG∗

0 |−1

∫
Π(L)T

aL(τ)ÎL(τ, f∗)dτ,

by the spectral expansion (23.12) for G∗. The global vanishing property [A14,
Proposition 8.2] asserts that ÎL(τ, f∗) vanishes unless L is conjugate to the image
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of a group M in L. Using the elementary counting argument from the proof of
Lemma 25.3, we see that

IE(f) = lim
T

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Π(M∗)T

aM∗
(τ)ÎM∗(τ, f∗)dτ.

For the second step, we have to substitute the formula (25.8), with S ⊃ Sram

large and X = 0, for ÎM∗(τ, f∗). More correctly, we substitute the version of
(25.8) that is valid if any of the functions rL

M (τλ, πλ) have poles, since we do not
know a priori that the representations π over which we sum are unitary. We then
substitute the explicit form (22.7) of the measure dτ on Π(M∗)T . In the resulting
multiple (seven-fold, as a matter of fact) sum-integral, it is not difficult to recognize
the expansion (25.7). There is some minor effort involved in keeping track of the
various constants and domains of the integration. This accounts for the length of
some of the arguments in [AC]. In the end, however, the expression collapses to
the required expansion (25.9). �

Theorem 25.5. If γ belongs to Γ(M)S for some S ⊃ Sram, then

(25.10) IEM (γ, f) = IM (γ, f)

and

(25.11) aM,E(γ) = aM (γ).

Theorem 25.6. If π belongs to the union of Π(M)T and ΠE(M)T , for some
T > 0, then

(25.12) IEM (π, f) = IM (π, f)

and

(25.13) aM,E(π) = aM (π).

Theorems 25.5 and 25.6 correspond to Theorems A and B in Sections 2.5 and
2.9 of [AC], which are the main results of Chapter 2 of [AC]. They are proved
together, by an argument that despite its length sometimes seems to move forward
of its own momentum. In following our sketch of the proof, the reader might keep
in mind the earlier argument used in §21 to establish that the terms in the invariant
trace formula are supported on characters.

The combined proof of the two theorems is by double induction on n and
dim(AM ). The first induction hypothesis immediately implies that the global for-
mulas (25.11) and (25.13) are valid for proper Levi subgroups M �= G. If M = G,
on the other hand, the local formulas (25.10) and (25.12) hold by definition, the
two sides in each case being equal to fG(γ) and fG(π) respectively. We apply these
observations to the identity obtained from the right hand sides of (25.4) and (25.9).
Combining the resulting formula with the invariant trace formula for G, we see that
the limit over S of the sum of

(25.14)
∑

M �=G

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
(
IEM (γ, f)− IM (γ, f)

)
and

(25.15)
∑

γ∈Γ(G)S

(
aG,E(γ)− aG(γ)

)
fG(γ)
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equals the limit over T of the sum of

(25.16)
∑

M �=G

|WM
0 ||WG

0 |−1

∫
Π(M)T

aM (π)
(
IEM (π, f)− IM (π, f)

)
dπ

and

(25.17)
∫

Π∗(G)T

(
aG,E(π)− aG(π)

)
fG(π)dπ,

where Π∗(G)T is the union of ΠE(G)T with Π(G)T .
The linear forms IM (γ, f) and IM (π,X, f) were defined for any finite set S with

the closure property, and any f ∈ Hac

(
G(FS)

)
. They each satisfy splitting and

descent formulas. The linear forms IEM (γ, f) and IEM (π,X, f) have been defined in
the same context, and satisfy parallel splitting and descent formulas. The required
local identities (25.10) and (25.12) can be broadened to formulas

(25.18) IEM (γ, f) = IM (γ, f), γ ∈ Γ
(
M(FS)

)
,

and

(25.19) IEM (π,X, f) = IM (π,X, f), π ∈ Π
(
M(FS)

)
, X ∈ aM,S ,

which we postulate for any f ∈ H
(
G(FS)

)
. These general identities were originally

established only up to some undetermined constants [AC, Theorem 2.6.1], but they
were later resolved by the local trace formula [A18, Theorem 3.C]. We assume
inductively that (25.18) and (25.19) hold if n is replaced by a smaller integer. This
allows us to simplify the local terms in (25.14) and (25.16). In so doing, we can
assume that the function f ∈ H(G) is the restriction to G(A)1 of a product of

∏
fv.

Consider first the expression (25.16). We recall that Proposition 23.5 applies to
the linear forms IM (γ, f) and IM (π,X, f). This proposition can also be adapted to
the linear forms IEM (γ, f) and IEM (π,X, f) [AC, §2.8]. Its first assertion implies that
either of the two spectral linear forms can be expressed in terms of its geometric
counterpart. The analogue of the more specific second assertion of Proposition 23.5
can be formulated to say that if (25.18) holds for all M , S, γ and f , then so does
(25.19) [AC, Theorem 2.10.2]. We combine this with the splitting and descent
formulas satisfied by the terms in the brackets in (25.16). As in §23, the fact that
the representations π ∈ Π(M) are unitary is critical to the success of the argument.
Following the corresponding discussion after Proposition 23.5, one deduces that the
required local identity (25.12) is valid. The expression (25.14) therefore vanishes.

Now consider the expression (25.14). It follows from the splitting formulas
(23.8) and [AC, (2.3.4)E ], together with our induction hypotheses, that

IEM (γ, f)− IM (γ, f) =
∑

v

εM (fv, γv)fv(γv),

where

εM (fv, γv) = IEM (γv, fv)− IM (γv, fv),

and

fv(γv) =
∏
w �=v

fw(γw).
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If v does not belong to the set Sram, εM (fv, γv) = 0, since G and G∗ are isomorphic
over Fv. The expression (25.14) therefore reduces to

(25.20)
∑

M �=G

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
( ∑

v∈Sram

εM (fv, γv)fv
G(γv)

)
.

The remaining global coefficients can also be simplified. Consider a class
γ ∈ Γ(G)S in (25.15) whose semisimple part is represented by a noncentral ele-
ment σ ∈ G(F ). Then Gσ is a proper subgroup of G. It follows from the definitions
(19.6), (22.2), and (25.2), together with our induction hypothesis, that aG,E(γ)
equals aG(γ). The expression (25.15) therefore reduces to

(25.21)
∑

z∈AG(F )

∑
u∈Γunip(G)S

(
aG,E(zu)− aG(zu)

)
fG(zu),

where Γunip(G)S =
(
UG(F )

)
G,S

is the set of unipotent classes in Γ(G)S .
Consider a representation π ∈ Π∗(G)T in (25.17) that does not lie in the union

Π∗
t,disc(G) of ΠE

t,disc(G) and Πt,disc(G), for any t. The induction hypothesis we
have taken on includes the earlier assumption that the coefficients aM,E

disc and aM
disc

are equal, for any M �= G. It follows from the definitions (22.8) and (25.6) that
aG,E(π) equals aG(π). The expression (25.17) therefore reduces to∑

t≤T

∑
π∈Π∗

t,disc(G)

(
aG,E
disc(π)− aG

disc(π)
)
fG(π).

We conclude that the limit in T of the sum of (25.16) and (25.17) equals

(25.22)
∑

t

∑
π∈Π∗

t,disc(G)

(
aG,E
disc(π)− aG

disc(π)
)
fG(π).

This expression is conditionally convergent, in the sense that the iterated sums
converge absolutely.

Using the induction hypothesis, we have reduced the original four expressions
to (25.20), (25.21), and (25.22). It follows that if S ⊃ Sram is large, in a sense that
depends only on the support of f , the sum of (25.20) and (25.21) equals (25.22).
The rest of the proof is harder. It consists of several quite substantial steps, each
of which we shall attempt to sketch in a few words.

The first step concerns the summands in (25.20). The problem at this stage is
to establish something weaker than the required vanishing of these summands. It
is to show that for any M ∈ L and v ∈ Sram, and for certain fv ∈ H

(
G(Fv)

)
, the

function

εM (fv) : γv −→ εM (fv, γv) = IEM (γv, fv)− IM (γv, fv), γv ∈ Γreg

(
M(Fv)

)
,

belongs to Iac

(
M(Fv)

)
. The functions IEM (γv, fv) and IM (γv, fv) are smooth on the

strongly G-regular set in M(Fv), but as γv approaches the boundary, they acquire
singularities over and above those attached to invariant orbital integrals on M(Fv).
The problem is to show that these supplementary singularities cancel.

If v is nonarchimedean, let H
(
G(Fv)

)0 be the subspace of functions
fv ∈ H

(
G(Fv)

)
such that for every central element zv ∈ AG(Fv) and every non-

trivial unipotent element uv �= 1 in G(Fv), fG(zvuv) vanishes. If v is archimedean,
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we set H
(
G(Fv)

)0 equal to H
(
G(Fv)

)
. The result is that the correspondence

fv −→ εM (fv), fv ∈ H
(
G(Fv)

)0
,

is a continuous linear mapping fromH
(
G(Fv)

)0 to Iac

(
M(Fv)

)
. If v is archimedean,

one establishes the result by combining the induction hypothesis with the differen-
tial equations and boundary conditions [A12, §11–13] satisfied by weighted orbital
integrals . If v is nonarchimedean, one combines the induction hypotheses with
the germ expansion [A12, §9] of weighted orbital integrals about a singular point.
In this case, one has also to make use of the explicit formulas for weighted or-
bital integrals of supercuspidal matrix coefficients, in order to match the germs
corresponding to uv = 1. (See [AC, Proposition 2.13.2].) Let H

(
G(A)0)

)
be the

subspace of H
(
G(A)

)
spanned by products f =

∏
fv such that for every v ∈ Sram,

fv belongs to H
(
G(Fv)

)0. The result above then implies that the correspondence

f −→ εM (f) =
∑

v∈Sram

εM (fv)fv
G

is a continuous linear mapping from H
(
G(A)

)0 to Iac

(
M(A)

)
.

Suppose now that M ∈ L is fixed. We formally introduce the second induction
hypothesis that the analogue of (25.18), for any L ∈ L with dim(AL) < dim(AM ),
holds for any S. We define H

(
G(A),M

)
to be the space of functions f in H

(
G(A)

)
that are M -cuspidal at two nonarchimedean places v, in the sense that the lo-
cal functions fv,L vanish unless L contains a conjugate of M . We also define
H
(
G(A),M

)0 to be the space of functions f in the intersection

H
(
G(A),M

)
∩H
(
G(A)

)0
that satisfy one additional condition. We ask that f vanish at any element in G(A)
whose component at each finite place v belongs to AG(Fv). In combination with
the definition of H

(
G(A)

)0, this last condition is designed to insure that the terms
fG(zu) in (25.21) all vanish. Notice that f may be modified at any archimedean
place without affecting the condition that it lie in H

(
G(A),M

)0.
Suppose that f belongs to H

(
G(A),M

)0. The last induction hypothesis then
implies that the summand in (25.20) corresponding to any Levi subgroup that is
not conjugate to our fixed group M vanishes. The expression (25.20) reduces to

(25.23) |W (M)|−1
∑

γ∈Γ(M)S

aM (γ)εM (f, γ).

It is an easy consequence of the original induction hypothesis and the splitting
formulas that the function εM (f) in Iac

(
M(A)

)
is cuspidal at two places. It then

follows from the simple form of the geometric expansion for M in Corollary 23.6 that
the original expansion (25.20) equals the product of |W (M)|−1 with ÎM

(
εM (f)

)
.

The conditions on f imply that the second expression (25.21) vanishes. Recall that
the third expression (25.22) was the ultimate reduction of the spectral expansion
of IE(f)− I(f). Since the third expression equals the sum of the first two, we can
write

(25.24)
∑

t

(
IEt (f)− It(f)

)
− |W (M)|−1

∑
t

ÎM
t

(
εM (f)

)
= 0,

in the notation of Remark 10 in §23. (See [AC, (2.15.1)].)
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The second step is to apply the weak multiplier estimate (23.13) to the sums in
(25.24). Suppose that f ∈ H

(
G(A),M

)0 is fixed. If α ∈ E(h1)W is any multiplier,
fα also belongs to H

(
G(A),M

)0, and the identity (25.24) remains valid with fα in
place of α. It is a consequence of the definitions that IEt (fα) = Ît(f∗

α). One shows
also that εM (fα) = εM (f)α [AC, Corollary 2.14.4]. It then follows from (23.13)
that there are positive constants C, k and r such that for any T > 0, any N ≥ 0,
and any α in the subspace C∞

N (h1)W of E(h1)W , the sum

(25.25)
∣∣∣∑

t≤T

(
IEt (fα)− It(fα)

)
− |W (M)|−1

∑
t≤T

ÎM
t

(
εM (fα)

)∣∣∣
is bounded by

(25.26) CekN sup
ν∈h∗

u(r,T )

(
|α̂(ν)|

)
.

To exploit the last inequality, one fixes a point ν1 in h∗u. Enlarging r if necessary,
we can assume that ν1 lies in the space h∗

u(r) = h∗u(r, 0). It is then possible to choose
a function α1 ∈ C∞

c (h1)W such that α̂1 maps h∗
u(r) to the unit interval, and such

that the inverse image of 1 under α̂1 is the W -orbit W (ν1) of ν1 [AC, Lemma
2.15.2]. If α1 belongs to C∞

N1
(h1)W , and r and k are as in (25.26), we chose T > 0

so that
|α̂1(ν)| ≤ e−2kN1

for all ν ∈ h∗u(r, T ). We then apply the inequality, with α equal to the function
αm obtained by convolving α1 with itself m times. Since α̂m(ν) equals α̂1(ν)m, the
expression (25.26) approaches 0 as m approaches infinity. One shows independently
that the second sum in (25.25) also approaches 0 as m approaches infinity [AC,
p. 183–188]. Therefore, the first sum in (25.25) approaches 0 as m approaches
infinity. But this first sum equals the double sum∑

t≤T

∑
π∈Π∗

t,disc(G)

(
aG,E
disc(π)− aG

disc(π)
)
fG(π)α1(νπ)m,

which can be taken over a finite set that is independent of m. We can assume that
T ≥ ‖Im(ν1)‖. It follows that the double sum approaches∑

π∈Π∗
ν1,disc(G)

(
aG,E
disc(π)− aG

disc(π)
)
fG(π)

as m approaches infinity, where Π∗
ν1,disc(G) is the set of representations π in the

set Π∗
disc(G) with νπ = ν1. Summing over the infinitesimal characters ν1 with

‖Im(ν1)‖ = t, we conclude that

(25.27)
∑

π∈Π∗
t,disc(G)

(
aG,E
disc(π)− aG

disc(π)
)
fG(π) = 0,

for any t ≥ 0.
The identity (25.27) holds for any function f in H

(
G(A),M

)0. The third step
is to show that it extends to any f in the larger space H

(
G(A),M

)
. This is a

fairly standard argument. On the one hand, the left hand side of (25.27) is a linear
combination of point measures in the spectral variables of fG. On the other hand,
the linear forms whose kernels define the subspace H

(
G(A),M

)0 of H
(
G(A),M

)
are easily seen to be continuous in the spectral variables. Playing one against the
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other, one sees that (25.27) does indeed remain valid for any f inH
(
G(A),M

)
. (See

[AC, §2.16].) In particular, (25.22) vanishes for any such f . Since (25.20) equals
(25.23), we deduce that the sum of (25.23) and (25.21) vanishes for any function f
in H

(
G(A),M

)
.

The fourth step is to apply what we have just established to the expression
(25.23). Suppose that for each v ∈ Sram, fv is a given function in H

(
G(Fv)

)
.

Suppose also that γ1 is a fixed G-regular element in M(F ) that is M -elliptic at
two unramified places w1 and w2. At the places w �∈ Sram, we choose functions
fw ∈ H

(
G(Fw)

)
so that fw,G(γ1) = 1, and so that the product f =

∏
fv lies in

H
(
G(A)

)
. We fix fw for w distinct from w1 and w2, but for w equal to w1 or w2,

we allow the support of fw to shrink around a small neighbourhood of γ1 in G(Fw).
Then f belongs to H

(
G(A),M

)
. Since the support of f remains within a fixed

compact set, we can take S to be some fixed finite set containing Sram, w1, and w2.
We can also restrict the sum in (25.23) to a finite set that is independent of f . (See
Remark 9 in §23.)

Since we are shrinking fw1 and fw2 around γ1, the terms fG(zu) in (25.21) all
vanish. In addition, the function

εM (f, γ) =
∑

v∈Sram

εM (fv, γ)fv
M (γ)

in (25.23) is supported on the subset ΓG-reg(M) of G-regular classes in Γ(M)S . It
is in fact supported on classes γ that are G(Fwi

)-conjugate to γ1. For the group
G at hand, any such class is actually G(F )-conjugate to γ1, and hence equal to
w−1

s γ1ws, for some s ∈W (M). But

εM (fv, w
−1
s γ1ws)fv

M (w−1
s γ1ws) = εM (fv, γ1)fv

M (γ1).

Moreover, since γ1 is F -elliptic in M , the coefficients

aM (w−1
s γ1ws) = aM (γ1) = vol

(
Mγ1(F )\Mγ1(A)1

)
are all positive. The vanishing of the sum of (25.23) and (25.21) thus reduces to
the identity

εM (f, γ1) =
∑

v∈Sram

εM (fv, γ1)fv
M (γ1) = 0.

This holds for any choice of functions fv ∈ H
(
G(Fv)

)
at the places v ∈ Sram.

Consider a fixed valuation v ∈ Sram. It follows from what we have just estab-
lished that if fv,G(γ1) = 0, then εM (fv, γ1) = 0. This in turn implies that if fv is
arbitrary, then

εM (fv, γ1) = εv(γ1)fv,M (γ1),

for a complex number εv(γ1) depending on the chosen element γ1 ∈ M(F ). Now,
it is known that G(F ) is dense in G(FS), for any finite set S ⊃ Sram. Letting the
G-regular point γ1 ∈M(F ) vary, we see that

εM (fv, γv) = εv(γv)fv,M (γv), γv ∈ ΓG-reg

(
M(Fv)

)
, fv ∈ H

(
G(Fv)

)
,

for a function εM on ΓG-reg

(
M(Fv)

)
that is smooth.

The last identity is a watershed. It represents a critical global contribution to
a local problem. It is also the input for one of the elementary applications of the
local trace formula in the article [A18]. The result in question is Theorem 3C of
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[A18], which asserts that the function εM (γv) actually vanishes. We can therefore
conclude that the linear form

εM (fv, γv) = IEM (γv, fv)− IM (γv, fv), f ∈ H
(
G(Fv)

)
,

vanishes for any G-regular class γv in M(Fv). It is then not hard to see from the
definitions (18.3), (18.12), (23.3) and (25.3) that the linear form vanishes for any
element γv ∈M(Fv) at all.

The fourth step we have just sketched completes the induction argument on
M . Indeed, the general identity (25.18) follows for any S from the splitting formula
(23.8), and the case S = {v} just established. In particular, the required identity
(25.10) is valid for any M . We have already noted that (25.18) implies the com-
panion identity (25.19). In particular, both required local identities (25.10) and
(25.12) of the two theorems are valid for any M .

The last step is to extract what remains of the required global identities (25.11)
and (25.13) from the properties of the expressions (25.21) and (25.23) we have
found. Since we have completed the induction argument on M , and since
H
(
G(A),M0

)
equals H

(
G(A)

)
by definition, the identity (25.27) holds for any

function f ∈ H
(
G(A)

)
. The sum in (25.27) can be taken over a finite set that

depends only on a choice of open compact subgroup K0 ⊂ G(Afin) under which f
is bi-invariant. It is then not hard to show that the coefficients

aG,E
disc(π)− aG

disc(π), π ∈ Π∗
t,disc(G),

in (25.27) vanish. This completes the proof of (25.13). Since (25.27) vanishes for any
f , so does the expression (25.22). We have already established that (25.20) vanishes.
It follows that the remaining expression (25.21) vanishes for any f ∈ H(G). By
varying f , one deduces that the coefficients

aG,E(zu)− aG(zu), z ∈ AG(F ), u ∈ Γunip(G)S ,

in (25.21) vanish. This completes the proof of (25.11). It also finishes the original
induction argument on n. (See [AC, §2.16] and [A18, §2–3].) �

For global applications, the most important assertion of the two theorems is
the identity (25.13) of global coefficients. It implies that

(25.28) It,disc(f) = I∗t,disc(f
∗),

for any t ≥ 0 and f ∈ H(G). Given the explicit definition (21.19) of It,disc(f),
one could try to use (25.28) to establish an explicit global correspondence π → π∗

from automorphic representations in the discrete spectrum of G to automorphic
representations in the discrete spectrum of G∗. However, this has not been done.
So far as I know, the best results are due to Vigneras [Vi], who establishes the
correspondence in the special case that for any v, G(Fv) is either the multiplicative
group of a division algebra, or is equal to GL(n, Fv). (See also [HT].) Since the
local condition implies that G(F )\G(A)1 is compact, this special case relies only on
the trace formula for compact quotient, and a simple version of the trace formula
(such as that of Corollary 23.6) for GL(n). The general problem seems to be
accesssible, at least in part, and would certainly be interesting.
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26. Functoriality and base change for GL(n)

The third application of the invariant trace formula is to cyclic base change
for GL(n). This again entails a comparison of trace formulas. The base change
comparison is very similar to that for inner twistings of GL(n). We recall that
the two were actually treated together in [AC]. Having just discussed the inner
twisting comparison in some detail, we shall devote most of this section to some
broader questions related to base change.

Base change is a special case of Langlands’ general principle of functoriality.
It is also closely related to a separate case of functoriality, Langlands’ conjectural
formulation of nonabelian class field theory. We have alluded to functoriality earlier,
without actually stating it. Let us make up for this omission now.

For the time being, G is to be a general group over the number field F . In fact,
we regard G as a group over some given extension k of F . The theory of algebraic
groups assigns to G a canonical based root datum

Ψ(G) = (X,∆, X∨,∆∨),

equipped with an action of the Galois group

Γk = Gal(k/k).

Recall that there are many based root data attached to G. They are in bijection
with pairs (B, T ), where T is a maximal torus in G, and B is a Borel subgroup
of G containing T . However, there is a canonical isomorphism between any two
of them, given by any inner automorphism of G between the corresponding two
pairs. It is this property that gives rise to the canonical based root domain Ψ(G).
By construction, the group Aut

(
Ψ(G)

)
of automorphisms of Ψ(G) is canonically

isomorphic to the group

Out(G) = Aut(G)/Int(G)

of outer automorphisms of G. The Γk-action on Ψ(G) comes from a choice of
isomorphism ψs from G to a split group G∗

s . It is given by the homomorphism from
Γk to Out(G) defined by

σ −→ ψs ◦ σ(ψs)−1, σ ∈ Γk.

(See [Spr2, §1], [Ko3, (1.1)–(1.2)].)
Recall that a splitting of G is a pair (B, T ), together with a set {Xα : α ∈ ∆}

of nonzero vectors in the associated root spaces {gα : α ∈ ∆}. There is a canonical
isomorphism from the group Out(G), and hence also the group Aut

(
Ψ(G)

)
, onto

the group of automorphisms of G that preserve a given splitting [Spr2, Proposition
2.13]. Recall also that an action of any finite group by automorphisms on G is called
an L-action if it preserves some splitting of G. We define a dual group of G to be a
complex reductive group Ĝ, equipped with an L-action of Γk, and a Γk-isomorphism
from Ψ(Ĝ) to the dual

Ψ(G)∨ = (X∨,∆∨, X,∆)
of Ψ(G). Suppose for example that G is a torus T . Then

Ψ(T ) =
(
X(T ), ∅, X(T )∨, ∅

)
,

where X(T )∨ = Hom
(
X(T ),Z

)
is the dual of the additive character group X(T ).

The dual group of T is the complex dual torus

T̂ = X(T )⊗ C∗,
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defined as a tensor product over Z of two abelian groups. In general, Ĝ comes with
the structure that assigns to any pair (B, T ) for G, and any pair (B̂, T̂ ) for Ĝ, a
Γk-isomorphism from T̂ to a dual torus for T .

An L-group for G can take one of several forms. The Galois form is a semidirect
product

LG = Ĝ � Γk,

with respect to the L-action of Γk on Ĝ. For many purposes, one can replace the
profinite group Γk with a finite group Γk′/k = Gal(k′/k), for a Galois extension k′/k
over which G splits. For example, if G is a group such as GL(n) that splits over
k, one can often work with Ĝ instead of the full L-group. If k is a local or global
field, one sometimes replaces Γk with the corresponding Weil group Wk, which we
recall is a locally compact group equipped with a continuous homomorphism into
Γk [Tat2]. The Weil form of the L-group is a semidirect product

LG = Ĝ � Wk

obtained by pulling back the L-action from Γk to Wk. The symbol LG is generally
used in this way to denote any of the forms of the L-group. Suppose that k is
the completion Fv of F with respect to a valuation v. The local Galois group ΓFv

or Weil group WFv
comes with a conjugacy class of embeddings into its global

counterpart ΓF or WF . There is consequently a conjugacy class of embeddings of
the local L-group LGv into LG, which is trivial on Ĝ.

Suppose that as a group over F , G is unramified at a given place v. As we
recall, this means that v is nonarchimedean, that G is quasisplit over Fv, and that
G splits over a finite unramified extension F ′

v of Fv. We recall also that ΓF ′
v/Fv

is a
finite cyclic group, with a canonical generator the Frobenius automorphism Frobv.
We take the finite form

LGv = Ĝ � ΓF ′
v/Fv

of the L-group of G over Fv determined by the outer automorphism Frobv of Ĝ. We
can choose a pair (Bv, Tv) defined over Fv such that the torus Tv splits over F ′

v, and
a hyperspecial maximal compact subgroup Kv of G(Fv) that lies in the apartment of
Tv [Ti]. The unramified representations of G(Fv) (relative to Kv) are the irreducible
representations whose restrictions to Kv contain the trivial representation.

If λ belongs to the space a∗Tv,C, and 1v,λ is the unramified quasicharacter

tv −→ q
−λ(HTv (tv))
v , tv ∈ Tv(Fv),

the induced representation IBv
(1v,λ) contains the trivial representation of Kv with

multiplicity 1. This representation need not be irreducible. However, it does have
a unique irreducible constituent πv,λ that contains the trivial representation of Kv,
and is hence unramified. Obviously πv,λ depends only on the image of λ in the
quotient of a∗Tv,C by the discrete subgroup

Λv =
( 2πi

log qv

)
Hom(aTv,Fv

,Z) =
i

log qv
a
∨
Tv,Fv

.

It also depends only on the orbit of λ under the restricted Weyl group Wv0 of
(G,ATv

). The correspondence λ→ πv,λ is thus a mapping from the quotient

(26.1) Wv0\a∗Tv,C/Λv
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to the set of unramified representations of G(Fv). One shows that the mapping
is a bijection. (See [Ca], for example.) On the other hand, there is a canonical
homomorphism λ → q−λ

v from a∗Tv,C/Λv to the complex torus T̂v, which takes a
point in (26.1) to a Wv0-orbit of points in T̂v. One shows that the correspondence

λ −→ q−λ
v � Frobv

is a bijection from (26.1) onto the set of semisimple conjugacy classes in LGv whose
image in ΓF ′

v/Fv
equals Frobv. (See [Bor3, (6.4), (6.5)], for example.) It follows

that there is a canonical bijection

πv −→ c(πv)

from the set of unramified representations of G(Fv) onto the set of semisimple
conjugacy classes in LGv that project to Frobv. This mapping is due to Langlands
[Lan3], and in itself justifies the introduction of the L-group.

The reader may recall that the symbol c(πv) also appeared earlier. It was
introduced in §2 (in the special case F = Q) to denote the homomorphism from
the unramified Hecke algebra Hv = H(Gv,Kv) to C attached to πv. The two uses
of the symbol are consistent. They are related by the Satake isomorphism from
Hv to the complex co-ordinate algebra on the space (26.1). (See [Ca, (4.2)], for
example. By the co-ordinate algebra on (26.1), we mean the subalgebra of Wv0-
invariant functions in the co-ordinate algebra of a∗Tv,C/Λv, regarded as a subtorus
of T̂v.) The complex valued homomorphisms of Hv are therefore bijective with the
points in (26.1), and hence with the set of semisimple conjugacy classes in LGv that
project to Frobv.

Suppose now that π is an automorphic representation of G. Then π =
⊗

πv,
where πv is unramified for almost all v. We choose a finite form LG = Ĝ � ΓF ′/F

of the global L-group, for some finite Galois extension F ′ of F over which G splits,
and a finite set of valuations S outside of which π and F ′ are unramified. For any
v �∈ S, we then write cv(π) for the image of c(πv) under the canonical conjugacy
class of embeddings of LGv = Ĝ � ΓF ′

v/Fv
into LG. This gives a correspondence

π −→ c(π) =
{
cv(π) : v �∈ S}

from automorphic representations of G to families of semisimple conjugacy classes
in LG. The construction becomes independent of the choice of F ′ and S if we agree
to identify to families of conjugacy classes that are equal almost everywhere.

An automorphic representation thus carries some very concrete data, namely
the complex parameters that determine the conjugacy classes in the associated fam-
ily. The interest stems not so much from the values assumed by individual classes
cv(π), but rather in the relationships among the different classes implicit in the
requirement that π be automorphic. Following traditions from number theory and
algebraic geometry, Langlands wrapped the data in analytic garb by introducing
an unramified L-function

(26.2) LS(s, π, r) =
∏
v �∈S

det
(
1− r

(
cv(π)

)
q−s
v

)−1
,

for any automorphic representation π, any reasonable finite dimensional represen-
tation

r : LG −→ GL(N,C),
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and any finite set S of valuations outside of which π and r are unramified. He
observed that the product converged for Re(s) large, and conjectured that it had
analytic continuation with functional equation.

Langlands’ principle of functoriality [Lan3] postulates deep and quite unex-
pected reciprocity laws among the families c(π) attached to different groups. As-
sume that G is quasisplit over F , and that G′ is a second connected reductive group
over F . Suppose that

ρ : LG′ −→ LG

is an L-homomorphism of L-groups. (Besides satisfying the obvious conditions, an
L-homomorphism between two groups that each project onto a common Galois or
Weil group is required to be compatible with the two projections.) The principle
of functoriality asserts that for any automorphic representation π′ of G′, there is
an automorphic representation π of G such that

(26.3) c(π) = ρ
(
c(π′)

)
.

In other words, cv(π) = ρ
(
cv(π′)

)
for every valuation v outside some finite set

S. Functoriality thus postulates a correspondence π′ → π of automorphic repre-
sentations, which depends only on the Ĝ-orbit of ρ. We shall recall three basic
examples.

Suppose that G is an inner form of a quasiplit group G∗, equipped with an
inner twist

ψ : G→ G∗.

In other words, ψ is an isomorphism such that ψ◦σ(ψ)−1 is an inner automorphism
of G∗ for every σ ∈ ΓF . It determines an L-isomorphism

Lψ : LG −→ LG∗,

which allows us to identify the two L-groups. Functoriality asserts that the set of
automorphic families {c(π)} of conjugacy classes for G is contained in the set of
such families {c(π∗)} for G∗. Our last section was devoted to the study of this
question in the case G∗ = GL(n). It is pretty clear from the conclusion (25.28),
together with the explicit formula for It,disc(f) and the fact that fv = f∗

v for almost
all v, that something pretty close to the assertion of functoriality holds in this case.
However, the precise nature of the correspondence remains open.

Langlands introduced the second example in his original article [Lan3], as a
particularly vivid illustration of the depth of functoriality. It concerns the case that
G is an arbitrary quasisplit group, and G′ is the trivial group {1}. The L-group LG′

need not be trivial, since it can take the form of the Galois group ΓF . Functoriality
applies to a continuous homomorphism

ρ : ΓF −→ LG

whose composition with the projection of LG on ΓF equals the identity. Since ΓF

is totally disconnected, ρ can be identified with an L-homomorphism from ΓF ′/F to
the restricted form LG = Ĝ�ΓF ′/F of the L-group of G given by some finite Galois
extension F ′ of F . Let S be any finite set of valuations v of F outside of which
F ′ is unramified. Then for any v �∈ S, F ′

v′/Fv is an unramified extension of local
fields, for any (normalized) valuation v′ of F ′ over v. Its Galois group is cyclic,
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with a canonical generator Frobv = Frobv,F ′ , whose conjugacy class in ΓF ′/F is
independent of the choice of v′. Thus, ρ gives rise to a family{

ρ(Frobv) : v �∈ S
}

of conjugacy classes of finite order in LG. If π′ is the trivial automorphic represen-
tation of G′ = {1} and v �∈ S, the image of cv(π′) in the group LG′ = ΓF ′/F equals
Frobv, by construction. Functoriality asserts that there is an automorphic repre-
sentation π of G such that for any v �∈ S, the class cv(π) in LG equals ρ(Frobv). A
more general assertion applies to the Weil form of LG′. In this form, functoriality
attaches an automorphic representation π to any L-homomorphism

φ : WF −→ LG

of the global Weil group into LG.
The third example is general base change. It applies to an arbitrary group

G′ over F , and a finite extension E of F over which G′ is quasisplit. Given these
objects, we take G to be the group RE/F (G′

E) over F obtained from the quasisplit
group G′ over E by restriction of scalars. Following [Bor3, §4–5], we identify Ĝ

with the group of functions g from ΓF to Ĝ′ such that

g(στ) = σg(τ), σ ∈ ΓE , τ ∈ ΓF ,

with pointwise multiplication, and ΓF -action

(τ1g)(τ) = g(ττ1), τ, τ1 ∈ ΓF .

We then obtain an L-homomorphism

ρ : LG′ −→ LG

by mapping any g′ ∈ LG′ to the function

g(τ) = τg′, τ ∈ ΓF ,

on ΓF . This case of functoriality can be formulated in slightly more concrete terms.
The restriction of scalars functor provides a canonical isomorphism from G(A) onto
G′(AE), which takes G(F ) to G′(E). The automorphic representations of G are
therefore in bijection with those of G′

E . This means that we can work with the
L-group LG′

E = Ĝ′ � ΓE of G′
E instead of LG. Base change becomes a conjectural

correspondence π′ → π of automorphic representations of G′ and G′
E such that for

any valuation v of F for which π′ and E are unramified, and any valuation w of E
over v, the associated conjugacy classes are related by

cv(π′) = cw(π)fw , fw = deg(Ew/Fv).

We should bear in mind that Langlands also postulated a local principle of func-
toriality. This takes the form of a conjectural correspondence π′

v → πv of irreducible
representations of G′(Fv) and G(Fv), for any v and any local L-homomorphism ρv

of local L-groups, which is compatible with the global functoriality correspondence
π′ → π. Representations πv of the local groups G(Fv) are important for the func-
tional equations of L-functions (among many other things). Langlands conjectured
the existence of local L-functions L(s, πv, rv), which reduce to the relevant factors
of (26.2) in the unramified case, and local ε-factors

ε(s, πv, rv, ψv) = aq−bs
v , a ∈ C, b ∈ Z,
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which equal 1 in the unramified case, such that the finite product

ε(s, π, r) =
∏
v

ε(s, πv, rv, ψv)

is independent of the nontrivial additive character ψ of A/F of which ψv is the
restriction, and such that the product

L(s, π, r) =
(∏

v �∈S

L(s, πv, rv)
)
LS(s, π, r)

satisfies the functional equation

(26.4) L(s, π, r) = ε(s, π, r)L(1− s, π, r∨).

We have written r∨ here for the contragredient of the representation r. The local L-
functions and ε-factors should be compatible with the local version of functoriality,
in the sense that

L(s, π′
v, rv ◦ ρv) = L(s, πv, rv)

and
ε(s, πv, rv ◦ ρv, ψv) = ε(s, πv, rv, ψv).

These relations are obvious in the unramified case. In general, they imply corre-
sponding relations for global L-functions and ε-factors.

Suppose now that G = GL(n). The constructions above are, not surprisingly,
more explicit in this case. There is no harm in reviewing them in concrete terms.

Let v be a nonarchimedean valuation, and take (Bv, Tv) to be the standard pair
(B,M0). If λ belongs to a∗Tv,C

∼= Cn, the induced representation IBv
(1v,λ) acts by

right translation on the space of functions φ on G(Fv) such that

φ(bx) = |b11|λ1+
n−1

2 |b22|λ2+
n−3

2 . . . |bnn|λn−( n−1
2 )φ(x), b ∈ Bv(Fv), x ∈ G(Fv).

It has a unique irreducible constituent πv,λ that contains the trivial representation
of Kv = GL(n, ov). Two such representations πv,λ′ and πv,λ are equivalent if and
only if the corresponding vectors λ′, λ ∈ Cn are related by

(λ′
1, . . . , λ

′
n) ≡ (λσ(1), . . . , λσ(n))

(
mod

( 2πi
log qv

)
Zn
)
,

for some permutation σ ∈ Sn. The dual group Ĝ equals GL(n,C). We give it the
canonical structure, which assigns to the standard pairs (B, T ) and (B̂, T̂ ) in G and
Ĝ the obvious isomorphism of T̂ with the complex dual torus of T . Since the action
of ΓF on Ĝ is trivial, we can take the restricted form LG = Ĝ of the L-group. The
semisimple conjugacy class of the representation πv,λ is then given by

c(πv,λ) =


q−λ1

v 0
. . .

0 q−λn
v


 .

Given an automorphic representation π of GL(n), let S be any finite set of valua-
tions outside of which π is unramified. Then π gives rise to a family

c(π) =
{
cv(π) = c(πv) : v �∈ S

}
of semisimple conjugacy classes in Ĝ = GL(n,C). It is known that if π occurs in
the spectral decomposition of L2

(
G(F )\G(A)

)
, it is uniquely determined by the

family c(π) [JaS]. This remarkable property is particular to G = GL(n).
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Consider a continuous n-dimensional representation r of ΓF . Then r lifts to a
representation of a finite group ΓF ′/F , for a finite Galois extension F ′ of F . We
may as well take F ′ to be the minimal such extension, for which ΓF ′ is the kernel
of r. Let S be any finite set of valuations outside of which F ′ is unramified. The
representation r then gives rise to a family

c(r) =
{
cv(r) = r(Frobv) : v �∈ S

}
of semisimple conjugacy classes in Ĝ = GL(n,C). As in the automorphic setting,
the equivalence class of r is uniquely determined by c(r). For the Tchebotarev
density theorem characterizes F ′ as the Galois extension of F for which

SplF ′/F = {v �∈ S : cv(r) = 1}
is the set of valuations outside of S that split completely in F ′. Since the Tcheb-
otarev theorem deals in densities of subsets, the characterization is independent
of the choice of S. The theorem also implies that every conjugacy class in the
group ΓF ′/F is of the form Frobv, for some v �∈ S. The character of r is therefore
determined by the family c(r).

According to the second example of functoriality above, specialized to the case
that G = GL(n), there should be an automorphic representation π attached to
any r such that c(π) = c(r). Consider the further specialization to the case that
n = 1. The one dimensional characters of the group ΓF are the characters of its
abelianization Γab

F . The case n = 1 of Langlands’ Galois representation conjecture
could thus be interpreted as the existence of a surjective dual homomorphism

(26.5) GL(1, F )\GL(1,A) = F ∗\A∗ −→ Γab
F .

The condition c(π) = c(r) specializes to the requirement that the composition
of (26.5) with the projection of Γab

F onto the Galois group of any finite abelian
extension F ′ of F satisfy

xv −→ (Frobv)ord(xv), xv ∈ F ∗
v ,

where v is any valuation that is unramified in F ′, Frobv is the corresponding
Frobenius element in the abelian group ΓF ′/F , and

ord(xv) = − logqv
(|xv|).

The mapping (26.5) has been known for many years. It is the Artin reciprocity
law, which is at the heart of class field theory. (See [Has], [Tat1].) Langlands’
Galois representation conjecture thus represents a nonabelian analogue of class field
theory. If n = 2 and ΓF ′/F is solvable, it was established as a consequence of cyclic
base change for GL(2) [Lan9], [Tu]. If n is arbitrary and ΓF ′/F is nilpotent, it is
a consequence [AC, Theorem 3.7.3] of cyclic base change for GL(n), the ostensible
topic of this section. Other cases for n = 2 have been established [BDST], as have
a few other cases in higher rank.

Besides extending class field theory, Langlands’ Galois representation conjec-
ture has important implications for Artin L-functions

LS(s, r) =
∏
v �∈S

det
(
1− r(Frobv)q−s

v

)−1
.

If r corresponds to π, it is clear that

(26.6) LS(s, r) = LS(s, π),



26. FUNCTORIALITY AND BASE CHANGE FOR GL(n) 187

where LS(s, π) is the automorphic L-function for GL(n) relative to the standard, n-
dimensional representation of LG = GL(n,C). It has been known for some time how
to construct the local L-functions and ε-factors in this case so that the functional
equation (26.4) holds [GoJ]. These results are now part of the larger theory of
Rankin-Selberg L-functions L(s, π1 × π2), attached to representations π1 ⊗ π2 of
GL(n1)×GL(n2), and the representation

(g1, g2) : X −→ g1Xg−1
2 , X ∈Mn1×n2(C),

of GL(n1,C)×GL(n2,C) [JPS]. In fact, there is a broader theory still, known as
the Langlands-Shahidi method, which exploits the functional equations from the
theory of Eisenstein series. It pertains to automorphic L-functions of a maximal
Levi subgroup M of a given group, and the representation of LM on the Lie algebra
of a unipotent radical [GS]. Be that as it may, our refined knowledge of the
automorphic L-function in the special case encompassed by the right hand side of
(26.6) would establish critical analytic properties of the Artin L-function on the
left hand side of (26.6).

The Langlands conjecture for Galois representations (which we re-iterate is but
a special case of functoriality) is still far from being solved in general. However, it
plays an important role purely as a conjecture in motivating independent operations
on automorphic representations. Nowhere is this more evident than in the question
of cyclic base change of prime order for the group GL(n).

Suppose that E is a Galois extension of F , with cyclic Galois group
{1, σ, . . . , σ�−1} of prime order �. To be consistent with the description of base
change above, we change notation slightly. We write r′ instead of r for a con-
tinuous n-dimensional representation of ΓF , leaving r to stand for a continuous
n-dimensional representation of ΓE . Regarded as equivalence classes of representa-
tions, these two families come with two bijections r → rσ and r′ → r′⊗η of order �,
where rσ(τ) = r(στσ−1), and η is the pullback to ΓF of the character on ΓE/F that
maps the generator σ to e

2πi
� . The main operation is the mapping r′ → r obtained

by restricting r′ to the subgroup ΓE of ΓF . This mapping is characterized in terms
of conjugacy classes by the relation

cw(r) =

{
cv(r′), if v splits in E,
cv(r′)�, otherwise,

for any valuation v of F at which r′ and E are unramified and any valuation w over
v, and satisfies the following further conditions.

(i) The image of the mapping is the set of r with rσ = r.
(ii) If r′ is irreducible, the fibre of its image equals

{r′, r′ ⊗ η, . . . , r′ ⊗ η�−1}.
(iii) If r′ is irreducible, its image r is irreducible if and only if r′ �= r′ ⊗ η,

which is to say that the fibre in (ii) contains � elements.
(iv) If r′ is irreducible and r′ = r′ ⊗ η, its image equals a direct sum

r = r1 ⊕ rσ
1 ⊕ · · · ⊕ rσ�−1

1 ,

for an irreducible representation r1 of degree n1 = n�−1 such that rσ
1 �= r1.

Conversely, the preimage of any such direct sum consists of a representa-
tion r′ that is irreducible and satisfies r′ = r′ ⊗ η.
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These conditions are all elementary consequences of the fact that ΓE is a normal
subgroup of prime index in ΓF . For example, the representation r′ in (iv) is obtained
by induction of the representation r1 from ΓE to ΓF .

Base change is a mapping of automorphic representations with completely par-
allel properties. We write π′ and π for (equivalence classes of) automorphic repre-
sentations of GL(n)F and GL(n)E respectively. The two families come with bijec-
tions π → πσ and π′ → π′ ⊗ η of order �, where πσ(x) = π

(
σ(x)

)
, and η has been

identified with the 1-dimensional automorphic representation of GL(n)F obtained
by composing the determinant on GL(n,A) with the pullback of η to GL(1,A) by
(26.5). The results of [AC] were established for cuspidal automorphic representa-
tions, and the larger class of “induced cuspidal” representations. For GL(n)E , this
larger class consists of induced representations

π = π1 � · · ·� πp = IndG
P (π1 ⊗ · · · ⊗ πp),

where P is the standard parabolic subgroup of GL(n) corresponding to a partition
(n1, . . . , np), and πi is a unitary cuspidal automorphic representation of GL(ni)E .
Any such representation is automorphic, by virtue of the theory of Eisenstein series.

Theorem 26.1. (Base change for GL(n)). There is a mapping π′ → π from
induced cuspidal automorphic representations of GL(n)F to induced cuspidal auto-
morphic representations of GL(n)E, which is characterized by the relation

(26.7) cw(π) =

{
cv(π′), if v splits in E,
cv(π′)�, otherwise,

for any valuation v of F at which π′ and E are unramified and any valuation w of
F over v, and which satisfies the following further conditions.

(i) The image of the mapping is the set of π with πσ = π.
(ii) If π′ is cuspidal, the fibre of its image equals

{π′, π′ ⊗ η, . . . , π′ ⊗ η�−1}.
(iii) If π′ is cuspidal, its image π is cuspidal if and only if π′ �= π′ ⊗ η, which

is to say that the fibre in (ii) contains � elements.
(iv) If π′ is cuspidal and π′ = π′ ⊗ η, its image equals a sum

π = π1 � πσ
1 � · · ·� πσ�−1

1 ,

for a cuspidal automorphic representation π1 of GL(n1)E such that
πσ

1 �= π1. Conversely, the preimage of any such sum consists of a rep-
resentation π′ that is cuspidal and satisfies π′ = π′ ⊗ η.

Remark. The theorem provides two mappings of cuspidal automorphic repre-
sentations. Base change gives an � to 1 mapping π′ → π, from the set of cuspidal
representations of π′ of GL(n)F with π′ �= π′ ⊗ η onto the set of cuspidal repre-
sentations π of GL(n)E with π = πσ. The second mapping is given by (iv), and is
known as automorphic induction. It is an � to 1 mapping π1 → π′, from the set of
cuspidal autmorphic representations π1 of GL(n1)E with π1 �= πσ

1 onto the set of
cuspidal automorphic representations π′ of GL(n)E with π′ = π′ ⊗ η.

Theorem 26.1 contains the main results of [AC]. It is proved by a comparison
of two trace formulas. One is the invariant trace formula for the group GL(n)F .
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The other is the invariant twisted trace formula, applied to the automorphism of
the group RE/F

(
GL(n)E

)
determined by σ.

The twisted trace formula is a generalization of the ordinary trace formula. It
applies to an F -rational automorphism θ of finite order of a connected reductive
group G over F . The twisted trace formula was introduced by Saito for classical
modular forms [Sai], by Shintani for the associated automorphic representations of
GL(2) (see [Shin]), and by Langlands for general automorphic representations of
GL(2) [Lan9]. The idea, in the special case of compact quotient, for example, is
to express the trace of an operator

R(f) ◦ θ, f ∈ H
(
G(A)

)
,

in terms of twisted orbital integrals∫
Gθγ(A)\G(A)

f
(
x−1γθ(x)

)
dx, γ ∈ G(F ).

This gives a geometric expression for a sum of twisted characters∑
π

m(π)tr
(
π(f) ◦ θ

)
,

taken over irreducible representations π of G such that πθ = π. It is exactly the
sort of formula needed to quantify the proposed image of the base change map.

In general, our discussion that led to the invariant trace formula applies also
to the twisted case. (See [CLL], [A14].) Most of the results in fact remain valid as
stated, if we introduce a minor change in notation. We take G to be a connected
component of a (not necessarily connected) reductive group over F such that G(F )
is not empty. We write G+ for the reductive group generated by G, and G0 for the
connnected component of 1 in G+. We then consider distributions on G(A) that are
invariant with respect to the action of G0(A) on G(A) by conjugation. The analogue
of the Hecke algebra becomes a space H(G) of functions on a certain closed subset
G(A)1 of G(A). The objects of Theorems 23.2, 23.3, and 23.4 can all be formulated
in this context, and the invariant twisted trace formula becomes the identity of
Theorem 23.4. (See [A14].) It holds for any G, under one condition. We require
that the twisted form of the archimedean trace Paley-Wiener theorem of Clozel-
Delorme [CD] hold for G. This condition, which was established by Rogawski in
the p-adic case [Ro2], is needed to characterize the invariant image I(G) of the
twisted Hecke algebra H(G). (See also [KR].)

For base change, we take

G = G0 � θ, G0 = RE/F

(
GL(n)E

)
,

where θ is the automorphism of G0 defined by the generator σ of ΓE/F . We also set
G′ = GL(n)F . Our task is to compare the invariant twisted trace formula of G with
the invariant trace formula of G′. The problem is very similar to the comparison
for inner twistings of GL(n), treated at some length in §25. In fact, we recall that
the two comparisons were actually treated together in [AC]. We shall add only
a few words here, concentrating on aspects of the problem that are different from
those of §25.

The first step is to define a mapping γ → γ′, which for any k ⊃ F takes the
set Γ

(
G(k)

)
of G0(k)-orbits in G(k) to the set Γ

(
G′(k)

)
of conjugacy classes in

G′(k). The mapping is analogous to the injection γ → γ∗ of §25. In place of the
inner twist, one uses the norm mapping from number theory, which in the present
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context becomes the mapping γ → γ� from G to G0. Setting k = Fv, one uses
the mapping γv → γ′

v to transfer twisted orbital integrals on Γreg

(
G(Fv)

)
. This

gives a transformation fv → f ′
v, from functions fv ∈ H

(
G(Fv)

)
to functions f ′ on

Γreg

(
G′(Fv)

)
. One then combines Theorem 25.1 with methods of descent to show

that f ′
v lies in the invariant Hecke algebra I

(
G′(Fv)

)
.

One has then to combine the mappings fv → f ′
v into a global correspondence

of adelic functions. This is more complicated than it was in §25. The problem is
that G′(Fv) is distinct from G(Fv) at all places, not just the unramified ones. At
almost all places v, we want fv to be the characteristic function of the compact
subset Kv = K0

v � θ = G(ov) of G(Fv), and f ′
v to be the image in I

(
G′(Fv)

)
of the

characteristic function of the maximal compact subgroup K ′
v = G′(ov) of G′(Fv).

However, we do not know a priori that this is compatible with the transfer of orbital
integrals. The assertion that the two mappings are in fact compatible is a special
case of the twisted fundamental lemma. It was established in the case at hand
by Kottwitz [Ko4]. The result of Kottwitz allows us to put the local mappings
together. We obtain a mapping f → f ′ from H(G) to I(G′), which takes any
subspace H

(
G(FS)1

)
of H(G) to the corresponding subspace I

(
G′(FS)1

)
of I(G′).

The next step is to extend the fundamental lemma to more general func-
tions in an unramified Hecke algebra H

(
G(Fv),K0

v

)
. More precisely, one needs

to show that at an unramified place v, the canonical mapping from H
(
G(Fv),K0

v

)
to H

(
G′(Fv),K ′

v

)
defined by Satake isomorphisms is compatible with the trans-

fer of orbital integrals. This was established in [AC, §1.4], using the special case
established by Kottwitz, and the simple forms of Corollary 23.6 of the two trace
formulas. Further analysis of the two simple trace formulas allows one to establish
local base change [AC, §1.6–1.7]. The result is a mapping π′

v → πv of tempered
representations, which satisfies local forms of the conditions of the theorem, and is
the analogue of Theorem 25.1(b).

The expansions (23.11) and (23.12) represent the two sides of the invariant
twisted trace formula for G. We define “endoscopic” forms IEM (γ, f), aM,E(γ),
IEM (π, f) and aM,E(π) of the terms in the two expansions by using the mapping
f → f ′ to pull back the corresponding terms from G′. The constructions are similar
to those of §25, but with one essential difference. In the present situation, we have
to average spectral objects ÎM ′(·, f ′) and aM ′

(·) over representations τ ⊗ ξ, for
characters ξ on M ′(A) obtained from the original character η on ΓE/F . The reason
for this is related to condition (ii) of the theorem, which in turn is a consequence of
the fact that the norm mapping is not surjective. However, the averaging operation
is not hard to handle. It is an essential part of the discussion in [AC, §2.10–2.12].
The identities of Theorems 25.5 and 25.6 can therefore be formulated in the present
context. Their proof is more or less the same as in §25.

The analogue of the global spectral identity (25.13) (with M = G) is again
what is most relevant for global applications. It leads directly to an identity

(26.8) It,disc(f) = Î ′t,disc(f
′), f ∈ H(G),

of t-discrete parts of the two trace formulas. One extracts global information from
the last identity by allowing local components fv of f to vary over unramified Hecke
algebras H

(
G(Fv),K0

v

)
. By combining general properties of the distributions in

(26.8) with operations on Rankin-Selberg L-functions L(s, π1×π2), one establishes
all the assertions of the theorem. (See [AC, Chapter 3].) �
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We remark that the proof of base change in [AC] works only for cyclic exten-
sions of prime degree (despite assertions in [AC] to the contrary). The mistake,
which occurred in Lemma 6.1 of [AC], was pointed out by Lapid and Rogawski.
In the case of G = GL(2), they characterized the image of base change for a gen-
eral cyclic extension by combining the special case of Theorem 26.1 established by
Langlands [Lan9] with a second comparison of trace formulas [LR]. There is also a
gap in the density argument at the top of p. 196 of [AC], which was filled in [A29,
Lemma 8.2].

We know that the spectral decomposition for GL(n) contains more than just
induced cuspidal representations. In particular, the discete spectrum contains more
than the cuspidal automorphic representations. The classification of the discrete
spectrum for GL(n) came after [AC]. It was established through a deep study by
Moeglin and Waldspurger of residues of cuspidal Eisenstein series [MW2], following
earlier work of Jacquet [J].

Theorem 26.2. (Moeglin-Waldspurger). The irreducible representations π of
GL(n,A) that occur in L2

disc

(
GL(n, F )\GL(n,A)1

)
have multiplicity one, and are

parametrized by pairs (k, σ), where n = kp is divisible by k, and σ in an irreducible
unitary cuspidal automorphic representation of GL(k,A). If P is the standard para-
bolic subgroup of GL(n) of type (k, . . . , k), and ρσ is the nontempered representation

(σ ⊗ · · · ⊗ σ) · δ
1
2
P : m→

(
σ(m1)| det m1|

p−1
2
)
⊗ · · · ⊗

(
σ(mp)| det mp|−

p−1
2
)

of MP (A) ∼= GL(k,A)p, then π is the unique irreducible quotient of the induced
representation IP (ρσ). �

If we combine Theorem 26.1 with Theorem 26.2 (and the theory of Eisenstein
series), we obtain a base change mapping π′ → π for any representation π′ of
G′(A) that occurs in the spectral decomposition of L2

(
G′(F )\G′(A)

)
. It would be

interesting, and presumably not difficult, to describe the general properties of this
mapping. It would also be interesting to try to establish the last step of the proof
of Theorem 26.1 without recourse to the argument based on L-functions in [AC,
Chapter 3]. This might be possible with a careful study of the fine structure of the
distributions on each side of (26.8).

As a postscript to this section on base change, we note that there is a sug-
gestive way to look at the theorem of Moeglin and Waldspurger. It applies to
those representations π in the discrete spectrum for which the underlying cuspidal
automorphic representation σ is attached to an irreducible representation

µ : WF −→ GL(k,C)

of the global Weil group, according to the special case of functoriality we discussed
earlier. One expects σ to be tempered. This means that µ is (conjugate to) a
unitary representation, or equivalently, that its image in GL(k,C) is bounded. We
are assuming that n = kp, for some positive integer p. Let ν be the irreducible rep-
resentation of the group SL(2,C) of degree p. We then represent the automorphic
representation π by the irreducible n-dimensional representation

ψ = µ⊗ ν : WF × SL(2,C) −→ GL(n,C)

of the product of WF with SL(2,C). Set

φψ(w) = ψ

(
w,

(
|w| 12 0

0 |w|− 1
2

))
, w ∈WF ,
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where |w| is the canonical absolute value on WF . By comparing the unramified
constituents of π with the unramified images of Frobenius classes in WF , we see
that π is the automorphic representation corresponding to the n-dimensional rep-
resentation φψ of WF . Thus, according to functoriality, there is a mapping ψ → π,
from the set of irreducible n-dimensional representations of WF × SL(2,C) whose
restriction to WF is bounded, into the set of automorphic representations π of
GL(n) that occur in the discrete spectrum. Removing the condition that ψ be
irreducible gives rise to representations π that occur in the general spectrum.

27. The problem of stability

We return to the general trace formula. The invariant trace formula of Theorem
23.4 still has one serious deficiency. The invariant distributions on each side are not
usually stable. We shall discuss the notion of stability, and why it is an essential
consideration in any general attempt to compare trace formulas on different groups.

Stability was discovered by Langlands in attempting to understand how to
generalize the Jacquet-Langlands correspondence. We discussed the extension of
this correspondence from GL(2) to GL(n) in §25, but it is for groups other than
GL(n) that the problems arise. Suppose then that G is an arbitrary connected
reductive group over our number field F . We fix an inner twist

ψ : G −→ G∗,

where G∗ is a quasisplit reductive group over F . One would like to establish the
reciprocity laws between automorphic representations of G and G∗ predicted by
functoriality.

To use the trace formula, we would start with a test function f for G. For
the time being, we take f to be a function in C∞

c

(
G(A)1

)
, which we assume is the

restriction of a product of functions∏
v

fv, fv ∈ C∞
c

(
G(Fv)

)
.

If we were to follow the prescription of Jacquet-Langlands, we would map f to a
function f∗ on G(A)1 obtained by restriction of a product

∏
f∗

v of functions on
the local groups G∗(Fv). Each function f∗

v would be attached to the associated
function fv on G(Fv) by imposing a matching condition for the local invariant
orbital integrals of fv and f∗

v . This would in turn require a correspondence γv → γ∗
v

between strongly regular conjugacy classes. How might such a correspondence be
defined in general?

In the special case discussed in §25, the correspondence of strongly regular
elements can be formulated explicitly in terms of characteristic polynomials. For
any k ⊃ F , one matches a characteristic polynomial on the matrix algebra Mn(k)
with its variant for the central simple algebra that defines G. Now the coefficients
of characteristic polynomials have analogues for the general group G. For example,
one can take any set of generators of the algebra of G-invariant polynomials on
G. These objects can certainly be used to transfer semisimple conjugacy classes
from G to G∗. However, invariant polynomials measure only geometric conjugacy
classes, that is, conjugacy classes in the group of points over an algebraically closed
field. In general, if k is not algebraically closed, and G is just about any group
other than GL(n) (or one of its inner twists), there can be nonconjugate elements
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in G(k) that are conjugate over an algebraic closure G(k). For example, in the case
that G = SL(2) and k = R, the relation(

cos θ − sin θ
sin θ cos θ

)
=
(
i 0
0 −i

)(
cos θ sin θ
− sin θ cos θ

)(
−i 0
0 i

)
represents conjugacy over G(C) of nonconjugate elements in G(R). This phenom-
enon obviously complicates the problem of transferring conjugacy classes.

Langlands defined two strongly regular elements in G(k) to be stably conjugate
if they were conjugate over an algebraic closure G(k). Stable conjugacy is thus an
equivalence relation that is weaker than conjugacy. Suppose that δ belongs to the
set ∆reg

(
G(k)

)
of (strongly regular) stable conjugacy classes in G(k). The image

ψ(δ) of δ in G∗ yields a well defined conjugacy class in G(k). If σ belongs to
Gal(k/k),

σ
(
ψ(δ)

)
= σ(ψ)σ(δ) = α(σ)−1ψ(δ),

for the inner automorphism α(σ) = ψ◦σ(ψ)−1 of G∗. The geometric conjugacy class
of ψ(δ) is therefore defined over k. Because G∗ is quasisplit and ψ(δ) is semisimple,
an important theorem of Steinberg [Ste] implies that the geometric conjugacy class
has a representative in G(k). This representative is of course not unique, but it does
map to a well defined stable conjugacy class δ∗ ∈ ∆reg

(
G∗(k)

)
. We therefore have

an injection δ → δ∗ from ∆reg

(
G(k)

)
to ∆reg

(
G∗(k)

)
, determined canonically by ψ.

(The fact that Steinberg’s theorem holds only for quasisplit groups is responsible
for the mapping not being surjective.) We cannot however expect to be able to
transfer ordinary conjugacy classes γ ∈ Γreg

(
G(k)

)
from G to G∗.

Besides the subtle global questions it raises for the trace formula, stable con-
jugacy also has very interesting implications for local harmonic analysis. Suppose
that k is one of the local fields Fv. In this case, there are only finitely many conju-
gacy classes in any stable class. One defines the stable orbital integral of a function
fv ∈ C∞

c

(
G(Fv)

)
over a (strongly regular) stable conjugacy class δv as a finite sum

fG
v (δv) =

∑
γv

fv,G(γv)

of invariant orbital integrals, taken over the conjugacy classes γv in the stable class
δv. (It is not hard to see how to choose compatible invariant measures on the
various domains Gγv

(Fv)\G(Fv).) An invariant distribution Sv on G(Fv) is said
to be stable if its value at fv depends only on the set of stable orbital integrals
{fG

v (δv)} of fv. Under this condition, there is a continuous linear form Ŝv on the
space of functions

SI
(
G(Fv)

)
=
{
fG

v : fv ∈ H
(
G(Fv)

)}
on ∆reg

(
G(Fv)

)
such that

Sv(fv) = Ŝv(fG
v ), fv ∈ H

(
G(Fv)

)
.

We thus have a whole new class of distributions on G(Fv), which is more restrictive
than the family of invariant distributions. Is there some other way to characterize
it?

In general terms, one becomes accustomed to thinking of conjugacy classes
as being dual to irreducible characters. From the perspective of local harmonic
analysis, the semisimple conjugacy classes in G(Fv) could well be regarded as dual
analogues of irreducible tempered characters on G(Fv). The relation of stable
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conjugacy ought then to determine a parallel relationship on the set of tempered
characters. (In [Ko1], Kottwitz extended the notion of stable conjugacy to ar-
bitrary semisimple elements.) Langlands called this hypothetical relationship L-
equivalence, and referred to the corresponding equivalence classes as L-packets,
since they seemed to preserve the local L-functions and ε-factors attached to irre-
ducible representations of G(Fv). He also realized that in the case Fv = R, there
was already a good candidate for this relationship in the work of Harish-Chandra.

Recall from §24 that G(R) has a discrete series if and only if G has an elliptic
maximal torus TG over R. In this case, the discrete series occur in finite packets
Π2(µ). On the other hand, any strongly regular elliptic conjugacy class for G(R)
intersects TG,reg(R). Moreover, two elements in TG,reg(R) are G(R)-conjugate if and
only if they lie in the same W (KR, TG)-orbit, and are stably conjugate if and only
if they are in the same orbit under the full Weyl group W (G, TG). This is because
W (KR, TG) is the subgroup of elements in W (G, TG) that are actually induced by
conjugation from points in G(R). It can then be shown from Harish-Chandra’s
algorithm for the characters of discrete series that the sum of characters

Θ(µ, γ) =
∑

πR∈Π2(µ)

Θ(πR, γ), γ ∈ Greg(R),

attached to representations in a packet Π2(µ), depends only on the stable conjugacy
class of γ, rather than its actual conjugacy class. In other words, the distribution

fR −→
∑

πR∈Π2(µ)

fR,G(πR), fR ∈ C∞
c

(
G(R)

)
,

on G(R) is stable. This fact justifies calling Θ(µ, γ) a “stable character”, and des-
ignating the sets Π2(µ) the L-packets of discrete series. It also helps to explain
why the sum over πR ∈ Π2(µ), which occurs on each side of the “finite case” of the
trace formula in Theorem 24.1, is a natural operation. Langlands used the L-packet
structure of discrete series as a starting point for a classification of the irreducible
representations of G(R), and a partition of the representations into L-packets gov-
erned by their local L-functions [Lan11]. (Knapp and Zuckerman [KZ2] later
determined the precise structure of the L-packets outside the discrete series.) The
Langlands classification for real groups applies to all irreducible representations,
but it is only for the tempered representations that the sum of the characters in an
L-packet is stable.

Let us return to the invariant trace formula. The basic questions raised by the
problem of stability can be posed for the simplest terms on the geometric side. Let
Γreg,ell(G) be the set of conjugacy classes γ in G(F ) that are both strongly regular
and elliptic. An element γ ∈ G(F ) represents a class in Γreg,ell(G) if and only if
the centralizer Gγ is a maximal torus in G that is elliptic, in the usual sense that
AGγ

= AG. It follows from the definitions that

Γreg,ell(G) ⊂ Γanis(G) ⊂ Γ(G)S .

The elements in Γreg,ell(G) are in some sense the generic elements in the set Γ(G)S ,
which we recall indexes the terms in the sum with M = G on the geometric side.
The regular elliptic part

(27.1) Ireg,ell(f) =
∑

γ∈Γreg,ell(G)

aG(γ)fG(γ)
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of the trace formula therefore represents the generic part of this sum.
The first question that comes to mind is the following. Is the distribution

f −→ Ireg,ell(f), f ∈ C∞
c

(
G(A)1

)
,

stable? In other words, does Ireg,ell(f) depend only on the family of stable orbital
integrals {fG

v (δv)}? An affirmative answer could solve many of the global problems
created by stability. For in order to compare Ireg,ell with its analogue on G∗, it
would then only be necessary to transfer f to a function f∗ on ∆G-reg

(
G∗(A)

)
,

something we could do by the local correspondence of stable conjugacy classes.
A cursory glance seems to suggest that the answer is indeed affirmative. The

volume

aG(γ) = vol
(
Gγ(Q)\Gγ(A)1

)
, γ ∈ Γreg,ell(G),

depends only on the stable conjugacy class δ of γ in G(F ), since it depends only
on the F -isomorphism class of the maximal torus Gγ . We can therefore write

(27.2) Ireg,ell(f) =
∑

δ

aG(δ)
(∑

γ→δ

fG(γ)
)
,

where δ is summed over the set ∆reg,ell(G) of elliptic stable classes in ∆reg

(
G(F )

)
,

γ is summed over the preimage of δ in Γreg,ell(G), and aG(δ) = aG(γ). The sum
over γ looks as if it might be stable in f . However, a closer inspection reveals that
it is not. For we are demanding that the distribution be stable in each component
fv of f . If

δA =
∏
v∈S

δv, δv ∈ ∆reg

(
G(Fv)

)
,

is a product of local stable classes with a rational representative δ, each ordinary
conjugacy class γA =

∏
γv in δA would also have to have a rational representative

γ. It turns out that there are not enough rational conjugacy classes γ for this to
happen. Contrary to our initial impression then, the distribution Ireg,ell(f) is not
generally stable in f .

Since Ireg,ell(f) need not be stable, the question has to be reformulated in
terms of stabilizing this distribution. The problem may be stated in general terms
as follows.

Express Ireg,ell(f) as the sum of a canonical stable distribution SG
reg,ell(f) with

an explicit error term.

The first group to be investigated was SL(2). Labesse and Langlands stabilized the
full trace formula for this group, as well as for its inner forms, and showed that the
solution had remarkable implications for the corresponding spectral decompositions
[Lab1], [She1], [LL]. Langlands also stabilized Ireg,ell in the general case, under
the assumption of two conjectures in local harmonic analysis [Lan10].

In his general stabilization of Ireg,ell(f), Langlands constructed the stable com-
ponent SG

reg,ell explicitly. He expressed the error term in terms of corresponding
stable components attached to groups G′ of dimension smaller than G. The groups
{G′} are all quasisplit. Together with the group G′ = G∗ of dimension equal to
G, they are known as elliptic endoscopic groups for G. For each G′, Langlands
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formulated a conjectural correspondence f → f ′ between test functions for G and
G′. His stabilization then took the form

(27.3) Ireg,ell(f) =
∑
G′

ι(G,G′)Ŝ′
G-reg,ell(f

′),

for explicitly determined coefficients ι(G,G′), and stable linear forms S′
G-reg,ell at-

tached to G′. In case G′ = G∗, the corresponding terms satisfy ι(G,G′) = 1 and
S∗

G-reg,ell = S∗
reg,ell. The stable component of Ireg,ell(f) is the associated summand

SG
reg,ell(f) = Ŝ∗

reg,ell(f
∗).

For arbitrary G′, S′
G-reg,ell is the strongly G-regular part of S′

reg,ell, obtained from
classes in ∆reg,ell(G′) whose image in G remains strongly regular.

Langlands’ stabilization is founded on class field theory. Specifically, it depends
on the application of Tate-Nakayama duality to the Galois cohomology of algebraic
groups. The basic relationship is easy to describe. Suppose that δ is a strongly
regular element in G(k), for some k ⊃ F . The centralizer of δ in G is a maximal
torus T over k. Suppose that γ ∈ G(k) is stably conjugate to δ. Then γ equals
g−1δg, for some element g ∈ G(k). If σ belongs to Gal(k/k), we have

δ = σ(δ) = σ(gγg−1) = σ(g)γσ(g)−1 = t(σ)−1δt(σ),

where t(σ) is the 1-cocycle gσ(g)−1 from Gal(k/k) to T (k). One checks that a
second element γ1 ∈ G(k) in the stable class of δ is G(k)-conjugate at γ if and
only if the corresponding 1-cocycle t1(σ) has the same image as t(σ) in the Galois
cohomology group

H1(k, T ) = H1
(
Γk, T (k)

)
, Γk = Gal(k/k).

Conversely, an arbitrary class in H1(k, T ) comes from an element γ if and only if
it is represented by a 1-cocycle of the form gσ(g)−1. The mapping γ → t therefore
defines a bijection from the set of G(k)-conjugacy classes in the stable conjugacy
class of δ to the kernel

(27.4) D(T ) = D(T/k) = ker
(
H1(k, T ) → H1(k,G)

)
.

Keep in mind that H1(k,G) is only a set with distinguished element 1, since G
is generally nonabelian. The preimage D(T ) of this element in H1(k, T ) therefore
need not be a subgroup. However, D(T ) is contained in the subgroup

E(T ) = E(T/k) = im
(
H1(k, Tsc) → H1(k, T )

)
of H1(k, T ), where Tsc is the preimage of T in the simply connected cover Gsc of the
derived group of G. This is because the canonical map D(Tsc) → D(T ) is surjective.
If H1(k,Gsc) = {1}, which is the case whenever k is a nonarchimedean local field
[Spr1, §3.2], D(T ) actually equals the subgroup E(T ). This is one of the reasons
why one works with the groups E(T ) in place of H1(T,G), and why the simply
connected group Gsc plays a significant role in the theory.

In the case that k is a local or global field, Tate-Nakayama duality applies class
field theory to the groups H1(k, T ). If k is a completion Fv of F , it provides a
canonical isomorphism

H1(Fv, T ) ∼−→ π0(T̂Γv )∗
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of H1(Fv, T ) with the group of characters on the finite abelian group π0(T̂Γv ). We
have written Γv here for the Galois group ΓFv

= Gal(F v/Fv), which acts on the
complex dual torus

T̂ = X(T )⊗ C∗

through its action on the group of rational characters X(T ). As usual, π0(·) denotes
the set of connected components of a topological space. If k = F , Tate-Nakayama
duality characterizes the group

H1
(
F, T (A)/T (F )

)
= H1

(
ΓF , T (AF̄ )/T (F )

)
= H1

(
ΓF ′/F , T (AF ′)/T (F ′)

)
,

where F ′ is some finite Galois extension of F over which T splits. It provides a
canonical isomorphism

H1
(
F, T (A)/T (F )

) ∼−→ π0(T̂Γ)∗,

where the Galois group Γ = ΓF = Gal(F/F ) again acts on the complex torus T̂
through its action on X(T ). If we combine this with the long exact sequence of
cohomology attached to the exact sequence of Γ-modules

1 −→ T (F ) −→ T (A) −→ T (A)/T (F ) −→ 1,

and the isomorphism

H1
(
F, T (A)

) ∼=⊕
v

H1(Fv, T )

provided by Shapiro’s lemma, we obtain a characterization of the diagonal image
of H1(F, T ) in the direct sum over v of the groups H1(Fv, T ). It is given by a
canonical isomorphism from the cokernel

(27.5) coker1(F, T ) = coker
(
H1(F, T ) −→

⊕
v

H1(Fv, T )
)

onto the image

im
(⊕

v

π0(T̂Γv )∗ −→ π0(T̂Γ)∗
)
.

If these results are combined with their analogues for Tsc, they provide similar
assertions for the subgroups E(T/k) of H1(k, T ). In the local case, one has only
to replace π0(T̂Γv ) by the group K(T/Fv) of elements in π0

((
T̂ /Z(Ĝ)

)Γv
)

whose
image in H1

(
Fv, Z(Ĝ)

)
is trivial. In the global case, one replaces π0(T̂Γ) by the

groupK(T/F ) of elements in π0

((
T̂ /Z(Ĝ)

)Γ) whose image in H1
(
F,Z(Ĝ)

)
is locally

trivial, in the sense that their image in H1
(
Fv, Z(Ĝ)

)
is trivial for each v. (See

[Lan10], [Ko5].)
To simplify the discussion, assume for the present that G = Gsc. Then

E(T/k) = H1(k, T ), for any k. Moreover, K(T/Fv) = π0(T̂Γv ) and K(T/F ) =
π0(T̂Γ), since Z(Ĝ) = 1. In fact, π0(T̂Γ) equals T̂Γ if T is elliptic in G over F .

We recall that Langlands’ stabilization (27.3) of Ireg,ell(f) was necessitated by
the failure of each G(A)-conjugacy class in the G(A)-stable class of δ ∈ ∆reg,ell(G)
to have a representative in G(F ). The cokernel (27.5) gives a measure of this failure.
Langlands’ construction treats the quantity in brackets on the right hand side of
(27.2) as the value at 1 of a function on the finite abelian group coker1(F, T ).
The critical step is to expand this function according to Fourier inversion on
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coker1(F, T ). One has to keep track of the G(F )-conjugacy classes in the G(A)-
conjugacy class of δ, which by the Hasse principle for G = Gsc are in bijection with
the finite abelian group

ker1(F, T ) = ker
(
H1(F, T ) −→

⊕
v

H1(Fv, T )
)
.

The formula (27.2) becomes an expansion

(27.6) Ireg,ell(f) =
∑

δ∈∆reg,ell(G)

aG(δ)ι(T )
∑

κ∈bTΓ

fκ
G(δ),

where T = Gδ denotes the centralizer of (some fixed representative of) δ, ι(τ) equals
the product of |T̂Γ|−1 with | ker1(F, T )|, and

fκ
G(δ) =

∑
{γA∈Γ(G(A)):γA∼δ}

fG(γA)κ(γA).

The last sum is of course over the G(A)-conjugacy classes γA =
∏

γv in the stable
class of δ in G(A). For any such γA, it can be shown that γv is G(Fv)-conjugate to δ
for almost all v. It follows that γA maps to an element tA =

⊕
tv in the direct sum

of the groups H1(Fv, T ). This in turn maps to a point in the cokernel (27.5), and
hence to a character in (T̂Γ)∗. The coefficient κ(γA) is the value of this character
at κ.

Suppose for example that G = SL(2). The eigenvalues of δ then lie in a
quadratic extension E of F , and T = Gδ is the one-dimensional torus over F such
that

T (F ) ∼= {t ∈ E∗ : tσ(t) = 1}, ΓE/F = {1, σ}.

The nontrivial element σ ∈ ΓE/F acts on X(T ) ∼= Z by m → (−m), and therefore
acts on T̂ = Z⊗C∗ ∼= C∗ by z → z−1. It follows that π0(T̂Γ) = T̂Γ is isomorphic to
the subgroup {±1} of C∗. Similarly, π0(T̂Γv ) = T̂Γv ∼= {±1} if v does not split in
E, while π0(T̂Fv ) = π0(T̂ ) = {1} if v does split. In particular, if κ is the nontrivial
element in π0(T̂Γ), the local κ-orbital integral fκ

v,G(δ) = fκ
v,G(δv) equals a difference

of two orbital integrals if v does not split, and is a simple orbital integral otherwise.
The characterization we have described here for the various groups H1(Fv, T ), and
for the diagonal image of H1(F, T ) in their direct sum, is typical of what happens
in general. In the present situation ker1(F, T ) = {1}, so that H1(F, T ) can in fact
be identified with its diagonal image.

The expression (27.6) is part of the stabilization (27.3) of Ireg,ell(f). We need
to see how it gives rise to the quasisplit groups G′ of (27.3).

Suppose that T and κ are as in (27.6). We choose an embedding T̂ ⊂ Ĝ of
the dual torus of T into Ĝ that is admissible, in the sense that it is the mapping
assigned to a choice of some pair (B̂, T̂ ) in Ĝ, and some Borel subgroup B of G

containing T . Let s′ be the image of κ in Ĝ, and let Ĝ′ = Ĝs′ be its connected
centralizer in Ĝ. Then Ĝ′ is a reductive subgroup of Ĝ. It is known that there is
an L-embedding

LT = T̂ � WF ↪→ LG = Ĝ � WF ,
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for the Weil forms of the L-groups of T and G, which restricts to the given embed-
ding of T̂ into Ĝ [LS1, (2.6)]. Fix such an embedding, and set

G′ = LTĜ′.

Then G′ is an L-subgroup of LG, which commutes with s′. It provides a split
extension

(27.7) 1 −→ Ĝ′ −→ G′ −→ WF −→ 1

of WF by Ĝ′. In particular, it determines an action of WF on Ĝ′ by outer auto-
morphisms, which factors through a finite quotient of ΓF . Let G′ be any quasisplit
group over F for which Ĝ′, with the given action of ΓF , is a dual group. We have
obtained a correspondence

(T, κ) −→ (G′,G′, s′).

We can choose a maximal torus T ′ ⊂ G′ in G′ over F , together with an iso-
morphism from T ′ to T over F that is admissible, in the sense that the associated
isomorphism T̂ ′ → T̂ of dual groups is the composition of an admissible embedding
T̂ ′ ⊂ Ĝ′ with an inner automorphism of Ĝ that takes T̂ ′ to T̂ . Let δ′ ∈ T ′(F ) be
the associated preimage of the original point δ ∈ T (F ). The tori T and T ′ are the
centralizers in G and G′ of δ and δ′. The two points δ and δ′ are therefore the
primary objects. They become part of a larger correspondence

(27.8) (δ, κ) −→
(
(G′,G′, s′), δ′

)
.

Elements δ′ ∈ G′(F ) obtained in this way are said to be images from G [LS1,
(1.3)].

Suppose now that G is arbitrary. Motivated by the last construction, one
defines an endoscopic datum for G to be a triplet (G′,G′, s′, ξ′), where G′ is a
quasisplit group over F , G′ is a split extension of WF by a dual group Ĝ′ of G′, s′ is
a semisimple element in Ĝ, and ξ′ is an L-embedding of G′ into LG. It is required
that ξ′(Ĝ′) be equal to the connected centralizer of s′ in Ĝ, and that

(27.9) ξ′(u′)s′ = s′ξ′(u′)a(u′), u′ ∈ G′,

where a is a 1-cocycle from WF to Z(Ĝ) that is locally trivial, in the sense that its
image in H1

(
WFv

, Z(Ĝ)
)

is trivial for every v. The quasisplit group G′ is called
an endoscopic group for G. An isomorphism of endoscopic data (G′,G′, s′, ξ′) and
(G′

1,G′
1, s

′
1, ξ

′
1) is an isomorphism α: G′ → G′

1 over F for which, roughly speaking,
there is dual isomorphism induced by some element in Ĝ. More precisely, it is
required that there be an L-isomorphism β: G′

1 → G′ such that the corresponding

mappings Ψ(G′) α−→ Ψ(G′
1) and Ψ(Ĝ′

1)
β−→ Ψ(Ĝ′) of based root data are dual, and

an element g ∈ Ĝ such that

ξ′
(
β(u′

1)
)

= g−1ξ′1(u
′
1)g, u′

1 ∈ G′
1,

and

s′ = g−1s′1gz, z ∈ Z(Ĝ)Z(ξ′1)
0,

where Z(ξ′1)
0 is the connected component of 1 in the centralizer in Ĝ of ξ′1(G′

1).
(See [LS1, (1.2)].) We write AutG(G′) for the group of isomorphisms α: G′ → G′

of G′ as a endoscopic datum for G.
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We say that (G′,G′, s′, ξ′) is elliptic if Z(ξ′)0 = 1. This means that the image
of ξ′ is LG is not contained in LM , for any proper Levi subgroup of G over F . We
write Eell(G) for the set of isomorphism classes of elliptic endoscopic data for G. It
is customary to denote an element in Eell(G) by G′, even though G′ is really only
the first component of a representative (G′,G′, s′, ξ′) of an isomorphism class. Any
G′ ∈ Eell(G) then comes with a finite group

OutG(G′) = AutG(G′)/Int(G′),

of outer automorphisms of G′ as an endoscopic datum.
Suppose for example that G = GL(n). The centralizer of any semisimple

element s′ in Ĝ = GL(n,C) is a product of general linear groups. It follows that
any endoscopic datum for G is represented by a Levi subgroup M . In particular,
there is only one element in Eell(G), namely the endoscopic datum represented by
G itself. This is why the problem of stability is trivial for GL(n).

The general definitions tend to obscure the essential nature of the construction.
Suppose again that G = Gsc. The dual group Ĝ is then adjoint, and Z(Ĝ) = 1. In
general, any G′ ∈ Eell(G) can be represented by an endoscopic datum for which G′ is
a subgroup of LG, and ξ′ is the identity embedding ι′. The condition (27.9) reduces
in the case at hand to the requirement that G′ commute with s′. To construct a
general element in Eell(G), we start with the semisimple element s′ ∈ Ĝ. The
centralizer LGs′,+ of s′ in LG is easily seen to project onto WF . Its quotient by the
connected centralizer Ĝ′ = Ĝs′ is an extension of WF by a finite group. To obtain
an endoscopic datum, we need only choose a section

ω′ : WF −→ LGs′,+/Ĝ
′

that can be inflated to a homomorphism WF → LGs′,+. For the product

G′ = Ĝ′ω′(WF )

is then a split extension of WF by Ĝ′. It determines an L-action of WF on Ĝ′, and
hence a quasisplit group G′ over F of which Ĝ′ is a dual group. The endoscopic
datum (G′,G′, s′, ι′) thus obtained is elliptic if and only if the centralizer of G′ in Ĝ
is finite, a condition that reduces considerably the possibilities for the pairs (s′, ω′).
The mapping

(s′, ω′) −→ (G′,G′, s′, ι′)

becomes a bijection from the set of Ĝ-orbits of such pairs and Eell(G). We note
that a point g ∈ Ĝ represents an element in OutG(G′) if and only if it stabilizes G′

and commutes with s′.
For purposes of illustration, suppose that G is split as well as being simply

connected. We have then to consider semisimple elements s′ ∈ Ĝ whose central-
izer Ĝs′,+ has finite center. It is an interesting exercise (which I confess not to
have completed) to classify the Ĝ-orbits of such elements in terms of the extended
Coxeter-Dynkin diagram of Ĝ. For example, elements s′ that satisfy the stronger
condition that Ĝ′ = Ĝs′ has finite center are represented by vertices in the affine
diagram (although in the adjoint group Ĝ, some of these elements are conjugate).
Once we have chosen s′, we then select a homomorphism ω′ from ΓF to the finite
abelian group π0(Ĝs′,+) = Ĝs′,+/Ĝ

′ whose image pulls back to a subgroup of Ĝs′,+

that still has finite center. Suppose for example that G = SL(2), and that s′ is the
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image of
(

1 0
0 −1

)
in Ĝ = PGL(2,C). Then Ĝs′,+ consists of the group of diago-

nal matrices, together with a second component generated by the element
(

0 1
1 0

)
.

Since the center of Ĝs′,+ equals {1, s′}, we obtain elliptic endoscopic data for G by
choosing nontrivial homomorphisms from ΓF to the group π0(Ĝs′,+) ∼= Z/2Z. The
classes in Eell(G) other than G itself, are thus parametrized by quadratic extensions
E of F .

We return to the case of a general group G. We have spent most of this section
trying to motivate some of the new ideas that arose with the problem of stability.
This leaves only limited space for a brief description of the details of Langlands’
stabilization (27.3) of Ireg,ell(f).

The general form of the expansion (27.6) is

Ireg,ell(f) =
∑

δ∈∆reg,ell(G)

aG(δ)ι(T,G)
∑

κ∈K(T/F )

fκ
G(δ),

where
ι(T,G) =

∣∣∣ ker
(
E(T/F ) −→

⊕
v

E(T/Fv)
)∣∣∣|K(T/F )|−1,

and fκ
G(δ) is defined as in (27.6). The correspondence (27.8) is easily seen to have

an inverse, which in general extends to a bijection

{(G′, δ′)} ∼−→ {(δ, κ)}.
The domain of this bijection is the set of equivalence classes of pairs (G′, δ′), where
G′ is an elliptic endoscopic datum for G, δ′ is a strongly G-regular, elliptic element
in G′(F ) that is an image from G, and equivalence is defined by isomorphisms of
endoscopic data. The range is the set of equivalence classes of pairs (δ, κ), where δ
belongs to ∆reg,ell(G), κ lies in K(Gδ/F ), and equivalence is defined by conjugating
by G(F ). (See [Lan10], [Ko5, Lemma 9.7].) Given (G′, δ′), we set

(27.10) f ′(δ′) = fκ
G(δ) =

∑
{γA∈Γ(G(A)):γA∼δ}

fG(γA)κ(γA).

We can then write

Ireg,ell(f) =
∑

G′∈Eell(G)

|OutG(G′)|−1
∑

δ′∈∆G-reg,ell(G′)

aG(δ)ι(Gδ, G)f ′(δ′),

with the understanding that f ′(δ′) = 0 if δ′ is not an image from G. Langlands
showed that for any pair (G′, δ′), the number

ι(G,G′) = ι(Gδ, G)ι(G′
δ′ , G′)−1|OutG(G′)|−1

was independent of δ′ and δ. (Kottwitz later expressed the product of the first
two factors on the right as a quotient τ(G)τ(G′)−1 of Tamagawa numbers [Ko3,
Theorem 8.3.1].) Set

(27.11) Ŝ′
G-reg,ell(f

′) =
∑

δ′∈∆G-reg,ell(G′)

b′(δ′)f ′(δ′),

where
b′(δ′) = aG(δ)ι(G′

δ′ , G′) = vol
(
G′

δ′(F )\G′
δ′(A)1

)
ι(G′

δ′ , G′).
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Then
Ireg,ell(f) =

∑
G′∈Eell(G)

ι(G,G′)Ŝ′
G-reg,ell(f

′).

We have now sketched how to derive the formula (27.3). However, the term
f ′(δ′) in (27.11) is defined in (27.10) only as a function on ∆G-reg,ell(G′). One
would hope that it is the stable orbital integral at δ′ of a function in C∞

c

(
G′(A)

)
.

The sum in (27.10) can be taken over adelic products γA =
∏

γv, where γv is a
conjugacy class in G(Fv) that lies in the stable class of the image δv of δ in G(Fv).
It follows that

f ′(δ′) = fκ
G(δ) =

∏
v

fκ
v,G(δv),

where
fκ

v,G(δv) =
∑

γv∼δv

fv,G(γv)κ(γv).

Are the local components δ′v → fκ
v,G(δv) stable orbital integrals of functions in

C∞
c

(
G′(Fv)

)
? The question concerns the singularities that arise, as the strongly

regular points approach 1, for example. Do enough of the singularities of the orbital
integrals fv,G(γv) disappear from the sum so that only singularities of stable orbital
integrals on the smaller group G′(Fv) remain?

The question is very subtle. We have been treating δ as both a stable class
in ∆reg,ell(G) and a representative in G(F ) of that class. The distinction has not
mattered so far, since f ′(δ′) = fκ

G(δ) depends only on the class of δ. However, the
coefficients κ(γv) in the local functions fκ

v,G(δv) are defined in terms of the relative
position of γv and δv. The local functions do therefore depend on the choice of δv

within its stable class in G(Fv). The solution of Langlands and Shelstad was to
replace κ(γv) with a function ∆G(δ′v, γv) that they called a transfer factor. This
function is defined as a product of κ(γv) with an explicit but complicated factor
that depends on δ′v and δv, but not γv. The product ∆G(δ′v, γv) then turns out to be
independent of the choice of δv, and depends only on the local stable class of δ′v and
local conjugacy class of γv. Moreover, if δ′v is the local image of δ′ ∈ ∆G-reg,ell(G′),
for every v, the product over v of the corresponding local transfer factors is equal
to the coefficient κ(γA) in (27.10). (See [LS1, §3,§6].)

There is one further technical complication we should mention. The Langlands-
Shelstad transfer factor depends on a choice of L-embedding of LG′ into LG. If
G′ represents an endoscopic datum (G′,G′, s′, ξ′) with G′ ⊂ LG and ξ′ = ι′, this
amounts to a choice of L-isomorphism ξ̃′: G′ → LG′. In the case that Gder is simply
connected, such an L-isomorphism exists [Lan8]. However, it is not canonical, and
one does have to choose ξ̃′ in order to specify the transfer factors. The general
situation is more complicated. The problem is that there might not be any such
L-isomorphism. In this case, one has to modify the construction slightly. One
replaces the group G′ by a central extension

1 −→ C̃ ′ −→ G̃′ −→ G′ −→ 1

of G′, where C̃ ′ is a suitable torus over F , and G̃′
der is simply connected. One can

then take ξ̃′ to be an L-embedding

ξ̃′ : G′ ↪→ LG̃′,
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whose existence is again implied by [Lan8]. This determines a character η̃′ on
C̃ ′(A)/C̃ ′(F ), which is dual to the global Langlands parameter defined by the com-
position

WF −→ G′ eξ′

−→ LG̃′ −→ LC̃ ′,

for any section WF → G′. The transfer factor at v becomes a function ∆G(δ′v, γv)
of δ′v ∈ ∆G-reg

(
G̃′(Fv)

)
and γv ∈ Γreg

(
G(Fv)

)
, such that

∆G(c′vδ
′
v, γv) = η̃′v(c′v)

−1∆G(δ′v, γv), c′v ∈ C̃ ′(Fv).

It vanishes unless δ′v is an image of a stable conjugacy class δv ∈ ∆reg

(
G(Fv)

)
in

G(Fv), in which case it is supported on those conjugacy classes γv in G(Fv) that
lie in δv. In particular, ∆G(δ′v, γv) has finite support in γv, for any δ′v.

Transfer factors play the role of a kernel in a transform of functions. Consider
a function fv in G(Fv), which we now take to be in the Hecke algebra H

(
G(Fv)

)
.

For any such fv, we define an (η̃′v)
−1-equivariant function

(27.12) f ′
v(δ′v) = f G̃′

v (δ′v) =
∑

γv∈Γreg(G(Fv))

∆G(δ′v, γv)fv,G(γv)

of δ′v ∈ ∆G-reg

(
G̃′(Fv)

)
. Langlands and Shelstad conjecture that f ′

v lies in the space
SI
(
G̃′(Fv), η̃′v

)
[LS1]. In other words, f ′

v(δ′v) can be identified with the stable
orbital integral at δ′v of some fixed function h′

v in the (η̃′v)
−1-equivariant Hecke

algebra H
(
G̃′(Fv), η̃′v

)
on G̃′(Fv). (Langlands’ earlier formulation of the conjecture

[Lan10] was less precise, in that it postulated the existence of suitable transfer
factors.) For archimedean v, the conjecture was established by Shelstad [She3]. In
fact, it was Shelstad’s results for real groups that motivated the construction of the
general transfer factors ∆G(δ′v, γv). (Shelstad actually worked with the Schwartz
space C

(
G(Fv)

)
. However, she also characterized the functions f ′

v in spectral terms,
and in combination with the main theorem of [CD], this establishes the conjecture
for the space H

(
G(Fv)

)
.)

If v is nonarchimedean, the Langlands-Shelstad conjecture remains open. Con-
sider the special case that G, G′ and η̃′ are unramified at v, and that fv is the
characteristic function of a (hyperspecial) maximal compact subgroup Kv of G(Fv).
Then one would like to know not only that h′

v exists, but also that it can be taken
to be the characteristic function of a (hyperspecial) maximal compact subgroup
K̃ ′

v of G̃′(Fv) (or rather, the image of such a function in H(G̃′
v, η̃

′
v).) This variant

of the Langlands-Shelstad conjecture is what is known as the fundamental lemma.
It is discussed in the lectures [Hal1] of Hales. Waldspurger has shown that the
fundamental lemma actually implies the general transfer conjecture [Wa2]. To
be precise, if the fundamental lemma holds for sufficiently many unramified pairs
(Gv, G

′
v), the Langlands-Shelstad transfer conjecture holds for an arbitrary given

pair (Gv, G
′
v).

The two conjectures together imply the existence of a global mapping

f =
∏
v

fv −→ f ′ =
∏
v

f ′
v

from H(G) to the space

SI
(
G̃′(A), η̃′

)
= lim−→

S

SI(G̃′
S , η̃

′
S).
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Such a mapping would complete Langlands’ stabilization (27.3) of the regular el-
liptic term. It would express Ireg,ell(f) as the sum of a stable component, and
pullbacks of corresponding stable components for proper endoscopic groups. We
shall henceforth assume the existence of the mapping f → f ′. The remaining prob-
lem of stabilization is then to establish similar relations for the other terms in the
invariant trace formula. We would like to show that any such term I∗ has a stable
component

S∗ = SG
∗ = SG∗

∗ ,

now regarded as a stable linear form on the Hecke algebra, such that

(27.13) I∗(f) =
∑

G′∈Eell(G)

ι(G,G′)Ŝ′
∗(f

′),

for any f ∈ H
(
G(A)

)
. The identity obtained by replacing the terms in the invariant

trace formula by their corresponding stable components would then be a stable trace
formula. We shall describe the solution to this problem in §29.

In recognition of the inductive nature of the putative identity (27.13), we ought
to modify some of the definitions slightly. In the case of I∗ = Ireg,ell, for example,
the term Ŝ′

G-reg,ell(f
′) in (27.3) is not the full stable component of I ′reg,ell. We

could rectify this minor inconsistency by replacing Ireg,ell(f) with its H-regular
part IH-reg,ell(f), for some reductive group H that shares a maximal torus with G,
and whose roots contain those of G. The resulting version

IH-reg,ell(f) =
∑
G′

ι(G,G′)Ŝ′
H-reg,ell(f

′)

of (27.3) is then a true inductive formula.
Another point concerns the function f ′. We are assuming that f ′ is the stable

image of a function in the (η̃′)−1-equivariant algebra H
(
G̃′(A), η̃′

)
. However, the

original function f belongs to the ordinary Hecke algebra H(G). To put the two
functions on an even footing, we fix a central torus Z in G over F , and a character
ζ on Z(A)/Z(F ). We then write Z̃ ′ for the preimage in G̃′ of the canonical image
of Z in G′. Global analogues of the local constructions in [LS1, (4.4)] provide
a canonical extension of η̃′ to a character on Z̃ ′(A)/Z̃ ′(F ). We write ζ̃ ′ for the
character on Z̃ ′(A)/Z̃ ′(F ) obtained from the product of η̃′ with the pullback of
ζ. The presumed correspondence f → f ′ then takes the form of a mapping from
H
(
G(A), ζ

)
to SI

(
G̃′(A), ζ̃ ′

)
. At the beginning of §29, we shall describe a version

of the invariant trace formula that applies to equivariant test functions f .

28. Local spectral transfer and normalization

We have now set the stage for the final refinement of the trace formula. We
shall describe it over the course of the next two sections. This discussion, as well
as that of the applications in §30, contains much that is only implicit. However, it
also contains remarks that are intended to provide general orientation. A reader
who is not an expert should ignore the more puzzling points at first pass, and aim
instead at acquiring a sense of the underlying structure.

The problem is to stabilize the invariant trace formula for a general connected
group G over F . In the case that G is an inner form of GL(n), Theorems 25.5 and
25.6 represent a solution of the problem. They provide a term by term identification
of the trace formula for G with the relevant part of the trace formula for the group
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G∗ = GL(n). In this case, all invariant distributions are stable, and G∗ is the
only elliptic endoscopic group. The stabilization problem therefore reduces to the
comparison of G with its quasisplit inner form.

The case of an inner form of GL(n) is also simpler for the existence of a local
correspondence πv → π∗

v of tempered representations. Among other things, this
allows us to define normalizing factors for intertwining operators for G in terms of
those for G∗. We recall that the invariant distributions in the trace formula de-
pend on a choice of normalizing factors. So therefore do any identities among these
distributions. For general G, the theory of endoscopy predicts a refined local corre-
spondence, which would yield compatible normalizations as a biproduct. However,
the full form of this correspondence is presently out of reach. We nevertheless do
require some analogue of it in any attempt to stabilize the trace formula.

We shall first describe a makeshift substitute for the local correspondence,
which notwithstanding its provisional nature, still depends on the fundamental
lemma. We will then review how the actual correspondence is supposed to work.
After seeing the two side by side, the reader will probably agree that it is not
reasonable at this point to try to construct compatible normalizing factors. For-
tunately, there is a second way to normalize weighted orbital integrals, which does
not depend on a normalization of intertwining operators. We shall discuss the con-
struction at the end of the section. At the beginning of the next section, we shall
describe how the construction leads to another form of the invariant trace formula.
It will be this second form of the trace formula that we actually stabilize.

The global stabilization of the next section will be based on two spaces of
invariant distributions, which reflect the general duality between conjugacy classes
and characters. We may as well introduce them here. We are assuming that G
is arbitrary. If V is a finite set of valuations of F , we shall write GV = G(FV )
for simplicity. Suppose that Z is a torus in G over F that is contained in the
center, and that ζV is a character on ZV . Let D(GV , ζV ) be the space of invariant
distributions that are ζV -equivariant under translation by ZV , and are supported
on the preimage in GV of a finite union of conjugacy classes in GV = GV /ZV . Let
F(GV , ζV ) be the space of invariant distributions that are ζV -equivariant under
translation by ZV , and are spanned by irreducible characters on GV . This second
space is obviously spanned by the characters attached to the set Π(GV , ζV ) of
irreducible representations of GV whose central character on ZV equals ζV . Now,
the Hecke algebra on GV has ζ−1

V -equivariant analogue H(GV , ζV ), composed of
functions f such that

f(zx) = ζV (z)−1f(x), z ∈ ZV .

Likewise, the invariant Hecke algebra has a ζ−1
V -analogue I(GV , ζV ). A distribution

D in either of the spaces D(GV , ζV ) or F(GV , δV ) can be regarded as a linear form

D(f) = fG(D), f ∈ H(GV , ζV ),

on either H(GV , ζV ) or I(GV , ζV ).
The notation fG(D) requires further comment. On the one hand, it generalizes

the way we have been denoting both invariant orbital integrals fG(γ) and irreducible
characters fG(π). But it also has the more subtle interpretation as the value of a
linear form on the function fG in I(GV , ζV ). Since we have defined I(GV , ζV ) as
a space of functions on Πtemp(GV , ζV ), we need to know that D is supported on
characters. This is clear if D belongs to F(GV , ζV ). If D belongs to the other
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space D(GV , ζV ), results of Harish-Chandra and Bouaziz [Bou] imply that it can
be expressed in terms of strongly regular invariant orbital integrals. (See [A30,
Lemma 1.1].) Since invariant orbital integrals are supported on characters, by the
special case of Theorem 23.2 with M = G, D is indeed supported on characters.
Incidentally, by the special case of Theorem 23.2 and the fact that characters are
locally integrable functions, we can identify I(GV , ζV ) with the space{

fG(γ) : γ ∈ ΓG-reg(GV ), f ∈ H(GV , ζV )
}
.

We have in fact already implicitly done so in our discussion of inner twists and base
change for GLn in §25 and §26. However, we do not have a geometric analogue
of [CD] that would allow us to characterize I(GV , ζV ) explicitly as a space of
functions on ΓG-reg(GV ).

We write SD(GV , ζV ) and SF(GV , ζV ) for the subspaces of stable distribu-
tions in D(GV , ζV ) and F(GV , ζV ) respectively. We also write SI(GV , ζV ) for the
ζ−1
V -analogue of the stably invariant Hecke algebra. Any distribution S in either
SD(GV , ζV ) or SF(GV , ζV ) can then be identified with a linear form

fG −→ fG(S), f ∈ H(GV , ζV ),

on SI(GV , ζV ). We recall SI(GV , ζV ) is presently just a space of functions on
∆G-reg(GV ). One consequence of the results we are about to describe is a spectral
characterization of SI(GV , ζV ).

Our focus for the rest of this section will be entirely local. We shall consider the
second space F(GV , ζV ), under the condition that V consist of one valuation v. We
shall regard G and Z as groups over the local field k = Fv, and we shall write ζ = ζv,
G = Gv = G(Fv), F(G, ζ) = F(Gv, ζv), Π(G, ζ) = Π(Gv, ζv), H(G, ζ) = H(Gv, ζv),
and so on, for simplicity. With this notation, we write Icusp(G, ζ) for the subspace
of functions in I(G, ζ) that are supported on the k-elliptic subset Γreg,ell(G) of
Γreg(G) = Γreg(Gv). We also write SIcusp(G, ζ) for the image of Icusp(G, ζ) in
SI(G, ζ), and Hcusp(G, ζ) for the preimage of Icusp(G, ζ) in H(G, ζ). Keep in mind
that any element D ∈ F(G, ζ) has a (virtual) character. It is a locally integrable,
invariant function Θ(D, ·) on Gv such that

fG(D) =
∫

Gv

f(x)Θ(D,x)dx, f ∈ H(G, ζ).

Assume for a moment that Z contains the split component AG (over k) of
the center of G. The space Icusp(G, ζ) then has the noteworthy property that it
is a canonical linear image of F(G, ζ). To be precise, there is a surjective linear
mapping

F(G, ζ) −→ Icusp(G, ζ)

that assigns to any element D ∈ F(G, ζ) the elliptic part

Iell(D, γ) =

{
I(D, γ), if γ ∈ Γreg,ell(G)
0, otherwise,

of its normalized character

I(D, γ) = |DG(γ)| 12 Θ(D, γ).
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This assertion follows from the case M = G of the general result [A20, Theorem
5.1]. What is more, the mapping has a canonical linear section

Icusp(G, ζ) −→ F(G, ζ).

This is defined by a natural subset Tell(G, ζ) [A22, §4] of F(G, ζ) whose image in
Icusp(G, ζ) forms a basis.

The set Tell(G, ζ) contains the family Π2(G, ζ) of square integrable represen-
tations of Gv with central character ζ. However, it also contains certain linear
combinations of irreducible constituents of induced representations. We can define
Tell(G, ζ) as the set of Gv-orbits of triplets (L, σ, r), where L is a Levi subgroup
of G over k = Fv, σ belongs to Π2(L, ζ), and r is an element in the R-group Rσ

of σ whose null space in aM equals aG. The R-group is an important object in
local harmonic analysis that was discovered by Knapp. In general terms, it can be
represented as a subgroup of the stabilizer of σ in W (L), for which corresponding
normalized intertwining operators

RQ(r, σ) = A(σr)Rr−1Qr|Q(σ), Q ∈ P(L), r ∈ Rσ,

form a basis of the space of all operators that intertwine the induced representation
IQ(σ). We write σr for an extension of the representation σ to the group generated
by Lv and a representative w̃r of r in Kv. Then

A(σr) : Hr−1Qr(σ) −→ HQ(σ)

is the operator defined by(
A(σr)φ′)(x) = σr(w̃r)φ′(w̃−1

r x), φ′ ∈ Hr−1Qr(σ).

(See [A20, §2].)
We identify elements τ ∈ Tell(G, ζ) with the distributions

fG(τ) = tr
(
RQ(r, σ)IQ(σ, f)

)
, f ∈ C∞

c (G),

in F(G, ζ). It is the associated set of functions

Iell(τ, ·), τ ∈ Tell(G, ζ),

that provides a basis of Icusp(G, ζ). In fact, by Theorem 6.1 of [A20], these functions
form an orthogonal basis of Icusp(G, ζ) with respect to a canonical measure dγ on
Γreg,ell(G/Z), whose square norms

‖Iell(τ)‖2 =
∫

Γreg,ell(G/Z)

Iell(τ, γ)Iell(τ, γ)dγ = n(τ), τ ∈ Tell(G, ζ),

satisfy
n(τ) = |Rσ,r|| det(1− r)aL/aG

|.
(As usual Rσ,r denotes the centralizer of r in Rσ. See [A21, §4].)

The set Tell(G, ζ) is part of a natural basis T (G, ζ) of F(G, ζ). This can either be
defined directly [A20, §3], or built up from elliptic sets attached to Levi subgroups.
To remove the dependence on Z, we should really let ζ vary. The union

Ttemp,ell(G) =
∐
ζ

Tell(G, ζ)

is a set of tempered distributions, which embeds in the set

Tell(G) =
{
τλ : τ ∈ Ttemp,ell(G), λ ∈ a

∗
G,C

}
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that parametrizes nontempered elliptic characters

Θ(τλ, γ) = Θ(τ, γ)eλ(HG(γ)).

These two elliptic sets are in turn contained in respective larger sets

Ttemp(G) =
∐
{M}

Ttemp,ell(M)/W (M)

and
T (G) =

∐
{M}

Tell(M)/W (M),

where {M} represents the set of conjugacy classes of Levi subgroups of G over k =
Fv. If T∗(G) is any of the four sets above, we obviously have an associated subset
T∗(G, ζ) attached to any Z and ζ. The distributions f → fG(τ) parametrized by
the largest set T (G, ζ) form a basis of F(G, ζ), while the distributions parametrized
by Ttemp(G, ζ) give a basis of the subset of tempered distributions in F(G, ζ). We
thus have bases that are parallel to the more familiar bases Π(G, ζ) and Πtemp(G, ζ)
of these spaces given by irreducible characters.

Assume now that k = Fv is nonarchimedean. In this case, one does not have a
stable analogue for the set Tell(G, ζ). As a substitute, in case G is quasisplit and Z
contains AG, we write Φ2(G, ζ) for an indexing set {φ} that parametrizes a fixed
family of functions {Sell(φ, ·)} ⊂ SIcusp(G, ζ) for which the products

n(δ)Sell(φ, δ), δ ∈ ∆G-reg,ell(G), φ ∈ Φ2(G, ζ),

form an orthogonal basis of SIcusp(G, ζ). (The number n(δ) stands for the number
of conjugacy classes in the stable class δ, and is used to form the measure dδ on
∆G-reg,ell(G/Z). The subscript 2 is used in place of ell because the complement
of Π2(G, ζ) in Tell(G, ζ) is believed to be purely unstable.) We fix the family
{Sell(φ, ·)}, subject to certain natural conditions [A22, Proposition 5.1]. We then
form larger sets

Φtemp,2(G) =
∐
ζ

Φ2(G, ζ),

Φ2(G) =
{
φλ : φ ∈ Φtemp,2(G), λ ∈ a

∗
G,C

}
,

Φtemp(G) =
∐
{M}

Φtemp,2(M)/W (M),

and
Φ(G) =

∐
{M}

Φ2(M)/W (M),

where Sell(φλ, δ) = Sell(φ, δ)eλ(HG(S)), as well as corresponding subsets Φ∗(G, ζ) of
Φ∗(G) attached to any Z and ζ. The analogy with the sets T∗(G, ζ) is clear. What
is not obvious, however, is that the elements in Φ∗(G, ζ) give stable distributions.
The first step in this direction is to define

(28.1) fG(φ) =
∫

∆reg,ell(G/Z)

fG(δ)Sell(φ, δ)dδ,

for any f ∈ Hcusp(G, ζ) and φ ∈ Φ2(G, ζ).
We shall now apply the Langlands-Shelstad transfer of functions. One intro-

duces endoscopic data G′ for G over the local field k = Fv by copying the defini-
tions of §27 for the global field F . (The global requirement that a certain class in
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H1
(
F,Z(Ĝ)

)
be locally trivial is replaced by the simpler condition that the cor-

responding class in H1
(
Fv, Z(Ĝ)

)
be trivial, but this is the only difference.) We

follow the same notation as in the global constructions of §27. In particular, we
write Eell(G) for the set of isomorphism classes of elliptic endoscopic data for G
over k.

We are assuming that the fundamental lemma holds, for units of Hecke algebras
at unramified places of any group over F that is isomorphic to G over k = Fv.
The theorem of Waldspurger mentioned at the end of the last section asserts that
this global hypothesis (augmented to allow for induction arguments) implies the
Langlands-Shelstad transfer conjecture for any endoscopic datum G′ for G over k.
We suppose that for each elliptic endoscopic datum G′ ∈ Eell(G) of G over k, we
have chosen sets Φ(G̃′, ζ̃ ′), as above. If f belongs to Hcusp(G, ζ), f ′ belongs to
SI(G̃′, ζ̃ ′), by our assumption. Since the orbital integrals of f are supported on
the elliptic set, f ′ in fact belongs to the subspace SIcusp(G̃′, ζ̃ ′) of SI(G̃′, ζ̃ ′). We
can therefore define f ′(φ′) by (28.1), for any element φ′ ∈ Φ2(G̃′, ζ̃ ′). As a linear
form on Hcusp(G, ζ), f ′(φ′) is easily seen to be the restriction of some distribution
in F(G, ζ). It therefore has an expression

(28.2) f ′(φ′) =
∑

τ∈Tell(G,ζ)

∆G(φ′, τ)fG(τ), f ∈ Hcusp(G, ζ),

in terms of the basis Tell(G, ζ).
The coefficients ∆G(φ′, τ) in (28.2) are to be regarded as spectral transfer

factors. They are defined a priori for elements φ′ ∈ Φ2(G̃′, ζ̃ ′) and τ ∈ Tell(G, ζ).
However, it is easy to extend the construction to general elements φ′ ∈ Φ(G̃′, ζ̃ ′)
and τ ∈ T (G, ζ). To do so, we represent φ′ and τ respectively as Weyl orbits {φ′

M ′}
and {τM} of elliptic elements φ′

M ∈ Φ2(M̃ ′, ζ̃ ′) and τM ∈ Tell(M, ζ) attached to
Levi subgroups M̃ ′ ⊂ G̃′ and M ⊂ G. We then define ∆G(φ′, σ) = 0 unless M ′ can
be identified with an elliptic endoscopic group for M , in which case we set

∆G(φ′, τ) =
∑

w∈W (M)

∆M (φ′
M ′ , wτM ).

It is not hard to deduce that for a fixed value of one of the arguments, ∆G(φ′, τ)
has finite support in the other.

Suppose now that f is any function in H(G, ζ). For any G′ ∈ Eell(G), we define
the spectral transfer of f to be the function

f ′
gr(φ

′) =
∑

τ∈T (G,ζ)

∆G(φ′, τ)fG(τ), φ′ ∈ Φ′(G̃′, ζ̃ ′).

(The subscript gr stands for the grading on the space I(G, ζ) provided by the basis
T (G, ζ) of F(G, ζ).) It is by no means clear, a priori, that f ′

gr coincides with the
Langlands-Shelstad transfer f ′. The problem is this. We defined the coefficients
∆G(φ′, τ) by stabilizing elliptic (virtual) characters Tell(G, ζ) on the elliptic set.
However, these characters also take values at nonelliptic elements. Why should
their stabilization on the elliptic set, where they are uniquely determined, induce a
corresponding stabilization on the nonelliptic set? The answer is provided by the
following theorem.
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Theorem 28.1. (a) Suppose that G is quasisplit and that φ ∈ Φ(G, ζ). Then
the distribution

f −→ fG
gr(φ), f ∈ H(G, ζ),

is stable, and therefore lifts to a linear form

fG −→ fG(φ), f ∈ H(G, ζ),

on SI(G, ζ).
(b) Suppose that G is arbitrary, that G′ ∈ Eell(G), and that φ′ ∈ Φ(G̃′, ζ̃ ′).

Then

f ′(φ′) = f ′
gr(φ

′), f ∈ H(G, ζ).

Remark. The theorem asserts that for any φ′ ∈ Φ(G̃′, ζ̃ ′), the mapping f →
f ′(φ′) is a well defined element in F(G, ζ), with an expansion

(28.3) f ′(φ′) =
∑

τ∈T (G,ζ)

∆G(φ′, τ)fG(τ), f ∈ H(G, ζ).

Since Π(G, ζ) is another basis of F(G, ζ), we could also write

(28.4) f ′(φ′) =
∑

π∈Π(G,ζ)

∆G(φ′, π)fG(π),

for complex numbers ∆G(φ′, π).

The two assertions (a) and (b) of the theorem coincide with Theorems 6.1 and
6.2 of [A22], the main results of that paper. The proof is global. One chooses a
suitable group over F that is isomorphic to G over k = Fv. By taking a global test
function that is cuspidal at two places distinct from v, one can apply the simple trace
formula of Corollary 23.6. The fundamental lemma and the Langlands-Shelstad
transfer mapping provide a transfer of global test functions to endoscopic groups.
One deduces the assertions of the theorem by a variant of the arguments used to
establish Theorem 25.1(b) [DKV] and local base change [AC, §1]. �

We have taken some time to describe a weak form of spectral transfer. This is of
course needed to stabilize the general trace formula. However, we would also like to
contrast it with the stronger version expected from the theory of endoscopy, which
among many other things, ought to give rise to compatible normalizing factors. For
we are trying to see why we need another form of the invariant trace formula.

One expects to be able to identify Φ(G) with the set of Langlands parameters.
A Langlands parameter for G is a Ĝ-conjugacy class of relevant L-homomorphisms

φ : Lk −→ LG,

from the local Langlands group

Lk = Wk × SU(2)

to the Weil form LG = Ĝ � Wk of G over k = Fv. (In this context, an L-
homomorphism is a continuous homomorphism for which the image in Ĝ of any
element is semisimple, and which commutes with the projections of Lk and LG
onto Wk. Relevant means that if the image of φ is contained in a Levi subgroup
LM of LG, then LM must be the L-group of a Levi subgroup M of G over k.) Let
us temporarily let Φ(G) denote the set of such parameters, rather than the abstract
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indexing set above. Then Φtemp(G) corresponds to those homomorphisms whose
image projects to a relatively compact subset of Ĝ. The subset Φ2(G) corresponds
to mappings whose images are contained in no proper Levi subgroup LM of LG,
while Φtemp,2(G) is of course the intersection of Φtemp(G) with Φ2(G). For any
φ, one writes Sφ for the centralizer in Ĝ of the image of φ, and Sφ for the group
of connected components of the quotient Sφ = Sφ/Z(Ĝ)Γk . The R-group Rφ of φ
is defined as the quotient of Sφ by the subgroup of components that act by inner
automorphism on S

0

φ. A choice of Borel subgroup in the connected reductive group
Sφ induces an embedding of Rφ into Sφ.

In the case that G is abelian, Langlands constructed a natural bijection φ→ π
from the set of parameters Φ(G) onto the set Π(G) of quasicharacters on G [Lan12].
We can therefore set

Sell(φ, γ) = Θ(π, γ) = π(γ), γ ∈ G(k),

in this case. For example, if G = GL(1), a parameter in Φ(G) is tantamount to a
continuous homomorphism

Lk = Wk × SU(2) −→ Ĝ = C∗.

Since SU(2) is its own derived group, and the abelianization of Wk is isomorphic
to k∗ ∼= G(k), a parameter does indeed correspond to a quasicharacter. If G is a
general group, with central torus Z, there is a canonical homomorphism from LG to
LZ. A parameter in Φ(G) then yields a quasicharacter ζ on Z, whose corresponding
parameter is the composition

Lk
φ−→ LG −→ LZ.

The entire set of parameters Φ(G) thus decomposes into a disjoint union over ζ of
the subsets Φ(G, ζ) with central quasicharacter ζ on Z.

Suppose that ζ is a character on Z. For each parameter φ ∈ Φtemp(G, ζ), it
is expected that there is a canonical nonnegative integer valued function dφ(π) on
Πtemp(G, ζ) with finite support, such that the distribution

f −→ fG(φ) =
∑

π

dφ(π)fG(π), f ∈ H(G, ζ),

is stable. The sum

S(φ, δ) =
∑

π

dφ(π)I(π, γ), γ ∈ Γreg(G),

would then depend only on the stable conjugacy class δ of γ. Moreover, the finite
packets

Πφ =
{
π ∈ Πtemp(G, ζ) : dφ(π) > 0

}
, φ ∈ Φtemp(G, ζ),

are supposed to be disjoint, and have union equal to Πtemp(G, ζ). The subset
Πtemp,2(G, ζ) of Πtemp(G, ζ) should be the disjoint union of packets Πφ, in which φ
ranges over the subset Φtemp,2(G, ζ) of Φtemp(G, ζ).

Suppose that these properties hold in general, and that G′ ∈ Eell(G) and
φ′ ∈ Φtemp(G̃′, ζ̃ ′). Then f ′(φ′) is a well defined linear form in f ∈ H(G, ζ).
The pair (G̃′, ζ̃ ′) is constructed in such a way that φ′ maps to a parameter φ ∈
Φtemp(G, ζ). For example, if G̃′ happens to equal G′, φ is just the composition of
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φ′ with the underlying embedding of LG′ into LG. It is believed that the expansion
of f ′(φ′) into irreducible characters on G takes the form

(28.5) f ′(φ′) =
∑

π∈Πφ

∆G(φ′, π)fG(π),

for complex coefficients ∆G(φ′, π) that are supported on the packet Πφ.
The other basis Ttemp(G, ζ) would also have a packet structure. For the ele-

ments of Πφ ought to be irreducible constituents of induced representations

(28.6) IP (σ), P ∈ P(M), σ ∈ ΠφM
,

where M ⊂ G is a minimal Levi subgroup whose L-group LM ⊂ LG contains the
image of φ, and φM is the parameter in Φtemp,2(M, ζ) determined by φ. Recall
that as a representation in Π2(M, ζ), σ has its own R-group Rσ. In terms of the
R-group of φ, Rσ ought to be the stabilizer of σ under the dual action of Rφ on M .
Let Tφ be the subset of Ttemp(G, ζ) represented by triplets

(M,σ, r), σ ∈ ΠφM
, r ∈ Rσ.

If the packet Πφ is defined as above, the packet Tφ gives rise to a second basis of
the subspace of F(G, ζ) spanned by Πφ. It provides a second expansion

(28.7) f ′(φ′) =
∑

τ∈Tφ

∆G(φ′, τ)fG(τ),

for complex coefficients ∆G(φ′, τ). As φ varies over Φtemp(G, ζ), Ttemp(G, ζ) is a
disjoint union of the corresponding packets Tφ.

Given their expected properties, Langlands’ parameters become canonical in-
dexing sets. If G is quasisplit and Z contains AG, we can set

Sell(φ, δ) =

{
S(φ, δ), if δ ∈ ∆reg,ell(G),
0, otherwise,

for any φ ∈ Φ2(G, ζ). The family {Sell(φ, ·)} then serves as the basis of SIcusp(G, ζ)
chosen earlier. The improvement of the conjectural transfer (28.5) or (28.7) over
the weaker version (28.4) or (28.3) that one can actually prove (modulo the fun-
damental lemma) is obvious. For example, the hypothetical coefficients in (28.5)
are supported on disjoint sets parametrized by Φtemp(G, ζ). However, the actual
coefficents in (28.4) could have overlapping supports, for which we have no control.

The hypothetical coefficients in (28.5) are expected to have further striking
properties. Suppose for example that G is quasisplit. In this case, it seems to be
generally believed that coefficients will give a bijection from Πφ onto the set Ŝφ of
irreducible characters on Sφ. This bijection would depend on a noncanonical choice
of any base point π1 in Πφ at which the integer dφ(π1) = ∆G(φ, π1) equals 1. The
irreducible character attached to any π ∈ Πφ ought then to be the function

(28.8) s→ 〈s, π|π1〉 = ∆(φ′, π)∆(φ′, π1)−1, s ∈ Sφ,

where s is the projection onto Sφ of the semisimple element s′ ∈ Sφ attached to the
elliptic endoscopic datum G′. There is also a parallel interpretation that relates the
hypothetical coefficients (28.7) and the packets Tφ with the representation theory
of the finite groups Sφ. In the case that G is not quasisplit, similar properties are
expected, but they are weaker and not completely understood. (See [LL], [Lan10,
§IV.2].)
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We have been assuming that the parameter φ is tempered. Suppose now that
φ is a general parameter. Then φ is the image in Φ(G) of a twist φM,λ, for a Levi
subgroup M ⊂ G, a tempered parameter φM ∈ Φtemp(M), and a point λ in the
chamber (a∗M )+P in a∗M attached to a parabolic subgroup P ∈ P(M). The packet
Πφ can be defined to be the set of irreducible representations obtained by taking
the unique irreducible quotient (the Langlands quotient) of each representation

(28.9) IP (πM,λ), πM ∈ ΠφM
.

Similar constructions allow one to define the packet Tφ in terms of the tempered
packet TφM

. One can thus attach conjectural packets to nontempered parameters.
The Langlands classification for real groups [Lan11] extends to p-adic groups, to the
extent that it reduces the general classification to the tempered case [BW, §XI.2].
Combined with the expected packet structure of tempered representations, it then
gives a conjectural classification of Π(G) into a disjoint union of finite packets Πφ,
indexed by parameters φ ∈ Φ(G). Moreover, for φ, φM , and λ as above, the finite
group Sφ equals the corresponding group SφM

attached to the tempered parameter
φM for M . We can therefore relate the representations in Πφ to characters on
Sφ, if we are able to relate the representations in the tempered packet ΠφM

with
characters in SφM

. However, the nontempered analogues of the character relations
(28.5) and (28.7) will generally be false.

Suppose that G = GL(n). In this case, the centralizer Sφ of the image of
any parameter φ ∈ Φ(G) is connected. The group Sφ is therefore trivial, and the
corresponding packet Πφ should consequently contain exactly one element. The
Langlands classification for G = GL(n) thus takes the form of a bijection between
parameters φ ∈ Φ(G) and irreducible representations π ∈ Π(G). It has recently
been established by Harris and Taylor [HT] and Henniart [He].

We have assumed that the local field k was nonarchimedean. The analogues
for archimedean fields k = Fv of the conjectural properties described above have all
been established. They are valid as stated, except that Lk is just the Weil group
Wk, and the correspondence Πφ → Ŝφ is an injection rather than a bijection. As
we mentioned earlier, the classification of irreducible representations Π(G) in terms
of parameters φ ∈ Φ(G) was established by Langlands and Knapp-Zuckermann.
(See [KZ1].) The transfer identities (28.5) and (28.7) for tempered parameters φ,
together with the description of packets in terms of characters Ŝφ, were established
by Shelstad [She2], [She3]. In particular, there is a classification of irreducible
representations of G(k) in terms of simple invariants attached to the dual group
LG. One would obviously like to have a similar classification for nonarchimedean
fields.

One reason for wanting such a classification is to give a systematic construction
of L-functions for irreducible representations. Suppose that k = Fv is any comple-
tion of F . One can attach a local L-function L(s, r) and ε-factor ε(s, r, ψ) of the
complex variable s to any (continuous, semisimple) representation r of the local
Weil group Wk, and any nontrivial additive character ψ: k → C. The ε-factors are
needed for the functional equations of L-functions attached to representations of
the global Weil group WF . Deligne’s proof [D1] that they exist and have the appro-
priate properties in fact uses global arguments. Suppose that the local Langlands
conjecture holds for G = Gv. That is, any irreducible representation π ∈ Π(G)
lies in the packet Πφ attached to a unique parameter φ. We write φW for the
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restriction of φ to the subgroup Wk of Lk. Suppose that ρ is a finite dimensional
representation of the L-group LG. We can then define a local L-function

(28.10) L(s, π, ρ) = L(s, ρ ◦ φW )

and ε-factor

(28.11) ε(s, π, ρ, ψ) = L(s, ρ ◦ φW , ψ)

in terms of corresponding objects for Wk. For example, suppose that k = Fv is
nonarchimedean, and that π, ρ, and ψ are unramified. Then π is parametrized by a
semisimple conjugacy class c = c(π) in LG. The associated parameter φ: Lk → LG
is trivial on both SU(2) and the inertia subgroup Ik of Wk. It maps the element
Frobk that generates the cyclic quotient Wk/Ik to c. In this case, ε(s, π, ρ, ψ) = 1,
and

L(s, π, ρ) = det
(
1− ρ(c)q−s

)
,

where q = qv.
Langlands has conjectured that local L-functions give canonical normalizing

factors for induced representations. Suppose that π ∈ Π(M) is an irreducible rep-
resentation of a Levi subgroup M of G over k = Fv. Recall that the unnormalized
intertwining operators

JQ|P (πλ) : IP (πλ) −→ IQ(πλ), P,Q ∈ P(M),

between induced representations are meromorphic functions of a complex variable
λ ∈ a∗M,C. Let ρQ|P be the adjoint representation of LM on the Lie algebra of the

intersection of the unipotent radicals of the parabolic subgroups P̂ and Q̂ of Ĝ. We
can then set

(28.12) rQ|P (πλ) = L(0, πλ, ρQ|P )
(
ε(0, πλ, ρ

∨
Q|P , ψ)L(1, πλ, ρQ|P )

)−1
,

assuming of course that the functions on the right have been defined. Langlands
conjectured [Lan5, Appendix II] that for a suitable normalization of Haar measures
on the groups NQ ∩NP̄ , these meromorphic functions of λ are an admissible set of
normalizing factors, in the sense that they satisfy the conditions of Theorem 21.4.
It is this conjecture that Shahidi established in case G = GL(n), and that was
used in the applications described in §25 and §26. (We recall that for GL(n), the
relevant local L and ε-factors were defined independently of Weil groups. Part of
the recent proof of the local Langlands classification for GL(n) by Harris-Taylor
and Henniart was to show that these L and ε-factors were the same as the ones
attached to representations of Wk.)

However, we do not have a general classification of representations in the pack-
ets Πφ. We therefore cannot use (28.10) and (28.11) to define the factors on the
right hand side of (28.12). The canonical normalization factors are thus not avail-
able. This is our pretext for normalizing the weighted characters in a different
way.

Instead of normalizing factors r = {rQ|P (πλ)}, we use Harish-Chandra’s canon-
ical family µ = {µQ|P (πλ)} of µ-functions. We recall that

µQ|P (πλ) =
(
JQ|P (πλ)JP |Q(πλ)

)−1 =
(
rQ|P (πλ)rP |Q(πλ)

)−1
,

for any Q,P ∈ P(M), π ∈ Π(M) and λ ∈ a∗M,C. Suppose that π is in general
position, in the sense that the unnormalized intertwining operators JQ|P (πλ) are
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analytic for λ ∈ ia∗M . For fixed P , the operator valued family

JQ(Λ, π, P ) = JQ|P (π)−1JQ|P (πΛ), Q ∈ P(M),

is a (G,M)-family of functions of Λ ∈ ia∗M . The normalized weighted characters
used in the original invariant trace formula were constructed from the product
(G,M)-family

RQ(Λ, π, P ) = rQ(Λ, π, P )−1JQ(Λ, π, P ),

where

rQ(Λ, π, P ) = rQ|P (π)−1rQ|P (πΛ).

The normalized weighted characters for the second version are to be constructed
from the product (G,M)-family

(28.13) MQ(Λ, π, P ) = µQ(Λ, π, P )JQ(Λ, π, P ),

where

µQ(Λ, π, P ) = µQ|P (π)−1µQ|P (π 1
2Λ).

They are defined by setting

(28.14) JM (π, f) = tr
(
MM (π, P )IP (π, f)

)
, f ∈ H(G),

where

(28.15) MM (π, P ) = lim
Λ→0

∑
Q∈P(M)

MQ(Λ, π, P )θQ(Λ)−1,

as usual. Notice that we are using the same notation for the two sets of normalized
weighted characters. It there is any danger of confusion, we can always denote the
original objects by Jr

M (π, f), and the ones we have just constructed by Jµ
M (π, f).

Proposition 28.2. The linear form JM (π, f) = Jµ
M (π, f), defined for

π ∈ Π(M) in general position, is independent of the fixed group P ∈ P(M). More-
over, if π ∈ Πunit(M) is any unitary representation, JM (πλ, f) is an analytic func-
tion of λ ∈ ia∗M .

The two assertions are among the main results of [A24]. We know that for
the original weighted characters Jr

M (π, λ), the assertions are simple consequences
of the properties of the normalizing factors r. We form a second (G,M)-family

rQ(Λ, π) = rQ|Q(π)−1rQ|Q(π 1
2Λ), Q ∈ P(M),

from the normalizing factors. The new weighted characters are then related to the
original ones by an expansion

Jµ
M (π, f) =

∑
L∈L(M)

rL
M (π)Jr

L(πL, f),

which one derives easily from the relations between the functions {rQ|P (πλ)} and
{µQ|P (πλ)} [A24, Lemma 2.1]. The first assertion follows immediately [A24,
Corollary 2.2]. To establish the second assertion, one shows that for π ∈ Πunit(M),
the functions rL

M (πλ) are analytic on ia∗M [A24, Proposition 2.3]. �
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29. The stable trace formula

In this section, we shall discuss the solution to the problem posed at the end
of §27. We shall describe how to stabilize all of the terms in the invariant trace
formula. The stabilization is conditional upon the fundamental lemma. It is also
contingent upon a generalization of the fundamental lemma, which applies to un-
ramified weighted orbital integrals.

The results are contained in the three papers [A27], [A26], and [A29]. They
depend on other papers as well, including some still in preparation. Our discussion
will therefore have to be quite limited. However, we can at least try to give a
coherent statement of the results. The techniques follow the model of inner twistings
of GL(n), outlined in some detail in §25. However, the details here are considerably
more elaborate. The results discussed in this section are in fact the most technical
of the paper.

We have of course to return to the global setting, with which we were preoccu-
pied before the local interlude of the last section. Then G is a fixed reductive group
over the number field F . There are two preliminary matters to deal with before we
can consider the main problem.

The first is to reformulate the invariant trace formula for G. Since it is based
on the construction at the end of the last section, this second version does not
depend on the normalization of intertwining operators. In some ways, it is slightly
less elegant than the original version, but the two are essentially equivalent. In
particular, our stabilization of the second version would no doubt give a stabilization
of the first, if we had the compatible normalizing factors provided by a refined local
correspondence of representations.

Our reformulation of the invariant trace formula entails a couple of other minor
changes. It applies to test functions f on the group GV = G(FV ), where V is a
finite set of valuations of F that contains the set Sram = Sram(G) of places at which
G is ramified. We can take V to be large. However, we want to distinguish it from
the large finite set S that occurs on the geometric side of the original formula. In
relating the two versions of the formula, S would be a finite set of places that is
large relative to both V and the support of some chosen test function on GV . The
terms in our second version will be indexed by conjugacy classes in MV (rather than
M(Q)-conjugacy classes or (M,S)-classes) and irreducible representations of MV

(rather than automorphic representations of M(A)). In order to allow for induction
arguments, we also need to work with equivariant test functions on GV . We fix a
suitable central torus Z ⊂ G over F , and a character ζ on Z(A)/Z(F ). We then
assume that V contains the larger finite set Sram(G, ζ) of valuations at which any
of G, Z or ζ ramifies. We write GZ

V for the subgroup of elements x ∈ GV such that
HG(x) lies in the image of aZ in aG, and ζV for the restriction of ζ to ZV . Our test
functions are to be taken from the Hecke algebra

H(G, V, ζ) = H(GZ
V , ζV ),

and its invariant analogue

I(G, V, ζ) = I(GZ
V , ζV ).

Observe that if Z equals 1, GZ
V equals the group G(FV )1. In this case, H(G, V, ζ)

embeds in the original space H(G) = H
(
G(A)1

)
of test functions.
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There is a natural projection from the subspaceH(G, V ) = H
(
G(FV )1

)
ofH(G)

onto H(G, V, ζ). Let J be the basic linear form on H(G) whose two expansions give
the noninvariant trace formula. If f lies in H(G), and fz denotes the translate of
f by a point z ∈ Z(A)1, the integral∫

Z(F )\Z(A)1
J(fz)ζ(z)dz

is well defined. If f belongs to the subspace H(G, V ), the integral depends only on
the image of f in H(G, V, ζ). It therefore determines a linear form on H(G, V, ζ),
which we continue to denote by J . To make this linear form invariant, we define
mappings

(29.1) φM : H(G, V, ζ) −→ I(M,V, ζ), M ∈ L,

in terms of the weighted characters at the end of last section. In other words,
the operator valued weight factor is to be attached to a product over v ∈ V of
(G,M)-families (28.13), rather than the (G,M)-family defined in §23 in terms of
normalized intertwining operators. The mapping itself is defined by an integral
analogous to (23.2) (with X = 0), but over a domain ia∗M,Z/ia

∗
G,Z (where ia∗M,Z is

the subspace of elements in ia∗M that vanish on the image of ia∗Z on ia∗M ). It follows
from the proof of Propositions 23.1 and 28.2 that φM does indeed map H(G, V, ζ) to
I(M,V, ζ). We can therefore define an invariant linear form I = IG on H(G, V, ζ)
by the analogue of (23.10). The problem is to transform the two expansions of
Theorem 23.4 into two expansions of this new linear form.

We define weighted orbital integrals JM (γ, f) for functions f ∈ H(G, V, ζ) ex-
actly as in §18. The element γ is initially a conjugacy class in MZ

V . However,
JM (γ, f) depends only on the image of γ in the space D(MZ

V , ζV ) of invariant
distributions on MZ

V , defined as at the beginning of §28. We can therefore regard
JM (·, f) as a linear form on the subspace Dorb(MZ

V , ζV ) of D(MZ
V , ζV ) generated by

conjugacy classes. There is actually a more subtle point, which we may as well raise
here. As it turns out, stabilization requires that JM (γ, f) be defined for all elements
in the space D(MZ

V , ζ). If v is nonarchimedean, Dorb(Mv, ζv) equals D(Mv, ζv). In
this case, there is nothing further to do. However, if v is archimedean, D(Mv, ζv) is
typically much larger than Dorb(Mv, ζv), thanks to the presence of normal deriva-
tives along conjugacy classes. The construction of weighted orbital integrals at
distributions in this larger space demands a careful study of the underlying differ-
ential equations. Nevertheless, one can in the end extend JM (γ, f) to a canonical
linear form on the space D(MZ

V , ζV ). (See [A31].) One then uses the mappings
(29.1) as in (23.3), to define invariant distributions

IM (γ, f), γ ∈ D(MZ
V , ζV ), f ∈ H(G, V, ζ).

These distributions, with γ restricted to the subspace Dorb(MZ
V , ζV ) of D(MZ

V , ζV ),
will be the terms in the geometric expansion.

The coefficients in the geometric expansion should really be regarded as ele-
ments in D(MZ

V , ζV ), or rather, the appropriate completion D̂(MZ
V , ζV ) of

D(MZ
V , ζV ). As such, they have a natural pairing with the linear forms IM (·, f) on

D(MZ
V , ζV ). However, we would like to work with an expansion like that of (23.11).

We therefore identify D̂(MZ
V , ζV ) with the dual space of D(MZ

V , ζV ) by fixing a
suitable basis of Γ(MZ

V , ζV ) of D(MZ
V , ζV ). Since we can arrange that the elements
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in
Γorb(MZ

V , ζV ) = Γ(MZ
V , ζV ) ∩ Dorb(MZ

V , ζV )
be parametrized by conjugacy classes in MV = MV /ZV , we will still be dealing
essentially with conjugacy classes. We define coefficient functions on Γ(MZ

V , ζV ) by
compressing the corresponding coefficients in (23.11). It is done in two stages. For
a given γM ∈ Γ(MV , ζV ), we choose a large finite set S ⊃ V , and take k to be a
conjugacy class in M(FS

V ) that meets KS
V . We then define a function aM

ell(γM × k)
as a certain finite linear combination of coefficients aM (γ) in (23.11), taken over
those (M,S)-equivalence classes γ ∈ Γ(M)S that map to γM × k [A27, (2.6)]. For
any given k, we can form the unramified weighted orbital integral

(29.2) rG
M (k) = JM (k, uV

S ),

where uV
S = uV,ζ

S is the projection onto H(GV
S , ζV

S ) of the characteristic function of
KV

S . If γ is now an element in Γ(GZ
V , ζV ), we set

(29.3) aG(γ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
k

aM
ell(γM × k)rG

M (k),

where γ → γM is the restriction operator that is adjoint to induction of conjugacy
classes (and invariant distributions). (See [A27, (2.8), (1.9)].)

Proposition 29.1. Suppose that f ∈ H(G, V, ζ). Then

I(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈Γ(M,V,ζ)

aM (γ)IM (γ, f),

where Γ(M,V, ζ) is a discrete subset of Γ(MZ
V , ζV ) that contains the support of

aM (γ), and on which IM (γ, f) has finite support.

See [A27, Proposition 2.2]. �
The spectral expansion of I(f) begins with the decomposition

(29.4) I(f) =
∑
t≥0

It(f), f ∈ H(G, V, ζ),

relative to the norms t of archimedean infinitesimal characters. The summand It(f)
is as in Remark 10 of §23, the invariant version of a linear form Jt(f) on H(G, V, ζ)
defined as at the end of §21. The sum itself satisfies the weak multiplier estimate
(23.13), and hence converges absolutely. We shall describe the spectral expansion
of It(f).

We define weighted characters JM (π, f), for functions f ∈ H(G, V, ζ), by a
minor modification of the construction of §22. The element π lies in Πunit(MV , ζV ),
and can therefore be regarded as a distribution in the space F(GZ

V , ζV ). As with
the mappings (29.1), JM (π, f) is defined in terms of the product over v ∈ V of
(G,M)-families in (28.13), and an integral analogous to (22.4), but over a domain
ia∗M,Z/ia

∗
G,Z . We then form corresponding invariant distributions IM (π, f) from

the mappings (29.1) as in (23.4) (or rather the special case of (23.4) with X = 0).
The coefficients in the spectral expansion are parallel to those in the geometric

expansion. The analogues of the classes k in (29.3) are families

c = {cv : v �∈ V }
of semisimple conjugacy classes in LM . We allow only those classes of the form
c = c(πV ), where πV = πV (c) is an unramified representation of MV = M(AV )
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whose ZV -central character is equal to the corresponding component ζV of ζ. There
is an obvious action

c −→ cλ = {cv,λ : v �∈ S}, λ ∈ ia∗M,Z ,

such that πV (cλ) = πV (c)λ. If πV (c) is unitary, we write

π × c = π ⊗ πV (c)

for the representation in Πunit

(
M(A), ζ

)
attached to any representation π in

Πunit(MV , ζV ). Similar notation holds if π belongs to the quotient Πunit(MZ
V , ζV )

of Πunit(MV , ζV ), with the understanding that π is identified with a representa-
tive in Πunit(MV , ζV ). We define Πt,disc(M,V, ζ) to be the set of representations
π ∈ Πunit(MZ

V , ζV ) such that for some c, π × c belongs to the subset Πt,disc(M, ζ)
of Πt,disc(M) attached to ζ. We also define CV

disc(M, ζ) to be the set of c such that
π × c belongs to Πt,disc(M, ζ), for some t and some π ∈ Πt,disc(M, ζ).

If c belongs to CV
disc(M, ζ) and λ ∈ a∗M,Z,C, the unramified L-function

L(s, cλ, ρ) =
∏
v �∈V

det
(
1− ρ(cv,λ)q−s

v

)−1

converges absolutely for Re(s) large. In case ρ is the representation ρQ|P of LM ,
it is known that L(s, cλ, ρ) has analytic continuation as a meromorphic function of
s, and that for any fixed s, L(s, cλ, ρ) is a meromorphic function of λ ∈ a∗M,Z,C.
Following (28.12), we define the unramified normalizing factor

rQ|P (cλ) = L(0, cλ, ρQ|P )L(1, cλ, ρ
∨
Q|P )−1, P,Q ∈ P(M).

We then define a (G,M)-family

rQ(Λ, cλ) = rQ|Q̄(cλ)−1rQ|Q̄(cλ+ 1
2Λ), Q ∈ P(M),

and a corresponding meromorphic function

(29.5) rG
M (cλ) = lim

Λ→0

∑
Q∈P(M)

rQ(Λ, cλ)θQ(Λ)−1

of λ. One shows that rG
M (cλ) is an analytic function of λ ∈ ia∗M,Z , whose integral

against any rapidly decreasing function of λ converges [A27, Lemma 3.2]. If π is
now a representation in Πt,unit(GV , ζV ), we define

(29.6) aG(π) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
c

aM
disc(πM × c)rG

M (c),

where π → πM is the restriction operation that is adjoint to induction of characters.
We define a subset Πt(G, V, ζ) of Πt,unit(GV , ζV ), which contains the support of
aG(π), and a measure dπ on Πt(G, V, ζ) by following the appropriate analogues of
(22.6) and (22.7). (See [A27, p. 205].)

Proposition 29.2. Suppose that f ∈ H(G, V, ζ). Then

It(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∫
Πt(M,V,ζ)

aM (π)IM (π, f)dπ.

(See [A27, Proposition 3.3].) �
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The identity obtained from (29.4) and Propositions 29.1 and 29.2 is the required
reformulation of the invariant trace formula. Observe that the spectral factors
rG
M (c) in the coefficients (29.6) are constructed from canonical unramified normal-

izing factors, while their counterparts rG
M (πλ) in the earlier coefficients (22.8) were

constructed from noncanonical global normalizing factors. This is a consequence
of the modified definition of the mappings (29.1). The geometric factors rG

M (k) in
the coefficients (29.3) have no counterparts in the earlier coefficients (19.6). They
occur in the original geometric expansion (23.11) instead as implicit factors of the
distributions IM (γ, f). This is because the set V is fixed, whereas S is large, in a
sense that depends on the support of f ∈ H(G, V, ζ).

The second preliminary matter pertains directly to the notion of stability. If
T is a maximal torus in G over F , and v is archimedean, the subset D(T/Fv) of
E(T/Fv) in (27.4) can be proper. On the other hand, the v-components of the
summands fκ

G(δ) in Langlands’ stabilization (27.6) are parametrized by points κv

in the dual group K(T/Fv) of E(T/Fv). If D(T/Fv) is proper in E(T/Fv), the
mapping

fv −→ fκv

v,G(δv), κv ∈ K(T/Fv), fv ∈ H(Gv),

from functions fv,G ∈ I
(
G(Fv)

)
to functions on K(T/Fv), is not surjective. This

makes it difficult to characterize the image of the collective transfer mappings

I(G, V, ζ) −→
⊕
G′

SI(G̃′, V, ζ̃ ′).

It was pointed out by Vogan that the missing elements in D(T/Fv) could be
attached to other groups. He observed that E(T/Fv) could be expressed as a disjoint
union

E(T/Fv) =
∐

Dαv
(T/Fv),

over sets Dαv
(T/Fv) attached to a finite collection of groups Gαv

over Fv related
by inner twisting. (See [AV] and [ABV] for extensions and applications of this
idea.) Kottwitz then formulated the observations of Vogan in terms of the transfer
factors. His formulation gives rise to a notion that was called a K-group in [A25].
Over the global field F , a K-group is an algebraic variety

G =
∐
α

Gα, α ∈ π0(G),

whose connected components are reductive algebraic groups Gα over F , and which is
equipped with two kinds of supplementary structure. One consists of cohomological
data, which include inner twists ψαβ

: Gβ → Gα between any two components. The
other is a local product structure, which for any finite set V ⊃ Vram(G) allows us
to identify the set

GV =
∐
α

Gα,V =
∐
α

Gα(FV )

with a product ∏
v∈V

Gv =
∏
v∈V

Gv(Fv)

of Fv-points in local K-groups Gv over Fv. The local K-group Gv is a finite disjoint
union

Gv =
∐
αv

Gαv
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of connected groups if v is archimedean, but it is just a connected group if v is
nonarchimedean. In particular, the set Vram(G) = Vram(Gα) is independent of α.
(See [A27, p. 209–211].)

We assume for the rest of this section that G is a K-group over F . Many
concepts for connected groups carry over to this new setting without change in
notation. For example, we define Γreg(GV ) to be the disjoint union over α of the
corresponding sets Γreg(Gα,V ) for the connected groups Gα. Similar conventions
apply to the sets Π(GV ), Πunit(GV ), and Πtemp(GV ) of irreducible representations.
We define compatible central character data Z = {Zα} and ζ = {ζα} for G by
choosing data Zα and ζα for any one component Gα. This allows us to form the sets
Π(GV , ζV ), Πunit(GV , ζV ), and Πtemp(GV , ζV ) as disjoint unions of corresponding
sets attached to components Gα. We can also define the vector spaces H(GV , ζV ),
H(G, V, ζ), I(GV , ζV ), I(G, V, ζ), D(GZ

V , ζV ), F(GZ
V , ζV ), etc., by taking direct

sums of the corresponding spaces attached to components Gα. Finally, we define
sets Γ(GZ

V , ζV ), Γ(G, V, ζ), Πt(GZ
V , ζV ), Πt(G, V, ζ), and Πt,disc(G, V, ζ), again as

disjoint unions of corresponding sets attached to components Gα.
There is also a notion of Levi subgroup (or more correctly, Levi K-subgroup)

M of G. For any such M , the objects aM , AM , W (M), P(M), L(M), and F(M)
all have meaning, and play a role similar to that of the connected case. (See [A25,
§1].) We again write L for the set L(M0) attached to a fixed minimal Levi subgroup
M0 of G. With these conventions, the objects in the expansions of Proposition 29.1
and 29.2 now all have meaning for the K-group G over F . The invariant trace
formula for G is an identity∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈Γ(M,V,ζ)

aM (γ)IM (γ, f)

=
∑

t

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Πt(M,V,ζ)

aM (π)IM (π, f)dπ,
(29.7)

which holds for any f ∈ H(G, V, ζ). It is obtained by applying (29.4) and Proposi-
tions 29.1 and 29.2 to the components fα ∈ H(Gα,V , ζα,V ) of f , and then summing
the resulting expansions over α.

Stable conjugacy in GV has to be formulated slightly differently. We define
two strongly regular elements γ ∈ Gα,V and δ ∈ Gβ,V to be stably conjugate if
ψαβ(δ) is stably conjugate in Gα,V to γ. We then define SI(GV , ζV ) as a space of
functions on the set ∆reg(GV ) of strongly regular stable conjugacy classes in GV .
This leads to the notion of a stable distribution on GV , and allows us to define
the subspaces SD(GV , ζV ) and SF(GV , ζV ) of stable distributions in D(GV , ζV )
and F(GV , ζV ) respectively. The conventions here are just minor variations of
what we used for connected groups. We define a quasisplit inner twist of G to
be a connected, quasisplit group G∗ over F , together with a family of inner twists
ψα: Gα → G∗ of connected groups such that ψβ = ψα ◦ ψαβ . For any such G∗,
there is a canonical injection δ → δ∗ from ∆reg(GV ) to ∆reg(G∗

V ). There is also
a surjective mapping S∗ → S from the space of stable distributions on G∗

V to the
space of stable distributions on GV . We say that G is quasisplit if one of the
components Gα is quasisplit. In this case, the mapping δ → δ∗ is a bijection, and
the mapping S∗ → S is an isomorphism.

Because the components Gα of G are related by inner twists, they can all be
assigned a common dual group Ĝ, and a common L-group LG. We recall that
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endoscopic data were defined entirely in terms of Ĝ. We can therefore regard them
as objects G′ attached to the K-group G. The same holds for auxiliary data G̃′

and ξ̃′ attached to G′. Similarly, local endoscopic data G′
v, with auxiliary data G̃′

v

and ξ̃′v, are objects attached to the local K-group Gv.
The main new property is a natural extension of the Langlands-Shelstad con-

struction of local transfer factors to K-groups. For any Gv, G̃′
v and ξ̃′v, it provides

a function ∆Gv
(δ′v, γv) of δ′v ∈ ∆G-reg(G̃′

v) and γv ∈ Γreg(Gv). (See [A25, §2].)
This is the essence of the observations of Kottwitz and Vogan. It has two implica-
tions. One is that the transfer factors are now built around sets D(T/Fv), which
are attached to the local K-group Gv, and are equal to the subgroups E(T/Fv) of
H1(Fv, T ). This places the theory of real and p-adic groups on an even footing.
The other concerns a related point, which we did not raise earlier. The original
Langlands-Shelstad transfer factor attached to G′

v (and (G̃′
v, ξ̃

′
v)) depends on an

arbitrary multiplicative constant. If G′
v is the localization of a global endoscopic

datum, the product over v of these constants equals 1. However, if G′
v is taken in

isolation, the constant reflects an intrinsic lack of uniqueness in the correspondence
fv → f ′

v. The extension of the transfer factors to Gv still depends on an arbitrary
multiplicative constant. However, the constants for the components Gαv

of Gv can
all be specified in terms of the one constant for Gv.

Thus, despite their ungainly appearance, K-groups streamline some aspects of
the study of connected groups. This is the reason for introducing them. If we are
given a connected reductive group G1 over F , we can find a K-group G over F
such that Gα1 = G1 for some α1 ∈ π1(G). Moreover, G is uniquely determined
by G1, up to a natural notion of isomorphism. In particular, for any connected
quasisplit group G∗, there is a quasisplit K-group G such that Gα∗ = G∗, for some
α∗ ∈ π0(G).

Let V be a fixed finite set of valuations that contains Sram(G,Z, ζ). Suppose
that for each v ∈ V , G′

v represents an endoscopic datum (G′
v,G′

v, s
′
v, ξ

′
v) for G over

Fv, equipped with auxiliary data G̃′
v → G′

v and ξ̃′v: G′
v → LG̃′

v, and a corresponding
choice of local transfer factor ∆v = ∆Gv

. We are assuming the Langlands-Shelstad
transfer conjecture. Applied to each of the components Gαv

of Gv, it gives a
mapping fv → f ′

v = f G̃′

v from H(Gv, ζv) to SI(G̃′
v, ζ̃

′
v), which can be identified

with a mapping av → a′v from I(Gv, ζv) to SI(G̃′
v, ζ̃

′
v). We write G̃′

V , ζ̃ ′V , and ξ̃′V
for the product over v ∈ V of G̃′

v, ζ̃ ′v, and ξ̃′v respectively. The product∏
v

av −→
∏
v

a′v, av ∈ I(Gv, ζv),

then gives a linear transformation a → a′ from I(GV , ζV ) to SI(G̃′
V , ζ̃ ′V ). This

mapping is attached to the product G′
V of data G′

v, which we can think of as an
endoscopic datum for G over FV , equipped with auxiliary data G̃′

V and ξ̃′V , and a
corresponding product ∆V of local transfer factors. We can think of the transfer
factor ∆V over FV as the primary object, since it presupposes a choice of the other
objects G′

V , G̃′
V , ζ̃ ′V and ξ̃′V .

Letting G′
V vary, we obtain a mapping

(29.8) I(GV , ζV ) −→
∏
G′

V

SI(G̃′
V , ζ̃ ′V )
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by putting together all of the individual images a′. Notice that we have taken a
direct product rather than a direct sum. This is because G′

V ranges over the infinite
set of endoscopic data, equipped with auxiliary data G̃′

V and ξ̃′V , rather than the
finite set of isomorphism classes. However, the fact that G is a K-group makes it
possible to characterize the image of I(GV , ζV ) in this product. The image fits into
a sequence of inclusions

IE(GV , ζV ) ⊂
⊕
{G′

V }
IE(G′

V , GV , ζV ) ⊂
∏
∆V

SI(G̃′
V , ζ̃ ′V )

in which the summand IE(G′
V , GV , ζV ) depends only on the FV -isomorphism class

of G′
V . Roughly speaking, IE(G′

V , GV , ζV ) is the subspace of products
∏

a′v of
functions attached to choices of transfer factors ∆V for {G′

V } that have the ap-
propriate equivariance properties relative to variations in these choices. The space
IE(GV , ζV ) is defined as the subspace of functions in the direct sum whose vari-
ous components are compatible under restriction to common Levi subgroups. One
shows that the transfer mapping gives an isomorphism

a −→ aE =
∏
∆V

a′, a ∈ I(GV , ζV ),

from I(GV , ζV ) onto IE(GV , ζV ). This in turn determines an isomorphism from
the quotient

I(G, V, ζ) = I(GZ
V , ζV )

of I(GV , ζV ) onto the corresponding quotient

IE(G, V, ζ) = IE(GZ
V , ζV )

of IE(GV , ζV ). (See [A31].) The image fits into a sequence of inclusions

(29.9) IE(GZ
V , ζV ) ⊂

⊕
{G′

V }
IE(G′

V , GZ
V , ζV ) ⊂

∏
G′

V

SI
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
.

The mappings of functions we have described have dual analogues for distri-
butions. Given G′

V (with auxiliary data G̃′
V and ξ̃′V ), assume that δ′ belongs to

the space of stable distributions SD
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
. If f belongs to H(G, V, ζ), the

transfer f ′ of f can be evaluated at δ′. Since f → f ′(δ′) belongs to D(GZ
V , ζV ), we

can write

(29.10) f ′(δ′) =
∑

γ∈Γ(GZ
V ,ζV )

∆G(δ′, γ)fG(γ),

for complex numbers ∆G(δ′, γ) that depend linearly on δ′. Now (29.9) is dual to a
sequence of surjective linear mappings∏

G′
V

SD
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
�→
⊕
{G′

V }
DE(G′

V , GZ
V , ζV ) �→ DE(GZ

V , ζV )

between spaces of distributions. Since f ′ is the image of the function fG ∈ I(G, V, ζ),
f ′(δ′) depends only on the image δ of δ′ in DE(GZ

V , ζV ). In other words, f ′(δ′) equals
fE

G(δ), where fE
G is the image of fG in IE(G, V, ζ). The same is therefore true of

the coefficients ∆G(δ′, γ). We can write

∆G(δ, γ) = ∆G(δ′, γ), γ ∈ Γ(GZ
V , ζV ),
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for complex numbers ∆G(δ, γ) that depend linearly on δ ∈ DE(GZ
V , ζV ). We note

that the image in DE(GZ
V , ζV ) of the subspace

SD
(
(G∗

V )Z∗
, ζ∗V
) ∼�→ SD(G∗

V , GZ
V , ζV )

can be identified with the space SD(GZ
V , ζV ) of stable distributions in D(GZ

V , ζV ).
The constructions above were given in terms of products G′

V of local endoscopic
data for G. The stabilization of the trace formula is based primarily on global
endoscopic data, particularly the subset Eell(G, V ) of global isomorphism classes
in Eell(G) that are unramified outside of V . If G′ is any endoscopic datum for
G over F , we can form the product G′

V of its completions. We can also attach
auxiliary data G̃′

V and ξ̃′V for G′
V to global auxiliary data G̃′ and ξ̃′ for G′. The

datum G′
V , together with G̃′

V and ξ̃′V , indexes a component on the right hand side
of (29.9). There are of course other components in (29.9) that do not come from
global endoscopic data.

We are trying to formulate stable and endoscopic analogues of the terms in
the invariant trace formula (29.7). We start with the local terms IM (γ, f) on the
geometric side. Specializing the distributional transfer coefficients above to Levi
subgroups M ∈ L, we can define a linear form

(29.11) IM (δ, f) =
∑

γ∈Γ(MZ
V ,ζV )

∆M (δ, γ)IM (γ, f),

for any δ ∈ DE(MZ
V , ζV ). However, the true endoscopic analogue of IM (γ, f) is a

more interesting object. It is defined inductively in terms of an important family
EM ′(G) of global endoscopic data for G.

Suppose that M ′ represents a global endoscopic datum (M ′,M′, s′M , ξ′M ) for
M , which is elliptic and unramified outside of V . We assume that M′ is an L-
subgroup of LM and that ξ′M is the identity embedding. We define EM ′(G) to be
the set of endoscopic data (G′,G′, s′, ξ′) for G, taken up to translation of s′ by
Z(Ĝ)Γ, in which s′ lies in s′MZ(M̂)Γ, Ĝ′ is the connected centralizer of s′ in Ĝ, G′

equals M′Ĝ′, and ξ′ is the identity embedding of G′ and LG. For each G′ ∈ EM ′(G),
we fix an embedding M ′ ⊂ G′ for which M̂ ′ ⊂ Ĝ′ is a dual Levi subgroup. We
also fix auxiliary data G̃′ → G′ and ξ̃′: G′ → LG̃′ for G′. These objects restrict
to auxiliary data M̃ ′ → M ′ and ξ̃′M : M′ → LM̃ ′ for M ′, whose central character
data Z̃ ′ and ζ̃ ′ are the same as those for G′. Observe that G∗ belongs to EM ′(G) if
and only if M ′ equals M∗. We write

E0
M ′(G) =

{
EM ′(G)− {G∗}, if G is quasisplit,
EM ′(G), otherwise.

For any G′ ∈ EM ′(G), we also define a coefficient

ιM ′(G,G′) = |Z(M̂ ′)Γ/Z(M̂)Γ||Z(Ĝ′)Γ/Z(Ĝ)Γ|−1.

Suppose that δ′ belongs to SD
(
(M̃ ′

V )Z̃′
, ζ̃ ′V
)
. We assume inductively that for

every G′ ∈ E0
M ′(G), we have defined a stable linear form SG̃′

M̃ ′(δ′, ·) onH
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
.

We impose natural conditions of equivariance on SG̃′

M̃ ′(δ′, ·), which imply that the
linear form

f −→ ŜG̃′

M̃ ′(δ′, f ′), f ∈ H(G, V, ζ),
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on H(G, V, ζ) depends only on the image of δ′ in the space DE(M ′
V ,MZ

V , ζV ). In
particular, the last linear form is independent of the choice of auxiliary data G̃′ and
ξ̃′. If G is not quasisplit, we define an “endoscopic” linear form

(29.12) IEM (δ′, f) =
∑

G′∈EM′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(δ′, f ′).

In the case that G is quasisplit, we define a linear form

(29.13) SG
M (M ′, δ′, f) = IM (δ, f)−

∑
G′∈E0

M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(δ′, f ′),

where δ is the image of δ′ in DE(MZ
V , ζV ). In this case, we also define the endoscopic

linear form by the trivial relation

(29.14) IEM (δ′, f) = IM (δ, f).

These definitions represent the first stage of an extensive generalization of the
constructions of §25. To see this more clearly, we need to replace the argument δ′

in IEM (δ′, f) by an element γ ∈ D(MZ
V , ζV ). It turns out that there is a canonical

bilinear form IEM (γ, f) in γ and f such that

(29.15) IEM (δ′, f) =
∑

γ∈Γ(MZ
V ,ζ)

∆M (δ′, γ)IEM (γ, f),

for any (M ′, δ′). Since M ′ was chosen to be an endoscopic datum over F , IEM (γ, f)
is not uniquely determined by (29.15). However, the definitions (29.13) and (29.14)
apply more generally if M ′ is replaced by an endoscopic datum M ′

V over FV . (See
[A25, §5].) One shows directly that the resulting linear form

IEM (δ, f) = IEM (δ′, f)

depends only on the image δ of δ′ in DE(MZ
V , ζV ). The distribution IEM (γ, f) is

then defined by inversion from the corresponding extension of (29.15). (See [A31].)
To complete the inductive definition, one still has to prove something in the spe-

cial case that G is quasisplit and M ′ = M∗. Then δ′ = δ∗ belongs to
SD
(
(M∗

V )Z∗
, ζ∗V
)
, and the image δ of δ′ in DE(MZ

V , ζV ) lies in the subspace
SD(MZ

V , ζV ) of stable distributions. The problem in this case is to show that
the linear form

(29.16) SG
M (δ, f) = SG

M (M∗, δ∗, f)

is stable. Only then would we have a linear form

ŜG∗

M∗(δ∗, f∗) = SG
M (δ, f)

on SI
(
(G∗

V )Z∗
, ζ∗V
)

that is the analogue for (G∗,M∗) of the terms ŜG̃′

M̃ ′(δ′, f ′) in
(29.12) and (29.13). This property is deep, and is a critical part of the stabilization
of the general trace formula. In the case that G is quasi-split but M ′ �= M∗, there
is a second question which is as deep as the first. The problem in this case is to
show that SG

M (M ′, δ′, f) vanishes for any δ′ and f .
The analogue for unramified valuations v �∈ Vram(G) of this second problem is

of special interest. It represents the generalization of the fundamental lemma to
weighted oribital integrals. To state it, we write

rGv

Mv
(kv) = JMv

(kv, uv), kv ∈ ΓG-reg(Mv),
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where uk is the characteristic function of Kv in Gv(Fv), and Mv is a Levi subgroup
of Gv. Since v is nonarchimedean, the associated component Gv of G is a connected
reductive group over Fv. In this context, we may as well take Zv = 1, since for any
endoscopic datum G′

v over Fv, there is a canonical class of L-embeddings of LG′
v

in LGv [Hal1, §6]. If M ′
v is an unramified elliptic endoscopic datum for Mv, and

�′v ∈ ∆G-reg(M ′
v), we write

rGv

Mv
(�′v) =

∑
kv

∆Mv
(�′v, kv)rGv

Mv
(kv).

We can also obviously write EM ′
v
(Gv) and ιMv

(Gv, G
′
v) for the local analogues of

the global objects defined earlier.

Conjecture. (Generalized fundamental lemma). For any M ′
v and �′v, there is

an identity

(29.17) rGv

Mv
(�′v) =

∑
G′

v∈EM′
v
(Gv)

ιM ′
v
(Gv, G

′
v)s

G′
v

M ′
v
(�′v),

for functions s
G′

v

M ′
v
(�′v) that depend only on G′

v, M
′
v and �′v.

If M ′
v = M∗

v and �′v = �∗v, G∗
v belongs to EM ′

v
(Gv), and (29.17) represents an

inductive definition of sGv

Mv
(�∗v). If M ′

v �= M∗
v , G∗

v does not belong to EM ′
v
(Gv),

and (29.17) becomes an identity to be proved. The reader can check that when
Mv = Gv, the identity reduces to the standard fundamental lemma, which we
described near the end of §27. We assume from now on that this conjecture holds
for G, at least at almost all valuations v �∈ Sram(G), as well as for any other
groups that might be required for induction arguments. Since this includes the
usual fundamental lemma, it also encompasses our assumption that the Langlands-
Shelstad transfer conjecture is valid [Wa2].

We can now state the first of four theorems, which together comprise the stabi-
lization of the invariant trace formula. They are all dependent on our assumption
that the generalized fundamental lemma holds.

Theorem 29.3. (a) If G is arbitrary,

IEM (γ, f) = IM (γ, f), γ ∈ D(MZ
V , ζV ), f ∈ H(G, V, ζ).

(b) Suppose that G is quasisplit, and that δ′ belongs to SD
(
(M̃ ′

V )Z̃′
, ζ̃ ′V
)
, for

some M ′ ∈ Eell(M,V ). Then the linear form

f −→ SG
M (M ′, δ′, f), f ∈ H(G, V, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The linear forms IEM (γ, f) and SG
M (δ, f) ultimately become terms in endoscopic

and stable analogues of the geometric side of (29.7). These objects are to be re-
garded as the local components of the expansions. The global components are
endoscopic and stable analogues of the coefficients aG(γ) in (29.7). As before, the
new coefficients really belong to a completion of the appropriate space of distribu-
tions. However, we again identify them with elements in a dual space by choosing
bases of the relevant spaces of distributions. We fix a basis ∆

(
(G̃′

V )Z̃′
, ζ̃ ′V
)

of
SD
(
(G̃′

V )Z̃′
, ζ̃ ′V
)

for any FV -endoscopic datum G′
V , with auxiliary data G̃′

V and
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ξ̃′V . We also fix a basis ∆E(GZ
V , ζV ) of the space DE(GZ

V , ζV ). Among various
conditions, we require that the subset

∆(GZ
V , ζV ) = ∆E(GZ

V , ζV ) ∩ SD(GZ
V , ζV )

of ∆E(GZ
V , ζV ) be a basis of SD(GZ

V , ζV ), and in the case that G is quasisplit, that
∆(GZ

V , ζV ) be the isomorphic image of the basis ∆
(
(G∗

V )Z∗
, ζ∗V
)
.

We assume inductively that for every G′ in the set

E0
ell(G, V ) =

{
Eell(G, V )− {G∗}, if G is quasisplit,
Eell(G, V ), otherwise,

we have defined a function bG̃′
(δ′) on ∆

(
(G̃′

V )Z̃′
, ζ̃ ′V
)
. If G is not quasisplit, we can

then define the “endoscopic” coefficient

(29.18) aG,E(γ) =
∑

G′∈Eell(G,V )

∑
δ′

ι(G,G′)bG̃′
(δ′)∆G(δ′, γ),

as a function of γ ∈ Γ(GZ
V , ζV ). In the case that G is quasisplit, we define a “stable”

coefficient function bG(δ) of δ ∈ ∆E(GZ
V , ζV ) by requiring that

(29.19)
∑

δ

bG(δ)∆G(δ, γ) = aG(γ)−
∑

G′∈E0
ell(G,V )

∑
δ′

ι(G,G′)bG̃′
(δ′)∆G(δ′, γ),

for any γ ∈ Γ(GZ
V , ζV ). In this case, we also define the endoscopic coefficient by the

trivial relation
aG,E(γ) = aG(γ).

In both (29.18) and (29.19), the numbers ι(G,G′) are Langlands’ original global co-
efficients from (27.3), while δ′ and δ are summed over ∆

(
(G̃′

V )Z̃′
, ζ̃ ′V
)

and ∆E(GZ
V , ζV )

respectively. To complete the inductive definition, we set

bG∗
(δ∗) = bG(δ), δ∗ ∈ ∆

(
(G∗

V )Z∗
, ζ∗V
)
,

when G is quasisplit and δ is the preimage of δ∗ in the subset ∆(GZ
V , ζV ) of

∆E(GZ
V , ζV ).

Theorem 29.4. (a) If G is arbitrary,

aG,E(γ) = aG(γ), γ ∈ Γ(GZ
V , ζV ).

(b) If G is quasisplit, bG(δ) vanishes for any δ in the complement of ∆(GZ
V , ζV )

in ∆E(GZ
V , ζV ).

We have completed our description of the geometric ingredients that go into the
stabilization of the trace formula. The spectral ingredients are entirely parallel. In
place of the spaces of distributions D(GZ

V , ζV ), SD
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
, DE(G′

V , GZ
V , ζV ),

and DE(GZ
V , ζV ), we have spectral analogues F(GZ

V , ζV ), SF
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
,

FE(G′
V , GZ

V , ζV ), and FE(GZ
V , ζV ). The subspace SD(GZ

V , ζV ) of DE(GZ
V , ζV ) is

replaced by a corresponding subspace SF(GZ
V , ζV ) of FE(GZ

V , ζV ). In place of the
prescribed basis Γ(GZ

V , ζV ) of D(GZ
V , ζV ), we have the basis

Π(GZ
V , ζV ) =

∐
t≥0

Πt(GZ
V , ζV )
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of F(GZ
V , ζV ) consisting of irreducible characters. If φ′ belongs to SF

(
(G̃′

V )Z̃′
, ζ̃ ′V
)
,

the distribution f → f ′(φ′) belongs to F(GZ
V , ζV ). It therefore has an expansion

f ′(φ′) =
∑

π∈Π(GZ
V ,ζV )

∆(φ′, π)fG(π)

that is parallel to (29.15). The coefficients

∆(φ, π) = ∆(φ′, π), π ∈ Π(GZ
V , ζV ),

are products over v of local coefficients in (28.4) (or rather, linear extensions in φ′
v

of such coefficients), and depend only on the image φ of φ′ in FE(GZ
V , ζV ).

The definitions (29.13)–(29.16) have obvious spectral variants. They provide
linear forms IM (φ, f), IEM (φ′, f), SG

M (M ′, φ′, f), IEM (π, f), and SM (φ, f) in
f ∈ H(G, V, ζ), which also depend linearly on the distributions φ, φ′ and π.

Theorem 29.5. (a) If G is arbitrary,

IEM (π, f) = IM (π, f), π ∈ F(MZ
V , ζV ), f ∈ H(G, V, ζ).

(b) Suppose that G is quasisplit, and that φ′ belongs to SF
(
(M̃ ′

V )Z̃′
, ζ̃ ′V
)
, for

some M ′ ∈ Eell(M,V ). Then the linear form

f −→ SG
M (M ′, φ′, f), f ∈ H(G, V, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The linear forms IEM (π, f) and SG
M (φ, f) ultimately become local terms in en-

doscopic and stable analogues of the spectral side of (29.7). The global terms are
endoscopic and stable analogues of the coefficients aG(π) in (29.7). We fix a basis
Φ
(
(G̃′

V )Z̃′
, ζ̃ ′V
)

of the space SF
(
(G̃′

V )Z̃′
, ζ̃ ′V
)
, for each G′

V , G̃′
V and ξ̃′V , which we

can form from local bases Φ(G̃′
v, ζ̃

′
v). If v is nonarchimedean, we take Φ(G̃′

v, ζ̃
′
v) to

be the abstract basis discussed in §28. If v is archimedean, we can identify Φ(G̃′
v, ζ̃

′
v)

with the relevant set of archimedean Langlands parameters φv, thanks to the work
of Shelstad. Since any such φv has an archimedean infinitesimal character, there is
a decomposition

Φ
(
(G̃′

V )Z̃′
, ζ̃ ′V
)

=
∐
t≥0

Φt

(
(G̃′

V )Z̃′
, ζ̃ ′V
)
.

We also fix a basis ΦE(GZ
V , ζV ) of the space DE(GZ

V , ζV ), which can in fact be taken
to be a set of equivalence classes in the union of the various bases Φ

(
(G̃′

V )Z̃′
, ζ̃ ′V
)
.

Among other things, this implies that the subset

Φ(GZ
V , ζV ) = ΦE(GZ

V , ζV ) ∩ SF(GZ
V , ζV )

of ΦE(GZ
V , ζV ) is a basis of SF(GZ

V , ζV ), and in the case that G is quasisplit, is the
isomorphic image of the basis Φ

(
(G∗

V )Z∗
, ζ∗V
)
.

Having fixed bases, we can apply the obvious spectral variants of the defi-
nitions (29.18) and (29.19). We thereby obtain functions aG,E(π) and bG(φ) of
π ∈ Π(GZ

V , ζV ) and φ ∈ ΦE(GZ
V , ζV ) respectively.

Theorem 29.6. (a) If G is arbitrary,

aG,E(π) = aG(π), π ∈ Π(GZ
V , ζV ).
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(b) If G is quasisplit, bG(φ) vanishes for any φ in the complement of Φ(GZ
V , ζV )

in ΦE(GZ
V , ζV ).

Theorems 29.3 and 29.4 are general analogues of Theorem 25.5 for inner twist-
ings of GL(n). The extra assertions (b) of theorems were not required earlier, since
the question of stability is trivial for GL(n). Similarly, Theorems 29.5 and 29.6 are
general analogues of Theorem 25.6. Taken together, Theorems 29.3–29.6 amount
to a stabilization of the general trace formula. This will become clearer after we
have stated the general analogues of Lemmas 25.3 and 25.4.

The four theorems are proved together. As in the special case in §25, the
argument is by double induction on dim(G/Z) and dim(AM ). The first stage of
the proof is to obtain endoscopic and stable analogues of the expansions on each
side of (29.7). For this, one needs only the induction assumption that the global
assertions (b) of Theorems 29.4 and 29.6 be valid if (G, ζ) is replaced by (G̃′, ζ̃ ′),
for any G′ ∈ E0

ell(G, V ).
Let I be the invariant linear form onH(G, V, ζ) defined by either of the two sides

of (29.7). If G is not quasisplit, we define an “endoscopic” linear form inductively
by setting

(29.20) IE(f) =
∑

G′∈Eell(G,V )

ι(G,G′)Ŝ′(f ′),

for stable linear forms Ŝ′ = ŜG̃′
on SI(G̃′, V, ζ̃ ′). In the case that G is quasisplit,

we define a linear form

(29.21) SG(f) = I(f)−
∑

G′∈E0
ell(G,V )

ι(G,G′)Ŝ′(f ′).

We also define the endoscopic linear form by the trivial relation

(29.22) IE(f) = I(f).

In the case G is quasisplit, we need to show that the linear form SG on I(G, V, ζ)
is stable. Only then will we have a linear form

ŜG∗
(f∗) = SG(f)

on SI(G∗, V, ζ∗) that is the analogue for G∗ of the summands in (29.20) and (29.21)
needed to complete the inductive definition. We would also like to show that
IE(f) = I(f). These properties are obviously related to the assertions of the four
theorems.

The reader will recognize in the definitions (29.20)–(29.22), taken with the
assertions that SG(f) is stable and IE(f) = I(f), an analogue of Langlands’ stabi-
lization (27.3) of the regular elliptic terms. This construction is in fact a model for
the stabilization of any part of the trace formula. For example, let

(29.23) Iorb(f) =
∑

γ∈Γ(G,V,ζ)

aG(γ)fG(γ)

be the component with M = G in the geometric expansion in (29.7). This sum
includes the regular elliptic terms, as well as orbital integrals over more general
conjugacy classes. Its complement I(f) − Iorb(f) in I(f), being a sum over M in
the complement L0 of {G} in L, can be regarded as the “parabolic” part of the
geometric expansion. We define linear forms IEorb(f) and SG

orb(f) on H(G, V, ζ) by
the obvious analogues of (29.20)–(29.22).
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Proposition 29.7. (a) If G is arbitrary,

IE(f)− IEorb(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈ΓE(M,V,ζ)

aM,E(γ)IEM (γ, f),

where ΓE(M,V, ζ) is a natural discrete subset of Γ(MZ
V , ζV ) that contains the sup-

port of aM,E(γ).
(b) If G is quasisplit,

SG(f)− SG
orb(f)

=
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃ ′
(δ′)SG

M (M ′, δ′, f),

where ∆(M̃ ′, V, ζ̃ ′) is a natural discrete subset of ∆
(
(M̃ ′

V )Z̃′
, ζ̃ ′V
)

that contains the
support of bM̃ ′

(δ′).

See [A27, Theorem 10.1]. �
Let It(f) be the summand of t on the spectral side of (29.7). We attach

linear forms IEt (f) and SG
t (f) to It(f) by the analogues of (29.20)–(29.22). The

decomposition in (29.7) of I(f) as a sum over t ≥ 0 of It(f) leads to corresponding
decompositions

(29.24(a)) IE(f) =
∑
t≥0

IEt (f)

and

(29.24(b)) SG(f) =
∑
t≥0

SG
t (f)

of IE(f) and SG(f). Each of these sums satisfies the analogue of the weak multiplier
estimate (23.13), and hence converges absolutely. (See [A27, Proposition 10.5].)
For any t, we write

(29.25) It,unit(f) =
∫

Πt(G,V,ζ)

aG(π)fG(π)dπ

for the component with M = G for the spectral expansion of It(f) in (29.7). We
then define corresponding linear forms IEt,unit(f) and SG

t,unit(f) on H(G, V, ζ), again
by the obvious analogues of (29.20)–(29.22).

Proposition 29.8. (a) If G is arbitrary,

IEt (f)− IEt,unit(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1

∫
ΠE

t (M,V,ζ)

aM,E(π)IEM (π, f)dπ,

where ΠE
t (M,V, ζ) is a subset of Πt(MZ

V , ζV ), equipped with a natural measure dπ,
that contains the support of aM,E(π).

(b) If G is quasisplit,

SG
t (f)− SG

t,unit(f)

=
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)
∫

Φt′ (M̃
′,V,ζ̃′)

bM̃ ′
(φ′)SG

M (M ′, φ′, f)dφ′,
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where t′ is a translate of t, and Φt′(M̃ ′, V, ζ̃ ′) is a subset of Φt′
(
(M̃ ′

V )Z̃′
, ζ̃ ′V
)
,

equipped with a natural measure dφ′, which contains the support of bM̃ ′
(φ′).

See [A27, Theorem 10.6]. �
In contrast to the special cases of Lemmas 25.3 and 25.4, we have excluded the

terms with M = G from the expansions of Propositions 29.7 and 29.8. This was
only to keep the notation slightly simpler in the assertions (b). It is a consequence
of the definitions that

(29.26(a)) IEorb(f) =
∑

γ∈ΓE(G,V,ζ)

aG,E(γ)fG(γ)

and

(29.26(b)) SG
orb(f) =

∑
δ∈∆E(G,V,ζ)

bG(δ)fE
G(δ),

where ∆E(G, V, ζ) is a certain discrete subset of ∆E(GZ
V , ζV ) that contains the

support of bG. Similarly, we have

(29.27(a)) IEt,unit(f) =
∫

ΠE
t (G,V,ζ)

aG,E(π)fG(π)dπ

and

(29.27(b)) SG
t,unit(f) =

∫
ΦE

t (G,V,ζ)

bG(φ)fE
G(φ)dφ,

where ΦE
t (G, V, ζ) is a subset of ΦE

t (GZ
V , ζV ), equipped with a natural measure

dφ, that contains the support of bG(φ). (See [A27, Lemmas 7.2 and 7.3].) We can
obviously combine (29.26(a)) and (29.27(a)) with the expansions (a) of Propositions
29.7 and 29.8. This provides expressions for IE(f) and IEt (f) that are more clearly
generalizations of those of Lemmas 25.3 and 25.4. On the other hand, the sums
in (29.26(b)) and (29.27(b)) are not of the same form as those in the expansions
(b) of Propositions 29.7 and 29.8. Their substitution into these expansions leads
to expressions for SG(f) and SG

t (f) that, without the general assertions (b) of the
four theorems, are more ungainly.

We shall say only a few words about the proof of the four theorems. If G is
not quasisplit, one works with the identity obtained from (29.24(a)), (29.26(a)),
(29.27(a)), and Propositions 29.7(a) and 29.8(a). The problem is to compare the
terms in this identity with those of the invariant trace formula (29.7). If G is qua-
sisplit, one works with the identity obtained from (29.24(b)), (29.26(b)), (29.27(b)),
and Propositions 29.7(b) and 29.8(b). The problem here is to show that if fG = 0,
the appropriate terms in the identity vanish. The arguments are long and compli-
cated, but they do follow the basic model established in §25. In particular, they
frequently move forward under their own momentum.

There is one point we should mention explicitly. The geometric coefficients
aG(γ) are compound objects, defined (29.3) in terms of the original coefficients
aM
ell(γM × k). The identities stated in Theorem 29.4 have analogues that apply to

endoscopic and stable forms of the coefficients aG
ell(γ × k). The role of the general-

ized fundamental lemma is to reduce Theorem 29.4 to these basic identities [A27,
Proposition 10.3]. (The case M = G of the generalized fundamental lemma, namely
the ordinary fundamental lemma, carries the more obvious burden of establishing
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the existence of the mappings f → f ′.) One has then to reduce these basic identi-
ties further to the special case of classes in G(FS) that are purely unipotent. This
turns out to be a major undertaking [A26], which depends heavily on Langlands-
Shelstad descent for transfer factors [LS2]. The reduction to unipotent classes can
be regarded as an extension of the stabilization of the semisimple elliptic terms by
Langlands [Lan10] and Kottwitz [Ko5].

The spectral coefficients aG(π) are also compound objects. They are defined
(29.6) in terms of the original spectral coefficients aM

disc(πM × c). The identities
stated in Theorem 29.6 have analogues for endoscopic and stable forms of the
coefficients aG

disc(π × c). It is interesting to note that the generalized fundamental
lemma has a spectral variant [A27, Proposition 8.3], albeit one which is much less
deep, and which has a straightforward proof. (For example, the case M = G of
this spectral result is entirely vacuous. The cases with M �= G reflect relatively
superficial aspects of the deeper geometric conjecture.) The role of the spectral
result is to reduce Theorem 29.6 to the identities for endoscopic and stable forms
of the coefficients aG

disc(γ × k) [A27, Proposition 10.7].
We have touched on a couple of aspects of the first half of the argument. The

second half of the proof is contained in [A29]. It is based on a comparison of
the expansions in Propositions 29.7 and 29.8 with those in (29.7). Among the
many reductions on the geometric sides, one establishes the required cancellation
of almost all of the terms in Iorb(f), IEorb(f), and SG

orb(f) by appealing to the
reductions of Theorem 29.4 described above. Those that remain correspond to
unipotent elements. They can be separated from the complementary terms in the
expansions by an approximation argument. Among the spectral reductions, one sees
that many of the terms in It,unit(f), IEt,unit(f), and SG

t,unit(f) also cancel, thanks
to the reduction of Theorem 29.6 we have mentioned. Those that remain occur
discretely. They can be separated from the complementary terms in the expansions
by the appropriate forms of the weak multiplier estimate (23.13).

These sparse comments convey very little sense of the scope of the argument. It
will suffice for us to reiterate that much of the collective proof of the four theorems
is in attempting to generalize arguments described in the special case of §25. �

Corollary 29.9. (a) (Endoscopic trace formula). The identity

(29.28(a))

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈ΓE(M,V,ζ)

aM,E(γ)IEM (γ, f)

=
∑
t≥0

∑
M∈L

|WM
0 ||WG

0 |−1

∫
ΠE

t (M,V,ζ)

aM,E(π)IEM (π, f)

holds for any f ∈ H(G, V, ζ). Each term in the identity is equal to its corresponding
analogue in the invariant trace formula (29.7).

(b) (Stable trace formula). If G is quasisplit, the identity

(29.28(b))

∑
M∈L

|WM
0 ||WG

0 |−1
∑

δ∈∆(M,V,ζ)

bM (δ)SM (δ, f)

=
∑
t≥0

∑
M∈L

|WM
0 ||WG

0 |−1

∫
Φt(M,V,ζ)

bM (φ)SM (φ, f)dφ

holds for any f ∈ H(G, V, ζ). The terms in the identity are all stable in f .
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The identity (29.28(a)) follows immediately from Propositions 29.7(a) and
29.8(a) and expansions (29.26(a)) and (29.27(a)), as we have already noted. Asser-
tions (a) of the four theorems give the term by term identification of this identity
with the invariant trace formula.

To establish (29.28(b)), we combine the expansions of Propositions 29.7(b) and
29.8(b) with (29.26(b)) and (29.27(b)). This yields a rather complicated formula.
However, assertions (b) of the four theorems imply immediately that the formula
collapses to the required identity (29.28(b)). Supplementary assertions in Theorems
29.3(b) and 29.5(b) tell us that the linear forms SM (δ, f) and SM (φ, f) in (29.28(b))
are stable in f . �

The endoscopic trace formula (29.28(a)) is a priori quite different from the orig-
inal formula (29.7). In case G is not quasisplit, it is defined as a linear combination
of stable trace formulas for endoscopic groups G′. Our conclusion that it is in fact
equal to the original formula amounts to a stabilization of the trace formula.

We recall that G =
∐

Gα is a K-group over F . However, if f is supported on a
component Gα(FV ), the sums in (29.28(a)) can be taken over geometric and stable
objects attached to Gα. Moreover, if G is quasisplit, the stable distributions on GV

are in bijective correspondence with those on G∗
V . It follows that the assertions of

Corollary 29.9 hold as stated if G is an ordinary connected group over F .
There is one final corollary. To state it, we return to the setting of earlier

sections. We take G to be a connected reductive group over F , and f to be a
function in the adelic Hecke algebra H(G, ζ) = H

(
G(A)Z , ζ

)
. The t-discrete part

It,disc(f) of the trace formula (21.19) represents its spectral core. It is the part that
is actually used for applications.

Corollary 29.10. There are stable linear forms

SG
t,disc(f), f ∈ H(G, V ), t ≥ 0,

defined whenever G is quasisplit, such that

(29.29) It,disc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG̃′

t,disc(f
′),

for any G, t and f .

We define linear forms IEt,disc and SG
t,disc inductively by analogues of (29.20)–

(29.22). Recall that there is an expansion

It,disc(f) =
∑

π∈Πt,disc(G)

aG
disc(π)fG(π),

which serves as the definition of the coefficients aG
disc(π), and is parallel to the

definition (29.25) of It,unit(f). This leads to corresponding expansions of IEt,disc(f)
and SG

t,disc(f), which are parallel to (29.27(a)) and (29.27(b)). We have already
noted that the assertions of Theorem 29.6 reduce to corresponding assertions for
the coefficients of these latter expansions. Theorem 29.6 therefore implies that
IEt,disc(f) = It,disc(f), and that SG

t,disc(f) is stable in case G is quasisplit. The
identity (29.29) then follows from the definition of IEt,disc(f). �
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30. Representations of classical groups

To give some sense of the power of the stable trace formula, we shall describe
a broad application. It concerns the representations of classical groups. We shall
describe a classification of automorphic representations of classical groups G in
terms of those of general linear groups GL(N). Since it depends on the stable
trace formula for G, the classification is conditional on the fundamental lemma
(both the standard version and its generalization (29.17)) for each of the classical
groups in question. It also depends on the stabilization of a twisted trace formula
for GL(N). The classification is therefore conditional also on the corresponding
twisted fundamental lemma (both standard and generalized) for GL(N), as well as
twisted analogues (yet to be established) of the results of §29.

It is possible to work in a more general context. One could take a product
of general linear groups, equipped with a pair α = (θ, ω), where θ is an outer
automorphism, and ω is an automorphic character of GL(1). This is the setting
adopted by Kottwitz and Shelstad in their construction of twisted transfer factors
[KoS]. There is much to be learned by working in such generality. However,
we shall adopt the more restricted setting in which α = θ is the standard outer
automorphism of GL(N). For reasons on induction, it is important to allow N
to vary. The groups G will then range the quasisplit classical groups in the three
infinite families SO(2n + 1), Sp(2n), and SO(2n). The results have yet to be
published. My notes apply only to the special case under discussion, but I will try
to write them up in greater generality.

The groups G arise as twisted endoscopic groups. For computational purposes,
we represent θ as the automorphism

θ(x) −→ tx
−1 = J tx−1J−1, x ∈ GL(N),

of GL(N), where

tx = J txJ = J txJ−1, J =

(
0 1

. .
.

1 0

)
,

is the “second transpose” of x, about the second diagonal. Then θ stabilizes the
standard Borel subgroup of GL(N). (For theoretical purposes [KoS], it is some-
times better to work with the automorphism

θ′(x) = J ′ tx−1(J ′)−1, J ′ =

 0 1
. . .

(−1)N+1 0

 ,

that stabilizes the standard splitting in GL(N) as well.) We form the connected
component

G̃ = G̃N = GL(N) � θ

in the nonconnected semidirect product

G̃+ = G̃+
N = GL(N) � (Z/2Z),

whose identity component we denote by G̃0. Twisted endoscopic data are like
ordinary endoscopic data, except that their dual groups are connected centralizers
of semisimple automorphisms within the inner class defined by G̃, rather than the
earlier identity class of inner automorphisms. We have then to consider semisimple

elements s in the component ̂̃G = ̂̃G0 � θ, acting by conjugation on G̃0. It suffices
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to work here with the Galois form of L-groups. In the present context, a twisted
endoscopic datum for G̃ can be taken to be a quasisplit group G, together with an
admissible L-embedding ξ of G = LG into the centralizer in LG̃0 = GL(N,C)×ΓF

of some element s. We define G to be elliptic if AG = {1}, which is to say that the
group Z(Ĝ)ΓF is finite. We then write Eell(Ĝ) for the set of isomorphism classes of
elliptic (twisted) endoscopic data for G̃.

Suppose for example that N is odd, and that s = θ. Then the centralizer of s

in ̂̃G0 is a group we will denote by O(N,C), even though it is really the orthogonal
group with respect to the symmetric bilinear attached to J . The element s therefore
yields a twisted endoscopic group G for which Ĝ is the special orthogonal group
SO(N,C). Since N is odd, G is isomorphic to the split group Sp(N−1). The group
O(N,C) has a second connected component, represented by the central element
(−I) in GL(N,C). This means that there are many admissible ways to embed LG

into LG̃0. They are parametrized by isomorphisms from ΓF to Z/2Z, which by
class field theory correspond to characters η on F ∗\A∗ with η2 = 1. The set of such
η parametrizes the subset of Eell(G̃) attached to s. This phenomenon illustrates a
second point of departure in the twisted case. The different embeddings represent
distinct isomorphism classes of twisted endoscopic data, even though the underlying
twisted endoscopic groups and associated elements s are all the same.

To describe the full set Eell(G̃), we consider decompositions of N into a sum
Ns + No of nonnegative integers, with Ns even. We then take the diagonal matrix

s =

0

B

B

@

−Is 0
Io

0 Is

1

C

C

A

,

where Is is the identity matrix of rank (Ns/2), and Io is the identity matrix of rank

No. The centralizer of s in ̂̃G0 is a product

Sp(Ns,C)×O(No,C)

of complex classical groups, defined again by bilinear forms supported on the second
diagonal. It corresponds to a twisted endoscopic group G with dual group

Ĝ = Sp(Ns,C)× SO(No,C).

The group O(No,C) has two connected components if No > 0. We have then also to
specifiy an idèle class character η with η2 = 1. If No is odd, the twisted endoscopic
group is the split group

G = SO(Ns + 1)× Sp(No − 1)

over F . In this case, η serves to specify the embedding of LG into LG̃0, as in the
special case above. We emphasize again that η is an essential part of the associated
endoscopic datum. If No is even, the nonidentity component of O(No,C) acts on
the identity component SO(No,C) as an outer automorphism. In this case, the
twisted endoscopic group is the quasisplit group

G = SO(Ns + 1)× SO(No, η),

where SO(No, η) is the outer twist of the split group SO(No) determined by η.
The character η also determines an L-embedding of LG into LG̃0 in this case. If
No = 2, the group SO(No) is abelian. In this case, η must be nontrivial in order
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that corresponding twisted endoscopic datum be elliptic. In all other cases, η can be
arbitrary. It is a straightforward exercise to check that the twisted endoscopic data
obtained from triplets (Ns, No, η) in this way give a complete set of representatives
of Eell(G̃).

It is possible to motivate the discussion above in more elementary terms. One
does so by analyzing continuous representations

r : ΓF −→ GL(N,C)

that are self-contragredient, in the sense that the representation

tr
−1 : σ −→ tr(σ)−1, σ ∈ ΓF ,

is equivalent to r. Since r is continuous, it factors through a finite quotient of ΓF .
The analysis is therefore essentially that of the self-contragredient representations
of an abstract finite group. One sees that twisted endoscopic data arise naturally
in terms of decompositions of r into symplectic and orthogonal components. (See
[A23, §3].)

The general results are proved by induction on N . We therefore have a particu-
lar interest in elements G ∈ Eell(G̃) that are primitive, in the sense either Ns or No

equals zero. There are three cases. They correspond to N = Ns even, N = No odd,
and N = No even. The associated twisted endoscopic groups are the split group
G = SO(N + 1) with dual group Ĝ = Sp(N,C), the split group G = Sp(N − 1)
with dual group Ĝ = SO(N,C), and the quasisplit group G = SO(N, η) with dual
group Ĝ = SO(N,C). We write Eprim(G̃) for the subset of primitive elements in
Eell(G̃).

Suppose that G ∈ Eprim(G̃). Regarding G simply as a reductive group over F ,
we can calculate its (standard) elliptic endoscopic data G′ ∈ Eell(G). It suffices to
consider diagonal matrices s′ ∈ Ĝ with entries ±1. For example, in the first case
that G = SO(N +1) and Ĝ = Sp(N,C) (for N even), it is enough to take diagonal
elements

s′ =

0

B

B

@

−I ′ 0
I ′′

0 −I ′

1

C

C

A

,

where I ′ is the identity matrix of rank (N ′/2), and I ′′ is the identity matrix of rank
N ′′. The set Eell(G) is parametrized by pairs (N ′, N ′′) of nonnegative even integers,
with 0 ≤ N ′ ≤ N ′′ and N = N ′ + N ′′. The corresponding endoscopic groups are
the split groups

G′ = SO(N ′ + 1)× SO(N ′′ + 1),
with dual groups

Ĝ′ = Sp(N ′,C)× Sp(N ′′,C) ⊂ Sp(N,C) = Ĝ.

In the second case that G = Sp(N − 1) and Ĝ = SO(N,C), Eell(G) is parametrized
by pairs of (N ′, N ′′) of nonnegative even integers with N = N ′ + (N ′′ + 1), and
idèle class characters η′ with (η′)2 = 1. The corresponding endoscopic groups are
the quasisplit groups

G′ = SO(N ′, η′)× Sp(N ′′),
with dual groups

Ĝ′ = SO(N ′,C)× SO(N ′′ + 1,C) ⊂ Ĝ = SO(N,C).
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In the third case that G = SO(N, η) and Ĝ = SO(N,C), Eell(G) is parametrized
pairs of nonnegative even integers (N ′, N ′′) with 0 ≤ N ′ ≤ N ′′ and N = N ′ + N ′′,
and pairs (η′, η′′) of idèle class characters with (η′)2 = (η′′)2 = 1 and η = η′η′′.
The corresponding endoscopic groups are the quasisplit groups

G′ = SO(N ′, η′)× SO(N ′′, η′′),

with dual groups

Ĝ′ = SO(N ′,C)× SO(N ′′,C) ⊂ SO(N,C) = Ĝ.

In the second and third cases, the character η∗ has to be nontrivial if the corre-
sponding integer N∗ equals 2, and in the case N ′ = 0, η′ must of course be trivial.

Our goal is to try to classify automorphic representations of a group
G ∈ Eprim(G̃) by means of the trace formula. The core of the trace formula for
G is the t-discrete part
(30.1)

It,disc(f) =
∑
{M}

|W (M)|−1
∑

s∈W (M)reg

| det(s− 1)aM
|−1tr

(
MP (s, 0)IP,t(0, f)

)
,

of its spectral side. We recall that f is a test function in H(G) = H
(
G(A)

)
, while t

is a nonnegative number that restricts the automorphic constituents of IP,t(0, f) by
specifying the norm of their archimedean infinitesimal characters. The stabilization
described in §29 yields the decomposition

(30.2) It,disc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG′

t,disc(f
′)

stated in Corollary 29.10. We recall that SG′

t,disc is a stable distribution on G′(A),
while f ′ = fG′

is the Langlands-Shelstad transfer of f . This is the payoff. It is our
remuneration for the work done in stabilizing the other terms in the trace formula.
But really, how valuable is it? Since G is quasisplit, G = G∗ is an element in
E(G). The stabilization does not provide an independent characterization of the
distribution SG

t,disc. In fact, (30.2) can be regarded as an inductive definition of
SG

t,disc in terms of Idisc,t and corresponding distributions for groups G′ of dimension
smaller than G. Thus, (30.2) amounts to the assertion that one can modify It,disc(f)
by adding some correction terms, defined inductively in terms of Langlands-Shelstad
transfer, so that it becomes stable. A useful property, no doubt, but not something
that in itself could classify the automorphic representations of G.

What saves the day is the twisted trace formula for G̃. Let f̃ be a test function
in the Hecke space H(G̃) = H

(
G̃(A)

)
attached to the component G̃ = GL(N) � θ.

The twisted trace formula is an identity of linear forms whose spectral side also has
a discrete part
(30.3)
It,disc(f̃) =

∑
{fM0}

|W (M̃0)|−1
∑

s∈W (fM0)reg

| det(s− 1)
a

eG
fM0
|−1tr

(
M

eP 0(s, 0)I
eP 0,t(0)

)
(f̃)

with the same general structure as (30.1). (The first sum is over the set of G̃0-
orbits of Levi subgroups M̃0, while the second sum is over the regular elements
in the relevant twisted Weyl set. The other terms are also twisted forms of their
analogues in (30.1), for which the reader can consult [CLL] and [A14, §4].) We
assume that the twisted fundamental lemma (both ordinary and weighted) holds for
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G̃, as well as twisted analogues of the other results described in §29. These include
the twisted analogue of Waldspurger’s theorem that the fundamental lemma implies
transfer. We can therefore suppose that the transfer mapping f̃ → f̃G, defined for
any G ∈ Eell(G̃) by the twisted transfer factors of Kottwitz-Shelstad [KoS], sends
H(G̃) to the space SI(G). The stabilization of the twisted trace formula for G̃ then
yields a decomposition

(30.4) It,disc(f̃) =
∑

G∈Eell(G̃)

ι(G̃, G)ŜG
t,disc(f̃

G),

where SG
t,disc is the (untwisted) stable distribution on G(A) that appears in (30.2),

and ι(G̃, G) is an explicit constant. This gives an a priori relationship among the
terms SG

t,disc defined in the formulas (30.2).
By combining the global identities (30.2) and (30.4), one obtains both local and

global results. In the end, the interplay between the two formulas yields a classifi-
cation of representations of odd orthogonal and symplectic groups, and something
close to a classification in the even orthogonal case. We shall say little more about
the proofs. We shall instead use the rest of the section to try to give a precise
statement of the results.

Since everything ultimately depends on the automorphic spectrum of GL(N),
we begin with this group. We need to formulate the results of Moeglin and Wald-
spurger in a way that can be extended to the classical groups in question.

We shall represent the discrete spectrum of GL(N) by a set of formal objects
that are parallel to the global parameters at the end of §26. Let Ψ2

(
GL(N)

)
be

the set of formal tensor products

ψ = µ � ν,

where µ is an irreducible, unitary, cuspidal automorphic representation of GL(m),
and ν is the unique irreducible n-dimensional representation of the group SL(2,C),
for positive integers m and n such that N = mn. For any such ψ, we form the
induced representation

(30.5) IG
P

(
(µ⊗ · · · ⊗ µ︸ ︷︷ ︸

n

)δ
1
2
P

)
,

of GL(N,A), where P is the standard parabolic subgroup of type (m, . . . ,m). We
then write πψ for the unique irreducible quotient of this representation. The the-
orem of Moeglin and Waldspurger asserts that the mapping ψ → πψ is a bijection
from Ψ2

(
GL(N)

)
onto the set of automorphic representations of GL(N) that occur

in the discrete spectrum. Set

c(ψ) =
{
cv(ψ) : v �∈ S

}
,

for any finite set S ⊃ S∞ of valuations outside of which µ is unramified, and
semisimple conjugacy classes

cv(ψ) = cv(µ)⊗ cv(φν) = cv(µ)q( n−1
2 )

v ⊕ · · · ⊕ cv(µ)q−( n−1
2 )

v

in GL(N,C). The family c(ψ) then equals the family c(πψ) attached to πψ in §26.
We also represent the entire automorphic spectrum of GL(N) by a larger set

of formal objects. Let Ψ
(
GL(N)

)
be the set of formal (unordered) direct sums

(30.6) ψ = �1ψ1 � · · ·� �rψr
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for positive integers �i, and distinct elements ψi = µi � νi in Ψ2

(
GL(Ni)

)
. The

ranks Ni are positive integers of the form Ni = mini such that

N = �1N1 + · · ·+ �rNr = �1m1n1 + · · ·+ �rmrnr.

For any ψ as in (30.6), take P to be the standard parabolic subgroup with Levi
component

M =
(
GL(N1)× · · · ×GL(N1)︸ ︷︷ ︸

�1

)
× · · · ×

(
GL(Nr)× · · · ×GL(Nr)︸ ︷︷ ︸

�r

)
,

and form the corresponding induced representation

(30.7) πψ = IG
P

(
(πψ1 ⊗ · · · ⊗ πψ1︸ ︷︷ ︸

�1

)⊗ · · · ⊗ (πψr
⊗ · · · ⊗ πψr︸ ︷︷ ︸

�r

)
)
.

As a representation of GL(N,A) induced from a unitary representation, πψ is known
to be irreducible [Be]. It follows from the theory of Eisenstein series, and Theorem
7.2 in particular, that ψ → πψ is a bijection from Ψ

(
GL(N)

)
onto the set of

irreducible representations of GL(N,A) that occur in the spectral decomposition
of L2

(
GL(N,F )\GL(N,A)

)
. We set

c(ψ) = {cv(ψ) : v �∈ S},
for any finite set S ⊃ S∞ outside of which each µi is unramified, and semisimple
conjugacy classes

cv(ψ) =
(
cv(ψ1)⊕ · · · ⊕ cv(ψ1)︸ ︷︷ ︸

�1

)
⊕ · · · ⊕

(
cv(ψr)⊕ · · · ⊕ cv(ψr)︸ ︷︷ ︸

�r

)
,

in GL(N,C). Then c(ψ) is again equal to c(πψ). The theorem of Jacquet and
Shalika mentioned in §26 [JaS] tells us that the mapping

ψ −→ c(ψ), ψ ∈ Ψ
(
GL(N)

)
,

from Ψ
(
GL(N)

)
to the set of (equivalence classes of) semisimple conjugacy classes

in GL(N,C), is injective.
There is an action πψ → πθ

ψ of the outer automorphism θ on the set of repre-
sentations πψ. If ψ is an element (30.6) in Ψ

(
GL(N)

)
, set

ψθ = �1(µθ
1 � νθ

1) � · · ·� �r(µθ
r � νθ

r )

= �(µθ
1 � ν1) � · · ·� �r(µθ

r � νr),

where µθ
i is the contragredient of the cuspidal automorphic representation µi of

GL(mi). (We can write νθ
i = νi, since any irreducible representation of SL(2,C) is

self dual.) Then πθ
ψ = πψθ . We introduce a subset

Ψ̃ = Ψ(G̃) =
{
ψ ∈ Ψ

(
GL(N)

)
: ψθ = ψ

}
of elements in Ψ

(
GL(N)

)
associated to the component

G̃ = G̃N = GL(N) � θ.

It corresponds to those representations πψ of GL(N,A) that extend to group G̃(A)+

generated by G̃(A). We shall say that ψ is primitive if r = �1 = n1 = 1. In other
words, ψ = µ1 is a self-dual cuspidal automorphic representation of GL(N). In this
case ψ has a central character ηψ of order 1 or 2.
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We would like to think of the elements in Ψ̃ as parameters. They ought to
correspond to self dual, N -dimensional representations of a group LF × SL(2,C),
where LF is a global analogue of the local Langlands group LFv

. The global Lang-
lands group LF is purely hypothetical. It should be an extension of the global Weil
group WF , equipped with a conjugacy class of embeddings

LFv
−→ WFv↪→ ↪→

LF −→ WF

of each local group. The hypothetical group LF should ultimately play a funda-
mental role in the automorphic representation theory of any G. In the meantime,
we attach an ad hoc substitute for LF to any ψ.

The proofs of the results we are going to describe include an extended induction
argument. There are in fact both local and global induction hypotheses. We
introduce the global hypothesis first, in order to define our substitutes for LF .

Global induction hypothesis. Suppose that ψ ∈ Ψ̃ is primitive. Then there
is a unique class Gψ = (Gψ,

LGψ, sψ, ξψ) of (twisted) elliptic endoscopic data in
Eell(G̃) such that

c(ψ) = ξψ

(
c(π)

)
,

for some irreducible representation π of G(A) that occurs in L2
disc

(
G(F )\G(A)

)
.

Moreover Gψ is primitive.

The assertion is quite transparent. Among all the (twisted) elliptic endoscopic
data G for G̃, there should be exactly one source for the conjugacy class data of ψ.
If ψ happens to be attached to an irreducible, self-dual representation of a group
LF , it is an elementary exercise in linear algebra to show that the assertion is valid.
That is, ψ factors through the L-group of a unique Gψ ∈ Eell(G), with Gψ being
primitive. Of course, we do not know that ψ is of this form. We do know that if Gψ

is primitive, the dual group Ĝψ ⊂ GL(N,C) is purely orthogonal or symplectic. If
ηψ �= 1 or N is odd, Ĝψ is orthogonal, and ηψ determines Gψ uniquely. However,
if ηψ = 1 and N is even, Ĝψ could be either symplectic or orthogonal. In this case,
we will require a deeper property of ψ to characterize Gψ.

In proving the results, one fixes N , and assumes inductively that the hypothesis
holds if N is replaced by a positive integer m < N . The completion of the induction
argument is of course part of what needs to be proved. Our purpose here is simply
to state the results. Therefore, in order to save space, we shall treat the hypothesis
as a separate theorem. In other words, we shall assume that it holds for m = N as
well.

Suppose that ψ is an arbitrary element in Ψ̃. Then θ acts by permutation on
the indices 1 ≤ i ≤ � in (30.6). Let I be the set of i with ψθ

i = ψi. The complement
of I is a disjoint union of two sets J and J ′, with a bijection j → j′ from J to J ′,
such that ψθ

j = ψj′ for every j ∈ J . We can then write

ψ =
(

i∈I
�iψi

)
�
(

j∈J
�j(ψj � ψj′)

)
.

If i belongs to I, we apply the global induction hypothesis to the self-dual, cusp-
idal automorphic representation µi of GL(mi). This gives us a canonical datum
Gi = Gµi

in Eprim(G̃mi
). If j belongs to J , we simply set Gj = GL(mj). We thus
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obtain a group Gα over F for any index α in I or J . Let LGα be the Galois form
of its L-group. We can then form the fibre product

(30.8) Lψ =
∏

α∈I∪J

(
LGα −→ ΓF

)
of these groups over ΓF . If i belongs to I, the endoscopic datum Gi comes with
the standard embedding

µ̃i : LGi −→ L
(
GL(mi)

)
= GL(mi,C)× ΓF .

If j belongs to J , we define a standard embedding

µ̃j : LGj −→ L
(
GL(2mj)

)
= GL(2mj ,C)× ΓF

by setting

µ̃j(gj × σ) = (gj ⊕ tg
−1
j )× σ gj ∈ Ĝj = GL(mj ,C), σ ∈ ΓF .

We then define the L-embedding

(30.9) ψ̃ : Lψ × SL(2,C) −→ L
(
GL(N)

)
= GL(N,C)× ΓF

by taking the appropriate direct sum

ψ̃ =
(⊕

i∈I

�i(µ̃i ⊗ νi)
)
⊕
(⊕

j∈J

�j(µ̃j ⊗ νj)
)
.

We can of course interpret the embedding ψ̃ = ψG̃ also as an N -dimensional repre-
sentation of Lψ ×SL(2,C). With either interpretation, we are primarily interested
in the equivalence class of ψ̃, which is a GL(N,C)-conjugacy class of homomor-
phisms from Lψ × SL(2,C) to either GL(N,C) or L

(
GL(N)

)
.

Suppose that G belongs to Eell(G̃). We write Ψ̃(G) for the set of ψ ∈ Ψ̃ such
that ψ̃ factors through LG. By this, we mean that there exists an L-homomorphism

(30.10) ψG : Lψ × SL(2,C) −→ LG

such that
ξ ◦ ψG = ψ̃,

where ξ is the embedding of LG into L
(
GL(N)

)
that is part of the twisted endo-

scopic datum represented by G. Since ψ̃ and ξ are to be regarded as GL(N,C)-
conjugacy classes of homomorphisms, ψG is determined only up to conjugacy by a
subgroup of GL(N,C). We define AutG̃(G) to be the group of automorphisms of
LG induced by conjugation of elements in GL(N,C) that normalize the image of
LG. Then ψG is to be regarded as an AutG̃(G)-orbit of L-homomorphisms (30.10).
One sees easily that the quotient

OutG̃(G) = AutG̃(G)/Int(Ĝ)

is trivial unless the integer No attached to G is even and positive, in which case it
equals Z/2Z. In particular, if G is primitive and equals an even orthogonal group,
there can be two Ĝ-orbits of homomorphisms in the class of ψG. It is for this reason
that we write Ψ̃(G) in place of the more natural symbol Ψ(G).

If ψ belongs to Ψ̃(G), we form the subgroup

(30.11) Sψ = Sψ(G) = Cent
(
Ĝ, ψG

(
Lψ × SL(2,C)

))
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of elements in Ĝ that centralize the image of ψG. The quotient

(30.12) Sψ = Sψ(G) = Sψ/S
0
ψZ(Ĝ)Γ

is a finite abelian group, which plays a central role in the theory. Notice that there
is a canonical element

(30.13) sψ = ψG

(
1,
(
−1 0
0 −1

))
in Sψ. Its image in Sψ (which we denote also by sψ) will be part of the description
of nontempered automorphic representations.

Let Ψ̃2 be the subset of elements ψ ∈ Ψ̃ such that the indexing set J is empty,
and such that �i = 1 for each i ∈ I. A general element ψ ∈ Ψ̃ always belongs to a
set Ψ̃(G), for some datum G ∈ Eell(G̃). It belongs to a unique such set if and only
if it lies in Ψ̃2. If G belongs to Eell(G̃), the intersection

Ψ̃2(G) = Ψ̃(G) ∩ Ψ̃2

is clearly the set of elements ψ ∈ Ψ̃(G) such that the group Sψ is finite. We shall
write Ψ̃prim for the set of primitive elements in Ψ̃. Then

Ψ̃prim ⊂ Ψ̃2 ⊂ Ψ̃,

and
Ψ̃prim(G) ⊂ Ψ̃2(G) ⊂ Ψ̃(G),

where
Ψ̃prim(G) = Ψ̃(G) ∩ Ψ̃prim.

Suppose that
ψ = ψ1 � · · ·� ψr

belongs to Ψ̃2. How do we determine the group G ∈ Eell(G̃) such that ψ lies in
Ψ̃2(G)? To answer the question, we have to be able to write N = Ns + No and
ψ = ψs �ψo, where ψs ∈ Ψ2(G̃Ns

) is the sum of those components ψi of symplectic
type, and ψo ∈ Ψ2(G̃No

) is the sum of the components ψi of orthogonal type.
Consider a general component

ψi = µi � νi.

The representation µi ∈ Ψprim(G̃mi
) has a central character ηi = ηµi

of order 1
or 2. It gives rise to a datum Gi ∈ Eprim(G̃mi

), according to the global inductive
hypothesis, and hence a complex, connected classical group Ĝi ⊂ GL(m,C). The
ni-dimensional representation νi of SL(2,C) gives rise to a complex, connected
classical group Ĥi ⊂ GL(ni,C), which contains its image. By considering principal
unipotent elements, for example, the reader can check that Ĥi is symplectic when ni

is even, and is orthogonal when ni is odd. The tensor product of the bilinear forms
that define Ĝi and Ĥi is a bilinear form on CNi = Cmini . This yields a complex,
connected classical group Ĝψi

⊂ GL(Ni,C), which contains the image of Ĝi × Ĥi

under the tensor product of the two standard representations. In concrete terms,
Ĝψi

is symplectic if one of Ĝi and Ĥi is symplectic and the other is orthogonal, and
is orthogonal if both Ĝi and Ĥi are of the same type. This allows us to designate
ψi as either symplectic or orthogonal. It therefore gives us our decomposition
ψ = ψs ⊕ ψo. The component ψs lies in the subset Ψ̃2(Gs) of Ψ2(G̃Ns

), for the
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datum Gs ∈ Eprim(G̃Ns
) with dual group Ĝs = Sp(Ns,C). The component ψo lies

in the subset Ψ̃2(Go) of Ψ2(G̃No
), for the datum Go ∈ Eprim(G̃No

) with dual group
Ĝo = SO(No,C), and character

ηo =
r∏

i=1

(ηi)ni .

The original element ψ therefore lies in Ψ̃2(G), where G is the product datum
Gs ×Go in Eell(G̃). We note that

Sψ(G) =

{
(Z/2Z)r, if each Ni is even,
(Z/2Z)r−1, otherwise.

Suppose now that F is replaced by a completion k = Fv of F . With this
condition, we treat G̃0 = GL(N) and G̃ = GL(N) � θ as objects over k, to which
we add a subscript v if there is any chance of confusion. As we noted in §28, one
can introduce endoscopic data over k by copying the definitions for the global field
F . Similarly, one can introduce twisted endoscopic data for G̃ over k. This gives
local forms of the sets Eprim(G̃) ⊂ Eell(G̃).

We can also construct the sets Ψ2

(
GL(N)

)
, Ψ
(
GL(N)

)
, and Ψ̃ = Ψ(G̃) as

objects over k. We define Ψ2

(
GL(N)

)
to be the set of formal tensor products

ψ = µ � ν, where µ is now an element in the set Πtemp,2

(
GL(m, k)

)
of tempered

irreducible representations of GL(m, k) that are square integrable modulo the cen-
ter. The other component ν remains an irreducible, n-dimensional representation
of SL(2,C), for a positive integer n with N = mn. For any such ψ, we form the
induced representation

IG
P

(
(µ⊗ · · · ⊗ µ︸ ︷︷ ︸

n

)δ
1
2
P

)
of GL(N, k), as in (30.5). It has a unique irreducible quotient πψ, which is known
to be unitary. The larger set Ψ

(
GL(N)

)
is again the set of formal direct sums

ψ = �1ψ1 � · · ·� �rψr,

for positive integers �i, and distinct elements ψi = µi � νi in Ψ2

(
GL(Ni)

)
. For any

such ψ, we form the induced representation

πψ = IG
P

(
(πψ1 ⊗ · · · ⊗ πψ1)︸ ︷︷ ︸

�1

⊗ · · · ⊗ (πψr
⊗ · · · ⊗ πψr

)︸ ︷︷ ︸
�r

)
of GL(N, k), as in (30.7). It is irreducible and unitary. Finally, the local set Ψ̃ is
again the subset of elements ψ in the local set Ψ

(
GL(N)

)
such that ψθ = ψ. It has

subsets
Ψ̃prim ⊂ Ψ̃2 ⊂ Ψ̃,

defined as in the global case.
We require a local form of our ad hoc substitute for the global Langlands group.

Given the results of Harris-Taylor and Henniart, it is likely that one could work
with the actual local Langlands group

LFv
=

{
WFv

× SU(2), if v is nonarchimedean,
WFv

, if v is archimedean.
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However, the proof of the results described in this section still requires a local
companion to the global induction hypothesis above. We may as well therefore use
the local induction hypothesis to define analogues of the groups Lψ.

The local induction hypothesis depends on being able to attach a twisted char-
acter f̃ → f̃G̃(ψ) to any f̃ and ψ in the local sets H(G̃) and Ψ̃. Suppose first that
ψ = µ ⊗ ν. By applying the theory of local Whittaker models to the local form
of the induced representation (30.5), one can define a canonical extension of the
quotient πψ to G̃+(k). This in turn provides a canonical extension of πψ to G̃+(k)
for a general parameter ψ ∈ Ψ̃. We define

f̃G̃(ψ) = tr
(
πψ(f̃)

)
, f̃ ∈ H(G̃).

On the other hand, we are assuming that the twisted form of the Langlands-
Shelstad transfer conjecture holds for k = Fv. This gives a mapping

f̃ −→ f̃G

from H(G̃) to SI(G), for any twisted endoscopic datum G for G̃ over k.

Local Induction Hypothesis. Suppose that ψ ∈ Ψ̃ is primitive. Then there
is a unique class Gψ ∈ Eell(G̃) such that f̃G̃(ψ) is the pullback of some stable
distribution

h −→ hGψ (ψ), h ∈ H(Gψ),

on Gψ(k). In other words,

f̃G̃(ψ) = f̃Gψ (ψ), f̃ ∈ H(G̃).

Moreover, Gψ is primitive.

The assertion is less transparent than its global counterpart, for it is tailored
to the fine structure of the terms in the spectral identities (30.1) and (30.3).
It nonetheless serves the same purpose. Among all the local endoscopic data
G ∈ Eell(G̃) for G̃, it singles out one that we can attach to ψ. As with the global
hypothesis, we shall treat the local induction hypothesis as a separate theorem. In
particular, we assume that it holds for Ψprim(G̃m), for any m ≤ N .

We can now duplicate the constructions from the global case. If ψ ∈ Ψ̃ is
a general local parameter for the component G̃ = G̃N over k, we obtain groups
Gi = Gµi

in E(G̃mi
) for each i. We can then define the local form of the group Lψ.

It is an extension of the local Galois group Γk, and comes with an L-embedding

ψ̃ : Lψ × SL(2,C) −→ LGL(N) = GL(N,C)× Γk.

We again attach a subset Ψ̃(G) of Ψ̃ to any G ∈ Eell(G̃). Any ψ ∈ Ψ̃(G) comes
with an AutG̃(G)-orbit of local L-embeddings (30.10), with ξ ◦ ψG = ψ̃. It also
comes with the reductive group Sψ = Sψ(G), the finite abelian group Sψ = Sψ(G),
and the element sψ in either Sψ or Sψ, defined by (30.11), (30.12), and (30.13)
respectively.

There are a few more observations to be made in the case k = Fv, before we
can state the theorems. We first note that the definitions above make sense if G
is a general endoscopic datum for G̃, rather than one that is just elliptic. The
more general setting is required in the local context under discussion, since the
localization of an elliptic global endoscopic datum need not remain elliptic.
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Suppose that G ∈ Eprim(G̃). The putative Langlands-Shelstad mapping
f̃ → f̃G takes H(G̃) = H

(
G̃(k)

)
to the subspace SĨ(G) = SĨ

(
G(k)

)
of functions

in SI(G) that are invariant under the group OutG̃(G). We recall that this group
is trivial unless G is an even special orthogonal group SO(N), in which case it is
of order 2. In the latter case, the nontrivial element in OutG̃(G) is induced by con-
jugation of the nontrivial connected component in O(N). By choosing a k-rational
element in this component, we obtain an outer automorphism of G(k) (regarded
as an abstract group). We can therefore identify OutG̃(G) as a group of outer au-
tomorphisms of G(k) of order 1 or 2. We write Ĩ(G) = Ĩ

(
G(k)

)
for the space of

functions in I(G) that are symmetric under OutG̃(G), and H̃(G) = H̃
(
G(k)

)
for

the space of functions in H(G) that are symmetric under the image of OutG̃(G) in
Aut
(
G(k)

)
(relative to a suitable section). The mapping f → fG then takes H̃(G)

onto Ĩ(G), while the stable orbital integral mapping f → fG takes H̃(G) onto
SĨ(G). Let Π̃(G) denote the set of OutG̃(G)-orbits in the set Π(G) = Π

(
G(k)

)
of irreducible representations. We also write Π̃fin(G) for the set of formal, finite,
nonnegative integral combinations of elements in Π̃(G). Any element π ∈ Π̃fin then
determines a linear form

f −→ fG(π), f ∈ H̃(G),

on H̃(G). We write Π̃unit(G) and Π̃fin,unit(G) for the subsets of Π̃(G) and Π̃fin(G)
built out of unitary representations. By taking the appropriate product, we can
extend these definitions to any endoscopic datum G for G̃.

Suppose again that G ∈ Eprim(G̃), and that ψ belongs to Ψ̃(G). Suppose also
that s′ is a semisimple element in Sψ(G). Let Ĝ′ be the connected centralizer Ĝs′

of s′ in Ĝ, and set
G′ = Ĝ′ψG(Lψ).

Then G′ is an L-subgroup of LG, for which the identity embedding ξ′ is an L-
homomorphism. We take G′ = Gs′ to be a quasisplit group for which Ĝ′, with the
L-action of ΓF induced by G′, is a dual group. We thus obtain an endoscopic datum
(G′,G′, s′, ξ′) for G. Now the set Ψ̃(G′) can be defined as an obvious Cartesian
product of sets we have already constructed. Since s′ lies in the centralizer of the
image of Lψ in Ĝ, ψG factors through LG′. We obtain an L-embedding

ψG′ : Lψ × SL(2,C) −→ LG′

such that
ξ′ ◦ ψG′ = ψG,

and a corresponding element ψ′ = ψs′ in Ψ̃(G′). Once again, this construction
extends to the case that G is a general twisted endoscopic datum for G̃.

There is one final technical complication. We want the local objects ψ over
k = Fv to represent local components at v of global parameters associated to auto-
morphic representations of GL(N). Because we do not know that the extension to
GL(N) of Ramanujan’s conjecture is valid, we do not know that the local compo-
nents are tempered. This requires a minor generalization of the local set Ψ̃ attached
to k = Fv. We define a larger set Ψ̃+ = Ψ+(G̃) of formal direct sums

ψ = �1ψ1 � · · ·� �rψr,
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by relaxing the condition on the representations µi in components ψi = µi � νi.
We require only that µi belong to the set Π2

(
GL(mi, k)

)
. In other words, µi is an

irreducible representation of GL(mi, k) that is square integrable modulo the center,
but whose central character need not be unitary. This condition applies only to the
components µi such that µθ

i �= µi, since the central character of µi would otherwise
have order 2. If ψ belongs to Ψ̃+, the twisted character f̃ → f̃G̃(ψ) is defined
from the tempered case by analytic continuation in the central characters of the
components µi. The various other objects we have associated to the set Ψ̃ are also
easily formulated for the larger set Ψ̃+.

We shall now state the results as three theorems. They are conditional on the
fundamental lemma, and the further requirements discussed at the beginning of the
section.

Theorem 30.1. Assume that k = Fv is local, and that G ∈ Eprim(G̃).
(a) For each ψ ∈ Ψ̃(G), there is a stable linear form h→ hG(ψ) on H̃(G) such

that

f̃G̃(ψ) = f̃G(ψ), f̃ ∈ H(G̃).

(b) For each ψ ∈ Ψ̃(G), there is a finite subset Π̃ψ of Π̃fin,unit(G), together with
an injective mapping

π −→ 〈·, π〉, π ∈ Π̃ψ,

from Π̃ψ to the group of characters Ŝψ(G) on Sψ(G) that satisfies the following
condition. For any s′ ∈ Sψ(G),

(30.14) fG′
(ψ′) =

∑
π∈eΠψ

〈sψs, π〉fG(π), f ∈ H̃(G),

where G′ = G′
s′ , ψ′ = ψ′

s′ , and s is the image of s′ in Sψ(G).
(c) Let Φ̃temp(G) denote the subset of elements in Ψ̃(G) for which each of the

SL(2,C) components νi is trivial. Then if φ ∈ Φ̃temp(G), the elements in Π̃φ

are tempered and irreducible, in the sense that they belong to the set Π̃temp(G)
of OutG̃(G)-orbits in Πtemp(G). Moreover, every element in Π̃temp(G) belongs to
exactly one packet Π̃φ. Finally, if k is nonarchimedean, the mapping Π̃φ → Ŝφ is
bijective. �

Remarks: 1. The assertions (b) and (c) of the theorem are new only in
the nonarchimedean case. (For archimedean v, they are special cases of results of
Shelstad [She3] and Adams, Barbasch, and Vogan [ABV].) If v is nonarchimedean,
assertion (c) can be combined with the local Langlands conjecture for GL(N) [HT],
[He]. This ought to yield the local Langlands conjecture for G, at least in the case
that OutG̃(G) = 1.

2. The transfer mapping f → fG′
in (b) depends on a normalization for the

transfer factors ∆G(δ′, γ) for the quasisplit group G′. We assume implicitly that
∆G(δ′, γ) equals the function denoted ∆0(δ′, γ) on p. 248 of [LS1]. This is the
reason that the characters 〈·, π〉 on Sϕ attached to an element φ ∈ Φ̃temp(G) are
slightly simpler than in the general formulation (28.8).
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3. Suppose that ψ lies in the larger set Ψ̃+(G). We can then combine the
theorem with a discussion similar to that of (28.9). In particular, we can identify
ψ with the image in Ψ̃+(G) induced from a nontempered twist ψM,λ, where M is
a Levi subgroup of G, ψM is an element in Ψ̃(M), and λ is a point in (a∗M )+P . We
can then form the corresponding induced packet

Π̃ψ =
{
IG

P (πM,λ) : πM ∈ Π̃ψM

}
for G(k). Since we are dealing with full induced representations, rather than Lang-
lands quotients, the assertions of the theorem extend to Π̃ψ.

Theorem 30.2. Assume that k = F is global, and that G ∈ Eprim(G̃).
(a) Suppose that ψ ∈ Ψ̃(G). If v is any valuation of F , the localization ψv

of ψ, defined in the obvious way as an element in the set Ψ̃+
v = Ψ+(G̃v), has the

property that Lψv
is contained in Lψ. In particular, ψv belongs to Ψ̃+(Gv), Sψ(G)

is contained in Sψv
(Gv), and there is a canonical homomorphism s → sv from

Sψ(G) to Sψv
(Gv). We can therefore define a global packet

Π̃ψ =
{⊗

v

πv : πv ∈ Π̃ψv
, 〈·, πv〉 = 1 for almost all v

}
,

and for each element π =
⊗
v
πv in Π̃ψ, a character

〈s, π〉 =
∏
v

〈sv, πv〉, s ∈ Sv,

on Sψ = Sψ(G).
(b) Define a subalgebra of H(G) by taking the restricted tensor product

H̃(G) =
rest⊗
v

H̃(Gv).

Then there is an H̃(G)-module isomorphism

(30.15) L2
disc

(
G(F )\G(A)

) ∼= ⊕
ψ∈Ψ̃2(G)

mψ

( ⊕
{π∈Π̃ψ :〈·,π〉=εψ}

π
)
,

where mψ equals 1 or 2, and

εψ : Sψ −→ {±1}
is a linear character defined explicitly in terms of symplectic root numbers. �

Remarks. 4. The multiplicity mψ is defined to be the number of Ĝ-orbits of
embeddings

Lψ × SL(2,C) −→ LG

in the AutG̃(G)-orbit of ψG. We leave the reader to check that mψ equals 1 unless
N is even, Ĝ = SO(N,C), and the rank Ni of each of the components ψi = µi ⊗ νi

of ψ is also even, in which case mψ = 2.
5. The sign character εψ is defined as follows. We first define an orthogonal

representation
τψ : Sψ × Lψ × SL(2,C) −→ GL(ĝ)
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on the Lie algebra ĝ of Ĝ by setting

τψ(s, g, h) = Ad
(
sψG(g × h)

)
, s ∈ Sψ, g ∈ Lψ, h ∈ SL(2,C).

We then write
τψ =

⊕
α

τα =
⊕

α

(
λα ⊗ µα ⊗ να

)
,

for irreducible representations λα, µα and να of Sψ, Lψ and SL(2,C) respectively.
Given the definition of the global group Lψ, we can regard L(s, µα) as an auto-
morphic L-function for a product of general linear groups. One checks that it is
among those L-functions for which one has analytic continuation, and a functional
equation

L(s, µα) = ε(s, µα)L(1− s, µ∨
α).

In particular, if µ∨
α = µα, ε( 1

2 , µα) = ±1. Let A be the set of indices α such that
(i) τ∨α = τα (and hence µ∨

α = µα),
(ii) dim(να) is even (and hence να is symplectic),
(iii) ε( 1

2 , µα) = −1.
Then

(30.16) εψ(s) =
∏
α∈A

det
(
λα(s)

)
, s ∈ Sψ.

Theorem 30.3. Assume that F is global.
(a) Suppose that G ∈ Eprim(G̃), and that ψ = µ belongs to Ψ̃prim(G). Then

Ĝ is orthogonal if and only if the symmetric square L-function L(s, µ, S2) has a
pole at s = 1, while Ĝ is symplectic if and only if the skew-symmetric L-function
L(s, µ,Λ2) has a pole at s = 1.

(b) Suppose that for i = 1, 2, Gi ∈ Eprim(G̃Ni
) and that ψi = µi belongs to

Ψ̃prim(Gi). Then the corresponding Rankin-Selberg ε-factor satisfies

ε( 1
2 , µ1 × µ2) = 1,

provided that Ĝ1 and Ĝ2 are either both orthogonal or both symplectic. �

Remarks: 6. Suppose that µ is as in (i). It follows from the fact µθ = µ that

L(s, µ× µ) = L(s, µ, S2)L(2, µ,Λ2).

The Rankin-Selberg L-function on the left is known to have a pole of order 1 at
s = 1. One also knows that neither of the two L-functions on the right can have
a zero at s = 1. The assertion of (a) is therefore compatible with our a priori
knowledge of the relevent L-functions. It is also compatible with properties of
the corresponding Artin L-functions, in case µ is attached to an irreducible N -
dimensional representation of ΓF or WF . The assertion is an essential part of both
the resolution of the global induction hypothesis and the proof of the multiplicity
formula (30.15).

7. Consider the assertion of (b). If µ1 and µ2 are both attached to irreducible
representations of WF , the conditions of (b) reduce to the requirement that the
tensor product of the two representations be orthogonal. The assertion of (b) is
known in this case [D2]. The general assertion (b) is again intimately related to
the global induction hypothesis and the multiplicity formula (30.15).
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We shall add a few observations on the “tempered” case of the multiplicity
formula (30.15). Assume that G ∈ Eprim(G̃), as in Theorem 30.2. Let us write
L2

temp,disc

(
G(F )\G(A)

)
for the subspace of L2

disc

(
G(F )\G(A)

)
whose irreducible

constituents transfer to cuspidal Eisenstein series for G̃0 = GL(N). (The notation
anticipates a successful resolution of the Ramanujan conjecture for GL(N), which
given our theorems, would imply that L2

temp,disc

(
G(F )\G(A)

)
is indeed the subspace

of L2
disc

(
G(F )\G(A)

)
whose irreducible constituents are tempered.) Let Φ̃2(G) =

Φ̃temp,2(G) be the subset of elements in the global set Ψ̃2(G) for which the SL(2,C)-
components νi are all trivial. Then εφ = 1 for every φ ∈ Φ̃2(G). The formula (30.15)
therefore provides an H̃(G)-module isomorphism

(30.17) L2
temp,disc

(
G(F )\G(A)

) ∼= ⊕
φ∈eΦ2(G)

mφ

( ⊕
{π∈eΠφ:〈·,π〉=1}

π
)
.

Suppose that N is odd, or that Ĝ = Sp(N,C). Then mφ = 1. It is also easy
to see that H̃(Gv) = H(Gv) for any v, so that H̃(G) = H(G) in this case. More-
over, the local packets Π̃φv

= Πφv
attached to elements φv in the set Φ̃temp(Gv) =

Φtemp(Gv) contain only irreducible representations of G(Fv). Now the local com-
ponent φv of an element φ in the global set Φ̃2(G) = Φ2(G) could lie in a set
Φ+

temp(Gv) ⊂ Φ+(Gv) that properly contains Φtemp(Gv). However, it is likely that
the induced representations that comprise the corresponding packet Πφv

are still
irreducible. (I have not checked this point in general, but it should be a straight-
forward consequence of the well known structure of generic, irreducible, unitary
representations of GL(N,Fv).) Taking the last point for granted, we see that the
global packet

Πφ =
{⊗

v

πv : πv ∈ Πφv
, 〈·, πv〉 = 1 for almost all v

}
attached to any φ ∈ Φ2(G) contains only irreducible representations of G(A). The
injectivity of the mapping π → c(π) implies that the global packets are disjoint. It
then follows from (30.17) that L2

temp,disc

(
G(F )\G(A)

)
decomposes with multiplicity

1 in this case.
In the remaining case, N is even and Ĝ = SO(N,C). If one of the integers Ni

attached to a given global element φ ∈ Φ̃2(G) is odd, mφ equals 1. An argument like
that above then implies that the irreducible constituents of L2

temp,disc

(
G(F )\G(A)

)
attached to φ have multiplicity 1. However, if the integers Ni attached to φ are all
even, mφ equals 2. The multiplicity formula (30.17) then becomes more interesting.
It depends in fact on the integers

Nv,i, 1 ≤ i ≤ �v,

attached to the local components φv of φ. If for some v, all of these integers are even,
(30.17) can be used to show that the irreducible constituents of
L2

temp,disc

(
G(F )\G(A)

)
attached to φ again have multiplicity 1. However, it could

also happen that for every v, one of the integers Nv,i is odd. A slightly more elabo-
rate analysis of (30.17) then leads to the conclusion that the irreducible constituents
of L2

temp,disc

(
G(F )\G(A)

)
attached to φ all have multiplicity 2. This represents a

quantitative description of a phenomenon investigated by M. Larsen in terms of
representations of Galois groups [Lar, p. 253].
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The discussion of this section has been restricted to quasisplit orthogonal and
symplectic groups. It is of course important to treat other classical groups as well.
For example, there ought to be a parallel theory for quasisplit unitary groups over
F . The case of unitary groups is in fact somewhat simpler. Moreover, a proof of the
fundamental lemma for unitary groups has been announced recently by Laumon and
Ngo [LN]. It is quite possible that their methods could be extended to weighted
orbital integrals and their twisted analogues. The goal would be to extend the
results of Rogawski for U(3) [Ro2], [Ro3] to general rank.

Finally, we note that there has been considerable progress recently in applying
other methods to classical groups. These methods center around the theory of
L-functions, and a generalization [CP] of Hecke’s converse theorem for GL(2).
They apply primarily to generic representations (both local and global) of classical
groups, but they do not depend on the fundamental lemma. We refer the reader to
[Co] for a general introduction, and to selected papers [CKPS1], [CKPS2], [JiS]
and [GRS].



Afterword: beyond endoscopy

The principle of functoriality is one of the pillars of the Langlands program. It
is among the deepest problems in mathematics, and has untold relations to other
questions. For example, the work of Wiles suggests that functoriality is inextricably
intertwined with that second pillar of the Langlands program, the general analogue
of the Shimura-Taniyama-Weil conjecture [Lan7].

The theory of endoscopy, which is still largely conjectural, analyzes represen-
tations of G in terms of representations of its endoscopic groups G′. In its global
form, endoscopy amounts to a comparison of trace formulas, namely the invariant
(or twisted) trace formula for G with stable trace formulas for G′. It includes the
applications we discussed in §25, §26, and §30 as special cases. The primary aim of
endoscopy is to organize the representations of G into packets. It can be regarded
as a first attempt to describe the fibres of the mapping

π −→ c(π)

from automorphic representations to families of conjugacy classes. However, it also
includes functorial correspondences for the L-homomorphisms

ξ′ : LG′ −→ LG

attached to endoscopic groups G′ for G (in cases where G′ can be identified with
an L-group LG′).

The general principle of functoriality applies to an L-homomorphism

(A.1) ρ : LG′ −→ LG

attached to any pair G′ and G of quasisplit groups. As a strategy for attacking this
problem, the theory of endoscopy has obvious theoretical limitations. It pertains,
roughly speaking, to the case that LG′ is the group of fixed points of a semisimple
L-automorphism of LG. Most mappings ρ do not fall into this category.

Suppose for example that G′ = GL(2) and G = GL(m + 1), and that ρ is the
(m+1)-dimensional representation of Ĝ′ = GL(2,C) defined by the mth symmetric
power of the standard two-dimensional representation. If m = 2, the image of
GL(2,C) in LG = GL(3,C) is essentially an orthogonal group. In this case, the
problem is endoscopic, and is included in the theory of classical groups discussed in
§30. (In fact, functoriality was established in this case by other means some years
ago [GeJ].) In the case m = 3 and m = 4, functoriality was established recently
by Kim and Shahidi [KiS] and Kim [Ki]. These results came as a considerable
surprise. They were proved by an ingenious combination of the converse theorems
of Cogdell and Piatetskii-Shapiro with the Langlands-Shahidi method. If m ≥ 5,
however, these methods do not seem to work. Since the problem is clearly not
endoscopic in this case, none of the known techniques appear to hold any hope of
success.

We are going to conclude with a word about some recent ideas of Langlands1

[Lan13], [Lan15]. The ideas are quite speculative. They have yet to be shown
to apply even heuristically to new cases of functoriality. However, they have the
distinct advantage that everything else appears to fail in principle. The ideas are
in any case intriguing. They are based on applications of the trace formula that
have never before been considered.

1I thank Langlands for enlightening conversations on the topic.
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The difficulty in attacking the general case (A.1) of functoriality is that it is
hard to characterize the image of LG′ in LG. If ρ(LG′) is the group of fixed points
of some outer automorphism, G′ will be related to a twisted endoscopic group for
G. The corresponding twisted trace formula isolates automorphic representations
of G that are fixed by the outer automorphism. A comparison of this formula with
stable trace formulas for the associated collection of twisted endoscopic groups is
aimed, roughly speaking, at those L-subgroups of LG fixed by automorphisms in
the given inner class. If the image of LG′ in LG is more general, however, the
problem becomes much more subtle. Is it possible to use the trace formula in a
way that counts only the automorphic representations of G(A) that are functorial
images of automorphic representations of G′?

Suppose that r is some finite dimensional representation of LG. We write
Vram(G, r) for the finite set of valuations v of F at which either G or r is ramified.
For ρ as in (A.1), the composition r◦ρ is a finite dimensional representation of LG′.
If this representation contains the trivial representation of LG′, and the L-function
L(s, π′, r ◦ ρ) attached to a given automorphic representation π′ of G′ has the
expected analytic continuation, the L-function will have a pole at s = 1. The same
would therefore be true of the L-function L(s, π, r) attached to an automorphic
representation π of G that is a functorial image of π′ under ρ. On the other hand,
so long as r does not contain the trivial representation of LG, there will be many
automorphic representations π of G for which L(s, π, r) does not have a pole at
s = 1. One would like to have a trace formula that includes only the automorphic
representations π of G for which L(s, π, ρ) has a pole at s = 1.

The objects of interest are of course automorphic representations π of G that
occur in the discrete spectrum. The case that π is nontempered is believed to
be more elementary, in the sense that it should reduce to the study of tempered
automorphic representations of groups Gψ of dimension smaller than G [A17]. The
primary objects are therefore the representations π that are tempered, and hence
cuspidal. If π is a tempered, cuspidal automorphic representation of G, L(s, π, r)
should have a pole at s = 1 of order equal to that of the unramified L-function

LV (s, π, r) =
∏
v �∈V

det
(
1− r(c(πv))q−s

v

)−1
,

attached to any finite set V ⊃ Sram(G, r) outside of which π is unramified. The
partial L-function LV (s, π, r) is not expected to have a zero at s = 1. The order of
its pole will thus equal

n(π, r) = Res
s=1

(
− d

ds
log LV (s, π, r)

)
,

a nonnegative integer that is independent of V .
We can write

− d

ds
log LV (s, π, r)

=
∑
v �∈V

d

ds
log
(
det(1− r(c(πv))q−s

v )
)

=
∑
v �∈V

∞∑
k=1

log(qv)tr
(
r(c(πv))k

)
q−ks
v ,
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for Re(s) large. Since π is assumed to be tempered, the projection of any conjugacy
class c(πv) onto Ĝ is bounded, in the sense that it intersects any maximal compact
subgroup of Ĝ. It follows that the set of coefficients{

tr
(
r(c(πv))k

)
: v �∈ V, k ≥ 1

}
is bounded, and hence that the last Dirichlet series actually converges for Re(s) > 1.
Since π is also assumed to be cuspidal automorphic, LV (s, π, r) is expected to have
analytic continuation to a meromorphic function on the complex plane. The last
Dirichlet series will then have at most a simple pole at s = 1, whose residue can
be described in terms of the coefficients. Namely, by a familiar application of the
Wiener-Ikehara tauberian theorem, there would be an identity

(A.2) n(π, r) = lim
N→∞

(
V −1

N

∑
{v �∈V :qv≤N}

tr
(
r(c(πv))

))
,

where
VN = |{v �∈ V : qv ≤ N}|.

(See [Ser1, p. I-29]. Observe that the contribution of the coefficients with k > 1
to the Dirchlet series is analytic at s = 1, and can therefore be ignored.)

Langlands proposes to apply the trace formula to a family of functions fN

that depend on the representation r. We begin with an arbitrary function f ∈
H
(
G(A)

)
. If V ⊃ Sram(G) is a finite set of valuations such that f belongs to the

subspace H
(
G(FV )

)
of H

(
G(A)

)
, and φ belongs to the unramified Hecke algebra

H
(
G(AV ),KV

)
, the product

fφ : x → f(x)φ(xV ), x ∈ G(A),

also belongs to H
(
G(A)

)
. We choose the function φ = φN so that it depends on r,

as well as a positive integer N . Motivated by (A.2), and assuming that V contains
the larger finite set Sram(G, r), we define φN by the requirement that

(φN )G(πV ) =
∑

{v �∈V :qv≤N}
r
(
c(πv)

)
,

for any unramified representation πV of G(AV ). Then

n(π, r) = lim
N→∞

(
(φN )G(πV )V −1

N

)
,

for any π as in (A.2). The products

fN = fr
N = fφN

, N ≥ 1,

or rather their images in H(G), are the relevant test functions.
Set

Itemp,cusp(f) = tr
(
Rtemp,cusp(f)

)
,

where Rtemp,cusp is the representation of G(A)1 on the subspace of
L2

cusp

(
G(F )\G(A)1

)
that decomposes into tempered representations π of G(A)1.

Suppose that we happen to know that LV (s, π, r) has analytic continuation for
each such π. Then the sum

(A.3)
∑

π

n(π, r)mcusp(π)fG(π),
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taken over irreducible tempered representations π of G(A)1, equals the limit

Ir
temp,cusp(f) = lim

N→∞

(
Itemp,cusp(fN )V −1

N

)
.

However, it is conceivable that one could investigate the limit Ir
temp,cusp(f) without

knowing the analytic continuation of the L-functions. The term Itemp,cusp(fN ) in
this limit is part of the invariant trace formula for G. It is the sum over t ≥ 0 of the
tempered, cuspidal part of the term with M = G in the t-discrete part It,disc(fN ).
(We recall that the linear form It,disc is defined by a sum (21.19) over Levi subgroups
M of G.) For each N , one can replace Itemp,cusp(fN ) by the complementary terms
of the trace formula. Langlands’ hope (referred to as a pipe dream in [Lan15]) is
that the resulting limit might ultimately be shown to exist, through an analysis of
these complementary terms. The expression for the limit so obtained would then
provide a formula for the putative sum (A.3).

In general, it will probably be necessary to work with the stable trace formula,
rather than the invariant trace formula. This is quite appropriate, since we are
assuming that G is quasisplit. The t-discrete part

St,disc(f) = SG
t,disc(f)

of the stable trace formula, defined in Corollary 29.10, has a decomposition

St,disc(f) =
∑

c∈Ct,disc(G)

Sc(f), f ∈ H(G),

into Hecke eigenspaces. The indices c here range over “t-discrete” equivalence
classes of families

cV = {cv : v �∈ V }, V ⊃ Sram(G),

of semisimple conjugacy classes in LG attached to unramified representations
πV = π(cV ) of G(AV ). We recall that two such families are equivalent if they
are equal for almost all v. The eigendistribution Sc(f) is characterized by the
property that

Sc(fφ) = Sc(f)φG(cV ), φ ∈ H
(
G(AV ),KV

)
,

where V is a large finite set of valuations depending on f , cV is some representative
of the equivalence class c, and

φG(cV ) = φG

(
π(cV )

)
.

For any f and t, the sum in c can be taken over a finite set. Let Ctemp,cusp(G) be
the subset of classes in the union

Cdisc(G) =
⋃
t≥0

Ct,disc(G)

that do not lie in the image of Cdisc(M) in Cdisc(G) for any M �= G, and whose
components cv are bounded in Ĝ. The sum

Stemp,cusp(f) = SG
temp,cusp(f) =

∑
c∈Ctemp,cusp(G)

Sc(f), f ∈ H(G),

is then easily seen to be absolutely convergent.
The sum (A.3) and the limit Ir

cusp,temp(f) have obvious stable analogues. If the
partial L-function

L(s, cV , r) = LV (s, π, r), πV = π(cV ),
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attached to a class c ∈ Ctemp,cusp(G) has analytic continuation, set n(c, r) equal to
n(π, r). Then

n(c, r) = lim
N→∞

(
V −1

N

∑
{v �∈V :qv≤N}

tr
(
r(cv)

))
= lim

N→∞

(
(φN )G(cV )V −1

N

)
.

The notation here reflects the fact that the limit is independent of both V and the
representative cV of c. If L(s, cV , r) has analytic continuation for every c, the sum

(A.4)
∑

c∈Ctemp,cusp(G)

n(c, r)Sc(f)

equals the limit

Sr
temp,cusp(f) = lim

N→∞

(
Stemp,cusp(fN )V −1

N

)
.

The remarks for Ir
temp,cusp(f) above apply again to the limit Sr

temp,cusp(f) here.
Namely, it might be possible to investigate this limit without knowing the analytic
continuation of the L-functions. Since Stemp,cusp(fN ) is part of the stable trace
formula for G, we could replace it by the complementary terms in the formula. The
ultimate goal would be to show that the limit exists, and that it has an explicit
expression given by these complementary terms.

An important step along the way would be to deal with the complementary
terms attached to nontempered classes c. These terms represent contributions to
St,disc(fN ) from nontempered representations of G(A) that occur in the discrete
spectrum. The conjectural classification in [A17] suggests that they can be ex-
pressed in terms of groups Gψ of dimension smaller than G. One can imagine that
the total contribution of a group H = Gψ might take the form of a sum

(A.5)
( ∑

{ψ:Gψ=H}
ŜH

ψ (fψ
N )
)
V −1

N ,

where SH
ψ is a component of the linear form SH

temp,cusp on H(H), and fN → fψ
N is

a transform from H(G) to SI(H). For example, the one-dimensional automorphic
representations χ of G(A) are represented by parameters

ψ : ΓF × SL(2,C) −→ LG,

in which ψ

(
1,
(

1 1
0 1

))
is a principal unipotent element in Ĝ. In this case, H = Gψ

is the co-center of G, and

ŜH
ψ (fψ

N ) =
∫

G(A)

fN (x)χ(x)dx.

In general, the transform fψ
N would be defined by nontempered stable characters,

and the contribution (A.5) of Gψ will not have a limit in N . One would have to
combine the sum over H of these contributions with the sum obtained from the
remaining terms in the stable trace formula. More precisely, one would need to show
that the difference of the two sums does have a limit in N , for which there is an
explicit expression. In the process, one could try to establish the global conjectures
in [A17], in the more exotic cases where endoscopy gives only partial information.
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This is a tall order indeed. The most optimistic prediction might be that the
program can be carried out with a great deal of work by many mathematicians over
a long period of time! However, the potential rewards seem to justify any amount
of effort. A successful resolution to the questions raised so far would be spectacular.
It would give a complicated, but presumably quite explicit, formula for the linear
form Sr

temp,cusp(f) in terms that are primarily geometric. The result would be a
stable trace formula for the tempered, cuspidal automorphic representations π of
G such that L(s, π, r) has a pole at s = 1.

The lesson we have learned from earlier applications is that a complicated trace
formula is more useful when it can be compared with something else. The case at
hand should be no different. One could imagine that for any L-embedding ρ as in
(A.1), there might be a mapping f → fr,ρ from H(G) to SI(G′) by which one could
detect functorial contributions of ρ to Sr

temp,cusp(f). The mapping might perhaps
be defined locally. It should certainly vanish unless ρ is unramified outside of V ,
for any finite set V such that f lies in the subspace H(GV ) of H(G). We would
include only those ρ that are elliptic, in the sense that their image is contained in
no proper parabolic subgroup of LG.

From the theory of endoscopy, we know that we have to treat a somewhat larger
class of embeddings ρ. We consider the set of Ĝ-orbits of elliptic L-embeddings

(A.1)∗ ρ : G′ −→ LG,

where G′ is an extension

1 −→ Ĝ′ −→ G′ −→ WF −→ 1

for which there is an L-embedding G′ ↪→ LG̃′. It is assumed that Ĝ′ is the L-
group of a quasisplit group G′, and that G̃′ → G′ is a z-extension of quasisplit
groups. For each such ρ, we suppose that there is a mapping f → fr,ρ from
H(G) to SI(G̃′, η̃′), for the appropriate character η̃′ on the kernel of the projection
G̃′ → G′, which vanishes unless ρ is unramified outside of V . One might hope
ultimately to establish an identity

(A.6) Sr
temp,cusp(f) =

∑
ρ

σ(r, ρ)Ŝ′
prim(fr,ρ),

where ρ ranges over classes of elliptic L-embeddings (A.1)∗, σ(r, ρ) are global coef-
ficients determined by r and ρ, and S′

prim is a stable linear form on H(G̃′, η̃′) that
depends only on G̃′ and η̃′. In fact, S′

prim should be defined by a stable sum of the
tempered, cuspidal, automorphic representations π′ ∈ Πtemp(G̃′, η̃′) such that for
any finite dimensional representation r′ of LG̃′, the order of the pole of L(s, π′, r′)
at s = 1 equals the multiplicity of the trivial representation of LG̃′ in r′. For each
G′, one would try to construct a trace formula for S′

prim inductively from the for-
mulas for the analogues for G̃′ of the linear forms Sr

temp,cusp. The goal would be to
compare the contribution of these formulas to the right hand side of (A.6) with the
formula one hopes to obtain for the left hand side. If one could show that the two
primarily geometric expressions cancel, one would obtain an identity (A.6).

A formula (A.6) for any G would presumably lead to the general principle
of functoriality. Functoriality in turn implies the analytic continuation of the L-
functions L(s, π, r) (for cuspidal automorphic representations π) and Ramanujan’s
conjecture (for those cuspidal automorphic representations π not attached to the
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SL(2,C)-parameters of [A17]). Both of these implications were drawn in Lang-
lands’ original paper [Lan3]. It is interesting to note that Langlands’ ideas are
based on the intuition gained from the analytic continuation and the Ramanujan
conjecture. However, his strategy is to bypass these two conjectures, leaving them
to be deduced from the principle of functoriality one hopes eventually to establish.

The existence of a formula (A.6) would actually imply something beyond func-
toriality. Let Πprim(G) be the set of tempered, cuspidal, automorphic representa-
tions of G that are primitive, in the sense that they are not functorial images of
representations π′ ∈ Π(G̃′, η̃′), for any L-embedding (A.1)∗ with proper image in
LG. An identity of the form (A.6) implies that if π ∈ Πprim(G), and r is any finite
dimensional representation of LG, the order of the pole of L(s, π, r) at s = 1 equals
the multiplicity of the trivial representation of LG in r. This condition represents a
kind of converse to functoriality. It implies that any tempered, cuspidal, automor-
phic representation π of G is a functional image under some ρ of a representation π′

in the associated set Πprim(G̃′, η̃′). The condition is closely related to the existence
of the automorphic Langlands group LF . If it fails, the strategy for attacking the
functoriality we have described would seem also to fail.

All of this is implicit in Langlands’ paper [Lan13], if I have understood it
correctly. Langlands is particularly concerned with the case that G = PGL(2), a
group for which the stable trace formula is the same as the invariant trace formula,
and r is the irreducible representation of Ĝ = SL(2,C) of dimension (m+1). In this
case, an elliptic homomorphism ρ will be of dihedral, tetrahedral, octahedral, or
icosahedral type. For each of the last three types, the image of ρ is actually finite.
The poles that any of these three types would contribute to L-functions L(s, π, r)
are quite sparse. (See [Lan13, p. 24].) For example, to detect the contribution of
an icosahedral homomorphism ρ, one would have to take a 12-dimensional repre-
sentation r. For a representation of Ĝ of this size, there will be many terms in the
putative limit Ir

temp,cusp(f) = Sr
temp,cusp(f) that overwhelm the expected contribu-

tion of ρ. The analytic techniques required to rule out such terms are well beyond
anything that is presently understood. Techniques that can be applied to smaller
representations r are discussed in [Lan13] and [Lan15], and also in the letter [Sar]
of Sarnak.
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Abstract. This is an introduction to the theory of Shimura varieties,
or, in other words, to the arithmetic theory of automorphic functions
and holomorphic automorphic forms.
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Introduction

The arithmetic properties of elliptic modular functions and forms were exten-
sively studied in the 1800s, culminating in the beautiful Kronecker Jugendtraum.
Hilbert emphasized the importance of extending this theory to functions of several
variables in the twelfth of his famous problems at the International Congress in
1900. The first tentative steps in this direction were taken by Hilbert himself and

c© 2005 J. S. Milne
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his students Blumenthal and Hecke in their study of what are now called Hilbert
(or Hilbert-Blumenthal) modular varieties. As the theory of complex functions
of several variables matured, other quotients of bounded symmetric domains by
arithmetic groups were studied (Siegel, Braun, and others). However, the modern
theory of Shimura varieties1 only really began with the development of the theory
of abelian varieties with complex multiplication by Shimura, Taniyama, and Weil
in the mid-1950s, and with the subsequent proof by Shimura of the existence of
canonical models for certain families of Shimura varieties. In two fundamental ar-
ticles, Deligne recast the theory in the language of abstract reductive groups and
extended Shimura’s results on canonical models. Langlands made Shimura varieties
a central part of his program, both as a source of representations of galois groups
and as tests for the conjecture that all motivic L-functions are automorphic. These
notes are an introduction to the theory of Shimura varieties from the point of view
of Deligne and Langlands. Because of their brevity, many proofs have been omitted
or only sketched.

Notations and conventions. Unless indicated otherwise, vector spaces are as-
sumed to be finite dimensional and free Z-modules are assumed to be of finite rank.
The linear dual Hom(V, k) of a vector space (or module) V is denoted V ∨. For
a k-vector space V and a k-algebra R, V (R) denotes R ⊗k V (and similarly for
Z-modules). By a lattice in an R-vector space V , I mean a full lattice, i.e., a Z-
submodule generated by a basis for V . The algebraic closure of a field k is denoted
kal.

A superscript + (resp. ◦) denotes a connected component relative to a real
topology (resp. a zariski topology). For an algebraic group, we take the identity
connected component. For example, (On)◦ = SOn, (GLn)◦ = GLn, and GLn(R)+

consists of the n × n matrices with det > 0. For an algebraic group G over Q,
G(Q)+ = G(Q)∩G(R)+. Following Bourbaki, I require compact topological spaces
to be separated.

Semisimple and reductive groups, whether algebraic or Lie, are required to be
connected. A simple algebraic or Lie group is a semisimple group with no connected
proper normal subgroups other than 1 (some authors say almost-simple). For a
torus T , X∗(T ) denotes the character group of T . The inner automorphism defined
by an element g is denoted ad(g). The derived group of a reductive group G is
denoted Gder (it is a semisimple group). For more notations concerning reductive
groups, see p303. For a finite extension of fields L ⊃ F of characteristic zero, the
torus over F obtained by restriction of scalars from Gm over L is denoted (Gm)L/F .

Throughout, I use the notations standard in algebraic geometry, which some-
times conflict with those used in other areas. For example, if G and G′ are algebraic
groups over a field k, then a homomorphism G → G′ means a homomorphism de-
fined over k; if K is a field containing k, then GK is the algebraic group over K
obtained by extension of the base field and G(K) is the group of points of G with
coordinates in K. If σ : k ↪→ K is a homomorphism of fields and V is an algebraic
variety (or other algebro-geometric object) over k, then σV has its only possible
meaning: apply σ to the coefficients of the equations defining V .

Let A and B be sets and let ∼ be an equivalence relation on A. If there exists
a canonical surjection A → B whose fibres are the equivalence classes, then I say

1The term “Shimura variety” was introduced by Langlands (1976, 1977), although earlier
“Shimura curve” had been used for the varieties of dimension one (Ihara 1968).
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that B classifies the elements of A modulo ∼ or that it classifies the ∼-classes of
elements of A.

A functor F : A → B is fully faithful if the maps HomA(a, a′) → HomB(Fa, Fa′)
are bijective. The essential image of such a functor is the full subcategory of B whose
objects are isomorphic to an object of the form Fa. Thus, a fully faithful functor
F : A → B is an equivalence if and only if its essential image is B (Mac Lane 1998,
p93).

References. In addition to those listed at the end, I refer to the following of my
course notes (available at www.jmilne.org/math/).
AG: Algebraic Geometry, v5.0, February 20, 2005.
ANT: Algebraic Number Theory, v2.1, August 31, 1998.
CFT: Class Field Theory, v3.1, May 6, 1997.
FT: Fields and galois Theory, v4.0, February 19, 2005.
MF: Modular Functions and Modular Forms, v1.1, May 22, 1997.

Prerequisites. Beyond the mathematics that students usually acquire by the
end of their first year of graduate work (a little complex analysis, topology, algebra,
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algebraic geometry, algebraic groups, and elliptic modular curves.
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1. Hermitian symmetric domains

In this section, I describe the complex manifolds that play the role in higher
dimensions of the complex upper half plane, or, equivalently, the open unit disk:

{z ∈ C | �(z) > 0} = H1

z → z−i
z+i
>

<
−i z+1

z−1 ← z

D1 = {z ∈ C | |z| < 1}.

This is a large topic, and I can do little more than list the definitions and results
that we shall need.

Brief review of real manifolds. A manifold M of dimension n is a separated
topological space that is locally isomorphic to an open subset of Rn and admits a countable
basis of open subsets. A homeomorphism from an open subset of M onto an open subset
of Rn is called a chart of M .

Smooth manifolds. I use smooth to mean C∞. A smooth manifold is a manifold
M endowed with a smooth structure, i.e., a sheaf OM of R-valued functions such that
(M,OM ) is locally isomorphic to Rn endowed with its sheaf of smooth functions. For an
open U ⊂ M , the f ∈ OM (U) are called the smooth functions on U . A smooth structure
on a manifold M can be defined by a family uα : Uα → Rn of charts such that M =

S

Uα

and the maps
uα ◦ u−1

β : uβ(Uα ∩ Uβ) → uα(Uα ∩ Uβ)

are smooth for all α, β. A continuous map α : M → N of smooth manifolds is smooth if
it is a map of ringed spaces, i.e., f smooth on an open V ⊂ N implies f ◦ α smooth on
α−1(V ).

Let (M,OM ) be a smooth manifold, and let OM,p be the ring of germs of smooth
functions at p. The tangent space TpM to M at p is the R-vector space of R-derivations
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Xp : OM,p → R. If x1, . . . , xn are local coordinates at p, then ∂
∂x1 , . . . , ∂

∂xn is a basis for

TpM and dx1, . . . , dxn is the dual basis.
Let U be an open subset of a smooth manifold M . A smooth vector field X on

U is a family of tangent vectors Xp ∈ Tp(M) indexed by p ∈ U , such that, for any
smooth function f on an open subset of U , p �→ Xpf is smooth. A smooth r-tensor
field on U is a family t = (tp)p∈M of multilinear mappings tp : TpM × · · · × TpM → R
(r copies of TpM) such that, for any smooth vector fields X1, . . . , Xr on an open subset
of U , p �→ tp(X1, . . . , Xr) is a smooth function. A smooth (r, s)-tensor field is a
family tp : (TpM)r × (TpM)∨s → R satisfying a similar condition. Note that to give a
smooth (1, 1)-field amounts to giving a family of endomorphisms tp : TpM → TpM with
the property that p �→ tp(Xp) is a smooth vector field for any smooth vector field X.

A riemannian manifold is a smooth manifold endowed with a riemannian metric,
i.e., a smooth 2-tensor field g such that, for all p ∈ M , gp is symmetric and positive definite.
In terms of local coordinates x1, . . . , xn at p,

gp =
P

gi,j(p)dxi ⊗ dxj , i.e., gp

`

∂
∂xi , ∂

∂xj

´

= gij(p).

A morphism of riemannian manifolds is called an isometry.
A real Lie group2 G is a smooth manifold endowed with a group structure defined

by smooth maps g1, g2 �→ g1g2, g �→ g−1.

Brief review of hermitian forms. To give a complex vector space amounts to
giving a real vector space V together with an endomorphism J : V → V such that J2 = −1.
A hermitian form on (V, J) is an R-bilinear mapping ( | ) : V × V → C such that

(Ju|v) = i(u|v) and (v|u) = (u|v). When we write

(1) (u|v) = ϕ(u, v) − iψ(u, v), ϕ(u, v), ψ(u, v) ∈ R,

then ϕ and ψ are R-bilinear, and

ϕ is symmetric ϕ(Ju, Jv) = ϕ(u, v),(2)

ψ is alternating ψ(Ju, Jv) = ψ(u, v),(3)

ψ(u, v) = −ϕ(u, Jv), ϕ(u, v) = ψ(u, Jv).(4)

As (u|u) = ϕ(u, u), ( | ) is positive definite if and only if ϕ is positive definite. Conversely,
if ϕ satisfies (2) (resp. ψ satisfies (3)), then the formulas (4) and (1) define a hermitian
form:

(5) (u|v) = ϕ(u, v) + iϕ(u, Jv) (resp. (u|v) = ψ(u, Jv) − iψ(u, v))

Complex manifolds. A C-valued function on an open subset U of Cn is
analytic if it admits a power series expansion in a neighbourhod of each point of
U . A complex manifold is a manifold M endowed with a complex structure,
i.e., a sheaf OM of C-valued functions such that (M,OM ) is locally isomorphic
to Cn with its sheaf of analytic functions. A complex structure on a manifold M
can be defined by a family uα : Uα → Cn of charts such that M =

⋃
Uα and the

maps uα ◦ u−1
β are analytic for all α, β. Such a family also makes M into a smooth

manifold denoted M∞. A continuous map α : M → N of complex manifolds is
analytic if it is a map of ringed spaces. A riemann surface is a one-dimensional
complex manifold.

A tangent vector at a point p of a complex manifold is a C-derivation OM,p →
C. The tangent spaces TpM (M as a complex manifold) and TpM

∞ (M as a smooth
manifold) can be identified. Explicitly, complex local coordinates z1, . . . , zn at a
point p of M define real local coordinates x1, . . . , xn, y1, . . . , yn with zr = xr + iyr.

2According to a theorem of Lie, this is equivalent to the usual definition in which “smooth”

is replaced by “real-analytic”.
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The real and complex tangent spaces have bases ∂
∂x1 , . . . ,

∂
∂xn ,

∂
∂y1 , . . . ,

∂
∂yn and

∂
∂z1 , . . . ,

∂
∂zn respectively. Under the natural identification of the two spaces, ∂

∂zr =
1
2

(
∂

∂xr − i ∂
∂yr

)
.

A C-valued function f on an open subset U of Cn is holomorphic if it is
holomorphic (i.e., differentiable) separately in each variable. As in the one-variable
case, f is holomorphic if and only if it is analytic (Hartog’s theorem, Taylor 2002,
2.2.3), and so we can use the terms interchangeably.

Recall that a C-valued function f on U ⊂ C is holomorphic if and only
if it is smooth (as a function of two real variables) and satisfies the Cauchy-
Riemann condition. This condition has a geometric interpretation: it requires that
dfp : TpU → Tf(p)C be C-linear for all p ∈ U . It follows that a smooth C-valued
function f on U ⊂ Cn is holomorphic if and only if the maps dfp : TpU → Tf(p)C
are C-linear for all p ∈ U .

An almost-complex structure on a smooth manifold M is a smooth tensor
field (Jp)p∈M , Jp : TpM → TpM , such that J2

p = −1 for all p, i.e., it is a smoothly
varying family of complex structures on the tangent spaces. A complex structure
on a smooth manifold endows it with an almost-complex structure. In terms of
complex local coordinates z1, . . . , zn in a neighbourhood of a point p on a complex
manifold and the corresponding real local coordinates x1, . . . , yn, Jp acts by

(6)
∂

∂xr
�→ ∂

∂yr
,

∂

∂yr
�→ − ∂

∂xr
.

It follows from the last paragraph that the functor from complex manifolds to
almost-complex manifolds is fully faithful: a smooth map α : M → N of complex
manifolds is holomorphic (analytic) if the maps dαp : TpM → Tα(p)N are C-linear
for all p ∈ M . Not every almost-complex structure on a smooth manifold arises
from a complex structure — those that do are said to be integrable. An almost-
complex structure J on a smooth manifold is integrable if M can be covered by
charts on which J takes the form (6) (because this condition forces the transition
maps to be holomorphic).

A hermitian metric on a complex (or almost-complex) manifold M is a
riemannian metric g such that

(7) g(JX, JY ) = g(X,Y ) for all vector fields X,Y .

According to (5), for each p ∈M , gp is the real part of a unique hermitian form hp

on TpM , which explains the name. A hermitian manifold (M, g) is a complex
manifold with a hermitian metric, or, in other words, it is a riemannian manifold
with a complex structure such that J acts by isometries.

Hermitian symmetric spaces. A manifold (riemannian, hermitian, . . . ) is
said to be homogeneous if its automorphism group acts transitively. It is sym-
metric if, in addition, at some point p there is an involution sp (the symmetry
at p) having p as an isolated fixed point. This means that sp is an automorphism
such that s2

p = 1 and that p is the only fixed point of sp in some neighbourhood of
p.

For a riemannian manifold (M, g), the automorphism group is the group Is(M, g)
of isometries. A connected symmetric riemannian manifold is called a symmetric
space. For example, Rn with the standard metric gp =

∑
dxidxi is a symmetric

space — the translations are isometries, and x �→ −x is a symmetry at 0.
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For a hermitian manifold (M, g), the automorphism group is the group Is(M, g)
of holomorphic isometries:

(8) Is(M, g) = Is(M∞, g) ∩Hol(M)

(intersection inside Aut(M∞); Hol(M) is the group of automorphisms of M as a
complex manifold). A connected symmetric hermitian manifold is called a hermit-
ian symmetric space.

Example 1.1. (a) The complex upper half plane H1 becomes a hermitian
symmetric space when endowed with the metric dxdy

y2 . The action(
a b
c d

)
z =

az + b

cz + d
,

(
a b
c d

)
∈ SL2(R), z ∈ H1,

identifies SL2(R)/{±I} with the group of holomorphic automorphisms of H1. For
any x+iy ∈ H1, x+iy =

(√
y x/

√
y

0 1/
√

y

)
i, and soH1 is homogeneous. The isomorphism

z �→ −1/z is a symmetry at i ∈ H1, and the riemannian metric dxdy
y2 is invariant

under the action of SL2(R) and has the hermitian property (7).
(b) The projective line P1(C) (= riemann sphere) becomes a hermitian sym-

metric space when endowed with the restriction (to the sphere) of the standard
metric on R3. The group of rotations is transitive, and reflection along a geodesic
(great circle) through a point is a symmetry. Both of these transformations leave
the metric invariant.

(c) Any quotient C/Λ of C by a discrete additive subgroup Λ becomes a her-
mitian symmetric space when endowed with the standard metric. The group of
translations is transitive, and z �→ −z is a symmetry at 0.

Curvature. Recall that, for a plane curve, the curvature at a point p is 1/r where
r is the radius of the circle that best approximates the curve at p. For a surface in
3-space, the principal curvatures at a point p are the maximum and minimum of the
signed curvatures of the curves obtained by cutting the surface with planes through
a normal at p (the sign is positive or negative according as the curve bends towards
the normal or away). Although the principal curvatures depend on the embedding
of the surface into R3, their product, the sectional curvature at p, does not
(Gauss’s Theorema Egregium) and so it is well-defined for any two-dimensional
riemannian manifold. More generally, for a point p on any riemannian manifold
M , one can define the sectional curvature K(p,E) of the submanifold cut out
by the geodesics tangent to a two-dimensional subspace E of TpM . Intuitively,
positive curvature means that the geodesics through a point converge, and negative
curvature means that they diverge. The geodesics in the upper half plane are the
half-lines and semicircles orthogonal to the real axis. Clearly, they diverge — in
fact, this is Poincaré’s famous model of noneuclidean geometry in which there are
infinitely many “lines” through a point parallel to any fixed “line” not containing it.
More prosaically, one can compute that the sectional curvature is −1. The Gauss
curvature of P1(C) is obviously positive, and that of C/Λ is zero.

The three types of hermitian symmetric spaces. The group of isometries of a
symmetric space (M, g) has a natural structure of a Lie group (Helgason 1978, IV
3.2). For a hermitian symmetric space (M, g), the group Is(M, g) of holomorphic
isometries is closed in the group of isometries of (M∞, g) and so is also a Lie group.
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There are three families of hermitian symmetric spaces (ibid, VIII; Wolf 1984,
8.7):

Name example simply connected? curvature Is(M, g)+

noncompact type H1 yes negative adjoint, noncompact

compact type P1(C) yes positive adjoint, compact

euclidean C/Λ not necessarily zero

A Lie group is adjoint if it is semisimple with trivial centre.
Every hermitian symmetric space, when viewed as hermitian manifold, decom-

poses into a product M0 × M− × M+ with M0 euclidean, M− of noncompact
type, and M+ of compact type. The euclidean spaces are quotients of a complex
space Cg by a discrete subgroup of translations. A hermitian symmetric space is
irreducible if it is not the product of two hermitian symmetric spaces of lower
dimension. Each of M− and M+ is a product of irreducible hermitian symmetric
spaces, each of which has a simple isometry group.

We shall be especially interested in the hermitian symmetric spaces of noncom-
pact type — they are called hermitian symmetric domains.

Example 1.2 (Siegel upper half space). The Siegel upper half space Hg of
degree g consists of the symmetric complex g × g matrices with positive definite
imaginary part, i.e.,

Hg = {Z = X + iY ∈Mg(C) | X = Xt, Y > 0}.
Note that the map Z = (zij) �→ (zij)j≥i identifies Hg with an open subset of
Cg(g+1)/2. The symplectic group Sp2g(R) is the group fixing the alternating form∑g

i=1xiy−i −
∑g

i=1x−iyi:

Sp2g(R) =
{(

A B
C D

)∣∣∣∣ AtC = CtA AtD − CtB = Ig

DtA−BtC = Ig BtD = DtB

}
.

The group Sp2g(R) acts transitively on Hg by(
A B
C D

)
Z = (AZ + B)(CZ + D)−1.

The matrix
(

0 −Ig

Ig 0

)
acts as an involution on Hg, and has iIg as its only fixed

point. Thus, Hg is homogeneous and symmetric as a complex manifold, and we
shall see in (1.4) below that Hg is in fact a hermitian symmetric domain.

Example: Bounded symmetric domains. A domainD in Cn is a nonempty
open connected subset. It is symmetric if the group Hol(D) of holomorphic auto-
morphisms of D (as a complex manifold) acts transitively and for some point there
exists a holomorphic symmetry. For example, H1 is a symmetric domain and D1 is
a bounded symmetric domain.

Theorem 1.3. Every bounded domain has a canonical hermitian metric (called
the Bergman(n) metric). Moreover, this metric has negative curvature.

Proof (Sketch): Initially, let D be any domain in Cn. The holomorphic
square-integrable functions f : D → C form a Hilbert space H(D) with inner prod-
uct (f |g) =

∫
D
fgdv. There is a unique (Bergman kernel) function K : D×D → C

such that
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(a) the function z �→ K(z, ζ) lies in H(D) for each ζ,
(b) K(z, ζ) = K(ζ, z), and
(c) f(z) =

∫
K(z, ζ)f(ζ)dv(ζ) for all f ∈ H(D).

For example, for any complete orthonormal set (em)m∈N in H(D), K(z, ζ) =∑
mem(z) · em(ζ) is such a function. If D is bounded, then all polynomial func-

tions on D are square-integrable, and so certainly K(z, z) > 0 for all z. Moreover,
log(K(z, z)) is smooth and the equations

h =
∑

hijdz
idzj , hij(z) =

∂2

∂zi∂zj
logK(z, z),

define a hermitian metric on D, which can be shown to have negative curvature
(Helgason 1978, VIII 3.3, 7.1; Krantz 1982, 1.4). �

The Bergman metric, being truly canonical, is invariant under the action Hol(D).
Hence, a bounded symmetric domain becomes a hermitian symmetric domain for
the Bergman metric. Conversely, it is known that every hermitian symmetric do-
main can be embedded into some Cn as a bounded symmetric domain. Therefore,
a hermitian symmetric domain D has a unique hermitian metric that maps to the
Bergman metric under every isomorphism of D with a bounded symmetric domain.
On each irreducible factor, it is a multiple of the original metric.

Example 1.4. Let Dg be the set of symmetric complex matrices such that
Ig −Z

t
Z is positive definite. Note that (zij) �→ (zij)j≥i identifies Dg as a bounded

domain in Cg(g+1)/2. The map Z �→ (Z − iIg)(Z + iIg)−1 is an isomorphism of Hg

onto Dg. Therefore, Dg is symmetric and Hg has an invariant hermitian metric:
they are both hermitian symmetric domains.

Automorphisms of a hermitian symmetric domain.

Lemma 1.5. Let (M, g) be a symmetric space, and let p ∈ M . Then the sub-
group Kp of Is(M, g)+ fixing p is compact, and

a ·Kp �→ a · p : Is(M, g)+/Kp →M

is an isomorphism of smooth manifolds. In particular, Is(M, g)+ acts transitively
on M .

Proof. For any riemannian manifold (M, g), the compact-open topology makes
Is(M, g) into a locally compact group for which the stabilizer K ′

p of a point p is
compact (Helgason 1978, IV 2.5). The Lie group structure on Is(M, g) noted above
is the unique such structure compatible with the compact-open topology (ibid. II
2.6). An elementary argument (e.g., MF 1.2) now shows that Is(M, g)/K ′

p →M is a
homeomorphism, and it follows that the map a �→ ap : Is(M, g) →M is open. Write
Is(M, g) as a finite disjoint union Is(M, g) =

⊔
i Is(M, g)+ai of cosets of Is(M, g)+.

For any two cosets the open sets Is(M, g)+aip and Is(M, g)+ajp are either disjoint
or equal, but, as M is connected, they must all be equal, which shows that Is(M, g)+

acts transitively. Now Is(M, g)+/Kp →M is a homeomorphism, and it follows that
it is a diffeomorphism (Helgason 1978, II 4.3a). �

Proposition 1.6. Let (M, g) be a hermitian symmetric domain. The inclu-
sions

Is(M∞, g) ⊃ Is(M, g) ⊂ Hol(M)
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give equalities:
Is(M∞, g)+ = Is(M, g)+ = Hol(M)+.

Therefore, Hol(M)+ acts transitively on M , and Hol(M)+/Kp
∼= M∞.

Proof. The first equality is proved in Helgason 1978, VIII 4.3, and the second
can be proved similarly. The rest of the statement follows from (1.5). �

Let H be a connected real Lie group. There need not be an algebraic group
G over R such that3 G(R)+ = H. However, if H has a faithful finite-dimensional
representation H ↪→ GL(V ), then there exists an algebraic group G ⊂ GL(V ) such
that Lie(G) = [h, h] (inside gl(V )) where h = Lie(H) (Borel 1991, 7.9). If H,
in addition, is semisimple, then [h, h] = h and so Lie(G) = h and G(R)+ = H
(inside GL(V )). This observation applies to any connected adjoint Lie group and,
in particular, to Hol(M)+, because the adjoint representation on the Lie algebra is
faithful.

Proposition 1.7. Let (M, g) be a hermitian symmetric domain, and let h =
Lie(Hol(M)+). There is a unique connected algebraic subgroup G of GL(h) such
that

G(R)+ = Hol(M)+ (inside GL(h)).
For such a G,

G(R)+ = G(R) ∩Hol(M) (inside GL(h));

therefore G(R)+ is the stablizer in G(R) of M .

Proof. The first statement was proved above, and the second follows from
Satake 1980, 8.5. �

Example 1.8. The map z �→ z−1 is an antiholomorphic isometry of H1, and
every isometry ofH1 is either holomorphic or differs from z �→ z−1 by a holomorphic
isometry. In this case, G = PGL2, and PGL2(R) acts holomorphically on C � R
with PGL2(R)+ as the stabilizer of H1.

The homomorphism up : U1 → Hol(D). Let U1 = {z ∈ C | |z| = 1} (the
circle group).

Theorem 1.9. Let D be a hermitian symmetric domain. For each p ∈ D, there
exists a unique homomorphism up : U1 → Hol(D) such that up(z) fixes p and acts
on TpD as multiplication by z.

Example 1.10. Let p = i ∈ H1, and let h : C× → SL2(R) be the homomor-
phism z = a + ib �→

(
a b

−b a

)
. Then h(z) acts on the tangent space TiH1 as mul-

tiplication by z/z, because d
dz

(
az+b
−bz+a

)
|i = a2+b2

(a−bi)2 . For z ∈ U1, choose a square

root
√
z ∈ U1, and set u(z) = h(

√
z) mod ± I. Then u(z) is independent of the

choice of
√
z because h(−1) = −I. Therefore, u is a well-defined homomorphism

U1 → PSL2(R) such that u(z) acts on the tangent space TiH1 as multiplication by
z.

Because of the importance of the theorem, I sketch a proof.

3For example, the (topological) fundamental group of SL2(R) is Z, and so SL2(R) has many
proper covering groups (even of finite degree). None of them is algebraic.
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Proposition 1.11. Let (M, g) be symmetric space. The symmetry sp at p acts
as −1 on TpM , and, for any geodesic γ with γ(0) = p, sp(γ(t)) = γ(−t). Moreover,
(M, g) is (geodesically) complete.

Proof. Because s2
p = 1, (dsp)2 = 1, and so dsp acts semisimply on TpM

with eigenvalues ±1. Recall that for any tangent vector X at p, there is a unique
geodesic γ : I → M with γ(0) = p, γ̇(0) = X. If (dsp)(X) = X, then sp ◦ γ is a
geodesic sharing these properties, and so p is not an isolated fixed point of sp. This
proves that only −1 occurs as an eigenvalue. If (dsp)(X) = −X, then sp ◦ γ and
t �→ γ(−t) are geodesics through p with velocity −X, and so are equal. For the
final statement, see Boothby 1975, VII 8.4. �

By a canonical tensor on a symmetric space (M, g), I mean any tensor canon-
ically derived from g, and hence fixed by any isometry of (M, g).

Proposition 1.12. On a symmetric space (M, g) every canonical r-tensor with
r odd is zero. In particular, parallel translation of two-dimensional subspaces does
not change the sectional curvature.

Proof. Let t be a canonical r-tensor. Then

tp = tp ◦ (dsp)r 1.11= (−1)rtp,

and so t = 0 if r is odd. For the second statement, let ∇ be the riemannian
connection, and let R be the corresponding curvature tensor (Boothby 1975, VII
3.2, 4.4). Then ∇R is an odd tensor, and so is zero. This implies that parallel
translation of 2-dimensional subspaces does not change the sectional curvature. �

Proposition 1.13. Let (M, g) and (M ′, g′) be riemannian manifolds in which
parallel translation of 2-dimensional subspaces does not change the sectional cur-
vature. Let a : TpM → Tp′M ′ be a linear isometry such that K(p,E) = K(p′, aE)
for every 2-dimensional subspace E ⊂ TpM . Then expp(X) �→ expp′(aX) is an
isometry of a neighbourhood of p onto a neighbourhood of p′.

Proof. This follows from comparing the expansions of the riemann metrics in
terms of normal geodesic coordinates. See Wolf 1984, 2.3.7. �

Proposition 1.14. If in (1.13) M and M ′ are complete, connected, and simply
connected, then there is a unique isometry α : M → M ′ such that α(p) = p′ and
dαp = a.

Proof. See Wolf 1984, 2.3.12. �

I now complete the sketch of the proof of Theorem 1.9. Each z with |z| = 1 de-
fines an automorphism of (TpD, gp), and one checks that it preserves sectional curva-
tures. According to (1.11, 1.12, 1.14), there exists a unique isometry up(z) : D → D
such that dup(z)p is multiplication by z. It is holomorphic because it is C-linear on
the tangent spaces. The isometry up(z) ◦ up(z′) fixes p and acts as multiplication
by zz′ on TpD, and so equals up(zz′).

Cartan involutions. Let G be a connected algebraic group over R, and let
g �→ g denote complex conjugation on G(C). An involution θ of G (as an algebraic
group over R) is said to be Cartan if the group

(9) G(θ)(R) df= {g ∈ G(C) | g = θ(g)}
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is compact.

Example 1.15. Let G = SL2, and let θ = ad
(

0 1
−1 0

)
. For

(
a b
c d

)
∈ SL2(C), we

have
θ
((

a b
c d

))
=
(

0 1
−1 0

)
·
(

a b
c d

)
·
(

0 1
−1 0

)−1 =
(

d −c

−b a

)
.

Thus,

SL(θ)
2 (R) =

{(
a b
c d

)
∈ SL2(C) | d = a, c = −b

}
=
{(

a b
−b a

)
∈ GL2(C) | |a|2 + |b|2 = 1

}
= SU2,

which is compact, being a closed bounded set in C2. Thus θ is a Cartan involution
for SL2.

Theorem 1.16. There exists a Cartan involution if and only if G is reductive,
in which case any two are conjugate by an element of G(R).

Proof. See Satake 1980, I 4.3. �
Example 1.17. Let G be a connected algebraic group over R.
(a) The identity map on G is a Cartan involution if and only if G(R) is compact.
(b) Let G = GL(V ) with V a real vector space. The choice of a basis for V

determines a transpose operator M �→M t, and M �→ (M t)−1 is obviously a Cartan
involution. The theorem says that all Cartan involutions of G arise in this way.

(c) Let G ↪→ GL(V ) be a faithful representation of G. Then G is reductive
if and only if G is stable under g �→ gt for a suitable choice of a basis for V , in
which case the restriction of g �→ (gt)−1 to G is a Cartan involution; all Cartan
involutions of G arise in this way from the choice of a basis for V (Satake 1980, I
4.4).

(d) Let θ be an involution of G. There is a unique real form G(θ) of GC such
that complex conjugation on G(θ)(C) is g �→ θ(g). Then, G(θ)(R) satisfies (9), and
we see that the Cartan involutions of G correspond to the compact forms of GC.

Proposition 1.18. Let G be a connected algebraic group over R. If G(R) is
compact, then every finite-dimensional real representation of G → GL(V ) carries
a G-invariant positive definite symmetric bilinear form; conversely, if one faith-
ful finite-dimensional real representation of G carries such a form, then G(R) is
compact.

Proof. Let ρ : G→ GL(V ) be a real representation of G. If G(R) is compact,
then its image H in GL(V ) is compact. Let dh be the Haar measure on H, and
choose a positive definite symmetric bilinear form 〈 | 〉 on V . Then the form

〈u|v〉′ =
∫

H

〈hu|hv〉dh

is G-invariant, and it is still symmetric, positive definite, and bilinear. For the
converse, choose an orthonormal basis for the form. Then G(R) becomes identified
with a closed set of real matrices A such that At ·A = I, which is bounded. �

Remark 1.19. The proposition can be restated for complex representations: if
G(R) is compact then every finite-dimensional complex representation of G carries
a G-invariant positive definite Hermitian form; conversely, if some faithful finite-
dimensional complex representation of G carries a G-invariant positive definite Her-
mitian form, then G is compact. (In this case, G(R) is a subgroup of a unitary
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group instead of an orthogonal group. For a sesquilinear form ϕ to be G-invariant
means that ϕ(gu, gv) = ϕ(u, v), g ∈ G(C), u, v ∈ V .)

Let G be a real algebraic group, and let C be an element of G(R) whose square
is central (so that adC is an involution). A C-polarization on a real representation
V of G is a G-invariant bilinear form ϕ such that the form ϕC ,

(u, v) �→ ϕ(u,Cv),

is symmetric and positive definite.

Proposition 1.20. If adC is a Cartan involution of G, then every finite-
dimensional real representation of G carries a C-polarization; conversely, if one
faithful finite-dimensional real representation of G carries a C-polarization, then
adC is a Cartan involution.

Proof. An R-bilinear form ϕ on a real vector space V defines a sesquilinear
form ϕ′ on V (C),

ϕ′ : V (C)× V (C) → C, ϕ′(u, v) = ϕC(u, v).

Moreover, ϕ′ is hermitian (and positive definite) if and only if ϕ is symmetric (and
positive definite).

Let ρ : G→ GL(V ) be a real representation of G. For any G-invariant bilinear
form ϕ on V , ϕC is G(C)-invariant, and so

(10) ϕ′(gu, gv) = ϕ′(u, v), all g ∈ G(C), u, v ∈ V (C).

On replacing v with Cv in this equality, we find that

(11) ϕ′(gu, C(C−1gC)v) = ϕ′(u,Cv), all g ∈ G(C), u, v ∈ V (C),

which says that ϕ′
C is invariant under G(adC).

If ρ is faithful and ϕ is a C-polarization, then ϕ′
C is a positive definite hermitian

form, and so G(adC)(R) is compact (1.19): adC is a Cartan involution.
Conversely, if G(adC)(R) is compact, then every real representation G→ GL(V )

carries a G(adC)(R)-invariant positive definite symmetric bilinear form ϕ (1.18).
Similar calculations to the above show that ϕC−1 is a C-polarization on V . �

Representations of U1. Let T be a torus over a field k, and let K be a galois
extension of k splitting T . To give a representation ρ of T on a k-vector space V
amounts to giving an X∗(T )-grading V (K) =

⊕
χ∈X∗(T )Vχ on V (K) =df K ⊗k V

with the property that

σ(Vχ) = Vσχ, all σ ∈ Gal(K/k), χ ∈ X∗(T ).

Here Vχ is the subspace of K ⊗k V on which T acts through χ:

ρ(t)v = χ(t) · v, for v ∈ Vχ, t ∈ T (K).

If Vχ �= 0, we say that χ occurs in V .
When we regard U1 as a real algebraic torus, its characters are z �→ zn, n ∈ Z.

Thus, X∗(U1) ∼= Z, and complex conjugation acts on X∗(U1) as multiplication
by −1. Therefore a representation of U1 on a real vector space V corresponds to
a grading V (C) = ⊕n∈ZV

n with the property that V (C)−n = V (C)n (complex
conjugate). Here V n is the subspace of V (C) on which z acts as zn. Note that
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V (C)0 = V (C)0 and so it is defined over R, i.e., V (C)0 = V 0(C) for V 0 the subspace
V ∩ V (C)0 of V (see AG 16.7). The natural map

(12) V/V 0 → V (C)/
⊕

n≤0V (C)n ∼=
⊕

n>0V (C)n

is an isomorphism. From this discussion, we see that every real representation of
U1 is a direct sum of representations of the following types:

(a) V = R with U1 acting trivially (so V (C) = V 0);
(b) V = R2 with z = x + iy ∈ U1(R) acting as

( x y
−y x

)n, n > 0 (so V (C) =
V n ⊕ V −n).

Classification of hermitian symmetric domains in terms of real groups.
The representations of U1 have the same description whether we regard it as a
Lie group or an algebraic group, and so every homomorphism U1 → GL(V ) of Lie
groups is algebraic. It follows that the homomorphism up : U1 → Hol(D)+ ∼= G(R)+

(see 1.9, 1.7) is algebraic.

Theorem 1.21. Let D be a hermitian symmetric domain, and let G be the
associated real adjoint algebraic group (1.7). The homomorphism up : U1 → G
attached to a point p of D has the following properties:

(a) only the characters z, 1, z−1 occur in the representation of U1 on Lie(G)C

defined by up;
(b) ad(up(−1)) is a Cartan involution;
(c) up(−1) does not project to 1 in any simple factor of G.

Conversely, let G be a real adjoint algebraic group, and let u : U1 → G satisfy
(a), (b), and (c). Then the set D of conjugates of u by elements of G(R)+ has a
natural structure of a hermitian symmetric domain for which G(R)+ = Hol(D)+

and u(−1) is the symmetry at u (regarded as a point of D).

Proof (Sketch): Let D be a hermitian symmetric domain, and let G be the
associated group (1.7). Then G(R)+/Kp

∼= D where Kp is the group fixing p (see
1.6). For z ∈ U1, up(z) acts on the R-vector space

Lie(G)/Lie(Kp) ∼= TpD

as multiplication by z, and it acts on Lie(Kp) trivially. From this, (a) follows.
The symmetry sp at p and up(−1) both fix p and act as −1 on TpD (see

1.11); they are therefore equal (1.14). It is known that the symmetry at a point
of a symmetric space gives a Cartan involution of G if and only if the space has
negative curvature (see Helgason 1978, V 2; the real form of G defined by adsp is
that attached to the compact dual of the symmetric space). Thus (b) holds.

Finally, if the projection of u(−1) into a simple factor of G were trivial, then
that factor would be compact (by (b); see 1.17a), and D would have an irreducible
factor of compact type.

For the converse, let D be the set of G(R)+-conjugates of u. The centralizer
Ku of u in G(R)+ is contained in {g ∈ G(C) | g = u(−1) · g · u(−1)−1}, which,
according to (b), is compact. As Ku is closed, it also is compact. The equality
D = (G(R)+/Ku) · u endows D with the structure of smooth (even real-analytic)
manifold. For this structure, the tangent space to D at u,

TuD = Lie(G)/Lie(Ku),
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which, because of (a), can be identified with the subspace of Lie(G)C on which u(z)
acts as z (see (12)). This endows TuD with a C-vector space structure for which
u(z), z ∈ U1, acts as multiplication by z. Because D is homogeneous, this gives
it the structure of an almost-complex manifold, which can be shown to integrable
(Wolf 1984, 8.7.9). The action of Ku on D defines an action of it on TuD. Because
Ku is compact, there is a Ku-invariant positive definite form on TuD (see 1.18), and
because J = u(i) ∈ Ku, any such form will have the hermitian property (7). Choose
one, and use the homogeneity of D to move it to each tangent space. This will make
D into a hermitian symmetric space, which will be a hermitian symmetric domain
because each simple factor of its automorphism group is a noncompact semisimple
group (because of (b,c)). �

Corollary 1.22. There is a natural one-to-one correspondence between iso-
morphism classes of pointed hermitian symmetric domains and pairs (G, u) con-
sisting of a real adjoint Lie group and a nontrivial homomorphism u : U1 → G(R)
satisfying (a), (b), (c).

Example 1.23. Let u : U1 → PSL2(R) be as in (1.10). Then u(−1) =
(

0 1
−1 0

)
and we saw in 1.15 that adu(−1) is a Cartan involution of SL2, hence also of PSL2.

Classification of hermitian symmetric domains in terms of dynkin
diagrams. Let G be a simple adjoint group over R, and let u be a homomorphism
U1 → G satisfying (a) and (b) of Theorem 1.21. By base extension, we get an
adjoint group GC, which is simple because it is an inner form of its compact form,
and a cocharacter µ = uC of GC satisfying the following condition:

(*) in the action of Gm on Lie(GC) defined by ad ◦ µ, only the
characters z, 1, z−1 occur.

Proposition 1.24. The map (G, u) �→ (GC, uC) defines a bijection between the
sets of isomorphism classes of pairs consisting of

(a) a simple adjoint group over R and a conjugacy class of u : U1 → H satis-
fying (1.21a,b), and

(b) a simple adjoint group over C and a conjugacy class of cocharacters sat-
isfying (*).

Proof. Let (G,µ) be as in (b), and let g �→ g denote complex conjugation on
G(C) relative to the unique compact real form of G (cf. 1.16). There is a real form
H of G such that complex conjugation on H(C) = G(C) is g �→ µ(−1) · g ·µ(−1)−1,
and u =df µ|U1 takes values in H(R). The pair (H, u) is as in (a), and the map
(G,µ) → (H, u) is inverse to (H, u) �→ (HC, uC) on isomorphism classes. �

Let G be a simple algebraic group C. Choose a maximal torus T in G and a
base (αi)i∈I for the roots of G relative to T . Recall, that the nodes of the dynkin
diagram of (G, T ) are indexed by I. Recall also (Bourbaki 1981, VI 1.8) that there
is a unique (highest) root α̃ =

∑
niαi such that, for any other root

∑
miαi,

ni ≥ mi all i. An αi (or the associated node) is said to be special if ni = 1.
Let M be a conjugacy class of nontrivial cocharacters of G satisfying (*). Be-

cause all maximal tori of G are conjugate, M has a representative in X∗(T ) ⊂
X∗(G), and because the Weyl group acts simply transitively on the Weyl cham-
bers (Humphreys 1972, 10.3) there is a unique representative µ for M such that
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〈αi, µ〉 ≥ 0 for all i ∈ I. The condition (*) is that4 〈α, µ〉 ∈ {1, 0,−1} for all roots
α. Since µ is nontrivial, not all the values 〈α, µ〉 can be zero, and so this condition
implies that 〈αi, µ〉 = 1 for exactly one i ∈ I, which must in fact be special (other-
wise 〈α̃, µ〉 > 1). Thus, the M satisfying (*) are in one-to-one correspondence with
the special nodes of the dynkin diagram. In conclusion:

Theorem 1.25. The isomorphism classes of irreducible hermitian symmetric
domains are classified by the special nodes on connected dynkin diagrams.

The special nodes can be read off from the list of dynkin diagrams in, for
example, Helgason 1978, p477. In the following table, we list the number of special
nodes for each type:

Type An Bn Cn Dn E6 E7 E8 F4 G2

n 1 1 3 2 1 0 0 0

In particular, there are no irreducible hermitian symmetric domains of type
E8, F4, or G2 and, up to isomorphism, there are exactly 2 of type E6 and 1 of
type E7. It should be noted that not every simple real algebraic group arises as the
automorphism group of a hermitian symmetric domain. For example, PGLn arises
in this way only for n = 2.

Notes. For introductions to smooth manifolds and riemannian manifolds, see
Boothby 1975 and Lee 1997. The ultimate source for hermitian symmetric domains
is Helgason 1978, but Wolf 1984 is also very useful, and Borel 1998 gives a succinct
treatment close to that of the pioneers. The present account has been influenced
by Deligne 1973a and Deligne 1979.

2. Hodge structures and their classifying spaces

We describe various objects and their parameter spaces. Our goal is a descrip-
tion of hermitian symmetric domains as the parameter spaces for certain special
hodge structures.

Reductive groups and tensors. Let G be a reductive group over a field
k of characteristic zero, and let ρ : G → GL(V ) be a representation of G. The
contragredient or dual ρ∨ of ρ is the representation of G on the dual vector space
V ∨ defined by

(ρ∨(g) · f)(v) = f(ρ(g−1) · v), g ∈ G, f ∈ V ∨, v ∈ V.

A representation is said to be self-dual if it is isomorphic to its contragredient.
An r-tensor of V is a multilinear map

t : V × · · · × V → k (r-copies of V ).

For an r-tensor t, the condition

t(gv1, . . . , gvr) = (v1, . . . , vr), all vi ∈ V,

on g defines a closed subgroup of GL(V )t of GL(V ). For example, if t is a nonde-
generate symmetric bilinear form V ×V → k, then GL(V )t is the orthogonal group.
For a set T of tensors of V ,

⋂
t∈T GL(V )t is called the subgroup of GL(V ) fixing

the t ∈ T .

4The µ with this property are sometimes said to be minuscule (cf. Bourbaki 1981, pp226–
227).
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Proposition 2.1. For any faithful self-dual representation G→ GL(V ) of G,
there exists a finite set T of tensors of V such that G is the subgroup of GL(V )
fixing the t ∈ T .

Proof. In Deligne 1982, 3.1, it is shown there exists a possibly infinite set T
with this property, but, because G is noetherian as a topological space (i.e., it has
the descending chain condition on closed subsets), a finite subset will suffice. �

Proposition 2.2. Let G be the subgroup of GL(V ) fixing the tensors t ∈ T .
Then

Lie(G) =
{
g ∈ End(V )

∣∣∣∑jt(v1, . . . , gvj , . . . , vr) = 0, all t ∈ T , vi ∈ V
}
.

Proof. The Lie algebra of an algebraic group G can be defined to be the
kernel of G(k[ε]) → G(k). Here k[ε] is the k-algebra with ε2 = 0. Thus Lie(G)
consists of the endomorphisms 1 + gε of V (k[ε]) such that

t((1 + gε)v1, (1 + gε)v2, . . .) = t(v1, v2, . . .), all t ∈ T , vi ∈ V.

On expanding this and cancelling, we obtain the assertion. �

Flag varieties. Fix a vector space V of dimension n over a field k.
The projective space P(V ). The set P(V ) of one-dimensional subspaces L of

V has a natural structure of an algebraic variety: the choice of a basis for V
determines a bijection P(V ) → Pn−1, and the structure of an algebraic variety
inherited by P(V ) from the bijection is independent of the choice of the basis.

Grassmann varieties. Let Gd(V ) be the set of d-dimensional subspaces of V ,
some 0 < d < n. Fix a basis for V . The choice of a basis for W then determines a
d×n matrix A(W ) whose rows are the coordinates of the basis elements. Changing
the basis for W multiplies A(W ) on the left by an invertible d × d matrix. Thus,
the family of minors of degree d of A(W ) is well-determined up to multiplication
by a nonzero constant, and so determines a point P (W ) in P(n

d )−1. The map
W �→ P (W ) : Gd(V ) → P(n

d )−1 identifies Gd(V ) with a closed subvariety of P(n
d )−1

(AG 6.26). A coordinate-free description of this map is given by

(13) W �→
∧d

W : Gd(V ) → P(
∧d

V ).

Let S be a subspace of V of complementary dimension n− d, and let Gd(V )S

be the set of W ∈ Gd(V ) such that W ∩ S = {0}. Fix a W0 ∈ Gd(V )S , so
that V = W0 ⊕ S. For any W ∈ Gd(V )S , the projection W → W0 given by
this decomposition is an isomorphism, and so W is the graph of a homomorphism
W0 → S:

w �→ s ⇐⇒ (w, s) ∈W.

Conversely, the graph of any homomorphism W0 → S lies in Gd(V )S . Thus,

(14) Gd(V )S
∼= Hom(W0, S).

When we regard Gd(V )S as an open subvariety of Gd(V ), this isomorphism identi-
fies it with the affine space A(Hom(W0, S)) defined by the vector space Hom(W0, S).
Thus, Gd(V ) is smooth, and the tangent space to Gd(V ) at W0,

(15) TW0(Gd(V )) ∼= Hom(W0, S) ∼= Hom(W0, V/W0).
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Flag varieties. The above discussion extends easily to chains of subspaces. Let
d = (d1, . . . , dr) be a sequence of integers with n > d1 > · · · > dr > 0, and let
Gd(V ) be the set of flags

(16) F : V ⊃ V 1 ⊃ · · · ⊃ V r ⊃ 0

with V i a subspace of V of dimension di. The map

Gd(V )
F �→(V i)−−−−−→

∏
iGdi

(V ) ⊂
∏

iP(
∧diV )

realizes Gd(V ) as a closed subset of
∏

iGdi
(V ) (Humphreys 1978, 1.8), and so it

is a projective variety. The tangent space to Gd(V ) at the flag F consists of the
families of homomorphisms

(17) ϕi : V i → V/V i, 1 ≤ i ≤ r,

satisfying the compatibility condition

ϕi|V i+1 ≡ ϕi+1 mod V i+1.

Aside 2.3. A basis e1, . . . , en for V is adapted to the flag F if it contains a
basis e1, . . . , eji

for each V i. Clearly, every flag admits such a basis, and the basis
then determines the flag. Because GL(V ) acts transitively on the set of bases for
V , it acts transitively on Gd(V ). For a flag F , the subgroup P (F ) stabilizing F is
an algebraic subgroup of GL(V ), and the map

g �→ gF0 : GL(V )/P (F0) → Gd(V )

is an isomorphism of algebraic varieties. Because Gd(V ) is projective, this shows
that P (F0) is a parabolic subgroup of GL(V ).

Hodge structures.
Definition. For a real vector space V , complex conjugation on V (C) =df C⊗RV

is defined by
z ⊗ v = z ⊗ v.

An R-basis e1, . . . , em for V is also a C-basis for V (C) and
∑

aiei =
∑

aiei.
A hodge decomposition of a real vector space V is a decomposition

V (C) =
⊕

p,q∈Z×Z

V p,q

such that V q,p is the complex conjugate of V p,q. A hodge structure is a real
vector space together with a hodge decomposition. The set of pairs (p, q) for which
V p,q �= 0 is called the type of the hodge structure. For each n,

⊕
p+q=n V p,q is

stable under complex conjugation, and so is defined over R, i.e., there is a subspace
Vn of V such that Vn(C) =

⊕
p+q=n V p,q (see AG 16.7). Then V =

⊕
n Vn is called

the weight decomposition of V . If V = Vn, then V is said to have weight n.
An integral (resp. rational) hodge structure is a free Z-module of finite

rank V (resp. Q-vector space) together with a hodge decomposition of V (R) such
that the weight decomposition is defined over Q.

Example 2.4. Let J be a complex structure on a real vector space V , and
define V −1,0 and V 0,−1 to be the +i and −i eigenspaces of J acting on V (C).
Then V (C) = V −1,0⊕V 0,−1 is a hodge structure of type (−1, 0), (0,−1), and every
real hodge structure of this type arises from a (unique) complex structure. Thus, to
give a rational hodge structure of type (−1, 0), (0,−1) amounts to giving a Q-vector
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space V and a complex structure on V (R), and to give an integral hodge structure
of type (−1, 0), (0,−1) amounts to giving a C-vector space V and a lattice Λ ⊂ V
(i.e., a Z-submodule generated by an R-basis for V ).

Example 2.5. Let X be a nonsingular projective algebraic variety over C.
Then H = Hn(X,Q) has a hodge structure of weight n for which Hp,q ⊂ Hn(X,C)
is canonically isomorphic to Hq(X,Ωp) (Voisin 2002, 6.1.3).

Example 2.6. Let Q(m) be the hodge structure of weight −2m on the vector
space Q. Thus, (Q(m))(C) = Q(m)−m,−m. Define Z(m) and R(m) similarly.5

The hodge filtration. The hodge filtration associated with a hodge structure
of weight n is

F • : · · · ⊃ F p ⊃ F p+1 ⊃ · · · , F p =
⊕

r≥pV
r,s ⊂ V (C).

Note that for p + q = n,

F q =
⊕

s≥qV
s,r =

⊕
s≥qV

r,s =
⊕

r≤pV
r,s

and so

(18) V p,q = F p ∩ F q.

Example 2.7. For a hodge structure of type (−1, 0), (0,−1), the hodge filtra-
tion is

(F−1 ⊃ F 0 ⊃ F 2) = (V (C) ⊃ V 0,−1 ⊃ 0).

The obvious R-linear isomorphism V → V (C)/F 0 defines the complex structure on
V noted in (2.4).

Hodge structures as representations of S. Let S be C× regarded as a torus
over R. It can be identified with the closed subgroup of GL2(R) of matrices of
the form

(
a b
−b a

)
. Then S(C) ≈ C× × C× with complex conjugation acting by the

rule (z1, z2) = (z2, z1). We fix the isomorphism SC
∼= Gm × Gm so that S(R) →

S(C) is z �→ (z, z), and we define the weight homomorphism w : Gm → S so that
Gm(R) w−→ S(R) is r �→ r−1 : R× → C×.

The characters of SC are the homomorphisms (z1, z2) �→ zp
1z

q
2 , (r, s) ∈ Z × Z.

Thus, X∗(S) = Z×Z with complex conjugation acting as (p, q) �→ (q, p), and to give
a representation of S on a real vector space V amounts to giving a Z×Z-grading of
V (C) such that V p,q = V q,p for all p, q (see p276). Thus, to give a representation of
S on a real vector space V is the same as to give a hodge structure on V . Following
Deligne 1979, 1.1.1.1, we normalize the relation as follows: the homomorphism
h : S → GL(V ) corresponds to the hodge structure on V such that

(19) hC(z1, z2)v = z−p
1 z−q

2 v for v ∈ V p,q.

In other words,

(20) h(z)v = z−pz−qv for v ∈ V p,q.

Note the minus signs! The associated weight decomposition has

(21) Vn = {v ∈ V | wh(r)v = rn}, wh = h ◦ w.

5It would be a little more canonical to take the underlying vector space of Q(m) to be (2πi)mQ
because this makes certain relations invariant under a change of the choice of i =

√
−1 in C.
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Let µh be the cocharacter of GL(V ) defined by

(22) µh(z) = hC(z, 1).

Then the elements of F p
hV are sums of v ∈ V (C) satisfying µh (z) v = z−rv for

some r ≥ p.
To give a hodge structure on a Q-vector space V amounts to giving a homo-

morphism h : S → GL(V (R)) such that wh is defined over Q.

Example 2.8. By definition, a complex structure on a real vector space is a
homomorphism h : C → EndR(V ) of R-algebras. Then h|C× : C× → GL(V ) is a
hodge structure of type (−1, 0), (0,−1) whose associated complex structure (see
2.4) is that defined by h.6

Example 2.9. The hodge structure Q(m) corresponds to the homomorphism
h : S → GmR, h(z) = (zz)m.

The Weil operator. For a hodge structure (V, h), the R-linear map C = h(i) is
called the Weil operator. Note that C acts as iq−p on V p,q and that C2 = h(−1)
acts as (−1)n on Vn.

Example 2.10. If V is of type (−1, 0), (0,−1), then C coincides with the J of
(2.4). The functor (V, (V −1,0, V 0,−1)) �→ (V,C) is an equivalence from the category
of real hodge structures of type (−1, 0), (0,−1) to the category of complex vector
spaces.

Hodge structures of weight 0.. Let V be a hodge structure of weight 0. Then
V 0,0 is invariant under complex conjugation, and so V 0,0 = V 00(C), where V 00 =
V 0,0 ∩ V (see AG 16.7). Note that

(23) V 00 = Ker(V → V (C)/F 0).

Tensor products of hodge structures. The tensor product of hodge struc-
tures V and W of weight m and n is a hodge structure of weight m + n:

V ⊗W, (V ⊗W )p,q =
⊕

r+r′=p,s+s′=qV
r,s ⊗ V r′,s′

.

In terms of representations of S,

(V, hV )⊗ (W,hW ) = (V ⊗W,hV ⊗ hW ).

Morphisms of hodge structures. A morphism of hodge structures is a linear
map V → W sending V p,q into W p,q for all p, q. In other words, it is a morphism
(V, hV ) → (W,hW ) of representations of S.

Hodge tensors. Let R = Z, Q, or R, and let (V, h) be an R-hodge structure of
weight n. A multilinear form t : V r → R is a hodge tensor if the map

V ⊗ V ⊗ · · · ⊗ V → R(−nr/2)

it defines is a morphism of hodge structures. In other words, t is a hodge tensor if

t(h(z)v1, h(z)v2, . . .) = (zz)−nr/2 · tR(v1, v2, . . .), all z ∈ C, vi ∈ V (R),

or if

(24)
∑

pi �=
∑

qi ⇒ tC(vp1,q1
1 , vp2,q2

2 , . . .) = 0, vpi,qi

i ∈ V pi,qi .

6This partly explains the signs in (19); see also Deligne 1979, 1.1.6. Following Deligne

1973b, 8.12, and Deligne 1979, 1.1.1.1, hC(z1, z2)vp,q = z−p
1 z−q

2 vp,q has become the standard

convention in the theory of Shimura varieties. Following Deligne 1971a, 2.1.5.1, the convention
hC(z1, z2)vp,q = zp

1zq
2vp,q is commonly used in hodge theory (e.g., Voisin 2002, p147).
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Note that, for a hodge tensor t,

t(Cv1, Cv2, . . .) = t(v1, v2, . . .).

Example 2.11. Let (V, h) be a hodge structure of type (−1, 0), (0,−1). A
bilinear form t : V × V → R is a hodge tensor if and only if t(Ju, Jv) = t(u, v) for
all u, v ∈ V .

Polarizations. Let (V, h) be a hodge structure of weight n. A polarization of
(V, h) is a hodge tensor ψ : V ×V → R such that ψC(u, v) =df ψ(u,Cv) is symmetric
and positive definite. Then ψ is symmetric or alternating according as n is even or
odd, because

ψ(v, u) = ψ(Cv,Cu) = ψC(Cv, u) = ψC(u,Cv) = ψ(u,C2v) = (−1)nψ(u, v).

More generally, let (V, h) be an R-hodge structure of weight n where R is Z or
Q. A polarization of (V, h) is a bilinear form ψ : V × V → R such that ψR is a
polarization of (V (R), h).

Example 2.12. Let (V, h) be an R-hodge structure of type (−1, 0), (0,−1) with
R = Z, Q, or R, and let J = h(i). A polarization of (V, h) is an alternating bilinear
form ψ : V × V → R such that, for u, v ∈ V (R),

ψR(Ju, Jv) = ψ(u, v), and

ψR(u, Ju) > 0 if u �= 0.

(These conditions imply that ψR(u, Jv) is symmetric.)

Example 2.13. Let X be a nonsingular projective variety over C. The choice
of an embedding X ↪→ PN determines a polarization on the primitive part of
Hn(X,Q) (Voisin 2002, 6.3.2).

Variations of hodge structures. Fix a real vector space V , and let S be
a connected complex manifold. Suppose that, for each s ∈ S, we have a hodge
structure hs on V of weight n (independent of s). Let V p,q

s = V p,q
hs

and F p
s =

F p
s V = F p

hs
V .

The family of hodge structures (hs)s∈S on V is said to be continuous if, for
fixed p and q, the subspace V p,q

s varies continuously with s. This means that the
dimension d(p, q) of V p,q

s is constant and the map

s �→ V p,q
s : S → Gd(p,q)(V )

is continuous.
A continuous family of hodge structures (V p,q

s )s is said to be holomorphic if
the hodge filtration F •

s varies holomorphically with s. This means that the map ϕ,

s �→ F •
s : S → Gd(V )

is holomorphic. Here d = (. . . , d(p), . . .) where d(p) = dimF p
s V =

∑
r≥pd(r, q).

Then the differential of ϕ at s is a C-linear map

dϕs : TsS → TF•
s
(Gd(V ))

(17)
⊂
⊕

p Hom(F p
s , V/F

p
s ).

If the image of dϕs is contained in⊕
p Hom(F p

s , F
p−1
s /F p

s ),

for all s, then the holomorphic family is called a variation of hodge structures
on S.
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Now let T be a family of tensors on V including a nondegenerate bilinear form
t0, and let d : Z× Z → N be a function such that

d(p, q) = 0 for almost all p, q;

d(q, p) = d(p, q);

d(p, q) = 0 unless p + q = n.

Define S(d, T ) to be the set of all hodge structures h on V such that
◦ dimV p,q

h = d(p, q) for all p, q;
◦ each t ∈ T is a hodge tensor for h;
◦ t0 is a polarization for h.

Then S(d, T ) acquires a topology as a subspace of
∏

d(p,q) �=0Gd(p,q)(V ).

Theorem 2.14. Let S+ be a connected component of S(d, T ).
(a) If nonempty, S+ has a unique complex structure for which (hs) is a holo-

morphic family of hodge structures.
(b) With this complex structure, S+ is a hermitian symmetric domain if (hs)

is a variation of hodge structures.
(c) Every irreducible hermitian symmetric domain is of the form S+ for a

suitable V , d, and T .

Proof (Sketch). (a) Let S+ = S(d, T )+. Because the hodge filtration de-
termines the hodge decomposition (see (18)), the map x �→ F •

s : S+ ϕ→ Gd(V ) is
injective. Let G be the smallest algebraic subgroup of GL(V ) such that

(25) h(S) ⊂ G, all h ∈ S+

(take G to be the intersection of the algebraic subgroups of GL(V ) with this prop-
erty), and let ho ∈ S+. For any g ∈ G(R)+, ghog

−1 ∈ S+, and it can be shown
that the map g �→ g · ho · g−1 : G(R)+ → S+ is surjective:

S+ = G(R)+ · ho.

The subgroup Ko of G(R)+ fixing ho is closed, and so G(R)+/Ko is a smooth (in
fact, real analytic) manifold. Therefore, S+ acquires the structure of a smooth
manifold from

S+ = (G(R)+/Ko) · ho
∼= G(R)+/Ko.

Let g = Lie(G). From S
ho−→ G

Ad−→ g ⊂ End(V ), we obtain hodge structures on g

and End(V ). Clearly, g00 = Lie(Ko) and so Tho
S+ ∼= g/g00. In the diagram,

(26)

Tho
S+ ∼= g/g00 ⊂ � End(V )/End(V )00

g(C)/F 0

(23) ∼=
�

⊂ � End(V (C))/F 0

(23) ∼=
�

∼=Tho
Gd(V ).

the map from top-left to bottom-right is (dϕ)ho
, which therefore maps Tho

S+ onto
a complex subspace of Tho

Gd(V ). Since this is true for all ho ∈ S+, we see that
ϕ identifies S+ with an almost-complex submanifold Gd(V ). It can be shown that
this almost-complex structure is integrable, and so provides S+ with a complex
structure for which ϕ is holomorphic. Clearly, this is the only (almost-)complex
structure for which this is true.

(b) See Deligne 1979, 1.1.
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(c) Given an irreducible hermitian symmetric domain D, choose a faithful self-
dual representation G→ GL(V ) of the algebraic group G associated with D (as in
1.7). Because V is self-dual, there is a nondegenerate bilinear form t0 on V fixed
by G. Apply Theorem 2.1 to find a set of tensors T such that G is the subgroup

of GL(V ) fixing the t ∈ T . Let ho be the composite S
z �→z/z−→ U1

uo→ GL(V ) with uo

as in (1.9). Then, ho defines a hodge structure on V for which the t ∈ T are hodge
tensors and to is a polarization. One can check that D is naturally identified with
the component of S(d, T )+ containing this hodge structure. �

Remark 2.15. The map S+ → Gd(V ) in the proof is an embedding of smooth
manifolds (injective smooth map that is injective on tangent spaces and maps S+

homeomorphically onto its image). Therefore, if a smooth map T → Gd(V ) factors
into

T
α−→ S+ −→ Gd(V ),

then α will be smooth. Moreover, if the map T → Gd(V ) is defined by a holomor-
phic family of hodge structures on T , and it factors through S+, then α will be
holomorphic.

Aside 2.16. As we noted in (2.5), for a nonsingular projective variety V over
C, the cohomology group Hn(V (C),Q) has a natural hodge structure of weight
n. Now consider a regular map π : V → S of nonsingular varieties whose fibres
Vs (s ∈ S) are nonsingular projective varieties of constant dimension. The vector
spaces Hn(Vs,Q) form a local system of Q-vector spaces on S, and Griffiths showed
that the hodge structures on them form a variation of hodge structures in a slightly
more general sense than that defined above (Voisin 2002, Proposition 10.12).

Notes. Theorem 2.14 is taken from Deligne 1979.

3. Locally symmetric varieties

In this section, we study quotients of hermitian symmetric domains by certain
discrete groups.

Quotients of hermitian symmetric domains by discrete groups.

Proposition 3.1. Let D be a hermitian symmetric domain, and let Γ be a
discrete subgroup of Hol(D)+. If Γ is torsion free, then Γ acts freely on D, and
there is a unique complex structure on Γ\D for which the quotient map π : D → Γ\D
is a local isomorphism. Relative to this structure, a map ϕ from Γ\D to a second
complex manifold is holomorphic if and only if ϕ ◦ π is holomorphic.

Proof. Let Γ be a discrete subgroup of Hol(D)+. According to (1.5, 1.6), the
stabilizer Kp of any point p ∈ D is compact and g �→ gp : Hol(D)+/Kp → D is a
homeomorphism, and so (MF, 2.5):

(a) for any p ∈ D, {g ∈ Γ | gp = p} is finite;
(b) for any p ∈ D, there exists a neighbourhood U of p such that, for g ∈ Γ,

gU is disjoint from U unless gp = p;
(c) for any points p, q ∈ D not in the same Γ-orbit, there exist neighbourhoods

U of p and V of q such that gU ∩ V = ∅ for all g ∈ Γ.
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Assume Γ is torsion free. Then the group in (a) is trivial, and so Γ acts freely on
D. Endow Γ\D with the quotient topology. If U and V are as in (c) , then πU
and πV are disjoint neighbourhoods of πp and πq, and so Γ\D is separated. Let
q ∈ Γ\D, and let p ∈ π−1(q). If U is as in (b), then the restriction of π to U is a
homeomorphism U → πU , and it follows that Γ\D a manifold.

Define a C-valued function f on an open subset U of Γ\D to be holomorphic
if f ◦ π is holomorphic on π−1U . The holomorphic functions form a sheaf on Γ\D
for which π is a local isomorphism of ringed spaces. Therefore, the sheaf defines a
complex structure on Γ\D for which π is a local isomorphism of complex manifolds.

Finally, let ϕ : Γ\D → M be a map such that ϕ ◦ π is holomorphic, and let f
be a holomorphic function on an open subset U of M . Then f ◦ ϕ is holomorphic
because f ◦ ϕ ◦ π is holomorphic, and so ϕ is holomorphic. �

When Γ is torsion free, we often write D(Γ) for Γ\D regarded as a complex
manifold. In this case, D is the universal covering space of D(Γ) and Γ is the group
of covering transformations; moreover, for any point p of D, the map

g �→ [image under π of any path from p to gp] : Γ → π1(D(Γ), πp)

is an isomorphism (Hatcher 2002, 1.40).

Subgroups of finite covolume. We shall only be interested in quotients of D
by “big” discrete subgroups Γ of Aut(D)+. This condition is conveniently expressed
by saying that Γ\D has finite volume. By definition, D has a riemannian metric g
and hence a volume element Ω: in local coordinates

Ω =
√

det(gij(x))dx1 ∧ . . . ∧ dxn.

Since g is invariant under Γ, so also is Ω, and so it passes to the quotient Γ\D. The
condition is that

∫
Γ\D

Ω <∞.

For example, let D = H1 and let Γ = PSL2(Z). Then

F = {z ∈ H1 | |z| > 1, −1
2 < !z < 1

2}
is a fundamental domain for Γ and∫

Γ\D

Ω =
∫∫

F

dxdy

y2
≤
∫ ∞

√
3/2

∫ 1/2

−1/2

dxdy

y2
=
∫ ∞

√
3/2

dy

y2
<∞.

On the other hand, the quotient of H1 by the group of translations z �→ z + n,
n ∈ Z, has infinite volume, as does the quotient of H1 by the trivial group.

A real Lie group G has a left invariant volume element, which is unique up
to a positive constant (cf. Boothby 1975, VI 3.5). A discrete subgroup Γ of G is
said to have finite covolume if Γ\G has finite volume. For a torsion free discrete
subgroup Γ of Hol(D)+, an application of Fubini’s theorem shows that Γ\Hol(D)+

has finite volume if and only if Γ\D has finite volume (Witte 2001, Exercise 1.27).

Arithmetic subgroups. Two subgroups S1 and S2 of a group H are com-
mensurable if S1∩S2 has finite index in both S1 and S2. For example, two infinite
cyclic subgroups Za and Zb of R are commensurable if and only if a/b ∈ Q×. Com-
mensurability is an equivalence relation.

Let G be an algebraic group over Q. A subgroup Γ of G(Q) is arithmetic if it
is commensurable with G(Q) ∩GLn(Z) for some embedding G ↪→ GLn. It is then
commensurable with G(Q)∩GLn′(Z) for every embedding G ↪→ GLn′ (Borel 1969,
7.13).
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Proposition 3.2. Let ρ : G → G′ be a surjective homomorphism of algebraic
groups over Q. If Γ ⊂ G(Q) is arithmetic, then so also is ρ(Γ) ⊂ G′(Q).

Proof. Borel 1969, 8.9, 8.11, or Platonov and Rapinchuk 1994, Theorem 4.1,
p204. �

An arithmetic subgroup Γ of G(Q) is obviously discrete in G(R), but it need
not have finite covolume; for example, Γ = {±1} is an arithmetic subgroup of
Gm(Q) of infinite covolume in R×. Thus, if Γ is to have finite covolume, there can
be no nonzero homomorphism G → Gm. For reductive groups, this condition is
also sufficient.

Theorem 3.3. Let G be a reductive group over Q, and let Γ be an arithmetic
subgroup of G(Q).

(a) The space Γ\G(R) has finite volume if and only if Hom(G,Gm) = 0 (in
particular, Γ\G(R) has finite volume if G is semisimple).7

(b) The space Γ\G(R) is compact if and only if Hom(G,Gm) = 0 and G(Q)
contains no unipotent element (other than 1).

Proof. Borel 1969, 13.2, 8.4, or Platonov and Rapinchuk 1994, Theorem 4.13,
p213, Theorem 4.12, p210. [The intuitive reason for the condition in (b) is that the
rational unipotent elements correspond to cusps (at least in the case of SL2 acting
on H1), and so no rational unipotent elements means no cusps.] �

Example 3.4. Let B be a quaternion algebra over Q such that B ⊗Q R ≈
M2(R), and let G be the algebraic group over Q such that G(Q) is the group
of elements in B of norm 1. The choice of an isomorphism B ⊗Q R → M2(R)
determines an isomorphism G(R) → SL2(R), and hence an action of G(R) on H1.
Let Γ be an arithmetic subgroup of G(Q).

If B ≈ M2(Q), then G ≈ SL2, which is semisimple, and so Γ\ SL2(R) (hence
also Γ\H1) has finite volume. However, SL2(Q) contains the unipotent element
( 1 1

0 1 ), and so Γ\ SL2(R) is not compact.
If B �≈ M2(Q), it is a division algebra, and so G(Q) contains no unipotent

element �= 1 (for otherwise B× would contain a nilpotent element). Therefore,
Γ\G(R) (hence also Γ\H1) is compact

Let k be a subfield of C. An automorphism α of a k-vector space V is said to be
neat if its eigenvalues in C generate a torsion free subgroup of C× (which implies
that α does not have finite order). Let G be an algebraic group over Q. An element
g ∈ G(Q) is neat if ρ(g) is neat for one faithful representation G ↪→ GL(V ), in
which case ρ(g) is neat for every representation ρ of G defined over a subfield of C
(apply Waterhouse 1979, 3.5). A subgroup of G(Q) is neat if all its elements are.

Proposition 3.5. Let G be an algebraic group over Q, and let Γ be an arith-
metic subgroup of G(Q). Then, Γ contains a neat subgroup Γ′ of finite index.
Moreover, Γ′ can be defined by congruence conditions (i.e., for some embedding
G ↪→ GLn and integer N , Γ′ = {g ∈ Γ | g ≡ 1 modN}).

7Recall (cf. the Notations) that Hom(G, Gm) = 0 means that there is no nonzero homomor-
phism G → Gm defined over Q.
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Proof. Borel 1969, 17.4. �
Let H be a connected real Lie group. A subgroup Γ of H is arithmetic if

there exists an algebraic group G over Q and an arithmetic subgroup Γ0 of G(Q)
such that Γ0 ∩G(R)+ maps onto Γ under a surjective homomorphism G(R)+ → H
with compact kernel.

Proposition 3.6. Let H be a semisimple real Lie group that admits a faithful
finite-dimensional representation. Every arithmetic subgroup Γ of H is discrete of
finite covolume, and it contains a torsion free subgroup of finite index.

Proof. Let α : G(R)+ � H and Γ0 ⊂ G(Q) be as in the definition of arith-
metic subgroup. Because Ker(α) is compact, α is proper (Bourbaki 1989, I 10.3)
and, in particular, closed. Because Γ0 is discrete in G(R), there exists an open U
⊂ G(R)+ whose intersection with Γ0 is exactly the kernel of Γ0∩G(R)+ → Γ. Now
α(G(R)+�U) is closed in H, and its complement intersects Γ in {1Γ}. Therefore, Γ
is discrete in H. It has finite covolume because Γ0\G(R)+ maps onto Γ\H and we
can apply (3.3a). Let Γ1 be a neat subgroup of Γ0 of finite index (3.5). The image
of Γ1 in H has finite index in Γ, and its image under any faithful representation of
H is torsion free. �

Remark 3.7. There are many nonarithmetic discrete subgroup in SL2(R) of
finite covolume. According to the Riemann mapping theorem, every compact rie-
mann surface of genus g ≥ 2 is the quotient of H1 by a discrete subgroup of
PGL2(R)+ acting freely on H1. Since there are continuous families of such riemann
surfaces, this shows that there are uncountably many discrete cocompact subgroups
in PGL2(R)+ (therefore also in SL2(R)), but there only countably many arithmetic
subgroups.

The following (Fields medal) theorem of Margulis shows that SL2 is exceptional
in this regard: let Γ be a discrete subgroup of finite covolume in a noncompact
simple real Lie group H; then Γ is arithmetic unless H is isogenous to SO(1, n) or
SU(1, n) (see Witte 2001, 6.21 for a discussion of the theorem). Note that, because
SL2(R) is isogenous to SO(1, 2), the theorem doesn’t apply to it.

Brief review of algebraic varieties. Let k be a field. An affine k-algebra is
a finitely generated k-algebra A such that A ⊗k kal is reduced (i.e., has no nilpotents).
Such an algebra is itself reduced, and when k is perfect every reduced finitely generated
k-algebra is affine.

Let A be an affine k-algebra. Define specm(A) to be the set of maximal ideals in A
endowed with the topology having as basis D(f), D(f) = {m | f /∈ m}, f ∈ A. There is
a unique sheaf of k-algebras O on specm(A) such that O(D(f)) = Af for all f . Here Af

is the algebra obtained from A by inverting f . Any ringed space isomorphic to a ringed
space of the form

Specm(A) = (specm(A),O)

is called an affine variety over k. The stalk at m is the local ring Am , and so Specm(A)
is a locally ringed space.

This all becomes much more familiar when k is algebraically closed. When we write
A = k[X1, . . . , Xn]/a, the space specm(A) becomes identified with the zero set of a in kn

endowed with the zariski topology, and O becomes identified with the sheaf of k-valued
functions on specm(A) locally defined by polynomials.

A topological space V with a sheaf of k-algebras O is a prevariety over k if there
exists a finite covering (Ui) of V by open subsets such that (Ui,O|Ui) is an affine variety
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over k for all i. A morphism of prevarieties over k is simply a morphism of ringed
spaces of k-algebras. A prevariety V over k is separated if, for all pairs of morphisms of
k-prevarieties α, β : Z ⇒ V , the subset of Z on which α and β agree is closed. A variety
over k is a separated prevariety over k.

Alternatively, the varieties over k are precisely the ringed spaces obtained from
geometrically-reduced separated schemes of finite type over k by deleting the nonclosed
points.

A morphism of algebraic varieties is also called a regular map, and the elements of
O(U) are called the regular functions on U .

For the variety approach to algebraic geometry, see AG, and for the scheme approach,
see Hartshorne 1977.

Algebraic varieties versus complex manifolds.
The functor from nonsingular algebraic varieties to complex manifolds. For a

nonsingular variety V over C, V (C) has a natural structure as a complex manifold.
More precisely:

Proposition 3.8. There is a unique functor (V,OV ) �→ (V an,OV an) from
nonsingular varieties over C to complex manifolds with the following properties:

(a) as sets, V = V an, every zariski-open subset is open for the complex topol-
ogy, and every regular function is holomorphic;

(b) if V = An, then V an = Cn with its natural structure as a complex mani-
fold;

(c) if ϕ : V →W is étale, then ϕan : V an →W an is a local isomorphism.

Proof. A regular map ϕ : V → W is étale if the map dϕp : TpV → TpW is an
isomorphism for all p ∈ V . Note that conditions (a,b,c) determine the complex-
manifold structure on any open subvariety of An and also on any variety V that
admits an étale map to an open subvariety of An. Since every nonsingular variety
admits a zariski-open covering by such V (AG 5.27), this shows that there exists
at most one functor satisfying (a,b,c), and suggests how to define it. �

Obviously, a regular map ϕ : V → W is determined by ϕan : V an → W an, but
not every holomorphic map V an → W an is regular. For example, z �→ ez : C → C
is not regular. Moreover, a complex manifold need not arise from a nonsingular
algebraic variety, and two nonsingular varieties V and W can be isomorphic as
complex manifolds without being isomorphic as algebraic varieties (Shafarevich
1994, VIII 3.2). In other words, the functor V �→ V an is faithful, but it is neither
full nor essentially surjective on objects.

Remark 3.9. The functor V �→ V an can be extended to all algebraic varieties
once one has the notion of a “complex manifold with singularities”. This is called a
complex space. For holomorphic functions f1, . . . , fr on a connected open subset
U of Cn, let V (f1, . . . , fr) denote the set of common zeros of the fi in U ; one endows
V (f1, . . . , fr) with a natural structure of ringed space, and then defines a complex
space to be a ringed space (S,OS) that is locally isomorphic to one of this form
(Shafarevich 1994, VIII 1.5).

Necessary conditions for a complex manifold to be algebraic.

3.10. Here are two necessary conditions for a complex manifold M to arise from
an algebraic variety.
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(a) It must be possible to embed M as an open submanifold of a compact
complex manfold M∗ in such a way that the boundary M∗ �M is a finite
union of manifolds of dimension dimM − 1.

(b) If M is compact, then the field of meromorphic functions on M must have
transcendence degree dimM over C.

The necessity of (a) follows from Hironaka’s theorem on the resolution of singular-
ities, which shows that every nonsingular variety V can be embedded as an open
subvariety of a complete nonsingular variety V ∗ in such a way that the bound-
ary V ∗ � V is a divisor with normal crossings (see p293), and the necessity of
(b) follows from the fact that, when V is complete and nonsingular, the field of
meromorphic functions on V an coincides with the field of rational functions on V
(Shafarevich 1994, VIII 3.1).

Here is one positive result: the functor

{projective nonsingular curves over C} → {compact riemann surfaces}

is an equivalence of categories (see MF, pp88-91, for a discussion of this theorem).
Since the proper zariski-closed subsets of algebraic curves are the finite subsets,
we see that for riemann surfaces the condition (3.10a) is also sufficient: a riemann
surface M is algebraic if and only if it is possible to embed M in a compact riemann
surface M∗ in such a way that the boundary M∗ � M is finite. The maximum
modulus principle (Cartan 1963, VI 4.4) shows that a holomorphic function on a
connected compact riemann surface is constant. Therefore, if a connected riemann
surface M is algebraic, then every bounded holomorphic function on M is constant.
We conclude that H1 does not arise from an algebraic curve, because the function
z �→ z−i

z+i is bounded, holomorphic, and nonconstant.
For any lattice Λ in C, the Weierstrass ℘ function and its derivative embed

C/Λ into P2(C) (as an elliptic curve). However, for a lattice Λ in C2, the field of
meromorphic functions on C2/Λ will usually have transcendence degree < 2, and
so C2/Λ is not an algebraic variety. For quotients of Cg by a lattice Λ, condition
(3.10b) is sufficient for algebraicity (Mumford 1970, p35).

Projective manifolds and varieties. A complex manifold (resp. algebraic vari-
ety) is projective if it is isomorphic to a closed submanifold (resp. closed subvari-
ety) of a projective space. The first truly satisfying theorem in the subject is the
following:

Theorem 3.11 (Chow 1949). Every projective complex manifold has a unique
structure of a nonsingular projective algebraic variety, and every holomorphic map
of projective complex manifolds is regular for these structures. (Moreover, a similar
statement holds for complex spaces.)

Proof. See Shafarevich 1994, VIII 3.1 (for the manifold case). �

In other words, the functor V �→ V an is an equivalence from the category of
(nonsingular) projective algebraic varieties to the category of projective complex
(manifolds) spaces.

The theorem of Baily and Borel.

Theorem 3.12 (Baily and Borel 1966). Let D(Γ) = Γ\D be the quotient of a
hermitian symmetric domain by a torsion free arithmetic subgroup Γ of Hol(D)+.
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Then D(Γ) has a canonical realization as a zariski-open subset of a projective al-
gebraic variety D(Γ)∗. In particular, it has a canonical structure as an algebraic
variety.

Recall the proof for D = H1. Set H∗
1 = H1 ∪P1(Q) (rational points on the real

axis plus the point i∞). Then Γ acts on H∗
1, and the quotient Γ\H∗

1 is a compact
riemann surface. One can then show that the modular forms of a sufficiently high
weight embed Γ\H∗

1 as a closed submanifold of a projective space. Thus Γ\H∗
1 is

algebraic, and as Γ\H1 omits only finitely many points of Γ\H∗
1, it is automatically

a zariski-open subset of Γ\H∗
1. The proof in the general case is similar, but is

much more difficult. Briefly, D(Γ)∗ = Γ\D∗ where D∗ is the union of D with
certain “rational boundary components” endowed with the Satake topology; again,
the automorphic forms of a sufficiently high weight map Γ\D∗ isomorphically onto
a closed subvariety of a projective space, and Γ\D is a zariski-open subvariety of
Γ\D∗.

For the Siegel upper half space Hg, the compactification H∗
g was introduced by

Satake (1956) in order to give a geometric foundation to certain results of Siegel
(1939), for example, that the space of holomorphic modular forms on Hg of a fixed
weight is finite dimensional, and that the meromorphic functions on Hg obtained
as the quotient of two modular forms of the same weight form an algebraic function
field of transcendence degree g(g + 1)/2 = dimHg over C.

That the quotient Γ\H∗
g of H∗

g by an arithmetic group Γ has a projective
embedding by modular forms, and hence is a projective variety, was proved in
Baily 1958, Cartan 1958, and Satake and Cartan 1958.

The construction of H∗
g depends on the existence of fundamental domains for

the arithmetic group Γ acting on Hg. Weil (1958) used reduction theory to con-
struct fundamental sets (a notion weaker than fundamental domain) for the domains
associated with certain classical groups (groups of automorphisms of semsimple
Q-algebras with, or without, involution), and Satake (1960) applied this to con-
struct compactifications of these domains. Borel and Harish-Chandra developed a
reduction theory for general semisimple groups (Borel and Harish-Chandra 1962;
Borel 1962), which then enabled Baily and Borel (1966) to obtain the above theorem
in complete generality.

The only source for the proof is the original paper, although some simplifica-
tions to the proof are known.

Remark 3.13. (a) The variety D(Γ)∗ is usually very singular. The boundary
D(Γ)∗�D(Γ) has codimension ≥ 2, provided PGL2 is not a quotient of the Q-group
G giving rise to Γ.

(b) The variety D(Γ)∗ = Proj(
⊕

n≥0An) where An is the vector space of
automorphic forms for the nth power of the canonical automorphy factor (Baily
and Borel 1966, 10.11). It follows that, if PGL2 is not a quotient of G, then
D(Γ)∗ = Proj(

⊕
n≥0H

0(D(Γ), ωn)) where ω is the sheaf of algebraic differentials
of maximum degree on D(Γ). Without the condition on G, there is a similar de-
scription of D(Γ)∗ in terms of differentials with logarithmic poles (Brylinski 1983,
4.1.4; Mumford 1977).

(b) When D(Γ) is compact, Theorem 3.12 follows from the Kodaira embedding
theorem (Wells 1980, VI 4.1, 1.5). Nadel and Tsuji (1988, 3.1) extended this to
those D(Γ) having boundary of dimension 0, and Mok and Zhong (1989) give an
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alternative proof of Theorem 3.12, but without the information on the boundary
given by the original proof.

An algebraic variety D(Γ) arising as in the theorem is called a locally symmet-
ric variety (or an arithmetic locally symmetric variety, or an arithmetic
variety, but not yet a Shimura variety).

The theorem of Borel.

Theorem 3.14 (Borel 1972). Let D(Γ) and D(Γ)∗ be as in (3.12) — in par-
ticular, Γ is torsion free and arithmetic. Let V be a nonsingular quasi-projective
variety over C. Then every holomorphic map f : V an → D(Γ)an is regular.

The key step in Borel’s proof is the following result:

Lemma 3.15. Let D×
1 be the punctured disk {z | 0 < |z| < 1}. Then every

holomorphic map8 D×r
1 ×Ds

1 → D(Γ) extends to a holomorphic map Dr+s
1 → D(Γ)∗

(of complex spaces).

The original result of this kind is the big Picard theorem, which, interestingly,
was first proved using elliptic modular functions. Recall that the theorem says that
if a function f has an essential singularity at a point p ∈ C, then on any open
disk containing p, f takes every complex value except possibly one. Therefore, if a
holomorphic function f on D×

1 omits two values in C, then it has at worst a pole
at 0, and so extends to a holomorphic function D1 → P1(C). This can be restated
as follows: every holomorphic function from D×

1 to P1(C)�{3 points} extends to a
holomorphic function from D1 to the natural compactification P1(C) of P1(C) � {3
points}. Over the decades, there were various improvements made to this theorem.
For example, Kwack (1969) replaced P1(C) � {3 points} with a more general class
of spaces. Borel (1972) verified that Kwack’s theorem applies to D(Γ) ⊂ D(Γ)∗,
and extended the result to maps from a product D×r

1 ×Ds
1.

Using the lemma, we can prove the theorem. According Hironaka’s (Fields
medal) theorem on the resolution of singularities (Hironaka 1964; see also Bravo
et al. 2002), we can realize V as an open subvariety of a projective nonsingular
variety V ∗ in such a way that V ∗ � V is a divisor with normal crossings. This
means that, locally for the complex topology, the inclusion V ↪→ V ∗ is of the form
D×r

1 ×Ds
1 ↪→ Dr+s

1 . Therefore, the lemma shows that f : V an → D(Γ)an extends to
a holomorphic map V ∗an → D(Γ)∗, which is regular by Chow’s theorem (3.11).

Corollary 3.16. The structure of an algebraic variety on D(Γ) is unique.

Proof. Let D(Γ) denote Γ\D with the canonical algebraic structure provided
by Theorem 3.12, and suppose Γ\D = V an for a second variety V . Then the
identity map f : V an → D(Γ) is a regular bijective map of nonsingular varieties in
characteristic zero, and is therefore an isomorphism (cf. AG 8.19). �

The proof of the theorem shows that the compactification D(Γ) ↪→ D(Γ)∗ has
the following property: for any compactification D(Γ) → D(Γ)† with D(Γ)† �D(Γ)
a divisor with normal crossings, there is a unique regular map D(Γ)† → D(Γ)∗

making

8Recall that D1 is the open unit disk. The product D×r
1 × Ds

1 is obtained from Dr+s
1 by

removing the first r coordinate hyperplanes.
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D(Γ)†

����

D(Γ)

����
D(Γ)∗

�

commute. For this reason, D(Γ) ↪→ D(Γ)∗ is often called the minimal compacti-
fication. Other names: standard, Satake-Baily-Borel, Baily-Borel.

Aside 3.17. (a) Theorem 3.14 also holds for singular V — in fact, it suffices
to show that f becomes regular when restricted to an open dense set of V , which
we may take to be the complement of the singular locus.

(b) Theorem 3.14 definitely fails without the condition that Γ be torsion free.
For example, it is false for Γ\H1 = A1 — consider z �→ ez : C → C.

Finiteness of the group of automorphisms of D(Γ).

Definition 3.18. A semisimple group G over Q is said to be of compact type
if G(R) is compact, and it is of noncompact type if it does not contain a nonzero
normal subgroup of compact type.

A semisimple group over Q is an almost direct product of its minimal connected
normal subgroups, and it will be of noncompact type if and only if none of these
subgroups is of compact type. In particular, a simply connected or adjoint group
is of noncompact type if and only if it has no simple factor of compact type.

We shall need one last result about arithmetic subgroups.

Theorem 3.19 (Borel density theorem). Let G be a semisimple group over Q
of noncompact type. Then every arithmetic subgroup Γ of G(Q) is zariski-dense in
G.

Proof. Borel 1969, 15.12, or Platonov and Rapinchuk 1994, Theorem 4.10,
p205. �

Corollary 3.20. For G as in (3.19), the centralizer of Γ in G(R) is Z(R),
where Z is the centre of G (as an algebraic group over Q).

Proof. The theorem implies that the centralizer of Γ in G(C) is Z(C), and
Z(R) = Z(C) ∩G(R). �

Theorem 3.21. Let D(Γ) be the quotient of a hermitian symmetric domain D
by a torsion free arithmetic group Γ. Then D(Γ) has only finitely many automor-
phisms.

Proof. As Γ is a torsion free, D is the universal covering space of Γ\D and Γ
is the group of covering transformations (see p287). An automorphism α : Γ\D →
Γ\D lifts to an automorphism α̃ : D → D. For any γ ∈ Γ, α̃γα̃−1 is a covering
transformation, and so lies in Γ. Conversely, an automorphism of D normalizing Γ
defines an automorphism of Γ\D. Thus,

Aut(Γ\D) = N/Γ, N = normalizer of Γ in Aut(D).
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The corollary implies that the map ad: N → Aut(Γ) is injective. The group Γ is
countable because it is a discrete subgroup of a group that admits a countable basis
for its open subsets, and so N is also countable. Because Γ is closed in Aut(D),
so also is N . Write N as a countable union of its finite subsets. According to the
Baire category theorem (MF 1.3) one of the finite sets must have an interior point,
and this implies that N is discrete. Because Γ\Aut(D) has finite volume (3.3a),
this implies that Γ has finite index in N .

Alternatively, there is a geometric proof, at least when Γ is neat. According
to Mumford 1977, Proposition 4.2, D(Γ) is then an algebraic variety of logarithmic
general type, which implies that its automorphism group is finite (Iitaka 1982,
11.12). �

Aside 3.22. In most of this section we have considered only quotients Γ\D with
Γ torsion free. In particular, we disallowed Γ(1)\H1. Typically, if Γ has torsion,
then Γ\D will be singular and some of the above statements will fail for Γ\D.

Notes. Borel 1969, Raghunathan 1972, and (eventually) Witte 2001 contain
good expositions on discrete subgroups of Lie groups. There is a large literature
on the various compactifications of locally symmetric varieties. For overviews, see
Satake 2001 and Goresky 2003, and for a detailed description of the construction of
toroidal compactifications, which, in contrast to the Baily-Borel compactification,
may be smooth and projective, see Ash et al. 1975.

4. Connected Shimura varieties

Congruence subgroups. Let G be a reductive algebraic group over Q. Choose
an embedding G ↪→ GLn, and define

Γ(N) = G(Q) ∩ {g ∈ GLn(Z) | g ≡ In modN}.
For example, if G = SL2, then

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) | ad− bc = 1, a, d ≡ 1, b, c ≡ 0 mod N

}
.

A congruence subgroup of G(Q) is any subgroup containing some Γ(N) as a
subgroup of finite index. Although Γ(N) depends on the choice the embedding,
this definition does not (see 4.1 below).

With this terminology, a subgroup of G(Q) is arithmetic if it is commensu-
rable with Γ(1). The classical congruence subgroup problem for G asks whether
every arithmetic subgroup of G(Q) is congruence, i.e., contains some Γ(N). For
split simply connected groups other than SL2, the answer is yes (Matsumoto 1969),
but SL2 and all nonsimply connected groups have many noncongruence arithmetic
subgroups (for a discussion of the problem, see Platonov and Rapinchuk 1994, sec-
tion 9.5). In contrast to arithmetic subgroups, the image of a congruence subgroup
under an isogeny of algebraic groups need not be a congruence subgroup.

The ring of finite adèles is the restricted topological product

Af =
∏

(Q� : Z�)

where � runs over the finite primes of � (that is, we omit the factor R). Thus, Af is
the subring of

∏
Q� consisting of the (a�) such that a� ∈ Z� for almost all �, and it

is endowed with the topology for which
∏

Z� is open and has the product topology.
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Let V = SpecmA be an affine variety over Q. The set of points of V with
coordinates in a Q-algebra R is

V (R) = HomQ(A,R).

When we write
A = Q[X1, . . . , Xm]/a = Q[x1, . . . , xm],

the map P �→ (P (x1) , . . . , P (xm)) identifies V (R) with

{(a1, . . . , am) ∈ Rm | f(a1, . . . , am) = 0, ∀f ∈ a}.
Let Z[x1, . . . , xm] be the Z-subalgebra of A generated by the xi, and let

V (Z�) = HomZ(Z[x1, . . . , xm],Z�) = V (Q�) ∩ Zm
� (inside Qm

� ).

This set depends on the choice of the generators xi for A, but if A = Q[y1, . . . , yn],
then the yi’s can be expressed as polynomials in the xi with coefficients in Q, and
vice versa. For some d ∈ Z, the coefficients of these polynomials lie in Z[ 1d ], and so

Z[ 1d ][x1, . . . , xm] = Z[ 1d ][y1, . . . , yn] (inside A).

It follows that for � � d, the yi’s give the same set V (Z�) as the xi’s. Therefore,

V (Af ) =
∏

(V (Q�) : V (Z�))

is independent of the choice of generators for9 A.
For an algebraic group G over Q, we define

G(Af ) =
∏

(G(Q�) : G(Z�))

similarly. For example,

Gm(Af ) =
∏

(Q×
� : Z×

� ) = A×
f .

Proposition 4.1. For any compact open subgroup K of G(Af ), K ∩G(Q) is
a congruence subgroup of G(Q), and every congruence subgroup arises in this way.

Proof. Fix an embedding G ↪→ GLn. From this we get a surjection Q[GLn] →
Q[G] (of Q-algebras of regular functions), i.e., a surjection

Q[X11, . . . , Xnn, T ]/(det(Xij)T − 1) → Q[G],

and hence Q[G] = Q[x11, . . . , xnn, t]. For this presentation of Q[G],

G(Z�) = G(Q�) ∩GLn(Z�) (inside GLn(Q�)).

For an integer N > 0, let

K(N) =
∏

�K�, where K� =
{

G(Z�) if � � N
{g ∈ G(Z�) | g ≡ In mod �r�} if r� = ord�(N).

Then K(N) is a compact open subgroup of G(Af ), and

K(N) ∩G(Q) = Γ(N).

It follows that the compact open subgroups of G(Af ) containing K(N) intersect
G(Q) exactly in the congruence subgroups of G(Q) containing Γ(N). Since every

9In a more geometric language, let α : V ↪→ Am
Q be a closed immersion. The zariski closure

Vα of V in Am
Z is a model of V flat over Spec Z. A different closed immersion β gives a different

flat model Vβ , but for some d, the isomorphism (Vα)Q
∼= V ∼= (Vβ)Q on generic fibres extends to

an isomorphism Vα → Vβ over Spec Z[ 1
d
]. For the primes � not dividing d, the subgroups Vα(Z�)

and Vβ(Z�) of V (Q�) will coincide.
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compact open subgroup of G(Af ) contains K(N) for some N , this completes the
proof. �

Remark 4.2. There is a topology on G(Q) for which the congruence subgroups
form a fundamental system of neighbourhoods. The proposition shows that this
topology coincides with that defined by the diagonal embedding G(Q) ⊂ G(Af ).

Exercise 4.3. Show that the image in PGL2(Q) of a congruence subgroup in
SL2(Q) need not be congruence.

Connected Shimura data.

Definition 4.4. A connected Shimura datum is a pair (G,D) consisting
of a semisimple algebraic group G over Q and a Gad(R)+-conjugacy class D of
homomorphisms u : U1 → Gad

R satisfying the following conditions:
SU1: for u ∈ D, only the characters z, 1, z−1 occur in the representation of

U1 on Lie(Gad)C defined by u;
SU2: for u ∈ D, adu(−1) is a Cartan involution on Gad;
SU3: Gad has no Q-factor H such that H(R) is compact.

Example 4.5. Let u : U1 → PGL2(R) be the homomorphism sending z =
(a + bi)2 to

(
a b

−b a

)
mod±I2 (cf. 1.10), and let D be the set of conjugates of this

homomorphism, i.e., D is the set of homomorphisms U1 → PGL2(R) of the form

z = (a + bi)2 �→ A
(

a b
−b a

)
A−1 mod±I2, A ∈ SL2(R).

Then (SL2, D) is a Shimura datum (here SL2 is regarded as a group over Q).

Remark 4.6. (a) If u : U1 → Gad(R) satisfies the conditions SU1,2, then so
does any conjugate of it by an element of Gad(R)+. Thus a pair (G, u) satisfy-
ing SU1,2,3 determines a connected Shimura datum. Our definition of connected
Shimura datum was phrased so as to avoid D having a distinguished point.

(b) Condition SU3 says that G is of noncompact type (3.18). It is fairly harm-
less to assume this, because replacing G with its quotient by a connected normal
subgroup N such that N(R) is compact changes little. Assuming it allows us to
apply the strong approximation theorem when G is simply connected (see 4.16
below).

Lemma 4.7. Let H be an adjoint real Lie group, and let u : U1 → H be a
homomorphism satisfying SU1,2. Then the following conditions on u are equivalent:

(a) u(−1) = 1;
(b) u is trivial, i.e., u(z) = 1 for all z;
(c) H is compact.

Proof. (a)⇔(b). If u(−1) = 1, then u factors through U1
2−→ U1, and so z±1

can not occur in the representation of U1 on Lie(H)C. Therefore U1 acts trivially
on Lie(H)C, which implies (b). The converse is trivial.

(a)⇔(c). We have

H is compact 1.17a⇐⇒ adu(−1) = 1
Z(H)=1⇐⇒ u(−1) = 1. �

Proposition 4.8. To give a connected Shimura datum is the same as to give
◦ a semisimple algebraic group G over Q of noncompact type,
◦ a hermitian symmetric domain D, and
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◦ an action of G(R)+ on D defined by a surjective homomorphism G(R)+ →
Hol(D)+ with compact kernel.

Proof. Let (G,D) be a connected Shimura datum, and let u ∈ D. Decompose
Gad

R into a product of its simple factors: Gad
R = H1 × · · · × Hs. Correspondingly,

u = (u1, . . . , us) where ui is the projection of u into Hi(R). Then ui = 1 if Hi is
compact (4.7), and otherwise there is an irreducible hermitian symmetric domain
D′

i such that Hi(R)+ = Hol(D′
i)

+ and D′
i is in natural one-to-one correspondence

with the set Di of Hi(R)+-conjugates of ui (see 1.21). The product D′ of the D′
i is a

hermitian symmetric domain on which G(R)+ acts via a surjective homomorphism
G(R)+ → Hol(D)+ with compact kernel. Moreover, there is a natural identification
of D′ =

∏
D′

i with D =
∏

Di.
Conversely, let (G,D,G(R)+ → Hol(D)+) satisfy the conditions in the propo-

sition. Decompose Gad
R as before, and let Hc (resp. Hnc) be the product of the

compact (resp. noncompact) factors. The action of G(R)+ on D defines an iso-
morphism Hnc(R)+ ∼= Hol(D)+, and {up | p ∈ D} is an Hnc(R)+-conjugacy class
of homomorphisms U1 → Hnc(R)+ satisfying SU1,2 (see 1.21). Now

{(1, up) : U1 → Hc(R)×Hnc(R) | p ∈ D} ,
is a Gad(R)+-conjugacy class of homomorphisms U1 → Gad(R) satisfying SU1,2.

�

Proposition 4.9. Let (G,D) be a connected Shimura datum, and let X be the
Gad(R)-conjugacy class of homomorphisms S → GR containing D. Then D is a
connected component of X, and the stabilizer of D in Gad(R) is Gad(R)+.

Proof. The argument in the proof of (1.5) shows that X is a disjoint union
of orbits Gad(R)+h, each of which is both open and closed in X. In particular, D
is a connected component of X.

Let Hc (resp. Hnc) be the product of the compact (resp. noncompact) simple
factors of GR. Then Hnc is a connected algebraic group over R such that Hnc(R)+ =
Hol(D), and G(R)+ acts on D through its quotient Hnc(R)+. As Hc(R) is connected
(Borel 1991, p277), the last part of the proposition follows from (1.7). �

Definition of a connected Shimura variety. Let (G,D) be a connected
Shimura datum, and regard D as a hermitian symmetric domain with G(R)+ acting
on it as in (4.8). Because Gad(R)+ → Aut(D)+ has compact kernel, the image Γ of
any arithmetic subgroup Γ of Gad(Q)+ in Aut(D)+ will be arithmetic (this is the
definition p289). The kernel of Γ → Γ is finite. If Γ is torsion free, then Γ ∼= Γ, and
so the Baily-Borel and Borel theorems (3.12, 3.14) apply to

D(Γ) df= Γ\D = Γ\D.

In particular, D(Γ) is an algebraic variety, and, for any Γ ⊃ Γ′, the natural map

D(Γ) ← D(Γ′)

is regular.

Definition 4.10. The connected Shimura variety Sh◦(G,D) is the inverse
system of locally symmetric varieties (D(Γ))Γ where Γ runs over the torsion-free
arithmetic subgroups of Gad(Q)+ whose inverse image in G(Q)+ is a congruence
subgroup.
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Remark 4.11. An element g of Gad(Q)+ defines a holomorphic map g : D → D,
and hence a map

Γ\D → gΓg−1\D.
This is again holomorphic (3.1), and hence is regular (3.14). Therefore the group
Gad(Q)+ acts on the family Sh◦(G,D) (but not on the individual D(Γ)’s).

Lemma 4.12. Write π for the homomorphism G(Q)+ → Gad(Q)+. The follow-
ing conditions on an arithmetic subgroup Γ of Gad(Q)+ are equivalent:

(a) π−1(Γ) is a congruence subgroup of G(Q)+;
(b) π−1(Γ) contains a congruence subgroup of G(Q)+;
(c) Γ contains the image of a congruence subgroup of G(Q)+.

Therefore, the varieties Γ\D with Γ a congruence subgroup of G(Q)+ such π(Γ) is
torsion free are cofinal in the family Sh◦(G,D).

Proof. (a) =⇒ (b). Obvious.
(b) =⇒ (c). Let Γ′ be a congruence subgroup of G(Q)+ contained in π−1(Γ).

Then
Γ ⊃ π(π−1(Γ)) ⊃ π(Γ′).

(c) =⇒ (a). Let Γ′ be a congruence subgroup of G(Q)+ such that Γ ⊃ π(Γ′),
and consider

π−1(Γ) ⊃ π−1π(Γ′) ⊃ Γ′.
Because π(Γ′) is arithmetic (3.2), it is of finite index in Γ, and it follows that
π−1π(Γ′) is of finite index in π−1(Γ). Because Z(Q) · Γ′ ⊃ π−1π(Γ′) and Z(Q) is
finite (Z is the centre of G), Γ′ is of finite index in π−1π(Γ′). Therefore, Γ′ is of
finite index in π−1(Γ), which proves that π−1(Γ) is congruence. �

Remark 4.13. The homomorphism π : G(Q)+ → Gad(Q)+ is usually far from
surjective. Therefore, ππ−1(Γ) is usually not equal to Γ, and the family D(Γ) with
Γ a congruence subgroup of G(Q)+ is usually much smaller than Sh◦(G,D).

Example 4.14. (a) G = SL2, D = H1. Then Sh◦(G,D) is the family of ellip-
tic modular curves Γ\H1 with Γ a torsion-free arithmetic subgroup of PGL2(R)+

containing the image of Γ(N) for some N .
(b) G = PGL2, D = H1. The same as (a), except that now the Γ are required

to be congruence subgroups of PGL2(Q) — there are many fewer of these (see 4.3).
(c) Let B be a quaternion algebra over a totally real field F . Then

B ⊗Q R ∼=
∏

v : F↪→RB ⊗F,v R

and each B ⊗F,v R is isomorphic either to the usual quaternions H or to M2(R).
Let G be the semisimple algebraic group over Q such that

G(Q) = Ker(Nm: B× → F×).

Then

(27) G(R) ≈ H×1 × · · · ×H×1 × SL2(R)× · · · × SL2(R)

where H×1 = Ker(Nm: H× → R×). Assume that at least one SL2(R) occurs (so
that G is of noncompact type), and let D be a product of copies of H1, one for each
copy of SL2(R). The choice of an isomorphism (27) determines an action of G(R)
on D which satisfies the conditions of (4.8), and hence defines a connected Shimura
datum. In this case, D(Γ) has dimension equal to the number of copies of M2(R)
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in the decomposition of B⊗Q R. If B ≈M2(F ), then G(Q) has unipotent elements,
e.g., ( 1 1

0 1 ), and so D(Γ) is not compact (3.3). In this case the varieties D(Γ) are
called Hilbert modular varieties. On the other hand, if B is a division algebra,
G(Q) has no unipotent elements, and so the D(Γ) are compact (as manifolds, hence
they are projective as algebraic varieties).

Aside 4.15. In the definition of Sh◦(G,D), why do we require the inverse
images of the Γ’s in G(Q)+ to be congruence? The arithmetic properties of the
quotients of hermitian symmetric domains by noncongruence arithmetic subgroups
are not well understood even for D = H1 and G = SL2 . Also, the congruence
subgroups turn up naturally when we work adèlically.

The strong approximation theorem. Recall that a semisimple group G
is said to be simply connected if any isogeny G′ → G with G′ connected is an
isomorphism. For example, SL2 is simply connected, but PGL2 is not.

Theorem 4.16 (Strong Approximation). Let G be an algebraic group over Q.
If G is semisimple, simply connected, and of noncompact type, then G(Q) is dense
in G(Af ).

Proof. Platonov and Rapinchuk 1994, Theorem 7.12, p427. �

Remark 4.17. Without the conditions on G, the theorem fails, as the following
examples illustrate:

(a) Gm: the group Q× is not dense in A×
f .

(b) PGL2: the determinant defines surjections

PGL2(Q) → Q×/Q×2

PGL2(Af ) → A×
f /A×2

f

and Q×/Q×2 is not dense in A×
f /A×2

f .
(c) G of compact type: because G(Z) is discrete in G(R) (see 3.3), it is finite,

and so it is not dense in G(Ẑ), which implies that G(Q) is not dense in
G(Af ).

An adèlic description of D(Γ).

Proposition 4.18. Let (G,D) be a connected Shimura datum with G simply
connected. Let K be a compact open subgroup of G(Af ), and let

Γ = K ∩G(Q)

be the corresponding congruence subgroup of G(Q). The map x �→ [x, 1] defines a
bijection

(28) Γ\D ∼= G(Q)\D ×G(Af )/K.

Here G(Q) acts on both D and G(Af ) on the left, and K acts on G(Af ) on the
right:

q · (x, a) · k = (qx, qak), q ∈ G(Q), x ∈ D, a ∈ G(Af ), k ∈ K.

When we endow D with its usual topology and G(Af ) with the adèlic topology (or
the discrete topology), this becomes a homeomorphism.
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Proof. Because K is open, G(Af ) = G(Q) · K (strong approximation theo-
rem). Therefore, every element of G(Q)\D×G(Af )/K is represented by an element
of the form [x, 1]. By definition, [x, 1] = [x′, 1] if and only if there exist q ∈ G(Q) and
k ∈ K such that x′ = qx, 1 = qk. The second equation implies that q = k−1 ∈ Γ,
and so [x, 1] = [x′, 1] if and only if x and x′ represent the same element in Γ\D.

Consider

D
x�→(x,[1])−−−−−−→ D × (G(Af )/K); ;

Γ\D [x] �→[x,1]−−−−−−→ G(Q)\D ×G(Af )/K.

As K is open, G(Af )/K is discrete, and so the upper map is a homeomorphism
of D onto its image, which is open. It follows easily that the lower map is a
homeomorphism. �

What happens when we pass to the inverse limit over Γ? The obvious map

D → lim←−Γ\D,

is injective because each Γ acts freely on D and
⋂

Γ = {1}. Is the map surjective?
The example

Z → lim←−Z/mZ = Ẑ

is not encouraging — it suggests that lim←−Γ\D might be some sort of completion
of D relative to the Γ’s. This is correct: lim←−Γ\D is much larger than D. In fact,
when we pass to the limit on the right in (28), we get the obvious answer:

Proposition 4.19. In the limit,

(29) lim←−KG(Q)\D ×G(Af )/K = G(Q)\D ×G(Af )

(adèlic topology on G(Af )).

Before proving this, we need a lemma.

Lemma 4.20. Let G be a topological group acting continuously on a topological
space X, and let (Gi)i∈I be a directed family of subgroups of G. The canonical map
X/
⋂
Gi → lim←−X/Gi is injective if the Gi are compact, and it is surjective if in

addition the orbits of the Gi in X are separated.

Proof. We shall use that a directed intersection of nonempty compact sets
is nonempty, which has the consequence that a directed inverse limit of nonempty
compact sets is nonempty.

Assume that each Gi is compact, and let x, x′ ∈ X. For each i, let

Gi(x, x′) = {g ∈ Gi | xg = x′}.

If x and x′ have the same image in lim←−X/Gi, then the Gi(x, x′) are all nonempty.
Since each is compact, their intersection is nonempty. For any g in the intersection,
xg = x′, which shows that x and x′ have the same image in X/

⋂
Gi.

Now assume that each orbit is separated and hence compact.For any(xiGi)i∈I ∈
lim←−X/Gi, lim←−xiGi is nonempty. If x ∈ lim←−xiGi, then x·

⋂
Gi maps to (xiGi)i∈I . �
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Proof of 4.19. Let (x, a) ∈ D × G(Af ), and let K be a compact open sub-
group of G(Af ). In order to be able to apply the lemma, we have to show that
the image of the orbit (x, a)K in G(Q)\D × G(Af ) is separated for K sufficiently
small. Let Γ = G(Q)∩aKa−1 — we may assume that Γ is torsion free (3.5). There
exists an open neighbourhood V of x such that gV ∩ V = ∅ for all g ∈ Γ � {1}
(see the proof of 3.1). For any (x, b) ∈ (x, a)K, g(V × aK) ∩ (V × bK) = ∅ for all
g ∈ G(Q) � {1}, and so the images of V × Ka and V × Kb in G(Q)\D × G(Af )
separate (x, a) and (x, b). �

Aside 4.21. (a) Why replace the single coset space on the left of (28) with the
more complicated double coset space on the right? One reason is that it makes
transparent that (in this case) there is an action of G(Af ) on the inverse system
(Γ\D)Γ, and hence, for example, on

lim−→Hi(Γ\D,Q).

Another reason will be seen presently — we use double cosets to define Shimura
varieties. Double coset spaces are pervasive in work on the Langlands program.

(b) The inverse limit of the D(Γ) exists as a scheme — it is even locally noe-
therian and regular (cf. 5.30 below).

Alternative definition of connected Shimura data. Recall that S is the
real torus such that S(R) = C×. The exact sequence

0 → R× r �→r−1

−−−−→ C× z �→z/z−−−−→ U1 → 0

arises from an exact sequence of tori

0 → Gm
w−→ S −→ U1 → 0.

Let H be a semisimple real algebraic group with trivial centre. A homomorphism
u : U1 → H defines a homomorphism h : S → H by the rule h(z) = u(z/z), and U1

will act on Lie(H)C through the characters z, 1, z−1 if and only if S acts on Lie(H)C

through the characters z/z, 1, z/z. Conversely, let h be a homomorphism S → H
for which S acts on Lie(H)C through the characters z/z, 1, z/z. Then w(Gm) acts
trivially on Lie(H)C, which implies that h is trivial on w(Gm) because the adjoint
representation H → Lie(H) is faithful. Thus, h arises from a u.

Now let G be a semisimple algebraic group over Q. From the above remark,
we see that to give a Gad(R)+-conjugacy class D of homomorphisms u : U1 →
Gad

R satisfying SU1,2 is the same as to give a Gad(R)+-conjugacy class X+ of
homomorphisms h : S → Gad

R satisfying the following conditions:
SV1: for h ∈ X+, only the characters z/z, 1, z/z occur in the representation

of S on Lie(Gad)C defined by h;
SV2: adh(i) is a Cartan involution on Gad.

Definition 4.22. A connected Shimura datum is a pair (G,X+) consisting
of a semisimple algebraic group over Q and a Gad(R)+-conjugacy class of homo-
morphisms h : S → Gad

R satisfying SV1, SV2, and

SV3: Gad has no Q-factor on which the projection of h is trivial.

In the presence of the other conditions, SV3 is equivalent to SU3 (see 4.7). Thus,
because of the correspondence u↔ h, this is essentially the same as Definition 4.4.
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Definition 4.4 is more convenient when working with only connected Shimura
varieties, while Definition 4.22 is more convenient when working with both con-
nected and nonconnected Shimura varieties.

Notes. Connected Shimura varieties were defined en passant in Deligne 1979,
2.1.8.

5. Shimura varieties

Connected Shimura varieties are very natural objects, so why do we need any-
thing more complicated? There are two main reasons. From the perspective of the
Langlands program, we should be working with reductive groups, not semisimple
groups. More fundamentally, the varieties D(Γ) making up a connected Shimura
variety Sh◦(G,D) have models over number fields, but the models depend a real-
ization of G as the derived group of a reductive group. Moreover, the number field
depends on Γ — as Γ shrinks the field grows. For example, the modular curve
Γ(N)\H1 is naturally defined over Q[ζN ], ζN = e2πi/N . Clearly, for a canonical
model we would like all the varieties in the family to be defined over the same
field.10

How can we do this? Consider the line Y + i = 0. This is naturally defined over
Q[i], not Q. On the other hand, the variety Y 2 +1 = 0 is naturally defined over Q,
and over C it decomposes into a disjoint pair of conjugate lines (Y − i)(Y + i) = 0.
So we have managed to get our variety defined over Q at the cost of adding other
connected components. It is always possible to lower the field of definition of a
variety by taking the disjoint union of it with its conjugates. Shimura varieties give
a systematic way of doing this for connected Shimura varieties.

Notations for reductive groups. Let G be a reductive group over Q, and
let G ad−→ Gad be the quotient of G by its centre Z. We let G(R)+ denote the group
of elements of G(R) whose image in Gad(R) lies in its identity component Gad(R)+,
and we let G(Q)+ = G(Q) ∩ G(R)+. For example, GL2(Q)+ consists of the 2 × 2
matrices with rational coefficients having positive determinant.

For a reductive group G (resp. for GLn), there are exact sequences

1 � Gder � G
ν� T � 1

1 � Z � G
ad� Gad � 1

1 � Z ′ � Z � T � 1

1 � SLn
� GLn

det � Gm
� 1

1 � Gm
� GLn

ad� PGLn
� 1

1 � µn
� Gm

x�→xn

� Gm
� 1

Here T (a torus) is the largest commutative quotient of G, and Z ′ =df Z ∩Gder (a
finite algebraic group) is the centre of Gder.

The real points of algebraic groups.

Proposition 5.1. For a surjective homomorphism ϕ : G → H of algebraic
groups over R, G(R)+ → H(R)+ is surjective.

10In fact, Shimura has an elegant way of describing a canonical model in which the varieties in

the family are defined over different fields, but this doesn’t invalidate my statement. Incidentally,
Shimura also requires a reductive (not a semisimple) group in order to have a canonical model

over a number field. For an explanation of Shimura’s point of view in the language of these notes,
see Milne and Shih 1981.
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Proof. The map ϕ(R) : G(R)+ → H(R)+ can be regarded as a smooth map
of smooth manifolds. As ϕ is surjective on the tangent spaces at 1, the image of
ϕ(R) contains an open neighbourhood of 1 (Boothby 1975, II 7.1). This implies
that the image itself is open because it is a group. It is therefore also closed, and
this implies that it equals H(R)+. �

Note that G(R) → H(R) need not be surjective. For example, Gm
x�→xn

−→ Gm

is surjective as a map of algebraic groups, but the image of Gm(R) n→ Gm(R) is
Gm(R)+ or Gm(R) according as n is even or odd. Also SL2 → PGL2 is surjective,
but the image of SL2(R) → PGL2(R) is PGL2(R)+.

For a simply connected algebraic group G, G(C) is simply connected as a topo-
logical space, but G(R) need not be. For example, SL2(R) is not simply connected.

Theorem 5.2 (Cartan 1927). For a simply connected group G over R, G(R)
is connected.

Proof. See Platonov and Rapinchuk 1994, Theorem 7.6, p407. �

Corollary 5.3. For a reductive group G over R, G(R) has only finitely many
connected components (for the real topology).11

Proof. Because of (5.1), an exact sequence of real algebraic groups

(30) 1 → N → G′ → G→ 1

with N ⊂ Z(G′) gives rise to an exact sequence

π0(G′(R)) → π0(G(R)) → H1(R, N).

Let G̃ be the universal covering group of Gder. As G is an almost direct product of
Z = Z(G) and Gder, there is an exact sequence (30) with G′ = Z× G̃ and N finite.
Now

◦ π0(G̃(R)) = 0 because G̃ is simply connected,
◦ π0(Z(R)) is finite because Z◦ has finite index in Z and Z◦ is a quotient

(by a finite group) of a product of copies of U1 and Gm, and
◦ H1(R, N) is finite because N is finite. �

For example, Gd
m(R) = (R×)d has 2d connected components, and each of

PGL2(R) and GL2(R) has 2 connected components.

Theorem 5.4 (real approximation). For any connected algebraic group G over
Q, G(Q) is dense in G(R).

Proof. See Platonov and Rapinchuk 1994, Theorem 7.7, p415. �

Shimura data.

Definition 5.5. A Shimura datum is a pair (G,X) consisting of a reductive
group G over Q and a G(R)-conjugacy class X of homomorphisms h : S → GR

satisfying the conditions SV1, SV2, and SV3 (see p302).

11This also follows from the theorem of Whitney 1957: for an algebraic variety V over R,

V (R) has only finitely many connected components (for the real topology) — see Platonov and
Rapinchuk 1994, Theorem 3.6, p119.
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Note that, in contrast to a connected Shimura datum, G is reductive (not
semisimple), the homomorphisms h have target GR (not Gad

R ), and X is the full
G(R)-conjugacy class (not a connected component).

Example 5.6. Let G = GL2 (over Q) and let X be the set of GL2(R)-
conjugates of the homomorphism ho : S → GL2R, ho(a+ ib) =

(
a b

−b a

)
. Then (G,X)

is a Shimura datum. Note that there is a natural bijection X → C � R, namely,
ho �→ i and ghog

−1 �→ gi. More intrinsically, h ↔ z if and only if h(C×) is the
stabilizer of z in GL2(R) and h(z) acts on the tangent space at z as multiplication
by z/z (rather than z/z).

Proposition 5.7. Let G be a reductive group over R. For a homomorphism
h : S → G, let h be the composite of h with G → Gad. Let X be a G(R)-conjugacy
class of homomorphisms S → G, and let X be the Gad(R)-conjugacy class of ho-
momorphisms S → Gad containing the h for h ∈ X.

(a) The map h �→ h : X → X is injective and its image is a union of connected
components of X.

(b) Let X+ be a connected component of X, and let X
+

be its image in X.
If (G,X) satisfies the axioms SV1–3 then (Gder, X

+
) satisfies the axioms

SV1–3; moreover, the stabilizer of X+ in G(R) is G(R)+ (i.e., gX+ =
X+ ⇐⇒ g ∈ G(R)+).

Proof. (a) A homomorphism h : S → G is determined by its projections to T
and Gad, because any other homomorphism with the same projections will be of
the form he for some regular map e : S → Z ′ and e is trivial because S is connected
and Z ′ is finite. The elements of X all have the same projection to T , because T is
commutative, which proves that h �→ h : X → X is injective. For the second part
of the statement, use that Gad(R)+ acts transitively on each connected component
of X (see 1.5) and G(R)+ → Gad(R)+ is surjective.

(b) The first assertion is obvious. In (a) we showed that π0(X) ⊂ π0(X). The
stabilizer in Gad(R) of [X

+
] is Gad(R)+ (see 4.9), and so its stabilizer in G(R) is

the inverse image of Gad(R)+ in G(R). �

Corollary 5.8. Let (G,X) be a Shimura datum, and let X+ be a connected
component of X regarded as a G(R)+-conjugacy class of homomorphisms S → Gad

R

(5.7). Then (Gder, X+) is a connected Shimura datum. In particular, X is a finite
disjoint union of hermitian symmetric domains.

Proof. Apply Proposition 5.7 and Proposition 4.8. �

Let (G,X) be a Shimura datum. For every h : S → G(R) in X, S acts on
Lie(G)C through the characters z/z, 1, z/z. Thus, for r ∈ R× ⊂ C×, h(r) acts
trivially on Lie(G)C. As the adjoint action of G on Lie(G) factors through Gad and
Ad: Gad → GL(Lie(G)) is injective, this implies that h(r) ∈ Z(R) where Z is the
centre of G. Thus, h|Gm is independent of h — we denote its reciprocal by wX (or
simply w) and we call wX the weight homomorphism. For any representation
ρ : GR → GL(V ), ρ ◦wX defines a decomposition of V =

⊕
Vn which is the weight

decomposition of the hodge structure (V, ρ ◦ h) for every h ∈ X.

Proposition 5.9. Let (G,X) be a Shimura datum. Then X has a unique struc-
ture of a complex manifold such that, for every representation ρ : GR → GL(V ),
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(V, ρ ◦ h)h∈X is a holomorphic family of hodge structures. For this complex struc-
ture, each family (V, ρ ◦ h)h∈X is a variation of hodge structures, and so X is a
finite disjoint union of hermitian symmetric domains.

Proof. Let ρ : GR → GL(V ) be a faithful representation of GR. The family
of hodge structures (V, ρ ◦ h)h∈X is continuous, and a slight generalization of (a)
of Theorem 2.14 shows that X has a unique structure of a complex manifold for
which this family is holomorphic. It follows from Waterhouse 1979, 3.5, that the
family of hodge structures defined by every representation is then holomorphic for
this complex structure. The condition SV1 implies that (V, ρ ◦ h)h is a variation of
hodge structures, and so we can apply (b) of Theorem 2.14. �

Of course, the complex structures defined on X by (5.8) and (5.9) coincide.

Aside 5.10. Let (G,X) be a Shimura datum. The maps π0(X) → π0(X) and
G(R)/G(R)+ → Gad(R)/Gad(R)+ are injective, and the second can be identified
with the first once an h ∈ X has been chosen. In general, the maps will not be
surjective unless H1(R, Z) = 0.

Shimura varieties. Let (G,X) be a Shimura datum.

Lemma 5.11. For any connected component X+ of X, the natural map

G(Q)+\X+ ×G(Af ) → G(Q)\X ×G(Af )

is a bijection.

Proof. Because G(Q) is dense in G(R) (see 5.4) and G(R) acts transitively
on X, every x ∈ X is of the form qx+ with q ∈ G(Q) and x+ ∈ X+. This shows
that the map is surjective.

Let (x, a) and (x′, a′) be elements of X+×G(Af ). If [x, a] = [x′, a′] in G(Q)\X×
G(Af ), then

x′ = qx, a′ = qa, some q ∈ G(Q).
Because x and x′ are both in X+, q stabilizes X+ and so lies in G(R)+ (see 5.7).
Therefore, [x, a] = [x′, a′] in G(Q)+\X ×G(Af ). �

Lemma 5.12. For any open subgroup K of G(Af ), the set G(Q)+\G(Af )/K is
finite.

Proof. Since G(Q)+\G(Q) → Gad(R)+\Gad(R) is injective and the second
group is finite (5.3), it suffices to show that G(Q)\G(Af )/K is finite. Later (The-
orem 5.17) we shall show that this follows from the strong approximation theorem
if Gder is simply connected, and the general case is not much more difficult. �

For K a compact open subgroup K of G(Af ), consider the double coset space

ShK(G,X) = G(Q)\X ×G(Af )/K

in which G(Q) acts on X and G(Af ) on the left, and K acts on G(Af ) on the right:

q(x, a)k = (qx, qak), q ∈ G(Q), x ∈ X, a ∈ G(Af ), k ∈ K.

Lemma 5.13. Let C be a set of representatives for the double coset space
G(Q)+\G(Af )/K, and let X+ be a connected component of X. Then

G(Q)\X ×G(Af )/K ∼=
⊔

g∈CΓg\X+
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where Γg is the subgroup gKg−1 ∩ G(Q)+ of G(Q)+. When we endow X with
its usual topology and G(Af ) with its adèlic topology (equivalently, the discrete
topology), this becomes a homeomorphism.

Proof. It is straightforward to prove that, for g ∈ C, the map

[x] �→ [x, g] : Γg\X+ → G(Q)+\X+ ×G(Af )/K

is injective, and that G(Q)+\X+ ×G(Af )/K is the disjoint union of the images of
these maps. Thus, the first statement follows from (5.11). The second statement
can be proved in the same way as the similar statement in (4.18). �

Because Γg is a congruence subgroup of G(Q), its image in Gad(Q) is arithmetic
(3.2), and so (by definition) its image in Aut(X+) is arithmetic. Moreover, when
K is sufficiently small, Γg will be neat for all g ∈ C (apply 3.5) and so its image
in Aut(X+)+ will also be neat and hence torsion free. Then Γg\X+ is an arith-
metic locally symmetric variety, and ShK(G,X) is finite disjoint of such varieties.
Moreover, for an inclusion K′ ⊂ K of sufficiently small compact open subgroups of
G(Af ), the natural map ShK′(G,X) → ShK(G,X) is regular. Thus, when we vary
K (sufficiently small), we get an inverse system of algebraic varieties (ShK(G,X))K .
There is a natural action of G(Af ) on the system: for g ∈ G(Af ), K �→ g−1Kg
maps compact open subgroups to compact open subgroups, and

T (g) : ShK(G,X) → Shg−1Kg(G,X)

acts on points as

[x, a] �→ [x, ag] : G(Q)\X ⊗G(Af )/K → G(Q)\X ×G(Af )/g−1Kg.

Note that this is a right action: T (gh) = T (h) ◦ T (g).

Definition 5.14. The Shimura variety Sh(G,X) attached to the Shimura
datum (G,X) is the inverse system of varieties (ShK(G,X))K endowed with the
action of G(Af ) described above. Here K runs through the sufficiently small com-
pact open subgroups of G(Af ).

Morphisms of Shimura varieties.

Definition 5.15. Let (G,X) and (G′, X ′) be Shimura data.

(a) A morphism of Shimura data (G,X) → (G′, X ′) is a homomorphism
G→ G′ of algebraic groups sending X into X ′.

(b) A morphism of Shimura varieties Sh(G,X) → Sh(G′, X ′) is an in-
verse system of regular maps of algebraic varieties compatible with the
action of G(Af ).

Theorem 5.16. A morphism of Shimura data (G,X) → (G′, X ′) defines a
morphism Sh(G,X) → Sh(G′, X ′) of Shimura varieties, which is a closed immer-
sion if G→ G′ is injective.

Proof. The first part of the statement is obvious from (3.14), and the second
is proved in Theorem 1.15 of Deligne 1971b. �
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The structure of a Shimura variety. By the structure of Sh(G,X), I mean
the structure of the set of connected components and the structure of each connected
component. This is worked out in general in Deligne 1979, 2.1.16, but the result
there is complicated. When Gder is simply connected,12 it is possible to prove
a more pleasant result: the set of connected components is a “zero-dimensional
Shimura variety”, and each connected component is a connected Shimura variety.

Let (G,X) be a Shimura datum. As on p303, Z is the centre of G and T the
largest commutative quotient of G. There are homomorphisms Z ↪→ G

ν−→ T , and
we define

T (R)† = Im(Z(R) → T (R)),

T (Q)† = T (Q) ∩ T (R)†.

Because Z → T is surjective, T (R)
† ⊃ T (R)+ (see 5.1), and so T (R)† and T (Q)†

are of finite index in T (R) and T (Q) (see 5.3). For example, for G = GL2, T (Q)† =
T (Q)+ = Q>0.

Theorem 5.17. Assume Gder is simply connected. For K sufficiently small,
the natural map

G(Q)\X ×G(Af )/K → T (Q)†\T (Af )/ν(K)

defines an isomorphism

π0(ShK(G,X)) ∼= T (Q)†\T (Af )/ν(K).

Moreover, T (Q)†\T (Af )/ν(K) is finite, and the connected component over [1] is
canonically isomorphic to Γ\X+ for some congruence subgroup Γ of Gder(Q) con-
taining K ∩Gder(Q).

In Lemma 5.20 below, we show that ν(G(Q)+) ⊂ T (Q)†. The “natural map”
in the theorem is

G(Q)\X ×G(Af )/K
5.11∼= G(Q)+\X+×G(Af )/K

[x,g] �→[ν(g)]−−−−−−−−→ T (Q)†\T (Af )/ν(K).

The theorem gives a diagram

G(Q)\X ×G(Af )/K �⊃ Γ\X+,

T (Q)†\T (Af )/ν(K)
�

� ⊃ [1]
�

in which T (Q)†\T (Af )/ν(K) is finite and discrete, the left hand map is continuous
and onto with connected fibres, and Γ\X+ is the fibre over [1].

Lemma 5.18. Assume Gder is simply connected. Then G(R)+ = Gder(R)·Z(R).

12The Shimura varieties with simply connected derived group are the most important — if
one knows everything about them, then one knows everything about all Shimura varieties (because

the remainder are quotients of them). However, there are naturally occurring Shimura varieties
for which Gder is not simply connected, and so we should not ignore them.
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Proof. Because Gder is simply connected, Gder(R) is connected (5.2) and so
Gder(R) ⊂ G(R)+. Hence G(R)+ ⊃ Gder(R) · Z(R). For the converse, we use the
exact commutative diagram:

1 −−−−→ Z ′(R)
z �→(z−1,z)−−−−−−−→ Z(R)×Gder(R)

(z,g) �→zg−−−−−−→ G(R) −−−−→ H1(R, Z ′)∥∥∥ ;(z,g) �→g

; ∥∥∥
1 −−−−→ Z ′(R) −−−−→ Gder(R) −−−−→ Gad(R) −−−−→ H1(R, Z ′).

As Gder → Gad is surjective, so also is Gder(R) → Gad(R)+ (see 5.1). Therefore, an
element g of G(R) lies in G(R)+ if and only if its image in Gad(R) lifts to Gder(R).
Thus,

g ∈ G(R)+ ⇐⇒ g �→ 0 in H1(R, Z ′)

⇐⇒ g lifts to Z(R)×Gder(R)

⇐⇒ g ∈ Z(R) ·Gder(R) �
Lemma 5.19. Let H be a simply connected semisimple algebraic group H over

Q.
(a) For every finite prime, the group H1(Q�, H) = 0.
(b) The map H1(Q, H) →

∏
l≤∞ H1(Ql, H) is injective (Hasse principle).

Proof. (a) See Platonov and Rapinchuk 1994, Theorem 6.4, p284.
(b) See ibid., Theorem 6.6, p286. �

Both statements fail for groups that are not simply connected.

Lemma 5.20. Assume Gder is simply connected, and let t ∈ T (Q). Then t ∈
T (Q)† if and only if t lifts to an element of G(Q)+.

Proof. Lemma 5.19 implies that the vertical arrow at right in the following
diagram is injective:

1 −−−−→ Gder(Q) −−−−→ G(Q) ν−−−−→ T (Q) −−−−→ H1(Q, Gder); ; ; ;injective

1 −−−−→ Gder(R) −−−−→ G(R) ν−−−−→ T (R) −−−−→ H1(R, Gder)

Let t ∈ T (Q)†. By definition, the image tR of t in T (R) lifts to an element
z ∈ Z(R) ⊂ G(R). From the diagram, we see that this implies that t maps to
the trivial element in H1(Q, Gder) and so it lifts to an element g ∈ G(Q). Now
gR · z−1 �→ tR · t−1

R = 1 in T (R), and so gR ∈ Gder(R) · z ⊂ Gder(R) ·Z(R) ⊂ G(R)+.
Therefore, g ∈ G(Q)+.

Let t be an element of T (Q) lifting to an element a of G(Q)+. According to
5.18, aR = gz for some g ∈ Gder(R) and z ∈ Z(R). Now aR and z map to the same
element in T (R), namely, to tR, and so t ∈ T (Q)† �

The lemma allows us to write

T (Q)†\T (Af )/ν(K) = ν(G(Q)+)\T (Af )/ν(K).

We now study the fibre over [1] of the map

G(Q)+\X+ ×G(Af )/K
[x,g] �→[ν(g)]−−−−−−−−→ ν(G(Q)+)\T (Af )/ν(K).
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Let g ∈ G(Af ). If [ν(g)] = [1]K , then ν(g) = ν(q)ν(k) some q ∈ G(Q)+ and
k ∈ K. It follows that ν(q−1gk−1) = 1, that q−1gk−1 ∈ Gder(Af ), and that
g ∈ G(Q)+ ·Gder(Af ) ·K. Hence every element of the fibre over [1] is represented
by an element (x, a) with a ∈ Gder(Af ). But, according to the strong approximation
theorem (4.16), G

der
(Af ) = Gder(Q) · (K ∩ Gder(Af )), and so the fibre over [1] is

a quotient of X+; in particular, it is connected. More precisely, it equals Γ\X+

where Γ is the image of K∩G(Q)+ in Gad(Q)+. This Γ is an arithmetic subgroup of
Gad(Q)+ containing the image of the congruence subgroup K∩Gder(Q) of Gder(Q).
Moreover, arbitrarily small such Γ’s arise in this way. Hence, the inverse system of
fibres over [1] (indexed by the compact open subgroups K of G(Af )) is equivalent
to the inverse system Sh◦(Gder, X+) = (Γ\X+).

The study of the fibre over [t] will be similar once we show that there exists
an a ∈ G(Af ) mapping to t (so that the fibre is nonempty). This follows from the
next lemma.

Lemma 5.21. Assume Gder is simply connected. Then the map ν : G(Af ) →
T (Af ) is surjective and sends compact open subgroups to compact open subgroups.

Proof. We have to show:
(a) the homomorphism ν : G(Q�) → T (Q�) is surjective for all finite �;
(b) the homomorphism ν : G(Z�) → T (Z�) is surjective for almost all �.
(a) For each prime �, there is an exact sequence

1 → Gder(Q�) → G(Q�)
ν→ T (Q�) → H1(Q�, G

der)

and so (5.19a) shows that ν : G(Q�) → T (Q�) is surjective.
(b) Extend the homomorphism G → T to a homomorphism of group schemes

G → T over Z[ 1
N ] for some integer N . After N has been enlarged, this map will

be a smooth morphism of group schemes and its kernel G′ will have nonsingular
connected fibres. On extending the base ring to Z�, � � N , we obtain an exact
sequence

0 → G′
� → G�

ν−→ T � → 0

of group schemes over Z� such that ν is smooth and (G′
�)F�

is nonsingular and
connected. Let P ∈ T �(Z�), and let Y = ν−1(P ) ⊂ G�. We have to show that
Y (Z�) is nonempty. By Lang’s lemma (Springer 1998, 4.4.17), H1(F�, (G′

�)F�
) = 0,

and so
ν : G�(F�) → T �(F�)

is surjective. Therefore Y (F�) is nonempty. Because Y is smooth over Z�, an
argument as in the proof of Newton’s lemma (e.g., ANT 7.22) now shows that a
point Q0 ∈ Y (F�) lifts to a point Q ∈ Y (Z�). �

It remains to show that T (Q)†\T (Af )/ν(K) is finite. Because T (Q)† has finite
index in T (Q), it suffices to prove that T (Q)\T (Af )/ν(K) is finite. But ν(K) is
open, and so this follows from the next lemma.

Lemma 5.22. For any torus T over Q, T (Q)\T (Af ) is compact.

Proof. Consider first the case T = Gm. Then

T (Af )/T (Ẑ) = A×
f /Ẑ× ∼=

⊕
� finite

Q×
� /Z×

�

⊕ord�−−−−→∼=

⊕
� finite

Z,
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which is the group of fractional ideals of Z. Therefore, Q×\A×
f /Ẑ× is the ideal class

group of Z, which is trivial: A×
f = Q× · Ẑ×. Hence Q×\A×

f is a quotient of Ẑ×,
which is compact.

For a number field F , the same argument using the finiteness of the class
number of F shows that F×\A×

F,f is compact. Here A×
F,f =

∏
v finite(F

×
v : O×

v ).

An arbitrary torus T over Q will split over some number field, say, TF ≈ Gdim(T )
m .

Then T (F )\T (AF,f ) ≈ (F×\A×
F,f )dim(T ), which is compact, and T (Q)\T (Af ) is a

closed subset of it. �

Remark 5.23. One may ask whether the fibre over [1] equals

Γ\X+ = Gder(Q)\X+ ×Gder(Af )/K ∩Gder(Af ), Γ = K ∩Gder(Q),

rather than quotient of X+ by some larger group than Γ. This will be true if Z ′

satisfies the Hasse principle for H1 (for then every element in G(Q)+ ∩K with K
sufficiently small will lie in Gder(Q) ·Z(Q)). It is known that Z ′ satisfies the Hasse
principle for H1 when Gder has no isogeny factors of type A, but not in general
otherwise (Milne 1987). This is one reason why, in the definition of Sh◦(Gder, X+),
we include quotients Γ\X+ in which Γ is an arithmetic subgroup of Gad(Q)+ con-
taining, but not necessarily equal to, the image of congruence subgroup of Gder(Q).

Zero-dimensional Shimura varieties. Let T be a torus over Q. According
to Deligne’s definition, every homomorphism h : C× → T (R) defines a Shimura
variety Sh(T, {h}) — in this case the conditions SV1,2,3 are vacuous. For any
compact open K ⊂ T (Af ),

ShK(T, {h}) = T (Q)\{h} × T (Af )/K ∼= T (Q)\T (Af )/K

(finite discrete set). We should extend this definition a little. Let Y be a finite set
on which T (R)/T (R)+ acts transitively. Define Sh(T, Y ) to be the inverse system
of finite sets

ShK(T, Y ) = T (Q)\Y × T (Af )/K,
with K running over the compact open subgroups of T (Af ). Call such a system a
zero-dimensional Shimura variety.

Now let (G,X) be a Shimura datum with Gder simply connected, and let T =
G/Gder. Let Y = T (R)/T (R)†. Because T (Q) is dense in T (R) (see 5.4), Y ∼=
T (Q)/T (Q)† and

T (Q)†\T (Af )/K ∼= T (Q)\Y × T (Af )/K

Thus, we see that if Gder is simply connected, then

π0(ShK(G,X)) ∼= Shν(K)(T, Y ).

In other words, the set of connected components of the Shimura variety is a zero-
dimensional Shimura variety (as promised).

Additional axioms. The weight homomorphism wX is a homomorphism Gm →
GR over R of algebraic groups that are defined over Q. It is therefore defined over
Qal. Some simplifications to the theory occur when some of the following conditions
hold:

SV4: The weight homomorphism wX : Gm → GR is defined over Q (we then
say that the weight is rational).

SV5: The group Z(Q) is discrete in Z(Af ).
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SV6: The torus Z◦ splits over a CM-field (see p334 for the notion of a CM-
field).

Let G→ GL(V ) be a representation of G (meaning, of course, a Q-representation).
Each h ∈ X defines a hodge structure on V (R). When SV4 holds, these are ra-
tional hodge structures (p283). It is hoped that these hodge structures all occur
in the cohomology of algebraic varieties and, moreover, that the Shimura variety
is a moduli variety for motives when SV4 holds and a fine moduli variety when
additionally SV5 holds. This will be discussed in more detail later. In Theorem
5.26 below, we give a criterion for SV5 to hold.

Axiom SV6 makes some statements more natural. For example, when SV6
holds, w is defined over a totally real field.

Example 5.24. Let B be a quaternion algebra over a totally real field F , and
let G be the algebraic group over Q with G(Q) = B×. Then, B⊗QF =

∏
v B⊗F,v R

where v runs over the embeddings of F into R. Thus,

B ⊗Q R ≈ H × · · · × H × M2(R) × · · · × M2(R)

G(R) ≈ H× × · · · × H× × GL2(R) × · · · × GL2(R)

h(a + ib) = 1 · · · 1
(

a b
−b a

)
· · ·

(
a b

−b a

)
w(r) = 1 · · · 1 r−1I2 · · · r−1I2

Let X be the G(R)-conjugacy class of h. Then (G,X) satisfies SV1 and SV2,
and so it is a Shimura datum if B splits at at least one real prime of F . Let
I = Hom(F,Qal) = Hom(F,R), and let Inc be the set of v such that B ⊗F,v R is
split. Then w is defined over the subfield of Qal fixed by the automorphisms of
Qal stabilizing Inc. This field is always totally real, and it equals Q if and only if
I = Inc.

Arithmetic subgroups of tori. Let T be a torus over Q, and let T (Z) be an
arithmetic subgroup of T (Q), for example,

T (Z) = Hom(X∗(T ),O×
L )Gal(L/Q),

where L is some galois splitting field of T . The congruence subgroup problem is
known to have a positive answer for tori (Serre 1964, 3.5), i.e., every subgroup of
T (Z) of finite index contains a congruence subgroup. Thus the topology induced
on T (Q) by that on T (Af ) has the following description: T (Z) is open, and the
induced topology on T (Z) is the profinite topology. In particular,

T (Q) is discrete ⇐⇒ T (Z) is discrete ⇐⇒ T (Z) is finite.

Example 5.25. (a) Let T = Gm. Then T (Z) = {±1}, and so T (Q) is discrete
in T (Af ). This, of course, can be proved directly.

(b) Let T (Q) = {a ∈ Q[
√
−1]× | Nm(a) = 1}. Then T (Z) = {±1,±

√
−1}, and

so T (Q) is discrete.
(c) Let T (Q) = {a ∈ Q[

√
2]× | Nm(a) = 1}. Then T (Z) = {±(1 +

√
2)n | n ∈

Z}, and so neither T (Z) nor T (Q) is discrete.

Theorem 5.26. Let T be a torus over Q, and let T a =
⋂

χ Ker(χ : T → Gm)
(characters χ of T rational over Q). Then T (Q) is discrete in T (Af ) if and only if
T a(R) is compact.
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Proof. According to a theorem of Ono (Serre 1968, pII-39), T (Z) ∩ T a(Q) is
of finite index in T (Z), and the quotient T a(R)/T (Z) ∩ T a(Q) is compact. Now
T (Z) ∩ T a(Q) is an arithmetic subgroup of T a(Q), and hence is discrete in T a(R).
It follows that T (Z) ∩ T a(Q) is finite if and only if T a(R) is compact. �

For example, in (5.25)(a), T a = 1 and so certainly T a(R) is compact; in (b),
T a(R) = U1, which is compact; in (c), T a = T and T (R) = {(a, b) ∈ R×R | ab = 1},
which is not compact.

Remark 5.27. A torus T over a field k is said to be anisotropic if there are
no characters χ : T → Gm defined over k. A real torus is anisotropic if and only
if it is compact. The torus T a =df

⋂
Ker(χ : T → Gm) is the largest anisotropic

subtorus of T . Thus (5.26) says that T (Q) is discrete in T (Af ) if and only if the
largest anisotropic subtorus of T remains anisotropic over R.

Note that SV5 holds if and only if (Z◦a)R is anisotropic.
Let T be a torus that splits over CM-field L. In this case there is a torus

T+ ⊂ T such that T+
L =

⋂
ιχ=−χ Ker(χ : TL → Gm). Then T (Q) is discrete in

T (Af ) if and only if T+ is split, i.e., if and only if the largest subtorus of T that
splits over R is already split over Q.

Passage to the limit. Let K be a compact open subgroup of G(Af ), and let
Z(Q)− be the closure of Z(Q) in Z(Af ). Then Z(Q) ·K = Z(Q)− ·K (in G(Af ))
and

ShK(G,X) =df G(Q)\X × (G(Af )/K)

∼=
G(Q)
Z(Q)

∖
X × (G(Af )/Z(Q) ·K)

∼=
G(Q)
Z(Q)

∖
X × (G(Af )/Z(Q)− ·K).

Theorem 5.28. For any Shimura datum (G,X),

lim←−
K

ShK(G,X) =
G(Q)
Z(Q)

∖
X × (G(Af )/Z(Q)−).

When SV5 holds,
lim←−
K

ShK(G,X) = G(Q)\X ×G(Af ).

Proof. The first equality can be proved by the same argument as (4.19), and
the second follows from the first (cf. Deligne 1979, 2.1.10, 2.1.11). �

Remark 5.29. Put SK = ShK(G,X). For varying K, the SK form a variety
(scheme) with a right action of G(Af ) in the sense of Deligne 1979, 2.7.1. This
means the following:

(a) the SK form an inverse system of algebraic varieties indexed by the com-
pact open subgroups K of G(Af ) (if K ⊂ K ′, there is an obvious quotient
map SK′ → SK);

(b) there is an action ρ of G(Af ) on the system (SK)K defined by isomorphisms
(of algebraic varieties) ρK(a) : SK → Sg−1Kg (on points, ρK(a) is [x, a′] �→
[x, a′a]);
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(c) for k ∈ K, ρK(k) is the identity map; therefore, for K ′ normal in K, there
is an action of the finite group K/K ′ on SK′ ; the variety SK is the quotient
of SK′ by the action of K/K ′.

Remark 5.30. When we regard the ShK(G,X) as schemes, the inverse limit
of the system ShK(G,X) exists:

S = lim←− ShK(G,X).

This is a scheme over C, not(!) of finite type, but it is locally noetherian and regular
(cf. Milne 1992, 2.4). There is a right action of G(Af ) on S, and, for K a compact
open subgroup of G(Af ),

ShK(G,X) = S/K

(Deligne 1979, 2.7.1). Thus, the system (ShK(G,X))K together with its right action
of G(Af ) can be recovered from S with its right action of G(Af ). Moreover,

S(C) ∼= lim←− ShK(G,X)(C) = lim←−G(Q)\X ×G(Af )/K.

Notes. Axioms SV1, SV2, SV3, and SV4 are respectively the conditions
(2.1.1.1), (2.1.1.2), (2.1.1.3), and (2.1.1.4) of Deligne 1979. Axiom SV5 is weaker
than the condition (2.1.1.5) ibid., which requires that adh(i) be a Cartan involution
on (G/w(Gm))R, i.e., that (Z◦/w(Gm))R be anisotropic.

6. The Siegel modular variety

In this section, we study the most important Shimura variety, namely, the Siegel
modular variety.

Dictionary. Let V be an R-vector space. Recall (2.4) that to give a C-
structure J on V is the same as to give a hodge structure hJ on V of type
(−1, 0), (0,−1). Here hJ is the restriction to C× of the homomorphism

a + bi �→ a + bJ : C → EndR(V ).

For the hodge decompostion V (C) = V −1,0 ⊕ V −1,0,

V −1,0 V 0,−1

J acts as +i −i
hJ (z) acts as z z

Let ψ be a nondegenerate R-bilinear alternating form on V . A direct calculation
shows that

ψ(Ju, Jv) = ψ(u, v) ⇐⇒ ψ(zu, zv) = |z|2ψ(u, v) for all z ∈ C.

Let ψJ (u, v) = ψ(u, Jv). Then

ψ(Ju, Jv) = ψ(u, v) ⇐⇒ ψJ is symmetric

and
ψ(Ju, Jv) = ψ(u, v) and
ψJ is positive definite

(2.12)⇐⇒ ψ is a polarization of the
hodge structure (V, hJ).
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Symplectic spaces. Let k be a field of characteristic �= 2, and let (V, ψ) be a
symplectic space of dimension 2n over k, i.e., V is a k-vector space of dimension
2n and ψ is a nondegenerate alternating form ψ. A subspace W of V is totally
isotropic if ψ(W,W ) = 0. A symplectic basis of V is a basis (e±i)1≤i≤n such
that

ψ(ei, e−i) = 1 for 1 ≤ i ≤ n,

ψ(ei, ej) = 0 for j �= ±i.

Lemma 6.1. Let W be a totally isotropic subspace of V . Then any basis of W
can be extended to a symplectic basis for V . In particular, V has symplectic bases
(and two symplectic spaces of the same dimension are isomorphic).

Proof. Standard. �

Thus, a maximal totally isotropic subspace of V will have dimension n. Such
subspaces are called lagrangians.

Let GSp(ψ) be the group of symplectic similitudes of (V, ψ), i.e., the group
of automorphisms of V preserving ψ up to a scalar. Thus

GSp(ψ)(k) = {g ∈ GL(V ) | ψ(gu, gv) = ν(g) · ψ(u, v) some ν(g) ∈ k×}.
Define Sp(ψ) by the exact sequence

1 → Sp(ψ) → GSp(ψ) ν→ Gm → 1.

Then GSp(ψ) has derived group Sp(ψ), centre Gm, and adjoint group GSp(ψ)/Gm =
Sp(ψ)/± I.

For example, when V has dimension 2, there is only one nondegenerate alter-
nating form on V up to scalars, which must therefore be preserved up to scalars by
any automorphism, and so GSp(ψ) = GL2 and Sp(ψ) = SL2.

The group Sp(ψ) acts simply transitively on the set of symplectic bases: if (e±i)
and (f±i) are bases of V , then there is a unique g ∈ GL2n(k) such that ge±i = f±i,
and if (e±i) and (f±i) are both symplectic, then g ∈ Sp(ψ).

The Shimura datum attached to a symplectic space. Fix a symplectic
space (V, ψ) over Q, and let G = GSp(ψ) and S = Sp(ψ) = Gder.

Let J be a complex structure on V (R) such that ψ(Ju, Jv) = ψ(u, v). Then
J ∈ S(R), and hJ (z) lies in G(R) (and in S(R) if |z| = 1) — see the dictionary. We
say that J is positive (resp. negative) if ψJ(u, v) =df ψ(u, Jv) is positive definite
(resp. negative definite).

Let X+ (resp. X−) denote the set of positive (resp. negative) complex struc-
tures on V (R), and let X = X+ $ X−. Then G(R) acts on X according to the
rule

(g, J) �→ gJg−1,

and the stabilizer in G(R) of X+ is

G(R)+ = {g ∈ G(R) | ν(g) > 0}.
For a symplectic basis (e±i) of V , define J by Je±i = ±e∓i, i.e.,

ei
J�−→ e−i

J�−→ −ei, 1 ≤ i ≤ n.

Then J2 = −1 and J ∈ X+ — in fact, (ei)i is an orthonormal basis for ψJ .
Conversely, if J ∈ X+, then J has this description relative to any orthonormal
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basis for the positive definite form ψJ . The map from symplectic bases to X+ is
equivariant for the actions of S(R). Therefore, S(R) acts transitively on X+, and
G(R) acts transitively on X.

For J ∈ X, let hJ be the corresponding homomorphism C× → G(R). Then
hgJg−1(z) = ghJ(z)g−1. Thus J �→ hJ identifies X with a G(R)-conjugacy class
of homomorphisms h : C× → G(R). We check that (G,X) satisfies the axioms
SV1–SV6.

(SV1). For h ∈ X, let V + = V −1,0 and V − = V 0,−1, so that V (C) = V +⊕V −

with h(z) acting on V + and V − as multiplication by z and z respectively. Then

Hom(V (C), V (C)) = Hom(V +, V +) ⊕ Hom(V +, V −) ⊕ Hom(V −, V +) ⊕ Hom(V −, V −)
h(z) acts as 1 z/z z/z 1

The Lie algebra of G is the subspace

Lie(G) = {f ∈ Hom(V, V ) | ψ(f(u), v) + ψ(u, f(v)) = 0},
of End(V ), and so SV1 holds.

(SV2). We have to show that adJ is a Cartan involution on Gad. But, J2 = −1
lies in the centre of S(R) and ψ is a J-polarization for SR in the sense of (1.20),
which shows that adJ is a Cartan involution for S.

(SV3). In fact, Gad is Q-simple, and Gad(R) is not compact.
(SV4). For r ∈ R×, wh(r) acts on both V −1,0 and V 0,−1 as v �→ rv. Therefore,

wX is the homomorphism GmR → GL(V (R)) sending r ∈ R× to multplication by
r. This is defined over Q.

(SV5). The centre of G is Gm, and Q× is discrete in A×
f (see 5.25).

(SV6). The centre of G is split already over Q.
We often write (G(ψ), X(ψ)) for the Shimura datum defined by a symplectic space
(V, ψ), and (S(ψ), X(ψ)+) for the connected Shimura datum.

Exercise 6.2. (a) Show that for any h ∈ X(ψ), ν(h(z)) = zz. [Hint: for
nonzero v+ ∈ V + and v− ∈ V −, compute ψC(h(z)v+, h(z)v−) in two different
ways.]

(b) Show that the choice of a symplectic basis for V identifies X+ with Hg as
an Sp(ψ)-set (see 1.2).

The Siegel modular variety. Let (G,X) = (G(ψ), X(ψ)) be the Shimura
datum defined by a symplectic space (V, ψ) over Q. The Siegel modular variety
attached to (V, ψ) is the Shimura variety Sh(G,X).

Let V (Af ) = Af ⊗Q V . Then G(Af ) is the group of Af -linear automorphisms
of V (Af ) preserving ψ up to multiplication by an element of A×

f .
Let K be a compact open subgroup of G(Af ), and let HK be the set of triples

((W,h), s, ηK) where
◦ (W,h) is a rational hodge structure of type (−1, 0), (0,−1);
◦ ±s is a polarization for (W,h);
◦ ηK is a K-orbit of Af -linear isomorphisms V (Af ) →W (Af ) sending ψ to

an A×
f -multiple of s.

An isomorphism

((W,h), s, ηK) → ((W ′, h′), s′, η′K)
of triples is an isomorphism b : (W,h) → (W ′, h′) of rational hodge structures such
that b(s) = cs′ some c ∈ Q× and b ◦ η = η′ mod K.
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Note that to give an element of HK amounts to giving a symplectic space (W, s)
over Q, a complex structure on W that is positive or negative for s, and ηK. The
existence of η implies that dimW = dimV , and so (W, s) and (V, ψ) are isomorphic.
Choose an isomorphism a : W → V sending ψ to a Q×-multiple of s. Then

ah =df (z �→ a ◦ h(z) ◦ a−1)

lies in X, and
V (Af )

η→W (Af ) a→ V (Af )

lies in G(Af ). Any other isomorphism a′ : W → V sending ψ to a multiple of s
differs from a by an element of G(Q), say, a′ = q ◦ a with q ∈ G(Q). Replacing a
with a′ only replaces (ah, a ◦ η) with (qah, qa ◦ η). Similarly, replacing η with ηk
replaces (ah, a ◦ η) with (ah, a ◦ ηk). Therefore, the map

(W . . .) �→ [ah, a ◦ η]K : HK → G(Q)\X ×G(Af )/K

is well-defined.

Proposition 6.3. The set ShK(G,X) classifies the triples in HK modulo iso-
morphism. More precisely, the map (W, . . .) �→ [ah, a ◦ η]K defines a bijection

HK/≈→ G(Q)\X ×G(Af )/K.

Proof. It is straightforward to check that the map sends isomorphic triples to
the same class, and that two triples are isomorphic if they map to the same class.
The map is onto because [h, g] is the image of ((V, h), ψ, gK). �

Complex abelian varieties. An abelian variety A over a field k is a con-
nected projective algebraic variety over k together with a group structure given by
regular maps. A one-dimensional abelian variety is an elliptic curve. Happily, a
theorem, whose origins go back to Riemann, reduces the study of abelian varieties
over C to multilinear algebra.

Recall that a lattice in a real or complex vector space V is the Z-module gen-
erated by an R-basis for V . For a lattice Λ in Cn, make Cn/Λ into a complex
manifold by endowing it with the quotient structure. A complex torus is a com-
plex manifold isomorphic to Cn/Λ for some lattice Λ in Cn.

Note that Cn is the universal covering space of M = Cn/Λ with Λ as its group
of covering transformations, and π1(M, 0) = Λ (Hatcher 2002, 1.40). Therefore,
(ib. 2A.1)

(31) H1(M,Z) ∼= Λ

and (Greenberg 1967, 23.14)

(32) H1(M,Z) ∼= Hom(Λ,Z).

Proposition 6.4. Let M = Cn/Λ. There is a canonical isomorphism

Hn(M,Z) ∼= Hom(
∧nΛ,Z),

i.e., Hn(M,Z) is canonically isomorphic to the set of n-alternating forms Λ×· · ·×
Λ → Z.

Proof. From (32), we see that∧n
H1(M,Z) ∼=

∧n Hom(Λ,Z).
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Since13 ∧n Hom(Λ,Z) ∼= Hom(
∧nΛ,Z),

we see that it suffices to show that cup-product defines an isomorphism

(33)
∧n

H1(M,Z) → Hn(M,Z).

Let T be the class of topological manifolds M whose cohomology groups are free
Z-modules of finite rank and for which the maps (33) are isomorphisms for all n.
Certainly, the circle S1 is in T (its cohomology groups are Z, Z, 0, . . .), and the
Künneth formula (Hatcher 2002, 3.16 et seq.) shows that if M1 and M2 are in T ,
then so also is M1 ×M2. As a topological manifold, Cn/Λ ≈ (S1)2n, and so M is
in T . �

Proposition 6.5. A linear map α : Cn → Cn′
such that α(Λ) ⊂ Λ′ defines

a holomorphic map Cn/Λ → Cn′
/Λ′ sending 0 to 0, and every holomorphic map

Cn/Λ → Cn′
/Λ′ sending 0 to 0 is of this form (for a unique α).

Proof. The map Cn α→ Cn′ → Cn′
/Λ′ is holomorphic, and it factors through

Cn/Λ. Because C/Λ has the quotient structure, the resulting map Cn/Λ → Cn′
/Λ′

is holomorphic. Conversely, let ϕ : C/Λ → C/Λ′ be a holomorphic map such that
ϕ(0) = 0. Then Cn and Cn′

are universal covering spaces of Cn/Λ and Cn′
/Λ′, and

a standard result in topology (Hatcher 2002, 1.33, 1.34) shows that ϕ lifts uniquely
to a continuous map ϕ̃ : Cn → Cn′

such that ϕ̃(0) = 0:

Cn ϕ̃−−−−→ Cn′; ;
Cn/Λ

ϕ−−−−→ Cn′
/Λ′.

Because the vertical arrows are local isomorphisms, ϕ̃ is automatically holomorphic.
For any ω ∈ Λ, the map z �→ ϕ̃(z + ω) − ϕ̃(z) is continuous and takes values in
Λ′ ⊂ C. Because Cn is connected and Λ′ is discrete, it must be constant. Therefore,
for each j, ∂ϕ̃

∂zj
is a doubly periodic function, and so defines a holomorphic function

Cn/Λ → Cn′
, which must be constant (because Cn/Λ is compact). Write ϕ̃ as an

n′-tuple (ϕ̃1, . . . , ϕ̃n′) of holomorphic functions ϕ̃i in n variables. Because ϕ̃i(0) = 0
and ∂ϕ̃i

∂zj
is constant for each j, the power series expansion of ϕ̃i at 0 is of the form∑

aijzj . Now ϕ̃i and
∑

aijzj are holomorphic functions on Cn that coincide on a
neighbourhood of 0, and so are equal on the whole of Cn. We have shown that

ϕ̃(z1, . . . , zn) = (
∑

a1jzj , . . . ,
∑

an′jzj). �
Aside 6.6. The proposition shows that every holomorphic map ϕ : Cn/Λ →

Cn′
/Λ′ such that ϕ(0) = 0 is a homomorphism. A similar statement is true for

abelian varieties over any field k: a regular map ϕ : A→ B of abelian varieties such
that ϕ(0) = 0 is a homomorphism (AG, 7.14). For example, the map sending an
element to its inverse is a homomorphism, which implies that the group law on A

13For a free Z-module Λ of finite rank, the pairing
VnΛ∨ ×

VnΛ → Z

determined by

(f1 ∧ · · · ∧ fn, v1 ⊗ · · · ⊗ vn) = det(fi(vj))

is nondegenerate (since it is modulo p for every p — see Bourbaki 1958, §8).
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is commutative. Also, the group law on an abelian variety is uniquely determined
by the zero element.

Let M = Cn/Λ be a complex torus. The isomorphism R ⊗ Λ ∼= Cn defines a
complex structure J on R ⊗ Λ. A riemann form for M is an alternating form
ψ : Λ × Λ → Z such that ψR(Ju, Jv) = ψR(u, v) and ψR(u, Ju) > 0 for u �= 0. A
complex torus Cn/Λ is said to be polarizable if there exists a riemann form.

Theorem 6.7. The complex torus Cn/Λ is projective if and only if it is polar-
izable.

Proof. See Mumford 1970, Chapter I, (or Murty 1993, 4.1, for the “if” part).
Alternatively, one can apply the Kodaira embedding theorem (Voisin 2002, Th.
7.11, 7.2.2). �

Thus, by Chow’s theorem (3.11), a polarizable complex torus is a projective
algebraic variety, and holomorphic maps of polarizable complex tori are regular.
Conversely, it is easy to see that the complex manifold associated with an abelian
variety is a complex torus: let Tgt0 A be the tangent space to A at 0; then the
exponential map Tgt0 A→ A(C) is a surjective homomorphism of Lie groups with
kernel a lattice Λ, which induces an isomorphism (Tgt0 A)/Λ ∼= A(C) of complex
manifolds (Mumford 1970, p2).

For a complex torus M = Cn/Λ, the isomorphism Λ⊗Z R ∼= Cn endows Λ⊗Z

R with a complex structure, and hence endows Λ ∼= H1(M,Z) with an integral
hodge structure of weight −1. Note that a riemann form for M is nothing but a
polarization of the integral hodge structure Λ.

Theorem 6.8 (Riemann’s theorem). 14The functor A �→ H1(A,Z) is an equiv-
alence from the category AV of abelian varieties over C to the category of polarizable
integral hodge structures of type (−1, 0), (0,−1).

Proof. We have functors

AV
A�→Aan

−−−−−→ {category of polarizable complex tori }
M �→H1(M,Z)−−−−−−−−→ {category of polarizable integral hodge structures of type(−1, 0), (0,−1)}.

The first is fully faithful by Chow’s theorem (3.11), and it is essentially surjective
by Theorem 6.7; the second is fully faithful by Proposition 6.5, and it is obviously
essentially surjective. �

Let AV0 be the category whose objects are abelian varieties over C and whose
morphisms are

HomAV0(A,B) = HomAV(A,B)⊗Q.

Corollary 6.9. The functor A �→H1(A,Q) is an equivalence from the category
AV0 to the category of polarizable rational hodge structures of type (−1, 0), (0,−1).

Proof. Immediate consequence of the theorem. �

14In fact, it should be called the “theorem of Riemann, Frobenius, Weierstrass, Poincaré,
Lefschetz, et al.” (see Shafarevich 1994, Historical Sketch, 5), but “Riemann’s theorem” is shorter.
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Remark 6.10. Recall that in the dictionary between complex structures J on
a real vector space V and hodge structures of type (−1, 0), (0,−1),

(V, J) ∼= V (C)/V −1,0 = V (C)/F 0.

Since the hodge structure on H1(A,R) is defined by the isomorphism Tgt0(A) ∼=
H1(A,R), we see that

(34) Tgt0(A) ∼= H1(A,C)/F 0

(isomorphism of complex vector spaces).

A modular description of the points of the Siegel variety. Let MK

be the set of triples (A, s, ηK) in which A is an abelian variety over C, s is an
alternating form on H1(A,Q) such that s or −s is a polarization on H1(A,Q), and
η is an isomorphism V (Af ) → Vf (Af ) sending ψ to a multiple of s by an element
of A×

f . An isomorphism from one triple (A, s, ηK) to a second (A′, s′, η′K) is an
isomorphism A→ A′ (as objects in AV0) sending s to a multiple of s′ by an element
of Q× and ηK to η′K.

Theorem 6.11. The set ShK(G,X) classifies the triples (A, s, ηK) in MK

modulo isomorphism, i.e., there is a canonical bijection MK/ ≈→ G(Q)\X ×
G(Af )/K.

Proof. Combine (6.9) with (6.3). �

7. Shimura varieties of hodge type

In this section, we examine one important generalization of Siegel modular
varieties.

Definition 7.1. A Shimura datum (G,X) is of hodge type if there exists
a symplectic space (V, ψ) over Q and an injective homomorphism ρ : G ↪→ G(ψ)
carrying X into X(ψ). The Shimura variety Sh(G,X) is then said to be of hodge
type. Here (G(ψ), X(ψ)) denotes the Shimura datum defined by (V, ψ).

The composite of ρ with the character ν of G(ψ) is a character of G, which we
again denote by ν. Let Q(r) denote the vector space Q with G acting by rν, i.e.,
g · v = ν(g)r · v. For each h ∈ X, (Q(r), h ◦ ν) is a rational hodge structure of type
(−r,−r) (apply 6.2a), and so this notation is consistent with that in (2.6).

Lemma 7.2. There exist multilinear maps ti : V × · · · × V → Q(ri), 1 ≤ i ≤ n,
such that G is the subgroup of G(ψ) fixing the ti.

Proof. According to Deligne 1982, 3.1, there exist tensors ti in V ⊗ri ⊗V ∨⊗si

such that this is true. But ψ defines an isomorphism V ∼= V ∨ ⊗Q(1)), and so

V ⊗ri ⊗ V ∨⊗si ∼= V ∨⊗(ri+si) ⊗Q(ri) ∼= Hom(V ⊗(ri+si),Q(ri)). �

Let (G,X) be of hodge type. Choose an embedding of (G,X) into (G(ψ), X(ψ))
for some symplectic space (V, ψ) and multilinear maps t1, . . . , tn as in the lemma.
Let HK be the set of triples ((W,h), (si)0≤i≤n, ηK) in which

◦ (W,h) is a rational hodge structure of type (−1, 0), (0,−1),
◦ ±s0 is a polarization for (W,h),
◦ s1, . . . , sn are multilinear maps si : W × · · · ×W → Q(ri), and
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◦ ηK is a K-orbit of isomorphisms V (Af ) → W (Af ) sending ψ onto an
A×

f -multiple of s0 and each ti to si,

satisfying the following condition:
(*) there exists an isomorphism a : W → V sending s0 to a Q×-
multiple of ψ, si to ti each i ≥ 1, and h onto an element of X.

An isomorphism from one triple (W, . . .) to a second (W ′, . . .) is an isomorphism
(W,h) → (W ′, h′) of rational hodge structures sending s0 to a Q×-multiple of s′0,
si to s′i for i > 0, and ηK to η′K.

Proposition 7.3. The set ShK(G,X)(C) classifies the triples in HK modulo
isomorphism.

Proof. Choose an isomorphism a : W → V as in (*), and consider the pair
(ah, a◦η). By assumption ah ∈ X and a◦η is a symplectic similitude of (V (Af ), ψ)
fixing the ti, and so (ah, a ◦ η) ∈ X × G(Af ). The isomorphism a is determined
up to composition with an element of G(Q) and η is determined up to composition
with an element of K. It follows that the class of (ah, a◦η) in G(Q)\X×G(Af )/K
is well-defined. The proof that (W, . . .) �→ [ah, a ◦ η]K gives a bijection from the set
of isomorphism classes of triples in HK onto ShK(G,X)(C) is now routine (cf. the
proof of 6.3). �

Let t : V × · · · × V → Q(r) (m-copies of V ) be a multilinear form fixed by G,
i.e., such that

t(gv1, . . . , gvm) = ν(g)r · t(v 1, . . . , vm), for all v1, . . . , vm ∈ V , g ∈ G(Q).

For h ∈ X, this equation shows that t defines a morphism of hodge structures
(V, h)⊗m → Q(r). On comparing weights, we see that if t is nonzero, then m = 2r.

Now let A be an abelian variety over C, and let V = H1(A,Q). Then (see 6.4)

Hm(A,Q) ∼= Hom(
∧m

V,Q).

We say that t ∈ H2r(A,Q) is a hodge tensor for A if the corresponding map

V ⊗2r →
∧2r

V → Q(r)

is a morphism of hodge structures.
Let (G,X) ↪→ (G(ψ), X(ψ)) and t1, . . . , tn be as above. Let MK be the set of

triples (A, (si)0≤i≤n, ηK) in which
◦ A is a complex abelian variety,
◦ ±s0 is a polarization for the rational hodge structure H1(A,Q),
◦ s1, . . . , sn are hodge tensors for A or its powers, and
◦ ηK is a K-orbit of Af -linear isomorphisms V (Af ) → Vf (A) sending ψ

onto an A×
f -multiple of s0 and each ti to si,

satisfying the following condition:
(**) there exists an isomorphism a : H1(A,Q) → V sending s0 to
a Q×-multiple of ψ, si to ti each i ≥ 1, and h to an element of
X.

An isomorphism from one triple (A, (si)i, ηK) to a second (A′, (s′i), η
′K) is an iso-

morphism A→ A′ (as objects of AV0) sending s0 to a multiple of s′0 by an element
of Q×, each si to s′i, and η to η′ modulo K.
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Theorem 7.4. The set ShK(G,X)(C) classifies the triples in MK modulo
isomorphism.

Proof. Combine Propositions 7.3 and 6.9. �

The problem with Theorem 7.4 is that it is difficult to check whether a triple
satisfies the condition (**). In the next section, we show that when the hodge
tensors are endomorphisms of the abelian variety, then it is sometimes possible to
replace (**) by a simpler trace condition.

Remark 7.5. When we write A(C) = Cg/Λ, then (see 6.4),

Hm(A,Q) ∼= Hom(
∧mΛ,Q)

Now Λ⊗ C ∼= T ⊕ T where T = Tgt0(A). Therefore,

Hm(A,C) ∼= Hom(
∧m(Λ⊗ C),C) ∼= Hom(

⊕
p+q=m

∧p
T ⊗

∧q
T ,C) ∼=

⊕
p+q=m

Hp,q

where
Hp,q = Hom(

∧p
T ⊗

∧q
T ,C).

This rather ad hoc construction of the hodge structure on Hm does agree with the
usual construction (2.5) — see Mumford 1970, Chapter I. A hodge tensor on A is
an element of

H2r(A,Q) ∩Hr,r (intersection inside H2r(A,C)).

The Hodge conjecture predicts that all hodge tensors are the cohomology classes
of algebraic cycles with Q-coefficients. For r = 1, this is known even over Z. The
exponential sequence

0 → Z −→ OA
z �→exp(2πiz)−→ O×

A → 0

gives a cohomology sequence

H1(A,O×
A) → H2(A,Z) → H2(A,OA).

The cohomology group H1(A,O×
A) classifies the divisors on A modulo linear equiv-

alence, i.e., Pic(A) ∼= H1(A,O×
A), and the first arrow maps a divisor to its coho-

mology class. A class in H2(A,Z) maps to zero in H2(A,OA) = H0,2 if and only if
it maps to zero in its complex conjugate H2,0. Therefore, we see that

Im(Pic(A)) = H2(A,Z) ∩H1,1.

8. PEL Shimura varieties

Throughout this section, k is a field of characteristic zero. Bilinear forms are
always nondegenerate.

Algebras with involution. By a k-algebra I mean a ring B containing k in
its centre and finite dimensional over k. A k-algebra A is simple if it contains no
two-sided ideals except 0 and A. For example, every matrix algebra Mn(D) over a
division algebra D is simple, and conversely, Wedderburn’s theorem says that every
simple algebra is of this form (CFT, IV 1.9). Up to isomorphism, a simple k-algebra
has only one simple module (ibid, IV 1.15). For example, up to isomorphism, Dn

is the only simple Mn(D)-module.
Let B = B1 × · · · × Bn be a product of simple k-algebras (a semisimple k-

algebra). A simple Bi-module Mi becomes a simple B-module when we let B
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act through the quotient map B → Bi. These are the only simple B-modules,
and every B-module is a direct sum of simple modules. A B-module M defines a
k-linear map

b �→ Trk(b|M) : B → k

which we call the trace map of M .

Proposition 8.1. Let B be a semisimple k-algebra. Two B-modules are iso-
morphic if and only if they have the same trace map.

Proof. Let B1, . . . , Bn be the simple factors of B, and let Mi be a simple Bi-
module. Then every B-module is isomorphic to a direct sum

⊕
jrjMj with rjMj

the direct sum of rj copies of Mi. We have to show that the trace map determines
the multiplicities rj . But for ei = (0, . . . , 0, 1

i
, 0, . . .),

Trk(ei|
∑

rjMj) = ri dimk Mi . �
Remark 8.2. The lemma fails when k has characteristic p, because the trace

map is identically zero on pM .

An involution of a k-algebra B is a k-linear map b �→ b∗ : B → B such that
(ab)∗ = b∗a∗ and b∗∗ = b. Note that then 1∗ = 1 and so c∗ = c for c ∈ k.

Proposition 8.3. Let k be an algebraically closed field, and let (B, ∗) be a
semisimple k-algebra with involution. Then (B, ∗) is isomorphic to a product of
pairs of the following types:

(A): Mn(k)×Mn(k), (a, b)∗ = (bt, at);
(C): Mn(k), b∗ = bt;
(BD): Mn(k), b∗ = J · bt · J−1, J =

(
0 −I
I 0

)
.

Proof. The decomposition B = B1 × · · · × Br of B into a product of simple
algebras Bi is unique up to the ordering of the factors (Farb and Dennis 1993, 1.13).
Therefore, ∗ permutes the set of Bi, and B is a product of semisimple algebras with
involution each of which is either (i) simple or (ii) the product of two simple algebras
interchanged by ∗.

Let (B, ∗) be as in (i). Then B is isomorphic to Mn(k) for some n, and the
Noether-Skolem theorem (CFT, 2.10) shows that b∗ = u·bt·u−1 for some u ∈Mn(k).
Then b = b∗∗ = (utu−1)−1b(utu−1) for all b ∈ B, and so utu−1 lies in the centre
k of Mn(k). Denote it by c, so that ut = cu. Then u = utt = c2u, and so c2 = 1.
Therefore, ut = ±u, and u is either symmetric or skew-symmetric. Relative to a
suitable basis, u is I or J , and so (B, ∗) is of type (C) or (BD).

Let (B, ∗) be as in (ii). Then ∗ is an isomorphism of the opposite of the first
factor onto the second. The Noether-Skolem theorem then shows that (B, ∗) is
isomorphic to Mn(k)×Mn(k)opp with the involution (a, b) �→ (b, a). Now use that
a↔ at : Mn(k)opp ∼= Mn(k) to see that (B, ∗) is of type (A). �

The following is a restatement of the proposition.

Proposition 8.4. Let (B, ∗) and k be as in (8.3). If the only elements of the
centre of B invariant under ∗ are those in k, then (B, ∗) is isomorphic to one of
the following:

(A): Endk(W )× Endk(W∨), (a, b)∗ = (bt, at);
(C): Endk(W ), b∗ the transpose of b with respect to a symmetric bilinear

form on W ;
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(BD): Endk(W ), b∗ the transpose of b with respect to an alternating bilinear
form on W .

Symplectic modules and the associated algebraic groups. Let (B, ∗) be
a semisimple k-algebra with involution ∗, and let (V, ψ) be a symplectic (B, ∗)-
module, i.e., a B-module V endowed with an alternating k-bilinear form ψ : V ×
V → k such that

(35) ψ(bu, v) = ψ(u, b∗v) for all b ∈ B, u, v ∈ V.

Let F be the centre of B, and let F0 be the subalgebra of invariants of ∗
in F . Assume that B and V are free over F and that for all k-homomorphisms
ρ : F0 → kal, (B⊗F0,ρ k

al, ∗) is of the same type (A), (C), or (BD). This will be the
case, for example, if F is a field. Let G be the subgroup of GL(V ) such that

G(Q) = {g ∈ AutB(V ) | ψ(gu, gv) = µ(g)ψ(u, v) some µ(g) ∈ k×},
and let

G′ = Ker(µ) ∩Ker(det).

Example 8.5. (Type A.) Let F be k × k or a field of degree 2 over k, and
let B = EndF (W ) equipped with the involution ∗ defined by a hermitian form15

φ : W ×W → F . Then (B, ∗) is of type A. Let V0 be an F -vector space, and let
ψ0 be a skew-hermitian form V0 × V0 → F . The bilinear form ψ on V = W ⊗F V0

defined by

(36) ψ(w ⊗ v, w′ ⊗ v′) = TrF/k(φ(w,w′)ψ0(v, v′))

is alternating and satisfies (35): (V, ψ) is a symplectic (B, ∗)-module. Let C =
EndB(V ) (the centralizer of B in EndF (V )). Then C is stable under the involution
∗ defined by ψ, and

G(k) = {c ∈ C× | cc∗ ∈ k×}(37)

G′(k) = {c ∈ C× | cc∗ = 1, det(c) = 1}.(38)

In fact, C ∼= EndF (V0) and ∗ is transposition with respect to ψ0. Therefore, G is
the group of symplectic similitudes of ψ0 whose multiplier lies in k, and G′ is the
special unitary group of ψ0.

Conversely, let (B, ∗) be of type A, and assume
(a) the centre F of B is of degree 2 over k (so F is a field or k × k);
(b) B is isomorphic to a matrix algebra over F (when F is a field, this just

means that B is simple and split over F ).
Then I claim that (B, ∗, V, ψ) arises as in the last paragraph. To see this, let W
be a simple B-module — condition (b) implies that B ∼= EndF (W ) and that ∗ is
defined by a hermitian form φ : W ×W → F . As a B-module, V is a direct sum of
copies of W , and so V = W ⊗F V0 for some F -vector space V0. Choose an element
f of F � k whose square is in k. Then f∗ = −f , and

ψ(v, v′) = TrF/k (fΨ(v, v′))

for a unique hermitian form Ψ: V ×V → F (Deligne 1982, 4.6), which has the prop-
erty that Ψ(bv, v′) = Ψ(v, b∗v′). The form (v, v′) �→ fΨ(v, v′) is skew-hermitian,

15There is a unique involution of F fixing k, which we again denote ∗. To say that φ is
hermitian means that it is F -linear in one variable and satisfies φ(w, v) = φ(v, w)∗.
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and can be16 written fΨ = φ⊗ψ0 with ψ0 skew-hermitian on V0. Now ψ, φ, ψ0 are
related by (36).

Example 8.6. (Type C.) Let B = Endk(W ) equipped with the involution ∗
defined by a symmetric bilinear form φ : W ×W → k. Let V0 be a k-vector space,
and let ψ0 be an alternating form V0×V0 → k. The bilinear form ψ on V = W ⊗V0

defined by
ψ(w ⊗ v, w′ ⊗ v′) = φ(w,w′)ψ0(v, v′)

is alternating and satisfies (35). Let C = EndB(V ). Then C is stable under the
involution ∗ defined by ψ, and G(k) and G′(k) are described by the equations
(37) and (38). In fact, C ∼= Endk(V0) and ∗ is transposition with respect to ψ0.
Therefore G = GSp(V0, ψ0) and G′ = Sp(V0, ψ0). Every system (B, ∗, V, ψ) with B
simple and split over k arises in this way (cf. 8.5).

Proposition 8.7. For (B, ∗) of type A or C, the group G is reductive (in
particular, connected), and G′ is semisimple and simply connected.

Proof. It suffices to prove this after extending the scalars to the algebraic
closure of k. Then (B, ∗, V, ψ) decomposes into quadruples of the types considered
in Examples 8.5 and 8.6, and so the proposition follows from the calculations made
there. �

Remark 8.8. Assume B is simple, and let m be the reduced dimension of
V ,

m =
dimF (V )
[B : F ]

1
2
.

In case (A), G′
Qal ≈ (SLm)[F0:Q] and in case (C), G′

Qal ≈ (Spm)[F0:Q].

Remark 8.9. In case (BD), the group G is not connected (G′ is a special
orthogonal group) although its identity component is reductive.

Algebras with positive involution. Let C be a semisimple R-algebra with
an involution ∗, and let V be a C-module. In the next proposition, by a hermitian
form on V we mean a symmetric bilinear form ψ : V ×V → R satisfying (35). Such
a form is said to be positive definite if ψ(v, v) > 0 for all nonzero v ∈ V .

Proposition 8.10. Let C be a semisimple algebra over R. The following con-
ditions on an involution ∗ of C are equivalent:

(a) some faithful C-module admits a positive definite hermitian form;
(b) every C-module admits a positive definite hermitian form;
(c) TrC/R(c∗c) > 0 for all nonzero c ∈ C.

Proof. (a) =⇒ (b). Let V be a faithful C-module. Then every C-module is
a direct summand of a direct sum of copies of V (see p323). Hence, if V carries a
positive definite hermitian form, then so does every C-module.

(b) =⇒ (c). Let V be a C-module with a positive definite hermitian form ( | ),
and choose an orthonormal basis e1, . . . , en for V . Then

TrR(c∗c|V ) =
∑

i(ei|c∗cei) =
∑

i(cei|cei),

16Probably the easiest way to prove things like this is use the correspondence between invo-
lutions on algebras and (skew-)hermitian forms (up to scalars) — see Knus et al. 1998, I 4.2. The

involution on EndF (V ) defined by ψ stabilizes C and corresponds to a skew-hermitian form on
V0.
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which is > 0 unless c acts as the zero map on V . On applying this remark with
V = C, we obtain (c).

(c) =⇒ (a). The condition (c) is that the hermitian form (c, c′) �→ TrC/R(c∗c′)
on C is positive definite. �

Definition 8.11. An involution satisfying the equivalent conditions of (8.10)
is said to be positive.

Proposition 8.12. Let B be a semisimple R-algebra with a positive involution
∗ of type A or C. Let (V, ψ) be a symplectic (B, ∗)-module, and let C be the
centralizer of B in EndR(V ). Then there exists a homomorphism of R-algebras
h : C → C, unique up to conjugation by an element c of C× with cc∗ = 1, such that

◦ h(z) = h(z)∗ and
◦ u, v �→ ψ(u, h(i)v) is positive definite and symmetric.

Proof. To give an h satisfying the conditions amounts to giving an element
J (= h(i)) of C such that

(39) J2 = −1, ψ(Ju, Jv) = ψ(u, v), ψ(v, Jv) > 0 if v �= 0.

Suppose first that (B, ∗) is of type A. Then (B, ∗, V, ψ) decomposes into systems
arising as in (8.5). Thus, we may suppose B = EndF (W ), V = W ⊗ V0, etc., as
in (8.5). We then have to classify the J ∈ C ∼= EndC(V0) satisfying (39) with ψ
replaced by ψ0. There exists a basis (ej) for V0 such that

(ψ0(ej , ek))j,k = diag(i, . . . , i
r
,−i, . . . ,−i), i =

√
−1.

Define J by J(ej) = −ψ0(ej , ej)ej . Then J satisfies the required conditions, and
it is uniquely determined up to conjugation by an element of the unitary group of
ψ0. This proves the result for type A, and type C is similar. (For more details, see
Zink 1983, 3.1). �

Remark 8.13. Let (B, ∗) and (V, ψ) be as in the proposition. For an h satis-
fying the conditions of the proposition, define

t(b) = TrC(b|V/F 0
hV ), b ∈ B.

Then, t is independent of the choice of h, and in fact depends only on the iso-
morphism class of (V, ψ) as a B-module. Conversely, (V, ψ) is determined up to
B-isomorphism by its dimension and t. For example, if V = W ⊗C V0, φ, ψ0, etc.
are as in the above proof, then

Trk(b|V ) = r · Trk(b|W ),

and r and dimV0 determine (V0, ψ0) up to isomorphism. Since W and φ are deter-
mined (up to isomorphism) by the requirement that W be a simple B-module and
φ be a hermitian form giving ∗ on B, this proves the claim for type A.

PEL data. Let B be a simple Q-algebra with a positive involution ∗ (meaning
that it becomes positive on B ⊗Q R), and let (V, ψ) be a symplectic (B, ∗)-module.
Throughout this subsection, we assume that (B, ∗) is of type A or C.

Proposition 8.14. There is a unique G(R)-conjugacy class X of homomor-
phisms h : S → GR such that each h ∈ X defines a complex structure on V (R) that
is positive or negative for ψ. The pair (G,X) satisfies the conditions SV1–4.
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Proof. The first statement is an immediate consequence of (8.12). The com-
posite of h with G ↪→ G(ψ) lies in X(ψ), and therefore satisfies SV1, SV2, SV4. As
h is nontrivial, SV3 follows from the fact that Gad is simple. �

Definition 8.15. The Shimura data arising in this way are called simple PEL
data of type A or C.

The simple refers to the fact that (for simplicity), we required B to be simple
(which implies that Gad is simple).

Remark 8.16. Let b ∈ B, and let tb be the tensor (x, y) �→ ψ(x, by) of V . An
element g of G(ψ) fixes tb if and only if it commutes with b. Let b1, . . . , bs be a set
of generators for B as a Q-algebra. Then (G,X) is the Shimura datum of hodge
type associated with the system (V, {ψ, tb1 , . . . , tbs

}).

PEL Shimura varieties.

Theorem 8.17. Let (G,X) be a simple PEL datum of type A or C associated
with (B, ∗, V, ψ) as in the last subsection, and let K be a compact open subgroup
of G(Af ). Then ShK(G,X)(C) classifies the isomorphism classes of quadruples
(A, s, i, ηK) in which

◦ A is a complex abelian variety,
◦ ±s is a polarization of the hodge structure H1(A,Q),
◦ i is a homomorphism B → End(A)⊗Q, and
◦ ηK is a K-orbit of B⊗Af -linear isomorphisms η : V (Af ) → H1(A,Q)⊗Af

sending ψ to an A×
f -multiple of s,

satisfying the following condition:
(**) there exists a B-linear isomorphism a : H1(A,Q) → V send-
ing s to a Q×-multiple of ψ.

Proof. In view of the dictionary b↔ tb between endomorphisms and tensors
(8.16), Theorem 7.4 shows that ShK(G,X)(C) classifies the quadruples (A, i, t, ηK)
with the additional condition that ah ∈ X, but ah defines a complex structure on
V (R) that is positive or negative for ψ, and so (8.14) shows that ah automatically
lies in X. �

Let (G,X) be the Shimura datum arising from (B, ∗) and (V, ψ). For h ∈ X,
we have a trace map

b �→ Tr(b|V (C)/F 0
h) : B → C.

Since this map is independent of the choice of h in X, we denote it by TrX .

Remark 8.18. Consider a triple (A, s, i, ηK) as in the theorem. The existence
of the isomorphism a in (**) implies that

(a) s(bu, v) = s(u, b∗v), and
(b) Tr(i(b)|Tgt0A) = TrX(b) for all b ∈ B ⊗ C.

The first is obvious, because ψ has this property, and the second follows from the
B-isomorphisms

Tgt0(A)
(34)∼= H1(A,C)/F 0 a−→ V (C)/F 0

h .

We now divide the type A in two, depending on whether the reduced dimension
of V is even or odd.
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Proposition 8.19. For types Aeven and C, the condition (**) of Theorem 8.17
is implied by conditions (a) and (b) of (8.18).

Proof. Let W = H1(A,Q). We have to show that there exists a B-linear
isomorphism α : W → V sending s to a Q×-multiple of ψ. The existence of η shows
that W has the same dimension as V , and so there exists a B ⊗Q Qal-isomorphism
α : V (Qal) →W (Qal) sending t to a Qal×-multiple of ψ. For σ ∈ Gal(Qal/Q) write
σα = α ◦ aσ with aσ ∈ G(Qal). Then σ �→ aσ is a one-cocycle. If its class in
H1(Q, G) is trivial, say, aσ = a−1 · σa, then α ◦ a−1 is fixed by all σ ∈ Gal(Qal/Q),
and is therefore defined over Q.

Thus, it remains to show that the class of (aσ) in H1(Q, G) is trivial. The
existence of η shows that the image of the class in H1(Q�, G) is trivial for all finite
primes �, and (8.13) shows that its image in H1(R, G) is trivial, and so the statement
follows from the next two lemmas. �

Lemma 8.20. Let G be a reductive group with simply connected derived group,
and let T = G/Gder. If H1(Q, T ) →

∏
l≤∞ H1(Ql, T ) is injective, then an element

of H1(Q, G) that becomes trivial in H1(Ql, G) for all l is itself trivial.

Proof. Because Gder is simply connected, H1(Ql, G
der) = 0 for l �= ∞ and

H1(Q, Gder) → H1(R, Gder) is injective (5.19). Using this, we obtain a commutative
diagram with exact rows

T (Q) −−−→ H1(Q, Gder) −−−→ H1(Q, G) −−−→ H1(Q, T ); injective

; ; injective

;
G(R)−−−→ T (R) −−−→ H1(R, Gder) →

∏
lH

1(Ql, G) −−−→
∏

lH
1(Ql, T ).

If an element c of H1(Q, G) becomes trivial in all H1(Ql, G), then a diagram
chase shows that it arises from an element c′ of H1(Q, Gder) whose image c′∞
in H1(R, Gder) maps to the trivial element in H1(R, G). The image of G(R) in
T (R) contains T (R)+ (see 5.1), and the real approximation theorem (5.4) shows
that T (Q) · T (R)+ = T (R). Therefore, there exists a t ∈ T (Q) whose image in
H1(R, Gder) is c′∞. Then t �→ c′ in H1(Q, Gder), which shows that c is trivial. �

Lemma 8.21. Let (G,X) be a simple PEL Shimura datum of type Aeven or C,
and let T = G/Gder. Then H1(Q, T ) →

∏
l≤∞ H1(Ql, T ) is injective.

Proof. For G of type Aeven, T = Ker((Gm)F

NmF/k−→ (Gm)F0) × Gm. The
group H1(Q,Gm) = 0, and the map on H1’s of the first factor is

F×
0 /NmF× →

∏
vF

×
0v/NmF×

v .

This is injective (CFT, VIII 1.4).
For G of type C, T = Gm, and so H1(Q, T ) = 0. �

PEL modular varieties. Let B be a semisimple algebra over Q with a posi-
tive involution ∗, and let (V, ψ) be a symplectic (B, ∗)-module. Let K be a compact
open subgroup of G(Af ). There exists an algebraic variety MK over C classifying
the isomorphism classes of quadruples (A, s, i, ηK) satisfying (a) and (b) of (8.18)
(but not necessarily condition (**)), which is called the PEL modular variety
attached to (B, ∗, V, ψ). In the simple cases (Aeven) and (C), Proposition 8.17
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shows that MK coincides with ShK(G,X), but in general it is a finite disjoint union
of Shimura varieties.

Notes. The theory of Shimura varieties of PEL-type is worked out in detail in
several papers of Shimura, for example, Shimura 1963, but in a language somewhat
different from ours. The above account follows Deligne 1971c, §§5,6. See also
Zink 1983 and Kottwitz 1992, §§1–4.

9. General Shimura varieties

Abelian motives. Let Hod(Q) be the category of polarizable rational hodge
structures. It is an abelian subcategory of the category of all rational hodge struc-
tures closed under the formation of tensor products and duals.

Let V be a variety over C whose connected components are abelian varieties,
say V =

⊔
Vi with Vi an abelian variety. Recall that for manifolds M1 and M2,

Hr(M1 $M2,Q) ∼= Hr(M1,Q)⊕Hr(M2,Q).

For each connected component V ◦ of V ,

H∗(V ◦,Q) ∼=
∧
H1(V ◦,Q) ∼= HomQ(

∧
H1(V ◦,Q),Q)

(see 6.4). Therefore, H∗(V,Q) acquires a polarizable hodge structure from that on
H1(V,Q). We write H∗(V,Q)(m) for the hodge structure H∗(V,Q) ⊗ Q(m) (see
2.6).

Let (W,h) be a rational hodge structure. An endomorphism e of (W,h) is an
idempotent if e2 = e. Then

(W,h) = Im(e)⊕ Im(1− e)

(direct sum of rational hodge structures).
An abelian motive over C is a triple (V, e,m) in which V is a variety over

C whose connected components are abelian varieties, e is an idempotent in
End(H∗(V,Q)), and m ∈ Z. For example, let A be an abelian variety; then the
projection

H∗(A,Q) → Hi(A,Q) ⊂ H∗(A,Q)

is an idempotent ei, and we denote (A, ei, 0) by hi(A).
Define Hom((V, e,m), (V ′, e′,m′)) to be the set of maps H∗(V,Q) → H∗(V ′,Q)

of the form e′ ◦ f ◦ e with f a homomorphism H∗(V,Q) → H∗(V ′,Q) of degree
d = m′ −m. Moreover, define

(V, e,m)⊕ (V ′, e′,m) = (V $ V ′, e⊕ e′,m)

(V, e,m)⊗ (V ′, e′,m) = (V × V ′, e⊗ e′,m + m′)

(V, e,m)∨ = (V, et, d−m) if V is purely d-dimensional.

For an abelian motive (V, e,m) over C, let H(V, e,m) = eH∗(V,Q)(m). Then
(V, e,m) �→ H(V, e,m) is a functor from the category of abelian motives AM to
Hod(Q) commuting with ⊕, ⊗, and ∨. We say that a rational hodge structure
is abelian if it is in the essential image of this functor, i.e., if it is isomorphic
to H(V, e,m) for some abelian motive (V, e,m). Every abelian hodge structure is
polarizable.
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Proposition 9.1. Let Hodab(Q) be the full subcategory of Hod(Q) of abelian
hodge structures. Then Hodab(Q) is the smallest strictly full subcategory of Hod(Q)
containing H1(A,Q) for each abelian variety A and closed under the formation of di-
rect sums, subquotients, duals, and tensor products; moreover, H : AM → Hodab(Q)
is an equivalence of categories.

Proof. Straightforward from the definitions. �

For a description of the essential image of H, see Milne 1994, 1.27.

Shimura varieties of abelian type. Recall (§6) that a symplectic space
(V, ψ) over Q defines a connected Shimura datum (S(ψ), X(ψ)+) with S(ψ) = Sp(ψ)
and X(ψ)+ the set of complex structures on V (R), ψ).

Definition 9.2. (a) A connected Shimura datum (H,X+) with H simple is of
primitive abelian type if there exists a symplectic space (V, ψ) and an injective
homomorphism H → S(ψ) carrying X+ into X(ψ)+.

(b) A connected Shimura datum (H,X+) is of abelian type if there exist pairs
(Hi, X

+
i ) of primitive abelian type and an isogeny

∏
i Hi → H carrying

∏
i X

+
i into

X.
(b) A Shimura datum (G,X) is of abelian type if (Gder, X+) is of abelian

type.
(c) The (connected) Shimura variety attached to a (connected) Shimura datum

of abelian type is said to be of abelian type.

Proposition 9.3. Let (G,X) be a Shimura datum, and assume
(a) the weight wX is rational SV4 and Z(G)◦ splits over a CM-field SV6, and
(b) there exists a homomorphism ν : G→ Gm such that ν ◦ wX = −2.

If G is of abelian type, then (V, h ◦ ρ) is an abelian hodge structure for all represen-
tations (V, ρ) of G and all h ∈ X; conversely, if there exists a faithful representation
ρ of G such that (V, h ◦ ρ) is an abelian hodge structure for all h, then (G,X) is of
abelian type.

Proof. See Milne 1994, 3.12. �

Let (G,X) be a Shimura datum of abelian type satisfying (a) and (b) of the
proposition, and let ρ : G→ GL(V ) be a faithful representation of G. Assume that
there exists a pairing ψ : V × V → Q such that

(a) gψ = ν(g)mψ for all g ∈ G,
(b) ψ is a polarization of (V, h ◦ ρ) for all h ∈ X.

There exist multilinear maps ti : V × · · · × V → Q(ri), 1 ≤ i ≤ n, such that G is
the subgroup of GL(V ) whose elements satisfy (a) and fix t1, . . . tn (cf. 7.2).

Theorem 9.4. With the above notations, Sh(G,X) classifies the isomorphism
classes of triples (A, (si)0≤i≤n, ηK) in which

◦ A is an abelian motive,
◦ ±s0 is a polarization for the rational hodge structure H(A),
◦ s1, . . . , sn are tensors for A, and
◦ ηK is a K-orbit of Af -linear isomorphisms V (Af ) → Vf (A) sending ψ to

an A×
f -multiple of s0 and each ti to si,

satisfying the following condition:
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(**) there exists an isomorphism a : H(A) → V sending s0 to a
Q×-multiple of ψ, each si to ti, and h onto an element of X.

Proof. With A replaced by a hodge structure, this can be proved by an ele-
mentary argument (cf. 6.3, 7.3), but (9.3) shows that the hodge structures arising
are abelian, and so can be replaced by abelian motives (9.1). For more details, see
Milne 1994, Theorem 3.31. �

Classification of Shimura varieties of abelian type. Deligne (1979) clas-
sifies the connected Shimura data of abelian type. Let (G,X+) be a connected
Shimura datum with G simple. If Gad is of type A, B, or C, then (G,X+) is of
abelian type. If Gad is of type E6 or E7, then (G,X+) is not of abelian type. If Gad

is of type D, (G,X+) may or may not be of abelian type. There are two problems
that may arise.

(a) Let G be the universal covering group of Gad. There may exist homomor-
phisms (G,X+) → (S(ψ), X(ψ)+) but no injective such homomorphism, i.e., there
may be a nonzero finite algebraic subgroup N ⊂ G that is in the kernel of all ho-
momorphisms G→ S(ψ) sending X+ into X(ψ)+. Then (G/N ′, X+) is of abelian
type for all N ′ ⊃ N , but (G,X+) is not of abelian type.

(b) There may not exist a homomorphism G→ S(ψ) at all.
This last problem arises for the following reason. Even when Gad is Q-simple, it
may decompose into a product of simple group G

ad

R = G1 × · · · × Gr over R. For
each i, Gi has a dynkin diagram of the shape shown below:

�

�����
αn−1

Dn(1):� ◦ · · · ◦ (n ≥ 4)
α1 α2 αn−2

					�
αn

◦
�����

αn−1
Dn(n): � ◦ · · · ◦ (n ≥ 4)

α1 α2 αn−2

					�
αn

Dn(n− 1): Same as Dn(n) by with αn−1 and αn interchanged (rotation about the
horizontal axis).

Nodes marked by squares are special (p278), and nodes marked by stars cor-
respond to symplectic representations. The number in parenthesis indicates the
position of the special node. As is explained in §1, the projection of X+ to a con-
jugacy class of homomorphisms S → Gi corresponds to a node marked with a �.
Since X+ is defined over R, the nodes can be chosen independently for each i. On
the other hand, the representations GiR → S(ψ)R correspond to nodes marked with
a ∗. Note that the ∗ has to be at the opposite end of the diagram from the �. In
order for a family of representations GiR → S(ψ)R, 1 ≤ i ≤ r, to arise from a sym-
plectic representation over Q, the ∗’s must be all in the same position since a galois
group must permute the dynkin diagrams of the Gi. Clearly, this is impossible if
the �’s occur at different ends. (See Deligne 1979, 2.3, for more details.)
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Shimura varieties not of abelian type. It is hoped (Deligne 1979, p248)
that all Shimura varieties with rational weight classify isomorphism classes of mo-
tives with additional structure, but this is not known for those not of abelian type.
More precisely, from the choice of a rational representation ρ : G → GL(V ), we
obtain a family of hodge structures h ◦ ρR on V indexed by X. When the weight of
(G,X) is defined over Q, it is hoped that these hodge structures always occur (in a
natural way) in the cohomology of algebraic varieties. When the weight of (G,X)
is not defined over Q they obviously can not.

Example: simple Shimura varieties of type A1. Let (G,X) be the Shimura
datum attached to a B be a quaternion algebra over a totally real field F , as in
(5.24). With the notations of that example,

G(R) ≈
∏

v∈Ic
H× ×

∏
v∈Inc

GL2(R).

(a) If B = M2(F ), then (G,X) is of PEL-type, and ShK(G,X) classifies iso-
morphism classes of quadruples (A, i, t, ηK) in which A is an abelian variety of di-
mension d = [F : Q] and i is a homomorphism homomorphism i : F → End(A)⊗Q.
These Shimura varieties are called Hilbert (or Hilbert-Blumenthal) varieties,
and whole books have been written about them.

(b) If B is a division algebra, but Ic = ∅, then (G,X) is again of PEL-type, and
ShK(G,X) classifies isomorphism classes of quadruples (A, i, t, ηK) in which A is an
abelian variety of dimension 2[F : Q] and i is a homomorphism i : B → End(A)⊗Q.
In this case, the varieties are projective. These varieties have also been extensively
studied.

(c) If B is a division algebra and Ic �= ∅, then (G,X) is of abelian type, but
the weight is not defined over Q. Over R, the weight map wX sends a ∈ R to the
element of (F⊗R)× ∼=

∏
v : F→RR with component 1 for v ∈ Ic and component a for

v ∈ Inc. Let T be the torus over Q with T (Q) = F×. Then wX : Gm → TR is defined
over the subfield L of Q whose fixed group is the subgroup of Gal(Q/Q) stabilizing
Ic ⊂ Ic $ Inc. On choosing a rational representation of G, we find that ShK(G,X)
classifies certain isomorphism classes of hodge structures with additional structure,
but the hodge structures are not motivic — they do not arise in the cohomology of
algebraic varieties (they are not rational hodge structures).

10. Complex multiplication: the Shimura-Taniyama formula

Where we are headed. Let V be a variety over Q. For any σ ∈ Gal(Qal/Q)
and P ∈ V (Qal), the point σP ∈ V (Qal). For example, if V is the subvariety of An

defined by equations

f(X1, . . . , Xn) = 0, f ∈ Q[X1, . . . , Xn],

then
f(a1, . . . , an) = 0 =⇒ f(σa1, . . . , σan) = 0

(apply σ to the first equality). Therefore, if we have a variety V over Qal that we
suspect is actually defined over Q, then we should be able to describe an action of
Gal(Qal/Q) on its points V (Qal).

Let E be a number field contained in C, and let Aut(C/E) denote the group of
automorphisms of C (as an abstract field) fixing the elements of E. Then a similar
remark applies: if a variety V over C is defined by equations with coefficients in
E, then Aut(C/E) will act on V (C). Now, I claim that all Shimura varieties are
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defined (in a natural way) over specific number fields, and so I should be able to
describe an action of a big subgroup of Aut(C/Q) on their points. If, for example,
the Shimura variety is of hodge type, then there is a set MK whose elements are
abelian varieties plus additional data and a map

(A, . . .) �→ P (A, . . .) : MK → ShK(G,X)(C)

whose fibres are the isomorphism classes in MK . On applying σ ∈ Aut(C/Q) to the
coefficients of the polynomials defining A, . . ., we get a new triple (σA, . . .) which
may or may not lie in MK . When it does we define σP (A, . . .) to be P (σA, . . .).
Our task will be to show that, for some specific field E, this does give an action of
Aut(C/E) on ShK(G,X) and that the action does arise from a model of ShK(G,X)
over E.

For example, for P ∈ Γ(1)\H1, σP is the point such that j(σP ) = σ (j(P )). If j
were a polynomial with coefficients in Z (rather than a power series with coefficients
in Z), we would have j(σP ) = σj(P ) with the obvious meaning of σP , but this is
definitely false (if σ is not complex conjugation, then it is not continuous, nor even
measurable).

You may complain that we fail to explicitly describe the action of Aut(C/E) on
Sh(G,X)(C), but I contend that there can not exist a completely explicit description
of the action. What are the elements of Aut(C/E)? To construct them, we can
choose a transcendence basis B for C over E, choose a permutation of the elements
of B, and extend the resulting automorphism of Q(B) to its algebraic closure C.
But proving the existence of transcendence bases requires the axiom of choice (e.g.,
FT, 8.13), and so we can have no explicit description of, or way of naming, the
elements of Aut(C/E), and hence no completely explicit description of the action
is possible.

However, all is not lost. Abelian class field theory names the elements of
Gal(Eab/E), where Eab is a maximal abelian extension of E. Thus, if we sus-
pect that a point P has coordinates in Eab, the action of Aut(C/E) on it will
factor through Gal(Eab/E), and we may hope to be able to describe the action of
Aut(C/E) explicitly. This the theory of complex multiplication allows us to do for
certain special points P .

Review of abelian varieties. The theory of abelian varieties is very similar
to that of elliptic curves — just replace E with A, 1 with g (the dimension of A),
and, whenever E occurs twice, replace one copy with the dual A∨ of A.

Thus, for any m not divisible by the characteristic of the ground field k,

(40) A(kal)m ≈ (Z/mZ)2g.

Here A(kal)m consists of the elements of A(kal) killed by m. Hence, for � �= char(k),

T�A
df= lim←−A(kal)�n

is a free Z�-module of rank 2g, and

V�(A) df= T�A⊗Z�
Q�

is a Q�-vector space of dimension 2g. In characteristic zero, we set

TfA =
∏
T�A = lim←−

m

A(kal)m,

VfA = Tf ⊗Z Q =
∏

(V�A : T�A) (restricted topological product).
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They are, respectively, a free Ẑ-module of rank 2g and a free Af -module of rank
2g. The galois group Gal(kal/k) acts continuously on these modules.

For an endomorphism a of an abelian variety A, there is a unique monic poly-
nomial Pa(T ) with integer coefficients (the characteristic polynomial of a) such
that |Pa(n)| = deg(a− n) for all n ∈ Z. Moreover, Pa is the characteristic polyno-
mial of a acting on V�A (� �= char(k)).

For an abelian variety A over a field k, the tangent space Tgt0(A) to A at 0 is a
vector space over k of dimension g. As we noted in §6, when k = C, the exponential
map defines a surjective homomorphism Tgt0(A) → A(C) whose kernel is a lattice
Λ in Tgt0(A). Thus A(C)m

∼= 1
mΛ/Λ ∼= Λ/mΛ, and

(41) T�A ∼= Λ⊗Z Z�, V�A ∼= Λ⊗Z Q�, TfA = Λ⊗Z Ẑ, VfA = Λ⊗Z Af .

An endomorphism a of A defines a C-linear endomorphism (da)0 = α of Tgt0(A)
such that α(Λ) ⊂ Λ (see 6.5), and Pa(T ) is the characteristic polynomial of α on
Λ.

For abelian varieties A,B, Hom(A,B) is a torsion free Z-module of finite rank.
We let AV(k) denote the category of abelian varieties and homomorphisms over k
and AV0(k) the category with the same objects but with

HomAV0(k)(A,B) = Hom0(A,B) = HomAV(k)(A,B)⊗Q.

An isogeny of abelian varieties is a surjective homomorphism with finite kernel.
A homomorphism of abelian varieties is an isogeny if and only if it becomes an
isomorphism in the category AV0. Two abelian varieties are said to be isogenous
if there is an isogeny from one to the other — this is an equivalence relation.

An abelian variety A over a field k is simple if it contains no nonzero proper
abelian subvariety. Every abelian variety is isogenous to a product of simple abelian
varieties. If A and B are simple, then every nonzero homomorphism from A to B
is an isogeny. It follows that End0(A) is a division algebra when A is simple and a
semisimple algebra in general.

Notes. For a detailed account of abelian varieties over algebraically closed
fields, see Mumford 1970, and for a summary over arbitrary fields, see Milne 1986.

CM fields. A number field E is a CM (or complex multiplication) field
if it is a quadratic totally imaginary extension of a totally real field F . Let a �→ a∗

denote the nontrivial automorphism of E fixing F . Then ρ(a∗) = ρ(a) for every
ρ : E ↪→ C. We have the following picture:

(42)
E ⊗Q R ≈ C× · · · × C

| |
F ⊗Q R ≈ R× · · · × R

The involution ∗ is positive (in the sense of 8.11), because we can compute
TrE⊗QR/F⊗QR(b∗b) on each factor on the right, where it becomes TrC/R(zz) =
2|z|2 > 0. Thus, we are in the PEL situation considered in §8.

Let E be a CM-field with largest real subfield F . Each embedding of F into R
will extend to two conjugate embeddings of E into C. A CM-type Φ for E is a
choice of one element from each conjugate pair {ϕ, ϕ}. In other words, it is a subset
Φ ⊂ Hom(E,C) such that

Hom(E,C) = Φ $ Φ (disjoint union, Φ = {ϕ | ϕ ∈ Φ}).
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Because E is quadratic over F , E = F [α] with α a root of a polynomial
X2 + aX + b. On completing the square, we obtain an α such that α2 ∈ F×. Then
α∗ = −α. Such an element α of E is said to be totally imaginary (its image in
C under every embedding is purely imaginary).

Abelian varieties of CM-type. Let E be a CM-field of degree 2g over Q.
Let A be an abelian variety of dimension g over C, and let i be a homomorphism
E → End0(A). If

(43) Tr(i(a) | Tgt0(A)) =
∑

ϕ∈Φϕ(a), all a ∈ E,

for some CM-type Φ of E, then (A, i) is said to be of CM-type (E,Φ).

Remark 10.1. (a) In fact, (A, i) will always be of CM-type for some Φ. Recall
(p319) that A(C) ∼= Tgt0(A)/Λ with Λ a lattice in Tgt0(A) (so Λ⊗R ∼= Tgt0(A)).
Moreover,

Λ⊗Q ∼= H1(A,Q)

Λ⊗ R ∼= H1(A,R),∼= Tgt0(A)

Λ⊗ C = H1(A,C) ∼= H−1,0 ⊕H0,−1 ∼= Tgt0(A)⊕ Tgt0(A).

Now H1(A,Q) is a one-dimensional vector space over E, so H1(A,C) ∼=
⊕

ϕ : E→CCϕ

where Cϕ denotes a 1-dimensional vector space with E acting through ϕ. If ϕ

occurs in Tgt0(A), then ϕ occurs in Tgt0(A), and so Tgt0(A) ∼=
⊕

ϕ∈ΦCϕ with Φ
a CM-type for E.

(b) A field E of degree 2g over Q acting on a complex abelian variety A of
dimension g need not be be CM unless A is simple.

Let Φ be a CM-type on E, and let CΦ be a direct sum of copies of C indexed
by Φ. Denote by Φ again the homomorphism OE → CΦ, a �→ (ϕa)ϕ∈Φ.

Proposition 10.2. The image Φ(OE) of OE in CΦ is a lattice, and the quotient
CΦ/Φ(OE) is an abelian variety AΦ of CM-type (E,Φ) for the natural homomor-
phism iΦ : E → End0(AΦ). Any other pair (A, i) of CM-type (E,Φ) is E-isogenous
to (AΦ, iΦ).

Proof. We have

OE ⊗Z R ∼= OE ⊗Z Q⊗Q R ∼= E ⊗Q R
e⊗r �→(...,r·ϕe,...)−−−−−−−−−−−→∼=

CΦ,

and so Φ(OE) is a lattice in CΦ.
To show that the quotient is an abelian variety, we have to exhibit a riemann

form (6.7). Let α be a totally imaginary element of E. The weak approximation
theorem allows us to choose α so that �(ϕα) > 0 for ϕ ∈ Φ, and we can multiply
it by an integer (in N) to make it an algebraic integer. Define

ψ(u, v) = TrE/Q(αuv∗), u, v ∈ OE .

Then ψ(u, v) ∈ Z. The remaining properties can be checked on the right of (42).
Here ψ takes the form ψ =

∑
ϕ∈Φψϕ, where

ψϕ(u, v) = TrC/R(αϕ · u · v), αϕ = ϕ(α), u, v ∈ C.

Because α is totally imaginary,

ψϕ(u, v) = αϕ(uv − uv) ∈ R,
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from which it follows that ψϕ(u, u) = 0, ψϕ(iu, iv) = ψϕ(u, v), and ψϕ(u, iu) > 0
for u �= 0. Thus, ψ is a riemann form and AΦ is an abelian variety.

An element α ∈ OE acts on CΦ as muliplication by Φ(α). This preserves
Φ(OE), and so defines a homomorphism OE → End(AΦ). On tensoring this with
Q, we obtain the homomorphism iΦ. The map CΦ → CΦ/Φ(OE) defines an isomor-
phism CΦ = Tgt0(CΦ) → Tgt0(AΦ) compatible with the actions of E. Therefore,
(AΦ, iΦ) is of CM-type (E,Φ).

Finally, let (A, i) be of CM-type (E,Φ). The condition (43) means that Tgt0(A)
is isomorphic to CΦ as an E ⊗Q C-module. Therefore, A(C) is a quotient of CΦ by
a lattice Λ such that QΛ is stable under the action of E on CΦ given by Φ (see 6.7
et seq.). This implies that QΛ = Φ(E), and so Λ = Φ(Λ′) where Λ′ is a lattice in
E. Now, NΛ′ ⊂ OE for some N , and we have E-isogenies

CΦ/Λ N→ CΦ/NΛ ← CΦ/Φ(OE). �

Proposition 10.3. Let (A, i) be an abelian variety of CM-type (E,Φ) over C.
Then (A, i) has a model over Qal, uniquely determined up to isomorphism.

Proof. Let k ⊂ Ω be algebraically closed fields of characteristic zero. For
an abelian variety A over k, the torsion points in A(k) are zariski dense, and the
map on torsion points A(k)tors → A(Ω)tors is bijective (see (40)), and so every
regular map AΩ → WΩ (W a variety over k) is fixed by the automorphisms of
Ω/k and is therefore defined over k (AG 16.9; see also 13.1 below). It follows that
A �→ AΩ : AV(k) → AV(Ω) is fully faithful.

It remains to show that every abelian variety (A, i) of CM-type over C arises
from a pair over Qal. The polynomials defining A and i have coefficients in some
subring R of C that is finitely generated over Qal. According to the Hilbert Null-
stellensatz, a maximal ideal m of R will have residue field Qal, and the reduction
of (A, i) mod m is called a specialization of (A, i). Any specialization (A′, i′) of
(A, i) to a pair over Qal with A′ nonsingular will still be of CM-type (E,Φ), and
therefore (see 10.2) there exists an isogeny (A′, i′)C → (A, i). The kernel H of this
isogeny is a subgroup of A′(C)tors = A′(Qal)tors, and (A′/H, i) will be a model of
(A, i) over Qal. �

Remark 10.4. The proposition implies that, in order for an elliptic curve A
over C to be of CM-type, its j-invariant must be algebraic.

Let A be an abelian variety of dimension g over a subfield k of C, and let i : E →
End0(A) be a homomorphism with E a CM-field of degree 2g. Then Tgt0(A) is a
k-vector space of dimension g on which E acts k-linearly, and, provided k is large
enough to contain all conjugates of E, it will decompose into one-dimensional k-
subspaces indexed by a subset Φ of Hom(E, k). When we identify Φ with a subset of
Hom(E,C), it becomes a CM-type, and we again say (A, i) is of CM-type (E,Φ).

Let A be an abelian variety over a number field K. We say that A has good
reduction at P if it extends to an abelian scheme over OK,P, i.e., a smooth proper
scheme over OK,P with a group structure. In down-to-earth terms this means the
following: embed A as a closed subvariety of some projective space Pn

K ; for each
polynomial P (X0, . . . , Xn) in the homogeneous ideal a defining A ⊂ Pn

K , multiply
P by an element of K so that it (just) lies in OK,P[X0, . . . , Xn] and let P denote the
reduction of P modulo P; the P ’s obtained in this fashion generate a homogeneous
a ideal in k[X0, . . . , Xn] where k = OK/P; the abelian variety A has good reduction
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at P if it is possible to choose the projective embedding of A so that the zero set of
a is an abelian variety A over k. Then A is called the reduction of A at P. It can
be shown that, up to a canonical isomorphism, A is independent of all choices. For
� �= char(k), V�(A) ∼= V�(A). There is an injective homorphism End(A) → End(A)
compatible with V�(A) ∼= V�(A) (both are reduction maps).

Proposition 10.5. Let (A, i) be an abelian variety of CM-type (E,Φ) over
a number field K ⊂ C, and let P be a prime ideal in OK . Then, after possibly
replacing K by a finite extension, A will have good reduction at P.

Proof. We use the Néron (alias, Ogg-Shafarevich) criterion (Serre and Tate
1968, Theorem 1):

an abelian variety over a number field K has good reduction at
P if for some prime � �= char(OK/P), the inertia group I at P

acts trivially on T�A.
In our case, V�A is a free E ⊗Q Q�-module of rank 1 because H1(AC,Q) is a one-
dimensional vector space over E and V�A ∼= H1(AC,Q)⊗Q� (see (41)). Therefore,
E⊗Q Q� is its own centralizer in EndQ�

(V�A) and the representation of Gal(Qal/Q)
on V�A has image in (E⊗Q�)×, and, in fact, in a compact subgroup of (E⊗Q�)×.
But such a subgroup will have a pro-� subgroup of finite index. Since I has a pro-p
subgroup of finite index (ANT, 7.5), this shows that image of I is finite. After K
has been replaced by a finite extension, the image of I will be trivial, and Néron’s
criterion applies. �

Abelian varieties over a finite field. Let F be an algebraic closure of the
field Fp of p-elements, and let Fq be the subfield of F with q = pm elements. An
element a of F lies in Fq if and only if aq = a. Recall that, in characteristic p,
(X + Y )p = Xp + Y p. Therefore, if f(X1, . . . , Xn) has coefficients in Fq, then

f(X1, . . . , Xn)q = f(Xq
1 , . . . , X

q
n), f(a1, . . . , an)q = f(aq

1, . . . , a
q
n), ai ∈ F.

In particular,

f(a1, . . . , an) = 0 =⇒ f(aq
1, . . . , a

q
n) = 0, ai ∈ F.

Proposition 10.6. There is a unique way to attach to every variety V over
Fq a regular map πV : V → V such that

(a) for any regular map α : V →W , α ◦ πV = πW ◦ α;
(b) πAn is the map (a1, . . . , an) �→ (aq

1, . . . , a
q
n).

Proof. For an affine variety V = SpecmA, define πV be the map correspond-
ing to the Fq-homomorphism x �→ xq : A→ A. The rest of the proof is straightfor-
ward. �

The map πV is called the Frobenius map of V .

Theorem 10.7 (Weil 1948). For an abelian variety A over Fq, End0(A) is a
finite-dimensional semisimple Q-algebra with πA in its centre. For every embedding
ρ : Q[πA] → C, |ρ(πA)| = q

1
2 .

Proof. See, for example, Milne 1986, 19.1. �
If A is simple, Q[πA] is a field (p334), and πA is an algebraic integer in it (p334).

An algebraic integer π such that |ρ(π)| = q
1
2 for all embeddings ρ : Q[π] → C is

called a Weil q-integer (formerly, Weil q-number).



338 J. S. MILNE

For a Weil q-integer π,

ρ(π) · ρ(π) = q = ρ(π) · ρ(q/π), all ρ : Q[π] → C,

and so ρ(q/π) = ρ(π). It follows that the field ρ(Q[π]) is stable under complex
conjugation and that the automorphism of Q[π] induced by complex conjugation
sends π to q/π and is independent of ρ. This implies that Q[π] is a CM-field (the
typical case), Q, or Q[

√
p].

Lemma 10.8. Let π and π′ be Weil q-integers lying in the same field E. If
ordv(π) = ordv(π′) for all v|p, then π′ = ζπ for some root of 1 in E.

Proof. As noted above, there is an automorphism of Q[π] sending π to q/π.
Therefore q/π is also an algebraic integer, and so ordv(π) = 0 for every finite v � p.
Since the same is true for π′, we find that |π|v = |π′|v for all v. Hence π/π′ is a
unit in OE such that |π/π′|v = 1 for all v|∞. But in the course of proving the unit
theorem, one shows that such a unit has to be root of 1 (ANT, 5.6). �

The Shimura-Taniyama formula.

Lemma 10.9. Let (A, i) be an abelian variety of CM-type (E,Φ) over a number
field k ⊂ C having good reduction at P ⊂ Ok to (A, ı) over Ok/P = Fq. Then the
Frobenius map πA of A lies in ı(E).

Proof. Let π = πA. It suffices to check that π lies in ı(E) after tensoring with
Q�. As we saw in the proof of (10.5), V�A is a free E ⊗Q Q�-module of rank 1. It
follows that V�A is also a free E ⊗Q Q�-module of rank 1 (via ı). Therefore, any
endomorphism of V�A commuting with the action of E ⊗Q� will lie in E ⊗Q�. �

Thus, from (A, i) and a prime P of k at which A has good reduction, we get a
Weil q-integer π ∈ E.

Theorem 10.10 (Shimura-Taniyama). In the situation of the lemma, assume
that k is galois over Q and contains all conjugates of E. Then for all primes v of
E dividing p,

(44)
ordv(π)
ordv(q)

=
|Φ ∩Hv|
|Hv|

where Hv = {ρ : E → k | ρ−1(P) = pv} and |S| denotes the order of a set S.

Remark 10.11. (a) According to (10.8), the theorem determines π up to a root
of 1. Note that the formula depends only on (E,Φ). It is possible to see directly
that different pairs (A, i) over k of CM-type (E,Φ) can give different Frobenius
elements, but they will differ only by a root of 1.

(b) Let ∗ denote complex conjugation on Q[π]. Then ππ∗ = q, and so

(45) ordv(π) + ordv(π∗) = ordv(q).

Moreover,
ordv(π∗) = ordv∗(π)

and
Φ ∩Hv∗ = Φ ∩Hv.

Therefore, (44) is consistent with (45):

ordv(π)
ordv(q)

+
ordv(π∗)
ordv(q)

(44)
=

|Φ ∩Hv|+ |Φ ∩Hv∗ |
|Hv|

=
|(Φ ∪ Φ) ∩Hv|

|Hv|
= 1.
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In fact, (44) is the only obvious formula for ordv(π) consistent with (45), which
is probably a more convincing argument for its validity than the proof sketched
below.

The OE-structure of the tangent space. Let R be a Dedekind domain. Any
finitely generated torsion R-module M can be written as a direct sum

⊕
i R/pri

i

with each pi an ideal in R, and the set of pairs (pi, ri) is uniquely determined by
M . Define |M |R =

∏
p

ri
i . For example, for R = Z, M is a finite abelian group and

|M |Z is the ideal in Z generated by the order of M .
For Dedekind domains R ⊂ S with S finite over R, there is a norm homomor-

phism sending fractional ideals of S to fractional ideals of R (ANT, p58). It is
compatible with norms of elements, and

Nm(P) = p
f(P/p), P prime, p = P ∩R

Clearly,

(46) |S/A|R = Nm(A)

since this is true for prime ideals, and both sides are multiplicative.

Proposition 10.12. Let A be an abelian variety of dimension g over Fq, and
let i be a homomorphism from the ring of integers OE of a field E of degree 2g over
Q into End(A). Then

|Tgt0 A|OE
= (πA).

Proof. Omitted (for a scheme-theoretic proof, see Giraud 1968, Théorème
1). �

Sketch of the proof the Shimura-Taniyama formula. We return to the situation
of the Theorem 10.10. After replacing A with an isogenous variety, we may assume
i(OE) ⊂ End(A). By assumption, there exists an abelian scheme A over Ok,P

with generic fibre A and special fibre an abelian variety A. Because A is smooth
over Ok,P, the relative tangent space of A/Ok,P is a free Ok,P-module T of rank
g endowed with an action of OE such that

T ⊗Ok,P
k = Tgt0(A), T ⊗Ok,P

Ok,P/P = Tgt0(A).

Therefore,

(47) (π) 10.12=
∣∣Tgt0 A

∣∣
OE

=
∣∣T ⊗Ok,P

(Ok,P/P)
∣∣
OE

.

For simplicity, assume that (p) =df P∩Z is unramified in E. Then the isomor-
phism of E-modules

T ⊗Ok,P
k ≈ kΦ

induces an isomorphism of OE-modules

(48) T ≈ OΦ
k,P

In other words, T is a direct sum of copies of Ok,P indexed by the elements of Φ,
and OE acts on the ϕth copy through the map

OE
ϕ−→ Ok ⊂ Ok,P.

As Ok/P ∼= Ok,P/P (ANT, 3.11), the contribution of the ϕth copy to (π) in (47)
is

|Ok/P|OE

(46)
= ϕ−1(Nmk/ϕE P).
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Thus,

(49) (π) =
∏

ϕ∈Φϕ
−1(Nmk/ϕE P).

It is only an exercise to derive (44) from (49).

Notes. The original formulation of the Shimura-Taniyama theorem is in fact
(49). It is proved in Shimura and Taniyama 1961, III.13, in the unramified case
using spaces of differentials rather than tangent spaces. The proof sketched above
is given in detail in Giraud 1968, and there is a proof using p-divisible groups in
Tate 1969, §5. See also Serre 1968, pII-28.

11. Complex multiplication: the main theorem

Review of class field theory. Classical class field theory classifies the abelian
extensions of a number field E, i.e., the galois extensions L/E such Gal(L/E) is
commutative. Let Eab be the composite of all the finite abelian extensions of E
inside some fixed algebraic closure Eal of E. Then Eab is an infinite galois extension
of E.

According to class field theory, there exists a continuous surjective homomor-
phism (the reciprocity or Artin map)

recE : A×
E → Gal(Eab/E)

such that, for every finite extension L of E contained in Eab, recE gives rise to a
commutative diagram

E×\A×
E

recE−−−−→
onto

Gal(Eab/E); ;σ �→σ|L

E×\A×
E/NmL/E(A×

L )
recL/E−−−−→∼=

Gal(L/E).

It is determined by the following two properties:
(a) recL/E(u) = 1 for every u = (uv) ∈ A×

E such that
i) if v is unramified in L, then uv is a unit,
ii) if v is ramified in L, then uv is sufficiently close to 1 (depending only

on L/E), and
iii) if v is real but becomes complex in L, then uv > 0.

(b) For every prime v of E unramified in L, the idèle

α = (1, . . . , 1, π
v
, 1, . . .), π a prime element of OEv

,

maps to the Frobenius element (v, L/E) ∈ Gal(L/E).
Recall that if P is a prime ideal of L lying over pv, then (v, L/E) is the automor-
phism of L/E fixing P and acting as x �→ x(OE : pv) on OL/P.

To see that there is at most one map satisfying these conditions, let α ∈ A×
E ,

and use the weak approximation theorem to choose an a ∈ E× that is close to αv

for all primes v that ramify in L or become complex. Then α = auβ with u an idèle
as in (a) and β a finite product of idèles as in (b). Now recL/E(α) = recL/E(β),
which can be computed using (b).

Note that, because Gal(Eab/E) is totally disconnected, the identity component
of E×\A×

E is contained in the kernel of recE . In particular, the identity component



11. COMPLEX MULTIPLICATION: THE MAIN THEOREM 341

of
∏

v|∞E×
v is contained in the kernel, and so, when E is totally imaginary, recE

factors through E×\A×
E,f .

For E = Q, the reciprocity map factors through Q×\{±} × A×
f , and every

element in this quotient is uniquely represented by an element of Ẑ× ⊂ A×
f . In this

case, we get the diagram

(50)

Ẑ× recQ−−−−→∼=
Gal(Qab/Q)

⋃
Q[ζN ]; ;restrict

(Z/NZ)×
[a] �→(ζN �→ζa

N )−−−−−−−−−→∼=
Gal(Q[ζN ]/Q)

which commutes with an inverse. This can be checked by writing an idèle α in the
form auβ as above, but it is more instructive to look at an example. Let p be a
prime not dividing N , and let

α = p · (1, . . . , 1, p−1

p
, 1, . . .) ∈ Z · A×

f = A×
f .

Then α ∈ Ẑ× and has image [p] in Z/NZ, which acts as (p,Q[ζN ]/Q) on Q[ζN ]. On
the other hand, recQ(α) = recQ((1, . . . , p−1, . . .)), which acts as (p,Q[ζN ]/Q)−1.

Notes. For the proofs of the above statements, see Tate 1967 or my notes
CFT.

Convention for the (Artin) reciprocity map. It simplifies the formulas
in Langlands theory if one replaces the reciprocity map with its reciprocal. For
α ∈ A×

E , write

(51) artE(α) = recE(α)−1.

Now, the diagram (50) commutes. In other words,

artQ(χ(σ)) = σ, for σ ∈ Gal(Qab/Q),

where χ is the cyclotomic character Gal(Qab/Q) → Ẑ×, which is characterized by

σζ = ζχ(σ), ζ a root of 1 in C×.

The reflex field and norm of a CM-type. Let (E,Φ) be a CM-type.

Definition 11.1. The reflex field E∗ of (E,Φ) is the subfield of Qal charac-
terized by any one of the following equivalent conditions:

(a) σ ∈ Gal(Qal/Q) fixes E∗ if and only if σΦ = Φ; here σΦ = {σ ◦ ϕ|ϕ ∈ Φ};
(b) E∗ is the field generated over Q by the elements

∑
ϕ∈Φϕ(a), a ∈ E;

(c) E∗ is the smallest subfield k of Qal such that there exists a k-vector space
V with an action of E for which

Trk(a|V ) =
∑

ϕ∈Φϕ(a), all a ∈ E.

Let V be an E∗-vector space with an action of E such that TrE∗(a|V ) =∑
ϕ∈Φϕ(a) for all a ∈ E. We can regard V as an E∗ ⊗Q E-space, or as an E-

vector space with a E-linear action of E∗. The reflex norm is the homomorphism
NΦ∗ : (Gm)E∗/Q → (Gm)E/Q such that

NΦ∗(a) = det E(a|V ), all a ∈ E∗×.
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This definition is independent of the choice of V because V is unique up to an
isomorphism respecting the actions of E and E∗.

Let (A, i) be an abelian variety of CM-type (E,Φ) defined over C. According
to (11.1c) applied to Tgt0(A), any field of definition of (A, i) contains E∗.

Statement of the main theorem of complex multiplication. A homo-
morphism σ : k → Ω of fields defines a functor V �→ σV , α �→ σα, “extension of
the base field” from varieties over k to varieties over Ω. In particular, an abelian
variety A over k equipped with a homomorphism i : E → End0(A) defines a similar
pair σ(A, i) = (σA, σi) over Ω. Here σi : E → End(σA) is defined by

σi(a) = σ(i(a)).

A point P ∈ A(k) gives a point σP ∈ A(Ω), and so σ defines a homomorphism
σ : Vf (A) → Vf (σA) provided that k and Ω are algebraically closed (otherwise one
would have to choose an extension of k to a homomorphism kal → Ωal).

Theorem 11.2. Let (A, i) be an abelian variety of CM-type (E,Φ) over C, and
let σ ∈ Aut(C/E∗). For any s ∈ A×

E∗,f with artE∗(s) = σ|E∗ab, there is a unique
E-linear isogeny α : A→ σA such that α(NΦ∗(s) · x) = σx for all x ∈ VfA.

Proof. Formation of the tangent space commutes with extension of the base
field, and so

Tgt0(σA) = Tgt0(A)⊗C,σ C

as an E ⊗Q C-module. Therefore, (σA, σi) is of CM type σΦ. Since σ fixes E∗,
σΦ = Φ, and so there exists an E-linear isogeny α : A→ σA (10.2). The map

Vf (A) σ→ Vf (σA)
Vf (α)−1

→ Vf (A)

is E⊗Q Af -linear. As Vf (A) is free of rank one over E⊗Q Af = AE,f , this map must
be multiplication by an element of a ∈ A×

E,f . When the choice of α is changed,
then a is changed only by an element of E×, and so we have a well-defined map

σ �→ aE× : Gal(Qal/E∗) → A×
E,f/E

×,

which one checks to be a homomorphism. The map factors through Gal(E∗ab/E∗),
and so, when composed with the reciprocity map artE∗ , it gives a homomorphism

η : A×
E∗,f/E

∗× → A×
E,f/E

×.

We have to check that η is the homomorphism defined by NΦ∗ , but it can be
shown that this follows from the Shimura-Taniyama formula (Theorem 10.10). The
uniqueness follows from the faithfulness of the functor A �→ Vf (A). �

Remark 11.3. (a) If s is replaced by as, a ∈ E∗×, then α must be replaced by
α ◦NΦ∗(a)−1.

(b) The theorem is a statement about the E-isogeny class of (A, i). If β : (A, i) →
(B, j) is an E-linear isogeny, and α satisfies the conditions of the theorem for (A, i),
then (σβ) ◦ α ◦ β−1 satisfies the conditions for (B, j).

Aside 11.4. What happens in (11.2) when σ is not assumed to fix E∗? This
also is known, thanks to Deligne and Langlands. For a discussion of this, and much
else concerning complex multiplication, see my notes Milne 1979.
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12. Definition of canonical models

We attach to each Shimura datum (G,X) an algebraic number field E(G,X),
and we define the canonical model of Sh(G,X) to be an inverse system of varieties
over E(G,X) that is characterized by reciprocity laws at certain special points.

Models of varieties. Let k be a subfield of a field Ω, and let V be a variety
over Ω. A model of V over k (or a k-structure on V ) is a variety V0 over k
together with an isomorphism ϕ : V0Ω → V . We often omit the map ϕ and regard
a model as a variety V0 over k such that V0Ω = V .

Consider an affine variety V over C and a subfield k of C. An embedding V ↪→
An

C defines a model of V over k if the ideal I(V ) of polynomials zero on V is gener-
ated by polynomials in k[X1, . . . , Xn], because then I0 =df I(V ) ∩ k[X1, . . . , Xn] is
a radical ideal, k[X1, . . . , Xn]/I0 is an affine k-algebra, and V (I0) ⊂ An

k is a model
of V . Moreover, every model (V0, ϕ) arises in this way because every model of an
affine variety is affine. However, different embeddings in affine space will usually
give rise to different models. For example, the embeddings

A2
C

(x,y) � (x,y)←−−−−−−−−−−− V (X2 + Y 2 − 1)
(x,y) � (x,y/

√
2)−−−−−−−−−−−−−−→ A2

C

define the Q-structures

X2 + Y 2 = 1, X2 + 2Y 2 = 1

on the curve X2 + Y 2 = 1. These are not isomorphic.
Similar remarks apply to projective varieties.
In general, a variety over C will not have a model over a number field, and

when it does, it will have many. For example, an elliptic curve E over C has a
model over a number field if and only if its j-invariant j(E) is an algebraic number,
and if Y 2Z = X3 +aXZ2 + bZ3 is one model of E over a number field k (meaning,
a, b ∈ k), then Y 2Z = X3 + ac2XZ2 + bc3Z3 is a second, which is isomorphic to
the first only if c is a square in k.

The reflex field. For a reductive group G over Q and a subfield k of C, we
write C(k) for the set of G(k)-conjugacy classes of cocharacters of Gk defined over
k:

C(k) = G(k)\Hom(Gm, Gk).
A homomorphism k → k′ induces a map C(k) → C(k′); in particular, Aut(k′/k)
acts on C(k′).

Lemma 12.1. Assume G splits over k, so that it contains a split maximal torus
T , and let W be the Weyl group NG(k)(T )/CG(k)(T ) of T . Then the map

W\Hom(Gm, Tk) → G(k)\Hom(Gm, Gk)

is bijective.

Proof. As any two maximal split tori are conjugate (Springer 1998, 15.2.6),
the map is surjective. Let µ and µ′ be cocharacters of T that are conjugate by an
element of G(k), say, µ = ad(g) ◦ µ′ with g ∈ G(k). Then ad(g)(T ) and T are both
maximal split tori in the centralizer C of µ(Gm), which is a connected reductive
group (ibid., 15.3.2). Therefore, there exists a c ∈ C(k) such that ad(cg)(T ) = T .
Now cg normalizes T and ad(cg) ◦ µ′ = µ, which proves that µ and µ′ are in the
same W -orbit. �
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Let (G,X) be a Shimura datum. For each x ∈ X, we have a cocharacter µx of
GC:

µx(z) = hxC(z, 1).

A different x ∈ X will give a conjugate µx, and so X defines an element c(X) of
C(C). Neither Hom(Gm, TQal) nor W changes when we replace C with the algebraic
closure Qal of Q in C, and so the lemma shows that c(X) contains a µ defined over
Qal and that the G(Qal)-conjugacy class of µ is independent of the choice of µ.
This allows us to regard c(X) as an element of C(Qal).

Definition 12.2. The reflex (or dual) field E(G,X) is the field of definition
of c(X), i.e., it is the fixed field of the subgroup of Gal(Qal/Q) fixing c(X) as an
element of C(Qal) (or stabilizing c(X) as a subset of Hom(Gm, GQal)).

Note that the reflex field a subfield of C.

Remark 12.3. (a) Any subfield k of Qal splitting G contains E(G,X). This
follows from the lemma, because W\Hom(Gm, T ) does not change when we pass
from k to Qal. If follows that E(G,X) has finite degree over Q.

(b) If c(X) contains a µ defined over k, then k ⊃ E(G,X). Conversely, if
G is quasi-split over k and k ⊃ E(G,X), then c(X) contains a µ defined over k
(Kottwitz 1984, 1.1.3).

(c) Let (G,X)
i
↪→ (G′, X ′) be an inclusion of Shimura data. Suppose σ fixes

c(X), and let µ ∈ c(X). Then σµ = g · µ · g−1 for some g ∈ G(Qal), and so, for any
g′ ∈ G′(Qal),

σ(g′ · (i ◦ µ) · g′−1) = (σg′)(i(g)) · i ◦ µ · (i(g))−1(σg′)−1 ∈ c(X ′).

Hence σ fixes c(X ′), and we have shown that

E(G,X) ⊃ E(G′, X ′).

Example 12.4. (a) Let T be a torus over Q, and let h be a homomorphism
S → TR. Then E(T, h) is the field of definition of µh, i.e., the smallest subfield of
C over which µh is defined.

(b) Let (E,Φ) be a CM-type, and let T be the torus (Gm)E/Q, so that T (Q) =
E× and

T (R) = (E ⊗Q R)× ∼= (CΦ)×, (e⊗ r) �→ (ϕ(e) · r)ϕ∈Φ.

Define hΦ : C× → T (R) to be z �→ (z, . . . , z). The corresponding cocharacter µΦ is

C× → T (C) ∼= (CΦ)× × (CΦ)×

z �→ (z, . . . , z, 1, . . . , 1)

Therefore, σµΦ = µΦ if and only if σ stabilizes Φ, and so E(T, hΦ) is the reflex field
of (E,Φ) defined in (11.1).

(c) If (G,X) is a simple PEL datum of type (A) or (C), then E(G,X) is the
field generated over Q by {TrX(b) | b ∈ B} (Deligne 1971c, 6.1).

(d) Let (G,X) be the Shimura datum attached to a quaternion algebra B over
a totally real number field F , as in Example 5.24. Then c(X) is represented by the
cocharacter µ:

G(C) ≈ GL2(C)Ic × GL2(C)Inc

µ(z) = (1, . . . , 1) × (( z 0
0 1 ) , . . . , ( z 0

0 1 )) .



12. DEFINITION OF CANONICAL MODELS 345

Therefore, E(G,X) is the fixed field of the stabilizer in Gal(Qal/Q) of Inc ⊂ I. For
example, if Inc consists of a single element v (so we have a Shimura curve), then
E(G,X) = v(F ).

(e) When G is adjoint, E(G,X) can be described as follows. Choose a maximal
torus T in GQal and a base (αi)i∈I for the roots. Recall that the nodes of the dynkin
diagram ∆ of (G, T ) are indexed by I. The galois group Gal(Qal/Q) acts on ∆.
Each c ∈ C(Qal) contains a µ : Gm → GQal such that 〈αi, µ〉 ≥ 0 for all i (cf. 1.25),
and the map

c �→ (〈αi, µ〉)i∈I : C(Qal) → NI (copies of N indexed by I)

is a bijection. Therefore, E(G,X) is the fixed field of the subgroup of Gal(Qal/Q)
fixing (〈αi, µ〉)i∈I ∈ NI . It is either totally real or CM (Deligne 1971b, p139).

(f) Let (G,X) be a Shimura datum, and let G
ν→ T be the quotient of G by

Gder. From (G,X), we get Shimura data (Gad, Xad) and (T, h) with h = ν ◦ hx for
all x ∈ X. Then E(G,X) = E(Gad, Xad) · E(T, h) (Deligne 1971b, 3.8).

(g) It follows from (e) and (f) that if (G,X) satisfies SV6, then E(G,X) is
either a totally real field or a CM-field.

Special points.

Definition 12.5. A point x ∈ X is said to be special if there exists a torus
T ⊂ G such that hx(C×) ⊂ T (R). We then call (T, x), or (T, hx), a special pair
in (G,X). When the weight is rational and Z(G)◦ splits over a CM-field (i.e., SV4
and SV6 hold), the special points and special pairs are called CM points and CM
pairs.

Remark 12.6. Let T be a maximal torus of G such that T (R) fixes x, i.e., such
that ad(t) ◦ hx = hx for all t ∈ T (R). Because TR is its own centralizer in GR, this
implies that hx(C×) ⊂ T (R), and so x is special. Conversely, if (T, x) is special,
then T (R) fixes x.

Example 12.7. Let G = GL2 and let H±
1 = C � R. Then G(R) acts on H±

1 by(
a b
c d

)
z =

az + b

cz + d
.

Suppose that z ∈ C�R generates a quadratic imaginary extension E of Q. Using the
Q-basis {1, z} for E, we obtain an embedding E ↪→ M2(Q), and hence a maximal
subtorus (Gm)E/Q ⊂ G. As (Gm)E/Q(R) fixes z, this shows that z is special.
Conversely, if z ∈ H±

1 is special, then Q[z] is a field of degree 2 over Q.

The homomorphism rx. Let T be a torus over Q and let µ be a cocharacter of
T defined over a finite extension E of Q. For Q ∈ T (E), the element

∑
ρ : E→Qal ρ(Q)

of T (Qal) is stable under Gal(Qal/Q) and hence lies in T (Q). Let r(T, µ) be the
homomorphism (Gm)E/Q → T such that

(52) r(T, µ)(P ) =
∑

ρ : E→Qal

ρ(µ(P )), all P ∈ E×.

Let (T, x) ⊂ (G,X) be a special pair, and let E(x) be the field of definition of
µx. We define rx to be the homomorphism

(53) A×
E(x)

r(T,µ)−−−−→ T (AQ)
project−−−−→ T (AQ,f ).
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Let a ∈ A×
E(x), and write a = (a∞, af ) ∈ (E(x)⊗Q R)× × A×

E(x),f ; then

rx(a) =
∑

ρ : E→Qal

ρ(µx(af )).

Definition of a canonical model. For a special pair (T, x) ⊂ (G,X), we
have homomorphisms ((51),(53)),

artE(x) : A×
E(x) � Gal(E(x)ab/E(x))

rx : A×
E(x) → T (Af ).

Definition 12.8. Let (G,X) be a Shimura datum, and let K be a compact
open subgroup of G(Af ). A model MK(G,X) of ShK(G,X) over E(G,X) is
canonical if, for every special pair (T, x) ⊂ (G,X) and a ∈ G(Af ), [x, a]K has
coordinates in E(x)ab and

(54) σ[x, a]K = [x, rx(s)a]K ,

for all
σ ∈ Gal(E(x)ab/E(x))
s ∈ A×

E(x)

}
with artE(x)(s) = σ.

In other words, MK(G,X) is canonical if every automorphism σ of C fixing E(x)
acts on [x, a]K according to the rule (54) where s is any idèle such that artE(x)(s) =
σ|E(x)ab.

Remark 12.9. Let (T1, x) and (T2, x) be special pairs in (G,X) (with the same
x). Then (T1∩T2, x) is also a special pair, and if the condition in (54) holds for one
of (T1 ∩ T2, x), (T1, x), or (T2, x), then it holds for all three. Therefore, in stating
the definition, we could have considered only special pairs (T, x) with, for example,
T minimal among the tori such that TR contains hx(S).

Definition 12.10. Let (G,X) be a Shimura datum.
(a) A model of Sh(G,X) over a subfield k of C is an inverse system M(G,X) =

(MK(G,X))K of varieties over k endowed with a right action of G(Af ) such that
M(G,X)C = Sh(G,X) (with its G(Af ) action).

(b) A model M(G,X) of Sh(G,X) over E(G,X) is canonical if each MK(G,X)
is canonical.

Examples: Shimura varieties defined by tori. For a field k of charac-
teristic zero, the functor V �→ V (kal) is an equivalence from the category of zero-
dimensional varieties over k to the category of finite sets endowed with a continuous
action of Gal(kal/k). Continuous here just means that the action factors through
Gal(L/k) for some finite galois extension L of k contained in kal. In particular, to
give a zero-dimensional variety over an algebraically closed field of characteristic
zero is just to give a finite set. Thus, a zero-dimensional variety over C can be
regarded as a zero-dimensional variety over Qal, and to give a model of V over a
number field E amounts to giving a continuous action of Gal(Qal/Q) on V (C).

Tori. Let T be a torus over Q, and let h be a homomorphism S → TR. Then
(T, h) is a Shimura datum, and E =df E(T, h) is the field of definition of µh. In
this case

ShK(T, h) = T (Q)\{h} × T (Af )/K
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is a finite set (see 5.22), and (54) defines a continuous action of Gal(Eab/E) on
ShK(T, h). This action defines a model of ShK(T, h) over E, which, by definition,
is canonical.

CM-tori. Let (E,Φ) be a CM-type, and let (T, hΦ) be the Shimura pair defined
in (12.4b). Then E(T, hΦ) = E∗, and r(T, µΦ) : (Gm)E∗/Q → (Gm)E/Q is the reflex
norm NΦ∗ .

Let K be a compact open subgroup of T (Af ). The Shimura variety ShK(T, hΦ)
classifies isomorphism classes of triples (A, i, ηK) in which (A, i) is an abelian variety
over C of CM-type (E,Φ) and η is an E⊗Af -linear isomorphism V (Af ) → Vf (A).
An isomorphism (A, i, ηK) → (A′, i′, η′K) is an E-linear isomorphism A → A′ in
AV0(C) sending ηK to η′K. To see this, let V be a one-dimensional E-vector space.
The action of E on V realizes T as a subtorus of GL(V ). If (A, i) is of CM-type
(E,Φ), then there exists an E-homomorphism a : H1(A,Q) → V carrying hA to hΦ

(see 10.2). Now the isomorphism

V (Af )
η−→ Vf (A) a−→ V (Af )

is E⊗Af -linear, and hence is multiplication by an element g of (E⊗Af )× = TE(Af ).
The map (A, i, η) �→ [g] gives the bijection.

In (10.3) and its proof, we showed that the functor (A, i) �→ (AC, iC) defines
an equivalence from the category of abelian varieties over Qal of CM-type (E,Φ)
to the similar category over C (the abelian varieties are to be regarded as objects
of AV0). Therefore, ShK(TE , hΦ) classifies isomorphism classes of triples (A, i, ηK)
where (A, i) is now an abelian variety over Qal of CM-type (E,Φ).

The group Gal(Qal/E∗) acts on the set MK of such triples: let (A, i, η) ∈MK ;
for σ ∈ Gal(Qal/E∗), define σ(A, i, ηK) to be the triple (σA, σi, σηK) where ση is
the composite

(55) V (Af )
η−→ Vf (A) σ−→ Vf (σA);

because σ fixes E∗, (σA, σi) is again of CM-type (E,Φ).
The group Gal(Qal/E∗) acts on ShK(TE , hΦ) by the rule (54):

σ[g] = [rhΦ(s)g]K , artE∗(s) = σ|E∗.

Proposition 12.11. The map (A, i, η) �→ [a ◦ η]K : MK → ShK(TE , hΦ) com-
mutes with the actions of Gal(Qal/E∗).

Proof. Let (A, i, η) ∈ MK map to [a ◦ η]K for an appropriate isomorphism
a : H1(A,Q) → V , and let σ ∈ Gal(Qal/E∗). According to the main theorem of
complex multiplication (11.2), there exists an isomorphism α : A → σA such that
α(NΦ∗(s) · x) = σx for x ∈ Vf (A), where s ∈ AE∗ is such that artE∗(s) = σ|E∗.
Then σ(A, i, η) �→ [a ◦H1(α)=1 ◦ σ ◦ η]K . But

Vf (α)=1 ◦ σ = NΦ∗(s) = rhΦ(s),

and so
[a ◦H1(α)−1 ◦ σ ◦ η]K = [rhΦ(s) · (a ◦ η)]K

as required. �

Notes. Our definitions coincide with those of Deligne 1979, except that we
have corrected a sign error there (it is necessary to delete “inverse” in ibid. 2.2.3,
p269, line 10, and in 2.6.3, p284, line 21).
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13. Uniqueness of canonical models

In this section, I sketch a proof that a Shimura variety has at most one canonical
model (up to a unique isomorphism).

Extension of the base field.

Proposition 13.1. Let k be a subfield of an algebraically closed field Ω of
characteristic zero. If V and W are varieties over k, then a regular map VΩ →WΩ

commuting with the actions of Aut(Ω/k) on V (Ω) and W (Ω) arises from a unique
regular map V →W . In other words, the functor

V �→ VΩ + action of Aut(Ω/k) on V (Ω)

is fully faithful.

Proof. See AG 16.9. [The first step is to show that the ΩAut(Ω/k) = k, which
requires Zorn’s lemma in general.] �

Corollary 13.2. A variety V over k is uniquely determined (up to a unique
isomorphism) by VΩ and the action of Aut(Ω/k) on V (Ω).

Uniqueness of canonical models. Let (G,X) be a Shimura datum.

Lemma 13.3. There exists a special point in X.

Proof (sketch). Let x ∈ X, and let T be a maximal torus in GR containing
hx(C). Then T is the centralizer of any regular element λ of Lie(T ). If λ0 ∈ Lie(G)
is chosen sufficiently close to λ, then the centralizer T0 of λ0 in G will be a maximal
torus in G (Borel 1991, 18.1, 18.2), and T0 will become conjugate17 to T over R:

T0R = gTg−1, some g ∈ G(R).

Now hgx(S) =df ghg
−1(S) ⊂ T0R, and so gx is special. �

Lemma 13.4 (Key Lemma). For any finite extension L of E(G,X) in C, there
exists a special point x0 such that E(x0) is linearly disjoint from L.

Proof. See Deligne 1971b, 5.1. [The basic idea is the same as that of the proof
of 13.3 above, but requires the Hilbert irreducibility theorem.] �

If G = GL2, the lemma just says that, for any finite extension L of Q in C,
there exists a quadratic imaginary extension E over Q linearly disjoint from L.
This is obvious — for example, take E = Q[

√−p] for any prime p unramified in L.

Lemma 13.5. For any x ∈ X, {[x, a]K | a ∈ G(Af )} is dense in ShK(G,X) (in
the zariski topology).

Proof. Write

ShK(G,X)(C) = G(Q)\X × (G(Af )/K)

and note that the real approximation theorem (5.4) implies that G(Q)x is dense in
X for the complex topology, and, a fortiori, the zariski topology. �

17Any element sufficiently close to a regular element will also be regular, which implies that
T0 is a maximal torus. Not all maximal tori in G/R are conjugate — rather, they fall into several

connected components, from which the second statement can be deduced.
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Let g ∈ G(Af ), and let K and K ′ be compact open subgroups such that
K ′ ⊃ g−1Kg. Then the map T (g)

[x, a]K �→ [x, ag]K′ : ShK(C) → ShK′(C)

is well-defined.

Theorem 13.6. If ShK (G,X) and ShK′ (G,X) have canonical models over
E(G,X), then T (g) is defined over E(G,X).

Proof. After (13.1), it suffices to show that σ(T (g)) = T (g) for all automor-
phisms σ of C fixing E(G,X). Let x0 ∈ X be special. Then E(x0) ⊃ E(G,X) (see
12.3b), and we first show that σ(T (g)) = T (g) for those σ’s fixing E(x0). Choose
an s ∈ A×

E0
such that art(s) = σ|E(x0)ab. For a ∈ G(Af ),

[x0, a]K
T (g) � [x0, ag]K′

[x0, rx0(s)a]K

σ
�

T (g)� [x0, rx0(s)ag]K′

σ
�

commutes. Thus, T (g) and σ(T (g)) agree on {[x0, a] | a ∈ G(Af )}, and hence on
all of ShK by Lemma 13.5. We have shown that σ(T (g)) = T (g) for all σ fixing
the reflex field of any special point, but Lemma 13.4 shows that these σ’s generate
Aut(C/E(G,X)). �

Theorem 13.7. (a) A canonical model of ShK(G,X) (if it exists) is unique up
to a unique isomorphism.

(b) If, for all compact open subgroups K of G(Af ), ShK(G,X) has a canonical
model, then so also does Sh(G,X), and it is unique up to a unique isomorphism.

Proof. (a) Take K = K′ and g = 1 in (13.6).
(b) Obvious from (13.6). �
In more detail, let (MK(G,X), ϕ) and (M ′

K(G,X), ϕ′) be canonical models of
ShK(G,X) over E(G,X). Then the composite

MK(G,X)C
ϕ−→ ShK(G,X)

ϕ′−1

−→ M ′
K(G,X)C

is fixed by all automorphisms of C fixing E(G,X), and is therefore defined over
E(G,X).

Remark 13.8. In fact, one can prove more. Let a : (G,X) → (G′, X ′) be a mor-
phism of Shimura data, and suppose Sh(G,X) and Sh(G′, X ′) have canonical mod-
els M(G,X) and M(G′, X ′). Then the morphism Sh(a) : Sh(G,X) → Sh(G′, X ′)
is defined over E(G,X) · E(G′, X ′).

The galois action on the connected components. A canonical model for
ShK(G,X) will define an action of Aut(C/E(G,X)) on the set π0(ShK(G,X)). In
the case that Gder is simply connected, we saw in §5 that

π0(ShK(G,X)) ∼= T (Q)\Y × T (Af )/ν(K)

where ν : G→ T is the quotient of G by Gder and Y is the quotient of T (R) by the
image T (R)† of Z(R) in T (R). Let h = ν ◦ hx for any x ∈ X. Then µh is certainly
defined over E(G,X). Therefore, it defines a homomorphism

r = r(T, µh) : A×
E(G,X) → T (AQ).
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The action of σ ∈ Aut(C/E(G,X)) on π0(ShK(G,X)) can be described as fol-
lows: let s ∈ A×

E(G,X) be such that artE(G,X)(s) = σ|E(G,X)ab, and let r(s) =
(r(s)∞, r(s)f ) ∈ T (R)× T (Af ); then

(56) σ[y, a]K = [r(s)∞y, r(s)f · a]K , for all y ∈ Y, a ∈ T (Af ).

When we use (56) to define the notion a canonical model of a zero-dimensional
Shimura variety, we can say that π0 of the canonical model of ShK(G,X) is the
canonical model of Sh(T, Y ).

If σ fixes a special x0 mapping to y, then (56) follows from (54), and a slight
improvement of (13.4) shows that such σ’s generate Aut(C/E(G,X)).

Notes. The proof of uniqueness follows Deligne 1971b, §3, except that I am
more unscrupulous in my use of the Zorn’s lemma.

14. Existence of canonical models

Canonical models are known to exist for all Shimura varieties. In this section,
I explain some of the ideas that go into the proof.

Descent of the base field. Let k be a subfield of an algebraically closed field
Ω of characteristic zero, and let A = Aut(Ω/k). In (13.1) we observed that the
functor

{varieties over k} → {varieties V over Ω + action of A on V (Ω)},

is fully faithful. In this subsection, we find conditions on a pair (V, ·) that ensure
that it is in the essential image of the functor, i.e., that it arises from a variety over
k. We begin by listing two necessary conditions.

The regularity condition. Obviously, the action · should recognize that V (Ω) is
not just a set, but rather the set of points of an algebraic variety. Recall that, for
σ ∈ A, σV is obtained from V by applying σ to the coefficients of the polynomials
defining V , and σP ∈ (σV )(Ω) is obtained from P ∈ V (Ω) by applying σ to the
coordinates of P .

Definition 14.1. An action · of A on V (Ω) is regular if the map

σP �→ σ · P : (σV )(Ω) → V (Ω)

is a regular isomorphism for all σ.

A priori, this is only a map of sets. The condition requires that it be induced
by a regular map fσ : σV → V . If (V, ·) arises from a variety over k, then σV = V
and σP = σ · P , and so the condition is clearly necessary.

Remark 14.2. (a) When regular, the maps fσ are automatically isomorphisms
provided V is nonsingular.

(b) The maps fσ satisfy the cocycle condition fσ ◦σfτ = fστ . Conversely, every
family (fσ)σ∈A of regular isomorphisms satisfying the cocycle condition arises from
an action of A satisfying the regularity condition. Such families (fσ)σ∈A are called
descent data, and normally one expresses descent theory in terms of them rather
than actions of A.
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The continuity condition.

Definition 14.3. An action · of A on V (Ω) is continuous if there exists a
subfield L of Ω finitely generated over k and a model V0 of V over L such that the
action of Aut(Ω/L) on V (Ω) defined by V0 is ·.

More precisely, the condition requires that there exist a model (V0, ϕ) of V over
L such that ϕ(σP ) = σ · ϕ(P ) for all P ∈ V0(Ω) and σ ∈ Aut(C/L). Clearly this
condition is necessary.

Proposition 14.4. A regular action · of A on V (Ω) is continuous if there exist
points P1, . . . , Pn ∈ V (Ω) such that

(a) the only automorphism of V fixing every Pi is the identity map;
(b) there exists a subfield L of Ω finitely generated over k such that σ ·Pi = Pi

for all σ fixing L.

Proof. Let (V0, ϕ) be a model of V over a subfield L of Ω finitely generated
over k. After possibly enlarging L, we may assume that ϕ−1(Pi) ∈ V0(L) and that
σ · Pi = Pi for all σ fixing L (because of (b)). For such a σ, fσ and ϕ ◦ (σϕ)−1 are
regular maps σV → V sending σPi to Pi for each i, and so they are equal (because
of (a)). Hence

ϕ(σP ) = fσ((σϕ)(σP )) = fσ(σ(ϕ(P ))) = σ · ϕ(P )

for all P ∈ V0(Ω), and so the action of Aut(C/L) on V (Ω) defined by (V0, ϕ) is
·. �

A sufficient condition for descent.

Theorem 14.5. If V is quasiprojective and · is regular and continuous, then
(V, ·) arises from a variety over k.

Proof. This is a restatement of the results of Weil 1956 (see Milne 1999,
1.1). �

Corollary 14.6. The pair (V, ·) arises from a variety over k if
(a) V is quasiprojective,
(b) · is regular, and
(c) there exists points P1, . . . , Pn in V (Ω) satisfying the conditions (a) and (b)

of (14.4).

Proof. Immediate from (14.5) and (14.6). �
For an elementary proof of the corollary, not using the results of Weil 1956, see

AG 16.33.

Review of local systems and families of abelian varieties. Let S be a
topological manifold. A local system of Z-modules on S is a sheaf F on S that
is locally isomorphic to the constant sheaf Zn (n ∈ N).

Let F be a local system of Z-modules on S, and let o ∈ S. There is an action
of π1(S, o) on Fo that can be described as follows: let γ : [0, 1] → S be a loop
at o; because [0, 1] is simply connected, there is an isomorphism from γ∗F to the
constant sheaf defined by a group M say; when we choose such an isomorphism,
we obtain isomorphisms (γ∗F )i → M for all i ∈ [0, 1]; now (γ∗F )i = Fγ(i) and
γ(0) = o = γ(1), and so we get two isomorphisms Fo → M ; these isomorphisms
differ by an automorphism of Fo, which depends only the homotopy class of γ.
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Proposition 14.7. If S is connected, then F �→ (Fo, ρo) defines an equivalence
from the category of local systems of Z-modules on S to the category of finitely
generated Z-modules endowed with an action of π1(S, o).

Proof. This is well known; cf. Deligne 1970, I 1. �

Let F be a local system of Z-modules on S. Let π : S̃ → S be the universal
covering space of S, and choose a point o ∈ S̃. We can identifiy π∗F with the
constant sheaf defined by Fπ(o). Suppose that we have a hodge structure hs on
Fs ⊗ R for every s ∈ S. We say that F , together with the hodge structures, is a
variation of integral hodge structures on S if s �→ hπ(s) (hodge structure on
Fπ(o)⊗R) is a variation of hodge structures on S̃. A polarization of a variation of
hodge structures (F, (hs)) is a pairing ψ : F ×F → Z such that ψs is a polarization
of (Fs, hs) for every s.

Let V be a nonsingular algebraic variety over C. A family of abelian vari-
eties over V is a regular map f : A → V of nonsingular varieties plus a regular
multiplication A ×V A → A over V such that the fibres of f are abelian varieties
of constant dimension (in a different language, A is an abelian scheme over V ).

Theorem 14.8. Let V be a nonsingular variety over C. There is an equivalence
(A, f) �→ (R1f∗Z)∨ from the category of families of abelian varieties over V to the
category of polarizable integral variations of hodge structures of type (−1, 0), (0,−1)
on S.

This is a generalization of Riemann’s theorem (6.8) — see Deligne 1971a, 4.4.3.

The Siegel modular variety. Let (V, ψ) be a symplectic space over Q, and
let (G,X) = (GSp(ψ), X(ψ)) be the associated Shimura datum (§6). We also
denote Sp(ψ) by S. We abbreviate ShK(G,X) to ShK .

The reflex field. Consider the set of pairs (L,L′) of complementary lagrangians
in V (C):

(57) V (C) = L⊕ L′, L, L′ totally isotropic.

Every symplectic basis for V (C) defines such a pair, and every such pair arises
from a symplectic basis. Therefore, G(C) (even S(C)) acts transitively on the
set of pairs (L,L′) of complementary lagrangians. For such a pair, let µ(L,L′) be
the homomorphism Gm → GL(V ) such that µ(z) acts as z on L and as 1 on L′.
Then, µ(L,L′) takes values in GC, and as (L,L′) runs through the set of pairs of
complementary lagrangians in V (C), µ(L,L′) runs through c(X) (notation as on
p343). Since V itself has symplectic bases, there exist pairs of complementary
lagrangians in V . For such a pair, µ(L,L′) is defined over Q, and so c(X) has a
representative defined over Q. This shows that the reflex field E(G,X) = Q.

The special points. Let K be a compact open subgroup of G(Af ), and, as in
§6, let MK be the set of triples (A, s, ηK) in which A is an abelian variety over C,
s is an alternating form on H1(A,Q) such that ±s is a polarization, and η is an
isomorphism V (Af ) → Vf (A) sending ψ to a multiple of s. Recall (6.11) that there
is a natural map MK → ShK(C) whose fibres are the isomorphism classes.

In this subsubsection we answer the question: which triples (A, s, ηK) corre-
spond to points [x, a] with x special?
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Definition 14.9. A CM-algebra is a finite product of CM-fields. An abelian
variety A over C is CM if there exists a CM-algebra E and a homomorphism
E → End0(A) such that H1(A,Q) is a free E-module of rank 1.

Let E → End0(A) be as in the definition, and let E be a product of CM-fields
E1, . . . , Em. Then A is isogenous to a product of abelian varieties A1 × · · · × Am

with Ai of CM-type (Ei,Φi) for some Φi.
Recall that, for an abelian variety A over C, there is a homomorphism hA : C× →

GL(H1(A,R)) describing the natural complex structure on H1(A,R) (see §6).

Proposition 14.10. An abelian variety A over C is CM if and only if there
exists a torus T ⊂ GL(H1(A,Q)) such that hA(C×) ⊂ T (R).

Proof. See Mumford 1969, §2, or Deligne 1982, §3. �

Corollary 14.11. If (A, s, ηK) �→ [x, a]K under MK → ShK(G,X), then A
is of CM-type if and only if x is special.

Proof. Recall that if (A, s, ηK) �→ [x, a]K , then there exists an isomorphism
H1(A,Q) → V sending hA to hx. Thus, the statement follows from the proposition.

�

A criterion to be canonical. We now define an action of Aut(C) on MK . Let
(A, s, ηK) ∈MK . Then s ∈ H2(A,Q) is a hodge tensor, and therefore equals r[D]
for some r ∈ Q× and divisor D on A (see 7.5). We let σs = r[σD]. The condition
that ±s be positive definite is equivalent to an algebro-geometric condition on D
(Mumford 1970, pp29–30) which is preserved by σ. Therefore, ±σs is a polarization
for H1(A,Q). We define σ(A, s, ηK) to be (σA, σs, σηK) with ση as in (55).

Proposition 14.12. Suppose that ShK has a model MK over Q for which the
map

MK →MK(C)

commutes with the actions of Aut(C). Then MK is canonical.

Proof. For a special point [x, a]K corresponding to an abelian variety A with
complex multiplication by a field E, the condition (54) is an immediate consequence
of the main theorem of complex multiplication (cf. 12.11). For more general special
points, it also follows from the main theorem of complex multiplication, but not
quite so immediately. �

Outline of the proof of the existence of a canonical model. Since the action of
Aut(C) on MK preserves the isomorphism classes, from the map MK → ShK(C),
we get an action of Aut(C) on ShK(C). If this action satisfies the conditions of hy-
potheses of Corollary 14.6, then ShK(G,X) has a model over Q, which Proposition
14.12 will show to be canonical.

Condition (a) of (14.6). We know that ShK(G,X) is quasi-projective from
(3.12).

Condition (b) of (14.6). We have to show that the map

σP �→ σ · P : σ ShK(C)
fσ−→ ShK(C)

is regular. It suffices to do this for K small, because if K′ ⊃ K, then ShK′(G,X)
is a quotient of ShK(G,X).
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Recall (5.17) that π0(ShK) ∼= Q>0\A×
f /ν(K). Let ε ∈ Q>0\A×

f /ν(K), and
let Shε

K be the corresponding connected component of ShK . Then Shε
K = Γε\X+

where Γε = G(Q) ∩Kε for some conjugate Kε of K (see 5.17, 5.23)
Let (A, s, ηK) ∈ MK and choose an isomorphism a : H1(A,Q) → V sending s

to a multiple of ψ. Then the image of (A, s, ηK) in Q>0\A×
f /ν(K) is represented

by ν(a ◦ η) where a ◦ η : V (Af ) → V (Af ) is to be regarded as an element of G(Af ).
Write Mε

K for the set of triples with ν(a ◦ η) ∈ ε. Define Hε
K similarly.

The map MK → Q>0\A×
f /ν(K) is equivariant for the action of Aut(C) when

we let Aut(C) act on Q>0\A×
f /ν(K) through the cyclotomic character, i.e.,

σ[α] = [χ(σ)α] where χ(σ) ∈ Ẑ×, ζχ(σ) = σζ, ζ a root of 1.

Write X+(Γε) for Γε\X+ regarded as an algebraic variety, and let σ(X+(Γε))
be the algebraic variety obtained from X+(Γε) by change of base field σ : C → C.
Consider the diagram:

X+ α←−−−− U; ;
X+(Γσε)

fσ←−−−− σ(X+(Γε))

Mσε
K

σ←−−−− Mε
K

The map σ sends (A, . . .) to σ(A, . . .), and the map fσ is the map of sets σP �→ σ ·P .
The two maps are compatible. The map U → σ(X+(Γε)) is the universal covering
space of the complex manifold (σ(X+(Γε)))an.

Fix a lattice Λ in V that is stable under the action of Γε. From the action of Γε

on Λ, we get a local system of Z-modules M on X+(Γε) (see 14.7), which, in fact,
is a polarized integral variation of hodge structures F . According to Theorem 14.8,
this variation of hodge structures arises from a polarized family of abelian varieties
f : A → X+(Γε). As f is a regular map of algebraic varieties, we can apply σ to
it, and obtain a polarized family of abelian varieties σf : σA → σ(X+(Γε)). Then
(R1(σf)∗Z)∨ is a polarized integral hodge structure on σ(X+(Γε)). On pulling this
back to U and tensoring with Q, we obtain a variation of polarized rational hodge
structures over the space U , whose underlying local system can identified with the
constant sheaf defined by V . When this identification is done correctly, each u ∈ U
defines a complex structure on V that is positive for ψ, i.e., a point x of X+, and
the map u �→ x makes the diagram commute. Now (2.15) shows that u �→ x is
holomorphic. It follows that fσ is holomorphic, and Borel’s theorem (3.14) shows
that it is regular.

Condition (c) of (14.6). For any x ∈ X, the set {[x, a]K | a ∈ G(Af )} has the
property that only the identity automorphism of ShK(G,X) fixes its elements (see
13.5). But, there are only finitely many automorphisms of ShK(G,X) (see 3.21),
and so a finite sequence of points [x, a1], . . . , [x, an] will have this property. When
we choose x to be special, the main theorem of complex multiplication (11.2) tells
us that σ · [x, ai] = [x, ai] for all σ fixing some fixed finite extension of E(x), and
so condition (c) holds for these points.

Simple PEL Shimura varieties of type A or C. The proof is similar to
the Siegel case. Here ShK(G,X) classifies quadruples (A, i, s, ηK) satisfying certain
conditions. One checks that if σ fixes the reflex field E(G,X), then σ(A, i, s, ηK)
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lies in the family again (see 12.7). Again the special points correspond to CM
abelian varieties, and the Shimura-Taniyama theorem shows that, if ShK(G,X) has
a model MK over E(G,X) for which the action of Aut(C/E(G,X)) on MK(C) =
ShK(G,X)(C) agrees with its action on the quadruples, then it is canonical.

Shimura varieties of hodge type. In this case, ShK(G,X) classifies isomor-
phism classes of triples (A, (si)0≤i≤n, ηK) where the si are hodge tensors. A proof
similar to that in the Siegel case will apply once we have defined σs for s a hodge
tensor on an abelian variety.

If the Hodge conjecture is true, then s is the cohomology class of some algebraic
cycle Z on A (i.e., formal Q-linear combination of integral subvarieties of A). Then
we could define σs to be the cohomology class of σZ on σA. Unfortunately, a proof
of the Hodge conjecture seems remote, even for abelian varieties. Deligne succeeded
in defining σs without the Hodge conjecture. It is important to note that there is no
natural map between Hn(A,Q) and Hn(σA,Q) (unless σ is continuous, and hence
is the identity or complex conjugation). However, there is a natural isomorphism
σ : Hn(A,Af ) → Hn(σA,Af ) coming from the identification

Hn(A,Af ) ∼= Hom(
n∧
Λ,Af ) ∼= Hom(

n∧
(Λ⊗ Af ),Af ) ∼= Hom(

n∧
VfA,Af )

(or, equivalently, from identifying Hn(A,Af ) with étale cohomology).

Theorem 14.13. Let s be a hodge tensor on an abelian variety A over C, and
let sAf

be the image of s the Af -cohomology. For any automorphism σ of C, there
exists a hodge tensor σs on σA (necessarily unique) such that (σs)Af

= σ(sAf
).

Proof. This is the main theorem of Deligne 1982. [Interestingly, the theory
of locally symmetric varieties is used in the proof.] �

As an alternative to using Deligne’s theorem, one can apply the following result
(note, however, that the above approach has the advantage of giving a description
of the points of the canonical model with coordinates in any field containing the
reflex field).

Proposition 14.14. Let (G,X) ↪→ (G′, X ′) be an inclusion of Shimura data;
if Sh(G′, X ′) has canonical model, so also does Sh(G,X).

Proof. This follows easily from 5.16. �

Shimura varieties of abelian type. Deligne (1979, 2.7.10) defines the notion
of a canonical model of a connected Shimura variety Sh◦(G,X). This is an inverse
system of connected varieties over Qal endowed with the action of a large group (a
mixture of a galois group and an adèlic group). A key result is the following.

Theorem 14.15. Let (G,X) be a Shimura datum and let X+ be a connected
component of X. Then Sh(G,X) has a canonical model if and only if Sh◦(Gder, X+)
has a canonical model.

Proof. See Deligne 1979, 2.7.13. �

Thus, for example, if (G1, X1) and (G2, X2) are Shimura data such that
(Gder

1 , X+
1 ) ≈ (G

der

2 , X+
2 ), and one of Sh (G1, X1) or Sh(G2, X2) has a canonical

model, then they both do.
The next result is more obvious (ibid. 2.7.11).
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Proposition 14.16. (a) Let (Gi, Xi) (1 ≤ i ≤ m) be connected Shimura data.
If each connected Shimura variety Sh◦(Gi, Xi) has a canonical model M◦(Gi, Xi),
then

∏
iM

◦(Gi, Xi) is a canonical model for Sh◦(
∏

iGi,
∏

iXi).
(b) Let (G1, X1) → (G2, X2) be an isogeny of connected Shimura data. If

Sh◦(G1, X1) has a canonical model, then so also does Sh◦(G2, X2).

More precisely, in case (b) of the theorem, let Gad(Q)+1 and Gad(Q)+2 be
the completions of Gad(Q)+ for the topologies defined by the images of congru-
ence subgroups in G1(Q)+ and G2(Q)+ respectively; then the canonical model for
Sh◦(G2, X2) is the quotient of the canonical model for Sh◦(G2, X2) by the kernel
of Gad(Q)+1 → Gad(Q)+2 .

We can now prove the existence of canonical models for all Shimura varieties
of abelian type. For a connected Shimura variety of primitive type, the existence
follows from (14.15) and the existence of canonical models for Shimura varieties of
hodge type (see above). Now (14.16) proves the existence for all connected Shimura
varieties of abelian type, and (14.16) proves the existence for all Shimura varieties
of abelian type.

Remark 14.17. The above proof is only an existence proof: it gives little in-
formation about the canonical model. For the Shimura varieties it treats, Theorem
9.4 can be used to construct canonical models and give a description of the points
of the canonical model in any field containing the reflex field.

General Shimura varieties. There is an approach that proves the existence
of canonical models for all Shimura varieties, and is largely independent of that
discussed above except that it assumes the existence18 of canonical models for
Shimura varieties of type A1 (and it uses (14.15) and (14.16)).

The essential idea is the following. Let (G,X) be a connected Shimura datum
with G the group over Q obtained from a simple group H over a totally real field
F by restriction of scalars.

Assume first that H splits over a CM-field of degree 2 over F . Then there exist
many homomorphisms Hi → H from groups of type A1 into H. From this, we get
many inclusions

Sh◦(Gi, Xi) ↪→ Sh◦(G,X)
where Gi is the restriction of scalars of Hi. From this, and the existence of canonical
models for the Sh◦(Gi, Xi), it is possible to prove the existence of the canonical
model for Sh◦(G,X).

In the general case, there will be a totally real field F ′ containing F and such
that HF ′ splits over a CM-field of degree 2 over F . Let G∗ be the restriction of
scalars of HF ′ . Then there is an inclusion (G,X) ↪→ (G∗, X∗) of connected Shimura
data, and the existence of a canonical model for Sh◦(G∗, X∗) implies the existence
of a canonical model for Sh◦(G,X) (cf. 14.14).

For the details, see Borovoi 1984, 1987 and Milne 1983.

Final remark: rigidity. One might expect that if one modified the condition
(54), for example, by replacing rx(s) with rx(s)−1, then one would arrive at a
modified notion of canonical model, and the same theorems would hold. This is
not true: the condition (54) is the only one for which canonical models can exist.

18In fact, the approach assumes a stronger statement for Shimura varieties of type A1, namely,
Langlands’s conjugation conjecture, and it proves Langlands’s conjecture for all Shimura varieties.
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In fact, if G is adjoint, then the Shimura variety Sh(G,X) has no automorphisms
commuting with the action of G(Af ) (Milne 1983, 2.7), from which it follows that
the canonical model is the only model of Sh(G,X) over E(G,X), and we know that
for the canonical model the reciprocity law at the special points is given by (54).

Notes. The concept of a canonical model characterized by reciprocity laws
at special points is due to Shimura, and the existence of such models was proved
for major families by Shimura, Miyake, and Shih. Shimura recognized that to
have a canonical model it is necessary to have a reductive group, but for him the
semisimple group was paramount: in our language, given a connected Shimura
datum (H,Y ), he asked for Shimura datum (G,X) such that (Gder, X+) = (H,Y )
and Sh(G,X) has a canonical model (see his talk at the 1970 International Congress
Shimura 1971). In his Bourbaki report on Shimura’s work (1971b), Deligne placed
the emphasis on reductive groups, thereby enlarging the scope of the field.

15. Abelian varieties over finite fields

For each Shimura datum (G,X), we now have a canonical model Sh(G,X)
of the Shimura variety over its reflex field E(G,X). In order, for example, to
understand the zeta function of the Shimura variety or the galois representations
occurring in its cohomology, we need to understand the points on the canonical
model when we reduce it modulo a prime of E(G,X). After everything we have
discussed, it would be natural to do this in terms of abelian varieties (or motives)
over the finite field plus additional structure. However, such a description will not
be immediately useful — what we want is something more combinatorial, which
can be plugged into the trace formula. The idea of Langlands and Rapoport (1987)
is to give an elementary definition of a category of “fake” abelian varieties (better,
abelian motives) over the algebraic closure of a finite field that looks just like the
true category, and to describe the points in terms of it. In this section, I explain
how to define such a category.

Semisimple categories. An object of an abelian category M is simple if it
has no proper nonzero subobjects. Let F be a field. By an F -category, I mean an
additive category in which the Hom-sets Hom(x, y) are finite dimensional F -vector
spaces and composition is F -bilinear. An F -category M is said to be semisimple
if it is abelian and every object is a direct sum (necessarily finite) of simple objects.

If e is simple, then a nonzero morphism e → e is an isomorphism. Therefore,
End(e) is a division algebra over F . Moreover, End(re) ∼= Mr(End(e)). Here re
denotes the direct sum of r copies of e. If e′ is a second simple object, then either
e ≈ e′ or Hom(e, e′) = 0. Therefore, if x =

∑
riei (ri ≥ 0) and y =

∑
siei (si ≥ 0)

are two objects of M expressed as sums of copies of simple objects ei with ei �≈ ej

for i �= j, then
Hom(x, y) =

∏
Msi,ri

(End(ei)).

Thus, the category M is described up to equivalence by:

(a) the set Σ(M) of isomorphism classes of simple objects in M;
(b) for each σ ∈ Σ, the isomorphism class [Dσ] of the endomorphism algebra

Dσ of a representative of σ.

We call (Σ(M), ([Dσ])σ∈Σ(M)) the numerical invariants of M.
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Division algebras; the Brauer group. We shall need to understand what
the set of isomorphism classes of division algebras over a field F look like.

Recall the definitions: by an F -algebra, we mean a ring A containing F in
its centre and finite dimensional as F -vector space; if F equals the centre of A,
then A is called a central F -algebra; a division algebra is an algebra in which
every nonzero element has an inverse; an F -algebra A is simple if it contains no
two-sided ideals other than 0 and A. By a theorem of Wedderburn, the simple
F -algebras are the matrix algebras over division F -algebras.

Example 15.1. (a) If F is algebraically closed or finite, then every central
division algebra is isomorphic to F .

(b) Every central division algebra over R is isomorphic either to R or to the
(usual) quaternion algebra:

H = C⊕ Cj, j2 = −1, jzj−1 = z (z ∈ C).

(c) Let F be a p-adic field (finite extension of Qp), and let π be a prime
element of OF . Let L be an unramified extension field of F of degree n,
and let σ denote the Frobenius generator of Gal(L/F ) — σ acts as x �→ xp

on the residue field. For each i, 1 ≤ i ≤ n, define

Di,n = L⊕ La⊕ · · · ⊕ Lan−1, an = πi, aza−1 = σ(z) (z ∈ L).

Then Di,n is a central simple algebra over F , which is a division algebra
if and only if gcd(i, n) = 1. Every central division algebra over F is
isomorphic to Di,n for exactly one relatively prime pair (i, n) (CFT, IV
4.2).

If B and B′ are central simple F -algebras, then so also is B⊗F B′ (CFT, 2.8).
If D and D′ are central division algebras, then Wedderburn’s theorem shows that
D ⊗F D′ ≈ Mr(D′′) for some r and some central division algebra D′′ well-defined
up to isomorphism, and so we can set

[D][D′] = [D′′].

This law of composition is obviously, and [F ] is an identity element. Let Dopp

denote the opposite algebra to D (the same algebra but with the multiplication
reversed: aoppbopp = (ba)opp). Then (CFT, IV 2.9)

D ⊗F Dopp ∼= EndF -linear(D) ≈Mr(F ),

and so [D][Dopp] = [F ]. Therefore, the isomorphism classes of central division
algebras over F (equivalently, the isomorphism classes of central simple algebras
over F ) form a group, called the Brauer group of F .

Example 15.2. (a) The Brauer group of an algebraically closed field or
a finite field is zero.

(b) The Brauer group R has order two: Br(R) ∼= 1
2Z/Z.

(c) For a p-adic field F , the map [Dn,i] �→ i
n mod Z is an isomorphism

Br(F ) ∼= Q/Z.
(d) For a number field F and a prime v, write invv for the canonical homomor-

phism Br(Fv) → Q/Z given by (a,b,c) (so invv is an isomorphism except
when v is real or complex, in which case it has image 1

2Z/Z or 0). For a
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central simple algebra B over F , [B ⊗F Fv] = 0 for almost all v, and the
sequence

0 −−−−→ Br(F )
[B] �→[B⊗F Fv ]−−−−−−−−−→ ⊕Br(Fv)

P

invv−−−−→ Q/Z −−−−→ 0.

is exact.

Statement (d) is shown in the course of proving the main theorem of class
field theory by the cohomological approach (CFT, VIII 2.2). It says that to give
a division algebra over F (up to isomorphism) is the same as to give a family
(iv) ∈

⊕
v finiteQ/Z⊕

⊕
v real

1
2Z/Z such that

∑
iv = 0.

The key tool in computing Brauer groups is an isomorphism

Br(F ) ∼= H2(F,Gm) df= H2(Gal(F al/F ), F al×) df= lim−→H2(Gal(L/F ), L×).

The last limit is over the fields L ⊂ F al of finite degree and galois over Q. This
isomorphism can be most elegantly defined as follows. Let D be a central simple
division of degree n2 over F , and assume that D contains a subfield L of degree
n over F and galois over F . Then each β ∈ D normalizing L defines an element
x �→ βxβ−1 of Gal(L/F ), and the Noether-Skolem theorem (CFT, IV 2.10) shows
that every element of Gal(L/F ) arises in this way. Because L is its own centralizer
(ibid., 3.4), the sequence

1 → L× → N(L) → Gal(L/F ) → 1

is exact. For each σ ∈ Gal(L/F ), choose an sσ ∈ N(L) mapping to σ, and let

sσ · sτ = dσ,τ · sστ , dσ,τ ∈ L×.

Then (dσ,τ ) is a 2-cocycle whose cohomology class is independent of the choice of
the family (sσ). Its class in H2(Gal(L/F ), L×) ⊂ H2(F,Gm) is the cohomology
class of [D].

Example 15.3. Let L be the completion of Qun
p (equal to the field of fractions

of the ring of Witt vectors with coefficients in F), and let σ be the automorphism
of L inducing x �→ xp on its residue field. An isocrystal is a finite dimensional
L-vector space V equipped with a σ-linear isomorphism F : V → V . The category
Isoc of isocrystals is a semisimple Qp-linear category with Σ(Isoc) = Q, and the
endomorphism algebra of a representative of the isomorphism class λ is a division
algebra over Qp with invariant λ. If λ ≥ 0, λ = r/s, gcd(r, s) = 1, s > 0, then Eλ

can be taken to be (Qp/(T r − ps))⊗Qp
L, and if λ < 0, Eλ can be taken to be the

dual of E−λ. See Demazure 1972, Chap. IV.

Abelian varieties. Recall (p334) that AV0(k) is the category whose objects
are the abelian varieties over k, but whose homs are Hom0(A,B) = Hom(A,B)⊗Q.
It follows from results of Weil that AV0(k) is a semisimple Q-category with the
simple abelian varieties (see p334) as its simple objects. Amazingly, when k is
finite, we know its numerical invariants.

Abelian varieties over Fq, q = pn. Recall that a Weil q-integer is an algebraic
integer such that, for every embedding ρ : Q[π] → C, |ρπ| = q

1
2 . Two Weil q-integers

π and π′ are conjugate if there exists an isomorphism Q[π] → Q[π′] sending π to
π′.
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Theorem 15.4 (Honda-Tate). The map A �→ πA defines a bijection from
Σ(AV(Fq)) to the set of conjugacy classes of Weil q-integers. For any simple A,
the centre of D =df End0(A) is F = Q[πA], and for a prime v of F ,

invv(D) =


1
2 if v is real
ordv(πA)
ordv(q) [Fv : Qp] if v|p

0 otherwise.

Moreover, 2 dimA = [D : F ]
1
2 · [F : Q].

In fact, Q[π] can only have a real prime if π =
√
pn. Let W1(q) be the set of

Weil q-integers in Qal ⊂ C. Then the theorem gives a bijection

Σ(AV0(Fq)) → Γ\W1(q), Γ = Gal(Qal/Q).

Notes. Except for the statement that every πA arises from an A, the theorem
is due to Tate. That every Weil q-integer arises from an abelian variety was proved
(using 10.10) by Honda. See Tate 1969 for a discussion of the theorem.

Abelian varieties over F. We shall need a similar result for an algebraic closure
F of Fp.

If π is a Weil pn-integer, then πm is a Weil pmn-integer, and so we have a
homomorphism π �→ πm : W1(pn) →W1(pnm). Define

W1 = lim−→W1(pn).

If π ∈ W1 is represented by πn ∈ W1(pn), then πm
n ∈ W1(pnm) also represents π,

and Q[πn] ⊃ Q[πm
n ]. Define Q{π} to be the field of smallest degree over Q generated

by a representative of π.
Every abelian variety over F has a model defined over a finite field, and if

two abelian varieties over a finite field become isomorphic over F, then they are
isomorphic already over a finite field. Let A be an abelian variety over Fq. When
we regard A as an abelian variety over Fqm , then the Frobenius map is raised to
the mth-power (obviously): πAFqm

= πm
A .

Let A be an abelian variety defined over F, and let A0 be a model of A over
Fq. The above remarks show that sA(v) =df

ordv(πA0
)

ordv(q) is independent of the choice
of A0. Moreover, for any ρ : Q[πA0 ] ↪→ Qal, the Γ-orbit of the element πA of W1

represented by ρπA0 depends only on A.

Theorem 15.5. The map A �→ ΓπA defines a bijection Σ(AV0(F)) → Γ\W1.
For any simple A, the centre of D =df End0(A) is isomorphic to F = Q{πA}, and
for any prime v of F ,

invv(D) =


1
2 if v is real
sA(v) · [Fv : Qp] if v|p
0 otherwise.

Proof. This follows from the Honda-Tate theorem and the above discussion.
�

Our goal in the remainder of this section is to give an elementary construction
of a semisimple Q-category that contains, in a natural way, a category of “fake
abelian varieties over F” with the same numerical invariants as AV0(F).

For the remainder of this section F is a field of characteristic zero.
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Tori and their representations. Let T be a torus over F split by a ga-
lois extension L/F with galois group Γ. As we noted on p276, to give a repre-
sentation ρ of T on an F -vector space V amounts to giving an X∗(T )-grading
V (L) =

⊕
χ∈X∗(T )Vχ of V (L) with the property that σVχ = Vσχ for all σ ∈ Γ and

χ ∈ X∗(T ). In this, L/F can be an infinite galois extension.

Proposition 15.6. Let Γ = Gal(F al/F ). The category of representations
Rep(T ) of T on F -vector spaces is semisimple. The set of isomorphism classes
of simple objects is in natural one-to-one correspondence with the orbits of Γ acting
on X∗(T ), i.e., Σ(Rep(T )) = Γ\X∗(T ). If VΓχ is a simple object corresponding to
Γχ, then dim(VΓχ) is the order of Γχ, and

End(Vχ) ≈ F (χ)

where F (χ) is the fixed field of the subgroup Γ(χ) of Γ fixing χ.

Proof. Follows easily from the preceding discussion. �

Remark 15.7. Let χ ∈ X∗(T ), and let Γ(χ) and F (χ) be as in the proposition.
Then Hom(F (χ), F al) ∼= Γ/Γ(χ), and so X∗((Gm)F (χ)/F ) = ZΓ/Γ(χ). The map∑

nσσ �→
∑

nσσχ : ZΓ/Γ(χ) → X∗(T )

defines a homorphism

(58) T → (Gm)F (χ)/F .

From this, we get a homomorphism of cohomology groups

H2(F, T ) → H2(F, (Gm)F (χ)/F ).

But Shapiro’s lemma (CFT, II 1.11) shows that H2(F,(Gm)F (χ)/F )∼=H2(F (χ),Gm),
which is the Brauer group of F (χ). On composing these maps, we get a homomor-
phism

(59) H2(F, T ) → Br(F (χ)).

The proposition gives a natural construction of a semisimple category M with
Σ(M) = Γ\N , where N is any finitely generated Z-module equipped with a con-
tinuous action of Γ. However, the simple objects have commutative endomorphism
algebras. To go further, we need to look at new type of structure.

Affine extensions. Let L/F be a Galois extension of fields with Galois group
Γ, and let G be an algebraic group over F . In the following, we consider only
extensions

1 → G(L) → E → Γ → 1
in which the action of Γ on G(L) defined by the extension is the natural action,
i.e.,

if eσ �→ σ, then eσge
−1
σ = σg (eσ ∈ E, σ ∈ Γ, g ∈ T (F al)).

For example, there is always the split extension EG =df G(L) � Γ.
An extension E is affine if its pull-back to some open subgroup of Γ is split.

Equivalently, if for the σ in some open subgroup of Γ, there exist eσ �→ σ such that
eστ = eσeτ . We sometimes call such an E an L/F -affine extension with kernel G.

Consider an extension

1 → T → E → Γ → 1
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with T commutative. If E is affine, then it is possible to choose the eσ’s so that
the 2-cocycle d : Γ× Γ → T (L) defined by

eσeτ = dσ,τeσeτ , dσ,τ ∈ T (F al).

is continuous. Thus, in this case E defines a class cl(E) ∈ H2(F, T ).
A homomorphism of affine extensions is a commutative diagram

1 −−−−→ G1(L) −−−−→ E1 −−−−→ Γ −−−−→ 1; ;φ

∥∥∥
1 −−−−→ G2(L) −−−−→ E2 −−−−→ Γ −−−−→ 1

such that the restriction of the homomorphism φ to G1(L) is defined by a homo-
morphism of algebraic groups (over L). A morphism φ → φ′ of homomorphisms
E1 → E2 is an element of g of G2(L) such that ad(g) ◦ φ = φ′, i.e., such that

g · φ(e) · g−1 = φ′(e), all e ∈ E1.

For a vector space V over F , let EV be the split affine extension defined by the
algebraic group GL(V ). A representation of an affine extension E is a homomor-
phism E → EV .

Remark 15.8. To give a representation of EG on EV is the same as to give
a representation of G on V . More precisely, the functor Rep(G) → Rep(EG) is an
equivalence of categories. The proof of this uses that H1(F,GL(V )) = 1.

Proposition 15.9. Let E be an L/F -affine extension whose kernel is a torus
T split by L. The category Rep(E) is a semisimple F -category with Σ(Rep(E)) =
Γ\X∗(T ). Let VΓχ be a simple representation of E corresponding to Γχ ∈ Γ\X∗(T ).
Then, D = End(VΓχ

) has centre F (χ), and its class in Br(F (χ)) is the image of
cl(E) under the homomorphism (59).

Proof. Omitted (but it is not difficult). �

We shall also need to consider affine extensions in which the kernel is allowed
to be a protorus, i.e., the limit of an inverse system of tori. For T = lim←−Ti,
X∗(T ) = lim−→X∗(Ti), and T �→ X∗(T ) defines an equivalence from the category
of protori to the category of free Z-modules with a continuous action of Γ. Here
continuous means that every element of the module is fixed by an open subgroup
of Γ. Let L = F al. By an affine extension with kernel T , we mean an exact
sequence

1 → T (F al) → E → Γ → 1

whose push-out
1 → Ti(F al) → Ei → Γ → 1

by T (F al) → Ti(F al) is an affine extension in the previous sense. A representation
of such an extension is defined exactly as before.

Remark 15.10. Let
L

⊂
L′

F

Γ

⊂
F ′

Γ′
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be a diagram of fields in which L′/F ′ is Galois with group Γ′. From an L/F -affine
extension

1 → G(L) → E → Γ → 1

with kernel G we obtain an L′/F ′-affine extension

1 → G(L′) → E′ → Γ′ → 1

with kernel GF ′ by pulling back by σ �→ σ|L : Γ′ → Γ and pushing out by G(L) →
G(L′)).

Example 15.11. Let Qun
p be a maximal unramified extension of Qp, and let

Ln be the subfield of Qun
p of degree n over Qp. Let Γn = Gal(Ln/Qp), let D1,n be

the division algebra in (15.1c), and let

1 → L×
n → N(L×

n ) → Γn → 1

be the corresponding extension. Here N(L×
n ) is the normalizer of L×

n in D1,n:

N(L×
n ) =

⊔
0≤i≤n−1L

×
n a

i.

This is an Ln/Qp-affine extension with kernel Gm. On pulling back by Γ → Γn and
pushing out by L×

n → Qun×
p , we obtain a Qun×

p /Qp-affine extension Dn with kernel
Gm. From a representation of Dn we obtain a vector space V over Qun

p equipped
with a σ-linear map F (the image of (1, a) is (F, σ)). On tensoring this with the
completion L of Qun

p , we obtain an isocrystal that can be expressed as a sum of
Eλ’s with λ ∈ 1

nZ.
Note that there is a canonical section to N(L×

n ) → Γn, namely, σi �→ ai, which
defines a canonical section to Dn → Γ.

There is a homomorphism Dnm → Dn whose restriction to the kernel is mul-
tiplication by m. The inverse limit of this system is a Qun

p /Qp-affine extension D

with kernel G =df lim←−Gm. Note that X∗(G) = lim−→
1
nZ/Z = Q. There is a natural

functor from Rep(D) to the category of isocrystals, which is faithful and essentially
surjective on objects but not full. We call D the Dieudonné affine extension.

The affine extension P. Let W (pn) be the subgroup of Qal× generated by
W1(pn), and let W = lim−→W (pn). Then W is a free Z-module of infinite rank with
a continuous action of Γ = Gal(Qal/Q). For π ∈ W , we define Q{π} to be the
smallest field generated by a representative of π. If π is represented by πn ∈W (pn)
and |ρ(πn)| = (pn)m/2, we say that π has weight m and we write

sπ(v) =
ordv(πn)
ordv(q)

.

Theorem 15.12. Let P be the protorus over Q with X∗(P ) = W . Then there
exists an affine extension

1 → P (Qal) → P → Γ → 1

such that

(a) Σ(Rep(P)) = Γ\W ;
(b) for π ∈ W , let D(π) = End(VΓπ) where VΓπ is a representation corre-

sponding to Γπ; then D(π) is isomorphic to the division algebra D with
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centre Q{π} and the invariants

invv(D) =

 ( 1
2 )wt(π) if v is real

sπ(v) · [Q{π}v : Qp] if v|p
0 otherwise.

Moreover, P is unique up to isomorphism.

Proof. Let c(π) denote the class in Br(Q{π}) of the division algebra D in (b).
To prove the result, we have to show that there exists a unique class in H2(Q, P )
mapping to c(π) in Br(Q{π}) for all π:

c �→ (c(π)) : H2(Q, P )
(59)→
∏

Γπ∈Γ\W Br(Q{π}).
This is an exercise in galois cohomology, which, happily, is easier than it looks. �

We call a representation of P a fake motive over F, and a fake abelian
variety if its simple summands correspond to π ∈ Γ\W1. Note that the category of
fake abelian varieties is a semisimple Q-category with the same numerical invariants
as AV0(F).

The local form Pl of P. Let l be a prime of Q, and choose a prime wl of Qal

dividing l. Let Qal
l be the algebraic closure of Ql in the completion of Qal at wl.

Then Γl =df Gal(Qal
l /Ql) is a closed subgroup of Γ =df Gal(Qal/Q), and we have

a diagram

(60)

Qal Qal
l

Q

Γ

Ql.

Γl

From P we obtain a Qal
l /Ql-affine extension P(l) by pulling back by Γl → Γ and

pushing out by P (Qal) → P (Qal
l ) (cf. 15.10).

The Q�-space attached to a fake motive. Let � �= p,∞ be a prime of Q.

Proposition 15.13. There exists a continuous homomorphism ζ� making
Γ�


���ζ� ||

1 � P (Qal
� ) � P(�) � Γ�

� 1
commute.

Proof. To prove this, we have to show that the cohomology class of P in
H2(Q, P ) maps to zero in H2(Q�, P ), but this is not difficult. �

Fix a homomorphism ζ� : Γ� → P(�) as in the diagram. Let ρ : P → EV be a
fake motive. From ρ, we get a homomorphism

ρ(�) : P(�) → GL(V (Qal
� )) � Γ�.

For σ ∈ Γ�, let (ρ(�) ◦ ζ�)(σ) = (eσ, σ). Because ζ� is a homomorphism, the
automorphisms eσ of V (Qal

� ) satisfy

eσ ◦ σeτ = eστ , σ, τ ∈ Γ�,

and so
σ · v = eσ(σv)
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is an action of Γ� on V (Qal
� ), which one can check to be continuous. Therefore

(AG 16.14), V�(ρ) =df V (Q
al

� )Γ� is a Q�-structure on V (Qal
� ). In this way, we get a

functor ρ �→ V�(ρ) from the category of fake motives over F to vector spaces over
Q�.

The ζ� can be chosen in such a way that the spaces V�(ρ) contain lattices Λ�(ρ)
that are well-defined for almost all � �= p, which makes it possible to define

V p
f (ρ) =

∏
� �=p,∞(V�(ρ) : Λ�(ρ)).

It is a free module over Ap
f =df

∏
� �=p,∞(Q� : Z�).

The isocrystal of a fake motive. Choose a prime wp of Qal dividing p, and let
Qun

p and Qal
p denote the subfields of the completion of Qal at wp. Then Γp =df

Gal(Qal
p /Qp) is a closed subgroup of Γ =df Gal(Qal/Q) and Γun

p =df Gal(Qun
p /Qp)

is a quotient of Γp.

Proposition 15.14. (a) The affine extension P(p) arises by pull-back and
push-out from a Qun

p /Qp-affine extension P(p)un.
(b) There is a homomorphism of Qun

p /Qp-extensions D → P(p)un whose re-
striction to the kernels, G → PQp

, corresponds to the map on characters π �→
sπ(wp) : W → Q.

Proof. (a) This follows from the fact that the image of the cohomology class
of P in H2(Γp, P (Qal

p )) arises from a cohomology class in H2(Γun
p , P (Qun

p )).
(b) This follows from the fact that the homomorphism H2(Qp,G)→H2(Qp,PQp

)
sends the cohomology class of D to that of P(p)un. �

In summary:

1 −−−−→ Gm(Qun
p ) −−−−→ D −−−−→ Γun

p −−−−→ 1; ; ∥∥∥
1 −−−−→ P (Qun

p ) −−−−→ P(p)un −−−−→ Γun
p −−−−→ 1; ...
>

1 −−−−→ P (Qal
p ) −−−−→ P(p) −−−−→ Γp −−−−→ 1

A fake motive ρ : P → EV gives rise to a representation of P(p), which arises
from a representation of P(p)un (cf. the argument in the preceding subsubsection).
On composing this with the homomorphism D → P(p)un, we obtain a representa-
tion of D, which gives rise to an isocrystal D(ρ) as in (15.11).

Abelian varieties of CM-type and fake abelian varieties. We saw in (10.5) that
an abelian variety of CM-type over Qal defines an abelian variety over F. Does it
also define a fake abelian variety? The answer is yes.

Proposition 15.15. Let T be a torus over Q split by a CM-field, and let µ be a
cocharacter of T such that µ+ ιµ is defined over Q (here ι is complex conjugation).
Then there is a homomorphism, well defined up to isomorphism,

φµ : P → ET .

Proof. Omitted. �
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Let A be an abelian variety of CM-type (E,Φ) over Qal, and let T = (Gm)E/Q.
Then Φ defines a cocharacter µΦ of T (see 12.4(b)), which obviously satisfies the
conditions of the proposition. Hence we obtain a homomorphism φ : P → ET . Let
V = H1(A,Q). From φ and the representation ρ of T on V we obtain a fake abelian
variety ρ ◦ φ such that V�(ρ ◦ φ) = H1(A,Q�) (obvious) and D(ρ) is isomorphic to
the Dieudonné module of the reduction of A (restatement of the Shimura-Taniyama
formula).

Aside 15.16. The category of fake abelian varieties has similar properties to
AV0(F). By using the Q�-spaces and the isocrystals attached to a fake abelian
variety, it is possible to define a Z-linear category with properties similar to AV(F).

Notes. The affine extension P is defined in Langlands and Rapoport 1987,
§§1–3, where it is called “die pseudomotivische Galoisgruppe”. There an affine ex-
tension is called a Galoisgerbe although, rather than a gerbe, it can more accurately
be described as a concrete realizations of a groupoid. See also Milne 1992. In the
above, I have ignored uniqueness questions, which can be difficult (see Milne 2003).

16. The good reduction of Shimura varieties

We now write ShK(G,X), or just ShK , for the canonical model of the Shimura
variety over its reflex field.

The points of the Shimura variety with coordinates in the algebraic
closure of the rational numbers. When we have a description of the points of
the Shimura variety over C in terms of abelian varieties or motives plus additional
data, then the same description holds over Qal. For example, for the Siegel modular
variety attached to a symplectic space (V, ψ), ShK(Qal) classifies the isomorphism
classes of triples (A, s, ηK) in which A is an abelian variety defined over Qal, s is
an element of NS(A) ⊗ Q containing a Q×-multiple of an ample divisor, and η is
a K-orbit of isomorphisms V (Af ) → Vf (A) sending ψ to an A×

f -multiple of the
pairing defined by s. Here NS(A) is the Nèron-Severi group of A (divisor classes
modulo algebraic equivalence).

On the other hand, I do not know a description of ShK(Qal) when, for example,
Gad has factors of type E6 or E7 or mixed type D. In these cases, the proof of the
existence of a canonical model is quite indirect.

The points of the Shimura variety with coordinates in the reflex
field. Over E = E(G,X) the following additional problem arises. Let A be an
abelian variety over Qal. Suppose we know that σA is isomorphic to A for all
σ ∈ Gal(Qal/E). Does this imply that A is defined over E? Choose an isomorphism
fσ : σA → A for each σ fixing E. A necessary condition that the fσ arise from a
model over E is that they satisfy the cocycle condition: fσ ◦ σfτ = fστ . Of course,
if the cocycle condition fails for one choice of the fσ’s, we can try another, but
there is an obstruction to obtaining a cocycle which lies in the cohomology set
H2(Gal(Qal/E),Aut(A)).

Certainly, this obstruction would vanish if Aut(A) were trivial. One may hope
that the automorphism group of an abelian variety (or motive) plus data in the
family classified by ShK(G,X) is trivial, at least when K is small. This is so when
condition SV5 holds, but not otherwise.
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In the Siegel case, the centre of G is Gm and so SV5 holds. Therefore, provided
K is sufficiently small, for any field L containing E(G,X), ShK(L) classifies triples
(A, s, ηK) satisfying the same conditions as when L = Qal. Here A an abelian
variety over L, s ∈ NS(A)⊗Q, and η is an isomorphism V (Af ) → Vf (A) such that
ηK is stable under the action of Gal(Lal/L).

In the Hilbert case (4.14), the centre of G is (Gm)F/Q for F a totally real field
and SV5 fails: F× is not discrete in A×

F,f because every nonempty open subgroup
of A×

F,f will contain infinitely many units. In this case, one has a description
of ShK(L) when L is algebraically closed, but otherwise all one can say is that
ShK(L) = ShK(Lal)Gal(Lal/L).

Hyperspecial subgroups. The modular curve Γ0(N)\H1 is defined over Q,
and it has good reduction at the primes not dividing the level N and bad reduction
at the others. Before explaining what is known in general, we need to introduce
the notion of a hyperspecial subgroup.

Definition 16.1. Let G be a reductive group over Q (over Qp will do). A
subgroup K ⊂ G(Qp) is hyperspecial if there exists a flat group scheme G over Zp

such that
◦ GQp

= G (i.e., G extends G to Zp);
◦ GFp

is a connected reductive group (necessarily of the same dimension as
G because of flatness);

◦ G(Zp) = K.

Example 16.2. Let G = GSp(V, ψ). Let Λ be a lattice in V (Qp), and let Kp

be the stabilizer of Λ. Then Kp is hyperspecial if the restriction of ψ to Λ×Λ takes
values in Zp and is perfect (i.e., induces an isomorphism Λ → Λ∨; equivalently,
induces a nondegenerate pairing Λ/pΛ× Λ/pΛ → Fp). In this case, GFp

is again a
group of symplectic similitudes over Fp (at least if p �= 2).

Example 16.3. In the PEL-case, in order for there to exist a hyperspecial
group, the algebra B must be unramified above p, i.e., B⊗Q Qp must be a product
of matrix algebras over unramified extensions of Qp. When this condition holds,
the description of the hyperspecial groups is similar to that in the Siegel case.

There exists a hyperspecial subgroup in G(Qp) if and only if G is unramified
over Qp, i.e., quasisplit over Qp and split over an unramified extension.

For the remainder of this section we fix a hyperspecial subgroup Kp ⊂ G(Qp),
and we write Shp(G,X) for the family of varieties ShKp×Kp

(G,X) with Kp running
over the compact open subgroups of G(Ap

f ). The group G(Ap
f ) acts on the family

Shp(G,X).

The good reduction of Shimura varieties. Roughly speaking, there are
two reasons a Shimura variety may have bad reduction at a prime dividing p: the
reductive group itself may be ramified at p or p may divide the level. For example,
the Shimura curve defined by a quaternion algebra B over Q will have bad reduction
at a prime p dividing the discriminant of B, and (as we noted above) Γ0(N)\H1 has
bad reduction at a prime dividing N . The existence of a hyperspecial subgroup Kp

forces G to be unramified at p, and by considering only the varieties ShKpKp
(G,X)

we avoid the second problem.
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Theorem 16.4. Let Shp(G,X) be the inverse system of varieties over E(G,X)
defined by a Shimura datum (G,X) of abelian type and a hyperspecial subgroup
Kp ⊂ G(Qp). Then, except possibly for some small set of primes p depending only
on (G,X), Shp(G,X) has canonical good reduction at every prime p of E(G,X)
dividing p, .

Remark 16.5. Let Ep be the completion of E at p, let Ôp be the ring of
integers in Ep, and let k(p) be the residue field Ôp/p.

(a) By Shp(G,X) having good reduction p, we mean that the inverse system

(ShKpKp
(G,X))Kp , Kp ⊂ G(Ap

f ) compact open, Kp fixed,

extends to an inverse system of flat schemes Sp = (SKp) over Ôp whose reduction
modulo p is an inverse system of varieties (ShKpKp

(G,X))Kp over k(p) such that,
for Kp ⊃ K ′p sufficiently small,

ShKpKp
← ShK′pKp

is an étale map of smooth varieties. We require also that the action of G(Ap
f ) on

Shp extends to an action on Sp.
(b) A variety over Ep may not have good reduction to a smooth variety over

k(p) — this can already be seen for elliptic curves — and, when it does it will
generally have good reduction to many different smooth varieties, none of which is
obviously the best. For example, given one good reduction, one can obtain another
by blowing up a point in its closed fibre. By Shp(G,X) having canonical good
reduction at p, I mean that, for any formally smooth scheme T over Ôp,

(61) HomÔp
(T, lim←−

Kp

SKp) ∼= HomEp
(TEp

, lim←−
Kp

ShKpKp
).

A smooth scheme is formally smooth, and an inverse limit of schemes étale over a
smooth scheme is formally smooth. As lim←−SKp is formally smooth over Ôp, (61)
characterizes it uniquely up to a unique isomorphism (by the Yoneda lemma).

(c) In the Siegel case, Theorem 16.4 was proved by Mumford (his Fields medal
theorem; Mumford 1965). In this case, the SKp and ShKpKp

are moduli schemes.
The PEL-case can be considered folklore in that several authors have deduced it
from the Siegel case and published sketches of proof, the most convincing of which
is in Kottwitz 1992. In this case, Sp(G,X) is the zariski closure of Shp(G,X)
in Sp(G(ψ), X(ψ)) (cf. 5.16), and it is a moduli scheme. The hodge case19 was
proved by Vasiu (1999) except for a small set of primes. In this case, Sp(G,X) is
the normalization of the zariski closure of Shp(G,X) in Sp(G(ψ), X(ψ)). The case
of abelian type follows easily from the hodge case.

(d) That Shp should have good reduction when Kp is hyperspecial was conjec-
tured in Langlands 1976, p411. That there should be a canonical model character-
ized by a condition like that in (b) was conjectured in Milne 1992, §2.

19Over the reflex field, Shimura varieties of hodge type are no more difficult than Shimura
varieties of PEL-type, but when one reduces modulo a prime they become much more difficult

for two reasons: general tensors are more difficult to work with than endomorphisms, and little is
known about hodge tensors in characteristic p.
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Definition of the Langlands-Rapoport set. Let (G,X) be a Shimura da-
tum for which SV4,5,6 hold, and let

Shp(C) = Sh(C)/Kp = lim←−
Kp

ShKpKp
(G,X)(C).

For x ∈ X, let I(x) be the subgroup G(Q) fixing x, and let

S(x) = I(x)\Xp(x)×Xp(x), Xp(x) = G(Ap
f ), Xp(x) = G(Qp)/Kp.

One sees easily that there is a canonical bijection of sets with G(Ap
f )-action⊔

S(x) → Shp(C)

where the left hand side is the disjoint union over a set of representatives for
G(Q)\X. This decomposition has a modular interpretation. For example, in the
case of a Shimura variety of hodge type, the set S(x) classifies the family of iso-
morphism classes of triples (A, (si), ηK) with (A, (si)) isomorphic to a fixed pair.

Langlands and Rapoport (1987, 5e) conjecture that Shp(F) has a similar de-
scription except that now the left hand side runs over a set of isomorphism classes
of homomorphisms φ : P → EG. Recall that an isomorphism from one φ to a second
φ′ is an element g of G(Qal) such that

φ′(p) = g · φ(p) · g−1, all p ∈ P.

Such a φ should be thought of as a “pre fake abelian motive with tensors”. Specif-
ically, if we fix a faithful representation G ↪→ GL(V ) and tensors ti for V such
that G is the subgroup of GL(V ) fixing the ti, then each φ gives a representation
P → GL(V (Qal)) � Γ (i.e., a fake abelian motive) plus tensors.

Definition of the set S(φ). We now fix a homomorphism φ : P → EG and define
a set S(φ) equipped with a right action of G(Ap

f ) and a commuting Frobenius
operator Φ.

Definition of the group I(φ). The group I(φ) is defined to be the group of
automorphisms of φ,

I(φ) = {g ∈ G(Qal) | ad(g) ◦ φ = φ}.
Note that if ρ : G → GL(V ) is a faithful representation of G, then ρ ◦ φ is a fake
motive and I(φ) ⊂ Aut(ρ ◦ φ) (here we have abbreviated ρ � 1 to ρ).

Definition of Xp(φ). Let � be a prime �= p,∞. We choose a prime w� of Qal

dividing �, and define Qal
� and Γ� ⊂ Γ as on p364.

Regard Γ� as an Qal
� /Q�-affine extension with trivial kernel, and write ξ� for

the homomorphism

σ �→ (1, σ) : Γ� → EG(�), EG(�) = G(Qal
� ) � Γ�.

From φ we get a homomorphism φ(�) : P(�) → EG(�), and, on composing
this with the homomorphism ζ� : Γ� → P(�) provided by (15.13), we get a second
homomorphism Γ� → EG(�).

Define
X�(φ) = Isom(ξ�, ζ� ◦ φ(�)).

Clearly, Aut(ξ�) = G(Q�) acts on X�(φ) on the right, and I(φ) acts on the left. If
X�(φ) is nonempty, then the first action makes X�(φ) into a principal homogeneous
space for G(Q�).

Note that if ρ : G→ GL(V ) is a faithful representation of G, then

(62) X�(φ) ⊂ Isom(V (Q�), V�(ρ ◦ φ)).
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By choosing the ζ� judiciously (cf. p365), we obtain compact open subspaces
of the X�(φ), and we can define Xp(φ) to be the restricted product of the X�(φ).
If nonempty, it is a principal homogeneous space for G(Ap

f ).
Definition of Xp(φ). We choose a prime wp of Qal dividing p, and we use the

notations of p365. We let L denote the completion of Qun
p , and we let OL denote

the ring of integers in L (it is the ring of Witt vectors with coefficients in F). We
let σ Frobenius automorphism of Qun

p or L that acts as x �→ xp on the residue field.
From φ and (15.14), we have homomorphisms

D −→ P(p)un φ(p)un

−→ G(Qun
p ) � Γun

p .

For some n, the composite factors through Dn. There is a canonical element in Dn

mapping to σ, and we let (b, σ) denote its image in G(Qun
p ) � Γun

p . The image b(φ)
of b in G(L) is well-defined up to σ-conjugacy, i.e., if b(φ)′ also arises in this way,
then b(φ)′ = g−1 · b(φ) · σg.

Note that if ρ : G → GL(V ) is a faithful representation of G, then D(φ ◦ ρ) is
V (L) with F acting as v �→ b(φ)σv.

Recall p344 that we have a well-defined G(Qal)-conjugacy class c(X) of cochar-
acters of GQal . We can transfer this to conjugacy class of cocharacters of GQal

p
,

which contains an element µ defined over Qun
p (see 12.3; G splits over Qun

p because
we are assuming it contains a hyperspecial group). Let

Cp = G(OL) · µ(p) ·G(OL).

Here we are writing G(OL) for G(OL) with G as in the definition of hyperspecial.
Define

Xp(φ) = {g ∈ G(L)/G(OL) | g−1 · b(φ) · g ∈ Cp}.
There is a natural action of I(φ) on this set.

Definition of the Frobenius element Φ. For g ∈ Xp(φ), define

Φ(g) = b(φ) · σb(φ) · · · · · σm−1b(φ) · σmg

where m = [Ev : Qp].
The set S(φ). Let

S(φ) = I(φ)\Xp(φ)×Xp(φ).

Since I(φ) acts on both Xp(φ) and Xp(φ), this makes sense. The group G(Ap
f ) acts

on S(φ) through its action on Xp(φ) and Φ acts through its action on Xp(φ).
The admissibility condition. The homomorphisms φ : P → EG contributing to

the Langlands-Rapoport set must satisfy an admissibility condition at each prime
plus one global condition.

The condition at ∞. Let E∞ be the extension

1 → C× → E∞ → Γ∞ → 1, Γ∞ = Gal(C/R) = 〈ι〉
associated with the quaternion algebra H, and regard it as an affine extension with
kernel Gm. Note that E∞ = C× $ C×j and jzj−1 = z.

From the diagram (60) with l = ∞, we obtain a C/R-affine extension

1 → P (C) → P(∞) → Γ∞ → 1.

Lemma 16.6. There is a homomorphism ζ∞ : E∞ → P(∞) whose restriction
to the kernels, Gm �→ PC, corresponds to the map on characters π �→ wt(π).
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Proof. This follows from the fact that the homomorphism H2(Γ∞,Gm) →
H2(Γ∞, PR) sends the cohomology class of E∞ to that of P(∞). �

Lemma 16.7. For any x ∈ X, the formulas

ξx(z) = (wX(z), 1), ξx(j) = (µx(−1)−1, ι)

define a homomorphism E∞ → P(∞). Replacing x with a different point, replaces
the homomorphism with an isomorphic homomorphism.

Proof. Easy exercise. �

Write ξX for the isomorphism class of homomorphisms defined in (16.7). Then
the admissibility condition at ∞ is that ζ∞ ◦ φ(∞) ∈ ξX .

The condition at � �= p. The admissibility condition at � �= p is that the set
X�(φ) be nonempty, i.e., that ζ� ◦ φ(�) be isomorphic to ξ�.

The condition at p. The condition at p is that the set Xp(φ) be nonempty.
The global condition. Let ν : G→ T be the quotient of G by its derived group.

From X we get a conjugacy class of cocharacters of GC, and hence a well defined
cocharacter µ of T . Under our hypotheses on (G,X), µ satisfies the conditions of
(15.15), and so defines a homomorphism φµ : P → ET . The global condition is that
ν ◦ φ be isomorphic to φµ.

The Langlands-Rapoport set. The Langlands-Rapoport set

LR(G,X) =
⊔

S(φ)

where the disjoint union is over a set of representatives for the isomorphism classes
of admissible homomorphism φ : P → EG. There are commuting actions of G(Ap

f )
and of the Frobenius operator Φ on LR(G,X).

The conjecture of Langlands and Rapoport.

Conjecture 16.8 (Langlands and Rapoport 1987). Let (G,X) be a Shimura
datum satisfying SV4,5,6 and such that Gder is simply connected, and let Kp be
a hyperspecial subgroup of G(Qp). Let p be a prime of E(G,X) dividing p, and
assume that Shp has canonical good reduction at p. Then there is a bijection of sets

(63) LR(G,X) → Shp(G,X)(F)

compatible with the actions G(Ap
f ) and the Frobenius elements.

Remark 16.9. (a) The conditions SV5 and SV6 are not in the original conjec-
ture — I included them to simplify the statement of the conjecture.

(b) There is also a conjecture in which one does not require SV4, but this
requires that P be replaced by a more complicated affine extension Q.

(c) The conjecture as originally stated is definitely wrong without the assump-
tion that Gder is simply connected. However, when one replaces the “admissible
homomorphisms” in the statement with another notion, that of “special homomor-
phisms”, one obtains a statement that should be true for all Shimura varieties. In
fact, it is known that the statement with Gder simply connected then implies the
general statement (see Milne 1992, §4, for the details and a more precise statement).

(d) It is possible to state, and prove, a conjecture similar to (16.8) for zero-
dimensional Shimura varieties. The map (G,X) → (T, Y ) (see p311) defines a map
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of the associated Langlands-Rapoport sets, and we should add to the conjecture
that

LR(G,X) −−−−→ Shp(G,X)(F); ;
LR(T, Y ) −−−−→ Shp(T, Y )(F)

commutes.

17. A formula for the number of points

A reader of the last two sections may be sceptical of the value of a description
like (63), even if proved. In this section we briefly explain how it leads to a very
explicit, and useful, formula for the number of points on the reduction of a Shimura
variety with values in a finite field.

Throughout, (G,X) is a Shimura datum satisfying SV4,5,6 and Kp is a hy-
perspecial subgroup of G(Qp). We assume that Gder simply connected and that
Shp(G,X) has canonical good reduction at a prime p|p of the reflex field E =
E(G,X). Other notations are as in the last section; for example, Ln is the sub-
field of Qun

p of degree n over Qp and L is the completion of Qun
p . We fix a field

Fq ⊃ k(p) ⊃ Fp, q = pn.

Triples. We consider triples (γ0; γ, δ) where
◦ γ0 is a semisimple element of G(Q) that is contained in an elliptic torus

of GR (i.e., a torus that is anisotropic modulo the centre of GR),
◦ γ = (γ(�))� �=p,∞ is an element of G(Ap

f ) such that, for all �, γ(�) becomes
conjugate to γ0 in G(Qal

� ),
◦ δ is an element of G(Ln) such that

N δ
df= δ · σδ · . . . · σn−1δ,

becomes conjugate to γ0 in G(Qal
p ).

Two triples (γ0; γ, δ) and (γ′
0; γ′, δ′) are said to be equivalent , (γ0; γ, δ) ∼ (γ′

0; γ′, δ′),
if γ0 is conjugate to γ′

0 in G(Q), γ(�) is conjugate to γ′(�) in G(Q�) for each � �= p,∞,
and δ is σ-conjugate to δ′ in G(Ln).

Given such a triple (γ0; γ, δ), we set:
◦ I0 = Gγ0 , the centralizer of γ0 in G; it is connected and reductive;
◦ I∞ = the inner form of I0R such that I∞/Z(G) is anisotropic;
◦ I� = the centralizer of γ(�) in GQ�

;
◦ Ip = the inner form of GQp

such that Ip(Qp) = {x ∈ G(Ln) | x−1 · δ ·σx =
δ}.

We need to assume that the triple satisfies the following condition:
(*) there exists an inner form I of I0 such that IQ�

is isomorphic
to I� for all � (including p and ∞).

Because γ0 and γ� are stably conjugate, there exists an isomorphism a� : I0,Qal
�
→

I�,Qal
�
, well-defined up to an inner automorphism of I0 over Qal

� . Choose a system
(I, a, (j�)) consisting of a Q-group I, an inner twisting a : I0 → I (isomorphism
over Qal), and isomorphisms j� : IQ�

→ I� over Q� for all �, unramified for almost
all �, such that j� ◦ a and a� differ by an inner automorphism — our assumption
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(*) guarantees the existence of such a system. Moreover, any other such system is
isomorphic to one of the form (I, a, (j� ◦ adh�)) where (h�) ∈ Iad(A).

Let dx denote the Haar measure on G(Ap
f ) giving measure 1 to Kp. Choose a

Haar measure dip on I(Ap
f ) that gives rational measure to compact open subgroups

of I(Ap
f ), and use the isomorphisms j� to transport it to a measure on G(Ap

f )γ

(the centralizer of γ in G(Ap
f )). The resulting measure does not change if (j�) is

modified by an element of Iad(A). Write dx for the quotient of dx by dip. Let f
be an element of the Hecke algebra H of locally constant K-bi-invariant Q-valued
functions on G(Af ), and assume that f = fp · fp where fp is a function on G(Ap

f )
and fp is the characteristic function of Kp in G(Qp) divided by the measure of Kp.
Define

Oγ(fp) =
∫

G(Ap
f )γ\G(Ap

f )

fp(x−1γx) dx

Let dy denote the Haar measure on G(Ln) giving measure 1 to G(OLn
). Choose

a Haar measure dip on I(Qp) that gives rational measure to the compact open
subgroups, and use jp to transport the measure to Ip(Qp). Again the resulting
measure does not change if jp is modified by an element of Iad(Qp). Write dy for
the quotient of dy by dip. Proceeding as on p370, we choose a cocharacter µ in
c(X) well-adapted to the hyperspecial subgroup Kp and defined over Ln, and we
let ϕ be the characteristic function of the coset G(OLn

) · µ(p) ·G(OLn
). Define

TOδ(ϕ) =
∫

I(Qp)\G(Ln)

ϕ(y−1δσ(y))dy

Since I/Z(G) is anisotropic over R, and since we are assuming SV5, I(Q) is a
discrete subgroup of I(Ap

f ), and we can define the volume of I(Q)\I(Af ). It is a
rational number because of our assumption on dip and dip. Finally, define

I(γ0; γ, δ) = I(γ0; γ, δ)(fp, r) = vol(I(Q)\I(Af )) ·Oγ(fp) · TOδ(φr).

The integral I(γ0; γ, δ) is independent of the choices made, and

(γ0; γ, δ) ∼ (γ′
0; γ

′, δ′) =⇒ I(γ0; γ, δ) = I(γ′
0; γ

′, δ′).

The triple attached to an admissible pair (φ, ε). An admissible pair
(φ, γ0) is an admissible homomorphism φ : P → EG and a γ ∈ Iφ(Q) such that
γ0x = Φrx for some x ∈ Xp(φ). Here r = [k(p) : Fp]. An isomorphism (φ, γ0) →
(φ′, γ′

0) of admissible pairs is an isomorphism φ → φ′ sending γ to γ′, i.e., it is a
g ∈ G(Qal) such that

ad(g) ◦ φ = φ′, ad(g)(γ) = γ′.

Let (T, x) ⊂ (G,X) be a special pair. Because of our assumptions on (G,X),
the cocharacter µx of T satisfies the conditions of (15.15) and so defines a homo-
morphism φx : P → ET . Langlands and Rapoport (1987, 5.23) show that every
admissible pair is isomorphic to a pair (φ, γ) with φ = φx and γ ∈ T (Q). For
such a pair (φ, γ), b(φ) is represented by a δ ∈ G(Ln) which is well-defined up to
conjugacy.

Let γ be the image of γ0 in G(Ap
f ). Then the triple (γ0; γ, δ) satisfies the

conditions in the last subsection. A triple arising in this way from an admissible
pair will be called effective.
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The formula. For a triple (γ0 . . .), the kernel of

H1(Q, I0) → H1(Q, G)⊕
∏

lH
1(Ql, I0)

is finite — we denote its order by c(γ0).

Theorem 17.1. Let (G,X) be a Shimura datum satisfying the hypotheses of
(16.8). If that conjecture is true, then

(64) # Shp(Fq) =
∑

(γ0;γ,δ)

c(γ0) · I(γ0; γ, δ)

where the sum is over a set of representatives for the effective triples.

Proof. See Milne 1992, 6.13. �

Notes. Early versions of (64) can be found in papers of Langlands, but the first
precise general statement of such a formula is in Kottwitz 1990. There Kottwitz
attaches a cohomological invariant α(γ0; γ, δ) to a triple (γ0; γ, δ), and conjectures
that the formula (64) holds if the sum is taken over a set of representatives for
the triples with α = 1 (ibid. §3). Milne (1992, 7.9) proves that, among triples
contributing to the sum, α = 1 if and only if the triple is effective, and so the con-
jecture of Langlands and Rapoport implies Kottwitz’s conjecture.20 On the other
hand, Kottwitz (1992) proves his conjecture for Shimura varieties of simple PEL
type A or C unconditionally (without however proving the conjecture of Langlands
and Rapoport for these varieties).
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Bourbaki, N. (1981), Groupes et Algèbres de Lie. Chapitres 4,5 et 6, Elements of Mathematics,
Masson, Paris.

Bourbaki, N. (1989), General topology. Chapters 1–4, Elements of Mathematics, Springer-Verlag,
Berlin.

Bravo, A., Encinas, S. and Villamayor, O. (2002), ‘A Simplified Proof of Desingularization and
Applications’. arXiv:math.AG/0206244.

Brylinski, J.-L. (1983), “1-motifs” et formes automorphes (théorie arithmétique des domaines de
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Math. 378, 113–220.
Lee, J. M. (1997), Riemannian manifolds, Vol. 176 of Graduate Texts in Mathematics, Springer-

Verlag, New York.
Mac Lane, S. (1998), Categories for the working mathematician, Vol. 5 of Graduate Texts in

Mathematics, second edn, Springer-Verlag, New York.

Matsumoto, H. (1969), ‘Sur les sous-groupes arithmétiques des groupes semi-simples déployés’,
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Boston, MA, pp. 239–265.

Milne, J. S. (1986), Abelian varieties, in ‘Arithmetic geometry (Storrs, Conn., 1984)’, Springer,

New York, pp. 103–150.
Milne, J. S. (1987), The (failure of the) Hasse principle for centres of semisimple groups. 6th June,

1987, available at www.jmilne.org/math/.
Milne, J. S. (1992), The points on a Shimura variety modulo a prime of good reduction, in ‘The

zeta functions of Picard modular surfaces’, Univ. Montréal, Montreal, QC, pp. 151–253.
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Abstract. We give a summary, without proofs, of basic properties of linear

algebraic groups, with particular emphasis on reductive algebraic groups.

1. Algebraic groups

Let K be an algebraically closed field. An algebraic K-group G is an algebraic
variety over K, and a group, such that the maps µ : G ×G → G, µ(x, y) = xy,
and ι : G → G, ι(x) = x−1, are morphisms of algebraic varieties. For convenience,
in these notes, we will fix K and refer to an algebraic K-group as an algebraic
group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set)
in Kn for some natural number n, we say that G is a linear algebraic group. If G
and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic
groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is
an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group
isomorphism.

A closed subgroup of an algebraic group is an algebraic group. If H is a closed
subgroup of a linear algebraic group G, then G/H can be made into a quasi-
projective variety (a variety which is a locally closed subset of some projective
space). If H is normal in G, then G/H (with the usual group structure) is a linear
algebraic group.

Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of
ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G.

Let X be an affine algebraic variety over K, with affine algebra (coordinate
ring) K[X] = K[x1, . . . , xn]/I. If k is a subfield of K, we say that X is defined over
k if the ideal I is generated by polynomials in k[x1, . . . , xn], that is, I is generated
by Ik := I ∩ k[x1, . . . , xn]. In this case, the k-subalgebra k[X] := k[x1, . . . , xn]/Ik

of K[X] is called a k-structure on X, and K[X] = k[X] ⊗k K. If X and X ′ are
algebraic varieties defined over k, a morphism ϕ : X → X ′ is defined over k (or
is a k-morphism) if there is a homomorphism ϕ∗

k : k[X ′] → k[X] such that the
algebra homomorphism ϕ∗ : K[X ′] → K[X] defining ϕ is ϕ∗

k × id. Equivalently,
the coordinate functions of ϕ all have coefficients in k. The set X(k) := X ∩ kn is
called the K-rational points of X.
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If k is a subfield of K, we say that a linear algebraic group G is defined over k
(or is a k-group) if the variety G is defined over k and the homomorphisms µ and
ι are defined over k. Let ϕ : G → G′ be a k-homomorphism of k-groups. Then the
image of ϕ is defined over k but the kernel of ϕ might not be defined over k.

An algebraic variety X over K is irreducible if it cannot be expressed as the
union of two proper closed subsets. Any algebraic variety X over K can be expressed
as the union of finitely many irreducible closed subsets:

X = X1 ∪X2 ∪ · · · ∪Xr,

where Xi �⊂ Xj if j �= i. This decomposition is unique and the Xi are the maximal
irreducible subsets of X (relative to inclusion). The Xi are called the irreducible
components of X.

Let G be an algebraic group. Then G has a unique irreducible component G0

containing the identity element. The irreducible component G0 is a closed normal
subgroup of G. The cosets of G0 in G are the irreducible components of G, and G0

is the connected component of the identity in G. Also, if H is a closed subgroup of
G of finite index in G, then H ⊃ G0. For a linear algebraic group, connectedness
is equivalent to irreducibility. It is usual to refer to an irreducible algebraic group
as a connected algebraic group.

If ϕ : G → G′ is a homomorphism of algebraic groups, then ϕ(G0) = ϕ(G)0.
If k is a subfield of K and G is defined over k, then G0 is defined over k.

The dimension of G is the dimension of the variety G0. That is, the dimension
of G is the transcendence degree of the field K(G0) over K.

If G is a linear algebraic group, then G is isomorphic, as an algebraic group,
to a closed subgroup of GLn(K) for some natural number n.

Example 1.1. G = K, with µ(x, y) = x+y and ι(x) = −x. The usual notation
for this group is Ga. It is connected and has dimension 1.

Example 1.2. Let n be a positive integer and let Mn(K) be the set of n × n
matrices with entries in K. The general linear group G = GLn(K) is the group of
matrices in Mn(K) that have nonzero determinant. Note that G can be identified
with the closed subset {(g, x) | g ∈ Mn(K), x ∈ K, (det g)x = 1 } of Kn2 ×K =
Kn2+1. Then K[G] = K[xij , 1 ≤ i, j ≤ n, det(xij)−1]. The dimension of GLn(K)
is n2, and it is connected. In the case n = 1, the usual notation for GL1(K) is Gm.
The only connected algebraic groups of dimension 1 are Ga and Gm.

Example 1.3. Let n be a positive integer and let In be the n × n identity
matrix. The 2n × 2n matrix J =

[
0 In

−In 0

]
is invertible and satisfies tJ = −J ,

where tJ denotes the transpose of J . The 2n× 2n symplectic group G = Sp2n(K)
is defined by { g ∈M2n(K) | tgJg = J }.

2. Jordan decomposition in linear algebraic groups

Recall that a matrix x ∈ Mn(K) is semisimple if x is diagonalizable: there is
a g ∈ GLn(K) such that gxg−1 is a diagonal matrix. Also, x is unipotent if x− In

is nilpotent: (x− In)k = 0 for some natural number k. Given x ∈ GLn(K), there
exist elements xs and xu in GLn(K) such that xs is semisimple, xu is unipotent,
and x = xsxu = xuxs. Furthermore, xs and xu are uniquely determined.

Now suppose that G is a linear algebraic group. Choose n and an injective
homomorphism ϕ : G → GLn(K) of algebraic groups. If g ∈ G, the semisimple
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and unipotent parts ϕ(g)s and ϕ(g)u of ϕ(g) lie in ϕ(G), and the elements gs and
gu such that ϕ(gs) = ϕ(g)s and ϕ(gu) = ϕ(g)u depend only on g and not on the
choice of ϕ (or n). The elements gs and gu are called the semisimple and unipotent
part of g, respectively. An element g ∈ G is semisimple if g = gs (and gu = 1), and
unipotent if g = gu (and gs = 1).

Jordan decomposition.
(1) If g ∈ G, there exist elements gs and gu in G such that g = gsgu = gugs,

gs is semisimple, and gu is unipotent. Furthermore, gs and gu are uniquely
determined by the above conditions.

(2) If k is a perfect subfield of K and G is a k-group, then g ∈ G(k) implies
gs, gu ∈ G(k).

Jordan decompositions are preserved by homomorphisms of algebraic groups.
Suppose that G and G′ are linear algebraic groups and ϕ : G → G′ is a ho-
momorphism of linear algebraic groups. Let g ∈ G. Then ϕ(g)s = ϕ(gs) and
ϕ(g)u = ϕ(gu).

3. Lie algebras

Let G be a linear algebraic group. The tangent bundle T (G) of G is the set
HomK−alg(K[G],K[t]/(t2)) of K-algebra homomorphisms from the affine algebra
K[G] of G to the algebra K[t]/(t2). If g ∈ G, the evaluation map f �→ f(g) from
K[G] to K is a K-algebra isomorphism. This results in a bijection betweeen G and
HomK−alg(K[G],K). Composing elements of T (G) with the map a+ bt+(t2) �→ a
from K[t]/(t2) to K results in a map from T (G) to G = HomK−alg(K[G],K).
The tangent space T1(G) of G at the identity element 1 of G is the fibre of T (G)
over 1. If X ∈ T1(G) and f ∈ K[G], then X(f) = f(1) + t dX(f) + (t2) for some
dX(f) ∈ K. This defines a map dX : K[G] → K which satisfies:

dX(f1f2) = dX(f1)f2(1) + f1(1)dX(f2), f1, f2 ∈ K[G].

Let µ∗ : K[G] → K[G] ⊗K K[G] be the K-algebra homomorphism which
corresponds to the multiplication map µ : G ×G → G. Set δX = (1 ⊗ dX) ◦ µ∗.
The map δX : K[G] → K[G] is a K-linear map and a derivation:

δX(f1f2) = δX(f1)f2 + f1δX(f2), f1, f2 ∈ K[G].

Furthermore, δX is left-invariant: �gδX = δX�g for all g ∈ G, where (�gf)(g′) =
f(g−1g′), f ∈ K[G]. The map X �→ δX is a K-linear isomorphism of T1(G) onto
the vector space of K-linear maps from K[G] to K[G] which are left-invariant
derivations.

Let g = T1(G). Define [X,Y ] ∈ g by δ[X,Y ] = δX ◦ δY − δY ◦ δX . Then g is a
vector space over K and the map [·, ·] satisfies:

(1) [·, ·] is linear in both variables
(2) [X,X] = 0 for all X ∈ g

(3) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 for all X, Y , X ∈ g. (Jacobi
identity)

Therefore g is a Lie algebra over K. We call it the Lie algebra of G.

Example 3.1. If G = GLn(K), then g is isomorphic to the Lie algebra gln(K)
which is Mn(K) equipped with the Lie bracket [X,Y ] = XY −Y X, X, Y ∈Mn(K).



382 FIONA MURNAGHAN

Example 3.2. If G = Sp2n(K), then g is isomorphic to the Lie algebra {X ∈
M2n(K) | tXJ + JX = 0 }, with bracket [X,Y ] = XY − Y X.

Let ϕ : G → G′ be a homomorphism of linear algebraic groups. Composition
with the algebra homomorphism ϕ∗ : K[G′] → K[G] results in a map T (ϕ) :
T (G) → T (G′). The differential dϕ of ϕ is the restriction dϕ = T (ϕ) |g of T (ϕ) to
g. It is a K-linear map from g to g′, and satisfies

dϕ([X,Y ]) = [dϕ(X), dϕ(Y )], X, Y ∈ g.

That is, dϕ is a homomorphism of Lie algebras. If ϕ is bijective, then ϕ is an isomor-
phism if and only if dϕ is an isomorphism of Lie algebras. If K has characteristic
zero, any bijective homomorphism of linear algebraic groups is an isomorphism.

If H is a closed subgroup of a linear algebraic group G, then (via the differential
of inclusion) the Lie algebra h of H is isomorphic to a Lie subalgebra of g. And H
is a normal subgroup of G if and only if h is an ideal in g ([X,Y ] ∈ h whenever
X ∈ g and Y ∈ h).

If g ∈ G, then Intg : G → G, Intg = gg0g
−1, g0 ∈ G, is an isomorphism of

algebraic groups, so Ad g := d(Intg) : g → g is an isomorphism of Lie algebras.
Note that (Ad g)−1 = Ad g−1, g ∈ G, and Ad (g1g2) = Ad g1 ◦ Ad g2, g1, g2 ∈ G.
The map Ad : G → GL(g) is a homomorphism of algebraic groups, called the
adjoint representation of G.

If G is a k-group, then its Lie algebra g has a natural k-structure g(k), with
g � K ⊗k g(k). Also, Ad is defined over k.

Jordan decomposition in the Lie algebra. We can define semisimple and nilpo-
tent elements in g in manner analogous to definitions of semisimple and unipotent
elements in G (as g is isomorphic to a Lie subalgebra of gln(K) for some n). If
X ∈ g, there exist unique elements Xs and Xn ∈ g such that X = Xs + Xn,
[Xs, Xn] = 0, Xs is semisimple, and Xn is nilpotent. If ϕ : G → G′ is a homomor-
phism of algebraic groups, then dϕ(X)s = dϕ(Xs) and dϕ(X)n = dϕ(Xn) for all
X ∈ g.

4. Tori

A torus is a linear algebraic group which is isomorphic to the direct product
Gd

m = Gm × · · · ×Gm (d times), where d is a positive integer. A linear algebraic
group G is a torus if and only if G is connected and abelian, and every element of
G is semisimple.

A character of a torus T is a homomorphism of algebraic groups from T to Gm.
The product of two characters of T is a character of T, the inverse of a character
of T is a character of T, and characters of T commute with each other, so the set
X(T) of characters of T is an abelian group. A one-parameter subgroup of T is a
homomorphism of algebraic groups from Gm to T. The set Y (T) of one-parameter
subgroups is an abelian group. If T � Gm, then X(T) = Y (T) is just the set of
maps x �→ xr, as r varies over Z. In general, T � Gd

m for some positive integer d,
so X(T) � X(Gm)d � Zd � Y (T). We have a pairing

〈·, ·〉 : X(T)× Y (T) → Z

〈χ, η〉 �→ r where χ ◦ η(x) = xr, x ∈ Gm.



LINEAR ALGEBRAIC GROUPS 383

Let k be a subfield of K. A torus T is a k-torus if T is defined over k. Let T
be a k-torus. Let X(T)k be the subgroup of X(T) made up of those characters of
T which are defined over k. We say that T is k-split (or splits over k) whenever
X(T)k spans k[T], or, equivalently, whenever T is k-isomorphic to Gm× · · ·×Gm

(d times, d = dimT). In this case, T(k) � k× × · · · × k×. If X(T)k = 0, then we
say that T is k-anisotropic. There exists a finite Galois extension of k over which
T splits. There exist unique tori Tspl and Tan of T, both defined over k, such that
T = TsplTan, Tspl is k-split and Tan is k-anisotropic. Also, Tan is the identity
component of ∩χ∈X(T)k

kerχ.

Example 4.1. Let T be the subgroup of GLn(K) consisting of diagonal ma-
trices in GLn(K). Then T is a k-split k-torus for any subfield k of K.

Example 4.2. Let T be the closed subgroup of GL2(C) defined by

T =
{[

a b
−b a

]
| a, b ∈ C, a2 + b2 �= 0

}
.

Then T is an R-torus and is R-anisotropic.

5. Reductive groups, root systems and root data–the absolute case

Let G be a linear algebraic group which contains at least one torus. Then the
set of tori in G has maximal elements, relative to inclusion. Such maximal elements
are called maximal tori of G. All of the maximal tori in G are conjugate. The rank
of G is defined to be the dimension of a maximal torus in G.

Now suppose that G is a linear algebraic group and T is a torus in G. Recall
that the adjoint representation Ad : G → GL(g) is a homomorphism of algebraic
groups. Therefore Ad (T) consists of commuting semisimple elements, and so is
diagonalizable. Given α ∈ X(T), let gα = {X ∈ g | Ad (t)X = α(t)X, ∀ t ∈ T }.
The nonzero α ∈ X(T) such that gα �= 0 are the roots of G relative to T. The set
of roots of G relative to T will be denoted by Φ(G,T).

The centralizer ZG(T) of T in G is the identity component of the normalizer
NG(T) of T in G. The Weyl group W (G,T) of T in G is the (finite) quotient
NG(T)/ZG(T). Because W (G,T) acts on T, W (G,T) also acts on X(T), and
W (G,T) permutes the roots of T in G. Since any two maximal tori in G are
conjugate, their Weyl groups are isomorphic. The Weyl group of any maximal
torus is referred to as the Weyl group of G.

An algebraic group G contains a unique maximal normal solvable subgroup,
and this subgroup is closed. Its identity component is called the radical of G,
written R(G). The set Ru(G) of unipotent elements in R(G) is a normal closed
subgroup of G, and is called the unipotent radical of G. If G is a linear algebraic
group such that the radical R(G0) of G0 is trivial, then G is semisimple. In fact, G
is semisimple if and only if G has no nontrivial connected abelian normal subgroups.
If Ru(G0) is trivial, then G is reductive. The semisimple rank of G is defined to
be the rank of G/R(G), and the reductive rank of G is the rank of G/Ru(G).

The derived group Gder of G is a closed subgroup of G, and is connected when
G is connected. Suppose that G is connected and reductive. Then

(1) Gder is semisimple.
(2) R(G) = Z(G)0, where Z(G) is the centre of G, and R(G) is a torus.
(3) R(G) ∩Gder is finite, and G = R(G)Gder.
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For the rest of this section, assume that G is a connected reductive group. Let
T be a torus in G. Then ZG(T) is reductive. This fact is useful for inductive
arguments. Now assume that T is maximal. Let t be the Lie algebra of T and let
Φ = Φ(G,T). Then

(1) g = t⊕
⊕

α∈Φ gα and dim gα = 1 for all α ∈ Φ.
(2) If α ∈ Φ, let Tα = (Kerα)0. Then Tα is a torus, of codimension one in

T.
(3) If α ∈ Φ, let Zα = ZG(Tα). Then Zα is a reductive group of semisimple

rank 1, and the Lie algebra zα of Zα satisfies zα = t ⊕ gα ⊕ g−α. The
group G is generated by the subgroups Zα, α ∈ Φ.

(4) The centre Z(G) of G is equal to ∩α∈ΦTα.
(5) If α ∈ Φ, there exists a unique connected T-stable (relative to conjugation

by T) subgroup Uα of G having Lie algebra gα. Also, Uα ⊂ Zα.
(6) Let n ∈ NG(T), and let w be the corresponding element of W = W (G,T).

Then nUαn
−1 = Uw(α) for all α ∈ Φ.

(7) Let α ∈ Φ. Then there exists an isomorphism εα : Ga → Uα such that
t εα(x)t−1 = εα(α(t)x), t ∈ T, x ∈ Ga.

(8) The groups Uα, α ∈ Φ, together with T, generate the group G.

Let 〈Φ〉 be the subgroup of X(T) generated by Φ and let V = 〈Φ〉 ⊗Z R. Then
the set Φ is a subset of the vector space V and is a root system. In general an
abstract root system in a finite dimensional real vector space V , is a subset Φ of V
that satisfies the following axioms:

(R1): Φ is finite, Φ spans V , and 0 /∈ Φ.
(R2): If α ∈ Φ, there exists a reflection sα relative to α such that sα(Φ) ⊂ Φ.

(A reflection relative to α is a linear transformation sending α to −α that
restricts to the identity map on a subspace of codimension one).

(R3): If α, β ∈ Φ, then sα(β)− β is an integer multiple of α.

A root system is reduced if it has the property that if α ∈ Φ, then ±α are the
only multiples of α which belong to Φ.

The rank of Φ is defined to be dimV . The abstract Weyl group W (Φ) is the
subgroup of GL(V ) generated by the set { sα | α ∈ Φ }.

If T is a maximal torus in G, then Φ = Φ(G,T) is a root system in V =
〈Φ〉 ⊗Z R, and it is reduced. The rank of Φ is equal to the semisimple rank of G,
and the abstract Weyl group W (Φ) is isomorphic to W = W (G,T).

A base of Φ is a subset ∆ = {α1, . . . , α�}, � = rank(Φ), such that ∆ is a basis
of V and each α ∈ Φ is uniquely expressed in the form α =

∑�
i=1 ciαi, where the

ci’s are all integers, no two of which have different signs. The elements of ∆ are
called simple roots. The set of positive roots Φ+ is the set of α ∈ Φ such that the
coefficients of the simple roots in the expression for α, as a linear combination of
simple roots, are all nonnegative. Similarly, Φ− consists of those α ∈ Φ such that
the coefficients are all nonpositive. Clearly Φ is the disjoint union of Φ+ and Φ−.
Given α ∈ Φ, there exists a base containing α. Given a base ∆, the set { sα | α ∈ ∆ }
generates W = W (Φ). The subgroups Zα, α ∈ ∆, generate G. Equivalently, the
subgroups Uα, α ∈ ∆, and T, generate G.

There is an inner product (·, ·) on V with respect to which each w ∈ W is an
orthogonal linear transformation. If α, β ∈ Φ, then sα(β) = β − (2(β, α)/(α, α))α.
A Weyl chamber in V is a connected component in the complement of the union
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of the hyperplanes orthogonal to the roots. The set of Weyl chambers in V and
the set of bases of Φ correspond in a natural way, and W permutes each of them
simply transitively.

If α ∈ Φ, there exists a unique α∨ ∈ Y (T) such that 〈β, α∨〉 = 2(β, α)/(α, α)
for all β ∈ Φ. The set Φ∨ of elements α∨ (called co-roots) forms a root system in
〈Φ∨〉 ⊗Z R, called the dual of Φ. The Weyl group W (Φ∨) is isomorphic to W (Φ),
via the map sα �→ sα∨ .

A root system Φ is said to be irreducible if Φ cannot be expressed as the
union of two mutually orthogonal proper subsets. In general, Φ can be partitioned
uniquely into a union of irreducible root systems in subspaces of V . The group G
is simple (or almost simple) if G contains no proper nontrivial closed connected
normal subgroup. When G is semisimple and connected, then G is simple if and
only if Φ is irreducible.

The reduced irreducible root systems are those of type An, n ≥ 1, Bn, n ≥ 1,
Cn, n ≥ 3, Dn, n ≥ 4, E6, E7, E8, F4, and G2. For each n ≥ 1 there is one
irreducible nonreduced root system, BCn. (These root systems are described in
many of the references). If n ≥ 2, the root system of GLn(K) (relative to any
maximal torus) is of type An−1. The root system of Sp2n(K) is of type Cn, if
n ≥ 3, and of type A1 and B2 for n = 1 and 2, respectively.

The quadruple Ψ(G,T) = (X,Y,Φ,Φ∨) = (X(T), Y (T),Φ(G,T),Φ∨(G,T))
is a root datum. An abstract root datum is a quadruple Ψ = (X,Y,Φ,Φ∨), where
X and Y are free abelian groups such that there exists a bilinear mapping 〈·, ·〉 :
X × Y → Z inducing isomorphisms X � Hom(Y,Z) and Y � Hom(X,Z), and
Φ ⊂ X and Φ∨ ⊂ Y are finite subsets, and there exists a bijection α �→ α∨ of Φ
onto Φ∨. The following two axioms must be satisfied:

(RD1): 〈α, α∨〉 = 2
(RD2): If sα : X → X and sα∨ : Y → Y are defined by sα(x) = x−〈x, α∨〉α

and sα∨(y) = y − 〈α, y〉α∨, then sα(Φ) ⊂ Φ and sα∨(Φ∨) ⊂ Φ∨ (for all
α ∈ Φ).

The axiom (RD2) may be replaced by the equivalent axiom:

(RD2’): If α ∈ Φ, then sα(Φ) ⊂ Φ, and the sα, α ∈ Φ, generate a finite
group.

If Φ �= ∅, then Φ is a root system in V := 〈Φ〉 ⊗Z R, where 〈Φ〉 is the subgroup
of X generated by Φ. The set Φ∨ is the dual of the root system Φ.

The quadruple Ψ∨ = (Y,X,Φ∨,Φ) is also a root datum, called the dual of Ψ.
A root datum is reduced if it satisfies a third axiom

(RD3): α ∈ Φ =⇒ 2α /∈ Φ.

The root datum Ψ(G,T) is reduced.
An isomorphism of a root datum Ψ = (X,Y,Φ,Φ∨) onto a root datum Ψ′ =

(X ′, Y ′,Φ′,Φ′∨) is a group isomorphism f : X → X ′ which induces a bijection of
Φ onto Φ′ and whose dual induces a bijection of Φ′∨ onto Φ∨. If G′ is a linear
algebraic group which is isomorphic to G, and T′ is a maximal torus in G′, then
the root data Ψ(G,T) and Ψ(G′,T′) are isomorphic.

If Ψ is a reduced root datum, there exists a connected reductive K-group G
and a maximal torus T in G such that Ψ = Ψ(G,T). The pair (G,T) is unique
up to isomorphism.
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6. Parabolic subgroups

Let G be a connected linear algebraic group. The set of connected closed
solvable subgroups of G, ordered by inclusion, contains maximal elements. Such a
maximal element is called a Borel subgroup of G. If B is a Borel subgroup, then
G/B is a projective variety and any other Borel subgroup is conjugate to B. If P is
a closed subgroup of G, then G/P is a projective variety if and only if P contains a
Borel subgroup. Such a subgroup is called a parabolic subgroup. If P is a parabolic
subgroup, then P is connected and the normalizer NG(P) of P in G is P. If P
and P′ are parabolic subgroups containing a Borel subgroup B, and P and P′ are
conjugate, then P = P′.

Now assume that G is a connected reductive linear algebraic group. Let T
be a maximal torus in G. Then T lies inside some Borel subgroup B of G. Let
U = Ru(B) be the unipotent radical of B. There exists a unique base ∆ of
Φ = Φ(G,T) such that U is generated by the groups Uα, α ∈ Φ+, and B = T�U.
Conversely if ∆ is a base of Φ, then the group generated by T and by the groups
Uα, α ∈ Φ+, is a Borel subgroup of G. Hence the set of Borel subgroups of G which
contain T is in one to one correspondence with the set of bases of Φ. The Weyl
group W permutes the set of Borel subgroups containing T simply transitively.
The set of Borel subgroups containing T generates G.

The Bruhat decomposition. Let B be a Borel subgroup of G, and let T be a
maximal torus of G contained in B. Then G is the disjoint union of the double
cosets BwB, as w ranges over a set of representatives in NG(T) of the Weyl group
W (BwB = Bw′B if and only if w = w′ in W ).

Let G, B and T be as above. Let ∆ be the base of Φ(G,T) corresponding to
B. If I is a subset of ∆, let WI be the subgroup of W generated by the subset
SI = { sα | α ∈ I } of I. Let PI = BWIB (note that P∅ = B). Then PI is a
parabolic subgroup of G (containing B). A subgroup of G containing B is equal
to PI for some subset I of ∆. If I and J are subsets of ∆ then WI ⊂ WJ implies
I ⊂ J and PI ⊂ PJ implies I ⊂ J . Also, PI is conjugate to PJ if and only if
I = J . A parabolic subgroup is called standard if it contains B. Any parabolic
subgroup P is conjugate to some standard parabolic subgroup.

Let I ⊂ ∆. The set ΦI of α ∈ Φ such that α is an integral linear combination of
elements of I forms a root system, with Weyl group WI . The set of roots Φ(PI ,T)
of PI relative to T is equal to Φ+ ∪ (Φ− ∩ ΦI). Let NI = Ru(PI). Then NI is a
T-stable subgroup of U = Bu, and is generated by those Uα which are contained
in NI , that is, by those Uα such that α ∈ Φ+ and α /∈ ΦI . Let TI = (∩α∈IKerα)0,
and let MI = ZG(TI). The set ΦI coincides with the set of roots in Φ which are
trivial on TI . The group MI is reductive and is generated by T and by the set of
Uα, α ∈ ΦI , TI is the identity component of the centre of MI , and Φ(MI ,T) = ΦI .
The Lie algebra of MI is equal to t⊕

⊕
α∈ΦI

gα (here t is the Lie algebra of T). The
group MI normalizes NI and PI = MI � NI . A Levi factor (or Levi component)
of PI is a reductive group M such that PI = M � NI , and the decomposition
PI = M � NI is called a Levi decomposition of PI . If M is a Levi factor of PI ,
then there exists n ∈ NI such that M = nMIn

−1. It is possible for MI and
MJ to be conjugate for distinct subsets I and J of ∆. More generally, if P is
any parabolic subgroup of G, P has Levi decompositions (which we can obtain via
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conjugation from Levi decompositions of a standard parabolic subgroup to which
P is conjugate).

Note that if P is a proper parabolic subgroup of G, then the semisimple rank
of a Levi factor of P is strictly less than the semisimple rank of G. This fact is
often used in inductive arguments.

7. Reductive groups - relative theory

Let k be a subfield of K. Throughout this section, we assume that G is a
connected reductive k-group. Then G has a maximal torus which is defined over
k. We say that G is k-split if G has a maximal torus T which is k-split. If G is
k-split and T is such a torus, then each Uα, α ∈ Φ(G,T), is defined over k, and
the associated isomorphism εα : Ga → Uα can be taken to be defined over k. If
G contains no k-split tori, then G is said to be k-anisotropic. There exists a finite
separable extension of k over which G splits.

Suppose that G and G′ are connected reductive k-split k-groups which are
isomorphic. Then G and G′ are k-isomorphic.

The centralizer ZG(T) of a k-torus T in G is reductive and defined over k, and
if T is k-split, ZG(T) is the Levi factor of a parabolic k-subgroup of G. (Here, we
say a closed subgroup H of G is a k-subgroup of G if H is a k-group). Any k-torus
in G is contained in some maximal torus which is defined over k. If k is infinite,
then G(k) is Zariski dense in G.

The maximal k-split tori of G are all conjugate under G(k). Let S be a maximal
k-split torus in G. The k-rank of G is the dimension of S. The semisimple k-rank
of G is the k-rank of G/R(G). The finite group kW = NG(S)/ZG(S) is called the
k-Weyl group. The set kΦ = Φ(G,S) of roots of G relative to S is called the k-roots
of G. The k-roots form an abstract root system, which is not necessarily reduced,
with Weyl group isomorphic to kW . The rank of kΦ is equal to the semisimple
k-rank of G.

A Borel subgroup B of G might not be defined over k. We say that G is
k-quasisplit if G has a Borel subgroup that is defined over k. If P is a parabolic
k-subgroup of G, then Ru(P) is defined over k. A Levi factor M of a parabolic
k-subgroup is called a Levi k-factor of P if M is a k-group. Any two Levi k-
factors of P are conjugate by a unique element of Ru(P)(k). If two parabolic
k-subgroups of G are conjugate by an element of G then they are conjugate by an
element of G(k). The group G contains a proper parabolic k-subgroup if and only
if G contains a noncentral k-split torus, that is, if the semisimple k-rank of G is
positive. The results described in this section give no information in the case where
G has semisimple k-rank zero.

Let P0 be a minimal element of the set of parabolic k-subgroups of G (such
an element exists, since the set is nonempty, as it contains G). Any minimal
parabolic k-subgroup of G is conjugate to P0 by an element of G(k). The group
P0 contains a maximal k-split torus S of G, and ZG(S) is a k-Levi factor of P0.
The semisimple k-rank of ZG(S) is zero. Because NG(S) = NG(S)(k) · ZG(S),
G(k) contains representatives for all elements of kW . The group kW acts simply
transitively on the set of minimal parabolic k-subgroups containing ZG(S).

Let Lie(ZG(S)) be the Lie algebra of ZG(S). Then

g = Lie(ZG(S))⊕
⊕

α∈kΦ

gα.
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If α ∈ kΦ and 2α /∈ kΦ, then gα is a subalgebra of g. If α and 2α ∈ kΦ, then
gα + g2α is a subalgebra of g. For each α ∈ kΦ, set

g(α) =

{
gα, if 2α /∈ kΦ
gα ⊕ g2α, if 2α ∈ kΦ.

There exists a unique closed connected unipotent k-subgroup U(α) of G which
is normalized by ZG(S) and has Lie algebra g(α).

Let P0 be as above. Then there exists a unique base k∆ of kΦ such that
Ru(P0) is generated by the groups U(α), α ∈ kΦ+. The set of standard parabolic
k-subgroups of G corresponds bijectively with the set of subsets of kΦ. Fix I ⊂ k∆.
Let SI = (∩α∈I ∩Kerα)0 and let kΦI be the set of α ∈ kΦ which are integral linear
combinations of the roots in I. Let kWI be the subgroup of kW generated by
the reflections sα, α ∈ I. The parabolic k-subgroup of G corresponding to I is
PI = P0 · kWI ·P0. The unipotent radical of PI is equal to NI , the subgroup of G
generated by the groups U(α), as α ranges over the elements of kΦ+ which are not
in kΦI . The k-subgroup MI := ZG(SI) is a Levi k-factor of PI , Φ(MI ,S) = kΦI ,
and kWI = kW (MI ,S).

A parabolic k-subgroup of G is conjugate to exactly one PI , and it is conjugate
to PI by an element of G(k).

Relative Bruhat decomposition. Let U0 = Ru(P0). Then G(k) = U0(k) ·
NG(S)(k) · U0(k), and G(k) is the disjoint union of the sets P0(k)wP0(k), as w
ranges over a set of representatives for elements of kW in NG(S)(k).

A parabolic subgroup of G(k) is a subgroup of the form P(k), where P is a
parabolic k-subgroup of G. A subgroup of G(k) which contains P0(k) is equal to
PI(k) for some I ⊂ k∆. If I ⊂ k∆, choosing representatives for kWI in NG(S)(k),
we have PI(k) = P0(k)·kWI ·P0(k). The group PI(k) is equal to its own normalizer
in G(k). The Levi decomposition PI = MI � NI carries over to the k-rational
points: PI(k) = MI(k) � NI(k). If I, J ⊂ k∆ and g ∈ G(k), then gPJ(k)g−1 ⊂
PI(k) if and only if J ⊂ I and g ∈ PI(k).

8. Examples

Example 8.1. G = GLn(K), n ≥ 2.
The group T = { diag (t1, t2, . . . , tn) | ti ∈ K× } is a maximal torus in G. For

1 ≤ i ≤ n, let �i = (0, 0, . . . , 0, 1, 0, · · · , 0) ∈ Zn, with the 1 occurring in the ith

coordinate. The map
n∑

i=1

ki�i �→ χ n
P

i=1
ki�i

, where

χ n
P

i=1
ki�i

(diag (t1, · · · , tn)) = tk1
1 · · · tkn

n ,

is an isomorphism from Zn to X(T). If µ n
P

i=1
ki�i

(t) = diag (tk1 , · · · , tkn), t ∈

K×, then the map
n∑

i=1

ki�i �→ µ n
P

i=1
ki�i

is an isomorphism from Zn to Y (T). Also,

〈χΣki�i
, µΣ�iei

〉 =
n∑

i=1

ki�i. The root system Φ = Φ(G,T) = {χ�i−�j
| 1 ≤ i �= j ≤

n }.
For 1 ≤ i �= j ≤ n, let Eij ∈ Mn(K) = g be the matrix having a 1 in the ijth

entry, and zeros elsewhere. If α = χ�i−�j
, i �= j, then gα is spanned by Eij , and
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Uα = { In + tEij | t ∈ K }. The reflection sα permutes �i and �j , and fixes all �k
with k /∈ {i, j}. The co-root α∨ is µ�i−�j

The Weyl group W is isomorphic to the
symmetric group Sn. The root system Φ � Φ∨ is of type An−1.

The set ∆ := {χ�i−�i+1 | 1 ≤ i ≤ n − 1 } is a base of Φ. The corresponding
Borel subgroup B is the subgroup of G consisting of upper triangular matrices.

If I ⊂ ∆, there exists a partition (n1, n2, · · · , nr) of n (ni a positive integer,
1 ≤ i ≤ r, n1 + n2 + · · ·+ nr = n), such that

TI = { diag (a1, . . . , a1︸ ︷︷ ︸
n1 times

, a2, . . . , a2︸ ︷︷ ︸
n2 times

, . . . , ar, . . . , ar︸ ︷︷ ︸
nr times

) | a1, a2, . . . , ar ∈ K× }

The group MI := ZG(TI) is isomorphic to GLn1(K)×GLn2(K)×· · ·×GLnr
(K),

NI consists of matrices of the form
In1 ∗ ∗ ∗

In2 ∗
...

0
. . . ∗

Inr

 ,
and PI = MI � NI .

Example 8.2. G = Sp4(K) (the 4× 4 symplectic group). Let

J =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


Then G = {g ∈ GL4(K) | tgJg = J} and g = {X ∈M4(K) | tXJ + JX = 0}.

The group T := { diag (a, b, b−1, a−1) | a, b ∈ K×} is a maximal torus in G
and X(T) � Z × Z, via χ(i,j) ↔ (i, j), where χ(i,j)(diag (a, b, b−1, a−1)) = aibj .
And Y (T) � Z × Z, via µ(i,j) ↔ (i, j), where µ(i,j)(t) = (diag (ti, tj , t−j , t−i).
Note that 〈χ(i,j), µ(k,�)〉 = ki + j�.

Let α = χ(1,−1) and β = χ(0,2). Then

Φ = {±α, ±β, ±(α + β), ±(2α + β },

∆ := {α, β} is a base of Φ = Φ(G,T), and

gα = SpanK(E12 −E34), g−α = SpanK(E21 −E43) gβ = SpanKE23

gα+β = SpanK(E13 + E24), g2α+β = SpanKE14, etc.

Identifying α and β with (1,−1) and (0, 2) ∈ Z × Z, respectively, we have
sα(1, −1) = (−1, 1) = −α and sα(1, 1) = (1, 1). The corresponding element of
W = NG(T)/T is represented by the matrix

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
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We also have sβ(0, 2) = (0,−2) = −β and sβ(1, 0) = (1, 0). The corresponding
element of W = NG(T)/T is represented by the matrix

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 .
The Weyl group W = W (Φ) is equal to { 1, sα, sβ , sαsβ , sβsα, sβsαsβ , sαsβsα, (sβsα)2 }
which is isomorphic to the dihedral group of order 8.

The dual root system Φ∨ is described by
Φ∨ = {±α∨, ±β∨, ±(α + β)∨, ±(2α + β)∨}

α∨ = (1, −1) (α + β)∨ = (1, 1)

β∨ = (0, 1) (2α + β)∨ = (1, 0)

The root system Φ is of type C2 and Φ∨ is of type B2, isomorphic to C2.

Remark 8.3. If n > 2 the root system of Sp2n(K) is of type Cn, and the dual
is of type Bn, and Bn and Cn are not isomorphic.

The Borel subgroup of G which corresponds to ∆ is the subgroup B of upper
triangular matrices in G. Apart from G and B, there are two standard parabolic
subgroups, Pα and Pβ , attached to the subsets {α} and {β} of ∆, respectively. It
is easy to check that

Tα = (Ker α)◦ = {diag (a, a, a−1 a−1) | a ∈ K×}

Mα = ZG(Tα) =

8

<

:

2

4

A 0

0

»

0 1

1 0

–

tA−1

»

0 1

1 0

–

3

5

˛

˛

˛

A ∈ GL2(K)

9

=

;

Nα =

»

I2 B

0 I2

–

˛

˛

˛

B ∈ M2(K), tB = B

ff

Tβ = (Ker β)◦ = {diag (a, 1, 1, a−1) | a ∈ K× }

Mβ = ZG(Tβ) =

8

>

>

<

>

>

:

2

6

6

4

d 0 0 0

0 c11 c12 0
0 c21 c22 0

0 0 0 d−1

3

7

7

5

˛

˛

˛

d ∈ K×, c11c22 − c12c21 = 1

9

>

>

=

>

>

;


 SL2(K) × K×

Nβ =

8

>

>

<

>

>

:

2

6

6

4

1 x y z
0 1 0 y

0 0 1 −x
0 0 0 1

3

7

7

5

˛

˛

˛

x, y, z ∈ K

9

>

>

=

>

>

;

9. Comments on references

For the basic theory of linear algebraic groups, see [B1], [H] and [Sp2], as
well as the survey article [B2]. For information on reductive groups defined over
non algebraically closed fields, the main reference is [BoT1] and [BoT2]. Some
material appears in [B1], and there is a survey of rationality properties at the end
of [Sp2]. See also the survey article [Sp1]. For the classification of semisimple
algebraic groups, see [Sa] and [T2]. For information on reductive groups over
local nonarchimedean fields, see [BrT1], [BrT2], and the article [T1]. Adeles and
algebraic groups are discussed in [W].
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Introduction

One of the long term goals in the representation theory of reductive groups over
p-adic fields is the local Langlands conjecture, which classifies irreducible represen-
tations in terms of Langlands parameters (and auxiliary data on the Langlands
dual group). This goal has been achieved for GLn (see [Car00] for a survey of
recent work on this problem), but not in general.

One way to approach the classification problem for classical groups is via the
twisted Arthur-Selberg trace formula for GLn, the reason behind this being that
all quasi-split classical groups are captured as twisted endoscopic groups for GLn

(strictly speaking, a suitable restriction of scalars of GLn in the case of unitary
groups). The building blocks of representation theory on a p-adic group are the
supercuspidal representations, and these show up in the trace formula only through
their distribution characters. To use the trace formula successfully it is necessary
to know some qualitative facts about these characters.

Here we should pause to recall that for any smooth representation π of our
p-adic group G and any f ∈ C∞

c (G) (the space of locally constant and compactly
supported functions on G) there is an operator π(f) on the underlying vector space
Vπ of π, defined on v ∈ Vπ by

(0.0.1) π(f)(v) :=
∫

G

f(g)π(g)(v) dg,

dg being some fixed Haar measure on G.
When π is irreducible, it is necessarily admissible (see the survey article [BZ76]

for this and other basic facts about the representation theory of p-adic groups),
which guarantees that π(f) has finite rank and hence has a trace. The character
Θπ of π is the distribution on G defined by

Θπ(f) = trπ(f)

on each test function f ∈ C∞
c (G).

It is a deep theorem of Harish-Chandra that the distribution Θπ can be repre-
sented by integration against a locally constant function, still denoted Θπ, on the
set Grs of regular semisimple elements in G. Thus, for all f ∈ C∞

c (G) there is an
equality

(0.0.2) Θπ(f) =
∫

G

f(g)Θπ(g) dg.

The function Θπ is independent of the choice of Haar measure, and by comparing
equations (0.0.1) and (0.0.2) one sees that formally Θπ(g) = trπ(g), though of
course trπ(g) does not make sense literally when π is infinite dimensional, as is
usually the case.

In order to extract information about classical groups from the twisted trace
formula for GLn (see [Art97]), one must stabilize the twisted trace formula, which
is to say that one must express it as a linear combination of stable trace formulas for
the elliptic twisted endoscopic groups H of GLn. The stabilization process should
then yield identities between (suitable linear combinations of) characters on the
classical group H and (suitable linear combinations of) twisted characters on GLn.
This has been done in full [Rog90] for GL3(E) and its twisted endoscopic group
U(3) (quasi-split unitary group over F coming from a quadratic extension E/F ),
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giving a classification for representations of U(3) in terms of the better understood
representations of GL3(E).

Information about the characters of irreducible representations of p-adic groups
is embedded in the spectral side of the trace formula, but in order to carry out the
stabilization one must start with the geometric sides of the relevant trace formulas,
and so one must study orbital integrals (invariant integrals over conjugacy classes)
as well as Arthur’s weighted orbital integrals (obtained from certain non-invariant
integrals over conjugacy classes, and more generally from certain limits of these).

Thus, in order to use the trace formula, one needs a good understanding of
characters, orbital integrals and weighted orbital integrals, and these are precisely
the main objects of study in harmonic analysis on G. Many of the most basic (and
deepest) results in this area are due to Harish-Chandra, among them his theorem,
mentioned above, that the distribution character Θπ can be represented by a locally
integrable function on G, locally constant on Grs.

The main step in Harish-Chandra’s proof of this result involves passing to the
Lie algebra g of G and proving an analogous result there. For this reason, among
others, one should study harmonic analysis on g along with that on G, and in
this article, after introducing some of the key concepts in harmonic analysis on
G, we will then concentrate on g, giving an almost self-contained exposition of
Waldspurger’s local trace formula on g [Wal95] as well as many results of Harish-
Chandra [HC78, HC99]. We should now follow up these rather vague motivational
remarks with a more precise discussion of some of the key results in harmonic
analysis on G and g.

Harish-Chandra’s first assault [HC70] on the problem of representing the dis-
tribution character Θπ by a locally integrable function on G was limited to the case
in which π is a supercuspidal representation. Given a vector v in the space of π
and a vector ṽ in the space of the contragredient representation π̃, we can define a
locally constant function fṽ,v on G by

(0.0.3) fṽ,v(g) := 〈ṽ, π(g)v〉,
the pairing denoting the value of the linear functional ṽ on the vector π(g)v. The
function fṽ,v is referred to as a matrix coefficient for π. For simplicity let us as-
sume for the remainder of the introduction that the center of G is compact. Our
assumption that π is supercuspidal implies [BZ76] that all its matrix coefficients
are compactly supported functions on G. (Conversely, an irreducible smooth rep-
resentation whose matrix coefficients are compactly supported is supercuspidal.)

Now choose v, ṽ so that 〈ṽ, v〉 is the formal degree (see [HC70]) of π, and let
φ denote the matrix coefficient fṽ,v. (Thus φ(1) is the formal degree of π.) Then
as an easy first step Harish-Chandra shows that

Θπ(f) =
∫

G

[∫
G

φ(x)f(g−1xg) dx
]
dg

=
∫

G

[∫
G

φ(gxg−1)f(x) dx
]
dg.

(0.0.4)

These integrals are convergent only as iterated integrals, and it is not legitimate
to interchange the order of integration. However, let’s pretend for a moment that
we could interchange the order of integration. Then we would conclude that the
distribution Θπ is represented by the function x �→

∫
G
φ(gxg−1) dg on G. This is

nonsense since the integral
∫

G
φ(gxg−1) dg diverges unless the centralizer of x is
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compact. Nevertheless Harish-Chandra shows that the restriction of the distribu-
tion Θπ to Grs is represented by the function

(0.0.5) x �→
∫

G

[∫
K

φ(gkxk−1g−1) dk
]
dg

for any compact open subgroup K of G that we like, and he then goes on to prove
the difficult result that the function Θπ is locally integrable on G and represents
the distribution Θπ on all of G, not just on Grs.

For x ∈ Grs the identity component of the centralizer of x is a torus, and when
this torus is compact (compact modulo the center, when the center is not assumed
to be compact) we say that x is elliptic. For elliptic regular semisimple x Harish-
Chandra shows that the order of integration in (0.0.5) can be reversed, so that (for
such x) the character value at x is given by the orbital integral

(0.0.6) Θπ(x) =
∫

G

φ(gxg−1) dg.

Arthur [Art87] has generalized the formula (0.0.6) in a very beautiful way: for
any x ∈ Grs the character value at x is given by the weighted orbital integral

(0.0.7) Θπ(x) = (−1)dim AM

∫
AM\G

φ(g−1xg)vM (g) dġ

for a weight function vM described in 12.6 and a suitably normalized invariant
measure dġ on the homogeneous space AM\G. Here M is a Levi subgroup in which
x is elliptic, and AM is the split component of the center of M .

What happens when our irreducible smooth representation π is not assumed
to be supercuspidal? If π is obtained by parabolic induction from a supercuspi-
dal representation σ of a Levi subgroup M of G, then one can easily express the
character of π in terms of that of σ, and in this way show that Θπ is represented
by a locally integrable function on G. However, even for GL2, the Grothendieck
group of representations of G having finite length is not spanned by the classes of
representations that are parabolically induced from supercuspidal representations
of Levi subgroups, so parabolic induction alone does not solve our problem.

To handle the general case Harish-Chandra [HC78, HC99] changed his strat-
egy, no longer treating supercuspidal representations separately, and relying even
more heavily on passage to the Lie algebra g. One goal of this article is to work
through the main results of [HC78, HC99] concerning harmonic analysis on g.
What serve as the Lie algebra analogs of the invariant distributions Θπ? The
answer is quite simple: Fourier transforms of orbital integrals.

Orbital integrals are obtained as follows. For any X ∈ g the adjoint orbit of X
can be identified with GX\G (GX being the centralizer of X in G) and carries a
G-invariant measure dḡ; moreover for any f ∈ C∞

c (g) the integral

OX(f) :=
∫

GX\G

f(g−1Xg) dḡ

converges, yielding an invariant distribution OX , called the orbital integral for X.
The Fourier transform f �→ f̂ for f ∈ C∞

c (g) is reviewed in 8.2. As usual one
extends the notion of Fourier transform to distributions T on g by the rule

T̂ (f) = T (f̂).
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In particular we can consider the Fourier transform ÔX of any orbital integral
OX , and, as mentioned above, ÔX is analogous to the character of an irreducible
representation.

For example, if G is split with split maximal torus A and X is a regular element
in Lie(A), then ÔX is analogous to a principal series character. If X = 0, then
ÔX is analogous to the character of the trivial representation. If T is an elliptic
maximal torus and X is regular in Lie(T ), then ÔX is analogous to the character
of a supercuspidal representation of G.

Given this analogy, it is perhaps not hard to guess the statement of one of
Harish-Chandra’s main results in harmonic analysis on g (see Theorem 27.8): for
every X ∈ g the distribution ÔX is represented by a locally integrable function
on g, locally constant on grs, the set of regular semisimple elements in g. In fact
Theorem 27.8 says something even more general: for any invariant distribution I on
g whose support is bounded modulo conjugation (see 15.2) the Fourier transform Î
is represented by a locally integrable function on g, locally constant on grs.

It is not easy to prove that ÔX is represented by a function. The essential
case is when X lies in ge, the open subset of elliptic regular semisimple elements
in g, which Harish-Chandra treats by using Howe’s finiteness theorem (see 26.2) to
reduce to proving that Îφ is represented by a function for any φ ∈ C∞

c (ge). Here
Iφ is the invariant distribution on g defined for any cusp form φ ∈ C∞

c (g) by the
iterated integral

(0.0.8) Iφ(f) =
∫

G

[∫
g

φ(X)f(g−1Xg) dX
]
dg,

the Lie algebra analog of (0.0.4). The integral (0.0.8) is actually convergent as a
double integral for the special cusp forms φ ∈ C∞

c (ge). [Recall that we are assuming
that the center of G is compact and hence can be ignored. We should also note
that later, when discussing Iφ systematically (see 25.2), we will find it convenient
to build in a harmless factor |ZG|−1 (see (25.4.3)).] In particular, we see that φ
(and more generally any cusp form on g) behaves analogously to a cusp form on
G. (Cusp forms on G turn out to be linear combinations of matrix coefficients of
supercuspidal representations of G.)

Now (0.0.8) is something that arises naturally in the context of Waldspurger’s
local trace formula [Wal95] on g, and following Waldspurger we use (see 25.2)
the local trace formula to prove that Îφ is represented by a function, as well as to
prove Harish-Chandra’s Lie algebra analog of (0.0.6) and Waldspurger’s Lie algebra
analog of (0.0.7).

Waldspurger uses the exponential map to derive the local trace formula on g

from Arthur’s [Art91a] local trace formula on G. A second goal of this article is to
write out a direct proof of the local trace formula on g. For the most part we follow
Arthur’s treatment of the geometric side of the one on G, the main point being
Arthur’s key geometric result (Theorem 22.3). However some steps in the proof are
handled differently. For example toric varieties are used to pass from weight factors
obtained by counting lattice points to weight factors obtained as volumes of convex
polytopes; these considerations lead to a variant of the local trace formula taking
values in the complexified K-theory of the relevant toric variety.

Shalika germs play an important role in Harish-Chandra’s proofs and are used
elsewhere in harmonic analysis. The last goal of this article is to give a self-contained
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treatment of them, including Harish-Chandra’s deep linear independence result,
which is closely tied to the density of regular semisimple orbital integrals (see
Theorem 27.5) in the space of all invariant distributions on g.

It remains to explain the organization of this article. The first ten sections
cover roughly the same material as that presented at the summer school. The first
section discusses an abstract form of the local trace formula that one has on any
compact group. It provides motivation and a first glimpse of how harmonic analysis
works, but is not used again later in the article. The second section discusses the
basics of integration on l.c.t.d spaces and proves a rather technical lemma used later
in semisimple descent for orbital integrals. The third and fourth sections provide
background for the fifth section, which aims to give the reader a feel for orbital
integrals on p-adic groups by calculating lots of them for GL2; a side benefit is
that the calculations illustrate the phenomenon of homogeneity that is the subject
of DeBacker’s article in this volume. The sixth section establishes the existence of
the Shalika germ expansion on G. The seventh section proves the Weyl integration
formula, a simple but important ingredient in the local trace formula. The eighth
section begins our discussion of the local trace formula. The ninth and tenth sections
prove the local trace formula on g for G = GL2 and derive from it the fact that Îφ is
represented by a function for any φ ∈ C∞

c (ge) (see (25.4.3) in order to understand
why the function Iφ considered in section 10 is essentially the same as the one
defined earlier in this introduction).

The remainder of the article is less elementary, though it is still almost com-
pletely self-contained. To keep the structure theory of G as simple as possible, we
usually assume that G is split. The eleventh section (on certain convex cones and
polytopes in Euclidean space) is quite technical and should be consulted only as
needed while reading later sections. The twelfth section proves some basic facts
about the weight factors occurring in Arthur’s weighted orbital integrals. Once
the definitions have been understood, the reader can move on, returning to the
lemmas proved in this section when they are referred to later. The next four sec-
tions concern descent, both parabolic and semisimple, which is used to perform
reduction steps in later proofs. The seventeenth section proves some relatively easy
results about Shalika germs on g: homogeneity (which lets one define Shalika germs
as canonical functions on grs, not just germs of functions) and local boundedness
(see Theorem 17.9) of normalized Shalika germs. As a consequence we obtain the
boundedness (see Theorem 17.10) of the function X �→ IX(f) on grs, where IX

denotes the normalized orbital integral over the orbit of X ∈ grs.
In the next two sections we study norms on the set X(F ) of F -points on a

variety X (usually affine) over a field F equipped with a non-trivial absolute value.
It is standard practice to use such norms on g and G, but it seems useful to study
them in greater generality, so that one can also take X to be a G-orbit in g, for
example. Most of this material is very easy, the one result requiring some work
being Proposition 18.3. The twentieth section uses this theory of norms to estimate
weighted orbital integrals.

The next four sections prove the local trace formula on g (for any split group G),
including the K-theoretic version (see 24.5) as well as the standard one (Theorem
24.1) involving volumes of convex hulls. The formula simplifies (see (24.10.8) and
(24.10.9)) when one of the test functions is a cusp form. In the next section we use
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the local trace formula to prove (see Theorem 25.1) the facts about Îφ mentioned
earlier in this introduction.

The next two sections apply Theorem 25.1, Howe’s finiteness theorem (see
26.2) and the elementary part of the theory of Shalika germs in order to prove the
rest of the main results in harmonic analysis on g, namely Theorem 27.5 (linear
independence of Shalika germs and density of regular semisimple orbital integrals),
Theorem 27.8 (Î is represented by a function when I is an invariant distribution
whose support is bounded modulo conjugation), and Theorem 27.12 (the Lie algebra
analog of Harish-Chandra’s local character expansion for Θπ).

The last section is a guide to some of the notation used in this article.

1. Local trace formula for compact groups G

In this section G denotes a compact (Hausdorff) topological group and dg
denotes the unique Haar measure on G that gives measure 1 to G.

1.1. Finite dimensional representations of G. We need to spend a mo-
ment discussing finite dimensional representations (π, V ) of G. In other words we
are interested in continuous linear actions G × V → V , where V is a finite di-
mensional complex vector space. Continuity means that the map G × V → V
is continuous; linearity means that for each g ∈ G the map v �→ gv is a linear
transformation π(g) from V to itself.

We write (π∗, V ∗) for the contragredient representation of (π, V ). Here V ∗

is the vector space dual to V , and π∗ is the obvious representation of G on V ∗,
characterized by the equation

(1.1.1) 〈gv∗, gv〉 = 〈v∗, v〉
for all v ∈ V , v∗ ∈ V ∗, g ∈ G, the pairing on both sides of this equation being the
canonical one given by evaluating linear functionals on vectors.

1.2. Group algebra C(G). For our purposes the best version of the group
algebra of G is obtained by taking the vector space C(G) of continuous complex-
valued functions on G, viewed as a C-algebra using convolution. Recall that the
convolution f1 ∗ f2 of two functions f1, f2 ∈ C(G) is the function on G whose value
at x ∈ G is given by

(1.2.1)
∫

G

f1(xg−1)f2(g) dg.

Let (π, V ) be a finite dimensional representation of G. Then the group algebra
C(G) acts on V in a natural way. For f ∈ C(G) we denote by π(f) the linear
transformation by which f acts on V ; it is defined by

(1.2.2) π(f)(v) =
∫

G

f(g)gv dg.

1.3. Characters of finite dimensional representations of G. Let (π, V )
be a finite dimensional representation of G. We write Θπ for the character of π,
which is by definition the function on G defined by

(1.3.1) Θπ(g) = traceπ(g).

Similarly, for f ∈ C(G) we define a complex number Θπ(f) by

(1.3.2) Θπ(f) = traceπ(f).
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It is clear from the definitions that

(1.3.3) Θπ(f) =
∫

G

f(g)Θπ(g) dg.

1.4. Function space L2(G). We use dg to form the space L2(G) of square-
integrable functions on G. The group G × G acts by unitary transformations on
the Hilbert space L2(G), the action of (g1, g2) ∈ G×G on ϕ ∈ L2(G) being given
by the rule

(1.4.1)
(
(g1, g2)ϕ

)
(x) = ϕ(g−1

1 xg2).

The (G × G)-module L2(G) can also be viewed as a C(G) ⊗C C(G)-module,
the action of f1 ⊗ f2 ∈ C(G) ⊗C C(G) on ϕ ∈ L2(G) being given by the following
integrated form of (1.4.1):

(1.4.2)
(
(f1 ⊗ f2)ϕ

)
(x) =

∫
G

∫
G

f1(g1)f2(g2)ϕ(g−1
1 xg2) dg1 dg2.

In the integral over g2 ∈ G we may replace g2 by x−1g1g2, obtaining

(1.4.3)
(
(f1 ⊗ f2)ϕ

)
(x) =

∫
G

∫
G

f1(g1)f2(x−1g1g2)ϕ(g2) dg1 dg2,

which shows that f1 ⊗ f2 acts by an integral operator whose kernel function K is
given by

(1.4.4) K(x, y) =
∫

G

f1(g)f2(x−1gy) dg.

Clearly this kernel is a continuous (hence square-integrable) function on G×G,
so that the action of f1⊗f2 on L2(G) is given by a Hilbert-Schmidt operator. Simi-
larly (and even more simply) the left-translation (resp., right-translation) action of
f1 (resp., f2) on L2(G) is given by a continuous kernel, hence by a Hilbert-Schmidt
operator; since the product of the Hilbert-Schmidt operators obtained from f1 and
f2 separately gives the action of f1⊗f2, we see that f1⊗f2 is a trace class operator
whose trace is equal to the integral of the kernel K over the diagonal:

(1.4.5) trace(f1 ⊗ f2;L2(G)) =
∫

G

∫
G

f1(g)f2(x−1gx) dg dx.

This equation is a preliminary form of the trace formula for the compact group
G. We will modify both sides of (1.4.5) in order to get the final form of the trace
formula for G. To rewrite the left side we will use the Peter-Weyl theorem.

1.5. Peter-Weyl theorem. The Peter-Weyl theorem (see the book [Kna86]
by Knapp, for example) tells us that the (G × G)-module L2(G) is isomorphic to
the Hilbert space direct sum

(1.5.1)
⊕̂

(π,V )
V ⊗C V ∗,

where (π, V ) runs over a set of representatives for the isomorphism classes of ir-
reducible finite dimensional representations of G. We have already discussed the
G-module structure on V ∗. We regard V ⊗CV

∗ as a (G×G)-module by the following
rule:

(1.5.2) (g1, g2)(v ⊗ v∗) = g1v ⊗ g2v
∗.
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Therefore the left (spectral) side of the trace formula can be rewritten as

(1.5.3)
∑

(π,V )

Θπ(f1)Θπ∗(f2).

1.6. Final form of the trace formula. Now we manipulate the right (geo-
metric) side of the trace formula. Note that the right side of (1.4.5) can be rewritten
as

(1.6.1)
∫

G

∫
G

f1(y−1gy)f2(x−1gx) dg dx

for any y ∈ G. [Change variables twice: first replace x by y−1x, then g by y−1gy.]
Integrating over y and changing the order of integration, we arrive at the final form
of the trace formula:

(1.6.2)
∑

(π,V )

Θπ(f1)Θπ∗(f2) =
∫

G

f̃1(g)f̃2(g) dg,

where for any f ∈ C(G) we define f̃ ∈ C(G) by

(1.6.3) f̃(g) =
∫

G

f(x−1gx) dx.

Thus f̃(g) is obtained by integrating f over the orbit (or conjugacy class) of g;
for this reason f̃(g) is known as an “orbital integral.” Obviously the function f̃ is
constant on orbits.

1.7. Algebraic form of the Peter-Weyl theorem. Consider once again
the Peter-Weyl theorem isomorphism (of (G×G)-modules)

(1.7.1) L2(G) ∼=
⊕̂

(π,V )
V ⊗C V ∗.

Inside the Hilbert space direct sum on the right side of (1.7.1) we have the algebraic
direct sum, which can be characterized as the set of vectors u such that the (G×G)-
module generated by u is finite dimensional. Under the Peter-Weyl isomorphism
these correspond to functions ϕ ∈ L2(G) that are left and right G-finite, in the
sense that the (G × G)-submodule of L2(G) generated by ϕ is finite dimensional;
it turns out that such functions are automatically continuous. Thus we obtain the
algebraic form of the Peter-Weyl theorem

(1.7.2) C(G)0 ∼=
⊕
(π,V )

V ⊗C V ∗,

where C(G)0 denotes the space of left and right G-finite continuous functions on G.
We have not yet specified how we are normalizing the Peter-Weyl isomorphism.

To do so we note that V ⊗C V ∗ is canonically isomorphic to EndC(V ) (even as
(G×G)-module). In our normalization of the Peter-Weyl isomorphism a function
f ∈ C(G)0 maps to the family of elements π(f) ∈ EndC(V ) = V ⊗C V ∗. In
particular for f ∈ C(G)0 we have π(f) = 0 (and hence Θπ(f) = 0) for all but
finitely many isomorphism classes of irreducible finite dimensional representations
(π, V ).
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1.8. Fourier transforms of orbital integrals. For any irreducible finite
dimensional representation (π, V ) of G the linear functional f �→ Θπ(f) on C(G)0
is conjugation invariant, and it is clear from the algebraic Peter-Weyl theorem that
any conjugation invariant linear functional is an infinite linear combination of these
basic ones. In particular this is the case for the orbital integral

(1.8.1) f �→
∫

G

f(x−1gx) dx.

In fact we have the following formula for any g ∈ G and f ∈ C(G)0:

(1.8.2)
∫

G

f(x−1gx) dx =
∑

(π,V )

Θπ(g)Θπ∗(f).

How does one prove this formula? Both sides of it are continuous functions of g;
to prove that they are equal it is enough to show that they have the same integral
against an arbitrary continuous function on G, and this is just a restatement of the
preliminary form (1.4.5) of the trace formula.

1.9. Plancherel formula. In the special case g = 1 equation (1.8.2) yields
the Plancherel formula (valid for any f ∈ C(G)0)

(1.9.1) f(1) =
∑

(π,V )

dim(π)Θπ(f).

(Here we used that π and π∗ have the same dimension.)

1.10. Matrix coefficients. Let (π, V ) be an irreducible finite dimensional
representation of G. For v ∈ V , v∗ ∈ V ∗ such that 〈v∗, v〉 = 1 we define functions
fv∗,v and fv,v∗ on G by fv∗,v(g) = 〈v∗, gv〉 and fv,v∗(g) = 〈gv∗, v〉. Both functions
lie in C(G)0. The function fv∗,v is a matrix coefficient for π, while fv,v∗ is a matrix
coefficient for π∗. The two functions are related by fv,v∗(g) = fv∗,v(g−1).

We can use matrix coefficients to give an explicit formula for the inverse β of
the isomorphism α appearing in the algebraic Peter-Weyl theorem. Recall that
α(f) is the element of

(1.10.1)
⊕
(π,V )

EndC(V )

whose (π, V )-th component is π(f). We will give an explicit formula for β on each
summand V ⊗C V ∗ = EndC(V ). For v ⊗ v∗ ∈ V ⊗C V ∗ we claim that β(v ⊗ v∗) =
dimπ · fv,v∗ .

Why is this the right formula for β? The representations V ⊗C V ∗ of G×G are
irreducible and pairwise non-isomorphic, and the map v ⊗ v∗ �→ fv,v∗ is (G × G)-
equivariant and non-zero. Therefore it is clear that there exists a scalar cπ such
that β(v ⊗ v∗) = cπ · fv,v∗ . Taking f = fv,v∗ in the Plancherel formula (1.9.1), we
see that cπ = dimπ.

1.11. Orbital integrals of matrix coefficients. Let (π, V ) be an irreducible
finite dimensional representation of G. Let g ∈ G. Then from (1.8.2) it follows easily
that

(1.11.1)
∫

G

fv∗,v(x−1gx) dx = (dimπ)−1 ·Θπ(g).
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Thus the orbital integrals of the matrix coefficient fv∗,v for π give the character
values of π (up to the scalar (dimπ)−1). We have proved this as a consequence of
the Peter-Weyl theorem and the trace formula for G, but in fact there is a simple
direct proof, as the reader may wish to devise as an exercise. [Hint: Consider the
endomorphism

∫
G
π(x−1gx) dx of V .]

1.12. Comments. Our goal here has not been to develop harmonic analysis
on compact groups in the most efficient way, but rather to concentrate on the trace
formula and its relationship to other basic concepts, stressing those, such as orbital
integrals, that we will meet again in the non-compact case.

A more standard treatment would emphasize the orthogonality relations (for
irreducible characters and for matrix coefficients). The trace formula for G has
essentially the same information in it, but packaged in a slightly different way, as
we have tried to illustrate.

2. Basics of integration

2.1. l.c.t.d spaces. What kind of spaces will we be integrating over? In
this article we are interested in p-adic groups and Lie algebras, so the topological
spaces we will encounter will be l.c.t.d spaces (short for locally compact and totally
disconnected). Thus an l.c.t.d space is a Hausdorff topological space in which every
point has a neighborhood basis of compact open subsets.

On an l.c.t.d space X the most important space of functions is C∞
c (X), the

space of all locally constant, compactly supported, complex-valued functions on
X. Any such function can be written as a linear combination of characteristic
functions of compact open subsets of X. This makes integration rather easy, at
least in principle: we just need to assign measures to compact open subsets.

Let X be an l.c.t.d space and let Y be a closed subset with complementary
open subset U . Then both Y and U are themselves l.c.t.d spaces, and it is an
instructive exercise to check that the sequence

(2.1.1) 0 → C∞
c (U) → C∞

c (X) → C∞
c (Y ) → 0

is exact. (The first map is given by extending by 0, the second by restriction to Y .)
Sometimes it is useful to consider vector-valued functions. For any complex

vector space V we write C∞
c (X;V ) for the space of locally constant, compactly

supported functions on X with values in V . It is easy to check that

(2.1.2) C∞
c (X;V ) = C∞

c (X)⊗C V.

Lemma 2.1. Let X, Y be l.c.t.d topological spaces. Then the product X × Y is
also a l.c.t.d space, and moreover there are equalities

C∞
c (X × Y ) = C∞

c (X;C∞
c (Y )) = C∞

c (X)⊗C C∞
c (Y ).

We leave the proof to the reader as another exercise.

2.2. l.c.t.d groups. An l.c.t.d topological group is by definition a locally
compact Hausdorff topological group G in which the identity element has a neigh-
borhood basis of compact open subgroups. Clearly G is then a l.c.t.d topological
space. For us a typical example is G(F ), where F is a p-adic field and G is a linear
algebraic group over F . To see that G(F ) is a l.c.t.d group we reduce to the case of
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the general linear group GLn (by choosing an embedding of G in a general linear
group); in GLn(F ) the compact open subgroups

(2.2.1) Kn = {g ∈ GLn(O) : g ≡ 1 mod πn}

give the desired neighborhood basis at the identity element. Here (and throughout
the article) we write O for the valuation ring in F and π for a generator of the
maximal ideal of O.

2.3. Unimodular groups. Any locally compact Hausdorff topological group
G admits a left invariant Radon measure dg, known as a (left) Haar measure, and
dg is unique up to a positive scalar. Since right translations commute with left
translations, a right translate of dg is another Haar measure, hence is a positive
multiple of dg; in this way one obtains the modulus character δG (with values in
the multiplicative group of positive real numbers) characterized by the property

(2.3.1) d(gh−1) = δG(h) · dg

or, equivalently,

(2.3.2) d(hgh−1) = δG(h) · dg.

When the modulus character is trivial, one says that G is unimodular. In this case
dg is both left and right invariant and d(g−1) = dg.

For a reductive group G over our p-adic field F the group G(F ) is always
unimodular. This stems from the fact that G acts trivially on the top exterior power
of the Lie algebra of G. On the other hand, for any proper parabolic subgroup P
of G, the group P (F ) is not unimodular.

On a l.c.t.d group G integration is particularly simple. Fix some compact open
subgroup K0. Then there is a unique Haar measure dg giving K0 measure 1. For
any compact open subgroup K of G the measure of K is

(2.3.3) [K : K ∩K0] · [K0 : K ∩K0]−1.

Moreover for any compact open subset S of G there is a compact open subgroup
K small enough that S is a disjoint union of cosets gK, so that the measure of S
is the number of such cosets times the measure of K. That’s all we need to know
about integration on l.c.t.d groups!

2.4. Integration on homogeneous spaces. Let G be a unimodular locally
compact Hausdorff topological group and let H be a closed subgroup. Then there
exists a right G-invariant Radon measure on H\G if and only if H is unimodular.
Assume this is so, and assume also that G (and hence H) is a l.c.t.d group.

Choose Haar measures dg, dh on G, H respectively. Then there is a quotient
measure (right G-invariant) dg/dh on H\G characterized by the formula (integra-
tion in stages)

(2.4.1)
∫

G

f(g)dg =
∫

H\G

∫
H

f(hg) dh dg/dh,

valid for all f ∈ C∞
c (G).

The reason why the integration in stages formula characterizes the invariant
integral on H\G is that any function in C∞

c (H\G) lies in the image of the linear
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map

C∞
c (G) → C∞

c (H\G)

f �→ f �
(2.4.2)

defined by putting

(2.4.3) f �(g) =
∫

H

f(hg) dh.

Again we can see rather concretely how the measure works. Indeed, any com-
pact open subset of our homogeneous space can be written as a disjoint union of
ones of the form H\HgK (for some compact open subgroup K of G), and the
measure of H\HgK is given by

(2.4.4) measdg(K)/measdh(H ∩ gKg−1),

as one sees by applying integration in stages to the characteristic function of gK.

2.5. Integration in stages in reversed order. We continue with G, H
as above. Later, when discussing descent for orbital integrals, we will need the
integral formula in Lemma 2.3 below. As a warm-up exercise, we first prove a
simpler statement, which can be thought of as a version of integration in stages in
which the order of integration has in a sense been reversed. This reversed formula
involves a compact open subset C of H\G. We also need to choose α ∈ C∞

c (G)
such that α� = 1C .

Lemma 2.2. For all f ∈ C∞
c (G) such that the image of Supp(f) under G �

H\G is contained in C there is an equality

(2.5.1)
∫

G

f(g) dg =
∫

H

(∫
G

f(hg)α(g) dg
)
dh.

Proof. Change variables in the integral on the right, replacing g by h−1g, then
reverse the order of integration, then replace h by h−1, noting that d(h−1) = dh, a
consequence of the unimodularity of H. �

For descent theory we will actually need a variant of (2.5.1), in which we are
also given a closed unimodular subgroup I of H and a Haar measure di on I. With
C, α as before we then have the following lemma.

Lemma 2.3. For any integrable, locally constant function f on I\G such that
the image of Supp(f) in H\G is contained in C there is an equality

(2.5.2)
∫

I\G

f(g) dg/di =
∫

I\H

φ(h) dh/di

where φ is the integrable, locally constant function on I\H defined by

φ(h) =
∫

G

f(hg)α(g) dg.

Proof. Let β ∈ C∞
c (G) and consider β� ∈ C∞

c (H\G) defined as above by

β�(g) =
∫

H

β(hg) dh =
∫

H

β(h−1g) dh.
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Then, abbreviating dg/di and dh/di to dġ and dḣ respectively, we have∫
I\G

f(g)β�(g) dġ =
∫

I\G

f(g)
∫

H

β(h−1g) dh dġ

=
∫

I\G

f(g)
∫

I\H

∫
I

β(h−1i−1g) di dḣ dġ

=
∫

I\H

∫
I\G

∫
I

f(g)β(h−1ig) di dġ dḣ

=
∫

I\H

∫
G

f(g)β(h−1g) dg dḣ

=
∫

I\H

∫
G

f(hg)β(g) dg dḣ.

To see that all these integrals are convergent, replace f and β by their absolute
values and note that the integral we started with is obviously convergent, since f
is integrable and β� is bounded. Fubini’s theorem takes care of the rest.

Taking β = α, we obtain

(2.5.3)
∫

I\G

f(g)1C(g) dġ =
∫

I\H

φ(h)dḣ,

which in view of our assumption on the support of f yields the equality stated in
the lemma. We have seen along the way that φ is integrable, and it is obviously
locally constant. �

3. Preliminaries about orbital integrals

3.1. The set-up. We are going to discuss orbital integrals on G(F ), where G
is a connected reductive group over a p-adic field F . We fix an algebraic closure F̄
of F .

3.2. Orbits. Let γ ∈ G(F ). We are interested in the orbit O(γ) of γ for the
conjugation action of G on itself. In other words O(γ) is the conjugacy class of γ,
a locally closed subset G in the Zariski topology, isomorphic as variety to G/Gγ ,
where Gγ denotes the centralizer of γ in G (see [Bor91, Prop. 6.7]). There is an
exact sequence of pointed sets

(3.2.1) 1 → Gγ(F ) → G(F ) → (G/Gγ)(F ) → H1(F,Gγ) → H1(F,G)

where H1(F,G) denotes the Galois cohomology set H1(Gal(F̄ /F ), G(F̄ )), and the
boundary map in this sequence induces a bijection from the set of G(F )-orbits in
O(γ)(F ) to the set

(3.2.2) ker[H1(F,Gγ) → H1(F,G)].

Since H1(F,Gγ) is a finite set (see [Ser02, Ch. III,§4]), there are in fact only finitely
many such orbits. From the theory of p-adic manifolds (see [Ser92]) one knows
first of all that each G(F )-orbit is open in O(γ)(F ), hence also closed in O(γ)(F ),
and second of all that the G(F )-orbit of γ is isomorphic as p-adic manifold (hence
also as topological space) to the homogeneous space G(F )/Gγ(F ). Since O(γ) is
locally closed in G, the set O(γ)(F ) is locally closed in G(F ), and it follows that
the same is true of each individual G(F )-orbit in O(γ)(F ).
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When γ is semisimple, O(γ) is closed in G (see [Bor91, Thm. 9.2]), hence
O(γ)(F ) and the individual G(F )-orbits in it are all closed in G(F ).

It is instructive to consider the example of the group GL2. There is map α of al-
gebraic varieties from GL2 to the affine plane A2, defined by g �→ (trace(g), det(g)).
On A2 we have the discriminant function D, defined by D(b, c) = b2−4c. All fibers
of α are of course closed. The fiber of α over a point (b, c) where D is non-zero
consists of a single orbit of regular semisimple elements. (An element in GL2 is
regular semisimple if and only if it has distinct eigenvalues.) The fiber of α over
a point (b, c) where D vanishes is the union of two G-orbits, namely those of the
matrices [

a 0
0 a

]
and

[
a 1
0 a

]
,

where we have written a for b/2. The first matrix is semisimple (but not regu-
lar), and its orbit is closed in the fiber. The second matrix is regular (but not
semisimple), and its orbit is open in the fiber. A very special feature of the group
GL2 (and, more generally, of GLn) is that the Galois cohomology set H1(F,Gγ) is
always trivial, so that O(γ)(F ) always consists of a single G(F )-orbit.

A map similar to α exists for any G. For GLn one simply uses all the coefficients
of the characteristic polynomial of a matrix to define a map from GLn to An. In
general one uses the morphism G → G/ Int(G), where G/ Int(G) is by definition
the affine scheme whose ring of regular functions is the ring of conjugation invariant
regular functions on G. Later (see 14.2) we will discuss the analogous construction
for the Lie algebra of G in greater detail.

3.3. Definition of orbital integrals. Let γ ∈ G(F ). The orbital integral
Oγ(f) of a function f ∈ C∞

c (G(F )) is by definition the integral

(3.3.1) Oγ(f) :=
∫

Gγ(F )\G(F )

f(g−1γg) dġ

where dġ is a right G(F )-invariant measure on the homogeneous space over which
we are integrating. Thus Oγ depends on a choice of measure, but once this choice
is made we get a well-defined linear functional on C∞

c (G(F )). (We are not putting
any topology on our function space, so there is no continuity requirement in the
definition of linear functional.)

Two comments are needed. First, we need to know that Gγ(F ) is unimodular
in order to ensure that dġ exists. For semisimple elements γ there is no problem,
since then Gγ is reductive. In general, however, Gγ is not reductive, and we need
to argue as follows. By the Jordan decomposition (see [Bor91]) we can decompose
γ uniquely as γ = su = us with s semisimple and u unipotent. It follows that
u ∈ Gs and that Gγ coincides with the centralizer of u in the reductive group Gs.
This reduces us to the case in which γ is unipotent. Then (since the characteristic
of our field is 0) we can write γ as the exponential of a nilpotent element in the
Lie algebra over G over F . Using a G-invariant non-degenerate symmetric bilinear
form to identify the Lie algebra with its dual, we see that it is enough to prove
that the stabilizer (for the coadjoint action) of any element in the dual of the Lie
algebra is unimodular. This is equivalent to the statement that every coadjoint
orbit carries a G(F )-invariant measure, which in turn follows from the fact that
every coadjoint orbit admits a G-invariant structure of symplectic manifold and
hence admits a G-invariant volume form (which can then be used to construct a
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G(F )-invariant measure on the F -points of the orbit). See 17.3 for a discussion of
the symplectic structure on coadjoint orbits.

Second, we need to know that the integral converges. For semisimple elements
there is again no problem, since the orbit is closed, which ensures that the integrand
is a compactly supported (and locally constant) function on the homogenous space,
which is exactly the sort of function we can integrate. For arbitrary γ the orbit
is only locally closed, and while the integrand is still locally constant, it is not
necessarily compactly supported. (Of course the integral is still discrete in nature,
but it boils down to an infinite series rather than a finite sum, so that convergence
is not obvious.) For a proof of convergence see [Rao72], and for a slightly different
perspective on the geometry involved see [Pan91]. The idea is to reduce to the case
of nilpotent orbital integrals and then to show that the G-invariant volume form
on a nilpotent orbit extends (without singularities) to a suitable desingularization
(constructed using the theory of sl(2)-triples) of the closure of that nilpotent orbit.

3.4. Orbital integrals of characteristic functions of double cosets. We
continue with γ ∈ G(F ). We are going to lighten notation by writing G and
Gγ instead of G(F ) and Gγ(F ). The material in this subsection will be used in
section 5, when we calculate orbital integrals of functions in the spherical Hecke
algebra of GL2(F ).

Let K be a compact open subgroup of G, and write X for the homogeneous
space G/K. Since K is open, X has the discrete topology. We write x0 for the
base point in X (given by the trivial coset of K in G). Given (x1, x2) ∈ X × X
we pick g1, g2 ∈ G such that xi = gix0 for i = 1, 2. The double coset Kg−1

2 g1K is
well-defined and will be denoted by inv(x1, x2). It follows immediately from these
definitions that the map inv : X×X → K\G/K induces a bijection from the set of
G-orbits on X×X to K\G/K (with G acting on X×X by g(x1, x2) = (gx1, gx2)).
Here “inv” is short for “invariant”. The reason for this name is that inv(x1, x2) is
an invariant measuring the relative position of the two points x1 and x2.

For any a ∈ G we can consider the double coset KaK, a compact open subset
of G, as well as its characteristic function 1KaK , which lies in C∞

c (G). The orbital
integrals of 1KaK can be understood using the action of G on X. Indeed, from
(2.4.4) it follows that

(3.4.1)
∫

Gγ\G

1KaK(g−1γg) dg/dgγ =
∑

x

meas(K)
meas(StabGγ

(x))
,

where the sum on the right side runs over a set of representatives for the Gγ-orbits
on the set of elements x ∈ X such that inv(γx, x) = KaK, and the measures are
taken with respect to the Haar measures dg, dgγ on G, Gγ respectively; StabGγ

(x)
denotes the stabilizer of x in Gγ , a compact open subgroup of Gγ .

We may replace Gγ by any convenient closed subgroup G′
γ such that G′

γ\Gγ

is compact. This multiplies the orbital integral by the factor meas(G′
γ\Gγ), but

(3.4.1) remains valid, with G′
γ replacing Gγ everywhere. In particular, when Gγ

is compact, we may take G′
γ to be the trivial subgroup. Then, if we use the Haar

measure dg on G giving K measure 1, we have

(3.4.2)
∫

G

1KaK(g−1γg) dg = |{x ∈ X : inv(γx, x) = KaK}|,
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where |S| is being used to denote the cardinality of a finite set S, showing that
our orbital integral is the answer to a simple counting problem involving the action
of G on X. In section 5 we will solve such counting problems for G = GL2(F ),
K = GL2(O) using the tree for SL2(F ), but first we need to discuss two double
coset decompositions.

4. Cartan and Iwasawa decompositions

When calculating orbital integrals for GL2, we are going to need both the
Cartan and Iwasawa decompositions. Later we will need them for all split groups,
as this is the context in which we will discuss the Lie algebra version of the local
trace formula. In this section we will state both decompositions for all split groups
and will sketch proofs for GLn.

4.1. Notation. Let F be a p-adic field with valuation ring O and uniformizing
element π (so that the valuation of π is 1). For x ∈ F× we denote by val(x) the
valuation of x.

In this section G denotes a split connected reductive group scheme over O. We
need to choose various O-subgroup schemes in G: a split maximal torus A, and a
Borel subgroup B = AN containing A and having unipotent radical N . We write
AG for the identity component of the center of G. In the case of G = GLn we
make the standard choices: B consists of upper-triangular matrices, A of diagonal
matrices, and N of upper-triangular matrices with 1’s on the diagonal. We write
W for the Weyl group of A.

We write Gder for the derived group of the algebraic group G, and we write
Gsc for its simply connected cover.

We will need the group X∗(A) of cocharacters of A (in other words, the group
of homomorphisms from the multiplicative group Gm to A). The cocharacter group
is a free abelian group whose rank is equal to the dimension of A over F . For GLn

we identify X∗(A) with Zn as follows: to the n-tuple (j1, . . . , jn) corresponds the
cocharacter which sends an element z in the multiplicative group to the diagonal
matrix whose diagonal entries are (zj1 , . . . , zjn).

To lighten notation we write K for G(O) and then abbreviate G(F ), A(F ),
B(F ), N(F ) to G, A, B, N respectively.

4.2. The isomorphism A/A ∩K � X∗(A). For GLn the map which sends
a diagonal matrix to the n-tuple of valuations of the diagonal entries induces an
isomorphism from A/A ∩ K to Zn. In general we have a canonical isomorphism
A/A ∩ K � X∗(A), under which a cocharacter µ corresponds to the (class of)
the element πµ ∈ A obtained by applying the cocharacter to the element π in the
multiplicative group.

4.3. Cartan decomposition. The crude version of the Cartan decomposition
states simply that G = KAK. It is an instructive exercise to prove this for GLn.
[Start with an element in G and modify it by row and column operations coming
from K until eventually it is transformed into a diagonal matrix.]

For a, a′ ∈ A, when are the double cosets KaK and Ka′K the same? The re-
fined version answers this question. First of all it is evident that KaK = Ka′K if a,
a′ have the same image in A/A∩K. Second of all, since we can find representatives
in K for all elements of the Weyl group W , it is also clear that KaK = Kw(a)K
for all w ∈ W (where w(a) denotes the conjugation action of W on A). In fact
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these two observations turn out to be the end of the story: KaK = Ka′K if and
only if the images of a, a′ in A/A∩K are conjugate under the Weyl group. In view
of the discussion in 4.2 we obtain a natural bijection from the set of K\G/K of K-
double cosets to the set of orbits of W in X∗(A). The dominant coweights provide
a natural set of orbit representatives for this action, so that the set of K-double
cosets can also be parametrized by dominant coweights. (Recall that a coweight µ
is said to be dominant if 〈α, µ〉 ≥ 0 for every positive root α of A.)

For GLn the dominant coweights are the n-tuples (j1, . . . , jn) ∈ Zn such that
j1 ≥ · · · ≥ jn, and we conclude that such coweights parametrize the K-double
cosets. The following method can be used to prove the refined Cartan decomposition
for GLn. The idea is to construct sufficiently many invariants of K-double cosets.
The first idea is to consider the valuation of the determinant; this invariant of a
matrix clearly only depends on its K-double coset. A more subtle invariant is to
consider the least valuation of all the matrix entries (for this purpose we consider
that 0 has valuation +∞). The two procedures can be combined by considering
any integer i such that 1 ≤ i ≤ n and considering the least valuation of all the
i × i minors in our matrix. Applying this last invariant to any element in the K-
double coset containing the diagonal matrix with diagonal entries (πj1 , . . . , πjn),
we obtain the sum of the last i entries in the n-tuple (j1, . . . , jn). These sums (for
all i) together determine the dominant coweight uniquely. This proves the refined
Cartan decomposition for GLn.

4.4. Iwasawa decomposition. The Iwasawa decomposition states that G =
BK. This reflects the fact that the flag variety B\G is projective over F , hence
satisfies the valuative criterion for properness. For GLn it is another instructive ex-
ercise to prove the Iwasawa decomposition directly. [Start with an element in G and
modify it by column operations coming from K until eventually it is transformed
into an upper-triangular matrix.]

4.5. Definitions of ΛG, HG : G → ΛG, a, aG. We now introduce various
objects that will be used throughout this article. For example, there is an obvious
surjective homomorphism GLn(F ) → Z defined by g �→ val(det g), which we need
to generalize to all split groups.

Let ΛG denote the quotient of X∗(A) by the coroot lattice for G (by which
we mean the subgroup of X∗(A) generated by all the coroots of A). There is a
surjective homomorphism HG : G → ΛG, which by virtue of the Cartan decompo-
sition is characterized by the following two properties. The first property is that
the restriction of HG to the subgroup A is equal to the composition

(4.5.1) A � A/(A ∩K) ∼= X∗(A) � ΛG.

The second property is that the restriction of HG to K is trivial. Moreover it is
true that HG is also trivial on the image in G of the F -points of Gsc. From this it
follows that if g = ank with a ∈ A, n ∈ N , k ∈ K (Iwasawa decomposition), then
HG(g) = HG(a).

We write a for X∗(A)⊗Z R and aG for X∗(AG)⊗Z R. Thus aG can be viewed
as a subspace of a. Moreover the composition X∗(AG) ↪→ X∗(A) � ΛG induces an
isomorphism

(4.5.2) aG
∼= ΛG ⊗Z R.
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When Gder is simply connected as algebraic group, the finitely generated abelian
group ΛG is torsion-free and is therefore a free abelian group. In this case the nat-
ural map ΛG → aG is injective and identifies ΛG with a lattice in the real vector
space aG, so that there is no harm in thinking about HG as being a homomorphism
G → a that takes values in the lattice ΛG in a. When the derived group is not
simply connected, ΛG has torsion which is lost when one passes to ΛG ⊗Z R = aG.
In order to avoid confusion the reader should be aware that in Arthur’s papers HG

denotes the composition of our HG with the natural map ΛG → aG.

5. Orbital integrals on GL2(F )

5.1. The goal. Our goal in this section is to get a better understanding of
orbital integrals by calculating lots of them for the group GL2(F ). As we will
see, the phenomenon of homogeneity (covered in DeBacker’s course in this summer
school), shows up very clearly in these calculations. We follow the exposition in
[Lan80], using the tree for SL2(F ) as our main computational tool.

As before we consider a p-adic field F with valuation ring O and uniformizing
element π. We write q for the cardinality of the residue field O/πO of O.

We write G for the group GL2(F ) and write K for its compact open subgroup
GL2(O). We will not consider orbital integrals for arbitrary functions in C∞

c (G).
We will only consider functions lying in the spherical Hecke algebra H, defined
as the subspace of C∞

c (G) consisting of functions that are both left and right
invariant under K. The multiplication on H is given by convolution and turns out
to be commutative, and there is a simple description of this commutative C-algebra
(using the Satake isomorphism). Important as these facts are, they play no role
here. Our limited goal is to understand the linear functionals on H obtained by
restriction from the linear functionals Oγ on C∞

c (G), and even this will be done
only for elements γ ∈ K (which covers orbital integrals for all elements in G whose
conjugacy class meets K). So, throughout this section γ will always denote an
element of K.

The characteristic functions 1KaK of the double cosets KaK of K in G form
a basis for the vector space H. By the Cartan decomposition 4.3 there is bijection
from K\G/K to {(m,n) ∈ Z2 : m ≥ n}, which associates to the pair (m,n) the
double coset containing the diagonal matrix with diagonal entries (πm, πn).

For (m,n) ∈ Z2 with m ≥ n, we write fm,n for the characteristic function of the
K-double coset corresponding to (m,n). The functions fm,n form a basis for H, so
it is enough to calculate the numbers Oγ(fm,n). Since γ ∈ K, the determinant of γ
has valuation 0, which means that Oγ(fm,n) vanishes unless m+n = 0. Therefore,
it is enough to consider the functions fm defined by fm := fm,−m (for m ≥ 0).
We will now compute, case-by-case, the orbital integrals Oγ(fm) for all conjugacy
classes meeting K.

To define the orbital integral for γ we need an invariant measure dg/dg′γ on
G′

γ\G (see 3.4). We will always use the Haar measure dg on G that gives K
measure 1. We will discuss dg′γ case-by-case below.

5.2. Some useful subgroups of G. Let Z denote the group of non-zero
scalar multiples of the identity matrix; in other words, Z is the center of G. Let
B = AN be as in 4.1.
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5.3. Tree for SL2(F ). As mentioned before, our main computational tool
will be the tree for SL2(F ), which we now need to discuss. A good reference is
[Ser03]. A tree is the geometric realization of a 1-dimensional simplicial complex
that is both connected and simply connected. It can be specified by giving its set
V of vertices and saying which pairs of vertices are joined by an edge. The tree of
interest here comes equipped with an action of G, and the action is transitive on
the set of vertices. In fact the set V of vertices has a base-point v0 whose stabilizer
is KZ, so that V becomes identified with the homogeneous space G/KZ.

Inside the set V we have the orbit of v0 under A, which can be identified with
A/(A ∩ KZ) = A/(A ∩ K)Z. In fact the group A/(A ∩ K)Z is isomorphic to Z,
via the isomorphism sending a diagonal matrix to the difference of the valuations
of its two diagonal entries. Under this isomorphism an integer j then corresponds
to the diagonal matrix

(5.3.1)
[
πj 0
0 1

]
∈ A/(A ∩K)Z,

and we write vj for the corresponding vertex in V . We connect any two successive
vertices vj , vj+1 by an edge, obtaining a 1-dimensional simplicial complex whose
geometric realization is a real line, with vertices placed at each integer point; this
copy of the real line is called the standard apartment in our tree.

So far we have just described some of the edges in our tree, namely the ones
joining vertices in A/(A ∩ K)Z. We get all the edges in the tree by using the
action of G to move around the edges we have already described (ensuring that
the G-action does preserve the set of edges, as desired). It then turns out that the
1-dimensional simplicial complex we have constructed really is a tree, each vertex
of which has q + 1 neighbors (where q is the cardinality of the residue field).

Indeed, because of the G-action it is enough to show that the base-point v0 has
q + 1 neighbors. It turns out that K (which fixes v0) acts transitively on the set
of neighbors of v0. One of these neighbors is v−1, and a simple calculation shows
that the stabilizer of v−1 in K is

(5.3.2)
[
O× O
πO O×

]
.

Thus the K-orbit of v−1 is G(O/πO)/B(O/πO), the set of points on the projective
line over the residue field, which explains why there are q + 1 neighbors of v0.

5.4. Metric on the tree and its relation to inv(x1, x2). There is an obvious
metric d(y1, y2) on the tree. It is G-invariant, and on the standard apartment
discussed above it agrees with the usual metric on the real line. For this metric two
neighboring vertices have distance 1, and d(vm, vn) = |m− n|.

As before we write X for G/K and x0 for the base-point in X. Let x1, x2 ∈ X.
Since the set V of vertices of the tree is equal to G/KZ = Z\X, the images of x1,
x2 under the canonical surjection X → Z\X = V are vertices v1, v2 in the tree.

As in 3.4 the relative position of x1, x2 is measured by inv(x1, x2) ∈ K\G/K.
By the refined Cartan decomposition for GL2 we can view inv(x1, x2) as a pair
(m,n) of integers such that m ≥ n.

It is easy to see that m + n coincides with the valuation of the determinant
of any group element g such that x1 = gx2, and that m − n coincides with the
distance between the vertices v1 and v2 in the tree.
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5.5. Geodesics in the tree, convexity of fixed-point sets. Any two
points y1, y2 in our tree are joined by a unique shortest path [y1, y2], called a
geodesic. Inside the standard apartment (identified with R) geodesics are closed
intervals. We say that a subset C of the tree is convex if for every c1, c2 ∈ C the
geodesic [c1, c2] is contained in C.

Any element γ ∈ G takes the geodesic joining y1 and y2 to the geodesic joining
γy1 to γy2. Therefore if y1, y2 are fixed by γ, so is every point of the geodesic
joining them. Thus the fixed point set of γ in the tree is convex.

For elements γ ∈ K we can say more. First of all such an element obviously
fixes the base-vertex v0, so its fixed-point set on the tree is certainly non-empty.
Moreover, since the determinant of γ is a unit, the distance d(γv, v) is an even
integer for any vertex v ∈ V , and it follows that γ cannot take a vertex to one of
its neighbors, and in particular it cannot interchange the two vertices of an edge.
Therefore, if γ fixes an interior point of an edge, it actually fixes the entire edge
pointwise, and we see that the fixed point set of γ in the tree is simply the union
of all the edges both of whose vertices are fixed by γ.

For γ ∈ K these considerations lead to the following simple method for deter-
mining d(γv, v) for any vertex v. There is a unique geodesic joining v to a vertex
v′ fixed by γ and having the additional property that no vertex along this geodesic
other than v′ is fixed by γ. Equivalently, this geodesic is the shortest possible one
joining v to some vertex in the fixed-point set of γ. Applying γ to this geodesic, we
see that every point moves but v′, so that the geodesic together with its transform
form a geodesic from v to γv. This shows that d(γv, v) = 2d(v, v′); in other words,
d(γv, v) is twice the distance from v to the fixed point set of γ. We will use this
observation repeatedly below.

5.6. Unipotent orbital integrals restricted to H (denoted L0, L1). In
G there are two unipotent orbits, one of them being {1}, the other being the orbit
of the matrix u defined by

(5.6.1) u =
[
1 1
0 1

]
.

In this subsection we compute the restrictions to H of the orbital integrals Oγ for
γ = 1 and γ = u.

For γ = 1 the problem is trivial, since the orbital integral is just evaluation
at the identity. Thus the restriction L0 of O1 to H takes the value 1 on f0 and
vanishes on fm for m > 0.

Next we calculate the restriction L1 of Ou to H. The centralizer Gu is easily
seen to be ZN . We identify Z with F× in the obvious way, sending a scalar z
to the corresponding scalar matrix. We use the Haar measure on Z giving O×

measure 1. We identify N with the additive group F in the obvious way, using the
upper right matrix entry as our coordinate. We use the Haar measure on F that
gives O measure 1. We use the product measure on ZN , and hence K ∩ NZ has
measure 1.

From 3.4 we see that

(5.6.2) L1(fm) =
∑

v

meas(StabN (v))−1,
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where the sum runs over a set of representatives for the orbits of N on the set of
vertices v ∈ V such that d(uv, v) = 2m. Here we used that NZ\X = N\V (clear)
and that StabNZ(x) = StabN (v) · (Z ∩K) for x ∈ X mapping to v ∈ V .

Using the Iwasawa decomposition G = BK = NAK, we see that the set N\V
of orbits of N on V is A/Z(A ∩K) � Z. The vertices vj (j ∈ Z) in the standard
apartment are a particularly convenient set of orbit representatives. We need to
compute StabN (v) for each orbit representative.

This is a simple computation, the result of which is that StabN (vj) = πjO
(identifying N with F as above), a group whose measure is q−j . Another conse-
quence of this computation is that vj is fixed by u if and only if j ≤ 0, and, as we
saw in 5.5, this allows us to calculate d(uvj , vj) for each j ∈ Z. Indeed, for j ≤ 0
the vertex vj is fixed, so that d(uvj , vj) = 0. For j > 0, the geodesic [vj , v0] has v0

as its unique fixed point, so d(uvj , vj) = 2j.
Putting all these observations together, we see that

(5.6.3) L1(f0) = 1 + q−1 + q−2 + · · · = 1/(1− q−1)

and that for all m > 0

(5.6.4) L1(fm) = qm.

5.7. Oγ for any γ that is not regular semisimple. For f ∈ H it is evident
that Oγ(f) does not change when γ is multiplied by z ∈ Z ∩K. Any γ ∈ K which
is not regular semisimple is conjugate to an element of the form z or zu (for some
z ∈ Z ∩K), and therefore Oγ restricted to H is either L0 or L1, as the case may
be. It now remains only to consider regular semisimple elements γ ∈ K, in other
words those whose eigenvalues are distinct.

5.8. Hyperbolic orbital integrals. Next we consider regular semisimple γ
whose eigenvalues lie in F . The conjugacy class of such an element meets K if and
only if the two eigenvalues are units, and after replacing γ by a conjugate we may
assume that

(5.8.1) γ =
[
a o
0 b

]
,

with a, b distinct elements in O×. The centralizer Gγ is A, and the most convenient
choice for G′

γ is the product of Z and the infinite cyclic subgroup of A generated
by

(5.8.2)
[
π 0
0 1

]
.

We use the Haar measure on Z that gives Z∩K measure 1, and we use the counting
measure on the infinite cyclic subgroup Z.

Using 3.4 and 5.5, we see that

(5.8.3) Oγ(fm) =
∑

v

1,

where the sum runs over a set of representatives for the orbits of Z on the set of
vertices v ∈ V such that d(γv, v) = 2m (equivalently, such that the distance from v
to the fixed point set of γ in the tree is equal to m). Thus Oγ(fm) is the number of
orbits of the infinite cyclic subgroup Z of A on the set of vertices v ∈ V at distance
m from the fixed point set of γ in the tree.
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As observed before, since γ ∈ K, its fixed point set in the tree is just the union
of the edges joining two fixed vertices. Therefore it remains only to understand the
set V γ of vertices fixed by γ. Put dγ := val(1 − a

b ), a non-negative integer. We
claim that V γ is the set of vertices v ∈ V whose distance to the standard apartment
is less than or equal to dγ . By the Iwasawa decomposition we may write v = anv0

with a ∈ A and n ∈ N . Since the two sets we are trying to prove are equal are both
stable under A, it is harmless to suppose that a = 1. Thus we need only consider
v of the form nv0.

Let us determine when γ fixes nv0. Since γ fixes v0, the condition that γ fix
nv0 is equivalent to the condition that γn−1γ−1n fix v0. But γn−1γ−1n lies in N
and is easily computed in terms of n and γ. Indeed, identifying N with F as before,
so that n becomes an element y ∈ F , we find that γn−1γ−1n becomes the element
(1 − a

b )y of F . Since the stabilizer of v0 is KZ, it is now clear that γ fixes nv0 if
and only if y ∈ π−dγO.

To finish proving the claim we now need to compute the distance from nv0 to
the standard apartment in terms of the valuation of y. If y ∈ O, then nv0 equals v0

and hence has distance 0 to the standard apartment. On the other hand, suppose
that the valuation of y is negative, say equal to −r for some positive integer r. We
saw above that (see 5.6) StabN (vj) = πjO, from which it follows that the vertex vj

in the standard apartment is fixed by n if and only if j ≤ −r. Therefore the geodesic
n[v−rv0] meets the standard apartment only at its endpoint v−r, showing that its
other endpoint, namely the point nv0, has distance r to the standard apartment.
This completes the proof of the claim.

Having proved the claim, now we can finish the computation of our orbital
integral. Working modulo the action of the infinite cyclic subgroup Z, we need
to count vertices whose distance to the fixed point set is m. The fixed point set
consists of all points whose distance to the standard apartment is less than or equal
to dγ ; when m = 0 we are simply counting these points. When m > 0, a vertex has
distance m from the fixed point set if and only if it has distance m + dγ from the
standard apartment.

Therefore for any non-negative integer s we need to calculate the number N(s)
of orbits of Z on the set of vertices at distance s from the standard apartment.
Clearly N(s) is also equal to the number of vertices v at distance s to the standard
apartment and having the additional property that the point in the standard apart-
ment that is closest to v is equal to v0. Elementary reasoning, using that every
vertex has q + 1 neighbors, shows that N(0) = 1 and N(s) = qs − qs−1 for s > 0.

Putting everything together, we now see that

(5.8.4) Oγ(f0) = 1 + (q − 1) + (q2 − q) + · · ·+ (qdγ − qdγ−1) = qdγ

and that for all m > 0

(5.8.5) Oγ(fm) = qm+dγ − qm+dγ−1,

and comparing this with the computation of L1 that we made earlier, we obtain

Lemma 5.1. The restriction to H of the hyperbolic orbital integral Oγ is equal
to (1− q−1)qdγ · L1.

5.9. Elliptic orbital integrals. The only remaining orbits (among those
meeting K) are elliptic. The eigenvalues of an elliptic (regular semisimple) ele-
ment generate a quadratic extension E of F . How do such elements sit inside G?
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Start with a quadratic extension E/F . We can view E as a 1-dimensional E-vector
space and as a 2-dimensional F -vector space, and since an E-linear map is necessar-
ily F -linear, we have GLE(E) ⊂ GLF (E). Choosing an F -basis in E, this becomes
an embedding of E× in G. The image is the set of F -points of a maximal torus T
in GL2.

Using this embedding, we view γ ∈ E× as an element of G. Then its two
eigenvalues are γ, γ̄ (using bar to denote the non-trivial element in the Galois
group of the quadratic extension), and its determinant is the norm γγ̄ of γ. If γ
is conjugate to an element of K, then its determinant is a unit, and hence γ is a
unit in the valuation ring OE of E. In order to embed E× in G we have to choose
an F -basis in E. Let us agree to pick one which is at the same time an O-basis for
OE . Then we will have E× ∩K = OE . In order that γ be regular, we need γ �= γ̄.
Thus the elements of interest are those in (OE)× but not in O×.

For such an element γ the centralizer is E×, and we are free to take the group
G′

γ of 3.4 to be Z. It follows from 3.4 and 5.4 that

(5.9.1) Oγ(fm) = |{v ∈ V : d(γv, v) = 2m}|.
We are going to calculate these orbital integrals in two steps. First we will compute
them in terms of the cardinality of the set V γ of vertices fixed by γ, then we will
calculate |V γ |.

Lemma 5.2. For all elliptic regular semisimple γ ∈ K the restriction of Oγ to
H is equal to

(5.9.2)
(
2q−1 + (1− q−1)|V γ |

)
· L1 −

2
q − 1

· L0.

Proof. We need to compute Oγ(fm) for all m ≥ 0. Of course

(5.9.3) Oγ(f0) = |V γ |.
Now assume that m > 0. As we have seen in 5.5, the condition d(γv, v) = 2m is
equivalent to the condition that the distance d(v, V γ) from v to the fixed point set
V γ be m. Consider the unique shortest geodesic joining v to the fixed point set,
and let w be the unique endpoint of that geodesic lying in V γ . Then v �→ w is a
well-defined retraction of V onto V γ , and thus

(5.9.4) Oγ(fm) =
∑

w∈V γ

|{v ∈ V : d(v, V γ) = m and v �→ w}|.

Given w ∈ V γ , an element v ∈ V satisfies the two conditions d(v, V γ) = m and
v �→ w if and only if d(v, w) = m and the unique neighboring vertex of w lying on
the geodesic [w, v] is not fixed by γ; the number of such neighbors is (q + 1)−Cw,
where Cw is the number of neighbors of w fixed by γ. Therefore

(5.9.5) Oγ(fm) =
∑

w∈V γ

qm−1
(
(q + 1)− Cw

)
.

Summing Cw over all w ∈ V γ , we get 2|Eγ |, where Eγ denotes the set of edges in
the tree that are fixed by γ. Now the fixed point set of γ in the tree is convex, hence
contractible, and therefore its Euler characteristic |V γ | − |Eγ | is 1, which means
that the sum over w of Cw is 2(|V γ | − 1). Thus we have proved that

(5.9.6) Oγ(fm) = qm−1
(
(q − 1)|V γ |+ 2

)
.
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The lemma follows from (5.9.3), (5.9.6) and the formulas for L0 and L1 that we
found before. �

Our next task is to calculate |V γ |. The answer depends on whether or not the
quadratic extension E/F is ramified.

First we consider the case in which E/F is unramified. In particular the car-
dinality of the residue field of E is q2. The tree for SL2(F ) is a subtree of the tree
for SL2(E), and in this bigger tree every vertex has q2 + 1 neighbors. Moreover
Gal(E/F ) operates on the bigger tree and its set of fixed points is the smaller one.

Inside GL2(E) our matrix γ is conjugate to the diagonal matrix γ′ with diagonal
entries (γ, γ̄), so that we are dealing with a hyperbolic element whose fixed point set
we already understand. As in the hyperbolic case we define a non-negative integer

dγ := val(1− γγ̄−1).

Choose an element of GL2(E) that conjugates γ′ to γ and apply it to the standard
apartment, obtaining a non-standard apartment in the bigger tree. From previous
work we know that the fixed point set of γ is the set of vertices in the bigger tree
whose distance to the non-standard apartment is less than or equal to dγ . The
non-trivial element of Gal(E/F ) preserves this non-standard apartment, flipping it
end-to-end, and fixes a unique vertex v′ in it. The fixed point set of γ in the smaller
tree is precisely the set of vertices v ∈ V whose distance to v′ is less than or equal
to dγ , from which one sees easily that

(5.9.7) |V γ | = 1 + (q + 1)(1 + · · ·+ qdγ−1) = 1 + (q + 1)
qdγ − 1
q − 1

.

Combining this with Lemma 5.2, we obtain our final formula

(5.9.8) (1 + q−1)qdγ · L1 −
2

q − 1
· L0

for the restriction of Oγ to H in the unramified case.
Next we consider the case in which E/F is ramified. The tree for SL2(F )

still sits inside the tree for SL2(E), but in a more complicated way. Since the
uniformizing element π for F has valuation 2 in E, the midpoint of each edge in
the smaller tree becomes a vertex in the bigger one. Since the residue field does
not change, every vertex in the bigger tree still has q + 1 neighbors. The Galois
group of E/F still acts on the bigger tree, and the smaller tree is fixed pointwise by
this action, but it does not fill out the whole fixed point set unless E/F is tamely
ramified.

Our element γ ∈ (OE)× \ O× still can be diagonalized in GL2(E), so that we
again get a non-standard apartment in the bigger tree. There is a unique edge e
in the smaller tree closest to this non-standard apartment, and the shortest path
between the edge e and the apartment starts from the midpoint of that edge.

From previous work we know that the fixed point set of γ in the bigger tree
consists of all points whose distance d to this non-standard apartment is less than
or equal to a certain integer (that depends on γ). For a vertex v in the smaller
tree this distance d is twice (because of the subdivision that occurred) the distance
from v to the edge e plus a constant (the constant being 1 plus the distance from e
to our non-standard apartment). Therefore there exists a non-negative integer dγ

such that the fixed point set of γ in V consists of all vertices whose distance from e
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(measured in the smaller tree) is less than or equal to dγ . In fact one can show that

(5.9.9) 1 + 2dγ = sup{valE(γ − a) : a ∈ O×},

where the valuation valE being used here assigns 1 to uniformizing elements in E.
It is then easy to see that

(5.9.10) |V γ | = 2(1 + · · ·+ qdγ ) = 2
qdγ+1 − 1
q − 1

.

Combining this with Lemma 5.2, we obtain our final formula

(5.9.11) 2qdγ · L1 −
2

q − 1
· L0

for the restriction of Oγ to H in the ramified case.

5.10. Homogeneity! Our computations have revealed something quite re-
markable. The restrictions of the orbital integrals for the unipotent elements 1 and
u give us two linear functionals L0 and L1 on H. For every other element γ ∈ K
the restriction of the orbital integral Oγ to H is a linear combination of L0 and L1.
It was by no means obvious a priori that this should be the case. In fact this is an
example of the deep phenomenon of homogeneity that is the subject of DeBacker’s
course.

The coefficients of L0, L1 in these linear combinations are very interesting
functions of γ, called Shalika germs, and we will discuss them next.

6. Shalika germs

6.1. The goal. Our goal in this section is to prove the existence of the Shalika
germ expansion (see [Sha72]). Once the general theory is in place, we will illustrate
how it works by re-examining our computations of orbital integrals on GL2. We
now work with any connected reductive group over a p-adic field F , and we once
again lighten the notation by writing G for the F -points of our group.

6.2. Notation. Let U be the set of unipotent elements in G. Then U is closed,
and there are finitely many G-orbits O1,O2, . . . ,Or in U . We write µ1, . . . , µr for
the corresponding unipotent orbital integrals (for some choice of invariant measures
on the orbits that we prefer not to encode in the notation). Let T be (the set of
F -points of) a maximal torus in G, and let Treg be the subset of regular elements.
We are interested in orbital integrals Oγ for variable γ ∈ Treg, so we need a coherent
set of choices of invariant measures on the orbits of all such elements γ. This can
be done as follows. Once and for all we choose Haar measures dg and dt on G and
T respectively. Then for any γ ∈ Treg we put (for f ∈ C∞

c (G))

(6.2.1) Oγ(f) =
∫

T\G

f(g−1γg) dg/dt.

6.3. Distributions. For any l.c.t.d space we have already introduced the
space C∞

c (X) of locally constant compactly supported functions on X. A distribu-
tion is by definition any linear functional on C∞

c (X) (with no continuity hypothesis
since there is no topology on our function space). We write D(X) for the vector
space of all distributions on X.
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Let Y be any closed subset of X, and let U be the complementary open subset.
Dual to the short exact sequence (2.1.1) is the short exact sequence

(6.3.1) 0 → D(Y ) → D(X) → D(U) → 0.

In other words, given a distribution on X, we can restrict it to U , and among the
distributions on X, we have those whose support (see 26.2 for a discussion of the
notion of support of a distribution) is contained in Y . Now suppose that some
group H acts on X, preserving Y and U . Then, taking invariants under the group
action (denoted by a superscript H), we get an exact sequence

(6.3.2) 0 → D(Y )H → D(X)H → D(U)H

but there is no guarantee that the restriction map at the right end is surjective.
From the short exact sequence (2.1.1) we also get an exact sequence

(6.3.3) C∞
c (U)H → C∞

c (X)H → C∞
c (Y )H → 0,

where the subscript H denotes coinvariants for H. (For an H-module V the space of
coinvariants VH is by definition the biggest quotient of V on which H acts trivially,
or, in other words, the quotient of V by the linear span of all vectors of the form
hv − v for some h ∈ H, v ∈ V .) The sequence (6.3.2) can also be obtained as the
C-dual of the sequence (6.3.3).

6.4. Existence of the Shalika germ expansion. Order the unipotent or-
bits so that their dimensions increase as i does. Of course there can be several
orbits of the same dimension; for these the order is immaterial. By dimension of
the orbit we really mean the dimension (as algebraic variety) of the G(F̄ )-orbit
containing the given G-orbit. The purpose of this ordering is to guarantee that

(6.4.1) O1 ∪ · · · ∪ Oi

is closed in G for all i.
Inside the space O1∪O2 (which is closed in G, hence l.c.t.d) we have the closed

subset O1 and complementary open subset O2. The group G acts by conjugation
on all these spaces. Therefore we get an exact sequence

(6.4.2) 0 → D(O1)G → D(O1 ∪ O2)G → D(O2)G.

The spaces D(O1)G and D(O2)G are 1-dimensional, spanned by the invariant inte-
grals on the homogeneous spaces O1 and O2. Now we need to recall the non-trivial
fact that µ2 is well-defined on C∞

c (G) (“convergence of orbital integrals,” discussed
in 3.3). Therefore µ2 gives us an element of D(O1∪O2)G that maps to the invariant
integral on O2. We conclude that the map at the right end of the exact sequence
above is surjective, and that D(O1∪O2)G is 2-dimensional with basis given by (the
restrictions of) µ1 and µ2. An obvious inductive argument then shows that

D(O1 ∪ · · · ∪ Or)G

is r-dimensional with basis given by (the restrictions of) µ1, . . . , µr. Now we are
ready for the theorem on germ expansions.

Theorem 6.1 (Shalika [Sha72]). There exist functions Γ1,Γ2, . . . ,Γr on Treg

having the following property. For every f ∈ C∞
c (G) there exists an open and closed
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G-invariant neighborhood Uf of 1 in G such that

(6.4.3) Oγ(f) =
r∑

i=1

µi(f) · Γi(γ)

for all γ ∈ Uf ∩Treg. The germs about 1 ∈ T of the functions Γ1, . . . ,Γr are unique.
We refer to Γi as the Shalika germ for the unipotent orbit Oi and the torus T .

Proof. Since the unipotent set U = O1 ∪ · · · ∪ Or is closed in G, there is
a surjective restriction map C∞

c (G) → C∞
c (U), and we may choose functions fi

(i = 1, . . . , r) such that µi(fj) = δij (Kronecker δ). Inserting the function fi into
(6.4.3), we see that the germ of Γi(γ) must be equal to the germ of Oγ(fi). This
already proves the uniqueness assertion in the theorem. It also shows that we may
as well take

(6.4.4) Γi(γ) := Oγ(fi)

as the definition of Γi. (There is no need to be troubled by the non-uniqueness of
the functions fi since it is only germs that matter in the theorem.)

However we must still show that (6.4.3) is valid for all functions on G. So let
f ∈ C∞

c (G). The function

(6.4.5)
r∑

i=1

µi(f) · fi

obviously has the same unipotent orbital integrals as f does. In other words all
unipotent orbital integrals of

(6.4.6) φ := f −
r∑

i=1

µi(f) · fi

vanish. Choose a neighborhood U of U as in Lemma 6.2 below. We claim that
(6.4.3) holds for the neighborhood Uf = U . Indeed, for γ ∈ U ∩ Treg the orbital
integral Oγ(φ) vanishes by Lemma 6.2. In view of how φ was defined, this establishes
(6.4.3). �

Lemma 6.2. Let φ ∈ C∞
c (G) and assume that all unipotent orbital integrals of

φ vanish. Then there is an open and closed conjugation invariant neighborhood U of
the unipotent set U such that I(φ) = 0 for every invariant distribution I supported
on U .

Proof. The dual space to C∞
c (U)G is D(U)G, which has as basis the unipotent

orbital integrals µ1, . . . , µr, so the vanishing of the unipotent orbital integrals of φ
is equivalent to the vanishing of the image of φ in C∞

c (U)G. In order to construct
the desired neighborhood U of U , we use that there exists a continuous map α from
G to a l.c.t.d space A such that every fiber of α is a union of conjugacy classes in
G and such that there exists x ∈ A for which α−1(x) = U . Therefore by the last
statement of Lemma 27.1 there exists an open neighborhood ω of x in A such that
the image of φ in C∞

c (α−1ω)G vanishes. Shrinking ω, we may assume that it is
compact as well as open, and then U := α−1ω is the desired neighborhood of U .

It remains to prove the existence of α. In fact the map denoted α in 3.2 does the
job. However, we were a bit sketchy about its construction in the general case, and
the reader may prefer to use the following cruder version of α, which is however
sufficient for our current needs. The cruder version is obtained by choosing an
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embedding (of algebraic groups) of G into some general linear group, constructing
α for the general linear group (using the coefficients of the characteristic polynomial,
as in 3.2), and then restricting α to the subgroup G. This works since an element
of G is unipotent if and only if the corresponding matrix is unipotent. �

6.5. Back to GL2. Recall that in G = GL2 there are two unipotent classes
and hence two unipotent orbital integrals µ1, µ2. Our computations of orbital
integrals for GL2 revealed that for every regular semisimple γ ∈ K = GL2(O)
there are complex numbers A1(γ), A2(γ) such that for every f ∈ H the equality

(6.5.1) Oγ(f) = A1(γ)µ1(f) + A2(γ)µ2(f)

holds. Our computations also showed that the restrictions of µ1 and µ2 to H are
linearly independent. Therefore the numbers A1(γ), A2(γ) are uniquely determined,
and, moreover, inside the rather small function space H we can find functions f1,
f2 satisfying µi(fj) = δij . We have seen that the Shalika germs Γ1, Γ2 are obtained
by taking the orbital integrals of f1, f2, which in view of the equality above means
that Γi is the germ of Ai (i = 1, 2).

At first glance it might now seem that Shalika germ theory explains (6.5.1)
and hence explains why the restrictions to H of the orbital integrals Oγ for γ ∈ K
are all linear combinations of the restrictions of µ1 and µ2. This is far from being
true, since the Shalika germ expansion is only valid on some (possibly very small)
neighborhood of 1 and moreover this neighborhood depends on the function f that
we are considering. The amazing thing that has happened here is that there is a
big neighborhood of 1 (namely K) which works for all the functions in H.

It is tempting to refer to A1, A2 as “the” Shalika germs for GL2, since among
all possible functions having the correct germs, they are singled out naturally by
the property (6.5.1).

7. Weyl integration formula

In this section we work at first with an arbitrary connected reductive group G
over our p-adic field F ; starting with 7.8 we assume that G is split. We write g for
the Lie algebra of G. Before we can get down to work on our next topic, the local
trace formula, we need to derive the Weyl integration formula for g, which, roughly
speaking, expresses the integral of a function on g as an iterated integral, in which
one first integrates over the various (adjoint) orbits in g and then integrates over
the set of orbits.

7.1. Remarks on Weyl groups. When working with maximal tori over non-
algebraically closed fields such as F , there are three relevant Weyl groups. In order
to explain them clearly we continue to make a notational distinction between the
algebraic group G and its group G(F ) of F -points.

Let T be a maximal torus in G. The quotient W := NG(T )/T is a finite
algebraic group defined over F . (We are writing NG(T ) for the normalizer in G of
T .) We then have inclusions

(7.1.1) WT ⊂W (F ) ⊂W (F̄ ),

where WT is by definition the quotient NG(T )(F )/T (F ). Of course W (F̄ ) is the
absolute Weyl group, and, up to inner automorphisms, is independent of T . The
subgroup WT is the Weyl group needed in the Weyl integration formula.
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The main thing we need to know about WT is that two regular elements X,X ′ ∈
t are G(F )-conjugate if and only if they are conjugate under WT . Indeed, if g ∈
G(F ) conjugates X to X ′, then it conjugates the centralizer of X to the centralizer
of X ′; since the two elements are regular both centralizers are T , and therefore g
normalizes T , proving the forward implication. The reverse implication is trivial.

7.2. Calculation of the differential of β. Now we return to our usual
practice of abbreviating G(F ) to G, T (F ) to T , etc. We write t for the Lie algebra
of T .

Consider the map

(7.2.1) (T\G)× t
β−→ g

defined by β(g,X) = g−1Xg. For any X ∈ t the differential dβ of β at (1, X) ∈
(T\G)× t is the map (g/t)× t → g given by (Y, Z) �→ [X,Y ] +Z. The two tangent
spaces (g/t)× t, g both sit in short exact sequences with t as the subspace and g/t
as the quotient space, and dβ is the identity on t. Therefore the top exterior powers
of the two tangent spaces are canonically isomorphic, and the determinant of dβ at
(1, X) makes sense and is equal to

(7.2.2) D(X) := det
(
ad(X); g/t

)
.

The map β is G-equivariant (for the translation action on T\G, the trivial
action on t, and the adjoint action on g). Choosing a G-invariant volume form (i.e.
non-vanishing differential form of top degree) on T\G is the same as choosing a
generator of the top exterior power of g/t. Choosing a translation invariant volume
form on t is the same as choosing a generator of the top exterior power of t. Make
such choices. From them we get a generator of the top exterior power of g, which we
use to get a translation invariant volume form on g. In this way we get G-invariant
volume forms on the source and target of β, and we may use these volume forms
to talk about the determinant of dβ, or, in other words, the Jacobian of β. In fact
the computation we made above, together with the G-equivariance of β, shows that
the Jacobian of β at any point (g,X) ∈ (T\G)× t is equal to D(X).

7.3. Measures obtained from volume forms. A volume form ω on a p-
adic manifold M gives rise to a measure |ω| on M , just as in the real case. In
the end it boils down to assigning a measure |dx| on F to the differential form dx,
where x denotes the standard coordinate on F , that is, the identity map on F . In
the real case the usual convention is of course that |dx| is Lebesgue measure on R.
In the p-adic case one simply agrees |dx| is some Haar measure on F , fixed once
and for all. See [Wei82] for further details. As in the real case, there is a change
of variables formula involving the Jacobian.

The volume forms on T\G, t, g chosen above give us a G-invariant measure dḡ
on T\G and Haar measures dX, dY on t, g respectively.

7.4. Expression for D(X) in terms of roots. Let R be the set of roots
of T in g. Here we are talking about the absolute root system, a subset of the
group X∗(T ) of characters on T over F̄ . The differentials of the roots are linear
forms on t⊗F F̄ and hence yield F̄ -valued functions on t; these functions on t will
also be called roots, but no confusion should result from this. It is clear from the
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definitions that

(7.4.1) D(X) =
∏
α∈R

α(X)

for any X ∈ t. From this it follows that the differential dβ is an isomorphism at
all points (g,X) such that X is regular. (Recall that a semisimple element in g is
said to be regular if its centralizer in the algebraic group G is a maximal torus, and
that X ∈ t is regular in this sense if and only if no root of T vanishes on it.)

7.5. D as polynomial function on g. Let � denote the absolute rank of
G, in other words, the dimension of any maximal torus in G. For any X ∈ g

we can consider the characteristic polynomial of the endomorphism ad(X). Each
individual coefficient of this characteristic polynomial is a polynomial function of
X, and since generically ad(X) has the eigenvalue 0 with multiplicity �, we see that
the lowest non-vanishing coefficient occurs in front of the �-th power of the variable
and is equal to D(X) for X ∈ t. In this way we see that the function D(X) defined
above for X ∈ t extends to a polynomial function (still denoted by D) on all of g,
which explains why we did not include T in the notation. Note that D(X) �= 0 if
and only if X is regular semisimple.

7.6. Decomposition of grs as a disjoint union of open subsets gT
rs. Let

treg be the set of regular elements in t, let grs be the set of regular semisimple
elements in g, and let gT

rs be the subset of grs consisting of all elements that are
conjugate under G to some element of treg. Then the map

(7.6.1) (T\G)× treg −→ g

(obtained from β by restriction) is a local isomorphism of p-adic manifolds and its
image, namely gT

rs, is open in g. The fiber of β through (g,X) ∈ (T\G) × treg has
|WT | elements, namely those of the form (wg,w(X)) with w ranging through WT .

To complete our picture of grs, we note that its complement has measure 0,
and that

(7.6.2) grs =
∐
T

g
T
rs,

where the union ranges over a set of representatives T for the set of G(F )-conjugacy
classes of maximal F -tori in G.

7.7. First form of the Weyl integration formula. These considerations
lead to the following formula, known as the Weyl integration formula. Let f ∈
C∞

c (g). Then

(7.7.1)
∫

g

f(Y ) dY =
∑
T

|WT |−1

∫
treg

|D(X)|
∫

T\G

f(g−1Xg) dḡ dX,

where dḡ, dY , dX are the measures on T\G, g, t respectively that were introduced
in 7.3, and where the sum ranges over a set of representatives T for the set of
G(F )-conjugacy classes of maximal F -tori in G. Since the complement of treg in t

has measure 0, we could equally well integrate over t instead of treg. Moreover we
are not obliged to stick with precisely these measures dḡ, dY , dX. Clearly it is only
the product dḡ dX that matters in the Weyl integration formula, so we are free to
multiply dḡ by a constant as long as we divide dX by the same constant, and we
are free to multiply dY by a constant as long as we arrange that the product dḡ dX
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is multiplied by the same constant (for all T ). For any such choices of measures we
say that dḡ dX is compatible with dY .

Actually there are several useful variants of the Weyl integration formula, one
of which is the one we will actually use later. For this we need some further prepa-
ration. We again need to maintain a notational distinction between an algebraic
group and its group of F -points. We return to assuming that G is split over F .

7.8. Review of Levi subgroups and the definition of L. By a Levi sub-
group M of G we mean some Levi component of a parabolic F -subgroup of G.
We write AM for the maximal F -split torus in the center of M . In particular AG

denotes the maximal F -split torus in the center of G. A basic fact about Levi
subgroups is that M is the centralizer in G of AM .

As usual let us fix a split maximal torus A in G. Then AM is conjugate under
G(F ) to a subtorus of A. Thus, after replacing M by a conjugate, we may assume
that AM ⊂ A. The condition AM ⊂ A is equivalent to the condition M ⊃ A.
[Use that M is the centralizer of AM and that A is its own centralizer.] We write
L = L(A) for the set of Levi subgroups M of G such that M ⊃ A.

7.9. Definition of TM . Let T be a maximal F -torus of G, and let AT denote
the maximal F -split subtorus of T . Let M denote the centralizer of AT in G, a
Levi subgroup of G. We claim that AM = AT . Indeed, it is obvious that AT is
central in M and hence contained in AM . On the other hand T is contained in M
and hence is a maximal torus in M , which implies that T contains the center of M .
Therefore AM is contained in T and hence in AT .

The reason for introducing M is that T is elliptic in M , in the sense that
T/AM is an anisotropic torus over F (which implies that T (F )/AM (F ) is compact).
We choose a set TM of representatives for the M(F )-conjugacy classes of elliptic
maximal tori T in M .

7.10. Definition of the positive integer nM
T . Let M be a Levi subgroup

of G and let T be a maximal torus in M . We write NM(F )(T ) for the normalizer
in M(F ) of T . Then NM(F )(T )/T (F ) is a finite group, and we write nM

T for its
cardinality.

7.11. Second form of the Weyl integration formula. We return to writ-
ing G instead of G(F ). Let f ∈ C∞

c (g). Then

(7.11.1)
∫

g

f(Y ) dY =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|
∫

AM\G

f(g−1Xg) dġ dX,

where W (respectively, WM ) denotes the Weyl group of A in G (respectively, M),
and where dġ is the unique G-invariant measure on AM\G such that

(7.11.2)
∫

AM\G

ϕ(g) dġ =
∫

T\G

ϕ(g) dḡ

for every ϕ ∈ C∞
c (T\G). (We used here that AM\T is compact.) Since we have

replaced dḡ by dġ, we need to extend the terminology introduced in 7.7 by now
saying that the measure dġ dX is compatible with dY (when dġ has been obtained
from dḡ as above, and dḡ dX is compatible with dY ).
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7.12. Derivation of the second form of the Weyl integration formula
from the first. We write NG(F )(M) for the normalizer in G(F ) of M . The group
NG(F )(M)/M(F ) is finite, and we denote by nG

M its cardinality. We need a couple
of lemmas in order to derive the second form of the Weyl integration formula from
the first.

Lemma 7.1. Let M be a Levi subgroup of G, and let T be an elliptic maximal
torus in M . Then the number of M(F )-conjugacy classes of maximal tori T ′ in M
such that T ′ is G(F )-conjugate to T is equal to

nG
M · nM

T · (nG
T )−1.

Proof. Let g ∈ G(F ). We claim that gTg−1 ⊂M if and only if g ∈ NG(F )(M).
Indeed, suppose that gTg−1 ⊂ M . Then gTg−1 is a maximal torus in M , and
therefore its split component gAMg−1 contains AM , hence equals AM (look at
dimensions). Thus g normalizes AM , which implies that it also normalizes the
centralizer of AM , namely M . This proves the forward implication in the claim; the
other implication is trivial. A consequence of the claim is that NG(F )(T ) normalizes
M and hence normalizes NG(F )(T ) ∩M(F ) = NM(F )(T ).

It follows from the claim we just proved that the set of M(F )-conjugacy classes
of T ′ ⊂M such that T ′ is G(F )-conjugate to T is in natural bijection with the set

M(F )\NG(F )(M)/NG(F )(T ),

and the cardinality of this set is clearly the index of

NG(F )(T )/NM(F )(T ),

a group of order nG
T · (nM

T )−1, in

NG(F )(M)/M(F ),

a group of order nG
M . This proves the lemma. �

The next lemma involves the set L of Levi subgroups of G containing A. For
M,M ′ ∈ L we write M ∼M ′ if M,M ′ are conjugate under G(F ). We write L/ ∼
for the set of equivalence classes in L for the equivalence relation ∼. Moreover
we fix some Borel subgroup B0 containing A, and write P0 for the set of parabolic
subgroups of G containing B0 (called standard parabolic subgroups). Also, we write
F(A) for the set of parabolic subgroups of G containing A, and for P ∈ F(A) we
write MP for the unique Levi subgroup of P containing A. For a Levi subgroup M
we write P(M) for the set of parabolic subgroups of G having M as Levi component.

Lemma 7.2. Let ψ be a function defined on the set L and assume that ψ(M) =
ψ(M ′) whenever M ∼M ′. Then∑

M∈L/∼
(nG

M )−1ψ(M) =
∑

M∈L

|WM |
|W | ψ(M)

=
∑

P∈P0

|P(MP )|−1ψ(M).
(7.12.1)

Proof. Let M ∈ L and let g ∈ G(F ). We claim that gMg−1 ∈ L if and only
if g ∈ NG(F )(A) ·M(F ). Indeed, suppose that gMg−1 ∈ L. Then both g−1Ag and
A are split maximal tori in M , from which it follows that they are conjugate under
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M(F ). Thus there exists m ∈ M(F ) such that mg−1 normalizes A. This proves
the forward implication in the claim; the reverse implication is clear.

Write NG(F )(M,A) for the intersection of the normalizers in G(F ) of M and
A, and write NW (M) for {w ∈W : wMw−1 = M}, a subgroup of W that contains
WM as a normal subgroup. As a special case of the claim above we see that

NG(F )(M) = NG(F )(M,A) ·M(F ),

and from this it follows that

(7.12.2) NG(F )(M)/M(F ) = NG(F )(M,A)/NM(F )(A) = NW (M)/WM .

How many M ′ ∈ L are there such that M ′ ∼ M? It follows from the claim
proved above that the set of such M ′ is simply the W -orbit of M in L, and therefore
its cardinality is equal to the index [W : NW (M)], which by (7.12.2) is equal to

(7.12.3) (nG
M )−1 |W |

|WM |
.

The first equality in the lemma follows from (7.12.3).
Finally, the second sum in the statement of the lemma can obviously be rewrit-

ten as

(7.12.4)
∑

P∈F(A)

|WMP
|

|W | |P(MP )|−1ψ(M).

Now any P ∈ F(A) is conjugate under W to a unique standard parabolic subgroup,
and the stabilizer in W of P is WMP

. Therefore (7.12.4) is equal to the third sum
in the statement of the lemma. �

Now let’s return to the Weyl integration formula. From (7.11.2) and Lemma
7.1 we see that our first form (7.7.1) of that formula can be rewritten as

(7.12.5)
∫

g

f(Y ) dY =
∑

M∈L/∼

1
nG

M

∑
T∈TM

1
nM

T

∫
treg

|D(X)|
∫

AM\G

f(g−1Xg) dġ dX,

and then from Lemma 7.2 we see that it can also be rewritten in the form (7.11.1).
One could also use Lemma 7.2 to rewrite the Weyl integration formula as a sum
over standard parabolic subgroups. Similarly, there are several ways of rewriting
the sums in the local trace formula, and the global trace formula as well (see the
remarks after Thm. 6.1 in [Art89a]).

8. Preliminary discussion of the local trace formula

Now that we have a feel for how orbital integrals work on the group GL2, it
is time to begin a more systematic treatment. Harish-Chandra [HC78, HC99,
HC70] developed harmonic analysis on the Lie algebra of G and then used the
exponential map to climb back to the group itself, following the same path he had
taken for real Lie groups. Now in harmonic analysis on the group the two key
objects are orbital integrals and irreducible characters. Orbital integrals still make
sense on the Lie algebra (integrate over orbits for the adjoint action of G). What
about irreducible characters? Have they been irretrievably lost in passing to the
Lie algebra? No! Harish-Chandra discovered that the role played by irreducible
characters on G is played by Fourier transforms of orbital integrals on the Lie
algebra (again he did this first in the real case). Of course Fourier transforms of
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orbital integrals are in many respects simpler than irreducible characters, and this
partly explains why passing to the Lie algebra is so effective.

In any case for most of the rest of this article we are going to work on the Lie
algebra rather than the group. We will follow what seems to be the shortest known
path through the material, first proving Waldspurger’s local trace formula on the
Lie algebra [Wal95] and then using it as a tool to develop the rest of the theory.
This path is not essentially different from the one taken by Harish-Chandra in the
papers cited above, and at most key points is exactly the same.

8.1. Local trace formula on the group. We began this article by discussing
the trace formula on compact groups. Before passing to the Lie algebra, we should
briefly discuss Arthur’s local trace formula [Art76, Art87, Art89b, Art91a,
Art91b] on a p-adic group G. (Actually Arthur also allows real and complex
groups.)

Choose a Haar measure dg on G. Just as in the compact case, given f1, f2 ∈
C∞

c (G), we get an integral operator on L2(G) with kernel function

(8.1.1) K(x, y) =
∫

G

f1(g)f2(x−1gy) dg,

a locally constant function on G×G. The restriction of the kernel function to the
diagonal will be denoted by K(x) and is given by

(8.1.2) K(x) =
∫

G

f1(g)f2(x−1gx) dg,

Next Arthur uses Harish-Chandra’s Plancherel theorem to rewrite K(x) in spectral
terms. However, since G is no longer assumed to be compact, the kernel function
usually fails to be compactly supported, the integral operator is usually not of
trace class, and the integral over G of K(x) is usually divergent. As in the global
trace formula, Arthur handles these difficulties by truncating both expressions for
K(x) before integrating over G, obtaining in the end a formula with a geometric
side involving weighted orbital integrals (which generalize orbital integrals) and a
spectral side involving weighted characters (which generalize characters).

8.2. First steps towards the local trace formula on g. We again write
g for the Lie algebra of our p-adic group G (the F -points of a connected reductive
group over a p-adic field F , just as before). Consider a pair of functions f1, f2 ∈
C∞

c (g) and use them to define a locally constant function K(x) on G by

(8.2.1) K(x) =
∫

g

f1(Y )f2(x−1Y x) dY,

where dY is a Haar measure on g. (We are using the expression x−1Y x to denote
the adjoint action of x−1 on Y .) Clearly this function is the analog for g of the
function (8.1.2) above that is the starting point for the local trace formula on G.
Arthur uses the Plancherel theorem on G to obtain a second expression for (8.1.2);
similarly, Fourier theory on the additive group g yields an identity

(8.2.2)
∫

g

f1(Y )f2(x−1Y x) dY =
∫

g

f̂1(Y )f̌2(x−1Y x) dY,

where f̂ and f̌ denote the two possible variants of the Fourier transform for g. In
more detail, let us now choose a G-invariant non-degenerate symmetric bilinear
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form B on g and a non-trivial additive character ψ on F . Then for f ∈ C∞
c (g) we

define the first version of the Fourier transform by

(8.2.3) f̂(Y ) =
∫

g

f(Z)ψ(B(Y, Z)) dZ,

where dZ is a self-dual Haar measure on g. We define f̌ by the same formula, except
that we replace ψ by ψ−1. Thus f �→ f̌ is inverse to f �→ f̂ .

In case G is compact we obtain the local trace formula on g simply by regarding
both sides of (8.2.2) as functions of x and then integrating over G. In general this
integral diverges, and we must truncate before integrating. The truncation needed
on the Lie algebra is the same as the one Arthur uses on the group.

8.3. Truncation. In order to keep the structure theory of G as simple as
possible (for expository purposes) we assume from now on that G is a split group,
and we use the notation B = AN and K of 4.1. We will eventually need to let B
vary through the set B(A) of all Borel subgroups containing A, but it is sometimes
convenient to fix one of them, which from now on we will denote by B0 = AN0. In
addition we write AG for (the F -points of) the identity component of the center of
our algebraic group G.

Recall that µ ∈ X∗(A) is said to be dominant if 〈α, x〉 ≥ 0 for every simple
root α. There is a standard partial order ≤ on X∗(A), defined as follows: ν ≤ µ
means that µ − ν is a non-negative integral linear combination of simple coroots.
Note that ν ≤ µ implies that µ and ν have the same image in the quotient ΛG of
X∗(A) introduced in subsection 4.5. Of course all these notions depend on a choice
of Borel subgroup, which determines the sets of simple roots and coroots. When
we need to stress which Borel subgroup B is being used, we will say B-dominant
rather than dominant. However, in the discussion below we will use the fixed Borel
subgroup B0 and say dominant rather than B0-dominant.

From the Cartan decomposition discussed in 4.3 we have

(8.3.1) G =
∐
ν

KπνK,

where ν runs over the set of dominant cocharacters, and where πν means (as before)
the image of π under the homomorphism F× → A obtained from ν. Each K-double
coset is of course a compact subset of G, and therefore the Cartan decomposition
gives a very precise way of understanding the non-compactness of G.

We are finally in a position to define the function uµ that is used to truncate
our integral. We need to choose a truncation parameter µ, which is allowed to be
any dominant element of X∗(A). Let Gµ denote the subset of G obtained by taking
the union of the double cosets KπνK for all dominant cocharacters ν such that
ν ≤ µ. Since Gµ is a finite union of K-double cosets, it is compact.

We write uµ for the characteristic function of the subset Gµ of G. For f1, f2 ∈
C∞

c (g) and any truncation parameter µ we put

(8.3.2) Kµ(f1, f2) :=
∫

G

uµ(g)
∫

g

f1(Y )f2(g−1Y g) dY dg.

Here we have written dg for the unique Haar measure on G giving K measure 1. It is
evident that the integrand of this double integral is compactly supported as well as
locally constant, so that the double integral is convergent and can be manipulated
in any way we like.
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Multiplying both sides of (8.2.2) by uµ and integrating over G, we get a very
crude first version of the local trace formula on g, namely the equality

(8.3.3) Kµ(f1, f2) = Kµ(f̂1, f̌2).

Since both sides of the formula have the same shape (unlike what happens on the
group), it is enough to analyze the left side.

8.4. Using the Weyl integration formula to rewrite Kµ(f1, f2). We now
use the Weyl integration formula (7.11.1) to rewrite the inner integral in the ex-
pression (8.3.2) defining Kµ(f1, f2), obtaining∫

g

f1(Y )f2(g−1Y g) dY =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·∫
AM\G

f1(h−1Xh)f2(g−1h−1Xhg) dḣ dX.

(8.4.1)

The notation is the same as in the Weyl integration formula (7.11.1), so that in
particular dḣ dX is compatible with dY in the sense of 7.11. By adjusting both dḣ
and dX in such a way that dḣ dX remains unchanged, we now assume that dḣ is
the quotient of the Haar measure on G(F ) giving K measure 1 by the Haar measure
daM on AM giving AM ∩K = AM (O) measure 1.

Substitute (8.4.1) back into (8.3.2), change the order of integration so that the
innermost integral becomes the one taken over G, change variables by replacing g
by h−1g, and finally do the integration over G in stages, first integrating over AM

and then integrating over AM\G. This yields

Kµ(f1, f2) =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·∫
AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)uM (h, g;µ) dḣ dġ dX,

(8.4.2)

where

(8.4.3) uM (h, g;µ) :=
∫

AM

uµ(h−1aMg) daM .

To make further progress on the local trace formula we need to analyze the
function uM . In fact, as we will see, the more refined versions of the local trace
formula are obtained from our crude one just by replacing uM by something simpler.
We begin by rewriting the definition of uM in a more convenient form. Recall that
we are writing X for the set G/K and x0 for its base-point. Recall also the function
inv from 3.4. It takes values in K\G/K, which by the Cartan decomposition we
have now identified with the set of dominant coweights in X∗(A). It follows from
all our various definitions that a �→ uµ(h−1ag) is the characteristic function of the
set of a ∈ A such that

(8.4.4) inv(h−1agx0, x0) ≤ µ.

Putting x := gx0, y := hx0, we conclude that uM (h, g;µ) is the measure of the set
of a ∈ AM such that

(8.4.5) inv(ax, y) ≤ µ.
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Therefore, in order to understand uM for any M , we need to understand, for fixed
x, y ∈ X, the subset of A consisting of all a ∈ A satisfying (8.4.5). To do so, it is
best to begin with the simplest non-trivial example, that of GL2. This will be the
topic of the next section.

9. Calculation of uM for G = GL2

In this section G is GL2(F ).

9.1. Variant of truncation for GL2. In this special case it seems more
convenient to do the truncation slightly differently. Recall the function

K(x) =
∫

g

f1(Y )f2(x−1Y x) dY

on G that we need to truncate. Our method was to multiply this function by
the characteristic function of a compact subset of G and then to integrate over G.
However, the function K(x) is obviously invariant under translation by AG, so
another perfectly good way to proceed is to multiply K(x) by the characteristic
function of a compact subset of G/AG and then integrate over G/AG. This is what
we will do for G = GL2.

Our truncation parameter will be a non-negative integer D. Given D, we then
put

GD := {g ∈ G : d(gv0, v0) ≤ D}.
Here v0 is the usual base vertex in the tree, and d denotes the usual metric on the
tree. Then GD is the inverse image in G of a compact subset of G/AG. We write
uD for the characteristic function of the subset GD of G. Our weight factor will be

uM (h, g;D) =
∫

AM /AG

uD(h−1ag) dȧ,

where dȧ denotes the quotient daM/daG of the Haar measures daM , daG on AM ,
AG respectively that give measure 1 to their intersections with K.

Putting v := gv0 and w := hv0, we see that u(h, g;D) is the measure of the set
of a ∈ AM/AG such that

(9.1.1) d(av, w) ≤ D.

This condition is reminiscent of ones we have seen before and can be understood
easily using the geometry of the tree.

9.2. The case M = A. We now define d(v) to be the distance from v to the
standard apartment (and the same for w). We warn the reader that later on in the
article, when we are working with general split groups, we will use the notation d(·)
for a different purpose.

Lemma 9.1. If D ≥ d(v) + d(w), then

(9.2.1) uA(h, g;D) = 2
(
D − d(v)− d(w)

)
+ 1.

If D < d(v) + d(w), then uA(h, g;D) is a real number between 0 and 1.

Proof. Consider the shortest path in the tree from the vertex v to the standard
apartment, let v′ denote the other endpoint of this shortest path (so that v′ is some
vertex in the standard apartment), and note that d(v) = d(v, v′). In the same way,
from our other vertex w, we get w′ and d(w) = d(w,w′).
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So long as v′ �= w′ it is clear that

(9.2.2) d(v, w) = d(v) + d(w) + d(v′, w′),

and when v′ = w′ we at least have the inequality

(9.2.3) d(v, w) ≤ d(v) + d(w)

with strict inequality when there is some overlap between the two shortest paths.
Thus d(v), d(w) do not quite determine d(v, w). Nevertheless, we can assert that
the condition

(9.2.4) d(v, w) ≤ D

is equivalent to the condition

(9.2.5) d(v) + d(w) + d(v′, w′) ≤ D

so long as d(v) + d(w) ≤ D.
Of course it is really d(av, w) that we care about. Since the action of A on the

tree preserves the standard apartment, it is clear that d(av) = d(v) and (av)′ = av′.
We conclude that, so long as d(v) + d(w) ≤ D, the condition (9.1.1) is equivalent
to the condition

(9.2.6) d(av′, w′) ≤ D − d(v)− d(w).

The condition (9.2.6) on a ∈ A depends only upon the image of a under the
surjection A → Z sending the diagonal matrix with entries (a1, a2) to the integer
val(a1)−val(a2), and therefore the measure of the set of a ∈ A/AG satisfying (9.2.6)
is equal to the number of lattice points u′ in the standard apartment whose distance
to w′ is less than or equal to D − d(v)− d(w), and this number is obviously equal
to

(9.2.7) 2
(
D − d(v)− d(w)

)
+ 1.

This proves the lemma when D ≥ d(v) + d(w).
On the other hand, when D < d(v) + d(w), the condition (9.1.1) implies that

av′ = w′, so that the measure of the set of all such a is a real number between 0
and 1. �

9.3. The case M = G. For an elliptic torus T we have AT = AG, M = G,
and uG(h, g;D) = uD(h−1g), which is equal to 1 if d(v, w) ≤ D and is 0 otherwise.

9.4. The functions ṽA and ṽG. The explicit computations done above show
that for fixed g, h and for all sufficiently large D, the value of uM (h, g;D) is given
by

(9.4.1)
uA(h, g;D) = 2

(
D − d(v)− d(w)

)
+ 1

uG(h, g;D) = 1

How large D has to be depends of course on g, h.
We have already mentioned that more refined versions of the local trace formula

on g will be obtained by replacing uM by simpler related functions. To keep our
notation consistent with that used later in the general case, we will denote the next
weight factor to be considered by ṽM (h, g;D). In the case of GL2 we take the right
sides of (9.4.1) as our definitions of ṽM , in other words, we put

(9.4.2)
ṽA(h, g;D) = 2

(
D − d(v)− d(w)

)
+ 1

ṽG(h, g;D) = 1
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for all g, h, D.
For later use (in applying Lebesgue’s dominated convergence theorem) we note

(9.4.3)
|uA(h, g;D)− ṽA(h, g;D)| ≤ 2

(
d(v)− d(w)

)
|uG(h, g;D)− ṽG(h, g;D)| ≤ 1.

There is one final comment to make about ṽM . Until now D has been the
non-negative integer m − n. However, as we see from (9.4.2), the definition of
ṽM (h, g;D) still makes sense for any real number D.

10. The local trace formula for the Lie algebra of G = GL2

In this section G is again GL2(F ).

10.1. Next form of the local trace formula for GL2. Our preliminary
version of the local trace formula for the Lie algebra of GL2 says that

(10.1.1) KD(f1, f2) = KD(f̂1, f̌2)

with

KD(f1, f2) =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·∫
AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)uM (h, g;D) dḣ dġ dX.

(10.1.2)

In the case of GL2 we have also defined functions ṽM that are closely related to
the functions uM appearing in (10.1.2). We now define JD(f1, f2) by the formula

JD(f1, f2) =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·∫
AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)ṽM (h, g;D) dḣ dġ dX.

(10.1.3)

The only difference between this expression and the previous one is that uM has
been replaced by ṽM . Recall that ṽM (h, g;D) is defined for all D ∈ R, so the same is
true of JD(f1, f2). Looking back at the definition of ṽM , we see that the convergence
of the double integral appearing in (10.1.3) is an immediate consequence of the
following two lemmas.

Lemma 10.1. For any maximal torus T in G the function

(10.1.4) X �→ |D(X)|1/2

∫
AT \G

f(g−1Xg) dġ

on treg is bounded and locally constant on treg. Moreover this function is compactly
supported on t, in the sense that there exists a compact subset C of t such that it
vanishes off C ∩ treg. In particular the integral

(10.1.5)
∫

treg

|D(X)|1/2

∫
AT \G

f(g−1Xg) dġ dX

converges.

In the definition of ṽA(h, g;D) we were regarding the function d(v) as a function
on G. Now we make this more explicit, putting (for g ∈ G) d(g) := d(gv0), where
v0 is the base vertex in the tree.
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Lemma 10.2. The function

(10.1.6) X �→ |D(X)|1/2

∫
A\G

f(g−1Xg)d(g) dġ

on Lie(A)reg is locally constant on Lie(A)reg. Moreover this function is compactly
supported on Lie(A), in the sense that there exists a compact subset C of Lie(A)
such that it vanishes off C ∩ Lie(A)reg. Finally, the integral

(10.1.7)
∫

Lie(A)reg

|D(X)|1/2

∫
A\G

f(g−1Xg)d(g) dġ dX

converges.

The first lemma makes sense and is true for any connected reductive G. The
same will turn out to be true of the second lemma once we have defined a suitable
generalization of the function d(g). We prefer to prove these results in general, and
will therefore defer their proofs till later (see Theorems 17.10, 17.11 and 20.6).

Granting the two lemmas, we can now state and prove the second form of the
local trace formula for the Lie algebra of GL2.

Theorem 10.3. For all f1, f2 ∈ C∞
c (g) and all D ∈ R there is an equality

(10.1.8) JD(f1, f2) = JD(f̂1, f̌2).

Proof. The functions f1, f2 will remain fixed throughout the proof. The first
thing to note is that the function D �→ JD(f1, f2) is affine linear, or, in other words,
has the form D �→ aD + b for suitable real numbers a, b.

For any non-negative integer D consider the difference KD(f1, f2)−JD(f1, f2),
which is given by the expression∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)| ·
∫

AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)·

(
uM (h, g;D)− ṽM (h, g;D)

)
dḣ dġ dX.

As D → +∞ the pointwise limit of the sequence uM (h, g;D) − ṽM (h, g;D) is 0.
Moreover the estimate (9.4.3) for uM (h, g;D) − ṽM (h, g;D), in conjunction with
the two lemmas above, shows that Lebesgue’s dominated convergence theorem can
be applied, yielding the conclusion that

(10.1.9) KD(f1, f2)− JD(f1, f2) → 0 as D → +∞.

Now consider the difference ∆(D) := JD(f1, f2)− JD(f̂1, f̌2), which we are trying
to prove is zero. On the one hand, we know that ∆(D) is an affine linear function
of D ∈ R. On the other hand, applying (10.1.9) to both (f1, f2) and (f̂1, f̌2) and
using the first form of the local trace formula, we see that the sequence ∆(D) has
limit 0 as D → +∞. It follows that ∆(D) is identically zero, as desired. �

10.2. Final form of the local trace formula for GL2. In the course of
proving the theorem above we saw that JD(f1, f2) is an affine linear function of
D ∈ R. Therefore this theorem is actually an equality between two affine linear
functions of D, and entails two equalities, one between the linear terms of the two
sides, and one between their constant terms. However this is less interesting than it
might at first seem, since the equality between linear terms is a consequence of the
local trace formula on Lie(A). (Something similar happens for general G, involving
the local trace formulas for the Lie algebras of the various Levi subgroups of G.)
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Thus all the real content of the theorem is in the equality of the constant
terms of the two sides. These constant terms are obtained by setting D equal to 0.
However, we can capture the same information (modulo the local trace formula on
Lie(A)) by setting D equal to any constant we like. The simplest result is obtained
by taking D to be −1/2, as one sees by looking back at how ṽA was defined. Doing
so (and denoting the new weight factors by vM (h, g) := ṽM (h, g;−1/2)) yields the
final form for the local trace formula on the Lie algebra of GL2, namely

Theorem 10.4. For all f1, f2 ∈ C∞
c (g) there is an equality

(10.2.1) J(f1, f2) = J(f̂1, f̌2),

where J(f1, f2) is defined by

J(f1, f2) =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·

·
∫

AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)vM (h, g) dḣ dġ dX
(10.2.2)

with vM (h, g) given by

(10.2.3)
vA(h, g) = −2

(
d(g) + d(h)

)
vG(h, g) = 1.

10.3. Invariance versus non-invariance. When M = G, in which case vG

is identically 1, the double integral occurring in (10.2.2) is just the product of the
orbital integrals (for X) of the functions f1 and f2. When M = A, the double
integral is still taken over the (G×G)-orbit of (X,X) in g×g, but we are using vM

times the invariant measure on the orbit. Thus we are dealing with what Arthur
calls a weighted orbital integral on g × g. We see from the explicit formula for
vA(h, g) that this weighted orbital integral is the sum of two terms, each term being
a product of an orbital integral on one of the two factors of g × g and a weighted
orbital integral on the other factor. This last phenomenon is an especially simple
instance of more complicated splitting formulas of Arthur (see [Art81, Lemma 6.3]
for instance) on general groups G .

We can use these remarks to rewrite J(f1, f2) in a form more suited to the
application we will make in the next section. For any maximal torus T in G and
any X ∈ treg we use OX (as usual) to denote the orbital integral

(10.3.1) OX(f) =
∫

AT \G

f(g−1Xg) dġ.

Similarly, for any X ∈ Lie(A)reg we define the weighted orbital integral WOX by

(10.3.2) WOX(f) =
∫

A\G

f(g−1Xg)vA(g) dġ,

where vA(g) := 2d(g). (Here we should warn the reader that when we define weight
factors for general split groups, we will use a different normalization, in which the
weight factor vA for GL2 turns out to be d(g) rather than 2d(g).)
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It is then clear from these definitions that

J(f1, f2) =
∑

T∈TG

|WG
T |−1

∫
treg

|D(X)|OX(f1)OX(f2) dX

− |W |−1

∫
(Lie A)reg

|D(X)|OX(f1)WOX(f2) dX

− |W |−1

∫
(Lie A)reg

|D(X)|WOX(f1)OX(f2) dX.

(10.3.3)

10.4. Application of the local trace formula for the Lie algebra of GL2.
Suppose that OX(f2) = 0 for all X ∈ (LieA)reg. Then the last term in (10.3.3)
vanishes, and the remaining terms can be recombined using the Weyl integration
formula. We conclude, for such f2, that

(10.4.1) J(f1, f2) =
∫

greg

f1(X)F2(X) dX,

where F2 is the unique conjugation-invariant function on grs such that

(10.4.2) F2(X) =

{
OX(f2) if X ∈ treg for some T ∈ TG

−WOX(f2) if X ∈ Lie(A)reg.

Since F2 is conjugation-invariant, the distribution f1 �→ J(f1, f2) is an invariant
distribution on g. [The group G acts by conjugation on g, hence on C∞

c (g), hence
on D(g), and an invariant distribution on g is one that is fixed by this conjugation
action.]

What can we say about the function F2 (under our assumption on f2)? It is a
consequence of Lemmas 10.1 and 10.2 that F2 is locally constant on grs. We will
often regard F2 as a function on g by extending it by 0 on the complement of grs;
this extended function is usually not locally constant on g. It is obvious that the
support of F2 is bounded modulo conjugation, in the sense that there is a compact
subset ω in g such that F2(X) = 0 unless X ∈ g is G-conjugate to an element in ω
(any compact set ω on which f2 is supported will do). Finally, we claim that F2 is
a locally integrable function on g.

We pause to recall that a measurable function F on g is said to be locally inte-
grable if F (X)f(X) is an integrable function on g for all f ∈ C∞

c (g) (equivalently,
for all f obtained by taking characteristic functions of compact open subsets of g).
In our case it is the convergence of the integral (10.4.1) for all f1 which guarantees
that F2 is indeed locally integrable.

What is the most obvious source of functions whose hyperbolic orbital integrals
vanish? Recall that X ∈ grs is said to be elliptic if its centralizer in G is an elliptic
maximal torus in G (see 7.9 for the definition of elliptic maximal torus). We denote
by ge the set of elliptic elements in grs. It follows from the discussion in 7.6 that
ge is open in g. [In the notation of that subsection the set ge is the union of open
sets gT

rs for T ranging through TG.]
Now suppose that φ is a function lying in the subspace C∞

c (ge) of C∞
c (g). It is

then obvious that the hyperbolic orbital integrals of φ vanish. It is less obvious, but
true, that the hyperbolic orbital integrals of the Fourier transform φ̂ also vanish.
We will prove a suitable generalization of this later (see Lemma 13.5).
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As above we now use φ to define an invariant distribution Iφ on g by putting

Iφ(f) := J(f, φ).

We have seen that Iφ is represented by the conjugation-invariant function on grs,
supported on ge, whose value at X ∈ ge is OX(φ). Thus the invariant distribution Iφ

can be thought of as a “continuous linear combination” of elliptic regular semisimple
orbital integrals.

Recall that the Fourier transform T̂ of a distribution T on g is defined by

(10.4.3) T̂ (f) = T (f̂)

for all f ∈ C∞
c (g). Let’s examine the Fourier transform of Iφ. Using the local trace

formula for the functions f̂ , φ, we see that

Îφ(f) = J(f̂ , φ) = J(f, φ̂),

and therefore, since the hyperbolic orbital integrals of φ̂ vanish, we conclude that
the distribution Îφ is represented by the locally integrable conjugation-invariant
function F on grs whose values are given by

(10.4.4) F (X) =

{
OX(φ) if X ∈ treg for some T ∈ TG

−WOX(φ) if X ∈ Lie(A)reg.

This establishes, for the group GL2, a key special case of a more general result of
Harish-Chandra (see Theorem 27.8), which says that for any invariant distribution
I on g whose support is bounded modulo conjugation, the Fourier transform Î is
represented by a locally integrable function on g that is locally constant on grs. The
formula for F (X) when X is elliptic is also due to Harish-Chandra [HC78, HC99].
The formula for F (X) when X is non-elliptic is due to Waldspurger. Indeed,
Waldspurger [Wal95] proves a similar result for arbitrary G, and our approach
here follows his.

11. Remarks on Euclidean space

Before introducing the weight factors (see section 12) occurring in weighted
orbital integrals for general split groups, we need to discuss some elementary (but
important) facts about Euclidean space, which will be used again later in the proof
of the key geometric result needed for the local trace formula. These results are
related to Langlands’ combinatorial lemma [Lan66], [Lan76], [Art76, §2], [Art78,
Lemma 6.3].

11.1. The abstract set-up. Throughout this section V will denote a Eu-
clidean space, in other words a finite dimensional real vector space equipped with a
positive definite symmetric bilinear form (v, w). We further suppose that v1, . . . , vn

is a basis for V such that

(11.1.1) (vi, vj) ≤ 0 for all i �= j,

and we denote by v∗1 , . . . , v
∗
n the basis in V dual to v1, . . . , vn, so that (vi, v

∗
j ) = δij .

(In the example of interest to us v1, . . . , vn will be simple roots in a root system.)
We denote by C the cone generated by v∗1 , . . . , v

∗
n; thus C consists of non-

negative linear combinations of the elements v∗1 , . . . , v
∗
n. We denote by D the cone

generated by v1, . . . , vn. The cones C and D are dual to each other in the sense
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that D = {v ∈ V : (v, w) ≥ 0 ∀w ∈ C} (and the same with the roles of C and D
interchanged).

Lemma 11.1. Let V and v1, . . . , vn be as above. Then
(1) For all i, j we have (v∗i , v

∗
j ) ≥ 0. Equivalently, D contains C.

(2) For any j the vectors

v1, . . . , vj , v
∗
j+1, . . . , v

∗
n

form a basis for V ; moreover for all k the vector v∗k is a non-negative
linear combination of v1, . . . , vj , v

∗
j+1, . . . , v

∗
n.

Proof. We begin by proving the first part of the lemma. Apply the Gram-
Schmidt orthonormalization process to v1, . . . , vn, obtaining an orthonormal basis
e1, . . . , en. Thus the first basis vector e1 is the unit vector in the same direction as
v1, the next basis vector e2 is the unit vector in the same direction as v2−(v2, e1)e1,
and so on.

Claim 1. For all i the vector ei is a non-negative linear combination of
v1, . . . , vi, and the coefficient of vi in this combination is strictly positive. [To
prove this use induction on i together with (11.1.1).]

Claim 2. For all i the vector v∗i is a non-negative linear combination of
ei, . . . , en, and the coefficient of ei in this combination is strictly positive. [To
prove this note that v∗i =

∑
j(v

∗
i , ej)ej and then use Claim 1.]

Claim 3. For all i the vector v∗i is a non-negative linear combination of
v1, . . . , vn. [To prove this combine Claims 1 and 2.]

We are done proving the first statement of the lemma, as it is just a restate-
ment of Claim 3. (For root systems Claim 3 is the familiar fact that the positive
Weyl chamber is contained in the cone of elements that are non-negative linear
combinations of roots.)

Now we prove the second part of the lemma. The first statement is clear,
since v∗j+1, . . . , v

∗
n is obviously a basis for the orthogonal complement of the span

of v1, . . . , vj . The second statement is trivial when k ≥ j + 1, so we just need
to consider k such that 1 ≤ k ≤ j and show that v∗k is a non-negative linear
combination of v1, . . . , vj , v

∗
j+1, . . . , v

∗
n.

Let W denote the span of v1, . . . , vj . We denote by w∗
1 , . . . , w

∗
j the basis of W

dual to v1, . . . , vj ; by the first part of the lemma (in the form of Claim 3) applied to
W , we know that w∗

k is a non-negative linear combination of v1, . . . , vj . Clearly w∗
k

is the orthogonal projection of v∗k on W , and since (as we have already remarked)
v∗j+1, . . . , v

∗
n is obviously a basis for the orthogonal complement of W , we can write

v∗k as

(11.1.2) v∗k = w∗
k + bj+1v

∗
j+1 + · · ·+ bnv

∗
n

for real numbers bj+1, . . . , bn. Since we already know that w∗
k is a non-negative

linear combination of v1, . . . , vk, we just need to check that each bm is non-negative.
It follows from (11.1.2) that

(11.1.3) bm = (v∗k, vm)− (w∗
k, vm).

The term (v∗k, vm) is 0 since k �= m, and (w∗
k, vm) ≤ 0 since w∗

k is a non-negative
linear combination of v1, . . . , vk, showing that bm ≥ 0, as desired. �

As an immediate consequence of this lemma, we obtain the following corollary
about root systems, which will be used later in our proof of the key geometric
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result needed for the local trace formula. We fix a Borel subgroup B containing
A and write ∆ for the set of simple roots of A, viewed as linear forms on a. We
also need the fundamental weights �α ∈ (a/aG)∗ ⊂ a∗ (indexed by α ∈ ∆); recall
that 〈�α, β

∨〉 = δα,β for all α, β ∈ ∆. Finally we consider a parabolic subgroup
P = MU containing B (with Levi component M chosen so that M ⊃ A), and write
∆M for the set of simple roots of A in M and ∆U for the set of simple roots of A
occurring in Lie(U); thus ∆ is the disjoint union of ∆M and ∆U .

Lemma 11.2. Let µ, ν ∈ a and assume that µ, ν have the same image under the
canonical surjection a → aG. Assume further that 〈α, ν〉 ≤ 〈α, µ〉 for all α ∈ ∆M .
Then ν ≤

B
µ if and only if 〈�α, ν〉 ≤ 〈�α, µ〉 for all α ∈ ∆U .

Proof. Since we are given that µ, ν have the same image in aG, the condition
ν ≤

B
µ is equivalent to the condition that 〈�α, ν〉 ≤ 〈�α, µ〉 for all α ∈ ∆. Therefore

we need only show that the inequalities 〈α, ν〉 ≤ 〈α, µ〉 for all α ∈ ∆M and 〈�α, ν〉 ≤
〈�α, µ〉 for all α ∈ ∆U together imply the inequalities 〈�α, ν〉 ≤ 〈�α, µ〉 for all
α ∈ ∆. This follows from the second part of Lemma 11.1. �

11.2. Subspaces VI of the Euclidean space V . Now let I be a subset
of {1, . . . , n} and denote by VI the linear span of {v∗i : i ∈ I}. The orthogonal
complement of VI has basis {vj : j /∈ I}. We denote by πI the orthogonal projection
of V onto VI .

We are going to see that VI inherits all the structure we have on V . As usual the
restriction of the inner product on V makes VI into a Euclidean space. Obviously
{πIvi : i ∈ I} is the basis in VI dual to {v∗i : i ∈ I}. We denote by CI (respectively,
DI) the cone in VI generated by {v∗i : i ∈ I} (respectively, {πIvi : i ∈ I}).

Lemma 11.3. The following statements hold.
(1) CI = C ∩ VI = πIC.
(2) DI = D ∩ VI = πID.
(3) (πIvi, πIvj) ≤ 0 for all i, j ∈ I with i �= j.

Proof. It is clear from the definitions that CI = C∩VI and that C∩VI ⊂ πIC.
It follows from the second statement of Lemma 11.1 that C ∩ VI ⊃ πIC.

It is clear from the definitions that DI = πID and that D ∩ VI ⊂ πID. It
remains only to show that πID ⊂ D. In other words, we must show that (πId, c) ≥ 0
for all d ∈ D and c ∈ C, and this follows from (πId, c) = (d, πIc) and πIC ⊂ C.

To prove the last statement of the lemma, we begin by noting that

(πIvi, πIvj) = (πIvi, vj).

Next we expand vi in the basis v∗k, obtaining

vi =
n∑

k=1

(vi, vk)v∗k

and hence

(πIvi, vj) =
n∑

k=1

(vi, vk)(πIv
∗
k, vj).

In this sum the term indexed by i is zero since πIv
∗
i = v∗i and i �= j. Each remaining

term is non-positive; indeed its first factor is non-positive (since k �= i) and its
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second factor is non-negative (since πIC ⊂ C). Thus (πIvi, vj) is non-positive, as
desired. �

11.3. The convex polytope E(x). For x ∈ C we put E(x) := C ∩ (x−D).
Here x −D has the obvious meaning: it consists of points of the form x − d with
d ∈ D and is a cone with vertex x. Now E(x) is compact (since it is contained in
the obviously compact set D∩(x−D)) and is the intersection of finitely many half-
spaces; therefore E(x) is a convex polytope. In other words E(x) has finitely many
extreme points (also called vertices) and is the convex hull of its set of vertices. We
are going to determine the set of vertices of E(x), as this is needed in the proof
of Lemma 12.2. The reader is encouraged to draw a picture in the 2-dimensional
case, where it is evident that E(x) is a quadrilateral.

Lemma 11.4. The set of vertices of E(x) is
{
πIx : I ⊂ {1, . . . , n}

}
.

Proof. To simplify notation we put xI := πIx, an element in CI . We begin
by noting that E(x) ∩ VI = CI ∩ (xI − DI) for any subset I ⊂ {1, . . . , n}, or, in
other words, E(x) ∩ VI is the analog EI(xI) for xI , VI of the set E(x) for x, V .
Indeed, using that C ∩ VI = CI and πID = DI , we reduce to showing that

(11.3.1) (x−D) ∩ VI = πI(x−D).

It is clear that the left side is contained in the right side, but we must check that
πI(x−D) ⊂ x−D. Using again that πID = DI ⊂ D, we see that it is enough to
show that xI ∈ x−D, and this follows from the second part of Lemma 11.1.

Now we prove the assertion of the lemma by induction on the dimension of
V , the 0-dimensional case being trivial. Let J ⊂ {1, . . . , n} be a subset having
n− 1 elements. Then E(x) lies on one side of the hyperplane VJ , so that EJ (xJ) =
E(x) ∩ VJ is a face of the polytope E(x). By our inductive hypothesis the set of
vertices of this face is {πIx : I ⊂ J}. We have now accounted for all vertices of
E(x) lying in one of the codimension 1 faces CJ of the cone C. It remains only to
find the vertices of E(x) lying in the interior of the cone C. An interior point of C
is clearly extreme in E(x) if and only if it is extreme in x − D, and, since x − D
is a cone with vertex x, it has a unique extreme point, namely x. Therefore, if x
lies in the interior of C, there is exactly one vertex of E(x) in the interior of C,
namely x. Otherwise there is no vertex of E(x) lying in the interior of C, but in
this case x is equal to xJ for some J as above. In either case we conclude that{
πIx : I ⊂ {1, . . . , n}

}
is the set of vertices of E(x). �

12. Weighted orbital integrals in general

We worked out the local trace formula explicitly for GL2 and found the weight
factor vA(g) = 2d(g) appearing in our weighted orbital integrals. There are similar
weight factors vM in the general case, which we are now going to discuss. Again
we prefer to stick to the case of split groups, in order to keep the structure theory
of the group as straightforward as possible.

In this section we work with any split connected reductive group G over our
p-adic field F . We use the same notation (e.g. A and K = G(O)) as in 4.1.
In addition, for any Levi subgroup M in G we write P(M) for the (finite) set of
parabolic F -subgroups of G admitting M as Levi component. In the special case
M = A we often write B(A) instead of P(A); thus B(A) is the set of Borel subgroups
containing A.
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We will only be considering Levi subgroups M containing A. In this case AM

is a subgroup of A and the lattice X∗(AM ) is a subgroup of X∗(A). Recall the
definitions a = X∗(A)⊗Z R and aM = X∗(AM )⊗Z R.

In the rest of this section G will denote the group of F -points of our algebraic
group.

12.1. The maps HP : G→ ΛM . Let M be a Levi subgroup of G containing
A, and let P = MU ∈ P(M), U being the unipotent radical of P . By the Iwasawa
decomposition we have G = MUK. Therefore we can write any g ∈ G as g = muk
with m ∈ M , u ∈ U , k ∈ K, and the element m we obtain in this way is unique
up to right multiplication by an element of M(O) = K ∩ M . Recall from 4.5
the homomorphism HM : M → ΛM , and put HP (g) := HM (m). Then HP is a
well-defined map from G to ΛM . Clearly

(12.1.1) HP (mgk) = HM (m) + HP (g)

for all g ∈ G, m ∈M and k ∈ K.
The most basic case of this construction occurs when M = A, in which case

the parabolic subgroup in question is a Borel subgroup B containing A, and the
map HB goes from G to X∗(A). It follows from the definitions that there is an
important compatibility between the maps HP and HB whenever P contains B,
namely HP (g) is the image of HB(g) under the canonical surjection X∗(A) � ΛM .

Of course for a given P = MU there are many Borel subgroups B sandwiched
between P and A; via B �→ B ∩M these are in one-to-one correspondence with
Borel subgroups of M containing A. Moreover, there is another easily verified
compatibility, this time between HB : G → X∗(A) and HB∩M : M → X∗(A),
namely for g = muk as above, we have

(12.1.2) HB(g) = HB∩M (m).

This is especially important in the case when M has rank 1 (so that up to isogeny M
is the product of SL2 and a split torus), in which case there are two Borel subgroups
B sandwiched between P and A, corresponding to the two Borel subgroups in SL2

containing the relevant split maximal torus of that group. For this reason, among
others, we need to understand HB for SL2.

So for a moment we consider the case G = SL2. As usual we take A to be
the subgroup of diagonal matrices and B = AN (respectively B̄ = AN̄) to be the
subgroup of upper triangular (respectively, lower triangular) matrices. Let α∨ be
the coroot corresponding to the unique root α occurring in Lie(N). In order to
understand HB and HB̄ for SL2 it is enough (by (12.1.1) and the Iwasawa decom-
position) to compute them on elements n ∈ N . Trivially we have that HB(n) = 0.
A simple computation with 2 × 2 matrices shows that HB̄(n) is −rα∨, where r is
the following non-negative integer. Look at the upper right matrix entry y of n.
If y ∈ O, then r = 0. Otherwise, r is the negative of the valuation of y. Identify-
ing a with the standard apartment (see 5.3) in the tree, we see that HB(n) = v0,
HB̄(n) = v−2r. Looking back at 5.8, we see that v−r is the point in the standard
apartment that is closest to nv0, and that r is the distance from nv0 to the standard
apartment.

From this computation we conclude that for any element g ∈ SL2(F )

(12.1.3) HB(g)−HB̄(g) = rα∨
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for some non-negative integer r, that r is in fact equal to the distance from gv0

to the standard apartment, that the point in the apartment closest to gv0 is the
midpoint of the line segment with endpoints at HB(g) and HB̄(g) (again viewing
these as points in the standard apartment), and that the length of this line segment
is 2r. (Since 〈α, α∨〉 = 2, translation by α∨ is translation by 2.) Before going on, we
pause to notice that the weight factor 2d(g) entering into weighted orbital integrals
for GL2 has now been interpreted in terms of HB(g) and HB̄(g): it is the length
of the line segment joining the two points HB(g) and HB̄(g) in a. We will see how
this generalizes in a moment.

Now we return to our general split group G. The computation we just made
for SL2, combined with our previous remarks, shows that for any g ∈ G the family
of points HB(g) indexed by B ∈ B(A) is an example of what Arthur calls a positive
(G,A)-orthogonal set; we discuss this notion next.

12.2. (G,A)-orthogonal sets. A family of points xB in X∗(A) (respectively,
a), one for each B ∈ B(A), is said to be a (G,A)-orthogonal set in X∗(A) (re-
spectively, a) if for every pair B, B′ ∈ B(A) of adjacent Borel subgroups (meaning
that the corresponding Weyl chambers in a are adjacent) there exists an integer
(respectively, real number) r such that

(12.2.1) xB − xB′ = rα∨,

where α∨ is the unique coroot for A that is positive for B and negative for B′. (The
explanation for the word “orthogonal” is that with respect to a Weyl group invariant
inner product on a, the line segment joining xB and xB′ is orthogonal to the root
hyperplane in a defined by α.) When all the numbers r are non-negative (resp.,
non-positive), the (G,A)-orthogonal set is said to be positive (resp., negative).

Consider once again a parabolic subgroup P = MU with M ⊃ A. For any
(G,A)-orthogonal set (xB)B∈B(A) it is easy to see that the points

(12.2.2) (xB){B∈B(A):B⊂P}

form an (M,A)-orthogonal set (identifying {B ∈ B(A) : B ⊂ P} with BM (A), the
analog of B(A) for the group M); moreover this (M,A)-orthogonal set is positive
if the (G,A)-orthogonal set we started with is positive.

We see from (12.1.2) that the set of points HB(g) (B ∈ B(A) with B ⊂ P )
is the positive (M,A)-orthogonal set in X∗(A) attached to the element m ∈ M
obtained from the decomposition g = muk.

12.3. Arthur’s weight factor in case M = A. Now we define Arthur’s
weight factor in the case M = A. Start with g ∈ G. Obtain from it the positive
(G,A)-orthogonal set HB(g). Take the convex hull in a of the points HB(g) (B ∈
B(A)). Define the weight factor vA(g) to be the volume of this convex hull. By
volume we mean Lebesgue measure in the real affine space consisting of all points
in a whose image under a � aG is the same as the common image of all the points
HB(g), the Lebesgue measure being normalized so that measure 1 is given to any
fundamental domain for the (translation) action of the coroot lattice of G.

In the case of GL2 the convex hull is the line segment discussed above, and
its volume is its length, but measured with respect to the coroot lattice, which has
index 2 in X∗(A)/X∗(AG), so that with our new definition vA(g) is equal to d(g)
instead of 2d(g).
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Returning to the general case, note that the family HB(g) depends only on the
coset gK, and that if g is multiplied on the left by an element a ∈ A, then the
whole family is translated by the vector HA(a), leaving its volume unchanged. It
follows that

(12.3.1) vA(agk) = vA(g)

for all g ∈ G, a ∈ A, and k ∈ K.
The convex hulls of positive (G,A)-orthogonal sets are very beautiful convex

polytopes, about which much can be said. In particular, there is an interesting con-
nection with the theory of toric varieties, as we will see in section 23. In a moment
we will see how to get a better picture of the shape of these convex polytopes.

12.4. (G,M)-orthogonal sets. To define the weight factors in the general
case we need to generalize the notion of (G,A)-orthogonal set. Let M be a Levi
subgroup containing A. The roots of A in G that are not roots in M have non-zero
restrictions to aM , hence define hyperplanes (called walls) in aM . The connected
components of the complement in aM of the union of these hyperplanes are called
chambers in aM . For M = A these are the usual Weyl chambers. There is a
one-to-one correspondence between chambers in aM and the parabolic subgroups
P ∈ P(M); the chamber corresponding to P = MU is denoted by a

+
P and is given

by

(12.4.1) a
+
P := {x ∈ aM : 〈α, x〉 > 0 ∀α ∈ RU},

where RU denotes the set of roots of A occurring in u := Lie(U).
Consider two adjacent parabolic subgroups P, P ′ ∈ P(M). (By this we mean

that the corresponding chambers are adjacent, or, in other words, separated by
exactly one wall.) Recall that ΛM is the quotient of X∗(A) by the coroot lattice
for M . Now consider the collection of elements in ΛM obtained as the images
of the coroots α∨ where α runs through RU ∩ RŪ ′ (with P̄ ′ = MŪ ′ denoting the
parabolic subgroup in P(M) opposite P ′). We define βP,P ′ to be the unique element
in this collection such that all other members of the collection are positive integral
multiples of βP,P ′ . In case M = A, so that P, P ′ are Borel subgroups, βP,P ′ is the
unique coroot of A that is positive for P and negative for P ′.

A family of points xP in ΛM (respectively, aM ), one for each P ∈ P(M),
is said to be a (G,M)-orthogonal set in ΛM (respectively, aM ) if for every pair
P, P ′ ∈ P(M) of adjacent parabolic subgroups there exists an integer (respectively,
real number) r (necessarily unique) such that

xP − xP ′ = rβP,P ′ .

When all the numbers r are non-negative (respectively, non-positive), the (G,M)-
orthogonal set is said to be positive (respectively, negative).

It is clear that βP̄ ,P̄ ′ = −βP,P ′ . Therefore, if P �→ xP is a (G,M)-orthogonal
set, then so is P �→ xP̄ , and the one is positive if and only if the other is negative.

12.5. The points xP associated to a (G,A)-orthogonal set. Let P = MU
be a parabolic subgroup containing A, and let (xB) be a (G,A)-orthogonal set
in X∗(A). We have already observed that the points (xB){B∈B(A):B⊂P} form an
(M,A)-orthogonal set in X∗(A). In particular the difference between any two points
in this (M,A)-orthogonal set is a sum of coroots for M , which means that they
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map to the same point in ΛM . Thus we get a well-defined point xP ∈ ΛM as the
common image in ΛM of all the points {xB : B ⊂ P}.

It is easy to see that the points (xP )P∈P(M) form a (G,M)-orthogonal set in
ΛM , and that this (G,M)-orthogonal set is positive if (xB) is positive.

The same things remain true when X∗(A) is replaced by a and ΛM is replaced
by aM .

12.6. Arthur’s weight factor vM . The weight factor in the general case
is defined as follows. Start with g ∈ G. Obtain from it the family of points
HP (g) ∈ ΛM , one for each P = MU ∈ P(M). This family HP (g) (P ∈ P(M)) is
a positive (G,M)-orthogonal set in ΛM . By definition vM (g) is the volume of the
convex hull of the images in aM of the points HP (g). (See subsection 24.7 for a
precise normalization of the volume.)

The weight factor satisfies

(12.6.1) vM (mgk) = vM (g)

for all g ∈ G, m ∈M , and k ∈ K.

12.7. Weighted orbital integrals. Now we can define weighted orbital in-
tegrals for G. Let T be a maximal torus such that AT is contained in A. As before,
let M be the centralizer of AT , a Levi subgroup containing A for which AM = AT .
For X ∈ treg and f ∈ C∞

c (G) put

(12.7.1) WOX(f) :=
∫

AM\G

f(g−1Xg)vM (g) dġ.

Just as for unweighted orbital integrals, the semisimplicity of X ensures that the in-
tegrand is locally constant and compactly supported on AM\G, so that the integral
makes sense.

For G = GL2 this agrees with our previous definition, apart from the factor of
2 mentioned in 12.3. When T is elliptic, so that M = G, the weight factor is 1 and
the weighted orbital integral is actually an orbital integral.

12.8. Weyl group orbits as positive (G,A)-orthogonal sets. As we have
seen, each element g ∈ G gives rise to a positive orthogonal set HB(g) (B ∈ B(A))
in X∗(A). However, there is an even simpler way to produce positive orthogonal
sets in X∗(A), and this construction is also relevant to the local trace formula.

First recall that an element µ ∈ X∗(A) is said to be dominant with respect to
a Borel subgroup B = AN if 〈α, µ〉 ≥ 0 for every root of A occurring in Lie(N);
since we need to vary B it is best to refer to such an element x as B-dominant. The
set of B-dominant elements in X∗(A) is the intersection of X∗(A) with the closure
of the Weyl chamber corresponding to B (the Weyl chamber itself being defined as
the set of x ∈ a for which all the inequalities 〈α, x〉 ≥ 0 are strict).

It is a standard fact about root systems that the closure of any Weyl chamber
serves as a fundamental domain for the action of the Weyl group W of A on a. Thus,
given µ ∈ X∗(A), for any B ∈ B(A) there exists a unique µB ∈ X∗(A) such that
µB lies in the W -orbit of µ and is B-dominant. Now suppose that B1, B2 ∈ B(A)
are adjacent. Then there is a unique root α which is positive for B1 and negative
for B2, and the corresponding root hyperplane is the unique one separating the
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Weyl chambers corresponding to B1, B2. Let sα ∈ W be the reflection across this
hyperplane. Then µB2 = sαµB1 , which tells us that

(12.8.1) µB1 − µB2 = 〈α, µB1〉α∨.

Now 〈α, µB1〉 ≥ 0 since µB1 is B1-dominant and α is positive for B1, from which
we conclude that the family µB (B ∈ B(A)) is a positive (G,A)-orthogonal set.

12.9. Special (G,M)-orthogonal sets. We say that a (G,A)-orthogonal set
of points xB is special if xB is B-dominant for all B ∈ B(A). More generally, we say
that a (G,M)-orthogonal set of points xP is special if for all P ∈ P(M) the image
of xP under ΛM → aM lies in the closure of the chamber a

+
P . (This property arises

in [Art91a] but is not given a name. It seems convenient to have such a name.)
The (G,A)-orthogonal set obtained from the Weyl group orbit of µ as above

provides the most obvious example of a special (G,A)-orthogonal set. In this exam-
ple we saw that the (G,A)-orthogonal set was positive. This is a general phenome-
non: any special (G,M)-orthogonal set (xP ) is automatically positive. Indeed, for
adjacent P , P ′ we have

(12.9.1) xP − xP ′ = rβP,P ′ .

Let α be any root in RU ∩ RŪ ′ . Evaluating the root α on both sides of this
equation, one gets a non-negative number on the left side, and since 〈α, βP,P ′〉 is
strictly positive, we conclude that r must be non-negative. (To see painlessly that
〈α, βP,P ′〉 is strictly positive, it is convenient to use a Weyl group invariant inner
product to identify a with its dual, so that α∨, α become positive multiples of each
other.)

Consider a special (G,A)-orthogonal set (xB) and a Levi subgroup M con-
taining A. Then for any parabolic subgroup P ∈ P(M), it is easy to see that
the (M,A)-orthogonal set (12.2.2) obtained from (xB) is special. Moreover the
(G,M)-orthogonal set (xP ) in ΛM obtained from (xB) (see 12.5) is also special.

12.10. Shape of the convex hull of a positive (G,A)-orthogonal set.
Consider a positive (G,A)-orthogonal set of points xB (B ∈ B(A)) in X∗(A). Let
B,B′ ∈ B(A). We no longer assume that they are adjacent. However B, B′ can be
joined by a chain of Borel subgroups (all containing A) such that each consecutive
pair in the chain is a pair of adjacent Borel subgroups. Now assuming that the
chain is chosen to be as short as possible, the set of root hyperplanes separating
the Weyl chambers of B and B′ coincides with the set of hyperplanes separating
the various consecutive pairs in our chain. In this way we see that xB − xB′ is a
non-negative integral linear combination of the coroots α∨ that are positive for B
and negative for B′. In particular we have

(12.10.1) xB′ ≤
B
xB .

What is the meaning of the symbol B below the inequality sign? We have been
using the inequality x ≤ y to mean that y − x is a non-negative integral linear
combination of positive coroots, positive respect to some fixed B0 ∈ B(A). Now
we are letting the Borel subgroup vary, and we use the symbol B to indicate which
Borel subgroup we are using.

We also need to define x ≤
B
y for elements x, y ∈ a: say that x ≤

B
y if y − x is a

non-negative real linear combination of positive coroots.
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Since (12.10.1) holds for all B′, the convex hull of the points xB , which we
denote by

Hull{xB : B ∈ B(A)},
is contained in the convex cone

(12.10.2) C∗
B := {x ∈ a : x ≤

B
xB},

and since this is true for all B, we conclude that the convex hull is contained in the
intersection of the cones C∗

B .

Lemma 12.1. [Art76, Lemma 3.2] Let (xB) be a positive (G,A)-orthogonal set
in a. Then

Hull{xB : B ∈ B(A)} = {x ∈ a : x ≤
B
xB ∀B ∈ B(A)}.

Proof. It remains only to see that the convex hull of the points xB contains
the intersection of the cones C∗

B . From the theory of convex sets we know that the
convex hull in question is the intersection of all the halfspaces containing it, so it
will suffice to show that any such halfspace contains one of the cones C∗

B . Say the
halfspace is given by the set of points x ∈ a such that 〈λ, x〉 ≤ r (with λ ∈ a∗ and
r ∈ R). Choose B ∈ B(A) such that λ is dominant for B. The halfspace contains
the entire convex hull and thus contains xB ; the dominance of λ then implies that
the halfspace contains C∗

B . �

12.11. A property of special (G,A)-orthogonal sets. Let xB be a special
(G,A)-orthogonal set of points in X∗(A). In 12.5 we defined points xP ∈ ΛM ,
one for each parabolic subgroup P = MU containing A. Using the canonical map
ΛM → aM , we obtain from xP an element x̄P of aM ⊂ a. We claim that x̄P lies in
the convex hull of the points {xB : B ⊂ P}.

Indeed, we have seen in 12.2 that the points xB with B ⊂ P form an (M,A)-
orthogonal set. This reduces us to the case in which P = G. It is harmless to
assume that G is semisimple. Then we must show that the origin lies in the convex
hull of the points xB . This follows from Lemma 12.1 since by hypothesis xB is
dominant for B, whence xB ≥

B
0.

As an easy exercise the reader may wish to verify that a (G,A)-orthogonal set
of points xB is special if and only if it is positive and satisfies the property that
for every parabolic subgroup P containing A the point x̄P lies in the convex hull
of the points {xB : B ⊂ P}. (Hint: Use all the parabolic subgroups P = MU for
which M has rank 1.)

12.12. Shape of the convex hull of a special (G,A)-orthogonal set.
For special (G,A)-orthogonal sets (which are positive, as we have seen), there is
an even more useful description of the convex hull, given in terms of the shapes of
its intersections with the closures of the various Weyl chambers. We use the same
notation C∗

B as above.

Lemma 12.2. [Art91a, Lemma 3.1] Let H denote the convex hull of a special
(G,A)-orthogonal set of points xB. Let B ∈ B(A) and let CB be the set of B-
dominant elements in a. Then the intersection of H with the cone CB is equal to
the intersection of C∗

B with CB.
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Proof. It follows from Lemma 12.1 that H ∩CB is contained in C∗
B ∩CB . It

follows from Lemma 11.4 that C∗
B∩CB is the convex hull of the points {x̄P : P ⊃ B};

thus, in order to show that C∗
B ∩ CB is contained in H ∩ CB , it suffices to show

that each x̄P is in H. This was done in 12.11. �

12.13. Shape of the convex hull of a (G,M)-orthogonal set. Let M be
a Levi subgroup of G containing A. For P = MU ∈ P(M) we now define a partial
order ≤

P
on aM by saying that x ≤

P
y if y − x is a non-negative linear combination

of images under a � aM of coroots α∨ associated to roots α of A in Lie(U).
We write πM for the canonical surjection a � aM . Let x, y ∈ a. Clearly, for

any B ∈ B(A) such that B ⊂ P we have the implication

(12.13.1) x ≤
B
y =⇒ πM (x) ≤

P
πM (y).

Lemma 12.3. [Art76, Lemma 3.2] Let (xP ) be a positive (G,M)-orthogonal
set in aM . Then

Hull{xP : P ∈ P(M)} = {y ∈ aM : y ≤
P
xP ∀P ∈ P(M)}.

Proof. This generalizes Lemma 12.1 and can be proved the same way. �

12.14. Another property of special orthogonal sets. We let M and πM :
a � aM be as in the previous subsection. When aM is identified with a subspace
of a, the map πM becomes orthogonal projection. Let (xB) be a positive (G,A)-
orthogonal set in a, and let (xP ) be the positive (G,M)-orthogonal set in aM

obtained from (xB) as in subsection 12.5. Put Hull := Hull{xB : B ∈ B(A)}, and
also put HullM := Hull{xP : P ∈ P(M)}. The next result is part of Lemmas 3.1
and 3.2 in [Art81].

Proposition 12.1 (Arthur). The image under πM of Hull is HullM . Moreover,
if (xB) is special, then so is (xP ), and

aM ∩Hull= HullM .

Proof. We begin by proving that πM (Hull) ⊂ HullM . By Lemma 12.3 we
must show that πM (xB) ≤

P
xP for all B ∈ B(A) and all P ∈ P(M). Choose

B′ ∈ B(A) such that B′ ⊂ P . Then xB ≤
B′

xB′ (see 12.10), and therefore from

(12.13.1) it follows that πM (xB) ≤
P
πM (xB′) = xP .

Next we prove that HullM ⊂ πM (Hull). For this it is enough to show that
xP ∈ πM (Hull) for all P ∈ P(M). This is clear since xP = πM (xB) for any
B ∈ B(A) such that B ⊂ P . We are now done proving that πM (Hull) = HullM .

Now suppose that (xB) is special, which means simply that for all B ∈ B(A) the
point xB is dominant with respect to B. Let P ∈ P(M) and pick B ∈ B(A) such
that B ⊂ P . By the first part of Lemma 11.3 we see that the point xP = πM (xB) lies
in the closure of the chamber a

+
P in aM . (Note that this closure is the intersection

of aM with the closed Weyl chamber for B.) Therefore (xP ) is special.
Since we already know that HullM is equal to πM (Hull), to prove that aM∩Hull

coincides with both of them, it is enough to note that

aM ∩Hull ⊂ πM (Hull)
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(clear since πM is the identity on the subspace aM ) and that

HullM ⊂ aM ∩Hull

(clear since each xP lies in Hull by the discussion in subsection 12.11). �

13. Parabolic descent and induction

In this section G denotes a connected reductive group over our p-adic field F .
Let P = MU be a parabolic subgroup with Levi component M and unipotent
radical U . There always exists some compact open subgroup K of G such that
G = PK; we fix such a subgroup K. We write p, m, u for the Lie algebras of P ,
M , U respectively. Thus p = m⊕ u.

Orbital integrals on m can be related to orbital integrals on g by Harish-
Chandra’s dual processes of parabolic descent and parabolic induction, as we will
see in this section (which follows [HC99]). Often parabolic descent is used to prove
statements about general maximal tori T by reducing to the case in which T is ellip-
tic. (Take M to be the centralizer of the split component of T .) We will encounter
an application of this kind in 26.1. Parabolic descent will come up again when we
are proving the local trace formula.

13.1. Definition of fP . Given f ∈ C∞
c (g) we define a function fP ∈ C∞

c (m)
by

(13.1.1) fP (Y ) :=
∫

u

f(Y + Z) dZ.

Here Y ∈ m and dZ is Haar measure on u.

13.2. Definition of cusp forms on g. A function f ∈ C∞
c (g) is said to be

a cusp form if fP is identically 0 for every parabolic subgroup P of G such that
P �= G. Looking ahead to (13.13.2), we see that the Fourier transform of a cusp
form is a cusp form.

13.3. Definition of f (P ). Given f ∈ C∞
c (g) we define a function f (P ) ∈

C∞
c (m) by

(13.3.1) f (P ) := f̃P ,

where f̃ ∈ C∞
c (g) is defined by

(13.3.2) f̃(X) :=
∫

K

f(k−1Xk) dk,

dk being the Haar measure on K giving K measure 1. The linear map f �→ f (P )

depends on the choice of K (and the measure dZ).

13.4. Definition of parabolic induction iGP . Let TM be a distribution on
m. We define a distribution iGP (TM ) on g as follows: its value on a test function
f ∈ C∞

c (g) is given by

(13.4.1) iGP (TM )(f) := TM (f (P )).

Lemma 13.1. Suppose that TM is an invariant distribution on m. Then iGP (TM )
is an invariant distribution on g and is independent of the choice of K.
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Proof. Recall from before that we use a subscript G to denote coinvariants
under G. Thus the space of invariant distributions on g is the C-linear dual of
C∞

c (g)G.
Let f ∈ C∞

c (g). For any g ∈ G define gf ∈ C∞
c (g) by gf(X) = f(g−1Xg).

Now consider the map ϕ : G→ C∞
c (m)M defined by

(13.4.2) ϕ(g) = (gf)P .

Note that the vector-valued function ϕ satisfies (for p ∈ P , g ∈ G)

(13.4.3) ϕ(pg) = δP (p)ϕ(g),

where δP is the modulus character on P (see 2.3), given in this case by

δP (p) = | det(Ad(p); u)|.
Since P is not unimodular, there is no G-invariant measure on the homogeneous

space P\G. However there is something similar, namely a non-zero G-invariant
linear form

∮
P\G

defined on the space of locally constant C-valued functions ψ on
G satisfying

(13.4.4) ψ(pg) = δP (p)ψ(g).

(The reason this works is that ψ gives a measure on P\G, and this measure can
then be integrated over P\G.) The linear form

∮
P\G

is unique up to a non-zero
scalar. Since P\G = (P ∩K)\K and

∮
P\G

is G-invariant (hence K-invariant), we
see that (for a suitable normalization of

∮
P\G

), we have

(13.4.5)
∮

P\G

ψ =
∫

K

ψ(k) dk.

We have the integration-in-stages formula

(13.4.6)
∮

P\G

∫
P

h(pg) dp =
∫

G

h(g) dg

for all h ∈ C∞
c (G), where dp is a left Haar measure on P and dg is a suitable Haar

measure on G.
We can apply

∮
P\G

to our vector-valued function ϕ, obtaining a well-defined
element

∮
P\G

ϕ ∈ C∞
c (m)M . Replacing f by a G-conjugate replaces ϕ by a right

translate, hence leaves
∮

P\G
ϕ unchanged, so that f �→

∮
P\G

ϕ is a well-defined
linear map C∞

c (g)G → C∞
c (m)M .

From (13.4.5) we see that
∮

P\G
ϕ is equal to the image of f (P ) under C∞

c (m) →
C∞

c (m)M . This concludes the proof (and provides a way to define f (P ) as an element
of C∞

c (m)M without having to choose K). �

13.5. A variant. This variant will not be used in this article and can be safely
skipped. Let ψ be as above. In some contexts it is natural to work with smaller
compact open subgroups (for instance an Iwahori subgroup). So, just for this
subsection, let K be any compact open subgroup such that ψ is right K-invariant.
Then P\G/K is a finite set. For any ψ as above we have (generalizing (13.4.5))

(13.5.1)
∮

P\G

ψ =
∑

x∈P\G/K

measdg(K)
measdp(P ∩ xKx−1)

ψ(x)

where dp and dg are as in (13.4.6).
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Therefore, if f ∈ C∞
c (g) is Ad(K)-invariant under some compact open subgroup

K, then f (P ) (viewed in the M -coinvariants) is given by

(13.5.2) f (P ) =
∑

x∈P\G/K

measdg(K)
measdp(P ∩ xKx−1)

(xf)P .

13.6. Dependence on P . We will see later (Corollary 27.7) that for any
invariant distribution TM on m the induced distribution iGP (TM ) depends only on
M , not on the choice of parabolic subgroup having Levi component M (provided
that one is careful about the choice of measure dZ).

13.7. Analogous construction on G. We are working on the Lie algebra,
but there are analogs of f (P ) and iGP on the group G. More precisely

(13.7.1) f (P )(m) := δ
1/2
P (m)

∫
U

f̃(mu) du

with f̃ again defined by making f conjugation invariant under K.
With a suitable normalization of Haar measures dg, dm, du one has the follow-

ing basic fact, which explains the significance of parabolic induction of invariant
distributions. Let πM be an irreducible representation of M , and let ΘM be its
distribution character (which depends on dm). Let π be the representation of G
obtained from πM by (unitary) parabolic induction, and let Θ be its distribution
character. Then

(13.7.2) iGP (ΘM ) = Θ.

13.8. Nice conjugation invariant functions on g. To state the next result
we need the notion of nice conjugation invariant function on g. By this we mean a
conjugation invariant function F that is defined and locally constant on grs and is
locally integrable on g (after extending it from grs to g, say by 0).

The local integrability (a notion reviewed in 10.4) of F guarantees that we get
a well-defined distribution

(13.8.1) f �→
∫

g

f(X)F (X) dX

on g, and the conjugation invariance of F implies that this distribution is invariant.
We say that F represents this distribution. Since nice functions are required to be
locally constant on grs, a set whose complement has measure 0, there is at most
one nice conjugation invariant function representing a given invariant distribution.

13.9. Parabolic induction of nice invariant distributions. Now we re-
turn to the parabolic subalgebra p = m⊕ u of Lie algebra g. Suppose that FM is a
nice conjugation invariant function on m, and let TM be the invariant distribution
on m that it represents.

Lemma 13.2. The parabolically induced distribution iGP (TM ) on g is represented
by the nice function

(13.9.1) |DG(X)|−1/2
∑
Y

|DM (Y )|1/2FM (Y )

on grs. Here the sum is taken over a set of representatives for the M -conjugacy
classes of elements Y ∈ m such that Y is G-conjugate to X. The superscripts on
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D are used to distinguish between the functions previously denoted by D(X) on g

and m.

Proof. Use the Weyl integration formula. �

For example suppose that G is a split group with split maximal torus A and
Borel subgroup B containing A. Let χ be a quasi-character on A, that is, a con-
tinuous homomorphism A→ C×. Then we can parabolically induce χ, obtaining a
principal series representation (possibly reducible, though often irreducible) of G,
whose character is parabolically induced from χ.

What is the analogous situation on the Lie algebra? The analog of χ is a
continuous homomorphism ξ : Lie(A) → C×, and it represents a distribution (still
call it ξ) on Lie(A) that we can parabolically induce to g, obtaining an invariant
distribution iGB(ξ) on g, which by Lemma 13.2 is represented by the nice function on
grs which vanishes on elements not conjugate to something in Lie(A) and is given
by

(13.9.2) |DG(X)|−1/2
∑

w∈W

ξ(w(X))

for X ∈ Lie(A)reg (with W denoting the Weyl group of A). This formula is com-
pletely analogous to the one for the character of a principal series representation,
showing that iGB(ξ) should be viewed as the Lie algebra analog of the character of
a principal series representation.

13.10. The MUK-integration formula. Let P = MU and K be as before
(so that G = PK = MUK). We have the integration formula (for f ∈ C∞

c (G))

(13.10.1)
∫

G

f(g) dg =
∫

P

∫
K

f(pk) dk dp

for suitably normalized Haar measures dg, dp, dk on G, P , K respectively, dp being
a left Haar measure.

This formula is not difficult to prove, the main point being that G can be
regarded as a homogeneous space for the group P ×K via the action

(p, k) · g = pgk−1,

so that there is a unique (up to a positive constant) measure on G that is left
P -invariant and right K-invariant. Both the left and right sides of the equality
(13.10.1) provide such measures on G.

Moreover, since P is the semidirect product of M and the normal subgroup U ,
there is another integration formula (for f ∈ C∞

c (P ))

(13.10.2)
∫

P

f(p) dp =
∫

M

∫
U

f(mu) du dm

for suitable Haar measures dm, du on the (unimodular) groups M , U respectively.
Again one can use that M ×U acts transitively on P via (m,u) · p = mpu−1. Note
that the order of multiplication matters; if we used f(um) rather than f(mu), we
would get a right Haar measure on P . Alternatively, (13.10.2) is an instance of
integration in stages, but in a more general case than we considered before, since
P is not unimodular.
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Combining the two integration formulas, we get the MUK-integration formula
(for f ∈ C∞

c (G))

(13.10.3)
∫

G

f(g) dg =
∫

M

∫
U

∫
K

f(muk) dk du dm.

There is also a useful variant involving a unimodular closed subgroup H of M .
For any f ′ ∈ C∞

c (H\G) we then have

(13.10.4)
∫

H\G

f ′(g) dg/dh =
∫

H\M

∫
U

∫
K

f ′(muk) dk du dm/dh.

The variant can be derived from the MUK-integration formula, using that any
f ′ ∈ C∞

c (H\G) can be obtained from some f ∈ C∞
c (G) as

(13.10.5) f ′(g) =
∫

H

f(hg) dh.

In other words f ′ = f � in the notation of 2.4.

13.11. Parabolic descent for orbital integrals. For X ∈ g we denote by
gX the centralizer of X in g, or, in other words, the kernel of ad(X). Then (since
we are working in characteristic 0) gX is the Lie algebra of the centralizer GX of
X in G.

In this subsection we will need to use the parabolic subgroup P̄ = MŪ opposite
to P = MU (with Lie algebra p̄ = m ⊕ ū). We then have the Ad(M)-stable
decomposition

(13.11.1) g = m⊕ u⊕ ū.

Note that as M -module ū is contragredient to u (via the Killing form on g).
Now let X ∈ m, and let Xs ∈ m be the semisimple part of (the Jordan de-

composition of) X. Put DG
M (X) := det(ad(X); g/m). Since ad(X) preserves the

decomposition (13.11.1), we see that gX ⊂ m if and only if DG
M (X) �= 0. Since

DG
M (X) = DG

M (Xs), we see also that gX ⊂ m if and only if gXs
⊂ m. (To put this

in context we should recall that gX ⊂ gXs
.)

Now assume that X ∈ m does satisfy the condition DG
M (X) �= 0. Then Xs

satisfies the same condition, so that gXs
⊂ m. Since GXs

is connected (see [Ste75,
Cor. 3.11]), we see that GXs

⊂ M , and since GX ⊂ GXs
, we conclude that GX =

MX . Choose a Haar measure dh on H := GX . As Haar measure dZ on u (the
one we used in 13.1 to define fP ) we now take the one compatible with the Haar
measure du used in the MUK-integration formula.

What does compatible mean? For any algebraic group G over our p-adic field
there is a notion of compatibility of Haar measures on G and g. This is because
Haar measures can be obtained from invariant volume forms, and we can agree
that a (left, say) invariant volume form ω on G is compatible with a translation
invariant volume form ω′ on g if the value of ω at 1 ∈ G is equal to the value of
ω′ at 0 ∈ g. (It makes sense to compare the two values since the tangent space in
each case is g.)

Lemma 13.3. Assume that X ∈ m satisfies DG
M (X) �= 0 and put H := G0

X .
Let v be any complex-valued function on G that is right invariant under K and left
invariant under both U and H. Then for all f ∈ C∞

c (g) there is an equality

(13.11.2) |DG
M (X)|1/2

∫
H\G

f(g−1Xg)v(g) dġ =
∫

H\M

f (P )(m−1Xm)v(m) dṁ,



452 ROBERT E. KOTTWITZ

provided the two integrals converge. Here dġ = dg/dh and dṁ = dm/dh. In case
X is regular semisimple in g, say with centralizer T , the integrals do converge, and
we have

(13.11.3) DG
M (X) = DG(X)/DM (X),

so that the equality above can be rewritten as

|DG(X)|1/2

∫
T\G

f(g−1Xg)v(g) dġ = |DM (X)|1/2

∫
T\M

f (P )(m−1Xm)v(m) dṁ.

Proof. Applying the variant MUK-integration formula (13.10.4), we see that
we need to compare integrals over the sets {u−1Y u : u ∈ U} and Y + u, the first
using du, the second dZ, where Y is any M -conjugate of X. In fact it is enough to
show that U → (Y + u) ∼= u defined by u �→ u−1Y u is an isomorphism of algebraic
varieties whose Jacobian (with respect to compatible left-invariant volume forms
on U and u) is the non-zero constant det(ad(X); u). (Here one needs to use that ū

is contragredient to u as M -module, so that DG
M (X) = (−1)dim(U) det(ad(X); u)2.)

By a theorem of Rosenlicht [Ros61] the Ad(U)-orbit of Y in Y + u is closed.
Since the centralizer of Y is contained in M , it intersects U trivially, showing that
u �→ u−1Y u identifies U with a locally closed subset of Y + u having the same
dimension as u and hence (by closedness) coinciding with Y + u. Thus our map is
a bijective morphism U → Y + u, and it remains only to compute its Jacobian.

Identifying all relevant tangent spaces with u in the obvious way (using left
translations in the case of U), we see that the differential of our morphism at the
point u ∈ U is equal to ad(Y u) : u → u, where Y u := u−1Y u. Since Y u, X are
P -conjugate, we see that the determinant of the differential is det(ad(X); u), as
desired.

Since semisimple orbits are closed, it is clear that the integrals converge for
semisimple X. When X is not semisimple, convergence will depend on the weight
function v. As we have made no assumption on the growth rate of v, we cannot be
sure the integrals converge. �

13.12. Parabolic induction for orbital integrals. We continue with the
discussion in the last subsection. In particular X still denotes an element of m such
that DG

M (X) �= 0. Taking v = 1 in Lemma 13.3, we see that

(13.12.1) iGP (OM
X ) = |DG

M (X)|1/2OG
X ,

where the superscripts on OG
X and OM

X are used to distinguish between orbital
integrals on G and M .

For regular semisimple X ∈ g it is sometimes more convenient to use the
normalized orbital integral IX = IG

X defined by

(13.12.2) IX = |D(X)|1/2OX .

For X ∈ m such that X is regular semisimple in g (and hence in m as well), Lemma
13.3 yields the especially simple formula

(13.12.3) iGP (IM
X ) = IG

X .
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13.13. Fourier transform commutes with parabolic induction. Let V
be a finite dimensional vector space over a p-adic field, and let V ∗ be the dual vector
space. Then, fixing a non-trivial additive character ψ on F , the Fourier transform
f �→ f̂ from C∞

c (V ) → C∞
c (V ∗) is defined by

(13.13.1) f̂(v∗) =
∫

V

f(v)ψ(〈v∗, v〉) dv;

it depends on the choice of Haar measure dv on V . For any linear subspace W ⊂ V
we denote by W⊥ the subspace of V ∗ consisting of all elements v∗ ∈ V ∗ such that
〈v∗, w〉 = 0 for all w ∈ W . Now suppose that we have two nested subspaces of
V , say V ⊃ V1 ⊃ V2. Dually we have nested subspaces V ∗ ⊃ V ⊥

2 ⊃ V ⊥
1 and a

canonical identification (V1/V2)∗ ∼= V ⊥
2 /V ⊥

1 . It is easy to check that the following
diagram commutes

C∞
c (V ) FT−−−−→ C∞

c (V ∗); ;
C∞

c (V1/V2)
FT−−−−→ C∞

c (V ⊥
2 /V ⊥

1 )

where the horizontal arrows are Fourier transforms, the left vertical arrow is given
by restriction to V1 and integration over the cosets of V2, and the right vertical arrow
is given by restriction to V ⊥

2 and integration over the cosets of V ⊥
1 . Compatible

Haar measures are needed: use dual Haar measures on dual vector spaces and build
up the Haar measure on V from Haar measures on V/V1, V1/V2, and V2.

Now return to g and consider the nested subspaces g ⊃ p ⊃ u. We have agreed
(in 8.2) to identify g with its dual g∗ using some fixed G-invariant non-degenerate
symmetric bilinear form B(·, ·) on g. With this identification we have u⊥ = p and
p⊥ = u. Therefore the following diagram commutes

(13.13.2)

C∞
c (g) FT−−−−→ C∞

c (g); ;
C∞

c (m) FT−−−−→ C∞
c (m)

where the horizontal maps are again Fourier transforms and the two vertical maps
are both equal to the map f �→ fP defined in 13.1.

Lemma 13.4. The map f �→ f (P ) commutes with the Fourier transform, or, in
other words, the commutative diagram above continues to commute when the vertical
arrows are replaced by the map f �→ f (P ). Parabolic induction iGP of invariant
distributions also commutes with the Fourier transform, or, in other words, for any
invariant distribution TM on m we have

(13.13.3) iGP (T̂M ) = ̂iGP (TM ).

Proof. Recall that f (P ) = (f̃)P . We have just shown (see (13.13.2)) that
f �→ fP commutes with the Fourier transform. It is clear from the definition that
f �→ f̃ commutes with the Fourier transform. Therefore f �→ f (P ) commutes with
the Fourier transform. Since iGP is dual to f �→ f (P ), it too commutes with the
Fourier transform. �
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13.14. Justification of a statement made earlier. Now we are in a posi-
tion to prove a statement we needed in 10.4. Recall that ge is the (open) subset of
elliptic regular semisimple elements in g.

Lemma 13.5. Assume that P �= G and that φ ∈ C∞
c (ge). Then φ(P ) and (φ̂)(P )

are identically zero. Moreover, for any X ∈ m such that DG
M (X) �= 0 the integral

(13.14.1)
∫

H\G

φ̂(g−1Xg) dġ

vanishes.

Proof. Clearly φ̃ also vanishes off ge, and since p does not meet ge, the func-
tion φ(P ) is identically zero. Since f �→ f (P ) commutes with the Fourier transform,
the function (φ̂)(P ) is also identically zero. By Lemma 13.3 the integral (13.14.1)
vanishes. �

In 10.4 we needed the special case of this lemma in which G is GL2 and P = AN
a Borel subgroup, in order to obtain the vanishing of the hyperbolic orbital integrals
of the function φ̂ considered in that subsection.

14. The map πG : g → AG and the geometry behind semisimple descent

We have just discussed parabolic descent. When we begin our systematic treat-
ment of Shalika germs in section 17, we will need semisimple descent, to be discussed
in section 16. The purpose of this section and the next is to provide the necessary
preparation for semisimple descent, beginning with Chevalley’s restriction theorem.

We work with a connected reductive group G over an algebraically closed field
k of characteristic 0. Let T be a maximal torus in G. We of course write g and t

for the Lie algebras of G and T . We denote by W the Weyl group of T .

14.1. Basic polynomial invariants. The ring of polynomial functions on t

is the symmetric algebra S =: S(t∗). The Weyl group W acts on S, and the ring
SW of invariants is the ring of regular functions on the quotient variety t/W . Both
S and SW are graded (by polynomial degree). Inside SW we have the (graded)
maximal ideal I comprised of all invariant polynomials with constant term 0. The
quotient I/I2 is a graded vector space. Choose a basis of homogeneous elements
in I/I2 and lift them to homogeneous elements x1, . . . , xn in I. Then n = dim(t)
and SW is isomorphic to the polynomial ring k[x1, . . . , xn] (see [Bou02, Ch. 5,
§5]). Our choice of x1, . . . , xn gives us an isomorphism of varieties from t/W to the
standard affine n-space An. We will sometimes denote t/W by AG. (The notation
AG is supposed to remind us that we are dealing with an affine space.)

On any affine space Am there is an essentially unique volume form (nowhere-
vanishing differential form of top degree), unique, that is, up to an element in k×.
Indeed, it is clear that such forms exist, and uniqueness follows from the fact that
there are no units in polynomial rings other than constants. Both t and t/W are
affine spaces of dimension n = dim(T ). Pick volume forms on both affine spaces
and look at the Jacobian of the canonical surjection t → t/W . Up to an element of
k× it is independent of the choice of volume forms. The Jacobian turns out to be

(14.1.1)
∏

α∈R+
G

α
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(see [Bou02, Ch. 5, §5.5, Prop. 6]), up to an element of k×. Here RG ⊂ X∗(T )
is the set of roots of T in g, and R+

G is the subset of positive roots (positive with
respect to some Borel subgroup B containing T ). As before, the differentials of the
roots allow us to view them as linear forms on t, hence as elements in S.

14.2. Chevalley’s restriction theorem. We write Og for the k-algebra of
polynomial functions on g. Inside Og we have the subalgebra (Og)G of conjugation
invariant polynomial functions on g. Chevalley’s theorem [SS70, 3.17] states that
by restricting polynomial functions from g to t we get an isomorphism from (Og)G

to the algebra SW of W -invariant polynomial functions on t. Thus Spec(Og)G ∼=
t/W = AG.

Dual to the inclusion of (Og)G in Og is a surjective morphism

(14.2.1) πG : g → AG = t/W

which maps X ∈ g to the unique W -orbit in t consisting of elements conjugate to
the semisimple part of X. Therefore πG(X) = πG(Y ) if and only if the semisimple
parts of X, Y are G-conjugate. Moreover, the nilpotent cone in g equals π−1

G (0),
where 0 denotes the origin in AG.

More concretely, we can also view πG as the map X �→ (P1(X), . . . , Pn(X)) from
g to An, where Pi is the homogeneous G-invariant polynomial on g corresponding
to the element xi from before. Letting di denote the degree of Pi, we define an
action of Gm on An by β · (z1, . . . , zn) := (βd1z1, β

d2z2, . . . , β
dnzn) for all β ∈ Gm

and all (z1, . . . , zn) ∈ An. For this Gm action on AG = An we have

(14.2.2) πG(βX) = β · πG(X).

14.3. Non-algebraically closed fields. When the base field k is not alge-
braically closed, it is better to define AG as Spec((Og)G), as this avoids having to
choose a maximal k-torus. Note that (Og)G is still a polynomial ring over k for
which we may choose homogeneous generators P1, . . . , Pn. The morphism πG is
defined over k and Gm-equivariant.

14.4. The subgroup H. Now we come to the geometry behind semisimple
descent. For this we consider a connected reductive subgroup H of G such that
T ⊂ H. For example H might be a Levi subgroup or the centralizer of a semisimple
element in g (see [Bor91, Prop. 13.19] for the fact that such a centralizer is reductive
and see [Ste75, Cor. 3.11] for the fact that it is connected when the characteristic
of the ground field is 0). Taking Lie algebras of the three groups, we have inclusions

(14.4.1) t ⊂ h ⊂ g.

The normalizer of T in H is a subgroup of the normalizer of T in G, so the Weyl
group WH of T in H is a subgroup of the Weyl group WG of T in G.

14.5. Jacobian of ρ : AH → AG and definition of A′
H and h′. Using

(14.1.1), we see that the Jacobian of the natural finite morphism

ρ : t/WH � t/WG

is (up to an element in k×) equal to

(14.5.1)
∏

α∈R+
G\R+

H

α.
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Let t′ be the open WH -stable subvariety of t consisting of X ∈ t such that α(X) �= 0
for all α ∈ RG\RH , and let A′

H be the open subvariety of AH obtained as the image
of t′ under t � t/WH . The explicit formula (14.5.1) for the Jacobian of ρ shows
that A′

H is precisely the set of points where the finite morphism ρ : AH � AG is
étale.

Define an open subvariety h′ in h by

h
′ : = {X ∈ h : det(ad(X); g/h) �= 0}

= π−1
H (A′

H).
(14.5.2)

For any X ∈ h′ we have gXs
⊂ h, so that GXs

⊂ H (by the connectedness of GXs
).

Since GX ⊂ GXs
, we also have GX ⊂ H, so that HX = GX .

14.6. The morphism β. The morphism G × h′ → g defined by (g,X) �→
gXg−1 is constant on orbits of the right H-action on G × h′ given by (g,X) · h =
(gh, h−1Xh), and therefore descends to a morphism

(14.6.1) β : G×
H

h
′ → g

from the quotient space for this H-action to g. Clearly β is G-equivariant for the
left translation action of G on the first factor in the source and the adjoint action
of G on the target.

We claim that β is étale. Indeed, by G-equivariance it is enough to prove that
the differential dβ is an isomorphism at (1, X) for any X ∈ h′. Since dβ is given by

g×
h

h → g

(∆g,∆X) �→ [∆g,X] + ∆X
(14.6.2)

we see that dβ is surjective (because det(ad(X); g/h) �= 0) and hence an isomor-
phism (look at dimensions).

14.7. Factorization of the morphism β. The morphism β is étale, so gen-
eral theory says that it can be factorized as an open immersion followed by a finite
morphism. In this case there is an obvious way to produce such a factorization.
The étale morphism A′

H → AG factors as

A′
H

j−→ AH
ρ−→ AG

with j an open immersion and ρ finite. We now perform a base-change, using the
morphism πG : g → AG. We obtain morphisms

g×AG
A′

H ↪→ g×AG
AH → g

with the left arrow an open immersion and the right arrow a finite morphism. We
will have the desired factorization of β once we identify G×

H
h′ with g×AG

A′
H over g.

For this purpose we define a morphism

γ : G×
H

h
′ → g×AG

A′
H

over g by putting γ(g,X) := (gXg−1, πH(X)). It then remains to prove the follow-
ing lemma.
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Lemma 14.1. The morphism γ is an isomorphism. In particular

(g,X) �→ (gXg−1, πH(X))

defines a closed immersion

(14.7.1) G×
H

h
′ → g× A′

H .

Proof. We have seen that G×
H

h′ is étale over g (via β). Moreover g×AG
A′

H

is étale over g (since ρ is étale on the open subset A′
H of AH). Therefore γ is

automatically étale, and it is enough to show that it is bijective on k-points.
First we check surjectivity. Thus we start with a pair (X,Y ) ∈ g ×AG

A′
H ,

where Y ∈ t′ represents an element in t′/WH = A′
H , and we want to show that

this pair is in the image of γ. Since X, Y become the same in AG, we see that the
semisimple part Xs of X is G-conjugate to Y , and by the obvious G-equivariance
of γ we may assume without loss of generality that Xs = Y . Since Y ∈ h′, we have
gY ⊂ h, and since X commutes with its semisimple part, namely Y , we see that
X ∈ h. In fact X ∈ h′, since an element of h lies in h′ if and only if its semisimple
part does. The element (1, X) ∈ G×

H
h′ maps to (X,Y ) under γ.

Now we check injectivity. Again using the G-equivariance of γ, we see that it
is enough to prove that if

γ(1, X) = γ(g,X ′)

then g ∈ H and gX ′g−1 = X. The second condition is obvious. It follows that
gX ′

sg
−1 = Xs. Since X,X ′ ∈ h′ become the same in AH , there exists h ∈ H such

that hX ′
sh

−1 = Xs. Therefore hg−1 ∈ GXs
. Since Xs ∈ h′, we have GXs

⊂ H, as
we noted before. Therefore hg−1 ∈ H, proving that g ∈ H, as desired. �

15. Harish-Chandra’s compactness lemma; boundedness modulo
conjugation

Before moving on to semisimple descent, we discuss some related matters that
make use of the map πG : g → AG of section 14. In this section F is a local field of
characteristic 0.

15.1. Harish-Chandra’s compactness lemma. We return to the situation
in 14.4, but now we suppose that H ⊂ G are defined over F . Then we have the
following slight generalization of Harish-Chandra’s compactness lemma [HC70,
Lemma 25]. It will be used for semisimple descent.

Lemma 15.1 (Harish-Chandra). Let ωg be a compact subset of g and let ωH be
a compact subset of A′

H(F ). Then

(15.1.1) {g ∈ G(F )/H(F ) : ∃X ∈ π−1
H (ωH) such that gXg−1 ∈ ωg}

has compact closure in G(F )/H(F ).

Proof. Put Z := G×
H

h′. On F -points the closed immersion (14.7.1) yields a

closed embedding Z(F ) ↪→ g×A′
H(F ) that we will denote by i. Projection onto the

first factor of G × h′ induces a morphism Z(F ) → (G/H)(F ) that we will denote
by η. Note that G(F )/H(F ) sits inside (G/H)(F ) as an open and closed subset.
The set (15.1.1) is contained in the compact set ηi−1(ωg × ωH). �
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15.2. Boundedness modulo conjugation. Boundedness modulo conjuga-
tion came up already in 10.4. We now discuss this notion more systematically. We
say that a subset of AG(F ) is bounded if it is contained in some compact subset of
AG(F ). We say that a subset V of g is bounded modulo conjugation if there exists
a compact subset C of g such that every element in V is G-conjugate to an element
in C (in other words V ⊂ Ad(G)(C)).

Lemma 15.2. Let V be a subset of g. The following three conditions are equiv-
alent.

(1) The set V is bounded modulo conjugation.
(2) There exists a compact subset C in g such that V is contained in the

closure of Ad(G)(C).
(3) The image of V under πG : g → AG(F ) is bounded in AG(F ).

Proof. The implications (1) ⇒ (2) ⇒ (3) are immediate. It remains to check
that (3) ⇒ (1). Let ω be a compact subset of AG(F ). It is enough to show that
π−1

G ω is bounded modulo conjugation.
Let T be a maximal torus in G. We say that a linear subspace s of t is special

if it arises as the center of the centralizer of some element in t. Thus s is the
intersection of the kernels of some subset of the roots of t; it follows that t has
only finitely many special subspaces. For each special subspace s let Ms denote the
centralizer in G of s and let ms denote the Lie algebra of Ms. Then s coincides with
the center of ms. Let Ns be a set of representatives for the Ms-conjugacy classes
of nilpotent elements in ms. Now put

C :=
⋃
T

⋃
s

⋃
Y

(
(s ∩ π−1

G ω) + Y
)
,

where T runs over a set of representatives for the G-conjugacy classes of maximal F -
tori in G, s runs over the set of special subspaces of t = Lie(T ), and Y runs over Ns.
Each set (s∩π−1

G ω)+Y is compact (since the maps s ↪→ t → AG(F ) are proper) and
the union is finite, so the set C is compact. It is clear that π−1

G ω ⊂ Ad(G)(C). �

It follows from the lemma that V is bounded modulo conjugation if and only
if its closure is.

Lemma 15.3. Now we work over a p-adic field F . Let L be a lattice in g. Then
Ad(G)(L) contains a G-invariant open and closed neighborhood V of the nilpotent
cone.

Proof. The nilpotent cone equals π−1
G (0), where 0 denotes the origin in AG(F ).

Pick any compact open neighborhood ω of 0 in AG(F ). Then π−1
G (ω) is bounded

modulo conjugation, so by the previous lemma there exists an integer m such that
π−1

G (ω) ⊂ Ad(G)(π−mL). Therefore V := π−1
G (πm · ω) does the job. Here we are

using the Gm-action on AG for which πG is equivariant (see (14.2.2)). �

16. Semisimple descent

As usual F is a p-adic field. Throughout this section we consider a connected
reductive F -group G and a connected reductive F -subgroup H of G that contains
some maximal torus of G. Our goal is to compare orbital integrals on G and H.
As usual we write G, H for the F -points of these groups. We use notation such as
h′, A′

H , πH from section 14.
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16.1. Associated functions f and φ. Let f ∈ C∞
c (g) and let ωH be a

compact subset of A′
H(F ). By Lemma 15.1 there exists a compact subset C of

H\G such that

(16.1.1) {g ∈ G(F )/H(F ) : ∃X ∈ π−1
H (ωH) such that gXg−1 ∈ Supp(f)}

is contained in C, and since H\G is an l.c.t.d space, we may even assume that C
is open as well as compact. Now choose α ∈ C∞

c (G) such that α� = 1C (see 2.4),
and define φ ∈ C∞

c (h) by

(16.1.2) φ(Y ) :=
∫

G

f(g−1Y g)α(g) dg.

Recall (see 14.5) that for X ∈ h′ we have HX = GX . The next result is
contained implicitly in the proof of Lemma 29 in [HC70].

Lemma 16.1. For any X ∈ π−1
H (ωH) there is an equality

(16.1.3)
∫

GX\H

φ(h−1Xh) dḣ =
∫

GX\G

f(g−1Xg) dġ.

Proof. Use Lemma 2.3, applied to the function g �→ f(g−1Xg) on GX\G. �

16.2. Comparison with parabolic descent. In the special case when H
is a Levi subgroup M of G we have already done much better than Lemma 16.1.
Indeed, for any f ∈ C∞

c (g) we produced a function f (P ) on m having the same
orbital integrals as f (up to a Jacobian factor) for all orbits in m′. The lemma
above produces a function φ on h having the same orbital integrals as f for all
orbits in the subset π−1

H (ωH) of h′. Of course we are free to take ωH as large as we
like, provided that it stays compact, but if we change ωH , we will have to change φ
as well. Nevertheless the lemma above will be enough to prove descent for Shalika
germs, as we will see later.

17. Basic results on Shalika germs on g

In this section F is a p-adic field and G is a connected reductive F -group. As
usual we write G for the group of F -points of G.

We defined Shalika germs on G and calculated them for GL2. Now we begin
systematically studying Shalika germs on g. The discussion will be completed later,
in section 27.

17.1. Orbital integrals OX for regular semisimple X. Let T be a set of
representatives for the G-conjugacy classes of maximal F -tori in G.

Let T ∈ T . In order to define our orbital integrals for X ∈ treg in a coherent
way, we fix Haar measures dg, dt on G, T respectively and define (for any X ∈ treg)

(17.1.1) OX(f) :=
∫

T\G

f(g−1Xg) dg/dt.

The Weyl group WT (defined in subsection 7.1) acts on T\G by left multiplication,
preserving the invariant measure on that homogeneous space, and therefore

(17.1.2) Ow(X)(f) = OX(f)

for all f ∈ C∞
c (g), all X ∈ treg and all w ∈WT .

Now let Y ∈ grs. There exists unique T ∈ T such that Y is G-conjugate to some
X ∈ t, and moreover X is unique up to the action of WT . Therefore it is legitimate
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to put OY := OX . Now we have coherent choices for all regular semisimple orbital
integrals OY .

17.2. Preliminary definition of Shalika germs on g. There are finitely
many nilpotent G-orbits O1,O2, . . . ,Or in g. We write µ1, . . . , µr for the corre-
sponding nilpotent orbital integrals. The same reasoning as for unipotent orbital
integrals (see 6.4) shows that the distributions µ1, . . . , µr are linearly independent.

Theorem 17.1. There exist functions Γ1,Γ2, . . . ,Γr on grs having the following
property. For every f ∈ C∞

c (g) there exists an open neighborhood Uf of 0 in g such
that

(17.2.1) OX(f) =
r∑

i=1

µi(f) · Γi(X)

for all X ∈ grs ∩Uf . The germs about 0 ∈ g of the functions Γ1, . . . ,Γr are unique.
We refer to Γi as the provisional Shalika germ for the nilpotent orbit Oi.

Proof. This is proved exactly the same way as the analogous result (Theorem
6.1) on the group. There we worked with one T at a time, but the proof provided
a set Uf that works for all T at once. �

A Shalika germ is an equivalence class of functions on grs. As we will see next,
the homogeneity of Shalika germs makes it possible to single out one particularly
nice function Γi within its equivalence class. Once we have done this, Γi will from
then on denote this function (whose germ about 0 is the old Γi). First we need to
understand homogeneity of nilpotent orbital integrals themselves.

17.3. Coadjoint orbits as symplectic manifolds. We recall Kirillov’s con-
struction of a symplectic structure on coadjoint orbits. We use Ad∗ (respectively,
ad∗) to denote the coadjoint action of G (respectively, g) on g∗.

For λ ∈ g∗ we let Gλ denote the stabilizer of λ in G (for the coadjoint action);
the Lie algebra of Gλ is gλ := {X ∈ g : ad∗(X)λ = 0}. The tangent space at λ
to the coadjoint orbit Oλ of λ is g/gλ (since λ allows us to identify the orbit with
G/Gλ).

From λ we get an alternating form ωλ on g, defined by

(17.3.1) ωλ(X,Y ) := λ
(
[X,Y ]

)
= −〈ad∗(X)λ, Y 〉.

It is clear from the equality ωλ(X,Y ) = −〈ad∗(X)λ, Y 〉 that the kernel of the
alternating form ωλ is gλ; therefore ωλ can also be viewed as a non-degenerate
alternating bilinear form on g/gλ, or, in other words, on the tangent space to Oλ

at λ.
Now fix a coadjoint orbit O. Letting λ vary through the orbit O, the construc-

tion above yields a G-invariant 2-form ω on O whose value at λ is ωλ.
Thus O is a symplectic G-manifold, and in particular its dimension is even, say

dimO = 2d. The d-fold wedge product η := ω ∧ · · · ∧ ω is a G-invariant volume
form on O. The associated measure |η| is G-invariant, and consequently Gλ is
unimodular.

Now suppose that multiplication by β ∈ F× preserves the orbit O. (This
can happen only if the coadjoint orbit is nilpotent, in the sense that when we
identify g∗ with g in the usual way, the corresponding orbit in g is nilpotent.)
Write mβ : O → O for the map λ �→ βλ.
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We need to compute the differential of mβ at any point λ ∈ O. This differential
is a linear isomorphism from the tangent space g/gλ at λ to the tangent space g/gβλ

at βλ. Since mβ is a G-map, we see that its differential g/gλ → g/gβλ is induced
by the identity map on g (note that gβλ = gλ).

Now we can compute the pull-back m∗
β(ω). In fact the computation we just

made of the differential of mβ , together with the fact (obvious from the definition
of ω) that ωβλ = βωλ, shows that m∗

β(ω) = βω. It follows that m∗
β(η) = βdη.

Once again identifying g∗ with g, we reach the conclusion that for any adjoint
orbit O there exists a G-invariant volume form η on O, and that if multiplication
by the scalar β preserves O, yielding a multiplication map mβ : O → O, then

(17.3.2) m∗
β(η) = βdim(O)/2η.

17.4. Scaling of functions on g. For β ∈ F× and f ∈ C∞
c (g) we write fβ

for the function on g defined by

(17.4.1) fβ(X) := f(βX).

17.5. Homogeneity of nilpotent orbital integrals. Let O be a nilpotent
orbit in g. Then for any α ∈ F× multiplication by α2 preserves O. Indeed, by
the Jacobson-Morozov theorem, it is enough to prove this for the group G = SL2,
for which the statement is an easy exercise. Let µO denote the corresponding
nilpotent orbital integral, an invariant distribution on g whose homogeneity we will
now establish.

Lemma 17.2. Let f ∈ C∞
c (g) and let α ∈ F×. Then

(17.5.1) µO(fα2) = |α|− dimOµO(f).

Proof. This follows from (17.3.2). �

17.6. Behavior of regular semisimple orbital integrals under scaling.
It is clear from (17.1.1) that

(17.6.1) OX(fβ) = OβX(f)

for all X ∈ grs and all β ∈ F×.

17.7. Partial homogeneity of our provisional Shalika germs Γi. Let
α ∈ F×. Let Oi be one of our nilpotent orbits, let µi be the corresponding nilpotent
orbital integral, and let Γi be the corresponding Shalika germ. Put di := dimOi.
We claim that

(17.7.1) Γi(X) = |α|diΓi(α2X),

where the equality means equality of germs about 0 of functions on grs.
Indeed, as in the proof of existence of Shalika germ expansions, pick a function

fi ∈ C∞
c (g) such that

(17.7.2) µj(fi) = δij .

Then Γi(X) is the germ about 0 of the function

(17.7.3) X �→ OX(fi)

on grs. In fact during the remainder of our discussion of provisional germs, we
will use always use (17.7.3) as our choice for a specific function Γi having the right
germ.
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In view of the homogeneity of nilpotent orbital integrals established above, the
function |α|di · (fi)α2 also satisfies (17.7.2), so that Γi(X) is also the germ about 0
of the function

(17.7.4) X �→ OX(|α|di · (fi)α2) = |α|di ·Oα2X(fi)

on grs. Comparing (17.7.3), (17.7.4), we see that Γi(X) and |α|diΓi(α2X) have the
same germ, as desired.

17.8. Canonical Shalika germs. Let Γi be one of our germs. Following
Harish-Chandra [HC78, HC99], we are going to replace Γi by another function
Γnew

i on grs that has the same germ about 0 ∈ g and is at the same time homoge-
neous. Along the way we prove a couple of simple properties of Γnew

i .

Lemma 17.3. There is a unique function Γnew
i on grs which has the same germ

about 0 ∈ g as Γi and which satisfies (17.7.1) for all α ∈ F× and all X ∈ grs. More-
over Γnew

i is real-valued, translation invariant under the center of g, and invariant
by conjugation under G.

Proof. Choose a lattice L ⊂ g such that (17.7.1) holds for α = π (our chosen
uniformizing element in F ) and all X ∈ L ∩ grs. Iterating (17.7.1), we see that

(17.8.1) Γi(X) = |πk|diΓi(π2kX)

for all k ≥ 0 and all X ∈ L ∩ grs.
For X ∈ grs we define Γnew

i (X) by choosing k ≥ 0 such that π2kX ∈ L and
then putting

(17.8.2) Γnew
i (X) := |πk|diΓi(π2kX);

by (17.8.1) Γnew
i is well-defined. This definition is of course forced on us, so Γnew

i

is clearly unique.
Next we show that Γnew

i does satisfy (17.7.1). Let α ∈ F×. Let L′ be a lattice
in g such that

(17.8.3) Γi(X) = |α|diΓi(α2X)

for all X ∈ L′∩grs. For a given X ∈ grs we may pick k ≥ 0 such that π2kX ∈ L∩L′

and π2kα2X ∈ L, and we then have

(17.8.4) Γnew
i (X) = |πk|diΓi(π2kX) = |πk|di |α|diΓi(π2kα2X) = |α|diΓnew

i (α2X),

as desired.
Looking back at how the functions fi (satisfying µj(fi) = δij) were shown (in

6.4) to exist, we see that they can be chosen to be real-valued functions. Then Γi

is real-valued and (17.8.2) shows that the same is true of Γnew
i .

The function fi is translation invariant under some lattice in g and hence under
some lattice in the center of g. It follows easily that the provisional germ Γi(X) =
OX(fi) is translation invariant under this lattice in the center, and hence (from
(17.8.2)) that Γnew

i is translation invariant under the center of g.
The provisional germ Γi(X) = OX(fi) is clearly invariant under conjugation,

from which it follows that the same is true of Γnew
i . �

From now on we replace the germs Γi by the functions Γnew
i , but we drop the

superscript “new.”
We also need a slight strengthening of the fact that Γi is translation invariant

under the center z of g. Let G′ be the derived group of the algebraic group G,
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and let Z denote the center of G. Then G(F̄ ) = G′(F̄ )Z(F̄ ), but for F -points we
have only that G′Z is a normal subgroup of finite index in G. We denote by D the
finite group G/G′Z. Each G-orbit O in g = g′ ⊕ z decomposes as a finite union of
G′-orbits O′, permuted transitively by D. We normalize the invariant measures on
the orbits in such a way that

(17.8.5)
∫
O

=
∑
x∈D

∫
x−1O′x

.

For a nilpotent G-orbit O (respectively, nilpotent G′-orbit O′) we denote by ΓG
O

(respectively, ΓG′

O′) the corresponding Shalika germ on grs (respectively, g′rs).

Lemma 17.4. Let X ∈ grs and decompose X as X ′ + Z with X ′ ∈ g′rs and
Z ∈ z. Then

(17.8.6) ΓG
O(X) =

∑
O′⊂O

ΓG′

O′(X ′).

Proof. Let O′
1, . . . ,O′

s be the nilpotent G′-orbits. For each nilpotent G′-orbit
O′

i choose f ′
O′

i
∈ C∞

c (g′) such that

(17.8.7)
∫
O′

i

f ′
O′

j
= δij .

Thus the regular semisimple orbital integrals of f ′
O′ give the provisional Shalika

germ ΓG′

O′ .
For a nilpotent G-orbit O put

(17.8.8) f ′
O := |D|−1

∑
O′⊂O

f ′
O′ .

We extend f ′
O to a function fO ∈ C∞

c (g) by choosing a lattice L in z and putting

(17.8.9) f(X ′ + Z) = f ′(X ′)1L(Z)

for any X ′ ∈ g′ and any Z ∈ z. Here 1L denotes the characteristic function of L.
It is easy to see that

(17.8.10)
∫
Oi

fOj
= δij

for every pair of nilpotent G-orbits Oi, Oj , so that the regular semisimple orbital
integrals of fO give the provisional Shalika germ ΓG

O, and another easy calculation
then shows that the provisional Shalika germs for G and G′ are related as in the
statement of the lemma. By homogeneity the same is true for the Shalika germs
themselves. �

17.9. Germ expansions about arbitrary central elements in g. We have
been studying germ expansions about 0 ∈ g. These involve orbital integrals for the
nilpotent orbits Oi. Now we consider germ expansions about an arbitrary element
Z in the center of g. These will involve orbital integrals µZ+Oi

for the orbits Z+Oi,
but will involve exactly the same germs Γi as before.

Theorem 17.5. Let Z be an element in the center of g. For every f ∈ C∞
c (g)

there exists an open neighborhood Uf of Z in g such that

(17.9.1) OX(f) =
r∑

i=1

µZ+Oi
(f) · Γi(X)
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for all X ∈ Uf ∩ grs.

Proof. Apply Theorem 17.1 to the translate of f by Z and use that our
canonical Shalika germs Γi are translation invariant under the center. �

17.10. Germ expansions about arbitrary semisimple elements in g.
We are going to use the descent theory developed in section 16 in order to obtain
germ expansions about an arbitrary semisimple element S ∈ g. We fix such an
element S and let H := GS denote the centralizer of S, a connected reductive
subgroup of G. Then S is contained in the open subset h′ of h. We write h′rs for
the intersection h′ ∩ hrs. Then h′rs ⊂ grs, since a semisimple element in h′ is regular
in h if and only if it is regular in g.

We will also be concerned with all G-orbits of elements X such that Xs = S
(as usual, Xs denotes the semisimple part of X). Such orbits are in one-to-one
correspondence with H-orbits of nilpotent elements Y ∈ h (with Y corresponding
to X = S+Y ). Let Y1, . . . , Ys be a set of representatives for the nilpotent H-orbits
in h. Let µS+Yi

denote the orbital integral on g obtained by integration over the
G-orbit of S + Yi. Let ΓH

i be the canonical Shalika germ on hrs corresponding to
the (nilpotent) H-orbit of Yi.

Theorem 17.6. Let S, H be as above. For every f ∈ C∞
c (g) there exists an

open neighborhood Uf of S in h′ such that

(17.10.1) OX(f) =
s∑

i=1

µS+Yi
(f) · ΓH

i (X)

for all X ∈ Uf ∩ grs = Uf ∩ hrs.

Proof. Note that πH(S) lies in A′
H(F ). Let ωH be a compact open neighbor-

hood of πH(S) in A′
H(F ). By Lemma 16.1 there exists φ ∈ C∞

c (h) such that

(17.10.2)
∫

GX\H

φ(h−1Xh) dḣ =
∫

GX\G

f(g−1Xg) dġ.

for any X ∈ π−1
H (ωH). Note that π−1

H (ωH) contains all the elements S + Yi and is
an open neighborhood of S in h′.

Apply the Shalika germ expansion (Theorem 17.5) to the central element S ∈ h

and the function φ. Using (17.10.2) to rewrite this expansion in terms of orbital
integrals on g, we obtain the desired result. �

17.11. Normalized orbital integrals and Shalika germs. It is sometimes
more convenient (see 13.12, for example) to use the normalized orbital integrals IX

(X ∈ grs) defined by IX = |D(X)|1/2OX . When we use IX instead of OX , we need
to use the normalized Shalika germs

Γ̄i(X) := |D(X)|1/2Γi(X)

instead of the usual Shalika germs.
Clearly Theorem 17.1 remains valid when OX , Γi are replaced by IX , Γ̄i respec-

tively. Now consider the germ expansion about an arbitrary semisimple element
S ∈ g. As usual put H := GS . The function X �→ det(ad(X); g/h) is non-zero on
h′ and its p-adic absolute value is locally constant on h′. Moreover

DG(X) = DH(X) · det(ad(X); g/h).
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Therefore there is a neighborhood of S in h′ on which

|DG(X)|1/2 = |DH(X)|1/2 · | det(ad(S); g/h)|1/2.

It then follows from Theorem 17.6 that

(17.11.1) IX(f) = | det(ad(S); g/h)|1/2
s∑

i=1

µS+Yi
(f) · Γ̄H

i (X)

for all X ∈ grs in some sufficiently small neighborhood of S in h′.
Since DG(X) is a homogeneous polynomial of degree dim(G)− rank(G), where

rank(G) denotes the dimension of any maximal torus in G, we see immediately that
the homogeneity property (17.7.1) of the Shalika germs Γi implies the following
homogeneity property for the normalized Shalika germs Γ̄i:

(17.11.2) Γ̄i(α2X) = |α|dim(GXi
)−rank(G) · Γ̄i(X)

for all α ∈ F× and all X ∈ grs. Here we have chosen Xi ∈ Oi and introduced its
centralizer GXi

. Note that the exponent dim(GXi
)−rank(G) appearing in (17.11.2)

is always non-negative. This simple observation will play an important role in the
proof (to be given shortly) of the boundedness of normalized Shalika germs.

17.12. Γ̄i is a linear combination of functions Γ̄H
j in a neighborhood

of S. Again let S be a semisimple element in g, let H be its centralizer in G, and
let T be a maximal torus in H. Consider one of the normalized Shalika germs Γ̄i

for G. We are interested in the behavior of Γ̄i on a small neighborhood of S in t.

Lemma 17.7. There exists a neighborhood V of S in t such that the restriction
of Γ̄i to V ∩ treg is a linear combination of restrictions of normalized Shalika germs
for H.

Proof. Pick fi ∈ C∞
c (g) such that µj(fi) = δij . By the Shalika germ expan-

sion for fi there is a lattice L in t small enough that

(17.12.1) Γ̄i(X) = IX(fi)

for all regular X in L. Let α ∈ F×. By homogeneity of Shalika germs (for both
G and H) the lemma holds for S if and only if it holds for αS. Therefore we may
assume (by scaling S suitably) that S ∈ L. For some neighborhood V of S in L we
also have (by (17.11.1))

(17.12.2) IX(fi) = | det(ad(S); g/h)|1/2
s∑

i=1

µS+Yi
(fi) · Γ̄H

i (X)

for all regular X in V . Combining (17.12.1) and (17.12.2), we get the lemma. �

Corollary 17.8. Let T be any maximal torus in G. Each normalized Shalika
germ Γ̄i is locally constant on treg.

Proof. Apply the lemma above to any regular element S in t. Then H = T .
Furthermore, the only nilpotent element in h is 0, and its normalized Shalika germ
is constant. Therefore Γ̄i is constant in some sufficiently small neighborhood of S,
as was to be shown. �
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17.13. Locally bounded functions. We are going to show that the normal-
ized Shalika germs Γ̄i are locally bounded functions on t. First let’s recall what this
means. Let f be a complex-valued function on a topological space X. We say that
f is locally bounded on X if every point x ∈ X has a neighborhood Ux such that
f is bounded on Ux. When X is a locally compact Hausdorff space, f is locally
bounded if and only f is bounded on every compact subset of X (easy exercise!).

17.14. Local boundedness of normalized Shalika germs. Let Γ̄i be one
of our normalized Shalika germs on g. Let T be a maximal torus in G. We have
just seen that Γ̄i is locally constant on treg; therefore it is locally bounded on treg

for trivial reasons. However we now extend Γ̄i by 0 to a function on t. We are going
to show that Γ̄i is locally bounded as a function on t (a result of Harish-Chandra).
What this means concretely is that for all S ∈ t there is a neighborhood U of S in
t such that Γ̄i is bounded on U ∩ treg.

Theorem 17.9. [HC78, HC99] Every normalized Shalika germ Γ̄i is a locally
bounded function on t.

Proof. We use induction on the dimension of G, the case dim(G) = 0 being
trivial. By Lemma 17.4 we may assume that the center of g is 0.

Let S be any non-zero element in t. Since S is not central, the induction
hypothesis applies to the centralizer H of S in G. Now use Lemma 17.7 to conclude
that Γ̄i is bounded on some neighborhood of S.

We now know that Γ̄i is locally bounded on t \ {0}. Choose any lattice L in t.
Then L\π2L is a compact subset of t\{0}, and therefore Γ̄i is bounded on L\π2L.
By homogeneity (17.11.2) it follows that Γ̄i is bounded on L (by the same bound
as on L \ π2L).

We have shown that Γ̄i is locally bounded everywhere on t, and the proof is
complete. �

As a consequence of the local boundedness of normalized Shalika germs, we get
another result of Harish-Chandra, needed for the local trace formula.

Theorem 17.10. Let f ∈ C∞
c (g) and let T be a maximal torus in G. Then

the function X �→ IX(f) on treg is bounded and locally constant on treg. When
extended by 0 to all of t, the function X �→ IX(f) is compactly supported as well;
in other words, there is a compact subset C of t such that IX(f) vanishes for all
regular elements of t not lying in C. It should be noted that X �→ IX(f) is usually
not compactly supported as a function on treg.

Proof. Local constancy in a neighborhood of S ∈ treg follows from the Shalika
germ expansion about S (for which H = T , so that there is just one germ, and it
is constant).

Boundedness in a sufficiently small neighborhood of any S ∈ t follows from the
Shalika germ expansion (17.11.1) about S together with the local boundedness of
normalized Shalika germs on H = GS . Thus X �→ IX(f) is locally bounded on t.
Boundedness will then follow once we have proved that X �→ IX(f) is compactly
supported on t.

It now remains only to show that X �→ IX(f) is in fact compactly supported
on t. The support of f is a compact subset of g, so its image ω under πG :
g → AG(F ) = (t/W )(F ) is compact. But since t → t/W is a proper morphism of
algebraic varieties, the map t → (t/W )(F ) is a proper map between locally compact
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Hausdorff spaces. Therefore the inverse image C of ω under t → (t/W )(F ) is a
compact subset of t. Clearly IX(f) vanishes off C. �

For weighted orbital integrals we have the following partial generalization of
our last theorem.

Theorem 17.11. Let f ∈ C∞
c (g), let T be a maximal torus in G, and let v be

a locally constant function on G that is invariant under left translation by T . Then
the function

X �→
∫

T\G

f(g−1Xg)v(g) dġ

on treg is locally constant on treg and, when extended by 0 to t, is compactly sup-
ported on t.

Proof. Compact support is established just as in the previous result. Local
constancy needs to be proved more directly, as we have not developed a theory of
Shalika germs for weighted orbital integrals.

Let Y ∈ t. We are going to find a neighborhood U of Y in treg on which our
function is constant. Consider the function φ on t × (T\G) defined by φ(X, g) :=
f(g−1Xg). Clearly φ is locally constant, but it is usually not compactly supported.
However, now choosing a compact open neighborhood ωT of Y in treg, we see from
Lemma 15.1 (Harish-Chandra’s compactness lemma, applied to H = T and ωg =
Supp(f)) that the restriction of φ to ωT×(T\G) is compactly supported. By Lemma
2.1 there exists an open neighborhood U of Y in ωT such that φ(X, g) = φ(Y, g)
for all X ∈ U , g ∈ T\G. It follows that∫

T\G

f(g−1Xg)v(g) dġ =
∫

T\G

f(g−1Y g)v(g) dġ

for all X ∈ U . �

18. Norms on affine varieties over local fields

The spaces we are working with are usually non-compact, and non-compactly
supported functions on them can certainly be unbounded. For various purposes we
need a natural way to measure growth rates of such functions. For this we must be
able to measure the size of points in the spaces. For instance on the real line one
usually uses the absolute value of a real number to measure its size, and one says
that a function f(x) on the real line has polynomial growth if there exist c, R > 0
such that |f(x)| ≤ c|x|R for all x ∈ R. We want to be able to do something similar
on the spaces we are using. For this purpose we now develop a theory of norms
on X(F ) for any variety (usually affine) over a field F equipped with an absolute
value.

Let F be a field equipped with a non-trivial absolute value | · |. Thus | · | is a
non-negative real-valued function on F such that

(1) |x| = 0 if and only if x = 0.
(2) |x + y| ≤ |x|+ |y| for all x, y ∈ F .
(3) |xy| = |x||y| for all x, y ∈ F .
(4) There exists x ∈ F× such that |x| �= 1.

As usual (x, y) �→ |x−y| defines a metric on F with respect to which F may or may
not be complete. Starting with subsection 18.7 we will assume that F is complete.
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18.1. Abstract norms. By an abstract norm on a set X we mean a real-
valued function ‖ · ‖ on X such that ‖x‖ ≥ 1 for all x ∈ X. Given two abstract
norms ‖ · ‖1 and ‖ · ‖2 on X, we say ‖ · ‖2 dominates ‖ · ‖1 and write ‖ · ‖1 ≺ ‖ · ‖2
if there exist real numbers c > 0 and R > 0 such that

‖x‖1 ≤ c‖x‖R
2

for all x ∈ X. The relation of dominance is transitive. We say that two norms are
equivalent if they dominate each other.

For any abstract norm ‖·‖ we have (by virtue of our requirement that ‖x‖ ≥ 1)
the inequality

c1‖x‖R1 ≤ c2‖x‖R2

whenever 0 < c1 ≤ c2 and 0 < R1 ≤ R2. This allows us to increase the constants
c, R occurring in the dominance relation whenever it is convenient to do so.

Given two abstract norms ‖x‖1 and ‖x‖2 on X, the three abstract norms

sup{‖x‖1, ‖x‖2}, ‖x‖1 + ‖x‖2, ‖x‖1 · ‖x‖2
on X are equivalent, and their common equivalence class depends only on the
equivalence classes of ‖x‖1 and ‖x‖2.

18.2. Norms on affine varieties over F . Let X be an affine scheme of finite
type over F and write OX for its ring of regular functions, a finitely generated F -
algebra. For any finite set f1, . . . , fm of generators for the F -algebra OX , we define
an abstract norm ‖ · ‖ on X(F ) by

(18.2.1) ‖x‖ := sup{1, |f1(x)|, . . . , |fm(x)|}

for x ∈ X(F ).
Now let f ∈ OX . It is easy to see that there exist c, R ≥ 0 such that

(18.2.2) |f(x)| ≤ c‖x‖R

for all x ∈ X(F ). [Indeed, writing f as a polynomial in f1, . . . , fm, we may take
for c the sum of the absolute values of the coefficients in the polynomial, and for
R the degree of the polynomial.] Since we are free to increase c, R, we may choose
them so that c, R > 0 (or even ≥ 1) whenever it is convenient to do so.

Using (18.2.2) for all the members of some other generating set for OX , we see
that the equivalence class of the abstract norm (18.2.1) is independent of the choice
of generating set, and by a norm on X(F ) we mean any abstract norm lying in this
equivalence class.

Example 18.1. On Fn, the set of F -points of An,

‖(x1, . . . , xn)‖ := sup{1, |x1|, . . . , |xn|}

is a norm. The restriction of this norm to the F -points of any closed subscheme
of An is a norm on that set.

Example 18.2. On (F×)n, the set of F -points of (Gm)n,

‖(x1, . . . , xn)‖ := sup{|x1|, |x1|−1 . . . , |xn|, |xn|−1}

is a norm.
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18.3. Bounded subsets. Let X be an affine scheme of finite type over F and
let ‖ · ‖X be a norm on X(F ). We say that a subset B of X(F ) is bounded if the
norm function ‖ · ‖X has an upper bound on B. This notion of boundedness is
clearly independent of the choice of norm, so it makes sense to talk about bounded
subsets of X(F ) without specifying any particular norm.

18.4. Properties of norms. We need to establish various simple results
about norms. It is especially important to compare norms on varieties when a
morphism between them is given.

Proposition 18.1. Let X and Y be affine schemes of finite type over F and
let ‖ · ‖X and ‖ · ‖Y be norms on X(F ) and Y (F ) respectively.

(1) Let φ : Y → X be a morphism and denote by φ∗‖ · ‖X the abstract norm
on Y (F ) obtained by composing ‖·‖X with φ : Y (F ) → X(F ). Then ‖·‖Y

dominates φ∗‖ · ‖X . If φ is finite, then ‖ · ‖Y is equivalent to φ∗‖ · ‖X .
(2) Suppose Y is a closed subscheme of X. Then the restriction of ‖ · ‖X to

Y (F ) is equivalent to ‖ · ‖Y .
(3) If F is locally compact, then a subset of X(F ) has compact closure if and

only if it is bounded.
(4) All three of sup{‖x‖X , ‖y‖Y }, ‖x‖X + ‖y‖Y , and ‖x‖X · ‖y‖Y are valid

norms on (X × Y )(F ) = X(F )× Y (F ).
(5) Let U := Xf denote the principal open subset of X determined by a regular

function f on X, so that U(F ) = {x ∈ X(F ) : f(x) �= 0}. Then ‖u‖U :=
sup{‖u‖X , |f(u)|−1} is a norm on U(F ).

(6) Suppose we are given a finite cover of X by affine open subsets U1, . . . , Ur

as well as a norm ‖ · ‖i on Ui(F ) for each i = 1, . . . , r. For x ∈ X(F )
define ‖x‖ to be the infinum of the numbers ‖x‖i, where i ranges over the
set of indices for which x ∈ Ui(F ). Then ‖ · ‖ is a norm on X(F ).

(7) Let G be a group scheme of finite type over F , and suppose we are given
an action of G on X. Let B be a bounded subset of G(F ). Then there
exist c, R > 0 such that ‖bx‖X ≤ c‖x‖R

X for all b ∈ B, x ∈ X(F ).

Proof. We begin by proving the first part of the proposition. Using (18.2.2)
for the pull-backs by φ of the members of a generating set for the F -algebra OX ,
we see that ‖ · ‖Y dominates φ∗‖ · ‖X .

Now suppose that φ is finite and let g ∈ OY . Then there exist n ≥ 1 and
f1, . . . , fn ∈ OX such that

gn = f1g
n−1 + · · ·+ fn−1g + fn.

We claim that for all y ∈ Y (F ) we have the inequality

(18.4.1) |g(y)| ≤ sup{1, |f1(φ(y))|+ · · ·+ |fn(φ(y))|}.
Indeed, this is trivially true if |g(y)| ≤ 1, and otherwise we have

g(y) = f1(φ(y)) + f2(φ(y))g(y)−1 + · · ·+ fn(φ(y))g(y)−(n−1)

and hence
|g(y)| ≤ |f1(φ(y))|+ |f2(φ(y))|+ · · ·+ |fn(φ(y))|.

Using (18.2.2) for f1, . . . , fn, we see from (18.4.1) that there exist c, R > 0 such
that

(18.4.2) |g(y)| ≤ c‖φ(y)‖R
X ∀ y ∈ Y (F ).
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Now choose a finite generating set g1, . . . , gm for the F -algebra OY . As our
norm ‖ · ‖Y we are free to take the one obtained from this generating set (see
(18.2.1)). Choosing c, R ≥ 1 large enough that (18.4.2) holds for all the functions
g1, . . . , gm, we see that ‖ · ‖Y is dominated by φ∗‖ · ‖X . Since we already proved
dominance in the other direction, we conclude that ‖·‖Y and φ∗‖·‖X are equivalent,
as desired.

The second part of the proposition follows from the first, because closed im-
mersions are finite morphisms. Of course a more direct proof can also be given.

As for the third part, we use the second part to reduce to the case of affine
space An, for which the result is obvious.

For the fourth part we note that it is obvious from the definition of norm that

sup{‖ · ‖X , ‖ · ‖Y }

is a valid norm on X(F ) × Y (F ). It then follows from the discussion at the very
end of subsection 18.1 that the other two abstract norms are valid norms as well.

For the fifth part note that the equivalence class of ‖u‖U = sup{‖u‖X , |f(u)|−1}
depends only on that of ‖ · ‖X , so we may suppose that ‖ · ‖X is the norm (18.2.1)
obtained from generators f1, . . . , fm of the F -algebra OX . Then f−1, f1, . . . , fm

generate OU , and the norm obtained from this generating set is precisely ‖ · ‖U .
For the sixth part we must show that ‖ · ‖X is equivalent to ‖ · ‖. First we note

that ‖ · ‖X is dominated by ‖ · ‖. Indeed, this follows from the first part of this
proposition, applied to the morphism

r∐
i=1

Ui → X.

It remains to prove that ‖ · ‖ is dominated by ‖ · ‖X . Refine the given open
cover U1, . . . , Ur to get an open cover V1, . . . , Vs by principal open subsets of X (say
Vj = Xfj

for fj ∈ OX) such that for each index j there exists an index i(j) such
that Vj ⊂ Ui(j). By the fifth part of this proposition

‖v‖j := sup{‖v‖X , |fj(v)|−1}

is a valid norm on Vj(F ). By the first part of this proposition (applied to all the
inclusions Vj ↪→ Ui(j)) there exist d, S ≥ 1 such that for all j

‖v‖i(j) ≤ d‖v‖S
j ∀ v ∈ Vj(F ).

Since the principal open subsets Vj cover X, there exist g1, . . . , gs ∈ OX such
that

∑s
j=1 fjgj = 1. By (18.2.2) there exist c, R ≥ 1 such that for all j

|gj(x)| ≤ c‖x‖R
X ∀x ∈ X(F ).

Now let x ∈ X(F ). Then

1 = |
s∑

j=1

fj(x)gj(x)| ≤
s∑

j=1

|fj(x)| ·
(
c‖x‖R

X

)
,

and thus there exists j such that |fj(x)| ·
(
c‖x‖R

X

)
≥ 1/s, from which we see that

fj(x) �= 0 (so that x ∈ Vj(F ) ⊂ Ui(j)(F )) and that moreover

|fj(x)|−1 ≤ sc‖x‖R
X .
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Thus
‖x‖ ≤ ‖x‖i(j) ≤ d‖x‖S

j = d[sup{‖x‖X , |fj(x)|−1}]S

≤ d[sup{‖x‖X , sc‖x‖R
X}]S .

(18.4.3)

But, since s, c, R ≥ 1, we have sc‖x‖R
X ≥ ‖x‖X , so (18.4.3) becomes

‖x‖ ≤ d(sc)S‖x‖RS
X ,

showing that ‖ · ‖ is dominated by ‖ · ‖X .
Finally, to prove the seventh part one considers the action morphism G×X →

X and uses the first and fourth parts of this proposition. �

18.5. Arbitrary schemes of finite type over F . Let X be any scheme of
finite type over F . Let U1, . . . , Ur be any cover of X by affine open subsets. For
i = 1, . . . , r let ‖ · ‖i be any norm on Ui(F ). Define an abstract norm ‖ · ‖ on X(F )
by

‖x‖ = inf{‖x‖i : i such that x ∈ Ui(F )}.
It is not difficult to show that the equivalence class of ‖ · ‖ is independent of all
choices, so that we have defined a canonical equivalence class of norms on X(F ).
When X is affine, we recover our old notion of norm. When X is projective, the
constant function 1 is a valid norm on X(F ). The reader may enjoy checking these
statements as an exercise, but in this article we will only need norms on affine
schemes.

18.6. Norm descent property. Let X and Y be affine schemes of finite
type over F , let ‖ · ‖X and ‖ · ‖Y be norms on X(F ) and Y (F ) respectively, and
let φ : Y → X be a morphism. We say that φ has the norm descent property if the
restriction of ‖·‖X to im[Y (F ) → X(F )] is equivalent to the abstract norm φ∗‖·‖Y

on im[Y (F ) → X(F )] whose value at x is equal to the infinum of the values of ‖·‖Y

on the fiber of φ : Y (F ) → X(F ) over x. It is easy to see that this condition is
independent of the choice of ‖ · ‖X and ‖ · ‖Y . Moreover, it follows from the first
part of Proposition 18.1 that the restriction of ‖ · ‖X is automatically dominated
by φ∗‖ · ‖Y ; therefore the norm descent property is equivalent to the condition that
φ∗‖ · ‖Y be dominated by the restriction of ‖ · ‖X .

Lemma 18.3. Let φ : Y → X be a morphism of affine schemes over F , and let
‖ · ‖Y be a norm on Y (F ). Then the following two conditions are equivalent.

(1) The morphism φ satisfies the norm descent property.
(2) There exists a norm ‖·‖X on X(F ) such that for all x ∈ im[Y (F ) → X(F )]

there exists y ∈ Y (F ) such that φ(y) = x and ‖y‖Y ≤ ‖x‖X .

Proof. The second condition trivially implies that φ∗‖ · ‖Y is dominated by
the restriction of ‖ · ‖X , hence that φ has the norm descent property.

Now assume the first condition. Start with any norm ‖ · ‖X on X(F ). Then
there exist c, R ≥ 1 such that φ∗‖ · ‖Y ≤ c‖ · ‖R

X holds on im[Y (F ) → X(F )].
Increasing c, we may improve ≤ to <, and then replacing ‖ · ‖X by the equivalent
norm c‖ · ‖R

X , we end up with a norm ‖ · ‖X for which

φ∗‖ · ‖Y < ‖ · ‖Y

holds on im[Y (F ) → X(F )]. It is clear that the second condition is satisfied for
this choice of ‖ · ‖X . �
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Lemma 18.4. Consider morphisms X
f−→ Y

g−→ Z of affine schemes of finite
type over F . Put h = gf : X → Z. Assume that the map f : X(F ) → Y (F ) is
surjective. Then

(1) If f, g satisfy the norm descent property, then so does h.
(2) If h satisfies the norm descent property, then so does g.

Proof. The proof of the first statement uses only Lemma 18.3. The proof
of the second statement is similar, but also uses the first part of Proposition 18.1,
applied to the morphism f . Details are left to the reader. �

Proposition 18.2. Let φ : Y → X be a morphism of affine schemes of finite
type over F . For open U in X write φU for the morphism φ−1U → U obtained by
restriction from φ.

(1) The norm descent property for φ : Y → X is local with respect to the
Zariski topology on X. In other words, for any cover of X by affine open
subsets, the morphism φ has the norm descent property if and only if the
morphisms φU have the norm descent property for every member U of the
open cover.

(2) If the morphism φ : Y → X admits a section, then φ has the norm
descent property. More generally, if φ : Y → X admits sections locally in
the Zariski topology on X, then φ has the norm descent property.

(3) Let G be a connected reductive group over F , and let M be a Levi subgroup
of G. Then the canonical morphism G → G/M has the norm descent
property.

Proof. We begin by proving the first part of the proposition in the special
case of principal open subsets. So suppose for the moment that U = Xf is the
principal open subset of X defined by f ∈ OX . Then φ−1Xf = Yg, where g is the
image of f under the homomorphism φ∗ : OX → OY . Assuming the norm descent
property for φ, we need to prove the norm descent property for φU : Yg → Xf .

We are free to use any convenient norms on Yg(F ) and Xf (F ). Start by picking
any norm ‖ · ‖Y on Y (F ). Choose our norm ‖ · ‖X on X(F ) so that the second
condition of Lemma 18.3 holds for it. On the principal open subsets Yg, Xf we use
the norms ‖ · ‖Yg

, ‖ · ‖Xf
obtained from ‖ · ‖Y , ‖ · ‖X by the construction in the

fifth part of Proposition 18.1. With these choices, it is easy to check that ‖ · ‖Yg

and ‖ · ‖Xf
satisfy the second condition of Lemma 18.3, proving the norm descent

property for φU .
Next, suppose we have a cover of the affine scheme X by principal affine open

subschemes Xi = Xfi
(i = 1, . . . , r). Putting gi := φ∗(fi) and Yi := Ygi

= φ−1Xfi
,

we get (by restriction from φ) morphisms φi : Yi → Xi. Assuming that each φi

satisfies the norm descent property, we must show that φ satisfies the norm descent
property.

Again we may use any convenient norms on X(F ), Y (F ). Choose norms ‖ · ‖Yi

on Yi(F ). Choose norms ‖ · ‖Xi
on Xi(F ) in such a way that the second condition

of Lemma 18.3 holds for ‖ · ‖Yi
and ‖ · ‖Xi

. Use the construction in the sixth part of
Proposition 18.1 to get a norm ‖ · ‖Y on Y (F ) (respectively, ‖ · ‖X on X(F )) from
the norms ‖ · ‖Yi

(respectively, ‖ · ‖Xi
). With these choices it is easy to see that

the second condition of Lemma 18.3 holds for ‖ · ‖Y and ‖ · ‖X , proving the norm
descent property for φ.
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We are now finished with the case of principal affine subsets. Now suppose
that we have any cover of X by affine open subsets U1, . . . , Ur. Cover each Ui by
principal affine open subsets Vij (j = 1, . . . , si) in X. Of course Vij is then also a
principal affine open subset of Ui.

By what has already been done we know that the norm descent property for φ
is equivalent to the norm descent property for all the morphisms φ−1Vij → Vij and
that this in turn is equivalent to the norm descent property for all the morphisms
φ−1Ui → Ui. This completes the proof of the first part of the proposition.

Now we prove the second part. Assume first that φ : Y → X has a section
s : X → Y . Note that in this case Y (F ) → X(F ) is surjective. To show that
φ has the norm descent property we must check that φ∗‖ · ‖Y is dominated by
‖ · ‖X . But this follows from the first part of Proposition 18.1, applied to the
morphism s. Furthermore, if φ admits sections Zariski locally, we see from the first
part of Proposition 18.2 that φ has the norm descent property.

Now we prove the third part. Choose a parabolic subgroup P = MU with Levi
component M and let P̄ = MŪ be the opposite parabolic subgroup. From Bruhat
theory we know that multiplication induces an open immersion

Ū × U ×M ↪→ G.

Thus G → G/M has a section over the open subset Ū × U of G/M . Moreover
G/M is covered by the G(F )-translates of these open sets Ū × U , so we conclude
that G → G/M admits sections locally in the Zariski topology, hence that it has
the norm descent property. Note that G/M really is an affine scheme: it can be
identified with the G-conjugacy class of any sufficiently general element of the center
of M . �

18.7. An additional hypothesis. We now fix an algebraic closure F̄ of F .
Our given absolute value on F can always be extended to F̄ , and when F is complete
this extension is unique (see [Lan02]).

From now on we assume that F is complete, and we continue to denote by | · |
the unique extension to F̄ of our given absolute value on F . By uniqueness this
extension is fixed by any automorphism of F̄ over F , and therefore the restriction
of our extended absolute value to any finite extension E of F (in F̄ ) of degree n is
given by

(18.7.1) x �→ |NE/F (x)|1/n,

where NE/F denotes the usual norm map of field theory.

18.8. Behavior of norms under algebraic field extensions. Let X be an
affine scheme of finite type over F , and let E be a field extension of F . Any finite
set of generators for the F -algebra OX can also be regarded as a generating set for
the E-algebra E ⊗F OX of regular functions on the scheme XE over E obtained
from X by extension of scalars. When E is a subfield of F̄ the chosen generating set
gives norms on both X(F ) and X(E) = XE(E), and the restriction of the norm on
X(E) to the subset X(F ) coincides with the norm on X(F ), from which it follows
that the restriction of any norm on X(E) is a norm on X(F ).

For finite separable extensions E/F we use RE/F to denote Weil’s restriction
of scalars.
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Lemma 18.5. Let E be a finite separable field extension of F . Then the abstract
norm

(18.8.1) x �→ sup{|NE/F (x)|, |NE/F (x)|−1} (x ∈ E×)

is a norm on (RE/F Gm)(F ) = E×.

Proof. Let I be the set of embeddings of E in F̄ . Since our torus becomes
split over F̄ , we see from Example 18.2 and the discussion preceding this lemma
that

(18.8.2) x �→ sup{|σ(x)|, |σ(x)|−1 : σ ∈ I} (x ∈ E×)

is a norm on (RE/F Gm)(F ) = E×. But for any σ ∈ I we have (by (18.7.1))

|σ(x)| = |NE/F (x)|1/[E:F ],

showing that the norm (18.8.2) is indeed equivalent to the abstract norm in the
statement of the lemma. �

Lemma 18.6. Let T be a torus over F , and let S be the biggest split quotient of
T , so that X∗(S) is the subgroup of X∗(T ) consisting of elements fixed by Gal(F̄ /F ),
and we have a canonical homomorphism T → S. Then the pullback via T (F ) →
S(F ) of any norm ‖ · ‖S on S(F ) is a norm on T (F ).

Proof. One sees easily from Lemma 18.5 that our current lemma is valid for
T = RE/FT0 for any finite separable extension E/F and any split torus T0 over E.

Now consider any torus T and choose a finite Galois extension E/F that splits
T . Then T embeds naturally in RE/FTE , a torus for which the lemma is known to
be valid, and thus it now suffices to show that if T is a subtorus of a torus T ′ for
which the lemma is known to be valid, then the lemma is valid for T . We of course
write S′ for the biggest split quotient torus of T ′.

Then we have a commutative diagram

T −−−−→ T ′; ;
S −−−−→ S′.

Choose a norm ‖ · ‖S′ on S′(F ). By our assumption on T ′ and the second part
of Proposition 18.1 (applied to T ↪→ T ′) we see that the pullback of ‖ · ‖S′ to T (F )
can serve as our norm on T (F ). Going the other way around the commutative
square above, we conclude (using the first part of Proposition 18.1 to see that the
pullback of ‖ · ‖S′ to S(F ) is dominated by ‖ · ‖S) that ‖ · ‖T is dominated by the
pullback to T (F ) of ‖ · ‖S . But (again by the first part of Proposition 18.1) ‖ · ‖T

also dominates the pullback of ‖ · ‖S , hence is equivalent to it. �

Corollary 18.7. Let T be a torus over F and let n be a positive integer. Then
there exists a bounded subset B ⊂ T (F ) such that T (F ) = B · T (F )n. Here we are
using the superscript n to indicate that we are looking at the subgroup of all n-th
powers of elements in T (F ).

Proof. First we treat the split case. So suppose T = Gr
m and use the norm

‖ · ‖T in Example 18.2. Pick α ∈ F× such that |α| �= 1 and put a := |α|. The
bounded set {t ∈ T (F ) : ‖t‖T ≤ an} does the job.
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Now we treat the general case. Let φ : T → S be the maximal split quotient
of T , and let AT denote the maximal split subtorus of T . The composition of the
inclusion of AT in T with φ yields an isogeny ψ : AT → S, and therefore there
exists a positive integer m such that the m-th power map on S factors through ψ.
This guarantees that φ(T (F )) ⊃ S(F )m.

By the split case that has already been treated we know that there exists a
bounded subset B0 of S(F ) such that S(F ) = B0 · S(F )mn. Let B denote the
inverse image of B0 under φ : T (F ) → S(F ); by Lemma 18.6 the set B is bounded
in T (F ), and it is immediate that T (F ) = B · T (F )n. �

18.9. Torsors, quotients and a technical lemma. In this subsection we
prove a technical lemma that will be needed in the next subsection. We begin by
reviewing some material from SGA 3 on torsors and quotients.

In this subsection absolute values will not appear, and F will denote any field.
By a scheme (or morphism) we always mean a scheme (or morphism) over F . Given
two schemes X, Y , we denote their product over F simply by X ×Y , and we write
X(Y ) for the set of Y -valued points of X, or, in other words, the set of morphisms
from Y to X.

An action of a group scheme G on a scheme X is a morphism G×X → X such
that for every scheme T the associated map

G(T )×X(T ) → X(T )

on T -valued points is an action of the group G(T ) on the set X(T ).
Now suppose that X is a scheme over another scheme S, so that it comes

equipped with a morphism p : X → S. We say that an action of G on X preserves
the fibers of p : X → S (or that G acts on X over S) if

p(gx) = p(x)

for all schemes T and all T -valued points g ∈ G(T ), x ∈ X(T ). Given an action of
this type there is a canonical morphism

(18.9.1) G×X → X ×S X

given by (g, x) �→ (gx, x) on T -valued points.
By definition a G-torsor X over S (for the fpqc topology) is a faithfully flat,

quasi-compact morphism p : X → S, together with an action of G on X over S for
which (18.9.1) is an isomorphism. The significance of (18.9.1) being an isomorphism
is easy to understand: it means that for every scheme T either X(T ) is empty or
else G(T ) acts simply transitively on X(T ). Considering the fiber product of p
with itself one sees that any property of the morphism G → SpecF that is stable
under base change and faithfully flat descent will be inherited by the morphism
p : X → S; for example, if G is smooth over F , then any G-torsor X over S is
smooth over S, and so on.

Let p : X → S be a G-torsor. By faithfully flat descent for the morphism p,
giving a morphism from S to some other scheme S′ is the same as giving a morphism
X → S′ whose compositions with the two projections π1, π2 : X×SX → X coincide,
and since (18.9.1) is an isomorphism, this in turn is the same as giving a morphism
X → S′ whose fibers are preserved by the G-action. In other words p : X → S
satisfies the universal property one expects of a quotient of X by G. In particular,
given an action of G on X, if there exists a morphism p : X → S for which X is a
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G-torsor over S, then the morphism p is essentially unique, and we will refer to S
as the quotient of X by G, denoted G\X.

An important (and non-trivial) result is that if G is a group scheme of finite
type over F , and if H is a closed subgroup scheme of G, then the quotient G/H
does exist (see SGA 3, Exp. VIA) in the sense just described.

Here is a simple example, which we will need later. Let T be a torus over F ,
and let n be a positive integer. We write [n] : T → T for the homomorphism given
on S-valued points by t→ tn, and we write Tn for the kernel of [n], so that

Tn(S) = {t ∈ T (S) : tn = 1}.
When n is not invertible in F , the scheme Tn is not smooth over F . Nevertheless
the morphism [n] is faithfully flat, as one can check after extending scalars from F
to an algebraic closure F̄ of F , so that T splits and one is reduced to the obvious
fact that for an indeterminate X the ring F̄ [X,X−1] is free of rank n as a module
over its subring F̄ [Xn, X−n]. Therefore the morphism [n] makes T into a Tn-torsor
over T and identifies T with the quotient T/Tn, so that the sequence

1 → Tn → T
[n]−−→ T → 1

is an exact sequence of sheaves in the fpqc topology. When n is not invertible in F ,
the sequence above is not exact in the étale topology; indeed, the map T (Fsep) →
T (Fsep) is not surjective, Fsep being the separable closure of F in F̄ . This example
shows why we are using the fpqc topology.

Now let G be a connected reductive group over F , and let T be a torus in
G, in other words, a closed subgroup scheme that is a torus over F . There exists
a finite Galois extension F ′/F such that T splits over F ′; put n := [F ′ : F ] and
Tn := ker([n] : T → T ), as above.

Lemma 18.8. Assume that F is an infinite field. Then the canonical morphism
f : G/Tn → G/T admits sections locally in the Zariski topology on G/T .

Proof. We claim that it is enough to show that there exists a non-empty
Zariski open subset U in G/T such that f : G/Tn → G/T has a section over U .
Indeed, since f is G-equivariant, it will then have sections over all the open sets gU
(g ∈ G(F )), so it is enough to show that V := ∪g∈G(F )gU is equal to G/T . But V
is a non-empty G(F )-invariant open subset of G/T , so its inverse image V ′ in G is
a non-empty G(F )-invariant open subset of G, and since G(F ) is Zariski dense in G
(since F is infinite, see [Bor91, Cor. (18.3)]), it follows that V ′ = G and V = G/T .

Now G/T is connected (since G is connected and G → G/T is surjective)
and smooth (see EGA IV(17.7.7)), hence reduced and irreducible. Let K be the
function field of G/T and ξ : SpecK → G/T the generic point of G/T . Since
f : G/Tn → G/T is a morphism of finite type, the existence of a section of f over
some non-empty open subset of G/T is equivalent to the existence of a section of
f over ξ, in other words to the existence of a K-point of G/Tn mapping to ξ under

(18.9.2) (G/Tn)(K) → (G/T )(K).

Thus it will suffice to show that the map (18.9.2) is surjective. In fact the map
(18.9.2) is surjective for any field extension K of F , as we will now see.

Since F ′/F is a Galois extension of degree n, the K-algebra K ⊗F F ′ has the
form K ′×· · ·×K ′ for some finite Galois extension K ′ of K whose degree divides n.
Thus T splits over K ′ and the Galois cohomology group H1(K,T ) coincides with
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H1(Gal(K ′/K), T (K ′)), a group killed by the order of the group Gal(K ′/K) and
hence killed by n.

When F (and hence K) has characteristic 0, we can then use the exact sequence

(18.9.3) 1 → Tn(K̄) → T (K̄) n−→ T (K̄) → 1

to see that
H1(K,Tn) → H1(K,T )

is surjective, from which it follows easily that (18.9.2) is surjective. [Use that
the set of G(K)-orbits on (G/T )(K) can be identified with the kernel of the map
H1(K,T ) → H1(K,G) of pointed sets.]

When n is not invertible in K, we need to argue differently, since (18.9.3) is
no longer exact when K̄ is replaced by the separable closure Ksep. To avoid using
flat cohomology, we work directly with torsors. The group T acts on the right of
G, yielding a T -torsor f ′ : G → G/T over G/T . Moreover T/Tn acts on the right
of G/Tn, and our morphism f : G/Tn → G/T is the T/Tn-torsor obtained from f ′

via the canonical homomorphism T � T/Tn.
Using the fpqc exact sequence 1 → Tn → T

n−→ T → 1 to identify T/Tn with
T , we see that the T = T/Tn-torsor f is obtained from the T -torsor f ′ via the
homomorphism [n] : T → T .

Fortunately, for T -torsors (unlike Tn-torsors) the difference between the fpqc
and étale topologies is unimportant: since T is smooth over F , any T -torsor over
K is automatically smooth over K, hence has sections étale locally on Spec(K).
Therefore the group of isomorphism classes of T -torsors over K can be identified
with the Galois cohomology group H1(K,T ), a group killed by n, as we saw above.

Now we can prove that (18.9.2) is surjective. Consider a K-point of G/T .
Pulling back our torsor f to this K-point, we get a T = (T/Tn)-torsor over SpecK,
which we just need to show is trivial (so that it has a section). But, as explained
above, the class of this torsor lies in the image of multiplication by n, and since
H1(K,T ) is killed by n, every element in the image of multiplication by n is trivial.

�

18.10. Another case of the norm descent property. We start with the
following lemma which will ensure that the varieties we deal with are affine.

Lemma 18.9. Let G be a connected reductive group over a field F and let T be
an F -torus in G. Then G/T is affine.

Proof. By EGA IV (2.7.1) the property of being an affine morphism is stable
under fpqc descent. So we are free to assume that F is algebraically closed. Choose
a maximal torus T ′ of G containing T . Then G/T ′ can be identified with the G-orbit
of any suitably regular element in T ′, so G/T ′ is affine. Moreover G/T → G/T ′ is
a T ′/T -torsor and hence is an affine morphism. This proves that G/T is affine. �

Now we again assume that F is equipped with a non-trivial absolute value and
that F is complete as a metric space. The next result is related to the corollary on
page 112 of [HC70] (see also [Art91a, Lemma 4.1]).

Proposition 18.3. Let G be a connected reductive group over F and let T be
an F -torus in G. Then G→ G/T has the norm descent property. When T is split,
the same is true even if F is not complete.
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Proof. Choose a finite Galois extension F ′/F that splits T , put n := [F ′ : F ]
and C := ker([n] : T → T ). Then G→ G/T factorizes as

G→ G/C → G/T.

For g ∈ G(F̄ ) we write ḡ (respectively, ġ) for the image of g in (G/C)(F̄ ) (respec-
tively, (G/T )(F̄ )).

Since our absolute value is non-trivial, the field F is infinite, and Lemma 18.8
says that G/C → G/T has sections Zariski locally and hence satisfies the norm
descent property. When T is split we may take F ′ = F , so that C is trivial and we
are done.

From now on we assume that F is complete. Since G → G/C is finite, it too
satisfies the norm descent property, as is clear from the first part of Proposition
18.1. So G → G/T is the composition of two morphisms, both of which satisfy
the norm descent property. Nevertheless, since G(F ) → (G/C)(F ) need not be
surjective, we cannot apply Lemma 18.4, and in fact it requires a bit of effort to
prove the norm descent property for G→ G/T .

In doing so we are free to use any convenient norms on G(F ) and (G/T )(F ).
We begin by picking any norm ‖ · ‖G/C on (G/C)(F ). Since G→ G/C is finite, by
the first part of Proposition 18.1 the pullback of ‖ · ‖G/C to G(F ) can serve as our
norm ‖ · ‖G on G(F ). Thus

(18.10.1) ‖g‖G = ‖ḡ‖G/C ∀ g ∈ G(F ).

Since G/C → G/T satisfies the norm descent property, we may (by Lemma 18.3)
choose our norm ‖ · ‖G/T on (G/T )(F ) so that for all y in the image of (G/C)(F )
in (G/T )(F ) there exists z ∈ (G/C)(F ) such that z �→ y and

(18.10.2) ‖z‖G/C ≤ ‖y‖G/T .

When T/C is identified with T via the fpqc exact sequence

1 → C → T
[n]−−→ T → 1,

the canonical map T → T/C becomes the map [n] : T → T . Thus it follows
from Corollary 18.7 that there exists a bounded subset B ⊂ (T/C)(F ) such that
(T/C)(F ) = B · (T (F )/C(F )).

From the seventh part of Proposition 18.1 we see that there exist d,R > 0 such
that

(18.10.3) ‖ḡb−1‖G/C ≤ d‖ḡ‖R
G/C ∀ ḡ ∈ (G/C)(F ), b ∈ B.

Now we are ready to prove the norm descent property for G → G/T . For this
it will suffice to show that for any g ∈ G(F ) there exists t ∈ T (F ) such that

(18.10.4) ‖gt‖G ≤ d‖ġ‖R
G/T

(with d,R as chosen above). By (18.10.2) there exists s ∈ (T/C)(F ) such that

(18.10.5) ‖ḡs‖G/C ≤ ‖ġ‖G/T .

Now write

(18.10.6) s = tb

for some t ∈ T (F )/C(F ) and b ∈ B. Then, using successively (18.10.1), (18.10.6),
(18.10.3), (18.10.5), we see that
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‖gt‖G = ‖ḡt‖G/C = ‖ḡsb−1‖G/C ≤ d‖ḡs‖R
G/C ≤ d‖ġ‖R

G/T

as desired. �
Corollary 18.10. Again assume the field F is complete. Let G be a connected

reductive group over F , let T be an F -torus in G, and let AT be the maximal split
torus in T . Consider the canonical morphism φ : G/AT → G/T . Then for any
norm ‖ · ‖G/T on (G/T )(F ) the pullback of ‖ · ‖G/T via φ is a norm on (G/AT )(F ).

Proof. Since H1(F,AT ) is trivial, the map G(F ) → (G/AT )(F ) is surjective.
Moreover, it follows from Proposition 18.3 that G→ G/T satisfies the norm descent
property. Therefore, the second part of Lemma 18.4 tells us that G/AT → G/T has
the norm descent property, which (by Lemma 18.3) means that we can choose our
norms ‖ · ‖G/AT

and ‖ · ‖G/T so that for any y ∈ (G/T )(F ) that lies in the image
of (G/AT )(F ), there exists z ∈ (G/AT )(F ) such that z �→ y and

(18.10.7) ‖z‖G/AT
≤ ‖y‖G/T .

Since the biggest split quotient of T/AT is trivial, we see from Lemma 18.6
that (T/AT )(F ) is bounded. Therefore the seventh part of Proposition 18.1 tells
us that there exist c, R > 0 such that

(18.10.8) ‖xu‖G/AT
≤ c‖x‖R

G/AT
∀x ∈ (G/AT )(F ), u ∈ (T/AT )(F ).

Since (T/AT )(F ) acts simply transitively on any non-empty fiber of

(G/AT )(F ) → (G/T )(F ),

we see from (18.10.7) and (18.10.8) that the inequality ‖ · ‖G/AT
≤ c(φ∗‖ · ‖G/T )R

holds on (G/AT )(F ). Dominance in the other direction follows from the first part
of Proposition 18.1. Thus the pullback of ‖ · ‖G/T is equivalent to ‖ · ‖G/AT

, as we
wished to show. �

18.11. Norms on split p-adic G. We now let G be a split group over a
p-adic field F (actually over O). As usual we put K := G(O), fix a split maximal
torus A over O, and put a := X∗(A)⊗Z R. We choose a Weyl group invariant inner
product on a, so that a becomes a Euclidean space with Euclidean norm ‖ · ‖E .
The subscript is supposed to remind us that this is a Euclidean norm, not the sort
of norm that we’ve been discussing in this section.

We define an abstract norm ‖ · ‖G on G(F ) as follows. Let g ∈ G(F ). By the
Cartan decomposition there is a unique dominant coweight ν such that g ∈ KπνK.
Put ‖g‖G = exp(‖ν‖E).

Lemma 18.11. The abstract norm ‖ · ‖G is a valid norm on G(F ).

Proof. Pick any norm ‖ ·‖′G on G(F ). We must show that ‖ ·‖G and ‖ ·‖′G are
equivalent. By the seventh part of Proposition 18.1 there exist positive constants
c, R such that

(18.11.1) ‖k1gk2‖′G ≤ c(‖g‖′G)R

for all g ∈ G, k1, k2 ∈ K. Thus for a ∈ A(F ) and g ∈ KaK there are inequalities

(18.11.2) ‖g‖′G ≤ c(‖a‖′G)R

and

(18.11.3) ‖a‖′G ≤ c(‖g‖′G)R
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In Example 18.2 we wrote down one valid norm on A(F ). It is easy to see that
this norm is equivalent to the restriction of ‖·‖G to A(F ). Therefore (by the second
part of Proposition 18.1) the restrictions of ‖ · ‖′G and ‖ · ‖G to A(F ) are equivalent.
This, together with the inequalities (18.11.2) and (18.11.3), shows that ‖ · ‖G and
‖ · ‖′G are equivalent. �

19. Another kind of norm on affine varieties over local fields

The norms introduced in section 18 are good for measuring “how big” points
are, or, in other words, how close they are to ∞, and can therefore be used to
measure growth rates of functions. In this section we discuss another kind of norm,
the most important of which (namely Nx0) measures how close a point is to some
given point x0. In order to prove one of the properties of Nx0 it is useful to
introduce a more general variant NY which measures how close a point is to some
given reduced closed subscheme Y .

Again F denotes a field equipped with an absolute value.

19.1. The norm NY . Let A be a finitely generated F -algebra and put X :=
Spec(A). Let Y be a reduced closed subscheme of X, and let I = I(Y ) be the
corresponding ideal in A. Thus I is equal to its radical.

Now choose a finite set f1, . . . , fr of generators for the ideal I. For x ∈ X(F )
put

(19.1.1) NY (x) := sup{|f1(x)|, . . . , |fr(x)|}.
Thus NY (x) is a non-negative real-valued function of x ∈ X(F ) which vanishes if
and only if x ∈ Y (F ). The size of NY (x) measures how far x is from Y (F ).

Lemma 19.1. Let f ∈ I. There exists a norm ‖ · ‖X on X(F ), of the type
considered in the previous section, having the property that

(19.1.2) |f(x)| ≤ ‖x‖X ·NY (x) ∀x ∈ X(F ).

Proof. Choose elements g1, . . . , gr ∈ A such that f = g1f1 + · · ·+ grfr. Then

(19.1.3) |f(x)| ≤
r∑

i=1

|gi(x)||fi(x)|.

Using (18.2.2) for all the functions gi, we see that there exists a norm ‖ · ‖X on
X(F ) such that

(19.1.4) |gi(x)| ≤ r−1‖x‖X ∀ i ∈ {1, . . . , r}.
The inequality (19.1.2) follows directly from the inequalities (19.1.3) and (19.1.4).

�
Now suppose that we have two affine schemes X1, X2 of finite type over F ,

as well as two reduced closed subschemes Y1, Y2 of X1, X2 respectively. Choose
finite generating sets for the ideals I1 := I(Y1), I2 := I(Y2), obtaining in this way
N1 := NY1 , N2 := NY2 on X1(F ), X2(F ) respectively. Suppose further that we are
given a morphism φ : X1 → X2 of F -schemes such that φ(Y1) ⊂ Y2 (equivalently:
φ∗(I2) ⊂ I1).

Lemma 19.2. There exists a norm ‖ · ‖X1 on X1(F ), of the type considered in
the previous section, having the property that

(19.1.5) N2(φ(x1)) ≤ ‖x1‖X1 ·N1(x1) ∀x1 ∈ X1(F ).
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Proof. Say N1 is obtained from generators f1, . . . , fr of I1 and that N2 is
obtained from generators g1, . . . , gs of I2. Applying Lemma 19.1 to the functions
φ∗(gj), we see that there exists a norm ‖ · ‖X1 on X1(F ) such that

(19.1.6) |gj(φ(x1))| ≤ ‖x1‖X1 ·N1(x1) ∀x1 ∈ X1(F )

for all j = 1, . . . , s; since N2(φ(x1)) is the maximum of the quantities appearing on
the left side of (19.1.6), the lemma is proved. �

19.2. The norm Nx0 . We continue with X = Spec(A) as above. Let x0 ∈
X(F ) and consider the corresponding reduced closed subscheme {x0} of X, whose
ideal is the maximal ideal m := {f ∈ A : f(x0) = 0}. We are now interested in
generating sets of m of the following special type. Consider a finite set f1, . . . , fr of
generators for the F -algebra A having the property that each fi lies in the maximal
ideal m. Such generating sets exist, since we can start with an arbitrary generating
set and subtract from each generator its value at x0. It is easy to see that f1, . . . , fr

necessarily generate the ideal m. Now define Nx0 to be the function N{x0} obtained
from the generating set f1, . . . , fr. We use the notation Nx0 to keep track of the
fact that f1, . . . , fr not only generate m as ideal, but also A as F -algebra.

Since f1, . . . , fr generate A as F -algebra, they define a closed embedding of X
into Ar, and from this one sees easily that the sets

(19.2.1) {x ∈ X(F ) : Nx0(x) < ε}
for ε > 0 form a neighborhood base at x0 in X(F ).

19.3. An application. Now let G be a reduced affine group scheme of finite
type over F , and let H be a closed subgroup scheme of G. We write eG, eH for
the identity elements of G(F ), H(F ) respectively. It is evident that g−1hg is close
to eG if h is close to eH , but the bigger g is, the closer to eH we must take h to
be. In the proof of the key geometric result needed for the local trace formula we
are going to need a quantitative version of this qualitative statement, involving the
functions Nx0 we have just introduced.

We write OG, OH for the rings of regular functions on G, H respectively.
Choose generators f1, . . . , fr of the F -algebra OH such that fi(eH) = 0 for all
i = 1, . . . , r, so that f1, . . . , fr also generate the maximal ideal obtained from eH ,
and use these generators to get the function NeH

on H(F ). Similarly, choose
generators g1, . . . , gs of the F -algebra OG such that gj(eG) = 0 for all j = 1, . . . , s,
and use them to get the function NeG

on G(F ). Finally, let ‖ · ‖G be any norm on
G(F ) of the type considered in section 18.

Lemma 19.3. Let K be a neighborhood of eG in G(F ). Then there exist positive
constants c, R, depending on K, having the following property. For g ∈ G(F ) and
h ∈ H(F ) satisfying

(19.3.1) NeH
(h) ≤ c‖g‖−R

G

the element g−1hg lies in K.

Proof. Since f1, . . . , fr generate the F -algebra OH , we can also use them to
get a norm ‖ · ‖H on H(F ) of the type considered in section 18; comparing the
definitions of ‖ · ‖H and NeH

one sees immediately that

(19.3.2) ‖h‖H = sup{1,NeH
(h)}.
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Since G is reduced, the pullbacks of the functions f1, . . . , fr to G×H via the
second projection map (g, h) �→ h generate the ideal of the closed subset G× {eH}
in G × H, so we can use them to define the function NG×{eH} on G(F ) × H(F ),
and it is evident from the definitions that

(19.3.3) NG×{eH}(g, h) = NeH
(h).

Noting that ‖g‖G‖h‖H is a valid norm on G(F ) ×H(F ) by Proposition 18.1, and
applying Lemma 19.2 to the morphism G×H → G defined by (g, h) �→ g−1hg, we
see that there exist c1, R > 0 such that

(19.3.4) NeG
(g−1hg) ≤ c1(‖g‖G‖h‖H)RNeH

(h).

Now choose ε > 0 small enough that NeG
(g) ≤ ε implies that g ∈ K. Then

(19.3.5) c1(‖g‖G‖h‖H)RNeH
(h) ≤ ε =⇒ g−1hg ∈ K.

From (19.3.2) we see that ‖h‖H = 1 when NeH
(h) ≤ 1, so that

(19.3.6) NeH
(h) ≤ 1 and c1(‖g‖G)RNeH

(h) ≤ ε =⇒ g−1hg ∈ K,

or, in other words,

(19.3.7) NeH
(h) ≤ inf{1, εc−1

1 ‖g‖−R
G } =⇒ g−1hg ∈ K.

Letting c be the minimum of 1 and εc−1
1 (and remembering that ‖g‖G ≥ 1), we see

that

(19.3.8) NeH
(h) ≤ c‖g‖−R

G =⇒ g−1hg ∈ K.

�

19.4. Special case of the application above. We will need a more concrete
version of the previous lemma that is tailored to the situation we will encounter in
proving the local trace formula. We now return to the split reductive group G over
the p-adic field F , and we fix a norm ‖ · ‖G on G(F ) as in section 18.

Consider a parabolic subgroup P = MU containing a Borel subgroup B = AN ,
with M containing A. We are going to apply the lemma we just proved to the
subgroup U of G. As a variety, U is the product of its root subgroups Uα, where α
runs over RU , the set of roots of A in Lie(U). Fix identifications Uα � Ga, so that
we can view an element u ∈ U(F ) as a tuple with components uα ∈ F , one for each
α ∈ RU . Using the most obvious set of generators, we get NeU

on U(F ), given by

(19.4.1) NeU
(u) = sup{|uα| : α ∈ RU}.

Conjugating u by a ∈ A(F ), we get another element aua−1 of U(F ) whose
components are given by α(a) · uα. Therefore

(19.4.2) NeU
(aua−1) ≤ sup{|α(a)| : α ∈ RU} ·NeU

(u).

Lemma 19.4. Let K = G(O). There exist positive constants D,R, S having the
following property. For all a ∈ A(F ), u ∈ U(F ), g ∈ G(F ) satisfying

(19.4.3) inf{|α(a)|−1 : α ∈ RU} ≥ D‖u‖R
G‖g‖S

G

the element aua−1 lies in gKg−1.
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Proof. Using Lemma 19.3 and (19.4.2), we see that there exist positive con-
stants c, S such that for a ∈ A(F ), u ∈ U(F ), g ∈ G(F )

(19.4.4) sup{|α(a)| : α ∈ RU} ·NeU
(u) ≤ c‖g‖−S

G =⇒ aua−1 ∈ gKg−1.

As we remarked during the course of the proof of Lemma 19.3, we get a valid norm
‖ · ‖U on U(F ) by putting ‖u‖U := sup{1,NeU

(u)}, and thus (19.4.4) yields

(19.4.5) sup{|α(a)| : α ∈ RU} ≤ c‖u‖−1
U ‖g‖−S

G =⇒ aua−1 ∈ gKg−1.

Since the restriction of ‖ · ‖G to U(F ) is also a valid norm, and moreover any two
norms on U(F ) are equivalent, we conclude that there exist positive constants D,R
such that

(19.4.6) sup{|α(a)| : α ∈ RU} ≤ D−1‖u‖−R
G ‖g‖−S

G =⇒ aua−1 ∈ gKg−1,

from which the conclusion of the lemma follows immediately. �

20. Estimates for weighted orbital integrals

In this section we work with a maximal torus T in a connected reductive group
G over our p-adic field F . As usual D(X) is the polynomial function on g (see 7.5)
that turns up in the Weyl integration formula. We are going to prove estimates for
weighted orbital integrals. This will use the theory of norms on affine varieties that
was developed in section 18.

20.1. Local integrability of various functions on t. We are interested
in the local integrability of various functions on t that involve the function X �→
|D(X)|.

Lemma 20.1 ([HC70, Lemma 44]). There exists ε > 0 such that the function
|D(X)|−ε is locally integrable on t.

Proof. The polynomial D is homogeneous of degree d, where d = dG is the
number of roots of T in g. We claim that |D(X)|−ε is locally integrable on t

provided that dε < 1. We prove this statement by induction on d, the case d = 0
being trivial.

Now we assume that d > 0 and that the statement we are trying to prove is
true for all smaller d. There is an immediate reduction to the case in which G is
semisimple. Let S be any non-zero element in t, and let H denote its centralizer
in G. Since the functions |DG| and |DH | are positive multiples of each other in
some small neighborhood of S in t, we conclude by our induction hypothesis (using
that dH < dG and hence that dHε < 1) that |D(X)|−ε is locally integrable on this
neighborhood of S. Since this is true for all non-zero S, we conclude that |D(X)|−ε

is locally integrable on t \ {0}.
It remains to show that |D(X)|−ε is integrable on some open neighborhood of

0. For convenience we take this neighborhood to be a lattice L. It is enough to
show that

(20.1.1)
∫

L

|D(X)|−ε dX

is finite. Since D is homogeneous of degree d, this integral is equal to the product
of

(20.1.2)
∫

L\πL

|D(X)|−ε dX
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and the geometric series with ratio |π|dim(t)−dε. The geometric series is conver-
gent by our assumption that dε < 1, and the integral (20.1.2) is convergent since
|D(X)|−ε is locally integrable away from the origin and hence integrable on the
complement of πL in L.

It is worth noting that this result of Harish-Chandra can also be derived from
rather general results of Igusa [Igu74, Igu77] and Denef [Den84] on integrals of
complex powers of absolute values of p-adic polynomials. �

The next result involves the function

X �→ log(max{1, |D(X)|−1})
on grs. This function takes non-negative real values and measures how close X is
to the singular set g \ grs: the larger the function value at X, the closer X is to the
singular set.

Corollary 20.2. For every non-negative real number R the function

X �→
(
log(max{1, |D(X)|−1}

)R
is locally integrable on t.

Proof. This follows from the previous result together with the following ele-
mentary fact: for every ε > 0 and every R ≥ 0 there exists a positive constant C
such that

(20.1.3)
(
log(max{1, y})

)R ≤ Cyε

for all y ≥ 0. �

20.2. Estimates for orbital integrals with various weight factors. Now
suppose that M is a Levi subgroup of G containing T . Then we have (M\G)(F ) =
M(F )\G(F ) and (AM\G)(F ) = AM (F )\G(F ), so no confusion will result from
writing M\G for the set of F -points of the affine algebraic variety M\G, and
similarly for AM\G. Let ‖ · ‖M\G and ‖ · ‖AM\G be any norms (as in 18.2) on M\G
and AM\G respectively.

We are also interested in the affine algebraic variety T\G, but here we need to
be more careful, since (T\G)(F ) can be bigger than T (F )\G(F ). We let ‖ ·‖T\G be
any norm on (T\G)(F ). Having warned the reader of the potential for confusion,
we nevertheless now write T\G as a convenient abbreviation for T (F )\G(F ), an
open and closed subset of (T\G)(F ). We will only have occasion to use ‖ · ‖T\G on
the subset T\G.

Before formulating the next results, let’s discuss where we’re headed. Let X ∈
treg and consider the weighted orbital integral∫

T\G

f(g−1Xg)vM (g) dḡ.

Since X is semisimple, its orbit is closed and hence intersects the support of f
in a compact subset of the orbit. Thus there is a compact subset C of T\G such
that the integrand vanishes unless g ∈ C. The weight factor is left M -invariant,
hence left T -invariant, hence remains bounded in absolute value on the compact set
C, say by the positive number R. Then the absolute value of the weighted orbital
integral is bounded above by R times the orbital integral of |f |. Now suppose that
we want to estimate the weighted orbital integral for fixed f and variable X. Then
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we will need to control the size of the compact set C, which of course depends on
X. The point is that C grows as X gets closer to the singular set. The theory of
norms developed in section 18 makes it easy to get such control, as we will now see.

When we apply the next lemma, the compact set ω will be the support of f ,
so this is what the reader should have in mind. The lemma is a variant of [HC70,
Theorem 18] (see also [Art91a, Lemma 4.2]).

Lemma 20.3. Let ω be a compact subset of g. Then there exist positive constants
c1, c2, c′1, c′2 having the following property. For all X ∈ treg and all g ∈ G such
that g−1Xg ∈ ω there are inequalities

log ‖g‖T\G ≤ c1 + c2 log max{1, |D(X)|−1}

and
log ‖g‖M\G ≤ c′1 + c′2 log max{1, |D(X)|−1}.

Proof. We again consider the morphism

β : (T\G)× treg → grs

of affine algebraic varieties defined by β(g,X) = g−1Xg. Choose a norm ‖ · ‖g on
the affine variety g. Now grs is the principal Zariski open subset of g defined by the
non-vanishing of the polynomial D, so (see Proposition 18.1) as norm ‖ · ‖grs on grs

we may take
‖X‖grs := max{‖X‖g, |D(X)|−1}.

Since the morphism β is finite, we may take (see Proposition 18.1) as norm on
(T\G)× treg the pullback of ‖ · ‖grs by β. Again by Proposition 18.1 the pullback of
the norm ‖ ·‖T\G to (T\G)× treg (pull back using the first projection) is dominated
by the norm on (T\G)× treg. Writing out what this means, we see that there are
constants c > 1 and R > 0 such that

‖g‖T\G ≤ cmax{‖g−1Xg‖g, |D(X)|−1}R

for all g ∈ T\G and all X ∈ treg. Now ‖ · ‖g remains bounded on the compact set
ω; let’s choose d > 1 that serves as an upper bound. Thus

(20.2.1) ‖g‖T\G ≤ cdR max{1, |D(X)|−1}R

for all g ∈ T\G, X ∈ treg such that g−1Xg ∈ ω. Taking the logarithm of both sides
of (20.2.1), we get the first inequality of the lemma. The second inequality can be
derived from the first since (again by Proposition 18.1) the pullback of the norm
‖ · ‖M\G to T\G is dominated by ‖ · ‖T\G. �

Now we use the lemma to estimate weighted orbital integrals. Actually the
proof of the local trace formula involves estimating orbital integrals weighted by
various factors other than vM , but having the same rough growth rate as vM . Our
next result will involve the weight factor (log ‖ · ‖T\G)R, as this will allow us to
handle all the weight factors that come up in the proof of the local trace formula.

Proposition 20.1. Let f ∈ C∞
c (g) and let R be a non-negative integer. Then

the integral

(20.2.2)
∫

t

|D(X)|1/2

∫
T\G

f(g−1Xg)(log ‖g‖T\G)R dḡ dX
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converges. If T is elliptic in M , then the integral

(20.2.3)
∫

t

|D(X)|1/2

∫
AM\G

f(g−1Xg)(log ‖g‖AM\G)R dġ dX

converges.

Proof. The first statement follows from Lemma 20.3 (with ω = Supp(f)),
Corollary 20.2, and the fact that the function X �→ |D(X)|1/2

∫
T\G

|f(g−1Xg)| dḡ is
bounded and compactly supported on t (see Theorem 17.10). The second statement
follows from the first, together with Corollary 18.10. �

In order to see that the proposition above can be applied to weighted orbital
integrals, we need to estimate vM (g). Before doing so, we discuss the metric on the
building of G.

20.3. Metric on X, function d(x) on X, estimate for ‖HB(g)‖E. We
now assume that G is split, with split maximal torus A. As in 18.11 we choose a
Weyl group invariant Euclidean norm ‖ · ‖E on a. From ‖ · ‖E we get a metric on a.
Viewing a as the standard apartment in the building of G, the metric on a extends
uniquely to a G-invariant metric on the building, denoted by d(x1, x2).

As usual we put X = G/K and denote by x0 the base-point of X. We view X
as a subset of the building, so it makes sense to consider the metric d(x1, x2) for
x1, x2 ∈ X. For x ∈ X we introduce

d(x) := d(x, x0)

as a measure of the size of x, and for g ∈ G we also put

d(g) := d(gx0).

The next lemma concerns the maps HB : G→ X∗(A) ↪→ a defined in 12.1.

Lemma 20.4. Let B ∈ B(A). For all g ∈ G there is an inequality

(20.3.1) ‖HB(g)‖E ≤ d(g).

Proof. It follows from [BT72, Section 4.4.4] that if g ∈ KπνK for ν ∈ X∗(A),
then HB(g) lies in the convex hull of the Weyl group orbit of ν. Therefore

(20.3.2) ‖HB(g)‖E ≤ ‖ν‖E ,

and it is clear from the definition of the function d that d(g) = ‖ν‖E . �

20.4. Estimate for vM . Since we have only discussed vM in the split case,
we continue to assume that G is split. Then we have the norm ‖ · ‖G on G(F )
defined in 18.11 using the Euclidean norm ‖ · ‖E on a; in terms of the function d(g)
introduced above, we have

‖g‖G = exp(d(g)).

By Proposition 18.2 the morphism G→M\G satisfies the norm descent property.
Therefore

(20.4.1) ‖g‖M\G := inf{‖mg‖G : m ∈M}

is a norm on M\G. We use this particular norm in the next lemma.
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Lemma 20.5. Let M be a Levi subgroup of G containing A. Then there exists
a positive constant c such that

(20.4.2) vM (g) ≤ c(log ‖g‖M\G)dim(AM /AG)

for all g ∈ G.

Proof. Let P ∈ P(M). Choose B ∈ B(A) such that B ⊂ P . By Lemma 20.4
we have

(20.4.3) ‖HB(g)‖E ≤ log ‖g‖G.

As we saw in 12.1, HP (g) is obtained as the image of HB(g) under a � aM . When
we view aM as a subspace of a, the map a � aM is given by orthogonal projection.
Therefore

(20.4.4) ‖HP (g)‖E ≤ log ‖g‖G.

Since vM (g) is the volume of the convex hull of the points HP (g) (P ∈ P(M)),
there is a positive constant c such that

(20.4.5) vM (g) ≤ c(log ‖g‖G)dim(AM /AG)

for all g ∈ G. But the function vM (g) is left-invariant under M , so that we may
replace ‖g‖G by ‖g‖M\G in the last inequality, completing the proof. �

Combining our estimate of vM with Proposition 20.1, and remembering that
the pullback of ‖ · ‖M\G to T\G is dominated by ‖ · ‖T\G, we obtain the following
result, in which T is any maximal torus in M .

Theorem 20.6. Let f ∈ C∞
c (g). Then the integral

(20.4.6)
∫

t

|D(X)|1/2

∫
T\G

f(g−1Xg)vM (g) dḡ dX

converges.

20.5. Estimate for uM . We continue to assume that G is split. In the proof
of the local trace formula we will also need an estimate for the weight factor uM

appearing in our preliminary form of the local trace formula. Recall that

(20.5.1) uM (h, g;µ) :=
∫

AM

uµ(h−1aMg) daM .

We use the Haar measure daM on AM giving AM ∩K measure 1. Just as in 4.2
we have AM/(AM ∩K) = X∗(AM ), and for a ∈ AM we denote by νa the image of
a in AM/(AM ∩K) = X∗(AM ). Obviously

uM (h, g;µ) ≤ |{ν ∈ X∗(AM ) : ∃a ∈ AM with νa = ν and h−1ag ∈ Gµ}|.
The previous proof used the left M -invariance of vM (g). Now the function

(h, g) �→ uM (h, g;µ) is left (AM ×AM )-invariant, but not (M ×M)-invariant, and
our first step will be to replace uM by something larger which is (M×M)-invariant.
For this we use the injection X∗(AM ) ↪→ ΛM to see that

uM (h, g;µ) ≤ u′
M (h, g;µ),

with u′
M defined by

u′
M (h, g;µ) := |{ν ∈ ΛM : ∃m ∈M with HM (m) = ν and h−1mg ∈ Gµ}|.

It is evident that this function of (h, g) is left invariant under M ×M .
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Put x = gx0 and y = hx0. If h−1mg ∈ Gµ, then inv(mx, y) ≤ µ and therefore
d(mx, y) ≤ ‖µ‖E , from which it follows (by the triangle inequality) that

(20.5.2) d(mx0) ≤ d(x) + d(y) + ‖µ‖E ,

where d is the function defined in 20.3. Writing ν for HM (m) and ν̄ for the image
of ν under ΛM → aM ⊂ a, one sees easily from the definitions that ‖ν̄‖E ≤ d(mx0).
Thus we have shown that

(20.5.3) u′
M (h, g;µ) ≤ |{ν ∈ ΛM : ‖ν̄‖E ≤ d(x) + d(y) + ‖µ‖E}|,

from which it is clear that there is a positive constant c such that

(20.5.4) u′
M (h, g;µ) ≤ c(1 + d(x) + d(y) + ‖µ‖E)dim AM .

Now recalling that u′
M is invariant under M × M , we see that in the last

inequality we may replace d(x) by inf{d(mx) : m ∈ M}, and the same for d(y).
Thus we have proved

Lemma 20.7. Let M be a Levi subgroup of G containing A. Then there exists
a positive constant c such that

(20.5.5) uM (h, g;µ) ≤ c(1 + log ‖g‖M\G + log ‖h‖M\G + ‖µ‖E)dim(AM )

for all g, h ∈ G.

Of course the exponent dim(AM ) could easily be improved to dim(AM/AG).

21. Preparation for the key geometric lemma

Now we begin to prepare for the proof of the key geometric result (Theorem
22.3) needed for the local trace formula. Throughout this section we fix a Borel
subgroup B = AN containing A, which we use to define positive roots, dominance,
and so on. As in 20.3 ‖x‖E is a W -invariant Euclidean norm on a, which we use to
get the metric d(x, y) on the building as well as the function d(x) on X.

21.1. Retractions of the building with respect to an alcove. Given an
alcove a in an apartment in the Bruhat-Tits building of our split group G, there
is a retraction ra of the building into that apartment. As usual, we are mainly
interested in the subset X = G/K of the building and the standard apartment (the
one coming from A). Inside G/K we have the subset A/A ∩K, which we identify
with X∗(A) by sending µ ∈ X∗(A) to πµ. Let a be an alcove in the apartment
a = X∗(A)⊗Z R, and let Ia be the corresponding Iwahori subgroup of G, defined as
the pointwise stabilizer of a in G. From the affine Bruhat decomposition we know
that the obvious map A/A ∩K → Ia\G/K is bijective. We will regard ra as the
retraction of G/K onto X∗(A) defined as follows: given g ∈ G/K we put ra(g) = µ
if g ∈ Iaπ

µK. In other words, given a vertex x in the building, ra(x) is the unique
vertex in the standard apartment having the same position relative to a as x does.

Proposition 21.1. [BT72] The retraction ra weakly decreases distances. In
other words

(21.1.1) d(ra(x1), ra(x2)) ≤ d(x1, x2)

for all x1, x2 ∈ G/K.
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21.2. An easy fact about root systems. In a moment we will need the
following easy result.

Lemma 21.1. Let x, y be dominant elements in a, and let w ∈W . Then

(21.2.1) ‖x− y‖E ≤ ‖x− wy‖E .

Proof. Expanding out the two norms, we find that (21.2.1) is equivalent to
the inequality (x, y − wy) ≥ 0, and this inequality is clear since x is dominant and
y − wy is a non-negative linear combination of positive coroots (a standard fact
that follows from things we discussed in 12.8 and 12.10). �

21.3. Something like the triangle inequality. Recall that X denotes G/K
and x0 its base-point. Recall also the function inv from 3.4, taking values in
K\G/K, which by the Cartan decomposition we have identified with the set of
dominant coweights in X∗(A). For x, y ∈ X we can also consider the distance
d(x, y), a coarser invariant than inv(x, y).

Lemma 21.2. Let x, y, x′, y′ ∈ X and let λ, λ′ be the dominant coweights ob-
tained as λ := inv(x, y) and λ′ := inv(x′, y′). Then

(21.3.1) ‖λ− λ′‖E ≤ d(x, x′) + d(y, y′).

Proof. The lemma concerns the effect on inv(x, y) of replacing (x, y) by
(x′, y′). We can do this replacement in two steps, going from (x, y) to (x, y′) to
(x′, y′). Thus in proving the lemma we may assume that x = x′ or y = y′, and by
symmetry (note that inv(y, x) = − inv(x, y)) we may as well assume that y = y′.
We are free to transform all our points by any convenient g ∈ G; doing so, we
may assume without loss of generality that x, y both lie in the standard apartment.
Inside the standard apartment pick an alcove a containing y. Then λ, λ′ are the
unique dominant elements in the Weyl group orbits of ra(x), ra(x′) respectively,
and therefore

(21.3.2) ‖λ− λ′‖E ≤ d(ra(x), ra(x′)) ≤ d(x, x′),

the first inequality coming from Lemma 21.1, the second from Proposition 21.1. �

The next result is tailor-made for use in the proof of the key geometric result
needed for the local trace formula.

Corollary 21.3. Let x1, x2 ∈ X. Let ν be a dominant coweight, and let a ∈ A
be an element whose image in A/A∩K = X∗(A) is ν. Put λ := inv(ax2, x1). Then

(21.3.3) ‖λ− ν‖E ≤ d(x1) + d(x2).

Proof. Since ν is dominant, we have inv(ax0, x0) = ν. Lemma 21.2 then
yields

(21.3.4) ‖λ− ν‖E ≤ d(ax2, ax0) + d(x1, x0) = d(x2) + d(x1).

�
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22. Key geometric lemma

In this section we are finally going to prove Theorem 22.3, Arthur’s key geo-
metric result needed for the local trace formula (see Lemma 4.4 in [Art91a]). The
reader may wish to skip ahead to the statement of this theorem before trying to
digest the lemmas below.

As usual we are working with the split group G over the p-adic field F . Recall
that X denotes the set G/K and that x0 denotes its base-point. As in 20.3, we
denote by d(x, y) the metric on the building obtained from some Euclidean norm
on a. For convenience we assume that all roots have length less than or equal to 1
in this Euclidean norm. As in 20.3, for x ∈ X we put d(x) := d(x, x0).

22.1. Main steps in the proof. The main steps in the proof of Theorem
22.3 are contained in Lemmas 22.1 and 22.2 below.

Consider a Borel subgroup B = AN and a parabolic subgroup P = MU such
that P ⊃ B and M ⊃ A. Put BM := B ∩M , a Borel subgroup of M . We write ∆
for the set of simple roots of A (with respect to B). Then ∆ is the disjoint union
of ∆M and ∆U , where ∆M is the set of simple roots of A in M , and ∆U is the set
of simple roots of A that occur in Lie(U). As usual we write RU for the set of all
roots of A that appear in Lie(U). We write P̄ = MŪ for the parabolic subgroup
opposite to P .

Recall that we have identified X∗(A) with A/(A ∩K) by sending ν to πν . For
a ∈ A we write νa for the element of X∗(A) corresponding to the image of a in
A/(A ∩ K). For d ≥ 0 we denote by A(d) the set of elements a ∈ A such that
〈α, νa〉 ≥ 0 for all α ∈ ∆M and 〈α, νa〉 ≥ d for all α ∈ ∆U . Note that if a ∈ A(d),
then

(22.1.1) 〈α, νa〉 ≥ d ∀α ∈ RU ,

as follows from the fact that any α ∈ RU is a non-negative integral linear combina-
tion of roots in ∆ with some root in ∆U occurring with non-zero coefficient.

For x1, x2 ∈ X we have the invariant inv(x1, x2) from 3.4. We now write this
invariant as inv(x1, x2)B , to emphasize that within the relevant Weyl group orbit
of coweights we are taking the unique one that is dominant with respect to B.
We write inv(x1, x2)P for the image of inv(x1, x2) under the canonical surjection
X∗(A) → ΛM (see 4.5 for a discussion of ΛM ).

Recall also the map HP : G → ΛM defined in 12.1. This map descends to a
map, also called HP , from X to ΛM .

For x1, x2 ∈ X we are going to show that there exists d ≥ 0 (depending on the
points x1, x2), such that

(22.1.2) inv(ax2, x1)P = νa + HP (x2)−HP̄ (x1)

for all a ∈ A(d). Here we have abused notation slightly by writing νa when we really
mean its image under the canonical surjection X∗(A) → ΛM . This assertion is the
main ingredient in the proof of the key geometric result. However, we need some
control on how big d needs to be, and in fact we will show that d grows linearly
with d(x1), d(x2). More precisely, we have the following lemma.

Lemma 22.1. There exists c > 0 such that for all x1, x2 ∈ X

(22.1.3) a ∈ A(d) =⇒ inv(ax2, x1)P = νa + HP (x2)−HP̄ (x1)

so long as d ≥ c(1 + d(x1) + d(x2)).
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Proof. For each x ∈ X we choose, once and for all, elements mx ∈M , ux ∈ U ,
m̄x ∈M , ūx ∈ Ū such that

(22.1.4) uxmxx0 = x = ūxm̄xx0.

The lemma is an easy consequence of the following two statements. These state-
ments involve elements x1, x2 ∈ X. To simplify notation we put m̄1 := m̄x1 ,
ū1 := ūx1 , m2 := mx2 , u2 := ux2 , so that

x1 = ū1m̄1x0(22.1.5)

x2 = u2m2x0.(22.1.6)

Statement 1. There exists c1 > 0 such that for all x1, x2 ∈ X

a ∈ A(d) =⇒ inv(ax2, x1)B = inv(am2x0, m̄1x0)B

so long as d ≥ c1(1 + d(x1) + d(x2)).
Statement 2. There exists c2 > 0 such that for all x1, x2 ∈ X

a ∈ A(d) =⇒ inv(am2x0, m̄1x0)B = invM (am2x0, m̄1x0)BM

so long as d ≥ c2(1 + d(x1) + d(x2)). Here invM is the analog for the group M of
inv for G.

First we check that the lemma follows from these two statements. Indeed,
take c to be the maximum of c1 and c2. Then, so long as a ∈ A(d) with d ≥
c(1 + d(x1) + d(x2)), we have inv(ax2, x1)B = invM (am2x0, m̄1x0)BM

. Therefore
inv(ax2, x1)P is the image of invM ((am2x0, m̄1x0)BM

under X∗(A) → ΛM , namely

HM (m̄−1
1 am2) = −HM (m̄1) + HM (a) + HM (m2)

= −HP̄ (x1) + νa + HP (x2).

Next we prove Statement 1. We begin by observing that

(22.1.7) inv(ax2, x1)B = inv(am2x0, m̄1x0)B

so long as

(22.1.8) au2a
−1 fixes x1

and

(22.1.9) a−1ū1a fixes m2x0.

Indeed, the first condition ensures that inv(ax2, x1)B = inv(am2x0, x1)B, while the
second ensures that inv(am2x0, x1)B = inv(am2x0, m̄1x0)B .

If a ∈ A(d) with d ' 0, then au2a
−1 and a−1ū1a will be very close to the

identity element, so (22.1.8) and (22.1.9) will hold. Lemma 19.4 allows us to make
this rough statement precise. In that lemma appears a norm ‖ · ‖G on G(F ). It is
now convenient to take this norm to be of the special type discussed in 18.11, so
that

(22.1.10) ‖g‖G = exp d(g) = exp d(gx0).

Since P is closed in G, the restriction of ‖·‖G to P (F ) is a valid norm on P (F ),
and the same is true for M and U . Moreover, as a variety P is the product of M
and U . Thus both ‖mu‖G and sup{‖m‖G, ‖u‖G} are valid norms on P (F ), and
therefore there exist positive constants D1, R1 such that

(22.1.11) sup{‖m‖G, ‖u‖G} ≤ D1‖mu‖R1
G

for all m ∈M and u ∈ U .



492 ROBERT E. KOTTWITZ

By Lemma 19.4 there exist positive constants D2, R2, S2 such that (22.1.8)
holds so long as

(22.1.12) inf{|α(a)|−1 : α ∈ RU} ≥ D2‖u2‖R2
G ‖ū1m̄1‖S2

G .

Using (22.1.11) and (22.1.12) together, we see that there exist positive constants
D,R, S such that (22.1.8) holds so long as

(22.1.13) inf{|α(a)|−1 : α ∈ RU} ≥ D‖u2m2‖R
G‖ū1m̄1‖S

G.

The logarithm of the right-hand side of (22.1.13) is

logD + Rd(x2) + Sd(x1).

Bearing in mind (22.1.1), we see that there exists c3 > 0 such that (22.1.8)
holds for all a ∈ A(d) so long as

(22.1.14) d ≥ c3(1 + d(x1) + d(x2)).

A rather similar argument shows that there exists c4 > 0 such that (22.1.9) holds
for all a ∈ A(d) so long as

(22.1.15) d ≥ c4(1 + d(x1) + d(x2)).

It is now clear that Statement 1 holds for c1 = sup{c3, c4}.
Finally, we prove Statement 2. Put

λ := inv(am2x0, m̄1x0)B ∈ X∗(A)(22.1.16)

λM := invM (am2x0, m̄1x0)BM
∈ X∗(A).(22.1.17)

We need to prove that λ = λM when a ∈ A(d) with d sufficiently large. Note
that λ, λM lie in the same orbit of the Weyl group W , and that λ is dominant
for B. Thus, in order to ensure that λM = λ, it is enough to ensure that λM is
dominant for B. It is automatic that λM is dominant for BM , so we just need to
ensure that

(22.1.18) 〈α, λM 〉 ≥ 0 ∀α ∈ ∆U .

Recall that we have used our chosen Euclidean norm on a to get a metric d(x, y)
on X. Of course this can be done for M as well as G, so that we also get a metric
dM (xM , yM ) on XM := M/M ∩K. The set XM can be identified with a subset of
X, and the metric on X extends the one on XM .

Using Lemma 21.2 for the group M , we see that λM lies in the closed ball
of radius d(m̄1x0, x0) about invM (am2x0, x0) = invM (m2x0, a

−1x0), which in turn
lies in the closed ball of radius d(m2x0, x0) about invM (x0, a

−1x0) = νa. Recall that
we are assuming that all roots have norm less than or equal to 1 in the Euclidean
norm on a. Therefore for any α ∈ ∆U we have

(22.1.19) |〈α, λM 〉 − 〈α, νa〉| ≤ d(m̄1x0, x0) + d(m2x0, x0).

Using (22.1.11) (and its analog for P̄ ), we see that there exists c2 > 0 such that

(22.1.20) |〈α, λM 〉 − 〈α, νa〉| ≤ c2
(
1 + d(x1) + d(x2)

)
.

Thus (22.1.18) will hold so long as

(22.1.21) 〈α, νa〉 ≥ c2
(
1 + d(x1) + d(x2)

)
for all α ∈ ∆U , proving that Statement 2 holds for the constant c2 that we have
constructed. �
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In the next lemma we use the usual partial order ≤ on X∗(A) determined by
our choice of Borel subgroup B. Thus x ≤ y if and only if y − x is a non-negative
integral linear combination of simple coroots.

Lemma 22.2. There exists cB > 0 having the following property. For any
x1, x2 ∈ X and any µ ∈ X∗(A) satisfying

(22.1.22) 〈α, µ〉 ≥ cB

(
1 + d(x1) + d(x2)

)
∀α ∈ ∆

the following two statements hold.
(1) The coweight µ−HB(x2) + HB̄(x1) is dominant for B.
(2) For a ∈ A such that νa is dominant for B the condition inv(ax2, x1)B ≤ µ

is equivalent to the condition νa ≤ µ−HB(x2) + HB̄(x1).

Proof. We are going to show that we can take cB to be 1 + c, where c is
the positive constant appearing in the statement of Lemma 22.1, but chosen large
enough to work for all parabolic subgroups P containing B. Consider x1, x2, µ
satisfying the hypothesis (22.1.22).

It follows from easily from Lemma 20.4 that the first conclusion of the lemma
holds. It remains to verify the second conclusion, so now consider an element a ∈ A
such that νa is dominant for B. To simplify notation we put λ := inv(ax2, x1)B

and we abbreviate d(x1), d(x2) to d1, d2 respectively.
The parabolic subgroups P containing B are in one-to-one correspondence with

subsets of ∆ (by making P = MU correspond to the subset ∆M ). Now take
P = MU to be the unique parabolic subgroup containing B for which

(22.1.23) ∆M = {α ∈ ∆ : 〈α, νa〉 ≤ c(1 + d1 + d2)},
with c as chosen above. By Lemma 22.1 we then have the equality

(22.1.24) λ = νa + HP (x2)−HP̄ (x1)

in ΛM (with λ and νa being regarded as elements in ΛM via the canonical surjection
X∗(A) → ΛM ), or, equivalently,

(22.1.25) λ and νa + HB(x2)−HB̄ have the same image in ΛG

and

(22.1.26) 〈�α, λ〉 = 〈�α, νa + HB(x2)−HB̄(x1)〉 ∀α ∈ ∆U .

Here �α is the fundamental weight corresponding to α (see the discussion preceding
Lemma 11.2).

We are going to apply Lemma 11.2, and in order to do so we first need to verify
two inequalities:

〈α, λ〉 ≤ 〈α, µ〉 ∀α ∈ ∆M(22.1.27)

〈α, νa + HB(x2)−HB̄(x1)〉 ≤ 〈α, µ〉 ∀α ∈ ∆M .(22.1.28)

In view of our hypothesis on µ, it is enough to check that the left sides of both these
inequalities are less than or equal to cB(1 + d1 + d2). For the first inequality this
follows from Corollary 21.3 and the definition of ∆M , and for the second inequality
it follows from Lemma 20.4 and the definition of ∆M .

Now using Lemma 11.2 together with (22.1.25), (22.1.26), (22.1.27), (22.1.28),
we see that λ ≤ µ if and only if νa + HB(x2) − HB̄(x1) ≤ µ, which finishes the
proof of the lemma. �
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22.2. Key geometric result. In this section we no longer fix the Borel sub-
group B, as we need to consider all B ∈ B(A) at once. However, it will be convenient
to pick one such Borel subgroup and call it B0. We use B0 to define dominance
and the partial order ≤ on coweights.

In Lemma 22.2 there appears a positive constant cB . We now put c := sup{cB :
B ∈ B(A)} in order to get a constant that works for all B at once. This is the
positive constant c appearing in our next result, the key geometric result needed
for the local trace formula, which, in view of its importance, we give the status of
a theorem.

Theorem 22.3 (Arthur [Art91a]). Let x1, x2 ∈ X and let µ be a dominant
coweight satisfying the inequality

(22.2.1) 〈α, µ〉 ≥ c
(
1 + d(x1) + d(x2)

)
for every root α of A that is simple for B0. Then µB−HB(x2)+HB̄(x1) is a special
(G,A)-orthogonal set. Here µB denotes the unique element in the Weyl group orbit
of µ that is dominant with respect to B.

Moreover for any a ∈ A the inequality inv(ax2, x1) ≤ µ is satisfied if and only
if the following two conditions hold:

(1) νa lies in the convex hull H of the set {µB−HB(x2)+HB̄(x1) : B ∈ B(A)}.
(2) In ΛG there is an equality νa = µ−HG(x2) + HG(x1).

In the second condition we have written simply νa and µ when we really mean their
images under the canonical surjection X∗(A) � ΛG.

Proof. We begin by noting that µB is a positive orthogonal set (see 12.8).
Moreover HB(x2) is a positive orthogonal set (see 12.1), and HB̄(x1) is a negative
orthogonal set (see the end of 12.4). So µB −HB(x2) +HB̄(x1) is the difference of
the positive orthogonal set µB and the negative orthogonal set HB(x2) −HB̄(x1)
and in general is neither positive nor negative. However it will be special (hence
positive) when µ is big enough. In fact our assumption on µ does guarantee that
µ is big enough, since from the first part of Lemma 22.2, we see that for each
B ∈ B(A) the coweight µB −HB(x2) + HB̄(x1) is dominant for B.

Choose B ∈ B(A) such that νa is dominant for B. From Lemma 12.2 it follows
that νa satisfies conditions (1) and (2) in the theorem if and only if

(22.2.2) νa ≤
B
µB −HB(x2) + HB̄(x1),

and by the second part of Lemma 22.2 this happens if and only if

inv(ax2, x1)B ≤
B
µB,

or, equivalently, if and only if

inv(ax2, x1)B0 ≤
B0

µB0 .

�

23. The weight factors ũM and ṽM

We are almost ready to prove the local trace formula. Before we can do so we
need to introduce some more weight factors and relate them to toric varieties.
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23.1. Weight factor ũA. Recall the definition of the weight factor uA occur-
ring in our preliminary form of the local trace formula: uA(g1, g2;µ) is the measure
of the set of a ∈ A such that

(23.1.1) inv(ax2, x1) ≤ µ,

where x1 = g1x0, x2 = g2x0. We use the Haar measure on A giving measure 1
to A ∩ K. From the key geometric result (Theorem 22.3) we see that when the
dominant coweight µ is big enough relative to g1, g2, the (G,A)-orthogonal set

B �→ µB −HB(g2) + HB̄(g1)

is positive and the weight factor uA(g1, g2;µ) is equal to the number of coweights
ν ∈ X∗(A) satisfying the following two conditions:

(1) ν lies in the convex hull of the points µB −HB(g2) + HB̄(g1),
(2) in ΛG the elements ν and µ−HG(g2) + HG(g1) are equal.

It is well-known that such counting problems for lattice points in convex poly-
hedra arise naturally in the theory of toric varieties. Fulton’s book [Ful93] is an
excellent reference for all that we will need about toric varieties.

What torus do we need? We write Â for the Langlands dual torus of A; it is
a complex torus characterized by the property that X∗(Â) = X∗(A) (and hence
X∗(Â) = X∗(A)). We let Ĝ ⊃ Â be a Langlands dual group for G: the roots
(respectively, coroots) of Â in Ĝ are the coroots (respectively, roots) of A in G.
We write Z(Ĝ) for the center of Ĝ; thus the adjoint group of Ĝ is Ĝ/Z(Ĝ) with
maximal torus Â/Z(Ĝ).

The toric variety V = V G we need is a toric variety for the torus Â/Z(Ĝ).
To specify V we must say which fan we are using. We take the Weyl fan in
X∗(Â/Z(Ĝ)) ⊗Z R. This is the fan determined by the root hyperplanes in this
vector space. Thus the cones of maximal dimension in our fan are the closures of
the Weyl chambers in X∗(Â/Z(Ĝ))⊗Z R, and there is one cone in the fan for each
P ∈ F(A), the set of parabolic subgroups P of G such that P ⊃ A. The toric
variety V is projective, and since Ĝ/Z(Ĝ) is adjoint, it is also non-singular.

The torus Â/Z(Ĝ) acts on V and hence Â also acts on V (through Â �
Â/Z(Ĝ)). The Â-orbits in V are in one-to-one correspondence with cones in the
Weyl fan, that is, with parabolic subgroups P ∈ F(A); we write VP for the orbit of
Â indexed by P . Each orbit has a natural base point, and in fact

VP = Â/Z(M̂)

where M is the Levi component of P (that is, the unique Levi component of P that
contains A), and M̂ is the corresponding Levi subgroup of Ĝ containing Â (the one
whose roots are the coroots of M). The closure V P of VP is⋃

Q:Q⊂P

VQ

and is the toric variety V M associated to the Weyl fan for (M̂/Z(M̂), Â/Z(M̂)).
Let L be an Â-equivariant line bundle on V . At each Â-fixed point in V the

torus Â acts by a character on the line (in our line bundle) at that fixed point.
There is one fixed point for each B ∈ B(A) (namely the single point in the orbit
VB = Â/Â), so for each B ∈ B(A) we get a character xB ∈ X∗(Â), or, in other
words, a cocharacter xB ∈ X∗(A).



496 ROBERT E. KOTTWITZ

Since Z(Ĝ) acts trivially on V , there is a single character of Z(Ĝ) by which
Z(Ĝ) acts on every line in our line bundle; therefore all the elements xB ∈ X∗(A)
have the same image in the quotient ΛG of X∗(A). (Note that ΛG can be identified
with X∗(Z(Ĝ)). But much more is true. For any P ∈ F(A) the restriction of
L to V P = V M is an equivariant line bundle on the toric variety V M for M ;
therefore, applying what has already been said to M rather than G, we see that
the points xB for all B ∈ B(A) such that B ⊂ P have the same image in ΛM ; thus
(xB) is a (G,A)-orthogonal set in X∗(A). In fact L �→ (xB) is an isomorphism
from the group of isomorphism classes of Â-equivariant line bundles on V to the
group of (G,A)-orthogonal sets in X∗(A). Restriction of equivariant line bundles
from V to V P = V M corresponds to sending the orthogonal set (xB)B∈B(A) to the
(M,A)-orthogonal set (xB)B∈B(A):B⊂P , the operation on orthogonal sets discussed
in 12.2.

If the orthogonal set is positive, all the higher cohomology groups Hi(V,L)
(i > 0) vanish, and as an Â-module H0(V,L) is multiplicity free and contains the
character x ∈ X∗(Â) = X∗(A) if and only if the following two conditions hold:

(1) x lies in the convex hull of {xB : B ∈ B(A)},
(2) the image of x in ΛG coincides with the common image of the points xB .

For any line bundle L on V we put

EP (L) :=
∑

i

(−1)i dimHi(V,L).

For any g1, g2 ∈ G and any dominant coweight µ we let L(g1,g2;µ) be an equivariant
line bundle on V such that the associated (G,A)-orthogonal set in X∗(A) is

B �→ µB −HB(g2) + HB̄(g1),

and we put

(23.1.2) ũA(g1, g2;µ) := EP (L(g1,g2;µ)).

It then follows from Theorem 22.3 that when µ is big compared to g1, g2, the
weight factors ũA(g1, g2;µ) and uA(g1, g2;µ) coincide. In our next version of the
local trace formula (see 24.3), the weight factor uA will be replaced by the more
pleasant weight factor ũA. Before we can carry this out, we need to introduce
modified weight factors ũM for all Levi subgroups M containing A.

23.2. Weight factor ũM . We have treated the case M = A. The general
case is similar, though slightly more complicated, as we will now see. The toric
variety YM = Y G

M we need is a non-singular projective toric variety for the torus
Z(M̂)/Z(Ĝ). Note that the quotient Z(M̂)/Z(Ĝ) really is a torus, although in
general Z(Ĝ) and Z(M̂) are only diagonalizable groups. Since Z(M̂)/Z(Ĝ) is the
center of the Levi subgroup M̂/Z(Ĝ) in the adjoint group Ĝ/Z(Ĝ), we may as well
temporarily simplify notation by assuming that Ĝ is adjoint (or, equivalently, that
G is semisimple and simply connected).

Since we are now assuming that Ĝ is adjoint, the group Z(M̂) is a torus, and
in fact is a subtorus of Â, so that X∗(Z(M̂)) is a subgroup of X∗(Â). Inside the
real vector space X∗(Â)R obtained from X∗(Â) by tensoring over Z with R we have
the Weyl fan, and the subspace X∗(Z(M̂))R of X∗(Â)R is a union of cones in the
Weyl fan; thus, the collection of cones in the Weyl fan that happen to lie inside the



THE WEIGHT FACTORS ũM AND ṽM 497

subspace X∗(Z(M̂))R gives us a fan in X∗(Z(M̂))R, hence a toric variety YM = Y G
M

for Z(M̂), which is obviously complete and easily seen to be non-singular (again
because Ĝ is adjoint) and projective.

The index set for the cones in this fan in X∗(Z(M̂))R is F(M), the set of
parabolic subgroups Q of G such that Q ⊃ M . Thus the decomposition of YM as
a union of Z(M̂)-orbits is given by

YM =
⋃

Q∈F(M)

Z(M̂)/Z(L̂Q),

where LQ denotes the unique Levi component of Q that contains M .
We need to understand how YM is related to V . Since the fan used to pro-

duce YM can also be viewed as a fan in X∗(Â)R whose support is the subspace
X∗(Z(M̂))R, it also produces a toric variety UM for Â, sitting inside V as an Â-
stable open subvariety. The decomposition of UM as a union of Â-orbits is

UM =
⋃

Q∈F(M)

VQ =
⋃

Q∈F(M)

Â/Z(L̂Q).

Moreover YM sits inside V as a closed Z(M̂)-stable subspace, and the multiplication
map Â× YM → V has image UM and induces an isomorphism

(23.2.1) Â ×
Z(M̂)

YM � UM .

(The space on the left side of the identification is the quotient of Â × YM by the
equivalence relation (az, y) ∼ (a, zy).)

Consider any Q = LU ∈ F(A) (with L chosen so that L ⊃ A, as usual). If
Q /∈ F(M), then V Q does not meet YM . On the other hand, if Q ∈ F(M), so that
L ⊃M , then

UM ∩ V Q =
⋃

{Q′∈F(M):Q′⊂Q}
VQ′ ,

and since {Q′ ∈ F(M) : Q′ ⊂ Q} can be identified with FL(M), the set of parabolic
subgroups of L containing M , we see that

UM ∩ V Q = Â ×
Z(M̂)

Y L
M .

From these considerations we obtain the following result.

Lemma 23.1. Let M be a Levi subgroup of G containing A and let Q = LU
be a parabolic subgroup of G whose Levi component L contains A. Recall that V Q

can be identified with the toric variety V L. If Q /∈ F(M), then V Q does not meet
YM . Otherwise L contains M , and the non-singular closed subvarieties V Q = V L

and YM of V intersect transversely, their intersection being the non-singular closed
subvariety Y L

M in V L.

We have now completed our discussion of YM in the case Ĝ is adjoint, so we
return to the case of a general split group G and Levi subgroup M ∈ L(A). We
write G0 for the simply connected cover of the derived group of G, and M0 for
the Levi subgroup in G0 obtained as the inverse image of M under G0 → G; thus
Ĝ0 = Ĝ/Z(Ĝ), M̂0 = M̂/Z(Ĝ), and Z(M̂0) = Z(M̂)/Z(Ĝ).
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We have already defined the toric variety Y G0
M0

for Z(M̂0) = Z(M̂)/Z(Ĝ). Using
the canonical surjection Z(M̂) � Z(M̂0), we now view Y G0

M0
as a space on which

Z(M̂) acts, and rename it Y G
M . Thus, as a space, Y G

M depends only on G0, but
Z(M̂) and its action on Y G

M reflect G and M .

23.3. Equivariant line bundles on YM . The decomposition of YM into
Z(M̂)-orbits

YM =
⋃

Q∈F(M)

Z(M̂)/Z(L̂Q),

proved in the case Ĝ is adjoint, obviously remains valid in the general case, since

Z(M̂)/Z(L̂Q) = (Z(M̂)/Z(Ĝ))/(Z(L̂Q)/Z(Ĝ)).

Thus the fixed points of Z(M̂) in YM are indexed by P(M). Given P = MU ∈
P(M), the fixed point in YM indexed by P is the unique point in the 1-element
set V P ∩ YM . The character group of the diagonalizable group Z(M̂) is ΛM , as
we noted before. A Z(M̂)-equivariant line bundle M on YM gives us a (G,M)-
orthogonal set of points yP ∈ ΛM , with yP defined as the character through which
Z(M̂) acts on the line (in M) at the fixed point indexed by P , and in this way
we get an isomorphism from the group of isomorphism classes of Z(M̂)-equivariant
line bundles on YM to the group of (G,M)-orthogonal sets in ΛM . Note that all
the points yP (with P ranging through P(M)) have the same image in ΛG.

23.4. Restriction of equivariant line bundles from V to YM . Now sup-
pose that L is an Â-equivariant line bundle on V . From L we obtain a (G,A)-
orthogonal set of points xB ∈ X∗(A). The restriction L|YM

of L to the subspace
YM is a Z(M̂)-equivariant line bundle on YM , hence yields a (G,M)-orthogonal set
of points yP in ΛM . Now yP is the character on which Z(M̂) acts on the line in L at
the unique point in V P ∩YM , but since Z(M̂) acts trivially on V P = V M , it acts by
a single character on the lines in L at all points in V P (as we have already discussed
in 23.1), showing that yP is the common image xP of the points xB (B ∈ B(A)
such that B ⊂ P ) under X∗(A) � ΛM . In other words (yP ) = (xP ), where (xP ) is
the (G,M)-orthogonal set in ΛM obtained from the (G,A)-orthogonal set (xB) by
the procedure in 12.5.

23.5. Euler characteristics of Z(M̂)-equivariant line bundles on YM .
LetM be a Z(M̂)-equivariant line bundle on YM with associated (G,M)-orthogonal
set (yP )P∈P(M) in ΛM . We put

(23.5.1) EP (M) :=
∑

i

(−1)i dimHi(YM ,M).

More generally, for s ∈ Z(M̂) we put

(23.5.2) EP (s,M) :=
∑

i

(−1)i tr
(
s;Hi(YM ,M)

)
,

so that we recover EP (M) when s = 1.
If the (G,M)-orthogonal set (yP ) associated to M is positive, the higher co-

homology groups Hi(YM ,M) (i > 0) vanish, and the representation of Z(M̂) on
H0(YM ,M) is multiplicity free, with the character y ∈ X∗(Z(M̂)) = ΛM appearing
in H0(YM ,M) if and only if
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(1) The image ȳ of y under ΛM → aM lies in the convex hull of the points ȳP

obtained as images under ΛM → aM of the points yP in our orthogonal
set.

(2) The image of y in ΛG coincides with the common image in ΛG of the
points yP .

Thus, when (yP ) is positive, the number of points y ∈ ΛM satisfying the two
conditions above is equal to EP (M).

However the weight factor uM (g1, g2;µ) (for large µ) involves counting points
in X∗(AM ) rather than ΛM , a circumstance which must be be taken into account.
Recall the canonical injective homomorphism X∗(AM ) ↪→ ΛM , which we use to
identify X∗(AM ) with a subgroup of finite index in ΛM . We write ZM for the
Pontryagin dual group

(23.5.3) ZM := Hom(ΛM/X∗(AM ),C×)

of ΛM/X∗(AM ). It is easy to see that ZM can be identified with the subgroup of
Z(M̂) = Hom(ΛM ,C×) obtained as the center of the derived group of M̂ .

When (yP ) is positive, Fourier analysis on the finite abelian group ZM shows
that the number of points y ∈ X∗(AM ) satisfying conditions (1) and (2) above is
equal to

(23.5.4) |ZM |−1
∑

s∈ZM

EP (s,M).

23.6. Definition of the weight factors ũM and ṽM . Let g1, g2 ∈ G and let
µ be a dominant coweight. As in 23.1 we get an Â-equivariant line bundle L(g1,g2;µ)

on V , which we restrict to the subspace YM , obtaining L(g1,g2;µ)|YM
.

Define the weight factors ũM and ṽM by

ũM (g1, g2;µ) := |ZM |−1
∑

s∈ZM

EP (s,L(g1,g2;µ)|YM
),(23.6.1)

ṽM (g1, g2;µ) := |ZM |−1EP (L(g1,g2;µ)|YM
).(23.6.2)

23.7. Agreement of uM and ũM when µ is big. In this subsection we will
check that

uM (g1, g2;µ) = ũM (g1, g2;µ)
when µ is big enough relative to g1, g2.

Indeed, let g1, g2 ∈ G, let x1, x2 ∈ X be the transforms of the basepoint
x0 ∈ X = G/K under g1, g2 respectively, and let µ be a dominant coweight big
enough that the conclusions of Theorem 22.3 hold for x1, x2, µ. Put

xB := µB −HB(x2) + HB̄(x1),

so that (xB) is a special (G,A)-orthogonal set in X∗(A), and let (xP )P∈P(M) be the
(G,M)-orthogonal set in ΛM obtained from (xB) as in 23.4 (and 12.5). From (8.4.5)
and Theorem 22.3, we see that uM (g1, g2;µ) is the number of points x ∈ X∗(AM )
such that

(1) The point x lies in the convex hull of the points {xB : B ∈ B(A)}.
(2) The image of x in ΛG coincides with the common image in ΛG of the

points xB .
On the other hand, we have designed our definitions so that ũM (g1, g2;µ) is equal
to the number of points x ∈ X∗(AM ) such that
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(1′) The image x̄ of x under X∗(AM ) ↪→ ΛM → aM lies in the convex hull of
the points x̄P obtained as images under ΛM → aM of the points xP .

(2′) The image of x in ΛG coincides with the common image in ΛG of the
points xP .

Clearly conditions (2) and (2′) are equivalent. Moreover (1) and (1′) are equiv-
alent by Proposition 12.1. Therefore

uM (g1, g2;µ) = ũM (g1, g2;µ),

as desired.

23.8. Qualitative behavior of EP (s,M). The group E := PicZ(M̂)(YM ) of

isomorphism classes of Z(M̂)-equivariant line bundles M on YM is a finitely gener-
ated abelian group, isomorphic to the group of (G,M)-orthogonal sets (yP )P∈P(M)

in ΛM . There is an obvious embedding ΛM ↪→ E, obtained by using y ∈ ΛM =
X∗(Z(M̂)) to define a Z(M̂)-equivariant line bundle on a point, and then pulling
this back to YM ; the corresponding orthogonal set is the one for which yP = y for
all P ∈ P(M).

The quotient E/ΛM is isomorphic to Pic(YM ) � H2(YM ,Z), known to be a
free abelian group (whose rank is easy to compute [Ful93]). It is also known that
there exists (an obviously unique) polynomial F of degree dimYM = dim(AM/AG)
on the Q-vector space E/ΛM ⊗Z Q = H2(YM ,Q) such that

(23.8.1) EP (M) = F (M).

(In the right side of this equality we are using E � E/ΛM to view F as a function
on E.)

Slightly more generally, now consider s ∈ Z(Ĝ). Since Z(Ĝ) acts trivially
on YM , it acts on all lines in M by the same character, namely the character
z ∈ ΛG = X∗(Z(Ĝ)) obtained as the common image in ΛG of the points yP .
Therefore

(23.8.2) EP (s,M) = 〈s, z〉F (M)

for the same polynomial F as before.
However, we need to understand the qualitative nature of the function M �→

EP (s,M) for any s ∈ Z(M̂). For this it is convenient to use the localization theo-
rem for equivariant K-theory [Nie74, BFQ79] (see also [Bri88]), which expresses
EP (s,M) in terms of contributions from the various connected components of the
fixed point set Y s

M of s on YM . Each of these connected components is a non-
singular projective toric variety for some quotient of Z(M̂), and this leads to the
conclusion that EP (s,M) can be expressed as a finite sum of the form

(23.8.3)
∑

P∈P(M)

〈s, yP 〉Fs,P (M)

where Fs,P is some polynomial function on (E/ΛM )⊗Z Q of degree no bigger than
dim(AM/AG). Note (although it causes no trouble) that the polynomials Fs,P (M)
are not unique (unless s is generic in Z(M̂)), since the characters (yP ) �→ 〈s, yP 〉
on E (one for each P ∈ P(M)) need not be distinct.

Consequently (bearing in mind Lemma 20.4), we see that the weight factors
ũM , ṽM both satisfy the same kind of estimate (see 20.5) as uM , namely, there
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exists a positive constant c such that

(23.8.4) ũM (g1, g2;µ) ≤ c(1 + log ‖g1‖M\G + log ‖g2‖M\G + ‖µ‖E)dim(AM )

(and the same for ṽM ).

24. Local trace formula

24.1. The goal. In this section we will prove various versions of the local
trace formula for our split group G. All versions will have the following shape.
Recall that L = L(A) denotes the set of Levi subgroups M of G such that M ⊃ A.
For each M ∈ L we will have a weight factor wM (g1, g2) on G × G, left invariant
under AM ×AM (and, in some cases, even under M×M) and right invariant under
K × K. Given such a family w = (wM )M∈L, we can define a distribution Tw on
g× g by

Tw(f1, f2) =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·∫
AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)wM (h, g) dḣ dġ dX,

(24.1.1)

f1, f2 being two functions in C∞
c (g), so long as all these triple integrals make sense.

Here the notation is the same as in our second form of the Weyl integration formula
(see 7.11).

For each of the weight factors we will consider, the integrals will make sense,
and we will have a version of the local trace formula, namely the equality

(24.1.2) Tw(f1, f2) = Tw(f̂1, f̌2).

24.2. Weight factors uM . We already know (see 8.4) that for any domi-
nant coweight µ the local trace formula holds for the weight factors uM (g1, g2, µ).
However, it seems that these weight factors are too complicated to be of much use.

24.3. Weight factors ũM . Again let µ be a dominant coweight. Let us now
check that the local trace formula holds for the weight factors ũM (g1, g2;µ). To
this end we need to choose an auxiliary dominant regular coweight µ1 (so that
〈α, µ1〉 > 0 for every simple root α). Replacing µ1 by Nµ1 for some positive integer
N , we may assume that

(24.3.1) 〈s, µ1〉 = 1

for all M ∈ L and all s ∈ ZM .
Fix f1, f2 ∈ C∞

c (g) and define complex valued functions ϕ(d), ϕ̃(d) on the set
of non-negative integers d by the following rules:

ϕ(d) := Tw(f1, f2) with wM (g, h) = uM (g, h;µ + dµ1),(24.3.2)

ϕ̃(d) := Tw(f1, f2) with wM (g, h) = ũM (g, h;µ + dµ1).(24.3.3)

In view of the discussion in 23.8 our assumption (24.3.1) on µ1 guarantees that
ϕ̃ is a polynomial function of d.

We claim that ϕ̃(d)−ϕ(d) → 0 as d→ +∞. Obviously ϕ̃(d)−ϕ(d) = Twd
(f1, f2)

for the weight factors wd defined by

(wd)M (g, h) := ũM (g, h;µ + dµ1)− uM (g, h;µ + dµ1),
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and for fixed g, h we know that this difference is 0 once d is sufficiently big. Therefore
the integrands in the integrals defining Twd

approach 0 pointwise, and to conclude
that ϕ̃(d)−ϕ(d) → 0, it is enough to justify the application of Lebesgue’s dominated
convergence theorem.

For this we need an estimate for (wd)M that is independent of d, unlike the
estimates we already have for the two terms we took the difference of to get wd,
which of course do depend on d.

However, our first step is to use the estimates we already have (see Lemma 20.7
and the inequality (23.8.4)) for uM and ũM to conclude that there exists a positive
constant c such that

(24.3.4) |(wd)M (g, h)| ≤ c(1 + log ‖g‖M\G + log ‖h‖M\G + d)dim(AM ).

Noting that for any simple root α there is an inequality 〈α, µ + dµ1〉 ≥ d, we see
from Theorem 22.3 and the discussion in 23.7 that there exists a positive constant
c′ such that (wd)M (g, h) = 0 unless

d ≤ c′(1 + d(g) + d(h))

(with d(g) := d(gx0, x0) = log ‖g‖G). Since (wd)M (g, h) is left (AM × AM )-
invariant, it follows that (wd)(g, h) = 0 unless

d ≤ c′(1 + dAM\G(g) + dAM\G(h)),

where

dAM\G(g) := inf{d(aMg) : aM ∈ AM},

Also, since log ‖g‖M\G = inf{d(mg) : m ∈M}, we trivially have

log ‖g‖M\G ≤ dAM\G(g).

We conclude that for all d ≥ 0 there is an inequality

|(wd)M (g, h)| ≤ c
(
1+dAM\G(g)+dAM\G(h)+c′(1+dAM\G(g)+dAM\G(h))

)dim AM
,

which can be simplified to an inequality of the form

|(wd)M (g, h)| ≤ c′′
(
1 + dAM\G(g) + dAM\G(h)

)dim AM
.

Consider the right side of this estimate as a family of weight factors west. The
integrals appearing in Twest

(f1, f2) are all convergent by Proposition 20.1. Therefore
we have justified the application of Lebesgue’s dominated convergence theorem.

We can summarize what we have done so far as follows: ϕ̃(d) is a polynomial
function of d such that ϕ̃(d) − ϕ(d) → 0 as d → +∞. We used f1, f2 to define
ϕ, ϕ̃; we now indicate this dependence by writing ϕf1,f2 and ϕ̃f1,f2 . The local
trace formula for the weight factors uM tells us that ϕf1,f2 = ϕf̂1,f̌2

. Therefore
ϕ̃f1,f2(d) − ϕ̃f̂1,f̌2

(d) is a polynomial function of d that approaches 0 as d → +∞,
which obviously implies that it is identically 0, or, in other words, that

ϕ̃f1,f2(d) = ϕ̃f̂1,f̌2
(d)

for all d ≥ 0; taking d = 0 we conclude that the local trace formula holds for the
weight factors ũM (g1, g2;µ), as desired.
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24.4. Weight factors ṽM . Recall that ũM was defined by the equality

(24.4.1) ũM (g1, g2;µ) := |ZM |−1
∑

s∈ZM

EP (s,L(g1,g2;µ)|YM
).

It follows from (23.8.3) that the function

(24.4.2) µ �→ EP (s,L(g1,g2;µ)|YM
)

on the monoid of dominant coweights µ has the form

(24.4.3)
∑

w∈W

〈w(s), µ〉Fw

for some collection of polynomial functions Fw of µ. (As usual W denotes the Weyl
group of A.) Applying linear independence of characters on the monoid of dominant
coweights, we conclude that the local trace formula holds for the weight factors
ṽM (g1, g2;µ) (since these were obtained from the weight factors ũM by extracting
the contribution of the trivial character on the monoid of dominant coweights).

24.5. Weight factors ṽM . So far all of our weight factors have been numbers.
We now consider weight factors ṽM (closely related to ṽM ) taking values in K(V )C,
the complexification of the Grothendieck group K(V ) of vector bundles (in the sense
of algebraic geometry) on our toric variety V = V G. The Grothendieck groups
K(YM ) will also play an auxiliary role. Since V , YM are non-singular projective
varieties, we may also view these K-groups as Grothendieck groups of coherent
sheaves.

Consider the closed immersion iM : YM ↪→ V . Thinking of our K-groups in
terms of vector bundles, we have a restriction (pull-back) map

(24.5.1) i∗M : K(V ) → K(YM ),

and thinking of our K-groups in terms of coherent sheaves, we have a push-forward
map

(24.5.2) (iM )∗ : K(YM ) → K(V ).

We now define our K-theoretic weight factor ṽM as follows:

(24.5.3) ṽM (g1, g2) := |ZM |−1(iM )∗i∗M [L(g1,g2)] ∈ K(V )C,

where [L(g1,g2)] denotes the class in K-theory of the line bundle L(g1,g2) on V
obtained by taking L(g1,g2;µ) for µ = 0.

Pushing forward from V to a point, we get a homomorphism

(24.5.4) EP : K(V ) → Z,

whose value on the class of a coherent sheaf F is∑
i

(−1)i dimHi(V,F).

Our definition of ṽM was designed so that

(24.5.5) EP (ṽM (g1, g2)) = ṽM (g1, g2; 0).

Since the local trace formula holds for the weight factors ṽM (g1, g2; 0), it is
reasonable to hope that it will also hold for the weight factors ṽM (g1, g2) (as an
equality between two elements in K(V )C), and we will now check that this really
is the case.
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For this we need to check that for all linear functionals λ : K(V )C → C, the
local trace formula holds for the weight factors vλ

M defined by

vλ
M (g1, g2) := 〈λ, ṽM (g1, g2)〉.

So far we know only that this is true for λ = EP .
Of course we only need to consider a collection of linear functionals λ that

spans the vector space dual to K(V )C. We now define such a collection of linear
functionals λP , one for each parabolic subgroup P = LU ∈ F(A) (with L being
the unique Levi component of P that contains A). Recall that inside V we have
the non-singular closed subvariety V P = V L, the toric variety associated to L. We
define λP (as the complex linear extension of)

K(V ) → K(V P ) → Z,

where the first map is pull-back (restriction) from V to V P and the second is
push-forward from V P = V L to a point.

It follows from Lemma 23.1 that

(24.5.6) vλP

M (g1, g2) =

{
ṽL

M (l1, l2; 0) if M ⊂ L

0 otherwise

where ṽL
M is the weight factor for the Levi subgroup M of L, and where we have

used the Iwasawa decomposition to decompose gi (i = 1, 2) as gi = liuiki for li ∈ L,
ui ∈ U , ki ∈ K.

Using Lemma 13.3 and applying the local trace formula for L (with weight
factors ṽL

M (g1, g2; 0)) to the functions f
(P )
1 and f

(P )
2 on Lie(L), we see that the

local trace formula holds for the weight factors vλP

M and hence for the K-theoretic
weight factors ṽM . Actually, for this we should check that the various measures we
are using in our integrals on L (and in the definition of f �→ f (P )) are compatible
with the ones we are using in our integrals on G, but we are going to omit this
point.

24.6. Weight factors vM and vM . Finally we come to the weight factors
vM we really want, those defined using volumes of convex hulls. These are related
to our K-theoretic weight factors in the following way. The Chern character ch
induces an isomorphism (of C-algebras)

ch : K(V )C � H•(V,C).

We write vM (g1, g2) ∈ H•(V,C) for the image of the weight factor ṽM (g1, g2) ∈
K(V )C under the Chern character isomorphism ch. Since the local trace formula
holds for the weight factors ṽM , it also holds for the weight factors vM .

Consider the linear functional λ on H•(V,C) projecting H•(V,C) onto its sum-
mand H2r(V,C) = C of top degree (with r = dimV = dim(A/AG)). Define yet
another weight factor by

(24.6.1) vM (g1, g2) := 〈λ,vM (g1, g2)〉.

Obviously the local trace formula holds for the weight factors vM . Our next
goal is to express vM in terms of volumes of convex hulls. We cannot do this without
a better understanding of (24.6.1) when M �= A, so we will rewrite (24.6.1) in terms
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of the cohomology ring H•(YM ,C) of YM . Consider the diagram

(24.6.2)

K(YM )C
chM−−−−→ H•(YM ,C)

(iM )∗

; (iM )∗

;
K(V )C

ch−−−−→ H•(V,C)

in which the horizontal arrows are Chern character isomorphisms and the right
vertical map is the usual Gysin push-forward map on cohomology, coming from the
natural map (iM )∗ : H•(YM ,C) → H•(V,C) on homology after we use Poincaré
duality to identify the cohomology of V with its homology, and the same for YM .
We claim that the diagram (24.6.2) is commutative. For this we need to consider
the Riemann-Roch theorem for the morphism iM : YM ↪→ V . Let N denote the
normal bundle to YM in V . To show that (24.6.2) commutes it is enough to show
that the Todd class td(N) is 1 (see the proof of [Ful98, Theorem 15.2]). In fact
more is true: the normal bundle itself is trivial, as one sees from (23.2.1), which
shows that the open neighborhood UM of YM in V is isomorphic to the product
S×YM for any subtorus S of Â/Z(Ĝ) complementary to the subtorus Z(M̂)/Z(Ĝ).

Consider the linear functional λM on H•(YM ,C) projecting H•(YM ,C) onto
its summand H2s(YM ,C) = C of top degree (with s = dimYM = dim(AM/AG)).
Then, as a consequence of the commutativity of the diagram (24.6.2), we have the
equality

(24.6.3) vM (g1, g2) = |ZM |−1〈λM , chM [M(g1,g2)]〉,

whereM(g1,g2) is the restriction of L(g1,g2) to YM , so that the corresponding (G,M)-
orthogonal set in ΛM is HP̄ (g1)−HP (g2).

24.7. Volumes of positive orthogonal sets. We need to specify the mea-
sures with respect to which we take our volumes. Consider a positive (G,M)-
orthogonal set of points (yP )P∈P(M) in ΛM . The points yP all have the same
image in ΛG. Pick y ∈ ΛM having the same image in ΛG as all the points yP .
Then the translated points yP − y all lie in the subgroup Λ0

M := X∗(Z(M̂)/Z(Ĝ))
of X∗(Z(M̂)) = ΛM . Since Λ0

M is a free abelian group, there is a canonical trans-
lation invariant measure on Λ0

M ⊗Z R, namely the one that gives measure 1 to any
fundamental domain for Λ0

M . By definition, we take the volume of the convex hull
of the points yP to be the volume in Λ0

M ⊗Z R (for the measure we just defined) of
the translated points yP − y. (Clearly this is independent of the choice of y.)

24.8. Computation of 〈λM , chM [M]〉 for certain line bundles M. Let
M be a Z(M̂)-equivariant line bundle on YM with associated (G,M)-orthogonal
set (yP )P∈P(M) in ΛM . It is known (see [Ful93]) that when the orthogonal set yP

is positive, 〈λM , chM [M]〉 is equal to the volume of the convex hull of the points
yP .

The map Pic(YM ) → K(YM )C
chM−−−→ H•(YM ,C) λM−−→ C is a homogeneous poly-

nomial function of degree dimYM = dim(AM/AG). Therefore, if yP is a negative
orthogonal set (in the sense that −yP is a positive orthogonal set), 〈λM , chM [M]〉
is equal to (−1)dim(AM /AG) times the volume of the convex hull of the points yP .
(There is no need to replace the points by their negatives since this does not affect
the volume.)
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24.9. Computation of vM in terms of volumes of convex hulls. Since
HP̄ (g1)−HP (g2) is a negative orthogonal set, we conclude that

vM (g1, g2) = (−1)dim(AM /AG)|ZM |−1 vol
(
Hull{HP̄ (g1)−HP (g2) : P ∈ P(M)}

)
.

Thus, for these weight factors vM we have the final version of the local trace
formula:

Theorem 24.1 (Waldspurger [Wal95]). Let f1, f2 ∈ C∞
c (g). Then T (f1, f2) =

T (f̂1, f̌2), where

T (f1, f2) =
∑

M∈L

|WM |
|W |

∑
T∈TM

1
nM

T

∫
treg

|D(X)|·∫
AM\G

∫
AM\G

f1(h−1Xh)f2(g−1Xg)vM (h, g) dḣ dġ dX.

(24.9.1)

24.10. Splitting. Recall that M(g1,g2) is the Z(M̂)-equivariant line bundle
on YM associated to the negative (G,M)-orthogonal set P �→ HP̄ (g1) − HP (g2).
Thus it is natural to introduce (for g ∈ G) the Z(M̂)-equivariant line bundles
M′

g and Mg associated to the negative (G,M)-orthogonal sets B �→ HP̄ (g) and
P �→ −HP (g) respectively, as well as the elements

vM (g) := chM [Mg] ∈ H•(YM ,C),(24.10.1)

v′
M (g) := chM [M′

g] ∈ H•(YM ,C).(24.10.2)

These definitions are set up so that

(24.10.3) vM (g1, g2) = |ZM |−1(iM )∗
(
v′

M (g1) · vM (g2)
)
,

the product on the right being taken in the cohomology ring H•(YM ,C).
Now let T ∈ TM and let X ∈ treg. Then for f ∈ C∞

c (g) we can define normalized
weighted orbital integrals JX(f) = JG

X (f) and J ′
X(f) = (J ′)G

X(f) taking values in
H•(YM ,C) by putting

JX(f) := |D(X)|1/2

∫
AM\G

f(g−1Xg)vM (g) dġ,(24.10.4)

J ′
X(f) := |D(X)|1/2

∫
AM\G

f(g−1Xg)v′
M (g) dġ.(24.10.5)

These definitions are set up so that the expression

JX(f1, f2) := |D(X)|
∫

AM\G

∫
AM\G

f1(g−1
1 Xg1)f2(g−1

2 Xg2)vM (g1, g2) dġ1 dġ2

occurring in Theorem 24.1 is given by

(24.10.6) JX(f1, f2) = |ZM |−1〈λM ,J ′
X(f1) · JX(f2)〉,

the product J ′
X(f1) · JX(f2) being taken in H•(YM ,C).

By parabolic descent (see Lemma 13.3) for any parabolic subgroup P = LU ∈
F(M) (with L ⊃M), the image of JX(f) ∈ H•(YM ,C) under the map

H•(YM ,C) → H•(Y L
M ,C)

induced by Y L
M = V P ∩ YM ↪→ YM is equal to J L

X (f (P )) ∈ H•(Y L
M ,C), and the

analogous statement holds for J ′
X .
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Now assume that f is a cusp form (see 13.2), so that fP = 0 (and hence f (P ) =
0) for all P �= G. Then, since the fundamental classes of V P ∩ YM (P ∈ F(M),
P �= G) in the homology groups H•(YM ,C) span (see [Ful93]) the subspace

2 dim YM−1∑
i=0

Hi(YM ,C)

of H•(YM ,C), we see that for such f the weighted orbital integrals JX(f), J ′
X(f)

lie in the top degree subspace H2 dim(YM )(YM ,C) = C of H•(YM ,C).
Therefore for any f1 ∈ C∞

c (g) and any cusp form f2 ∈ C∞
c (g) the product

J ′
X(f1)JX(f2) is equal to JX(f2) times the projection of J ′

X(f1) on H0(YM ,C) =
C. Since the projection of v′

M (g1) on H0(YM ,C) is obviously 1 ∈ C = H0(YM ,C),
we conclude that

(24.10.7) J ′
X(f1)JX(f2) = IX(f1)JX(f2),

where IX(f) is the normalized orbital integral

IX(f) := |D(X)|1/2

∫
AM\G

f(g−1Xg) dġ.

From (24.10.6) and (24.10.7) we conclude that when f2 (and hence f̌2) is a cusp
form, the local trace formula (see Theorem 24.1) reduces to the statement that

(24.10.8) Tcusp(f1, f2) = Tcusp(f̂1, f̌2),

with Tcusp defined by

Tcusp(f1, f2) :=
∑

M∈L
(−1)dim(AM /AG)|ZM |−1 |WM |

|W |
∑

T∈TM

1
nM

T

·∫
treg

|D(X)|OX(f1)WOX(f2) dX,

(24.10.9)

where

OX(f) =
∫

AM\G

f(g−1Xg) dġ,(24.10.10)

WOX(f) =
∫

AM\G

f(g−1Xg)vM (g) dġ,(24.10.11)

vM (g) being (as in earlier sections of this article) the volume of the convex hull of
{HP (g) : P ∈ P(M)}.

25. An important application of the local trace formula

Following Waldspurger [Wal95], we are going to use the local trace formula on
the Lie algebra to strengthen a result of Harish-Chandra [HC78] that is the first
key step in his proof that the distribution characters of irreducible representations
of G are represented by locally integrable functions.
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25.1. Definition of support of a distribution. Let’s recall the notion of
support of a distribution on an l.c.t.d space X. For this we need to remember that
for open subsets U ⊂ V of X there is a restriction map

D(V ) → D(U)

on distributions that is dual to the inclusion

C∞
c (U) → C∞

c (V ).

With these restriction maps U �→ D(U) is a sheaf of vector spaces on X. In
particular, given a distribution D on X, there is a biggest open subset U of X such
that the restriction of D to U is zero. The complement Y of U is called the support
of D. Thus Y is the smallest closed subset of X for which D is in the image of the
embedding D(Y ) ↪→ D(X).

25.2. Definition of the invariant distribution Iφ on g. Let φ ∈ C∞
c (g)

be a cusp form. For any f ∈ C∞
c (g) put

(25.2.1) Iφ(f) := Tcusp(f, φ),

with Tcusp as in (24.10.9) above. Thus Iφ is a well-defined distribution on g. It is
clear from the definition that Iφ is invariant and supported on the closure of the set
of G-conjugates of elements in the compact set Supp(φ). In particular the support
of Iφ is bounded modulo conjugation (see 15.2 for this notion).

Recall that the Fourier transform T̂ of a distribution T on g is defined so
that T̂ (f) = T (f̂) for all test functions f ∈ C∞

c (g). Since the Fourier transform
commutes with adjoint G-action, it takes invariant distributions to invariant distri-
butions.

The next result makes use of the notion of nice conjugation invariant function
on g (discussed in 13.8).

Theorem 25.1. Let φ be a cusp form on g. Then φ̂ is also a cusp form, and
there is an equality

(25.2.2) Îφ = Iφ̂.

Moreover the distribution Iφ is represented by the nice conjugation invariant func-
tion Fφ on g which is 0 off grs and whose value at any X ∈ treg for any M ∈ L and
T ∈ TM is given by

(25.2.3) Fφ(X) = (−1)dim(AM /AG)|ZM |−1WOX(φ).

Proof. We observed long ago that the Fourier transform of a cusp form is
a cusp form (see 13.2). The equality (25.2.2) follows from (24.10.8). The second
statement of the theorem follows from (24.10.9), the Weyl integration formula, and
the local constancy of WOX(φ) as a function of X ∈ treg (see Theorem 17.11). �

25.3. Remarks. This theorem can be regarded as a Lie algebra analog of
a result of Arthur [Art87] which says that (up to a sign) the weighted orbital
integrals of a matrix coefficient of a supercuspidal representation give the character
values of that representation. In particular a cusp form φ on g should be regarded
as being analogous to a matrix coefficient for a supercuspidal representation of G.
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25.4. The special case in which φ ∈ C∞
c (ge). As before (see 10.4), we

write ge for the open subset of g consisting of elements whose centralizers are
elliptic maximal tori in G. Let φ ∈ C∞

c (ge). Clearly φ is a cusp form on g, so we
can consider the invariant distribution Iφ of 25.2. As an immediate consequence of
Theorem 25.1 we obtain the following result of Harish-Chandra and Waldspurger.

Theorem 25.2 ([HC78, Wal95]). The invariant distribution Îφ is represented
by a nice conjugation invariant function whose value at any X ∈ t for any M ∈ L,
T ∈ TM is given by

(25.4.1) (−1)dim(AM /AG)|ZM |−1WOX(φ̂).

Harish-Chandra proved that Îφ is represented by a nice conjugation invariant
function and proved the formula above for its value at elliptic elements X ∈ g, for
which the weighted orbital integral reduces to an ordinary orbital integral. The
formula (25.4.1) in the case of non-elliptic elements is due to Waldspurger.

We should note that because φ is supported on the elliptic set ge, we get from
(24.10.9) the following simple formula

(25.4.2) Iφ(f) = |ZG|−1
∑

T∈TG

1
nG

T

·
∫

treg

|D(X)|OX(φ)OX(f) dX,

which can also be rewritten (using the Weyl integration formula) as

(25.4.3) Iφ(f) = |ZG|−1

∫
AG\G

∫
g

φ(X)f(g−1Xg) dX dġ.

26. Niceness of ÔX for X ∈ grs.

26.1. Goal. We see from (25.4.2) that the distribution Iφ is an integral of
distributions of the form OX for X ∈ ge. By varying φ we get many such integrals,
and for each one we know that its Fourier transform Îφ is represented by a nice
conjugation invariant function. This suggests that for any X ∈ ge the Fourier
transform ÔX of OX is represented by a nice conjugation invariant function on g.
In fact this is true, and is the main step in the proof of the following more general
result of Harish-Chandra (which in turn is a special case of the yet more general
result Theorem 27.8, again due to Harish-Chandra):

Theorem 26.1 ([HC78, HC99]). For every X ∈ grs the Fourier transform
ÔX of the orbital integral OX is represented by a nice conjugation invariant function
on g.

For the time being we remark only that it suffices to prove the theorem in case
X is elliptic. The general case will then follow from Lemma 13.2, Lemma 13.4, and
equation (13.12.1). In 26.5 we will use Theorem 25.2 to treat the elliptic case. This
will require Howe’s finiteness theorem, to be discussed next.

26.2. Howe’s finiteness theorem. Before stating Howe’s finiteness theorem
for g, we need a few preliminary remarks.

Let V be a subset of g that is conjugation invariant and bounded modulo
conjugation (see 15.2 for this notion). We denote by J(V ) the space of invariant
distributions on g whose support is contained in V .
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Now let L be a lattice in g. Inside C∞
c (g) we have the subspace Cc(g/L) con-

sisting of functions that are compactly supported and translation invariant under L.
There is of course a restriction map

(26.2.1) D(g) → Cc(g/L)∗

where Cc(g/L)∗ denotes the vector space dual to Cc(g/L).
Now we can state Howe’s finiteness theorem, proved by Howe [How73] for GLn

and by Harish-Chandra in the general case [HC78]. (There is an analogous result
for G, known as Howe’s conjecture, which was proved by Clozel [Clo89].)

Theorem 26.2. For any lattice L in g and any subset V of g that is conjugation
invariant and bounded modulo conjugation, the image of J(V ) under the restriction
map (26.2.1) is finite dimensional.

We will use this theorem without proving it. For additional insight into why
Howe’s finiteness theorem is useful, see DeBacker’s article in this volume.

We also need to understand what the theorem says in the Fourier transformed
picture. The Fourier transform gives an isomorphism

C∞
c (g) FT−−→ C∞

c (g),

and this isomorphism restricts to an isomorphism

Cc(g/L) FT−−→ C∞
c (L⊥),

where L⊥ is the lattice in g that is Pontryagin dual to L. (When we view elements
of g as characters on g, the lattice L⊥ consists of all those characters that are trivial
on L.) Since any lattice arises as the Pontryagin dual of some other lattice, Howe’s
theorem can be reformulated as follows.

Theorem 26.3. For any lattice L in g and any subset V of g that is conjugation
invariant and bounded modulo conjugation, the image of J(V ) under the composed
map

(26.2.2) D(g) FT−−→ D(g) res−−→ D(L)

is finite dimensional. The first map is the Fourier transform on distributions, and
the second map is given by restriction of distributions from g to its open subset L.

26.3. Topology on V ∗. When using Howe’s finiteness theorem, it is useful
to topologize D(g). The topology we use is of the following type.

Let V be any complex vector space (not assumed to be finite dimensional as
the example we have in mind is C∞

c (g)). For any subspace U of V we let U⊥ denote
the subspace of V ∗ consisting of all linear forms that vanish on U . Similarly, for
any subspace W of V ∗ we let W⊥ denote the subspace of V consisting of all vectors
v that vanish on W .

We write V as the direct limit of its finite dimensional subspaces U . The dual
space V ∗ is then the projective limit of the dual spaces U∗ = V ∗/U⊥. We give
each dual space U∗ the discrete topology and then use the projective limit topology
on V ∗. In the topological vector space V ∗ the subgroups U⊥ are open and form a
neighborhood base at 0. Thus two linear forms are close to each other if they agree
on a large finite dimensional subspace of V . This topology is obviously Hausdorff.
When V is finite dimensional, V ∗ has the discrete topology.

Taking V = C∞
c (g), we get the desired topology on D(g) = V ∗.
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Lemma 26.4. The topology above has the following properties.
(1) For any linear map f : V1 → V2 the dual map f∗ : V ∗

2 → V ∗
1 is continu-

ous, and its kernel and image are closed. If f is surjective, then f∗ is a
homeomorphism of V ∗

2 onto a closed subspace of V ∗
1 .

(2) Let W be any subspace of V ∗. Then the closure of W is W⊥⊥.
(3) Any finite dimensional subspace W of V ∗ is closed, and the topology it

inherits from V ∗ is discrete.

Proof. We leave the first two items as exercises for the reader. To prove the
last item, first note that the natural map V → W ∗ is surjective, then apply the
second statement of the first item to this surjection. �

Combining the last statement of the lemma above with the Fourier transformed
version of Howe’s theorem (Theorem 26.3), we get the following useful result.

Proposition 26.1. Let V be a conjugation invariant subset of g that is bounded
modulo conjugation, and let U1 ⊂ U2 be subspaces of J(V ) such that U2 is contained
in the closure of U1. Let L be any lattice in g. Then U1 and U2 have the same
image under the composed map

(26.3.1) D(g) FT−−→ D(g) res−−→ D(L).

26.4. Elliptic regular orbital integrals as limits of distributions Iφ.
The next result illustrates how the topology on D(g) works. It will be needed to
complete the proof of Theorem 26.1.

Lemma 26.5. Let T be an elliptic maximal torus in G, let X ∈ treg, and let ωT

be a compact open neighborhood of X in treg. Then OX lies in the closure of the
linear subspace

{Iφ : φ ∈ C∞
c (Ad(G)(ωT ))}

of D(g).

Proof. We may shrink ωT as needed. Recall the map

(26.4.1) (T\G)× treg → grs

(sending (g, Y ) to g−1Y g) that we used when proving the Weyl integration formula.
Its differential is an isomorphism at all points. Shrinking ωT , we can find a compact
open neighborhood ωT\G of 1 ∈ T\G and a compact open neighborhood ωG of X
in grs such that the map (26.4.1) restricts to an isomorphism (of p-adic manifolds)

(26.4.2) ωT\G × ωT → ωG.

For φ ∈ C∞
c

(
Ad(G)(ωT )

)
and any f ∈ C∞

c (g), we see from (25.4.2) that

(26.4.3) Iφ(f) = |ZG|−1

∫
ωT

|D(Y )|OY (f)OY (φ) dY.

Suppose that f ∈ C∞
c (g) is such that Iφ(f) = 0 for all φ ∈ C∞

c

(
Ad(G)(ωT )

)
.

In order to prove the lemma, we need to check that OX(f) = 0. In fact we will
check that OY (f) = 0 for all Y ∈ ωT . Indeed, since the integral in (26.4.3) vanishes
for all φ ∈ C∞

c

(
Ad(G)(ωT )

)
, it is enough to convince ourselves that every locally

constant function ϕ on ωT arises as Y �→ OY (φ) for some φ ∈ C∞
c

(
Ad(G)(ωT )

)
.

But this is clear: pull ϕ back to ωT\G × ωT using the second projection, view this
pullback as a function on ωG using the isomorphism (26.4.2), and then divide by
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meas(ωT\G) to get a function φ ∈ C∞
c (ωG) that does the job. (Note that ωG is an

open subset of Ad(G)(ωT ).) �

26.5. Proof of Theorem 26.1. As we already remarked, it suffices to prove
that ÔX is represented by a nice conjugation invariant function in the case when X
lies in treg for some elliptic maximal torus T . Let ωT be a compact open neighbor-
hood of X in treg. Put ω := Ad(G)(ωT ), a subset which is clearly bounded modulo
conjugation.

By Lemma 26.5 OX lies in the closure of the space of distributions Iφ with
φ ∈ C∞

c (ω). Moreover the distributions OX and Iφ all lie in J(ω). Applying
Proposition 26.1 to J(ω), we see that there exists φ ∈ C∞

c (ω) such that ÔX and Îφ

have the same restriction to L. From Theorem 25.2 we know that the restriction of
Îφ to L is represented by an integrable function that is locally constant on L∩ grs.
Therefore the same is true of ÔX . This proves the theorem since the collection of
all lattices covers g.

27. Deeper results on Shalika germs; Lie algebra analog of the local
character expansion

Harish-Chandra’s Theorem 26.1, together with Howe’s finiteness theorem, will
allow us to prove quite a number of deep results in harmonic analysis on g.

27.1. Density of orbital integrals. Our next main goal is to prove the linear
independence of Shalika germs. This is closely related, as we will see, to the density
of regular semisimple orbital integrals. The first step is the density of all orbital
integrals. What do we mean by this? Recall that we have topologized the space
of distributions on g. We consider the subspace D(g)G of invariant distributions
with its inherited topology. Inside of D(g)G we have the linear subspace D(g)orb
spanned by all orbital integrals OX (X ∈ g). Now we can state the density result,
but one should bear in mind that it is only of temporary interest, since we will soon
prove a stronger (and more difficult) statement.

Proposition 27.1 ([HC78]). The subspace D(g)orb is dense in D(g)G.

Proof. As we saw when we discussed (in 26.3) the topology on duals of vector
spaces, the statement we need to prove can be reformulated as follows. Let f ∈
C∞

c (g). If OX(f) = 0 for all X ∈ g, then I(f) = 0 for every invariant distribution
I on g. In terms of coinvariants C∞

c (g)G, this can in turn be reformulated as the
statement that if OX(f) = 0 for all X ∈ g, then the image of f in C∞

c (g)G is 0.
So we need a better understanding of C∞

c (g)G. For this we will again use the
map πG : g → AG(F ). For x ∈ AG(F ) we denote by gx the fiber π−1

G (x) over x.
The conjugation action of G preserves gx, so we can also consider the coinvariants
C∞

c (gx)G. Restriction of functions to the fiber induces a surjective map

(27.1.1) C∞
c (g)G → C∞

c (gx)G,

and these can be assembled to give a map

(27.1.2) C∞
c (g)G →

∏
x

C∞
c (gx)G,

where x runs over all points x ∈ AG(F ). It follows from Lemma 27.1 below that
the map (27.1.2) is injective.
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When x is the origin in the affine space, the fiber gx is the nilpotent cone in
g, and we already have a good understanding of C∞

c (gx)G: its dimension is the
number of nilpotent orbits, and the integrals over the nilpotent orbits provide a
basis for the dual of C∞

c (gx)G

The situation for arbitrary x is quite similar. The fiber gx is a finite union of G-
orbits, and the integrals over these orbits provide a basis for the dual of C∞

c (gx)G.
This is proved the same way as for the nilpotent cone, so we will not discuss it any
further.

Now return to our function f . Since all orbital integrals of f vanish by hypoth-
esis, the image of f under (27.1.2) is 0. Since (27.1.2) is injective, f is 0 in C∞

c (g)G,
and we are done. �

The next lemma is similar to the material in section 2.36 of [BZ76].

Lemma 27.1. Let X and Y be l.c.t.d spaces, and let f : X → Y be a continuous
map. For y ∈ Y we denote by Xy the fiber f−1(y). Suppose that an abstract group
G acts on X, preserving the fibers of f . Restriction of functions from X to Xy

induces a map

(27.1.3) C∞
c (X)G → C∞

c (Xy)G,

and these can be assembled to give a map

(27.1.4) C∞
c (X)G →

∏
y∈Y

C∞
c (Xy)G.

The map (27.1.4) is injective.
Moreover, for any open neighborhood U of y ∈ Y there is a surjective restriction

map
C∞

c (f−1U)G → C∞
c (Xy)G,

and these fit together to give an isomorphism

(27.1.5) lim−→
U

C∞
c (f−1U)G

∼= C∞
c (Xy)G,

where the colimit is taken over the set of open neighborhoods U of y.

Proof. Replacing Y by its 1-point compactification (which is again a l.c.t.d
space), we may assume without loss of generality that Y is compact.

Suppose that we have a decomposition of Y as a disjoint union of open (hence
closed) subsets Yi (i ∈ I). Then

C∞
c (X) =

⊕
i∈I

C∞
c (Yi)

and therefore

(27.1.6) C∞
c (X)G =

⊕
i∈I

C∞
c (Yi)G.

For any open neighborhood U of y ∈ Y there is a surjective restriction map

C∞
c (f−1U) → C∞

c (Xy),

and these fit together to give an isomorphism

(27.1.7) lim−→
U

C∞
c (f−1U) ∼= C∞

c (Xy),
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where the colimit is taken over the set of open neighborhoods U of y. Surjectivity is
clear, but let’s check injectivity. So suppose that we have a function φ ∈ C∞

c (f−1U)
whose restriction to Xy is 0. Then the support S of φ is a compact set disjoint from
Xy, so its image f(S) does not contain y. Let V be the open subset of U obtained
by removing all points in the compact set f(S). Then φ becomes 0 in C∞

c (f−1V ),
hence in the colimit.

Taking coinvariants in (27.1.7), we get the isomorphism (27.1.5) mentioned in
the last statement of the lemma. (Coinvariants commute with arbitrary colimits.)

Now we finish the proof. Let φ ∈ C∞
c (X) and suppose that the image of φ under

(27.1.4) is 0. By (27.1.5) for every y ∈ Y there exists a compact open neighborhood
Uy of y such that φ is 0 in C∞

c (f−1Uy)G. Since Y is compact, it can be covered
by finitely many compact open subsets U1, . . . , Un such that φ is 0 in C∞

c (f−1Ui)G

for all i. Now put

Y1 = U1, Y2 = U2 \ U1, . . . , Yn = Un \ (U1 ∪ · · · ∪ Un−1).

Thus we have written Y as a disjoint union of open subsets Yi such that φ is 0 in
C∞

c (f−1Yi)G for all i. It follows from (27.1.6) that φ is 0 in C∞
c (X)G, as desired. �

27.2. Preliminary remarks regarding linear independence of Shalika
germs. We will soon be proving that the Shalika germs Γ1, . . . ,Γr (attached to
the nilpotent orbits Oi) are linearly independent functions on grs.

Lemma 27.2. Assume that the Shalika germs Γ1, . . . ,Γr are linearly indepen-
dent functions on grs. Then for any open neighborhood U of 0 in g, the restrictions
of Γ1, . . . ,Γr to U ∩ grs remain linearly independent.

Proof. Without loss of generality we may assume that U is a lattice in g.
Now we use homogeneity of Shalika germs. The additive semigroup of non-negative
integers acts on U ∩ grs, with j acting by multiplication by the scalar π2j ∈ F×,
and therefore acts on the space of functions on U ∩grs (the action of j transforming
a function F (X) into F (π2jX)).

By homogeneity of Shalika germs (see (17.7.1)) the restriction of Γi to U ∩ grs

transforms under the character

j �→ qj dimOi

on our semigroup. But in any representation of our semigroup, vectors transforming
under distinct characters are linearly independent. Thus, in order to prove linear
independence of the restrictions of Shalika germs to U∩grs, it is enough to fix a non-
negative integer d and prove linear independence of the restrictions of the Shalika
germs for all nilpotent orbits of dimension d. But all these germs are homogeneous
of the same degree, namely d, so it is clear that any dependence relation that holds
on the subset U ∩ grs will also hold on the whole set grs. �

Next we relate linear independence of Shalika germs to the problem of writing
nilpotent orbital integrals as limits (for our usual topology on D(g), see 26.3) of
linear combinations of regular semisimple orbital integrals.

Lemma 27.3. The functions Γ1, . . . ,Γr on the set grs are linearly independent
if and only if all nilpotent orbital integrals µi lie in the closure of the linear span of
the subset

{OX : X ∈ grs}
of D(g).
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Proof. First we need to recall that the closure occurring in the statement
of the lemma is equal to the set of all distributions I such that I(f) = 0 for all
f ∈ C∞

c (g) such that OX(f) = 0 for all X ∈ grs.
(⇒) Suppose that the functions Γi are linearly independent. Given f ∈ C∞

c (g)
such that OX(f) = 0 for all X ∈ grs, we must show that µi(f) = 0 for all i. By
Shalika germ theory there exists an open neighborhood U of 0 in g such that

(27.2.1) OX(f) =
r∑

i=1

µi(f)Γi(X) ∀ X ∈ U ∩ grs.

Since the function X �→ OX(f) on grs is identically zero, and since the restrictions
of the functions Γi to the subset U ∩ grs remain linearly independent, we see that
µi(f) = 0 for all i, as desired.

(⇐) Consider a dependence relation a1Γ1 + · · ·+ arΓr = 0. By linear indepen-
dence of the distributions µi there exists f ∈ C∞

c (g) such that µi(f) = ai for all i.
By Shalika germ theory there exists an open neighborhood U of 0 in g such that

(27.2.2) OX(f) = 0 ∀ X ∈ U ∩ grs.

It follows from Lemma 15.3 that Ad(G)(U) contains a G-invariant open and closed
neighborhood V of the nilpotent cone. Multiplying f by the characteristic function
of V , we obtain a function f ′ ∈ C∞

c (g) such that

(27.2.3) OX(f ′) =

{
OX(f) if X ∈ V

0 if X /∈ V .

Combining (27.2.2) with (27.2.3), we see that OX(f ′) = 0 for all X ∈ grs. Therefore,
since we are assuming that nilpotent orbital integrals are in the closure of the span
of the regular semisimple orbital integrals, we conclude that µi(f ′) = 0 for all i.
But, again using (27.2.3), we find that ai = µi(f) = µi(f ′), and we are done. �

Now let S be a semisimple element of g, and let H = GS , h, h′ be as in 17.10.
For nilpotent Y ∈ h we write µS+Y for integration over the G-orbit of S + Y in g.
We write Y1, . . . , Ys for representatives of the H-orbits of nilpotent elements in h.

Lemma 27.4. Assume that the Shalika germs ΓH
1 , . . . ,ΓH

s for H are linearly
independent functions on hrs. Then for every X ∈ g whose semisimple part is S,
the distribution OX lies in the closure of the linear span of the subset

{OX′ : X ′ ∈ grs}
of D(g).

Proof. This proof is almost the same as that of half of the previous lemma.
Given f ∈ C∞

c (g) such that OX(f) = 0 for all X ∈ grs, we must show that
µS+Yi

(f) = 0 for all i. By Theorem 17.6 there exists an open neighborhood U of S
in h′ such that

(27.2.4) OX′(f) =
s∑

i=1

µS+Yi
(f) · ΓH

i (X ′)

for all X ′ ∈ U ∩ hrs = U ∩ grs. Since the function X ′ �→ OX′(f) on grs is identically
zero, and since the restrictions of the functions ΓH

i to the subset U ∩ hrs remain
linearly independent, we see that µS+Yi

(f) = 0 for all i, as desired. �
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27.3. Linear independence of Shalika germs and density of linear
combinations of regular semisimple orbital integrals. Now we are ready
to prove Harish-Chandra’s theorem stating that Shalika germs are in fact linearly
independent.

Theorem 27.5 ([HC78, HC99]). The Shalika germs Γ1, . . . ,Γr are linearly
independent functions on grs. Indeed they remain linearly independent when re-
stricted to U ∩grs for any open neighborhood U of 0 in g. Moreover every invariant
distribution on g lies in the closure of the linear span of the subset

{OX : X ∈ grs}
of D(g).

Proof. We reproduce Harish-Chandra’s beautiful proof, which uses just about
everything we have done. By Lemma 27.2 the second statement of the theorem
follows from the first. We prove the first and last statements of the theorem by
induction on the dimension of g, the case when dim(G) = 0 being trivial. Assuming
the theorem is true for all connected reductive H with dim(H) < dim(G), we must
show that it is true for G.

We claim that the first statement of the lemma holds for G if and only if the
last statement of the theorem holds for G. Indeed, if the last statement is true, then
the first statement is true by Lemma 27.3. Now assume that the first statement
is true. Then for every semisimple element S in g, the Shalika germs for GS are
linearly independent. By Lemma 27.4, for every X ∈ g the distribution OX is in
the closure of the linear span of the subset

{OX′ : X ′ ∈ grs}
of D(g). This, together with Proposition 27.1, shows that the last statement of the
theorem is true.

Using Lemma 17.4, we reduce to the case in which the center of g is trivial. It
remains to verify the last statement of the theorem. For this we need to consider
the two subspaces C2 ⊂ C1 of C∞

c (g) defined by
C1 := {f ∈ C∞

c (g) : OX(f) = 0 ∀X ∈ grs}
C2 := {f ∈ C∞

c (g) : OX(f) = 0 ∀X ∈ g}.
Using our induction hypothesis and Lemma 27.4, we see that

C1 = {f ∈ C∞
c (g) : OX(f) = 0 ∀X ∈ g such that X is not nilpotent},

from which we see that C1/C2 is finite dimensional and that the dual space (C1/C2)∗

is spanned by the images of the nilpotent orbital integrals µ1, . . . , µr.
It follows from Proposition 27.1 that

C2 = {f ∈ C∞
c (g) : I(f) = 0 for every invariant distribution I},

from which it is clear that the Fourier transform takes C2 isomorphically onto itself.
We also see that in order to prove that the last statement of the theorem is true,
we must show that C1/C2 = 0.

We claim that the Fourier transform also takes C1 isomorphically onto itself.
It is enough prove that the Fourier transform f �→ f̂ carries C1 into itself, since
then the same will be true of the inverse Fourier transform f �→ f̌ . So let f ∈ C1.
We must show that OX(f̂) = 0 for all X ∈ grs. But OX(f̂) = ÔX(f), and we know
from Theorem 26.1 that ÔX is represented by a nice conjugation invariant function
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on g. Since all regular semisimple orbital integrals of f vanish, it is then clear that
ÔX(f) vanishes.

Thus the Fourier transform on functions induces an isomorphism

(27.3.1) C1/C2
FT−−→ C1/C2,

and the Fourier transform on distributions induces an isomorphism

(27.3.2) (C1/C2)∗
FT−−→ (C1/C2)∗.

Thus the Fourier transforms µ̂1, . . . , µ̂r of the nilpotent orbital integrals also span
(C1/C2)∗.

Now we use homogeneity of nilpotent orbital integrals (see Lemma 17.2):

(27.3.3) µO(fα2) = |α|− dimOµO(f).

An easy calculation shows that (fβ )̂ = |β|−dim(G)(f̂)β−1 ; therefore the Fourier
transform µ̂O is also homogeneous:

(27.3.4) µ̂O(fα2) = |α|dimO−2 dim(G) µ̂O(f).

Let D be the set of integers that arise as the dimension of some nilpotent orbit for
G. Assuming that dim(G) �= 0, as we may, then

(27.3.5) d < dimG

for all d ∈ D.
Therefore, there is one basis for (C1/C2)∗ in which each basis element scales

by the factor |α|−d for some d ∈ D, and another in which each scales by the factor
|α|d−2 dim(G) for some d ∈ D. By (27.3.5) −d �= d′ − 2 dimG for all d, d′ ∈ D.
Therefore, by linear independence of characters, we have C1/C2 = 0, and this
establishes that the last statement of the theorem holds for G. �

Corollary 27.6. Let C be an open and closed G-invariant subset of g. Then
every invariant distribution on g supported in C lies in the closure of the linear
span of the subset

{OX : X ∈ grs ∩ C}
of D(g).

Proof. Let f ∈ C∞
c (g) and suppose that OX(f) = 0 for all X ∈ grs ∩ C.

We must show that I(f) = 0 for every invariant distribution supported on C. Put
f0 := f1C , where 1C denotes the characteristic function of C. Clearly I(f) = I(f0).
Moreover it is clear that OX(f0) = 0 for all X ∈ grs. By the theorem above
I(f0) = 0. �

Now return to the situation in 13.6.

Corollary 27.7. Parabolic induction iGP is independent of the choice of par-
abolic subgroup P having Levi component M .

Proof. Let P, P ′ be two parabolic subgroups with Levi component M . We
want to show that

(27.3.6) I(f (P )) = I(f (P ′))

for every invariant distribution I on m. By the theorem above (applied to M), it
is enough to show that

(27.3.7) OM
X (f (P )) = OM

X (f (P ′))
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for all X ∈ mrs. For X ∈ m ∩ grs this follows from Lemma 13.3, and by continuity
(use the local constancy statement in Theorem 17.10) it then follows for all elements
X ∈ mrs. �

27.4. Niceness of Fourier transforms of invariant distributions whose
support is bounded modulo conjugation. So far we know (see Theorem 26.1)
that ÔX is represented by a nice conjugation invariant function on g for any X ∈ grs.
In fact the same is true for any X ∈ g (the case of nilpotent X being especially
interesting). Our next theorem, also due to Harish-Chandra, says that an even
stronger and more general result is true.

Let ω be a compact open subset of AG(F ) and put C := π−1
G (ω). Let J(C) be

the space of invariant distributions supported in C. By Corollary 27.6 the linear
span of the set

(27.4.1) {OX : X ∈ grs ∩ C}
is dense in J(C).

Theorem 27.8 ([HC78]). Let I ∈ J(C), and let L be any lattice in g. Then
there exists a linear combination I ′ of elements in the set (27.4.1) such that the
distributions Î and Î ′ have the same restriction to L. Consequently, for any invari-
ant distribution I on G whose support is bounded modulo conjugation, the Fourier
transform Î is represented by a nice conjugation invariant function on g.

Proof. The first statement follows from Proposition 26.1. Now we derive the
second statement from the first. By Lemma 15.2 I is contained in J(C) for suitably
big ω. Since the distributions Î ′ appearing in the first statement of the theorem
are nice by Theorem 26.1, we see that the restriction of Î to any lattice L is nice.
This finishes the proof, since the collection of all lattices is an open cover of g. �

It follows from Theorem 27.8 that the Fourier transform ÔX of any orbital
integral OX is represented by a nice conjugation invariant function, which we will
also denote by ÔX . Context will determine whether we are thinking about ÔX as
a distribution or as a nice function on g. The same goes for µ̂i.

27.5. Uniformity of Shalika germ expansions. By the Shalika germ ex-
pansion, for any f ∈ C∞

c (g) there is a lattice L′ in g such that

(27.5.1) OX(f) =
r∑

i=1

µi(f) · Γi(X)

for all ∈ grs ∩ L′. The lattice L′ depends on f . Of course, given finitely many
functions f , we can find a single lattice that works for all of them at once, but
there is no guarantee that we can do so for an infinite collection of functions.
Nevertheless, we will now see that Howe’s finiteness theorem implies that for any
lattice L in g, we can find a lattice L′ that works for all the functions in Cc(g/L).

Proposition 27.2. Let L be a lattice in g. Then there exists a lattice L′ in g

such that

(27.5.2) OX(f) =
r∑

i=1

µi(f) · Γi(X)

for all f ∈ Cc(g/L) and all X ∈ grs ∩ L′.
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Proof. Pick a compact open neighborhood ω of 0 in AG(F ) and put C :=
π−1

G (ω), an open neighborhood of the nilpotent cone. Note that OX ∈ J(C) for all
X ∈ C. By Howe’s theorem the image of J(C) in Cc(g/L)∗ is finite dimensional.
The subspace W in Cc(g/L) consisting of all functions annihilated by all distribu-
tions in J(C) therefore has finite codimension, so that we can choose finitely many
functions f1, . . . , fm ∈ Cc(g/L) that together with W span Cc(g/L). For each fj

there is a neighborhood Uj of 0 in g such that the Shalika germ expansion for fj

works on Uj . The Shalika germ expansion for each f ∈ W works on the open
neighborhood C of 0, since both sides of (27.5.2) vanish for such f . Therefore for
any lattice L′ contained in C ∩U1 ∩ · · · ∩Um the Shalika germ expansion works on
L′ for all f ∈ Cc(g/L). �

Proposition 27.3. Let L be a lattice in g. Then there exists a lattice L′ in g

such that for all X ∈ grs ∩ L′ and all Y ∈ grs ∩ L there is an equality

(27.5.3) ÔX(Y ) =
r∑

i=1

Γi(X) · µ̂i(Y ).

Proof. This proposition is the Fourier transform of the previous one. �

Corollary 27.9. Let L′ be a lattice in g. Then there exists a lattice L in g

such that for all X ∈ grs ∩ L′ and all Y ∈ grs ∩ L there is an equality

(27.5.4) ÔX(Y ) =
r∑

i=1

Γi(X) · µ̂i(Y ).

Proof. An easy calculation shows that ÔX(Y ) = ÔβX(β−1Y ) for all β ∈ F×

and all X,Y ∈ grs. Moreover the right side of (27.5.4) does not change when (X,Y )
is replaced by (α2X,α−2Y ) (for α ∈ F×), because of the homogeneity properties of
Shalika germs (17.7.1) and Fourier transforms of nilpotent orbital integrals (27.3.4).
Therefore the equality (27.5.4) holds for all X ∈ grs ∩L′ and all Y ∈ grs ∩L if and
only if it holds for all X ∈ grs ∩ α2L′ and all Y ∈ grs ∩ α−2L. From the previous
proposition there exists some pair of lattices L0, L′

0 on which the equality (27.5.4)
holds. Pick α such that L′ ⊂ α2L′

0. Then the statement of the corollary holds for
L := α−2L0. �

27.6. Linear independence of the restrictions of nilpotent orbital in-
tegrals to Cc(g/L). We have already observed that the nilpotent orbital integrals
µ1, . . . , µr are linearly independent distributions. Now let L be any lattice in g.

Lemma 27.10. The restrictions of µ1, . . . , µr to Cc(g/L) are linearly indepen-
dent.

Proof. Since µ1, . . . , µr are linearly independent, there exists some lattice L′

for which the lemma is true. There exists α ∈ F× such that L ⊂ α2L′. The
distributions µ′

1, . . . , µ
′
r obtained from µ1, . . . , µr by scaling by α2 remain linearly

independent on Cc(g/α2L′) and hence on the bigger space Cc(g/L) as well. But
by homogeneity of nilpotent orbital integrals, µ′

i is a positive multiple of µi. This
proves the lemma. �

Corollary 27.11. For any lattice L in g the restrictions to L of the nice
functions µ̂1, . . . , µ̂r are linearly independent.
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Proof. This statement is the Fourier transform of the statement in the lemma.
�

27.7. Lie algebra analog of the local character expansion. First we ex-
plain the statement of Harish-Chandra’s local character expansion. Harish-Chandra
proved [HC78] that the distribution character of any irreducible admissible rep-
resentation of G is represented by a locally constant function Θ on Grs that is
locally integrable on G. Use the exponential function to identify a suitable open
neighborhood of 0 in g with an open neighborhood of 1 in G. Then use the ex-
ponential function to transport the nice functions µ̂i to this neighborhood of 1.
Harish-Chandra then proved that there are unique constants ci such that

(27.7.1) Θ(g) =
r∑

i=1

ciµ̂i(g)

for all regular semisimple g in some suitably small neighborhood of 1 in G. How
small the neighborhood has to be depends on the representation of G that we
started with.

His proof uses the Lie algebra analog of this statement. We have already made
the point that Fourier transforms of orbital integrals are the Lie algebra analogs
of irreducible characters on G. Therefore we would expect Fourier transforms of
orbital integrals to appear on the left side of the Lie algebra analog of (27.7.1).
Actually a more general statement is true: the Fourier transform of any invariant
distribution whose support is bounded modulo conjugation has a local character
expansion. In the case of Fourier transforms of regular semisimple orbital integrals,
one even knows what the constants ci are: they are Shalika germs. Here is the
precise statement of Harish-Chandra’s Lie algebra analog of the local character
expansion.

Theorem 27.12 ([HC78]). Let ω be any compact open subset of AG(F ) and
let C := π−1

G (ω), a closed and open G-invariant subset of g that is bounded modulo
conjugation. There exists a lattice L in g such that the following two statements
hold.

(1) For all X ∈ C ∩ grs there is an equality

ÔX =
r∑

i=1

Γi(X)µ̂i

of functions on L ∩ grs.
(2) For all I ∈ J(C) there exist unique complex numbers c1, . . . , cr such that

Î =
r∑

i=1

ciµ̂i

on L ∩ grs.

Proof. By Lemma 15.2 there exists a lattice L′ such that C ⊂ Ad(G)(L′).
Thus the first statement follows from Corollary 27.9. In view of Theorem 27.8 the
second statement follows from the first. �
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28. Guide to notation

• See 4.1 for F , O, π, val(x), G, B = AN , W , K, Gder, Gsc, X∗(A).
• See 4.5 for ΛG, HG, a, aG.
• See 7.8 for L = L(A).
• See 7.12 for F(A), P(M).
• See 8.3 for B(A), B0 = AN0. See 14.2 for πG : g → AG.
• See 23.2 for F(M).
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Homogeneity for Reductive p-adic Groups: An Introduction

Stephen DeBacker

Abstract. We discuss, in a fairly conversational manner, homogeneity results

for reductive p-adic groups. We provide some motivation for why we expect
such results to be true, and we discuss why they are important. We also discuss

most of the mathematics required to prove homogeneity statements.

1. Introduction

The goal of these notes is to introduce the idea of homogeneity for reductive p-
adic groups. Except in trivial cases, we are not in any position to verify homogeneity
statements; rather, we shall try to motivate both why such results are important
and why we should believe that they are true. To this end, we will also discuss
many of the important mathematical ideas surrounding these statements. Finally,
while I think that they are mathematically accurate, these notes are intended as
an introduction, not as a reference.

I thank Joseph Rabinoff for producing the computer graphics for Figure 8. I
learned nearly all that I know about harmonic analysis while under the excellent
guidance of Bob Kottwitz and Paul Sally, Jr.. Although they are not directly
referenced here, my understanding of Bruhat-Tits theory has been deeply influenced
by the beautiful papers of Allen Moy and Gopal Prasad. Finally, I thank Jeff Adler
for his excellent proofreading of these notes.

2. An introduction to homogeneity

We begin with some motivations for considering homogeneity questions and try
to illustrate why their answers look the way that they do.

2.1. The case GL1. We begin with the completely trivial yet illuminating
case of G = k× = GL1(k) where k is a p-adic field.

We first consider homogeneity statements on k× and then turn our attention
to its Lie algebra k. Let C∞

c (k×) denote the space of compactly supported, locally
constant functions on k× (similar notation applies to k).
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Suppose χ ∈ k̂×, that is, χ is a complex-valued continuous multiplicative char-
acter of k×. We may define a distribution Θχ : C∞

c (k×) → C by setting

Θχ(f) =
∫

k×
χ(x) · f(x) dx

for f ∈ C∞
c (k×). Here dx denotes a (fixed) Haar measure on k×.

Let R denote the ring of integers of k and let ℘ denote the prime ideal. Fix
a uniformizer � (that is, ℘ = � · R). To avoid complications, we suppose χ has
depth (m − 1) with m > 1, that is, the restriction of χ to the filtration subgroup
1 + ℘m is trivial and the restriction of χ to the filtration subgroup 1 + ℘(m−1) is
nontrivial.

Note that if the support of f is contained in 1 + ℘m, then

Θχ(f) = Θ1(f)

where Θ1 denotes the distribution associated to the trivial character on k×. There-
fore, we may write

resC∞
c (1+℘m

) Θχ = resC∞
c (1+℘m

) Θ1.

This is a homogeneity1 statement: the distributions Θχ and Θ1 agree on C∞
c (1 +

℘m).
We now focus on the Lie algebra k of k×. We let µ0 denote the distribution on

C∞
c (k) which sends f to f(0). Suppose T is a distribution on k, that is, a linear

map from C∞
c (k) to C. Suppose m is an integer such that T belongs to J(℘m), the

space of distributions on k having support in ℘m. If f belongs to Cc(k/℘m), the
space of compactly supported functions on k which are translation invariant with
respect to the lattice2 ℘m, then we can write

f =
∑

X̄∈k/℘m

f(X) · [X + ℘m]

where [X + ℘m] denotes the characteristic function of the coset X + ℘m. For such
a function we have

T (f) = T
( ∑
X̄∈k/℘m

f(X) · [X + ℘m]
)

= f(0) · T ([℘m])

= T ([℘m]) · µ0(f).

That is, we have the homogeneity statement

resCc(k/℘m
) J(℘m) = resCc(k/℘m

) C · µ0.

Since GL1(k) is abelian, we have not yet said anything nontrivial. The main
idea you should keep in mind is that, by restricting to a subspace of a larger function
space, we’d like to be able to express fairly arbitrary distributions in terms of well-
understood distributions:

Statement 2.1.1.

res Function
space

{
Fairly arbitrary

distributions

}
= res Function

space

{
Well-understood

distributions

}
.

1According to the Oxford English Dictionary [11], the word homogeneity means “identity

of kind with something else,” and according to Webster’s Dictionary [15] it means “the state of
having identical distribution functions or values.”

2A compact, open R-submodule of a p-adic vector space is called a lattice.
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Moreover, we’d like this statement to be optimal in some sense. For example,
the following exercise shows that the homogeneity statements we made above are
optimal.

Exercise 2.1.2. Suppose � ≤ m < n. Show that

res
Cc(k/℘�

)
J(℘m) = res

Cc(k/℘�
)
C · µ0

and
resCc(k/℘n

) J(℘m) �= resCc(k/℘n
) C · µ0.

Formulate and prove a similar statement for distributions on k×.

2.2. Some history and an application. If we do not wish to make an
optimal homogeneity statement, then the type of results we seek have been known
for a long time — we shall call these “prehomogeneity” results. However, it has
become clear that a great many of the interesting problems in representation theory
and harmonic analysis require more precision than these prehomogeneity results
provide.

Let G be a reductive p-adic group and let g be the Lie algebra of G. So, for
example, we could take G to be SLn(k) or Sp2n(k) and then g would be sln(k) or
sp2n(k). If S ⊂ g, then we set

GS := {gs := Ad(g)s | g ∈ G and s ∈ S}.

The first result we discuss is a conjecture of Howe which was proved by Howe [8]
for the general linear group and by Harish-Chandra [7] in a general context.

Theorem 2.2.1 (Howe’s conjecture for the Lie algebra). If L is a lattice in g

and ω ⊂ g is compact, then

dimC

(
resCc(g/L) J(ω)

)
<∞.

In the statement of Howe’s conjecture, the notation J(ω) denotes the space of
invariant distributions3 supported on the closure of the set Gω. So, for example, if
X ∈ ω, then the orbital integral µX belongs to J(ω). (Since GL1(k) is abelian, this
agrees with our earlier use of the notation J .) Note that since Howe’s conjecture
is not equating two sets of distributions, it is not really a homogeneity result —
or even a prehomogeneity statement. However, for fixed ω and expanding L, the
dimension of the left-hand side will stabilize. Thus, for sufficiently large L, we
might expect to find a basis for the left hand side consisting of well-understood
distributions on g (see §2.3). In this section, we use the above result to prove a
useful harmonic analysis result (which will later be improved using homogeneity
results).

Suppose that h is a Cartan subalgebra of g. Let h′ = h ∩ gr.s.s. (Here gr.s.s

denotes the set of regular semisimple elements in g, that is, those elements of g

whose centralizer in G is a torus.) We consider the map h′ × C∞
c (g) → C defined

by

(*) (H, f) �→ µ̂H(f) := µH(f̂).

3A distribution T is said to be invariant provided that T (fg) = T (f) for all g ∈ G and
f ∈ C∞

c (g). Here fg(X) = f(gX).
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Here, we realize the Fourier transform as a map from C∞
c (g) to itself by setting

f̂(X) =
∫

g

f(Y ) · Λ(B(Y,X)) dY

where dY is a Haar measure on g, B is a nondegenerate, symmetric, invariant,
bilinear form on g, and Λ is a continuous additive character of k that is trivial on
the lattice ℘ and nontrivial on the lattice R.

There are two ways to think about the map defined by Equation (*):
(1) If we fix H and vary f , then we are looking at a distribution on g. It is a

result of Harish-Chandra that this distribution is represented by a locally
integrable function on g which we also call µ̂H . This means that for all
f ∈ C∞

c (g) we have

µ̂H(f) =
∫

g

f(Y ) · µ̂H(Y ) dY.

(2) If we fix f and vary H, then we are looking at a locally constant function
on h′.

We can combine these two ways of thinking about the map defined in Equation (*)
by formulating a statement about the local constancy of the function µ̂H . Namely,

Theorem 2.2.2 ([7]). For all H ∈ h′ and for all compact open ω ⊂ g, there
exists a compact open ωH ⊂ h′ such that

(1) H ∈ ωH and
(2) µ̂H′(Y ) = µ̂H(Y ) for all H ′ ∈ ωH and all Y ∈ ω.

To illustrate the usefulness of Howe’s conjecture, we present here Harish-Chandra’s
proof of this result. In the proof, Howe’s conjecture reduces a seemingly intractable
problem to a simple linear algebra problem.

Proof. Fix H ∈ h′ and ω ⊂ g compact and open. We begin by reformulating
statement (2) of the theorem:

µ̂H′(Y ) = µ̂H(Y ) for all H ′ ∈ ωH and all Y ∈ ω.

This statement is equivalent to the statement

µ̂H′(f) = µ̂H(f) for all H ′ ∈ ωH and all f ∈ C∞
c (ω),

which, in turn, is equivalent to the statement

µH′(f̂) = µH(f̂) for all H ′ ∈ ωH and all f ∈ C∞
c (ω).

By choosing a lattice L in g so that f ∈ C∞
c (ω) implies that f̂ ∈ Cc(g/L), we see

that this last formulation of the statement would be true if we knew that

µH′(ϕ) = µH(ϕ) for all H ′ ∈ ωH and all ϕ ∈ Cc(g/L).

We will establish this last statement (which, in itself, is a type of prehomogeneity
statement).

Let ω′
H be any compact open neighborhood of H in h′. Note that µH′ belongs

to J(ω′
H) for all H ′ ∈ ω′

H . From Howe’s conjecture for the Lie algebra, we have

dimC

(
resCc(g/L) J(ω′

H)
)
<∞.
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Hence, we can choose H1, H2, . . . , Hm ∈ ω′
H such that for every H ′ ∈ ω′

H the distri-
bution resCc(g/L) µH′ belongs to the span of the linearly independent distributions

resCc(g/L) µHi
.

Fix f1, f2, . . . , fm ∈ Cc(g/L) such that

µHi
(fj) = δij .

So, for all H ′ ∈ ω′
H we have

µH′(f) =
∑

i

µH′(fi) · µHi
(f)

for all f ∈ Cc(g/L).
Fix a neighborhood ωH of H for which
(1) ωH ⊂ ω′

H and
(2) µH′(fi) = µH(fi) for all 1 ≤ i ≤ m and for all H ′ ∈ ωH .

We then have that

µH′(f) =
∑

i

µH′(fi) · µHi
(f)

=
∑

i

µH(fi) · µHi
(f)

= µH(f)

for all f ∈ Cc(g/L) and all H ′ ∈ ωH . �
2.3. The nilpotent cone in SL2(R). In this section we look at the SL2(R)-

orbits in sl2(R). We do this for two reasons: First, it gives us a way to visual-
ize4 the problems we are discussing. Second, it will help to clear up many of the
common misunderstandings the reader may harbor about how things work over
non-algebraically closed fields.

As vector spaces, we have R3 ∼= sl2(R) via the map

(x, y, z) �→ M(x, y, z) :=
(

x y+z

y−z −x

)
.

The characteristic polynomial of M(x, y, z) is

t2 −
(
(x2 + y2)− z2

)
,

and so we have three distinct types of elements depending on the eigenvalues of
M(x, y, z) (see Table 1).

Type of element (x2 + y2)− z2

nilpotent 0
split > 0

elliptic < 0

Table 1. Types of elements in sl2(R)

2.3.1. Nilpotent elements. In this case, we have z2 = x2 + y2, and so N , the
nilpotent elements, is a cone in R3 (see Figure 1).

4It is hard to draw pictures of p-adic vector spaces; to paraphrase Paul Sally, Jr.: “We all

have our own picture of the p-adics, but we dare not discuss it with others.”
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x

y

z

Figure 1. The nilpotent cone for SL2(R)

We let O(0) denote the set of nilpotent orbits. To decompose N into orbits,
we notice that the unit circle S1 embeds into SL2(R) under the map

θ �→ s(θ) :=
(

cos(θ) sin(θ)

−sin(θ) cos(θ)

)
and

s(θ)M(x, y, z) = M(x · cos(2θ) + y · sin(2θ), y · cos(2θ)− x · sin(2θ), z).

Consequently, the set of nilpotent elements in sl2(R) having a fixed z value are all
conjugate. From the Jacobson-Morozov theorem [3, §5.3], for all X ∈ N we can
produce a one-parameter subgroup

λ : GL1 → SL2

such that
λ(t)X = t2X

for all t ∈ R×.

Exercise 2.3.1. Prove the above assertion.

Combining the action of S1 with the above consequence of Jacobson-Morozov,
we conclude that O(0) has at most three elements. In fact, there are exactly three
nilpotent orbits.
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Remark 2.3.2. It is important to note that, except for the trivial orbit, it is
not true that there is a single g ∈ SL2(R) that acts by dilation on every element of
a nilpotent orbit. More precisely, we know that if O ∈ O(0), then

(1) t2O = O for all t ∈ R× and
(2) for each X ∈ O, there is a gX ∈ SL2(R) such that gXX = t2X.

Consequently, if µO denotes an invariant measure (it is unique up to a constant)
on O and f is a nice function on O, then

(1) for all t ∈ R×

µO(ft2) = |t|− dim(O)
µO(f)

where ft2(Y ) = f(t2Y ) for Y ∈ sl2(R) and
(2) for all g ∈ SL2(R),

µO(fg) = µO(f).

2.3.2. Split and elliptic elements. We now consider the two remaining cases. In
both cases, the characteristic polynomial has distinct eigenvalues: real in the split
case and complex in the elliptic case. Fix α > 0.

We first consider the split case. The set of M(x, y, z) for which α2 = z2− (x2 +
y2) form a single orbit all of whose elements are conjugate to

M(α, 0, 0) =
(

α 0
0 −α

)
.

The orbit is a one sheeted hyperboloid which is asymptotic to (and outside of) the
nilpotent cone.

For the elliptic case the elements M(x, y, z) for which −α2 = z2 − (x2 + y2)
form two orbits all of whose elements are conjugate to either

M(0, 0, α) =
(

0 α
−α 0

)
or

M(0,−α, 0) =
(

0 −α
α 0

)
.

Note that these two matrices are conjugate by an element of SL2(C). These orbits
form a two sheeted hyperboloid which is asymptotic to (and inside of) the nilpotent
cone.

To complete our discussion of split and elliptic elements, we recall that a Cartan
subalgebra (CSA) is a maximal subalgebra consisting of commuting semisimple
elements. (If you prefer, you may think of a CSA as the Lie algebra of a maximal
R-torus of SL2.) For sl2(R), the CSAs are one-dimensional, given by lines through
the origin of the form

{M(λa, λb, λc) |λ ∈ R }
with a2 + b2 �= c2. We therefore recover the “standard” split CSA

{M(λ, 0, 0) |λ ∈ R} = {
(

x 0
0 −x

)
|x ∈ R}

and the “standard” elliptic CSA

{M(0, 0, λ) |λ ∈ R} = {
(

0 z
−z 0

)
| z ∈ R}.
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x

y

z

L

Figure 2. A “picture” of the lattice L

2.3.3. A return to homogeneity. We again consider Statement 2.1.1. From the
preceding discussion, it is clear (at least for sl2(R)) that every orbit is asymptotic to
the nilpotent cone. Thus, it is believable that the right-hand side of Statement 2.1.1
should, ideally, consist of nilpotent orbital integrals.

If we pretend that we can draw pictures of what the nilpotent cone looks like p-
adically, then we can even visualize Statement 2.1.1 . For simplicity, let us assume
that we we are interested in invariant distributions supported on the closure of
SL2(k)L for the lattice L “drawn” in Figure 2

From our discussion above, we know that the closure of SL2(k)L is asymptotic
to the nilpotent cone, and we “see” that, in fact,

SL2(k)L ⊂ N + L.

(Compare this with Lemma 5.1.1.) Consequently, it is not much of a stretch to
think that our homogeneity statements should look like

resCc(g/L) J(L) = resCc(g/L) J(N )

where J(N ) denotes the space of invariant distributions spanned by the nilpotent
orbital integrals.

3. An introduction to some aspects of Bruhat-Tits theory

We now have a guess as to what belongs on the right-hand side of State-
ment 2.1.1. The purpose of this section is to introduce, via examples, enough
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Bruhat-Tits theory to help us refine our understanding of what to place on the
left-hand side.

A good introduction to Bruhat-Tits theory may be found in Joe Rabinoff’s
Harvard senior thesis [12].

3.1. Apartments. Our immediate goal is to understand a bit of the math-
ematics behind the “Coxeter paper” that Bill Casselman has posted on his web
page5.

Recall that G is a p-adic group, that is, G is the group of k-rational points of
a connected reductive linear algebraic k-group G. For simplicity, we shall assume
that G is a semisimple, k-split group which is defined over Z. Thus, the notations
G(R) and g(R) make sense. So, for example, G could be Sp2n, realized in the
usual way.

Following earlier lecturers, we fix a maximal k-split torus A in G which is
defined over Z. We let A denote the group of k-rational points of A. So, for
example, A could be the set of diagonal matrices in Sp2n(k).

We let A = X∗(A)⊗R and call A the apartment6 attached to A. For the group
Sp2n(k), the apartment is isomorphic to Rn.

An apartment carries a natural polysimplicial decomposition; we now describe
how this arises. We let Φ = Φ(G,A) denote the set of nontrivial eigencharacters for
the action of A on g. We assume that the valuation map ν : k× → Z is surjective,
and we let Ψ = Ψ(G,A, ν) denote the corresponding set of affine roots, that is

Ψ = {γ + n | γ ∈ Φ , n ∈ Z}.
Each ψ = γ + n ∈ Ψ defines an affine function on A by

(γ + n)(λ⊗ r) := r · 〈λ, γ〉+ n

where 〈 , 〉 denotes the natural perfect pairing X∗(A)×X∗(A) → Z. (Here, X∗(A)
denotes the group of characters of A.) Consequently, for each ψ ∈ Ψ, we can
define the hyperplane Hψ := {x ∈ A |ψ(x) = 0} ⊂ A. These hyperplanes give
us the familiar polysimplicial decomposition of A. We usually call a polysimplex
occurring in this decomposition a facet and the maximal facets are called alcoves.

Finally, just as the Weyl group W = NG(A)/A acts transitively on (spherical)
chambers, the extended affine Weyl group W̃ = NG(A)/A(R) acts transitively on
alcoves (but not, in general, simply transitively — think about the image of

(
0 1
� 0

)
in PGL2(k) and how it acts on the standard apartment of PGL2(k)).

3.1.1. Sp4(k) in detail. For this subsection only, we let G = Sp4(k) realized as
the subgroup of the group of 4× 4 matrices of nonzero determinant which preserve(

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

)
.

We take A to be the set of matrices {a(x, y) |x, y ∈ k×} where

a(x, y) :=

(
x 0 0 0
0 y 0 0

0 0 y−1 0

0 0 0 x−1

)
.

5Look under Frivolities at http://www.math.ubc.ca/people/faculty/cass/
6Generally speaking, one does not want to fix (as we have) an origin.
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α

β

Figure 3. The C2 root system

If we define α, β ∈ X∗(A) by α(a(x, y)) = xy−1 and β(a(x, y)) = y2, then

Φ = {±α,±β,±(β + α),±(β + 2α)}
and the root system has the familiar diagram given in Figure 3.

The Z-lattice of cocharacters X∗(A) is the Z-linear span of λ1 and λ2 where
λ1(t) = a(t, 1) and λ2(t) = a(1, t) for t ∈ k×. In Figure 4 we have begun a sketch
of the simplicial decomposition of A arising from the above data. The reader is
encouraged to spend some time thinking about how we arrived at Figure 4.

Remark 3.1.1. For those familiar with coroots, we note that α̌ = λ1−λ2 while
β̌ = λ2.

3.2. Objects associated to facets. To each facet in A we can attach many
types of objects. Some of these live in G, others in g, and still others are properly
thought of as objects over f := R/℘, the residue field of k. In this section, we
introduce these items.

For each γ ∈ Φ we have a root group, denoted Uγ , in G and a root space,
denoted gγ , in g. In each case, these groups are isomorphic to k.

Example 3.2.1. In the example of Sp4(k) introduced above, we have that Uα

consists of matrices of the form (
1 a 0 0
0 1 0 0
0 0 1 −a
0 0 0 1

)
and gα consists of 4× 4 matrices of the form(

0 a 0 0
0 0 0 0
0 0 0 −a
0 0 0 0

)
.

The field k carries a natural filtration, indexed by Z, consisting of compact
open subgroups:

k ⊃ · · · ⊃ ℘−2 ⊃ ℘−1 ⊃ R ⊃ ℘ ⊃ ℘2 ⊃ · · · ⊃ {0}.
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Hα
+
0
=
H−α

+
0

H
(−

2
α
−

β
)+

1

H
(α

+
β)+

0

λ
2

λ1

H−α
+
1

Hβ−2

Hβ−1 = H−β+1

Hβ+0 = H−β+0

Figure 4. A sketch of an apartment for Sp4(k)

We’d like to use the set {γ+n |n ∈ Z} to index the corresponding natural filtration
in Uγ (resp. gγ). To fix this indexing, we make the following choices:

Uγ+1 � Uγ+0 := G(R) ∩ Uγ

and
gγ+1 � gγ+0 := g(R) ∩ gγ .

We can now define some of the objects we are interested in. For x ∈ A, we
define Gx, the parahoric subgroup attached to x, by

Gx := 〈A(R), Uψ〉ψ∈Ψ;ψ(x)≥0.

That is, Gx is the group generated by A(R) and the subgroups Uψ for ψ ∈ Ψ with
ψ(x) ≥ 0. Since a facet F in A is determined by the intersection of hyperplanes,
we have Gx = Gy for x, y ∈ F . Consequently, the notation GF makes sense. If o is
the origin in A, then Go = G(R).

Example 3.2.2. We consider the case of SL2(k) with A realized as the set of
diagonal matrices. In Figure 5 we have sketched and labeled part of the correspond-
ing apartment. After fixing an orientation, the parahoric subgroups associated to
each facet are given7 in the second column of Table 2.

7For example, the notation
“

R ℘
℘−1 R

”

means the group of matrices in SL2(k) having entries

in the indicated rings.
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x1C−1 C0x−1 o

Figure 5. A sketch of an apartment for SL2(k)

F GF G+
F GF /G

+
F

x−1

(
R ℘
℘−1

R

)
1 +
(
℘ ℘2

R ℘

)
SL2(f)

C−1

(
R ℘
R R

)
1 +
(
℘ ℘
R ℘

)
GL1(f)

o SL2(R) 1 +
(
℘ ℘
℘ ℘

)
SL2(f)

C0

(
R R
℘ R

)
1 +
(
℘ R
℘ ℘

)
GL1(f)

x1

(
R ℘−1

℘ R

)
1 +
(
℘ R
℘2 ℘

)
SL2(f)

Table 2. Various groups associated to facets in SL2(k)

The parahoric GF always has a normal subgroup G+
F , called the pro-unipotent

radical, with the property that the quotient GF /G
+
F is the group of f-rational points

of a connected reductive f-group GF . To define G+
F , we must first consider the torus

A. We set

A(R)+ := {a ∈ A(R) | ν(χ(a)− 1) > 0 for all χ ∈ X∗(A)}.
Example 3.2.3. In SL2(k), A(R)+ consists of the matrices(

1+℘ 0
0 1+℘

)
.

and in Sp4(k), we have A(R)+ := {a(x, y) |x, y ∈ 1 + ℘}.
For x ∈ A we define G+

x by

G+
x := 〈A(R)+, Uψ〉ψ∈Ψ;ψ(x)>0.

As before, for a facet F in A, the notation G+
F makes sense. The various subgroups

associated to each facet in A for SL2(k) are given in Table 2.
It is a general fact, which is clearly exhibited in the example of SL2(k), that if

F1 and F2 are two facets for which F1 belongs to the closure of F2, then

G+
F1

< G+
F2

< GF2 < GF1

and GF2/G
+
F1

is a parabolic subgroup of GF1(f) = GF1/G
+
F1

with unipotent radical
isomorphic to G+

F2
/G+

F1
and Levi factor isomorphic to GF2(f). In particular, if F2

is an alcove, then GF2/G
+
F1

may be identified with a Borel subgroup of GF1(f).
We end this section with a few examples.

Example 3.2.4. In Figure 6 we label each of the facets in a fixed alcove of an
apartment for SL3(k) with the name of the corresponding f-group.

Example 3.2.5. In Figure 7 we label each of the facets in a fixed alcove of an
apartment for Sp4(k) with the name of the corresponding f-group.
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SL3 GL2 SL3

GL2 GL2

GL2
1

SL3

Figure 6. An alcove for SL3(k)

Sp4

GL2
1

Sp4

SL2×GL1 SL2× SL2

SL2×GL1

GL2

Figure 7. An alcove for Sp4(k)

Example 3.2.6. In Figure 8 there is a model, produced by Joseph Rabinoff,
for an alcove of Sp6(k). Each of the facets has been labeled with the name of the
corresponding f-group. This model can be quite instructive. For example, after
assembling the model, one sees that it can be realized as that part of a cube cut
out by placing vertices at a vertex of the cube, the midpoint of an adjacent edge,
the center of an adjacent face, and the center of the cube. The cube decomposes
into forty-eight such solids, and the Weyl group of Sp6(k) acts simply transitively
on them (take the origin of A as the center of the cube).

All of the above can be carried out for the Lie algebra. In particular, for a
facet F there is a lattice g

+
F so that gF /g

+
F is LF (f) := Lie(GF )(f), the Lie algebra

of GF (f).

4. Parameterizations via Bruhat-Tits theory: nilpotent orbits

The main idea of this section is to relate certain aspects of the structure theory
of G to the structure theory of the various finite groups of Lie type that arise
naturally via Bruhat-Tits theory. We shall treat the structure theory of finite groups
of Lie type as a black box. These results will play a key role in our understanding
and use of the homogeneity statements to come.
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Figure 8. An alcove for Sp6(k)
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GL1(f)
(

0 0
0 0

)
SL2(f)

(
0 1
0 0

)
SL2(f)

(
0 
−1

0 0

)
SL2(f)

(
0 ε
0 0

)
SL2(f)

(
0 ε
−1

0 0

)
Figure 9. Distinguished nilpotent orbits associated to facets for SL2(k)

2
1

2

Figure 10. Enumeration of distinguished GF (f)-orbits for SL2(k)

4.1. A parameterization of nilpotent orbits: examples. None of the
material in this section works unless p, the residual characteristic of k, is sufficiently
large (as a function of the root datum of G). We begin with an example.

Example 4.1.1. When p �= 2 the group SL2(k) has five nilpotent orbits. These
are represented by the elements of the set{(

0 θ
0 0

)
| θ ∈ {0, 1, ε,�−1, �−1ε}

}
where ε ∈ R× \ (R×)2. On the other hand, we have that the group SL2(f) has two
distinguished8 orbits

SL2(f)
(

0 1
0 0

)
and SL2(f)

(
0 ε
0 0

)
where ε ∈ f× \ (f×)2, and GL1(f) has one distinguished orbit — the trivial orbit.
When we encode this information in our preferred chamber, we produce a picture
like Figure 9.

Note that in the diagram we’ve included the factor �−1 to emphasize the
obvious p-adic lift. For consistency with later examples, in Figure 10 we enumerate
the distinguished GF (f)-orbits attached to each facet in an alcove for SL2(k). Note
that there are five orbits enumerated in Figure 10.

The example of SL2(k) indicates that there is a simple connection between
O(0), the set of nilpotent orbits for a p-adic group, and the nilpotent orbits for
Lie groups of finite type. We have the following result due to D. Barbasch and
A. Moy [2].

Fact 4.1.2. If F is a facet and Ō ⊂ LF (f) = gF /g
+
F is a nilpotent orbit, then

there exists a unique nilpotent orbit in g of minimal dimension which intersects the
preimage of Ō nontrivially.

Remark 4.1.3. The reader is urged to verify this fact for the group SL2(k).

Example 4.1.4. Since the heuristics of SL2(k) worked so well, let us now turn
our attention to SL3(k) with p > 3. It is easy to see that O(0) has 2+3 ·

∣∣f×/(f×)3
∣∣

elements. On the other hand, in Figure 11 we have enumerated the number of
distinguished GF (f)-orbits in LF (f) for each facet in an alcove of SL3(k). When
we proceed without thinking (that is, we sum), we find that our indexing set has
4 + 3 ·

∣∣f×/(f×)3
∣∣ elements — two too many! However, whenever two line segments

8A nilpotent orbit which does not intersect a proper Levi subalgebra is called distinguished.
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∣∣f×/(f×)3
∣∣ 1

1

1

∣∣f×/(f×)3
∣∣

∣∣f×/(f×)3
∣∣

1

Figure 11. Enumeration of distinguished GF (f)-orbits for SL3(k)

in the closure of an alcove are incident (see Figure 6), the associated general linear
groups are conjugate in SL3(f). That is, in some real sense we are summing two
too many things.

4.2. An equivalence relation on A. We now introduce an equivalence re-
lation on the set of facets of A that will account for the over counting encountered
in the SL3(k) example above.

Definition 4.2.1. If F is a facet in A, then we let A(F ) denote the smallest
affine subspace of A containing F .

Example 4.2.2. If F is a vertex, then A(F ) is the vertex itself. At the opposite
extreme, if F is an alcove, then A(F ) is A.

Recall that W̃ = NG(A)/A(R) acts transitively on the set of alcoves in A

Definition 4.2.3. Suppose F1 and F2 are two facets in A. If there is a w ∈ W̃
such that

A(F1) = A(wF2),

then we write F1 ∼ F2.

One easily verifies that the rule ∼ defines an equivalence relation on the set of
facets in A. Moreover, since W̃ acts transitively on alcoves, a set of representatives
for the equivalence classes under ∼ can always be found among the facets occurring
in the closure of a fixed alcove.

Example 4.2.4. Here are some examples that the reader is encouraged to
verify.

• Two vertices are equivalent if and only if they belong to the same W̃ -orbit.
• If C1 and C2 are two alcoves in A, then C1 ∼ C2.
• For SL2(k) and Sp4(k), the set of facets occurring in the closure of a fixed

alcove forms a complete set of representatives for the relation ∼.
• The only equivalent facets occurring in the closure of an alcove for Sp6(k)

are the two faces for which GF is GL2×GL1.
• The only equivalent facets occurring in the closure of an alcove for SL3(k)

are the three edges. That is, the facets with hatch marks in Figure 12.
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Figure 12. Equivalent edges in an alcove for SL3(k)

F2

o

F1

Figure 13. Part of the apartment for SL3(k)

4.3. The key idea. We now present the key ingredient that makes everything
work. If F1 and F2 are two facets in A such that A(F1) = A(F2), then the natural
map

GF1 ∩GF2 → GFi
(f)

is surjective with kernel G+
F1
∩G+

F2
. In fact, this leads to an f-isomorphism between

GF1 and GF2 which we write as GF1

i= GF2 (or, for the Lie algebra, as LF1

i= LF2).
If you recall how the facets were created, then the above observation becomes

less surprising. We now present an example to reinforce the idea.

Example 4.3.1. Consider the facets F1 and F2 in the standard apartment for
SL3(k) as in Figure 13. In Table 3, we list the parahoric subgroup, its pro-unipotent
radical, and the f-group associated to each of these facets. The reader may verify
that this example works as advertised.

4.4. A parameterization of nilpotent orbits: the general case. We now
present some definitions which allow us to extend the examples presented in §4.1.

Definition 4.4.1. Let Id denote the set of pairs (F, Ō) where F is a facet in
A and Ō is a distinguished GF (f)-orbit in LF (f).
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F GF G+
F GF

F1

(
R R R
R R R
℘ ℘ R

)
1 +
(℘ ℘ R
℘ ℘ R
℘ ℘ R

)
GL2

F2

(
R R ℘−2

R R ℘−2

℘3 ℘3
R

)
1 +
(℘ ℘ ℘−2

℘ ℘ ℘−2

℘3 ℘3 ℘

)
GL2

Table 3. Various groups associated to some facets for SL3(k)

1

4

2

3

3 2

1

Figure 14. An enumeration of the distinguished GF (f)-orbits for Sp4(k).

Definition 4.4.2. Suppose (F1, Ō1) and (F2, Ō2) are two elements of Id. We
write (F1, Ō1) ∼ (F2, Ō2) provided that there exists n ∈ NG(A) such that

(1) A(F1) = A(nF2) and
(2) Ō1

i= nŌ2 in LF1(f)
i= LnF2(f).

We can now state the main result for this section.

Theorem 4.4.3 ([6]). Suppose p is sufficiently large. The map that sends
(F, Ō) ∈ Id to the unique nilpotent G-orbit of minimal dimension which intersects
the preimage of Ō nontrivially induces a bijective correspondence

Id/∼←→ O(0).

We remark that the theorem is false if p is not large enough. Consider, for
example, SL2(Q2).

We finish our discussion with some examples.

Example 4.4.4. It is known that for Sp4(k) and p �= 2 the cardinality of O(0)
is sixteen. We have already discussed the fact that none of the facets in the closure
of a fixed alcove for Sp4(k) are equivalent under ∼. In Figure 14 we enumerate the
number of distinguished GF (f)-orbits in LF (f) for each facet F in the closure of an
alcove of Sp4(k). As a warning to those who might wish to think further about
these matters, we note that the three distinguished orbits found at each of the Sp4

vertices arise in a somewhat surprising way: Over the algebraic closure, there is
one regular nilpotent orbit and one subregular nilpotent orbit (which intersects the
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Lie algebra of the GL2-Levi of Sp4). Upon descent to the field f, the regular orbit
breaks into two distinguished Sp4(f)-orbits and the subregular orbit breaks into two
Sp4(f)-orbits. One of these orbits intersects the f-rational points of the Lie algebra
of the GL2-Levi; the other is distinguished.

Example 4.4.5. It is known that for Sp6(k) and p �= 2 the cardinality of O(0)
is forty-five. We have already discussed the fact that exactly two of the facets in the
closure of a fixed alcove for Sp6(k) are equivalent under ∼. In Table 4 we enumerate

G number of distinguished G(f) -orbits
Sp6 six

Sp4× SL2 six
Sp4×GL1 three
SL2×GL2

1 two
SL2×GL1× SL2 four

SL2×GL2 two
GL2×GL1 one

GL3 one
GL3

1 one

Table 4. An enumeration of distinguished G(f)-orbits

the number of distinguished GF (f)-orbits in LF (f) for each facet F in the closure of
an alcove of Sp6(k). The subsequent counting exercise is left to the reader.

Finally, we note that there does not exist a complete description of the dis-
tinguished orbits in the Lie algebra of a finite group of Lie type. But, although
it seems that we have reduced one problem about which we know very little to
another problem about which we also know very little, this reduction will be quite
useful.

5. A precise homogeneity statement

Recall that our goal is to make Statement 2.1.1 into something reasonable and
provable. In §2.3.3 we discussed the fact that the “G-orbit” of every compact set
was asymptotic to the nilpotent cone. This motivated the idea that perhaps J(N ),
the span of the nilpotent orbital integrals, was a reasonable candidate for the right-
hand side of Statement 2.1.1. We are still searching for a candidate for the left-hand
side; we begin with a very precise asymptotic result.

5.1. An asymptotic result.

Lemma 5.1.1 ([1]). For facets F1, F2 in A we have gF1 ⊂ gF2 +N .

Example 5.1.2. In Figure 15 we have described the lattices gF for the standard
apartment in SL2(k). We observe that if F2 lies to the left of F1, then gF1 ⊂ gF2 +u

where u is the set of strictly upper triangular two-by-two matrices.
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x1C0

(
R ℘−1

℘ R

)
C−1

(
R R
℘ R

)
(

R ℘
℘−1

R

) (
R R
R R

)
(

R ℘
℘−1

R

)

x−1 o

Figure 15. Some lattices in sl2(k)

Proof. Choose x ∈ F1 and y ∈ F2. Let �v = y − x. Let Φ+ denote the set of
roots that pair nonnegatively against �v and let Φ− = Φ \ Φ+. We have∑

α∈Φ−

gα ⊂ N

and

gF1 = Lie(A)(R)⊕
∑

α∈Φ; n∈Z; (α+n)(x)>0

gα+n

= Lie(A)(R)⊕
∑

α∈Φ+; n∈Z; (α+n)(x)>0

gα+n ⊕
∑

α∈Φ−; n∈Z; (α+n)(x)>0

gα+n

⊂ gF2 +
∑

α∈Φ−; n∈Z; (α+n)(x)>0

gα+n

⊂ gF2 +N .

The second to last line is true because if α ∈ Φ+, then

(α + n)(y) = (α + n)(x + �v) = (α + n)(x) + 〈�v, α〉
≥ (α + n)(x).

�

To facilitate our discussion, we fix an alcove C in A.

Definition 5.1.3. We set

g0 :=
⋃

F⊂C̄

G(gF )

where the union is over the facets occurring in the closure of a fixed alcove C.

The set g0 is usually referred to as the set of compact elements in g; for GLn(k)
it is exactly the set of elements in Mn(k) for which each eigenvalue has nonnegative
valuation.

Corollary 5.1.4. We have g0 ⊂ gC +N .

Proof. From Bruhat-Tits theory we can write

G = GCW̃GC .

The result follows. �
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5.2. A homogeneity statement. The above asymptotic results, along with
our previous discussions should, I hope, make the following homogeneity statement
both natural and plausible.

Theorem 5.2.1 ([14], [4]). Suppose p is sufficiently large.
(1)

resCc(g/gC) J(g0) = resCc(g/gC) J(N ).

(2) For T ∈ J(g0) we have

resCc(g/gC) T = 0

if and only if
resP

F⊂C̄ C(gF /gC) T = 0.

The first proof of this result, for “unramified classical” groups, is due to Wald-
spurger [14]. We shall not attempt to prove this theorem, which is a special case of
a much more general result. However, we do have enough tools on hand to sketch
how statement (2) implies statement (1): We have

resP

F⊂C̄ C(gF /gC) T = 0

if and only if
resP

F⊂C̄ C(g+
C/g

+
F ) T̂ = 0.

(Note, we are assuming in this statement that the form B introduced in §2.2 has
certain properties — for example, that it descends to a nondegenerate, symmetric,
nondegenerate, bilinear form on LF (f).) However, as discussed previously, g

+
C/g

+
F

is the nilradical of a Borel subgroup of GF (f). Thus

resP

F⊂C̄ C(gF /gC) T = 0

if and only if
T̂ ([(F, Ō)]) = 0

for all (F, Ō) ∈ Id where [(F, Ō)] denotes the characteristic function of the preimage
of Ō. It is then not difficult to see that this is equivalent to the statement

T̂ ([(F, Ō)]) = 0

where (F, Ō) ∈ Id runs over a set of representatives for Id/ ∼. But from Theo-
rem 4.4.3, this implies that the dimension of resCc(g/gC) J(g0) is less than or equal
to the cardinality of O(0). On the other hand, J(N ) ⊂ J(g0) and from Harish-
Chandra [7] we know that the dimension of

resCc(g/gC) J(N )

is equal to the number of nilpotent orbits. So (1) follows from (2).

5.3. Some applications. We present here two quick applications that are
related to material presented elsewhere in this workshop. The final section of these
notes is dedicated to giving a more thorough (yet still incomplete) treatment of an
application.

First, the above homogeneity statement gives us a sharpened version of the
Harish-Chandra–Howe local character expansion. Suppose, as usual, that p is large.
Let (π, V ) be an irreducible admissible representation of G. If there exists a facet
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F in A for which V G+
F �= {0} (that is, (π, V ) has depth zero), then there exist

complex constants cO(π) for which

Θπ(exp(X)) =
∑

O∈O(0)

cO(π) · µ̂O(X)

for all regular semisimple X ∈ g0+ . Here g0+ denotes the set of topologically
nilpotent elements, or, more precisely,

g0+ :=
⋃

F⊂C̄

G
g
+
F .

For GLn(k) the set of topologically nilpotent elements is exactly the set of elements
in Mn(k) for which each eigenvalue has positive valuation. Note that we are also
assuming that exp: g0+ → G0+ is bijective.

Second, again assuming that p is sufficiently large, we can derive a sharpened
Shalika-germ expansion. Namely, for all regular semisimple X ∈ g0 we have

µ̂X(Y ) =
∑

O∈O(0)

ΓO(X) · µ̂O(Y )

for all regular semisimple Y ∈ g0+ .

6. An application: stable distributions supported on the nilpotent cone

In this section, we sketch a final application of the homogeneity result stated
above. This section should be thought of as an introduction to the techniques found
in Waldspurger’s tome [13].

6.1. Stability. For some purposes, the concept of stable invariance is more
natural than the concept of invariance; however, the definition of stable invariance
is far less natural. In order to motivate the definition of stability, we begin by
recalling a result of Harish-Chandra.

We define Dann to be the space of functions that vanish on every regular
semisimple orbital integral. That is

Definition 6.1.1.

Dann = {f ∈ C∞
c (g) |µX(f) = 0 for all regular semisimple X ∈ g}.

We then have

Theorem 6.1.2 ([7]). Suppose T ∈ C∞
c (g)∗, that is, T is a distribution on g

(not necessarily invariant). We have

T is invariant if and only if resDann T = 0.

In other words, regular semisimple orbital integrals are dense in the space of
invariant distributions. We remark that a key step in the proof is to show that
resDann µO = 0 for each O ∈ O(0).

Motivated by this result of Harish-Chandra, we can now define J st(g), the
space of stably invariant distributions on g. We begin by introducing the idea of
a stable orbital integral. Suppose X ∈ g is regular semisimple. There is a finite
set {X� | 1 ≤ � ≤ n} of regular semisimple elements in g so that G(k̄)X ∩ g can be
written as a disjoint union

G(k̄)X ∩ g = GX1 $ GX2 $ · · · $ GXn.
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After suitably normalizing measures, we set

SµX =
n∑

�=1

µX�

and we call SµX a stable orbital integral.
The analogue of Dann becomes the space of functions that vanish on every

stable orbital integral. That is,

Definition 6.1.3.

Dstann := {f ∈ C∞
c (g) |SµX(f) = 0 for all regular semisimple X ∈ g}.

We then define

Definition 6.1.4.

J st(g) := {T ∈ C∞
c (g)∗ | resDstann T = 0}.

Note that since Dann ⊂ Dstann, every element of J st(g) is an invariant distri-
bution on g.

Example 6.1.5. Here are some examples of elements of J st(g).
• For all regular semisimple X ∈ g, the distribution SµX is stable.
• The distribution µ{0} is stable.
• The distribution which sends f ∈ C∞

c (g) to
∫

g
f(X) dX is stable.

Herein lies the basic problem: beyond the examples listed above, we have
essentially no general understanding of Jst(g). A natural first question to ask is:
can we understand J st(N ) := J(N ) ∩ J st(g)? For certain unramified classical
groups, Waldspurger has provided an affirmative answer to this question.

6.2. A first step towards understanding Jst(N ). The following result,
due to Waldspurger [13], gives us a way to tackle the problem of describing J st(N ).
The argument is very similar to one that Harish-Chandra used to prove Theo-
rem 6.1.2.

Lemma 6.2.1 ([13]). Suppose T ∈ J(g0). Let

D =
∑

O∈O(0)

cO(T ) · µO

(with cO(T ) ∈ C) denote the unique element in J(N ) for which

resCc(g/gC) T = resCc(g/gC) D.

If T ∈ Jst(g), then D ∈ Jst(N ).

Proof. Fix f ∈ Dstann. We need to show that D(f) = 0.
We note that if t ∈ k×, then ft2 ∈ Dstann . Choose t ∈ k× � R× such that

ft2n ∈ Cc(g/gC) for all n ≥ 1. For all n ≥ 1 we have

0 = T (ft2n) = D(ft2n)

=
∑

O∈O(0)

cO(T ) · µO(ft2n)

=
∑
i=0

|t|−in
∑

O∈O(0);dim(O)=i

cO(T ) · µO(f).
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Since the characters n �→ |t|−in are linearly independent, each of the terms∑
O∈O(0);dim(O)=i

cO(T ) · µO(f)

must be zero. Consequently D(f) = 0. �

Thus, one way to find a basis for J st(N ) is to first produce a basis for resCc(g/gC) J(g0)
with the properties

• the elements of the basis are of the form resCc(g/gC) µX with X ∈ g0

regular semisimple, and
• we can easily describe which combinations of the µX are stable.

6.3. A dual basis. Fix a set of representatives {(Fi, Ōi) ∈ Id | 1 ≤ i ≤ |O(0)|}
for Id/ ∼. Recall that for T ∈ J(g0) we have resCc(g/gC) T = 0 if and only if
T̂ ([(Fi, Ōi)]) = 0 for 1 ≤ i ≤ |O(0)|. Thus the Fourier transforms of the functions
[(Fi, Ōi)] form a dual basis for resCc(g/gC) J(g0). (Note that the Fourier transform
of the function [(F, Ō)] does not belong to Cc(g/gC), but, rather, it belongs to∑

g∈G Cc(g/ggC). However, since T is an invariant distribution, this will not cause
us any difficulties.) So, the idea is to produce well-understood functions on LF (f)
that separate distinguished nilpotent orbits and (might) have something to do with
regular semisimple orbital integrals. Thanks to work of Deligne, Kazhdan, Lusztig,
and others, such functions exist:

Fact 6.3.1 ([10]). There exist class functions on LF (f), called generalized Green
functions, such that

• the functions span the set of class functions supported on the nilpotent
elements in LF (f),

• the cuspidal9 generalized Green functions separate distinguished orbits,
and

• the functions are well understood.

Example 6.3.2. If T ≤ GF is an f-minisotropic torus10, then the usual Green
function

QGF

T (X̄) =

{
0 X̄ is not nilpotent
RGF

T (1)(exp(X̄)) otherwise.

is a cuspidal generalized Green function. Note that exp makes sense in this context
because X̄ is nilpotent, and we are assuming that p is not too small.

Note that not all cuspidal generalized Green functions occur as in this example;
this is already the case for SL2(f).

We define IG to be the set of pairs (F,G) where F is a facet in A and G is
a cuspidal generalized Green function on LF (f). As in the case of Id, the set IG

carries a natural equivalence relation, which we also denote by ∼. Given the above
discussion, it is not hard to believe that the following lemma is valid.

9A function is called cuspidal provided that summing against the nilradical of any proper

parabolic yields zero.
10An f-torus is called f-minisotropic in GF provided that its maximal f-split torus lies in the

center of GF .
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Lemma 6.3.3 ([13]). Suppose T ∈ J(g0). We have

resCc(g/gC) T = 0 if and only if T (ĜF ) = 0

for all (F,G) ∈ IG/∼. Here ĜF denotes the inflation of Ĝ to a function on g.

6.4. A well-chosen basis for resCc(g/gC) J(g0). As discussed before, we want
to find a basis for resCc(g/gC) J(g0) with several good properties. It would be even
better if this basis were dual to IG/ ∼. As evidenced by the size of [13], this is
quite a difficult problem. However, it is not too difficult to sketch how to carry out
this program for the generalized Green functions of the form QGF

T .
Fix an element of IG of the form (F,QGF

T ). Choose absolutely any XT ∈ gF for
which the centralizer in GF of the image of XT in LF is T. Note that such an XT

is necessarily regular semisimple and µXT
∈ J(g0). Using results of Kazhdan [9],

Waldspurger proves

Lemma 6.4.1 ([13]). For XT as above and (F ′,G′) ∈ IG we have

µXT
(ĜF ′) =

{
0 (F ′,G′) �∼ (F,QGF

T )
N otherwise.

where N is a nice nonzero number which is independent of the choice of XT.

As a consequence of this lemma, we have that resC∞
c (g0+ ) µ̂XT

is independent
of how XT was chosen. This is a much stronger version of Lemma 2.2.2. To see
why the elements resC∞

c (g0+) µXT
are particularly nice to deal with, we must return

to Bruhat-Tits theory.

6.5. Parameterizing maximal unramified tori. A subgroup T ≤ G is
called an unramified torus provided that it is the group of k-rational points of a
torus which splits over an unramified extension of k.

Example 6.5.1. We begin by considering some examples.
• The group A is always a maximal unramified torus.
• If p �= 2 and ε ∈ R× � (R×)2, then

{
(

a b
bε a

)
| a2 − b2ε = 1}

is a maximal unramified torus in SL2(k), but the torus

{
(

a b
b� a

)
| a2 − b2� = 1}

is not.

Just as we parameterized the elements of O(0) in terms of similar objects over
the finite field, we would like to do the same for conjugacy classes of maximal
unramified tori. This time, the objects over the finite field will be conjugacy classes
of maximal f-minisotropic tori.

Suppose G is a connected f-split reductive group. From Carter [3] the G(f)-
conjugacy classes of maximal f-tori in G are parameterized by the conjugacy classes
in the Weyl group of G. We sketch how this parameterization works: Let S be a
maximal f-split torus in G and let σ denote a topological generator for Gal(̄f/f).
If T is any f-torus, then there is a g ∈ G(̄f) such that T = gS. Since T and S are
σ-stable, the element σ(g)−1g belongs to the normalizer of S in G and so determines
a conjugacy class in the Weyl group.
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A1

e
A1

Figure 16. An enumeration of classes of f-minisotropic tori for SL2

A2

A1

A1

A1

e

A2

A2

Figure 17. An enumeration of classes of f-minisotropic tori for SL3

The maximal f-minisotropic tori in G are parameterized by the anisotropic11

conjugacy classes of the Weyl group. We shall use Carter’s notation for the conju-
gacy classes in the Weyl group.

Example 6.5.2. The group SL2 has two SL2(f)-conjugacy classes of maximal
f-tori. One is f-minisotropic and corresponds to A1 (see Figure 16), the nontrivial
conjugacy class in the Weyl group, while the other is f-split and corresponds to
the trivial conjugacy class in the Weyl group. The group GL1 has a single GL1(f)-
conjugacy class of maximal f-tori, namely GL1(f) itself. In Figure 16 we enumerate
the number of GF (f)-conjugacy classes of f-minisotropic tori for each facet F in an
alcove for SL2(k). The sum of the enumerated classes is three, and the number of
SL2(k)-conjugacy classes of maximal unramified tori is three. (Can you produce a
representative for the third class?)

The map from tori over f to tori over k is not as easy to describe as in the
nilpotent case, but it has the advantage of working independent of the residual
characteristic.

In general, we want to consider the set of pairs

Im := {(F, GF (f)T)}
where F is a facet in A and GF (f)T is short-hand for the set of f-tori which are
GF (f)-conjugate to the f-minisotropic torus T. As with the sets Id and IG, the set
Im carries a natural equivalence relation, which we again denote by ∼.

Theorem 6.5.3 ([5]). We have a natural bijective correspondence between
Im/∼ and the set of G-conjugacy classes of maximal unramified tori.

Example 6.5.4. The group SL3(k) has five conjugacy classes of maximal un-
ramified tori. In Figure 17 we use Carter’s labeling for the conjugacy classes in
the Weyl group to enumerate the GF (f)-conjugacy classes of f-minisotropic tori for

11A conjugacy class in a Weyl group is called anisotropic provided that it does not intersect
a proper parabolic subgroup of the Weyl group
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A1 × A1

C2, A1 ×A1

e

A1Ã 1

C2, A1 ×A1 A1

Figure 18. An enumeration of classes of f-minisotropic tori for Sp4

each facet F in an alcove for SL3(k). (Recall that the line segments in the closure
of the alcove are equivalent.)

Example 6.5.5. The group Sp4(k) has nine conjugacy classes of maximal un-
ramified tori. In Figure 18 we again list the anisotropic Weyl group conjugacy
classes to enumerate the GF (f)-conjugacy classes of f-minisotropic tori for each
facet F in an alcove for Sp4(k).

6.6. The finish. To complete these notes, we remark that it is now nearly
trivial to describe the number of distributions in J st(N ) arising from pairs of the
form (F,QGF

T ).
In the preceding sections, we have discussed how to associate to the pair

(F,QGF

T ) ∈ IG a regular semisimple orbital integral µXT
. On the other hand,

(F,QGF

T ) is naturally associated to the pair (F,T) which is associated to a conjugacy
class in the Weyl group of GF . We can lift this conjugacy class to a W̃ -conjugacy
class in the extended affine Weyl group W̃ and then quotient by A to arrive at a
conjugacy class, call it wT, in W .

Suppose (F ′, Q
GF ′
T′ ) is another element of IG with associated regular semisimple

orbital integral µXT′ . From [5] the elements XT and XT′ can be chosen to be stably
conjugate if and only if wT = wT′ . Consequently, to each W -conjugacy class in W
we can associate one distribution in Jst(N ). Thus, the dimension of J st(N ) is at
least equal to the number of W -conjugacy classes in W .

Example 6.6.1. From the above discussion, we can conclude the following. For
SL2(k), the dimension of J st(N ) is at least two (in fact, it is two). For SL3(k), the
dimension of J st(N ) is at least three (in fact, it is three). For Sp4(k), the dimension
of J st(N ) is at least five (in fact, it is six).

To describe the elements of J st(N ) is an entirely different and much more
demanding problem. Such a description will rely on all that we have discussed here
and more.
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Compactifications and Cohomology of Modular Varieties

Mark Goresky

1. Overview

Let G be a connected reductive linear algebraic group defined over Q. Denote
by G(Q) (resp. G(R)) the group of points in G with entries in Q (resp. R). It
is common to write G = G(R). Fix a maximal compact subgroup K ⊂ G and let
AG = AG(R)+ (see §4.1) be the (topologically) connected identity component of
the group of real points of the greatest Q-split torus AG in the center of G. (If G is
semisimple then AG = {1}.) We refer to D = G/KAG as the “symmetric space” for
G. We assume it is Hermitian, that is, it carries a G-invariant complex structure.
Fix an arithmetic subgroup Γ ⊂ G(Q) and let X = Γ\D. We refer to X as a locally
symmetric space. In general, X is a rational homology manifold: at worst, it has
finite quotient singularities. If Γ is torsion-free then X is a smooth manifold. It is
usually noncompact. (If A denotes the adèles of Q and Af denotes the finite adèles,
and if Kf ⊂ G(Af ) is a compact open subgroup, then the topological space Y =
G(Q)\G(A)/AGK ·Kf is a disjoint union of finitely many locally symmetric spaces
for G. To compactify Y it suffices to compactify each of these locally symmetric
spaces.)

There are (at least) four important compactifications of X : the Borel-Serre
compactification X

BS
(which is a manifold with corners), the reductive Borel-Serre

compactification, X
RBS

(which is a stratified singular space), the Baily-Borel (Sa-
take) compactification X

BB
(which is a complex projective algebraic variety, usually

singular), and the toroidal compactification X
tor

Σ (which is a resolution of singu-
larities of X

BB
). (Actually there is a whole family of toroidal compactifications,

depending on certain choices Σ.) The identity mapping X → X extends to unique
continuous mappings

X
BS −−−−→ X

RBS τ−−−−→ X
BB ←−−−− X

tor

Σ .

The first three of these compactifications are obtained as the quotient under Γ of
corresponding “partial compactifications”

D
BS −−−−→ D

RBS −−−−→ D
BB

of the symmetric space D.
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Besides its ordinary (singular) cohomology, the two singular compactifications
X

BB
and X

RBS
also support various exotic sorts of cohomology, defined in terms

of a complex of sheaves of differential forms with various sorts of restrictions near
the singular strata. The L2 cohomology of X may be realized as the cohomology
of the sheaf of L2 differential forms on X

BB
. The (middle) intersection cohomology

of X
BB

is obtained from differential forms which satisfy a condition (see §6.6) near
each singular stratum, defined in terms of the dimension of the stratum. The Zucker
conjecture [Z1], proven by E. Looijenga [Lo] and L. Saper and M. Stern [SS], says
that the L2 cohomology of X

BB
coincides with its intersection cohomology, and

that the same is true of any open subset U ⊂ X
BB

.

The (middle) weighted cohomology complex on X
RBS

is defined in a manner
similar to that of the intersection cohomology, however the restrictions on the chains
(or on differential forms) are defined in terms of the weights of a certain torus action
which exists near each singular stratum. Although the weighted cohomology and
the intersection cohomology do not agree on every open subset of X

RBS
, it has

recently been shown ([S1], [S2]) that they do agree on subsets of the form τ−1(U)
for any open set U ⊂ X

BB
.

This article is in some sense complementary to the survey articles [Sch] and
[B4].

Notation. Throughout this article, algebraic groups over Q will be indicated
in bold, and the corresponding group of real points in Roman, so G = G(R). The
group of n × r matrices over a field k is denoted Mn×r(k). The rank n identity
matrix is denoted In and the zero matrix is 0n.

Acknowledgments. This article was prepared during the Clay Mathematics In-
stitute Summer School which was held at the Fields Institute in Toronto, in June
2003. The author is grateful to the organizers of the Summer School, the Clay
Mathematics Institute, and the Fields Institute for their hospitality and support.
This work was partially supported by the National Science Foundation, grant no.
DMS-0139986.

2. The Baily Borel (Satake) compactification

2.1. The case G = SL(2). Recall the fundamental domains for the action of
Γ = SL(2,Z) on the upper half plane h.

The quotient X = Γ\h may be compactified, X = X ∪ {∞} by adding a single
cusp1 at infinity. If we wish to realize this as the quotient under Γ of a partial
compactification h

BB
of the upper half plane, then we must add to h all the Γ-

translates of {∞} . This consists of all the rational points x ∈ Q on the real line
(which also coincides with the SL(2,Q) orbit of the point at infinity). With this
candidate for h

BB
, the quotient under Γ will fail to be Hausdorff. The solution is

to re-topologise this union so as to “separate” the added points x ∈ Q.
A neighborhood basis for the point at infinity may be chosen to consist of the

open sets Uτ = {z ∈ h| Im(z) > τ} for τ ≥ 2 (say). If we also throw in all the
SL(2,Q)-translates of these sets Uτ then we obtain a new topology, the Satake
topology, on h = h ∪ Q ∪ {∞}, in which each point x ∈ Q has a neighborhood

1Although they are called cusps, the points which are added to compactify a modular curve
are in fact nonsingular points of the resulting compactifications.
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0 1 2 3 4

Figure 1. Fundamental domains for SL(2,Z)

homeomorphic to the neighborhood of the point at infinity. The group Γ still fails
to act “properly” on h because for each boundary point x ∈ Q ∪ ∞ there are
infinitely many elements γ ∈ Γ which fix x. However it does satisfy (cf. [AMRT]
p. 258) the following conditions:

(S1) If x, x′ ∈ h are not equivalent under Γ then there exist neighborhoods
U,U ′ of x, x′ respectively, such that (Γ · U) ∩ U ′ = φ.

(S2) For every x ∈ h there exists a fundamental system of neighborhoods {U} ,
each of which is preserved by the stabilizer Γx, such that if γ /∈ Γx then
(γ · U) ∩ U = φ.

These properties guarantee that the quotient X = Γ\h is Hausdorff, and in fact it
is compact. The same partial compactification h may be used for any arithmetic
subgroup Γ′ ⊂ SL(2,Q), giving a uniform method for compactifying all arithmetic
quotients Γ′\h. One would like to do the same sort of thing for symmetric spaces
of higher rank.

2.2. A warmup problem. The following example, although not Hermitian,
illustrates the phenomena which are encountered in the Baily Borel compactification
of higher rank locally symmetric spaces. See [AMRT] Chapt. II for more details.
The group GL(n,R) acts on the vector space Sn(R) of real symmetric n×n matrices
(through change of basis) by

(2.2.1) g ·A = gA tg.

The orbit of the identity matrix In is the open (homogeneous self adjoint) convex
cone Pn of positive definite symmetric matrices. The stabilizer of I is the maximal
compact subgroup O(n). The center AG of GL(n,R) (which consists of the scalar
matrices) acts by homotheties. The action of GL(n,R) preserves the closure Pn

of Pn in Sn(R), whose boundary ∂Pn = Pn −Pn decomposes into a disjoint union
of (uncountably many) boundary components as follows. A supporting hyperplane
H ⊂ Sn(R) is a hyperplane such that H ∩ Pn = φ and H ∩ ∂Pn contains nonzero
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elements. Let F = ∂Pn ∩ H where H is a supporting hyperplane. Then there is
a unique smallest linear subspace L ⊂ Sn(R) containing F . The interior F of F in
L is called a boundary component of Pn (much in the same way that the closure
of each face of a convex polyhedron P ⊂ Rm is the intersection P ∩H of P with
a supporting affine hyperplane H ⊂ Rm). Distinct boundary components do not
intersect.

Let B ⊂ GL(n) be the (rational) Borel subgroup of upper triangular matrices.
Parabolic subgroups containing B will referred to as standard. Each boundary com-
ponent is a GL(n,R) translate of exactly one of the following standard boundary
components Fr (1 ≤ r ≤ n−1) consisting of matrices ( E 0

0 0 ) such that E ∈ Pr is pos-
itive definite. The normalizer P ⊂ GL(n,R) of this boundary component (meaning
the set of elements which preserve Fr) is the standard maximal parabolic subgroup
consisting of matrices g = ( A B

0 D ) where A ∈ GL(r,R), B ∈ Hom(Rn−r,Rr), and
D ∈ GL(n− r,R). (It is the group of real points P = P(R) of the obvious maximal
parabolic subgroup P ⊂ G.) The supporting subspace L of Fr is the set of all sym-
metric matrices t = ( T 0

0 0 ) where T ∈ Sr(R). The action of such an element g ∈ P
on the element t is given by g · t = gt tg, that is,

(2.2.2)
(
A B
0 D

)
·
(
T 0
0 0

)
=
(
AT tA 0

0 0

)
for any T ∈ Sr(R). In particular, the Levi component of P decomposes as a product
GL(r,R)×GL(n−r,R) where the first factor, A, acts transitively on the boundary
component Fr and the second factor, D, acts trivially. The standard parabolic
subgroups correspond to subsets of the Dynkin diagram of G, and the maximal
parabolic subgroup P corresponds to the deletion of a single node, α.

α

A D

Figure 2. Dynkin diagrams for G, P, and its Levi factor.

A boundary component F is rational if the subspace L containing it is rational,
or equivalently, if the normalizer P is a rational parabolic subgroup. Define the
standard partial compactification, Pstd

n to be the union of Pn with all its rational
boundary components, with the Satake topology2. Then GL(n,Q) acts on Pstd

n .
For any arithmetic group Γ ⊂ GL(n,Q) the quotient

X
std

= Γ\Pstd

n /AG = Γ\Pstd

n /homotheties

is a compact singular space which is stratified with finitely many strata of the
form XF = ΓF \F/homotheties (where F is a rational boundary component and

2The Satake topology ([AMRT] p. 258, [BB] Thm. 4.9): is uniquely determined by requiring
that conditions (S1) and (S2) (above) hold for any arithmetic group Γ, as well as the following:

for any Siegel set S ⊂ D its closure in D and its closure in D
BB

have the same topology.



COMPACTIFICATIONS AND COHOMOLOGY OF MODULAR VARIETIES 555

ΓF is an appropriate arithmetic group). The closure XF in X
std

is the standard
compactification of F/homotheties.

A similar construction holds for any rational self adjoint homogeneous cone.
These are very interesting spaces. Although they are not algebraic varieties, they
have a certain rigid structure. For example, each Γ-invariant rational polyhedral
simplicial cone decomposition of Pstd

n (in the sense of [AMRT]) passes to a “flat,
rational” triangulation of X

std
. In some cases ([GT2]) there is an associated real

algebraic variety.

2.3. Hermitian symmetric domains. (Standard references for this section
include [AMRT] Chapt. III and [Sa1] Chapt. II.) Assume that G is semisimple,
defined over Q, that K ⊂ G(R) is a maximal compact subgroup and that D = G/K
is Hermitian. The symmetric space D may be holomorphically embedded in Eu-
clidean space Cm as a bounded (open) domain, by the Harish Chandra embedding
([AMRT] p. 170, [Sa1] §II.4). The action of G extends to the closure D. The
boundary ∂D = D−D is a smooth manifold which decomposes into a (continuous)
union of boundary components. Let us say that a real affine hyperplane H ⊂ Cm

is a supporting hyperplane if H ∩ D is nonempty but H ∩ D is empty. Let H be
a supporting hyperplane and let F = H ∩ D = H ∩ ∂D. Let L be the smallest
affine subspace of Cm which contains F . Then F is the closure of a nonempty open
subset F ⊂ L which is then a single boundary component of D ([Sa1], III.8.11).
The boundary component F turns out to be a bounded symmetric domain in L.
Distinct boundary components have nonempty intersection, and the collection of
boundary components decomposes ∂D. Alternatively, it is possible ([Sa1] III.8.13)
to characterize each boundary component as a single holomorphic path component
of ∂D : two points x, y,∈ ∂D lie in a single boundary component F iff they are
both in the image of a holomorphic “path” α : ∆ → ∂D (where ∆ denotes the open
unit disk). In this case α(∆) is completely contained in F.

Fix a boundary component F. The normalizer NG(F ) (consisting of those group
elements which preserve the boundary component F ) turns out to be a (proper)
parabolic subgroup of G. The boundary component F is rational if this subgroup is
rationally defined in G. There are countably many rational boundary components.
If we decompose G into its Q simple factors, G = G1× . . .×Gk then the symmet-
ric space D decomposes similarly, D = D1 × . . . × Dk. Each (rational) boundary
component F of D is then the product F = F1 × . . . × Fk where either Fi = Di

or Fi is a proper (rational) boundary component of Di. The normalizer of F is
the product NG(F ) = NG1(F1) × . . .×NGk

(Fk) (writing NGi
(Di) = Gi whenever

necessary). If G is Q-simple then the normalizer NG(F ) is a maximal (rational)
proper parabolic subgroup of G.

2.1. Definition. The Baily-Borel-Satake partial compactification D
BB

is the
union of D together with all its rational boundary components, with the Satake
topology.

2.1. Theorem. ([BB]) The closure F of each rational boundary component
F ⊂ D

BB
is the Baily-Borel-Satake partial compactification F

BB
of F. The group

G(Q) acts continuously, by homeomorphisms on the partial compactification D
BB

.

The action of any arithmetic group Γ ⊂ G(Q) on D
BB

satisfies conditions (S1)
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and (S2) of §2.1 and the quotient X
BB

= Γ\DBB
is compact. Moreover, it admits

the structure of a complex projective algebraic variety.

2.4. Remarks. Dividing by Γ has two effects: it identifies (rational) boundary
components whose normalizers are Γ-conjugate, and it makes identifications within
each (rational) boundary component. The locally symmetric space X is open and
dense in X

BB
. If κ : D

BB → X
BB

denotes the quotient mapping, and if F is a
rational boundary component then its image XF = κ(F ) is the quotient ΓF \F
under the subgroup ΓF = Γ ∩ NG(F ) which preserves F, and it is referred to as
a boundary stratum. If Γ is neat (see §4.1) then the stratum XF is a complex
manifold.

2.5. Symplectic group. In this section we illustrate these concepts for the
case of the symplectic group G = G(R) = Sp(2n,R), which may be realized as the
group of 2n by 2n real matrices ( A B

C D ) such that tAD − tCB = I; tAC and tBD
are symmetric. These are the linear transformations which preserve the symplectic
form J =

(
0 In

−In 0

)
on R2n. The symplectic group acts on the Siegel upper half

space
hn =

{
Z = X + iY ∈Mn×n(C) | tZ = Z, Y > 0

}
(meaning that Y is positive definite) by fractional linear transformations:(

A B
C D

)
· Z = (AZ + B)(CZ + D)−1.

The stabilizer of the basepoint iIn is the unitary group K = U(n), embedded in
the symplectic group by A+ iB �→

(
A B
−B A

)
. It is a maximal compact subgroup, so

hn = G/K is a Hermitian locally symmetric space.
The Harish-Chandra embedding φ : hn → Dn is given by the Cayley transfor-

mation. Here,

Dn =
{
w ∈Mn×n(C) | tw = w and In − ww > 0

}
is a bounded domain, and

φ(z) = (z − iIn)(z + iIn)−1.

The closure Dn is given by relaxing the positive definite condition to positive semi-
definite: In−ww ≥ 0. Each boundary component (resp. rational boundary compo-
nent) is a G(R)-translate (resp. G(Q)-translate) of one of the n different standard
boundary components Dn,r (with 0 ≤ r ≤ n − 1) consisting of all complex n × n

matrices of the form
(

w 0
0 In−r

)
such that w ∈ Dr. The normalizer Pn,r in G of the

boundary component Dn,r is the maximal parabolic subgroup consisting of matrices
( A B

C D ) such that (cf. [Kl] §5)

A =
(
∗ 0
∗ ∗

)
, C =

(
∗ 0
0 0

)
, D =

(
∗ ∗
0 ∗

)
.

(The upper left block has size r × r in each of these.)
Each maximal parabolic subgroup P of Sp(2n,R) is the normalizer of an

isotropic subspace E ⊂ Rn (meaning that the symplectic form vanishes on E). If a
symplectic group element preserves E then it also preserves the symplectic orthog-
onal subspace E⊥ ⊇ E (which is co-isotropic, meaning that the induced symplectic
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form vanishes on R2n/E⊥). So P may also be described as the normalizer of the
isotropic-co-isotropic flag E ⊂ E⊥. In the case of Pn,r,

E = (Rn−r × 0r)× 0n ⊂ Rn × Rn, and E⊥ = Rn × (Rr × 0n−r) ⊂ Rn × Rn.

To make these matrices look more familiar, reverse the numbering of the coordinates
in the first copy of Rn. Then the symplectic form becomes

J ′ =
(

0 α
−α 0

)
where α is the anti-diagonal matrix of ones. In these coordinates, the parabolic
subgroup Pn,r consists of all matrices preserving J ′ of the following form:

∗n−r ∗ ∗ ∗
0 ∗r ∗r ∗
0 ∗r ∗r ∗
0 0 0 ∗n−r


(where ∗t denotes a square t × t matrix). As such, it has a Levi decomposition
Pn,r = LU with

L =

 A 0 0
0 B 0
0 0 A′

 , U =

 In−r ∗ ∗
0 Ir ∗
0 0 In−r


where A ∈ GL(n− r,R), A′ = α tA−1α−1, where B ∈ Sp(2r,R). The center, ZU of
U is

ZU =

 In−r 0 C
0 Ir 0
0 0 In−r

 ,

which is easily seen to be isomorphic to the vector space Sn−r(R) of symmetric
matrices. So L splits as a direct product of a Hermitian factor LPh = Sp(2r,R)
and a “linear” factor LP� = GL(n− r,R). The Dynkin diagrams for these factors
are obtained from the Dynkin diagram for G by deleting the node α corresponding
to the maximal parabolic subgroup P as illustrated in Figure 2.

α

LPh LP�

Figure 3. Dynkin diagrams for LPh and LP�

It is not too difficult to verify that the standard parabolic group P acts on
the boundary component Dn,r via the first factor Sp(2r,R), in analogy with the
situation in equation (2.2.2). Observe also that the second factor GL(n−r,R) acts
linearly on the Lie algebra z ∼= Sn−r(R) of the center Z(UP ) of the unipotent radical
of P, by the action (2.2.1). This action preserves the self-adjoint homogeneous cone
Pn−r ⊂ z described in §2.2. If r′ < r then Dn,r′ ⊂ Dn,r and Pn−r ⊂ Pn−r′ .



558 MARK GORESKY

2.6. Stratifications. A subset S of a locally compact Hausdorff space Y is
locally closed iff it is the intersection of an open set and a closed set. A manifold
decomposition of a locally compact Hausdorff space Y is a decomposition Y =∐

α Sα of Y into locally finitely many locally closed smooth manifolds Sα (called
strata), which satisfies the axiom of the frontier: the closure of each stratum is a
union of strata. In this case the open cone

c0(Y ) = Y × [0, 1)/(y, 0) ∼ (y′, 0) for all y, y′ ∈ Y

may be decomposed with strata Sα× (0, 1) and the cone point ∗. Stratified sets are
defined inductively. Every smooth manifold is stratified with a single stratum. Let
Bs denote the open unit ball in Rs.

2.2. Definition. A manifold decomposition Y =
∐

α Sα of a locally compact
Hausdorff space Y is a stratification if for each stratum Sα there exists a compact
stratified space Lα, and for each point x ∈ Sα there exists an open neighborhood
Vx ⊂ Y of x and a stratum preserving homeomorphism

(2.6.1) Vx
∼= Bs × c0(Lα)

(where s = dim(Sα) which is smooth on each stratum, which takes x to 0 × {∗}
and which takes Vx ∩ Sα to Bs × {∗} . Such a neighborhood Vx is a distinguished
neighborhood of x.

The space Lα is called the link of the stratum Sα. A stratification Y =
∐

α Sα

is regular if the local trivializations (2.6.1) fit together to make a bundle over Sα.
(We omit the few paragraphs that it takes in order to make this precise since we will
not have to make use of regularity.) There are many other possible “regularity”
conditions on stratified sets, but all the useful ones (such as the Whitney conditions)
imply the local triviality (2.6.1) of the stratification.

2.7. Singularities of the Baily-Borel compactification. Returning to the
general case, suppose G is a semi-simple algebraic group defined over Q, of Her-
mitian type, meaning that the symmetric space D = G/K is Hermitian. Let F be
a rational boundary component with normalizing parabolic subgroup P. Let UP be
the unipotent radical of P and LP = P/UP the Levi quotient. There is ([BS]) a
unique lift LP → P of the Levi quotient which is stable under the Cartan involu-
tion corresponding to K. The group LP decomposes as an almost direct product
(meaning a commuting product with finite intersection), LP = LPhLP� into fac-
tors of Hermitian and “linear” type3 with AP ⊂ LP�. Here, “linear” means that
the symmetric space LP�/K� for LP� is a self-adjoint homogeneous cone CP , which
is open in some real vector space V (in this case, V = Lie(Z(UP ))) on which LP�

acts by linear transformations which preserve CP . The group P acts on F through
LPh, identifying F with the symmetric space for LPh. There is a diffeomorphism
D = P/KP

∼= UP × F × CP .

2.1. Lemma. ([AMRT] §4.4) Let P �= P′ be standard rational parabolic sub-
groups, normalizing the standard boundary components F �= F ′ respectively. Then
the following statements are equivalent, in which case we write P′ ≺ P :

(1) LP ′h ⊂ LPh

(2) LP� ⊂ LP ′�

3It is possible to absorb the compact factors of LP , if there are any, into LPh and LP� in
such a way that both LPh, LP� are defined over Q.
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(3) Z(UP ) ⊂ Z(UP ′)
(4) F ′ is a rational boundary component of F
(5) The cone CP is a rational boundary component of CP ′ .

Suppose P is a rational parabolic subgroup of G such that P = P(R) nor-
malizes a rational boundary component F. Let LP = LPhLP� be the almost direct
product decomposition of its Levi component as discussed above. So we obtain
identifications D = P/KP , F = LPh/Kh, and CP = LP�/K� for appropriate max-
imal compact subgroups KP = K ∩ P ⊂ LP ⊂ P, Kh ⊂ LPh, and K� ⊂ LP�.

Let Γ ⊂ G(Q) be a neat ([B1]) arithmetic subgroup. Set ΓP = Γ ∩ P and
ΓU = Γ ∩ UP . Then

NP = ΓU\UP

is a compact “nilmanifold” whose fundamental group is the nilpotent group ΓU .
Let ΓL = ΓP /ΓU ⊂ LP and set Γ� = ΓL ∩ LP�. Let Γh ⊂ LPh be the projection of
ΓL to the Hermitian factor LPh. We obtain an identification between the boundary
stratum XF and the quotient Γh\F = Γh\LPh/Kh (cf. §2.4).

It follows that ΓP \D = ΓP \P/KP fibers over the locally symmetric space
XP = ΓL\LP /KP (cf. equation (5.1.2)) with fiber NP ; and that XP in turn fibers
over the boundary stratum XF with fiber Γ�\CP .

2.2. Theorem. ([BB]) The boundary strata of the Baily-Borel compactification
form a regular stratification of X

BB
. Let XF be such a stratum, corresponding

to the Γ-conjugacy class of the rational parabolic subgroup P ⊂ G. Then there
exists a parabolic neighborhood (see §4.5) VF of XF whose intersection VF ∩ X
with X is diffeomorphic to the quotient ΓP \D. Hence the geodesic projection πF :
VF ∩X → XF is a smooth fiber bundle with a fiber W, which is itself a fiber bundle,
W → Γ�\CP with fiber diffeomorphic to the compact nilmanifold NP = ΓU\UP .
If x ∈ XF and if Bx ⊂ XF is a sufficiently small ball in XF , containing x, then
the pre-image π−1

F (Bx) ⊂ VF is a distinguished neighborhood of x in X
BB

, whose
intersection with X is therefore homeomorphic to the product Bx ×W. The closure
of the stratum XF is the Baily-Borel compactification of XF . It consists of the union
of all strata XF ′ such that the normalizing parabolic subgroup P′ is Γ-conjugate to
some Q ≺ P.

Despite its precision, this result does not fully describe the topology of the
neighborhood VF ; only that of VF ∩X. Moreover it does not describe the manner in
which such neighborhoods for different strata are glued together. A complete (but
cumbersome) description of the local structure of the Baily-Borel compactification
exists, but it is sometimes more useful to describe various sorts of “resolutions” of
X

BB
.

3. Toroidal compactifications and automorphic vector bundles

3.1. The toroidal compactification is quite complicated and we will not at-
tempt to provide a complete description here. (The standard reference is [AMRT].
An excellent introduction appears in the book [Nk], but it takes many pages. Brief
summaries are described in [GT2] §7.5 and [GP] §14.5.) Instead we will list some
of its main features. As in the preceding section we suppose that X = Γ\G/K
is a Hermitian locally symmetric space arising from a semisimple algebraic group
G defined over Q. There are many toroidal compactifications. Each depends on a
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certain choice Σ of combinatorial data, and we sometimes indicate this by writing
X

tor

Σ for this compactification. Each X
tor

Σ admits the structure of a complex al-
gebraic space. For certain “good” choices of Σ the resulting variety is projective
and nonsingular, and the complement X

tor

Σ −X is a divisor with normal crossings,
which is therefore stratified by the multi-intersections of the divisors. The identity
extends to a unique continuous mapping κΣ : X

tor → X
BB

. It is a holomorphic
morphism which takes strata to strata. If Σ is “good” in the above sense then κΣ

is a resolution of singularities.

3.2. The cone again. In this section we describe the combinatorial data Σ
which determines the choice of toroidal compactification X

tor

Σ in the case that G
is Q-simple. In this case there is a natural ordering among the standard proper
rational parabolic subgroups, with P ≺ Q if LPh ⊂ LQh, or equivalently (see
Lemma 2.1), if LQ� ⊂ LP�. Let P be the standard maximal rational parabolic
subgroup which comes first in this total ordering and let CP

∼= LP�/KP� be the
corresponding self adjoint homogeneous cone, with its partial compactification C

std

P ,
as in §2.2. It is contained in Z(UP ) which we identify with z = Lie(Z(UP )) by the
exponential map, and it is rational with respect to the lattice Λ = Γ∩Z(UP ). Choose
a ΓP�-invariant rational simplicial cone decomposition of C

std

P , or equivalently, a
rational flat triangulation of the compact (singular) space ΓP�\C

std

P /homotheties,
which is subordinate to the stratification by boundary strata. (This means that
the closure of each stratum should be a subcomplex.)

Up to Γ conjugacy, there are finitely many maximal rational parabolic sub-
groups P that are minimal with respect to the ordering ≺ . The data Σ refers to a
choice of cone decomposition of C

std

P for each of these, which are compatible in the
sense that if CQ ⊂ C

std

P ∩ C
std

P ′ then the two resulting cone decompositions of CQ

coincide.
By the theory of torus embeddings, such a cone decomposition of CP determines

a ΓP� equivariant partial compactification of the algebraic torus (z⊗ C)/Λ, which
is one of the key ingredients in the construction of the toroidal compactification.
The rest of the construction, which is rather complicated, consists of “attaching”
the resulting torus embedding to X.

Actually, this data only determines a resolution X
tor

Σ which is “rationally non-
singular” (has finite quotient singularities). A truly nonsingular compactification is
obtained when we place a further integrality condition on the cone decomposition
of C

std

P , namely that the shortest vectors in the 1-dimensional cones in any top
dimensional simplicial cone should form an integral basis of the lattice Λ. There
is a further (convexity) criterion on the cone decompositions to guarantee that
the resulting X

tor

Σ is projective. Cone decompositions satisfying these additional
conditions exist, although the literature is a little sketchy on this point. A more
difficult problem is to find (canonical) models for X

tor

Σ defined over a number field,
or possibly over the reflex field, when X is a Shimura variety. See, for example
[FC].

3.3. Automorphic vector bundles. Let λ : K → GL(E) be a representa-
tion of K on some complex vector space E. Then we obtain a homogeneous vector



COMPACTIFICATIONS AND COHOMOLOGY OF MODULAR VARIETIES 561

bundle E = G×K E on D, meaning that we identify (h, e) with (hk, λ(k)−1e) when-
ever k ∈ K and h ∈ G. Denote the equivalence class of such a pair by [h, e]. The
action of G on D is covered by an action of G on E which is given by g·[h, e] = [gh, e].
So dividing by Γ we obtain a automorphic vector bundle EΓ = Γ\E → X, which
may also be described as EΓ = (Γ\G)×K E. Such a vector bundle carries a canon-
ical connection. If the representation λ is the restriction to K of a representation
of G, then EΓ also carries a (different) flat connection (cf. [GP] §5).

Smooth sections of EΓ may be identified (see also §3.5 below) with smooth
mappings f : G → E such that f(γgk) = λ(k−1)f(g) (for all k ∈ K, γ ∈ Γ).
The holomorphic sections of EΓ correspond to those functions that are killed by
certain differential operators, as observed in [B3]. The complexified Lie algebra of
G decomposes under the Cartan involution into +1,+i, and −i eigenspaces,

g(C) = g⊗ C = k(C)⊕ p
+ ⊕ p

−

respectively (where k(C) is the complexification of Lie(K)). Each V = X + iY ∈
g(C) acts on functions f : G → C by V (f) = X(f) + iY (f). Then a smooth
section of EΓ is holomorphic if and only if the corresponding function f : G → E
satisfies the Cauchy-Riemann equations: V (f) = 0 for all V ∈ p−. Let us further
say ([B3]) that such a holomorphic section f is a holomorphic automorphic form
if it has polynomial growth, that is, if there exists C > 0 and n ≥ 1 such that
|f(g)| ≤ C||g||nG. (Here, ||g||G is the norm ||g||G = tr(Ad(θ(g−1)) ·Ad(g)), where θ
is the Cartan involution.)

One might hope to interpret this condition in terms of the Baily Borel com-
pactification X

BB
. However the automorphic vector bundle EΓ → X does not

necessarily extend to the Baily-Borel compactification. It does extend to X
RBS

,
but only as a topological vector bundle. However, in [M], Mumford constructs a
canonical extension EΣ → X

tor

Σ as a holomorphic vector bundle, and shows that
the (global holomorphic) sections of EΣ are precisely the holomorphic sections of
EΓ → X with polynomial growth, that is, they are holomorphic automorphic forms.

3.4. Proportionality theorem. In [M], Mumford proved that the Chern
classes ci(EΣ) ∈ H2i(X

tor

Σ ) of the bundle EΣ satisfy Hirzebruch’s proportionality
theorem: there exists a single rational number v(Γ) so that for any automorphic
vector bundle EΓ on X, for any toroidal compactification X

tor

Σ , and for any partition
I : n1 + n2 + · · ·+ nk = 2n where n = dimC(X), the corresponding Chern number
of the canonical extension EΣ

cI(EΣ) = cn1(EΣ) ∪ cn2(EΣ) ∪ · · · ∪ cnk(EΣ) ∩ [X
tor

Σ ] ∈ Q

(where [X
tor

Σ ] ∈ H2n(X
tor

Σ ) is the fundamental class) satisfies

cI(EΣ) = v(Γ)cI(Ě)

where Ě is the corresponding vector bundle on the compact dual symmetric space,
Ď. The fact that these Chern numbers are independent of the resolution X

tor

Σ sug-
gests that they might be related to the topology of X

BB
. This possibility was

realized in [GP] where it was shown that for any automorphic vector bundle
EΓ → X, each Chern class ck(EΓ) ∈ H2k(X; C) has a particular lift to cohomology
ck(EΓ) ∈ H2k(X

BB
; C) such that for any toroidal resolution κΣ : X

tor

Σ → X
BB

the lift satisfies κ∗
Σ(ck(EΓ)) = ck(EΣ). Therefore the proportionality formula holds
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for these lifts ck(EΣ) as well. In many cases this accounts for sufficiently many
cohomology classes to prove that the cohomology H∗(Ď,C) of the compact dual
symmetric space is contained in the cohomology H∗(X

BB
,C) of the Baily-Borel

compactification.

3.5. Automorphy factors. There is a further (and more classical) descrip-
tion of the sections of an automorphic vector bundle EΓ = Γ\(G ×K E) corre-
sponding to a representation λ : K → GL(E). A (smooth) automorphy factor
J : G×D → GL(E) for E is a (smooth) mapping such that

(1) J(gg′, x) = J(g, g′x)J(g′, x) for all g, g′ ∈ G and x ∈ D
(2) J(k, x0) = λ(k) for all k ∈ K.

It follows (by taking g = 1) that J(1, x) = I. The automorphy factor J is determined
by its values J(g, x0) at the basepoint: any smooth mapping j : G→ GL(E) such
that j(gk) = j(g)λ(k) (for all k ∈ K and g ∈ G) extends in a unique way to an
automorphy factor J : G×D → GL(E) by setting J(g, hx0) = j(gh)j(h)−1.

An automorphy factor J determines a (smooth) trivialization

ΦJ : G×K E → (G/K)× E

by [g, v] �→ (gK, J(g, x0)v). With respect to this trivialization the action of γ ∈ G
is given by

(3.5.1) γ · (x, v) = (γx, J(γ, x)v).

Conversely any smooth trivialization Φ : E ∼= (G/K)×E of E determines a unique
automorphy factor J such that Φ = ΦJ . Such a trivialization allows one to identify
smooth sections s of E with smooth mappings r : D → E. If the section s is given by
a smooth mapping s : G→ E such that s(gk) = λ(k−1)s(g) then the corresponding
mapping r is r(gK) = J(g, x0)s(g) (which is easily seen to be well defined). By
(3.5.1), sections s which are invariant under γ ∈ Γ ⊂ G(Q) then correspond to
functions r : D → E which satisfy the familiar relation

(3.5.2) r(γx) = J(γ, x)r(x)

for all x ∈ D. Moreover, there exists a canonical automorphy factor ([Sa1] II §5),

J0 : G×D → K(C)

which determines an automorphy factor J = λC ◦ J0 for every homogeneous vector
bundle E = G ×K E, where λC : K(C) → GL(E) denotes the complexification of
λ. With this choice for J, holomorphic sections s of EΓ correspond to holomorphic
functions r : D → E which satisfy (3.5.2).

4. Borel-Serre compactification

4.1. About the center, and other messy issues. In this section and in the
remainder of this article, G will be a connected reductive algebraic group defined
over Q; K ⊂ G will be a chosen maximal compact subgroup and Γ ⊂ G(Q) will be
an arithmetic group.

The identity component (in the sense of algebraic groups) of the center of G
is an algebraic torus defined over Q. It has three parts: a greatest Q-split subtorus
AG, an R-split but Q-anisotropic part A1

G, and an R-anisotropic (i.e. compact)
part, A2

G. Unfortunately it is not simply the direct product of these three parts,
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however we can at least isolate the group AG = AG(R)+, the topologically con-
nected identity component of the group of real points of AG. Define ([BS] §1.1)

0G =
⋂
χ

ker(χ2)

to be the intersection of the kernels of the squares of the rationally defined characters
χ : G → Gm. It is a connected reductive linear algebraic group defined over Q
which contains every compact subgroup and every arithmetic subgroup of G ([BS]
§1.2). The group of real points G = G(R) decomposes as a direct product, G =
0G(R)×AG. Then D = G/KAG = 0G/K. So, to study the topology and geometry
of D (and its arithmetic quotients) one may assume that the group G contains no
nontrivial Q-split torus in its center. This is not a good assumption to make from
the point of view of representation theory or from the point of view of Shimura
varieties since in these cases the center AG plays an important role. Nevertheless
we will occasionally make this assumption when it simplifies the exposition.

The part A1
G of the center contributes a Euclidean factor to the symmetric

space D. However, after dividing by Γ this Euclidean space will get rolled up into
circles, which explains why it does not interfere with our efforts to compactify Γ\D.
Even if AG and A1

G are trivial, the group G may still contain a compact torus in
its center, but this will be contained in any maximal compact subgroup K ⊂ G so
it will not appear in the symmetric space G/K.

We will also assume, for simplicity, that Γ is torsion free, which implies that
Γ acts freely on D and that the quotient X is a smooth manifold. It is often
convenient to make the slightly stronger assumption that Γ is neat ([B1]), which
implies ([AMRT] p. 276) that (Γ∩H2(C))/(Γ∩H1(C)) is torsion-free whenever H1 
H2 ⊂ G are rationally defined algebraic subgroups. This guarantees that all the
boundary strata are smooth manifolds also. Every arithmetic group contains neat
arithmetic subgroups of finite index, however much of what follows will continue to
hold even when Γ has torsion.

4.2. The Borel-Serre compactification X
BS

is (topologically) a smooth mani-
fold (of some dimension m) with boundary. However the boundary has the differen-
tiable structure of “corners”: it is decomposed into a collection of smooth manifolds
of various dimensions, and a point on one of these boundary manifolds of dimension
d has a neighborhood which is diffeomorphic to the product Bd × [0, 1)m−d where
Bd is the open unit ball in Rd. This compactification is obtained as the quotient
under Γ of a “partial” compactification D

BS
which is obtained from D by attaching

a “boundary component” for each proper rational parabolic subgroup P ⊂ G.

4.3. Geodesic action. Let P be the group of real points of a rational para-
bolic subgroup P. Let UP be its unipotent radical and ν : P → LP be the projection
to the Levi quotient. Then LP is the group of real points of a rationally defined
reductive group LP and as such, we have LP = MPAP where MP = 0LP(R) as
in §4.1. The choice of K ⊂ G corresponds to a Cartan involution θ : G → G
and there is a unique θ stable lift ([BS]) of LP to P. So we obtain the Langlands
decomposition

(4.3.1) P = UPAPMP .

The intersection KP = K ∩ P is completely contained in MP . It follows from the
Iwasawa decomposition that P acts transitively on D. Define the right action of
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AP on D = P/KP by (gKP ) · a = gaKP for g ∈ P and a ∈ AP . This action
is well defined since AP commutes with KP ⊂ MP , but it also turns out to be
independent of the choice of basepoint. Moreover each orbit of this AP action is
a totally geodesic submanifold of D (with respect to any invariant Riemannian
metric). Define the (Borel-Serre) boundary component eP = D/AP .

Intuitively, we want to “attach” eP to D as the set of limit points of each of
these geodesic orbits. For the upper half plane h1 and the standard Borel subgroup
B ⊂ SL(2,R), if a =

(
t 0
0 t−1

)
then the geodesic action is (x + iy) · a = x + it2y

for any t �= 0, so the geodesic orbits are “vertical” half lines. Then eP is a line at
infinity, parallel to the real axis, which is glued onto the upper half plane so as to
make a strip R× (0,∞]. (See figure 3.)

0 1 2 3 4

� � � � � � � � �

Figure 4. h
BS

and geodesic action

When Γ “acts” on this union D ∪ eP , only the translations ΓP = Γ ∩ P act
nontrivially on the boundary component eP so the resulting circle ΓP \eP becomes
glued to X where, previously in the Baily-Borel compactification, we had placed
a cusp. Unfortunately the group Γ does not actually act on D ∪ eP , a difficulty
which may be rectified by attaching additional boundary components eQ for ev-
ery rational parabolic subgroup Q, using a “Satake topology” in which each eQ

has a neighborhood isomorphic to that of eP . Although it is difficult to visualize
the resulting space D

BS
, it is nevertheless a (real) two dimensional manifold with

boundary, whose boundary consists of countably many disjoint copies of R.

4.4. In this section we return to the general case but we assume for simplicity
that AG is trivial. As a set, D

BS
is defined to be the disjoint union of D and all the

Borel-Serre boundary components eP corresponding to rational proper parabolic
subgroups P. Let P0 ⊂ G be a fixed minimal rational parabolic subgroup. The
parabolic subgroups containing P0 are the standard parabolics. Denote by A0 the
greatest Q split torus in the center of the (canonical lift of the) Levi component
L0 = LP0 and let Φ = Φ(G,A0) be the corresponding system of rational roots,
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with simple rational roots ∆. For any standard parabolic subgroup P let ∆P be
the set of restrictions of the roots in ∆ to AP ⊂ A0. If ∆P = {α1, α2, . . . , αr} the
isomorphism

AP
∼= (0,∞)r given by t �→ (α1(t), α2(t), . . . , αr(t))

determines a partial compactification AP
∼= (0,∞]r. Let

D(P ) = D ×AP
AP

where AP acts on D by the geodesic action. Then D(P ) contains D and it also
contains eP as the set of points (or, rather, equivalence classes) [x, (∞,∞, . . . ,∞)].
The projection D → eP extends continuously to πP : D(P ) → eP which we refer
to as the geodesic projection.

It is a bit easier to picture this construction in terms of coordinates. For each
α ∈ ∆P define the root function fP

α : D → (0,∞) by

fP
α (x) = fP

α (gKP ) = fP
α (uamKP ) = α(a)

where x = gKP and g = uam ∈ P has been decomposed according to the Lang-
lands’ decomposition (4.3.1). The root function is well defined because the mapping
P → AP given by uam �→ a is a group homomorphism. If g′ = u′a′m′ ∈ P and if
b ∈ AP then

(4.4.1) fP
α (g′x · b) = α(a′b)fP

α (x).

The root functions clearly extend to D(P ) and together with πP they determine a
diffeomorphism

(4.4.2) D(P ) ∼= eP × (0,∞]r.

If P ⊂ Q then AQ ⊂ AP and the restriction of the geodesic action for AP to
AQ coincides with the geodesic action for AQ. Therefore there is a natural inclusion
AQ ⊂ AP as a coordinate subspace, and we see that D(P ) is the disjoint union of
boundary components eQ for Q ⊇ P (including eG = D.) We wish to declare this
set D(P ) to be an open neighborhood of eP in D

BS
.

eQ

eQ′

eP

D

eQ

eQ′

eP

D

Figure 5. D(P ) and level curves of fP
α for α1, α2 ∈ ∆P .

The following theorem says that it is possible to similarly attach boundary
components eP for any rational parabolic subgroup P, so as to obtain a partial
compactification D

BS
of D.

4.1. Theorem. ([BS] §7.1) There is a unique topology (the Satake topology) on
the union D

BS
of D with all its rational boundary components, so that the action

of G(Q) on D extends continuously to an action by homeomorphisms on D
BS

, and
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so that each D(P ) ⊂ D
BS

is open. The parabolic subgroup P is the normalizer of
the boundary component eP . The closure eP of eP in D

BS
is the Borel-Serre partial

compactification of eP .

(An annoying problem arises because eP is not a symmetric space, and in fact
it is a homogeneous space under the non-reductive group P. In order to apply
inductive arguments, Borel and Serre found it necessary to work within a wider
class of groups and homogeneous spaces which include P and eP . Fortunately the
current context provides the author with a poetic license to ignore these further
complications.)

4.5. Quotient under Γ. Fix a neat arithmetic group Γ ⊂ G(Q). Let κ :
D

BS → X
BS

= Γ\DBS
be the quotient. The action of Γ on D

BS
will identify

some boundary components and it will also make identifications within a single
boundary component. There is a risk that this will completely destroy the local
picture D(P ) of eP which was developed above. It is a remarkable fact that this
risk never materializes. To be precise, there is a neighborhood V of eP in D

BS
so

that
(P1) Two points in V are identified under Γ if and only if they are identified

under ΓP = Γ ∩ P.
(P2) The neighborhood V is preserved by the geodesic action of AP (≥ 1).

Here, AP (≥ 1) = {a ∈ AP |α(a) ≥ 1 for all α ∈ ∆P } is the part of AP that moves
points in D “towards the boundary.” Such a neighborhood V is called a Γ-parabolic
neighborhood and we will also refer to its image κ(V ) ⊂ X

BS
as a parabolic neigh-

borhood. The intersection κ(V ) ∩X is diffeomorphic to the quotient ΓP \D.

There is another way to say this. Let V ′ be the image of V in ΓP \D
BS

. Since
ΓP ⊂ Γ we have a covering β : ΓP \D

BS → Γ\DBS
. For points far away from eP this

is a nontrivial covering. However for points in V ′ ⊂ D
BS

the covering V ′ → β(V ′)
is actually one to one. This fact (a consequence of reduction theory) allows us to
study a neighborhood of eP using the structure of the parabolic subgroup P. (In
the case of the upper half plane, it is easy to see from Figure 1 that the set of points
z ∈ C with Re(z) > 2 forms such a parabolic neighborhood of the point at infinity.)

Define the Borel-Serre stratum YP = κ(eP ) to be the image of the boundary
component eP . A Γ-parabolic neighborhood of YP ⊂ X

BS
is diffeomorphic to a

neighborhood of YP in ΓP \D(P ). If γ ∈ ΓP then for any α ∈ ∆P and any x ∈ D(P )
we have: fP

α (γx) = fP
α (x). This follows from (4.4.1) and the fact that the projection

P → AP kills ΓP . Therefore the diffeomorphism (4.4.2) passes to a diffeomorphism

ΓP \D(P ) ∼= ΓP \eP × (0,∞]r

which says that the stratum YP has a neighborhood in X
BS

which is a manifold
with corners. As described above, these corners fit together: if P ⊂ Q then the
inclusion eQ ⊂ D(P ) induces an mapping YP × (0,∞)s → YQ (for an appropriate
coordinate subspace (0,∞)s), which is one to one near YP . (Once we leave the
parabolic neighborhood of YP this mapping is no longer one to one.) With a bit
more work one concludes the following

4.2. Theorem. ([BS]) The quotient X
BS

= Γ\DBS
is compact. It is stratified

with finitely many strata YP = ΓP \eP , one for each Γ-conjugacy class of rational
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parabolic subgroups P ⊂ G. Each stratum YP has a parabolic neighborhood V dif-
feomorphic to YP × (0,∞]r (where r is the rank of AP ) whose faces YP × (0,∞)s

are the intersections YQ ∩ V for appropriate Q ⊃ P.

Two important applications are given in §6.1. For many purposes the Borel-
Serre compactification is too big. For example, each stratum YP is the quotient of
a non-reductive group P by an arithmetic subgroup ΓP . The reductive Borel-Serre
compactification (first studied in [Z1] §4.2, p. 190; see also [GHM] §8) is better
behaved. It is obtained by replacing this stratum by an appropriate arithmetic
quotient of the Levi component of P.

5. Reductive Borel-Serre Compactification

5.1. As in the previous section we suppose G is a reductive algebraic group
defined over Q with associated symmetric space D = G/KAG. Let Γ ⊂ G(Q) be
an arithmetic subgroup and set X = Γ\D. Let P be a proper rational parabolic
subgroup with Langlands’ decomposition (4.3.1), let ΓP = Γ ∩ P, let eP = D/AP

be the Borel-Serre boundary component, and let YP = ΓP \eP be the Borel-Serre
stratum. Let us first examine the structure of eP → YP .

Using the Levi decomposition P = UPLP we may write D = UPLP /KPAG.
The group KP and the geodesic action of the group AP act (from the right) only
on the factor LP . So we obtain a diffeomorphism

(5.1.1) eP
∼= UP × (LP /KPAP ) = UP ×DP

where DP is the reductive Borel-Serre boundary component LP /KPAP . In these
coordinates, the action of g ∈ P is given by

g.(u, zKPAP ) = (guiνP (g)−1, νP (g)zKPAP )

where νP : P → LP is the projection to the Levi quotient, and where i : LP → P
is its canonical splitting from §2.7. So the unipotent radical of P acts only on the
UP factor, while P acts on the DP factor through its Levi quotient.

Define the reductive Borel-Serre stratum

(5.1.2) XP = ΓL\DP = ΓL\LP /KPAP

where ΓL = νP (ΓP ) ⊂ LP = MPAP . Then the Borel-Serre stratum YP is a fiber
bundle over the reductive Borel-Serre stratum XP ,

YP = ΓP \eP = ΓP \P/KPAP → XP = ΓL\DP

whose fiber is the compact nilmanifold NP = ΓU\UP .

5.1. Definition. The reductive Borel-Serre partial compactification D
RBS

(resp. X
RBS

) is the quotient of D
BS

(resp. X
BS

) which is obtained by collaps-
ing each eP to DP (resp. YP to XP ).

5.1. Theorem. ([Z1], [GHM] §8.10) The group Γ acts on D
RBS

with compact
quotient Γ\DRBS

= X
RBS

. The boundary strata form a regular stratification of
X

RBS
and the stratum

XP = ΓL\MP /KP = ΓL\LP /KPAP

is a locally symmetric space corresponding to the reductive group LP . Its closure
XP in X

RBS
is the reductive Borel-Serre compactification of XP . The geodesic
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projection πP : D → eP → DP passes to a geodesic projection, πP : V → XP

defined on any parabolic neighborhood V ⊂ X
RBS

of XP . The pre-image π−1
P (Br)

of an open ball Br ⊂ XP is a distinguished neighborhood of any x ∈ Br.
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..
..
..
..
..
..
.........................................

.....................

� MP /KP
�

� NP

�

�
AP

�

�
AP

UP

�

�

XP

� NP

Figure 6. Borel-Serre and reductive Borel-Serre compactifications

The diagram on the left of Figure 5 represents the Borel-Serre compactification.
This may be thought of as a “local” picture, but one may also imagine a “global”
picture by identifying the top and bottom of the box, and identifying the left and
right sides of the box. The box is a manifold with boundary: the front face is
the boundary stratum YP . It is foliated by nilmanifolds isomorphic to NP , and in
general the vertical lines are the (images of) orbits of UP . The geodesic action of AP

moves points towards the front face. The (images of) orbits of MP are horizontal.
On the right hand side, the nilmanifold fibers in YP have been collapsed to points,
leaving the stratum XP . Nothing else has changed. However we now see that a
normal slice through XP (indicated by a dotted triangle) is diffeomorphic to the
cone over NP , that is, the nilmanifold NP is the link of XP (see next section).

5.2. Singularities of X
RBS

. The reductive Borel-Serre compactification of
X is a highly singular, non-algebraic space. Although the singularities are com-
plicated, they can be precisely described, and as a consequence it is possible to
compute the stalk cohomology of various sheaves on X

RBS
. Here is a description of

the link (cf. §2.6) of the stratum XP in X
RBS

.
If P is a (proper) maximal rational parabolic subgroup of G then the link of the

stratum XP is the compact nilmanifold NP = ΓUP
\UP where UP is the unipotent

radical of P and ΓUP
= Γ ∩ UP .

If P ⊂ Q then P determines a parabolic subgroup P/UQ ⊂ LQ with unipotent
radical UQ

P = UP /UQ and discrete group ΓQ
P = ΓUP

/ΓUQ
. Let NQ

P = ΓQ
P \U

Q
P be

the associated nilmanifold. It is the quotient of NP under the action of UQ so there
is a surjection TPQ : NP → NQ

P . Similarly, if P ⊂ R ⊂ Q we obtain a canonical
surjection

(5.2.1) NQ
P → NR

P .

To make the notation more symmetric, let us also write NP = NG
P .
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If P = Q1 ∩Q2 is the intersection of two maximal rational (proper) parabolic
subgroups then the link of the stratum XP in X

RBS
is the double mapping cylinder

of the diagram
NQ1

P ←−−−−
TP Q1

NG
P −−−−→

TP Q2

NQ2
P .

In other words, it is the disjoint union NQ1
P ∪(NP × [−1, 1])∪NQ2

P modulo relations
(x,−1) ∼ TPQ1(x) and (x, 1) ∼ TPQ2(x) for all x ∈ NP .

In the general case, suppose P is a rational parabolic subgroup of G with
dim(AP ) = r. The rational parabolic subgroups containing P (including G) are in
one to one correspondence with the faces of the r − 1 dimensional simplex ∆r−1,
in an inclusion-preserving manner, with the interior face corresponding to G.

5.2. Theorem. ([GHM] §8) The link of the stratum XP in X
RBS

is homeo-
morphic (by a stratum preserving homeomorphism which is smooth on each stratum)
to the geometric realization of the contravariant functor N : ∆r−1 → {manifolds}
defined on the category whose objects are faces of the r − 1 simplex (and whose
morphisms are inclusions of faces), which associates to each face Q the nilmanifold
NQ

P and to each inclusion of faces R ⊂ Q the morphism (5.2.1).

5.3. Theorem. ([Z2]) Suppose the symmetric space D = G/K is Hermitian
and let X

BB
be the Baily-Borel compactification of X = Γ\D. Then there exist

unique continuous mappings

X
BS −−−−→ X

RBS τ−−−−→ X
BB.

which restrict to the identity on X.

5.3. The first map is part of the definition of the reductive Borel-Serre com-
pactification. The mapping τ, if it exists, is determined by the fact that it is the
identity on X. However at first glance it appears unlikely to exist since, when G
is Q simple, the strata of X

BB
are indexed by (Γ conjugacy classes of) maximal

rational parabolic subgroups, while the strata of X
RBS

are indexed by (Γ conjugacy
classes of) all rational parabolic subgroups. Suppose for the moment that G is Q
simple. (The general case follows from this.) Then the rational Dynkin diagram for
G is of type Cn or BCn, as in Figure 2. A rational parabolic subgroup corresponds
to a subset of the Dynkin diagram, so its Levi quotient decomposes as an almost
direct product (commuting product with finite intersections):

(5.3.1) LP = LPh × L�1 × L�2 × . . .× L�m ×H

of a (semisimple) Hermitian factor LPh with a number of “linear factors” L�i, (each
of which acts as a group of automorphisms of a self adjoint homogeneous cone in
some real vector space) and a compact group H. (In what follows we will assume
the compact factor H, if it exists, has been absorbed into the other factors. It
is possible to arrange this so that each of the resulting factors is defined over the
rational numbers.)

So there is a projection DP → F from the reductive Borel-Serre boundary com-
ponent DP = LP /KPAP to the Borel-Serre boundary component F = LPh/KPh

(for appropriate maximal compact subgroup KPh). This boundary component F
was associated (in §2.3) to the maximal (proper, rational) parabolic subgroup Q
whose Levi component LQ decomposes as LQ = LQh × LQ� with LQh = LPh. In
other words, LP and LQ have the same Hermitian factor.
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LPh L�1 L�2

LQh LQ�

Figure 7. Dynkin diagrams for G, LP , and LQ

Moreover, the closure DP = DP
RBS

decomposes as the product of reductive
Borel-Serre partial compactifications of the locally symmetric spaces corresponding
to the factors in (5.3.1). The symmetric spaces for the linear factors L�1× . . .×L�m

show up as boundary components of the symmetric space for LQ�. With a bit more
work it can be shown that

5.4. Theorem. The mapping τ : X
RBS → X

BB
takes strata to strata and it

is a submersion on each stratum. If XF ⊂ X
BB

is the stratum corresponding to a
maximal parabolic subgroup Q ⊂ G then τ−1(XF ) → XF is a fiber bundle whose
fiber is isomorphic, by a stratum preserving isomorphism, to the reductive Borel-
Serre compactification of the arithmetic quotient ΓQ�\LQ�/KQ� of the self adjoint
homogeneous cone LQ�/KQ�.

(Here, ΓQ� ⊂ LQ�(Q) is the arithmetic group which is obtained by first projecting
Γ ∩Q to LQ and then intersecting with LQ�.)

In summary we have a diagram of partial compactifications and compactifica-
tions,

D
BS −−−−→ D

RBS −−−−→ D
BB; ; ;

X
BS −−−−→ X

RBS −−−−→ X
BB

with corresponding boundary components and boundary strata
eP = P/KPAP −−−−→ DP = LP /KPAP −−−−→ F = LPh/KPh; ; ;
YP = ΓP \eP −−−−→ XP = ΓL\MP /KP −−−−→ XF = ΓPh\F

5.4. A very similar picture applies when X = Γ\Pn is an arithmetic quo-
tient of the symmetric cone of positive definite real matrices (or, more generally,
when X is an arithmetic quotient of any rationally defined Q irreducible self ad-
joint homogeneous cone). The identity mapping X → X has unique continuous
extensions

X
BS −−−−→ X

RBS τ−−−−→ X
std

which take strata to strata. A stratum XF of X
std

corresponds to a maximal
rational parabolic subgroup Q whose Levi component factors, LQ = L1L2 as a
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product of two “linear” factors. The stratum XF is an arithmetic quotient of the
self adjoint homogeneous cone for L1. The pre-image τ−1(XF ) is a fiber bundle
over XF whose fiber over a point x ∈ XF is isomorphic to the reductive Borel-Serre
compactification of an arithmetic quotient of the self adjoint homogeneous cone for
L2.

6. Cohomology

6.1. Group cohomology. (see [Bro] Chapt. I or [W] Chapt. 6) As in the
preceding section we assume that G is reductive, defined over Q, that AG is trivial,
that K ⊂ G(R) is a maximal compact subgroup and that the symmetric space D =
G/K is Hermitian with basepoint x0. Fix a neat arithmetic subgroup Γ ⊂ G(Q)
and set X = Γ\D. Let λ : G→ GL(E) be a finite dimensional representation of G
on some complex vector space, and let E = E ×Γ D be the resulting local system
(flat vector bundle) on X. Since Γ acts freely on the contractible manifold D we
see that the cohomology Hi(X,E) is naturally isomorphic to the group cohomology
Hi(Γ, E) of the representation λ|Γ.

6.1. Theorem. The cohomology H∗(Γ, E) is finite dimensional. The group Γ
is finitely presented.

If Γ is neat, the proof follows just from the existence of the Borel-Serre com-
pactification: the inclusion X → X

BS
is a homotopy equivalence. Since Γ is the

fundamental group of X, it is finitely presented. Moreover any compact mani-
fold with boundary (or compact manifold with corners) may be triangulated using
finitely many simplices, so its cohomology is finite dimensional (and vanishes in
dimensions greater than dim(X)). In fact, these two consequences of the existence
of the Borel-Serre compactification were first proven by M. S. Raghunathan [R],
who showed that X was diffeomorphic to the interior of a smooth compact manifold
with boundary.

It can also be shown, using the Borel-Serre compactification, that the Euler
characteristic χ(X) and the Euler characteristic with compact supports χc(X) =∑

i≥0(−1)idim(Hi
c(X)) are equal. This follows from the fact that their difference

is the Euler characteristic of the boundary ∂X = X −X for any compactification
X of X. One checks by induction that the Euler characteristic of the Borel-Serre
boundary vanishes, since each “corner” YP is fibered over XP with fiber a compact
nilmanifold NP , whose Euler characteristic χ(NP ) = 0 vanishes.

6.2. L2 cohomology. A choice of K-invariant inner product on the tangent
space Tx0D determines a complete G-invariant Riemannian metric on D which then
passes to a complete Riemannian metric (with negative curvature) on X. Let Ωi(X)
be the vector space of smooth complex valued differential i-forms and let

Ωi
(2)(X) =

{
ω ∈ Ωi(X)

∣∣∣∣∫ ω ∧ ∗ω <∞,

∫
dω ∧ ∗dω <∞

}
be the vector space of L2 differential i-forms on X. These form a complex whose
cohomology

Hi
(2)(X) = ker(d)/im(d)

is called the L2 cohomology of X. It is finite dimensional (when D is Hermitian
symmetric, which we are currently assuming). We may similarly define the L2
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cohomology Hi(X,E) with coefficients in a local system E arising from a finite
dimensional irreducible representation λ : G(R) → GL(E) on some complex vector
space E.

The L2 cohomology is a representation-theoretic object, and it may be identified
([BW]) with the relative Lie algebra cohomology

(6.2.1) Hi
(2)(X,E) ∼= Hi(g,K;L2(Γ\G,E))

of the module of L2 functions on Γ\G with values in E. One would like to under-
stand the decomposition of this module under the regular representation of G. (See
lectures of J. Arthur in this volume.) This decomposition of L2(Γ\G) is reflected
in the resulting decomposition of its cohomology (6.2.1), which is somewhat eas-
ier to understand, but the information flows in both directions. For example, it
is known (when E is trivial) that the trivial representation occurs exactly once in
L2(Γ\G), and that its (g,K) cohomology coincides with the ordinary cohomology
of the compact dual symmetric space Ď. Hence, H∗(Ď) occurs in H∗

(2)(X,C).

6.3. Zucker conjecture. In [Z1], S. Zucker conjectured there is an isomor-
phism

Hi
(2)(X,E) ∼= IHi(X

BB
,E)

between the L2 cohomology and the intersection cohomology of the Baily-Borel
compactification. This beautiful conjecture relates an analytic and representation
theoretic object, the L2 cohomology, with a topological invariant, the intersection
cohomology. (An analogous result, for “metrically conical” singular spaces, had
been previously discovered [Ch0, Ch1, Ch2] by J. Cheeger. A relatively simple,
piecewise linear analog is developed in [BGM].) Moreover, if X is (replaced by) a
Shimura variety, then it has a canonical model defined over a number field and there
is an associated variety defined over various finite fields. In this case the intersection
cohomology of X

BB
has an étale version, on which a certain Galois group acts.

So the Zucker conjecture provides a “path” from automorphic representations to
Galois representations, the understanding of which constitutes one of the goals of
Langlands’ program.

Zucker proved the conjecture in the case of Q-rank one. Further special cases
were proven by Borel, Casselman, and Zucker ([B2], [BC1], [BC2], [Z3]). Finally,
in [Lo] and [SS] the conjecture was proven in full generality. Looijenga’s proof
uses the decomposition theorem ([BBD] thm. 6.2.5) and the toroidal compactifi-
cation, while the proof of Saper and Stern uses analysis (essentially on the reductive
Borel-Serre compactification). Among the many survey articles on this material we
mention [B2], [CGM], [Go], and [S4].

Both the L2 cohomology and the intersection cohomology are the (hyper) co-
homology groups of complexes of sheaves, Ω•

(2)(X
BB

,E) and IΩ•(X
BB

,E) respec-
tively. The proofs of Looijenga and Saper and Stern construct a quasi-isomorphism
between these complexes of sheaves. This implies, for example, the existence of an
isomorphism between the L2 cohomology and the intersection cohomology of any
open set V ⊂ X

BB
, and these isomorphisms are compatible with the maps induced

by inclusion of open sets, exact sequences of pairs, and Mayer Vietoris sequences.

6.4. Review of sheaf theory. Let Z be a stratified space with a regular
stratification and let S be a sheaf (of finite dimensional vector spaces over some
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field) on Z. The stalk of the sheaf S at the point x ∈ Z is denoted Sx. A local system
on Z is a locally trivial sheaf. Denote by Γ(U,S) the sections of S over an open set
U ⊂ Z. The sheaf S is fine if it admits partitions of unity. (That is, for any locally
finite cover {Uα} of Z, and for any open V ⊂ Z, every section ω ∈ Γ(V,S) can be
written as a sum of sections ωα supported in Uα ∩V.) If f : Z →W is a continuous
mapping and if S is a sheaf on Z then its push forward f∗(S) is the sheaf on W
whose sections over an open set are

Γ(U, f∗(S)) = Γ(f−1(U),S).

Let

S0 d0−−−−→ S1 d1−−−−→ · · ·
be a complex of sheaves (of vector spaces) on Z which is bounded from below. Such
a complex is denoted S• rather than S∗ to indicate that it comes with a differential.
It is common to write S[k]• or S•[k] for the shifted complex, S[k]i = Sk+i.

If S• is a complex of sheaves on Z its stalk cohomology Hi
x(S•) and stalk coho-

mology with compact supports Hi
c,x(S•) = Hi

{x}(S
•) at a point x ∈ XF ⊂ X

BB
are

the limits

(6.4.1) lim
→

Hi(Ux,S•) and lim
←

Hi
c(Ux,S•)

respectively, over a basis of neighborhoods Ux ⊂ X
BB

of x (ordered with re-
spect to containment Ux ⊃ U ′

x ⊃ · · · ). Sheaves form an abelian category so
ker(di) and Im(di−1) are sheaves, and we may form the cohomology sheaf Hi(S) =
ker(di)/Im(di−1). Its stalk at a point x ∈ Z is the stalk cohomology Hi

x(S•). The
complex of sheaves S• is cohomologically constructible with respect to the stratifi-
cation if, for each i, the restriction of the cohomology sheaf Hi(S•) to each stratum
is finite dimensional and locally trivial. This implies that Hi(Z,S•) is finite dimen-
sional provided Z is compact.

A morphism f : S• → T• of complexes of sheaves is a quasi-isomorphism if it
induces isomorphisms Hi

x(S•) ∼= Hi
x(T•) for every i and for every x ∈ Z. Such a

quasi-isomorphism S• → T• induces isomorphisms Hi(U,S•) ∼= Hi(U,T•) for any
open set U ⊆ Z and these isomorphisms are compatible with the maps induced by
inclusions and with Mayer Vietoris sequences.

If S• is a complex of fine sheaves, then for any open set U ⊆ Z the cohomology
Hi(U,S•) is the cohomology of the complex of sections over U,

→ Γ(U,Si−1) → Γ(U,Si) → Γ(U,Si+1) →

However if S• is not fine, then this procedure gives the wrong answer. (Take, for
example, the constant sheaf on a smooth manifold.) A fine resolution of S• is a
quasi-isomorphism S• → T• where T• is fine. Then, in general, the cohomology
Hi(U,S•) is defined to be the cohomology Hi(U,T•) for any fine (or flabby, or
injective) resolution T• of S•.

A similar problem arises when f : Z → W is a continuous mapping: if S• is a
complex of fine sheaves on Z then the push forward f∗(S•) will satisfy

(6.4.2) Hi(U, f∗(S•)) ∼= Hi(f−1(U),S•)

for any open set U ⊆ W. However if S• is not fine then (6.4.2) may fail, and S•

should first be replaced by a fine (or flabby or injective) resolution before pushing
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forward. The resulting complex of sheaves (or rather, its quasi-isomorphism class)
is denoted Rf∗(S•).

These apparently awkward constructions have their most natural expression in
terms of the derived category of sheaves on Z, for which many excellent references
exist. (See [I], [GeM], [GeM2]). Brief summaries are given in [GM], [B5].)
However, the sheaves to be studied in the following sections will be fine, so no
further resolutions are required.

Originally it was felt that the “dual” of a sheaf (or of a complex of sheaves)
should be a co-sheaf (an object similar to a sheaf, but for which the restriction
arrows are reversed). However, in [BM], Borel and Moore constructed the dual
sheaf T• of a complex of sheaves S• on Z. They showed, for any open set U ⊂ Z,
that Hi

c(U,T
•) is the vector space dual of Hi(U,S•). In [V], Verdier showed there

was a sheaf D• (called the dualizing sheaf) such that the Borel-Moore dual T• was
quasi-isomorphic to the sheaf Hom•(S•,D•). In particular, the dual of the dual
of S• is not equal to S•, however it is quasi-isomorphic to S•. There are many
quasi-isomorphic models for the dualizing sheaf. Possible models include the sheaf
of (singular) chains on Z (or piecewise linear chains, or subanalytic chains, if Z has
a piecewise linear or subanalytic structure). If Z is compact, orientable (meaning
that the top stratum of Z is orientable), and purely n-dimensional, then Hi(Z,D•)
is the homology Hn−i(Z).

6.5. The L2 sheaf. Return to the situation of §6, with X = Γ\G/K a Her-
mitian locally symmetric space. The sheaf Ωi

(2)(X
BB

,E) of (smooth) L2 differential

forms on X
BB

is defined to be the sheafification of the presheaf whose sections over
an open set U ⊂ X

BB
are{

ω ∈ Ωi(U ∩X,E)
∣∣∣∣∫

U∩X

ω ∧ ∗ω <∞ and
∫

U∩X

dω ∧ ∗dω <∞
}

A common mistake is to confuse this with the direct image

j∗Ωi
(2)(X,E)

of the sheaf of (smooth) L2 E-valued differential forms on X, where j : X → X
BB

is the inclusion. In fact the sheafification of the presheaf of smooth L2 (E-valued)
differential forms on X is the sheaf of all smooth (E-valued) differential forms on
X. Its cohomology is the ordinary cohomology H∗(X,E) and so the same is true
of j∗Ωi

(2)(X,E).

6.2. Theorem ([Z1]). The sheaf Ω•
(2)(E) = Ω•

(2)(X
BB

,E) of smooth L2 dif-

ferential forms on X
BB

is fine.

This implies that one may calculate the (hyper) cohomology of this complex
of sheaves simply by taking the cohomology of the global sections (that is, globally
defined L2 differential forms), so we do indeed get the L2 cohomology, that is,

Hi
(2)(X,E) ∼= Hi(X

BB
,Ω•

(2)(E)).

6.6. Middle Intersection cohomology. There is a construction of intersec-
tion cohomology using differential forms, which R. MacPherson and I worked out
some years ago (see [Bry] and [P]). Let πF : VF → F be the geodesic projection
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of a parabolic neighborhood of a boundary stratum XF ⊂ X
BB

of (complex) codi-
mension c. Let us say that a smooth differential form ω ∈ Ωi(X,E) is allowable
near XF if there exists a neighborhood Vω ⊂ VF of XF in X

BB
such that for any

choice of c smooth vector fields A1, A2, . . . , Ac in Vω ∩X, each tangent to the fibers
of π, the contractions

i(A1)i(A2) · · · i(Ac)(ω) = 0 and i(A1)i(A2) · · · i(Ac)(dω) = 0

vanish in Vω ∩X. We say a smooth differential form ω ∈ Ωi(X,E) is allowable if it
is allowable near XF , for every stratum XF of X

BB
.

6.1. Definition. The sheaf IΩi(E) on X
BB

is the sheafification of the presheaf
whose sections over an open set U ⊂ X

BB
are{

ω ∈ Ωi(U ∩X,E) | ω is the restriction of an allowable form on X
}
.

This sheaf is fine, so its cohomology IH∗(X
BB

,E) coincides with the coho-
mology of the complex of allowable differential forms on X. Moreover its stalk
cohomology and stalk cohomology with compact supports (6.4.1) are achieved in
any distinguished neighborhood Vx ⊂ X

BB
(see §2.7 and §4.5), that is,

IHi
x(E) ∼= IHi(Vx,E) and IHi

{x}(E) ∼= IHi
c(Vx,E).

The (stalk) cohomology is even the cohomology of the complex of allowable dif-
ferential forms in Vx which satisfy the allowability condition with respect to XF

throughout the neighborhood Vx. (The corresponding statement for the stalk co-
homology with compact supports is false.)

The complex of sheaves IΩ•(E) has the following properties.
(1) It is constructible: its stalk cohomology (at any point) is finite dimen-

sional, and its cohomology sheaves are locally trivial when restricted to
any stratum.

(2) The restriction IΩ•(E)|X is a fine resolution of the sheaf (of sections of)
E.

(3) If F is a stratum of complex codimension c then for any x ∈ F,

Hi
x(IΩ•(E)) = 0 for all i ≥ c

Hi
c,x(IΩ•(E)) = 0 for all i ≤ c.

Condition (3) says that the sheaf of differential forms has been truncated by degree at
the stratum XF , that is, the allowability condition has killed all the stalk cohomol-
ogy of degree ≥ c. In [GM] it is shown that any complex of sheaves S• satisfying
these three conditions is quasi-isomorphic to the intersection complex, meaning
that in the appropriate bounded constructible derived category Db

c(X
BB

) there is
an isomorphism S• ∼= IΩ•(E). So the proof of the Zucker conjecture amounts to
checking that the sheaf of L2 differential forms satisfies these conditions. Condi-
tions (1) and (2) are easy, however checking condition (3), which is local in X

BB
,

involves a detailed understanding both of the local topology of X
BB

and of its
metric structure.

The intersection cohomology sheaf is (Borel-Moore-Verdier) self dual. In par-
ticular, if E1 and E2 are dual finite dimensional representations of G then for each
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open set U ⊂ X
BB

the intersection cohomology vector spaces

IHi(U,E1) and IH2n−i
c (U,E2)

are dual, where n = dimC(X).

6.7. Remark. Condition (3) above says that IΩ• is a perverse sheaf ([BBD])
on X

BB
. In fact the simple objects in the category Pervc(X

BB
) of (constructible)

perverse sheaves are the just the intersection complexes j∗(IΩ•(XF ,EF))[cF ] of
closures of strata, where j : XF → X

BB
is the inclusion of the closure of a stratum

XF of codimension cF and where EF is a local coefficient system on XF .

6.8. Weighted cohomology. If f : Y → Z is a morphism and if S• is
a complex of fine sheaves on Y then f∗(S•) is a complex of fine sheaves on Z
whose cohomology is the same: Hi(Z, f∗(S•)) ∼= Hi(Y,S•). So we can study the
cohomology of S• locally on Z. However the converse is not always true: if T• is a
complex of sheaves on Z, there does not necessarily exist a complex of sheaves S•

on Y so that f∗(S•) ∼= T•.

One would like to study the intersection cohomology IH∗(X
BB

,E) locally on
the reductive Borel-Serre compactification, which is in many ways a simpler space
than X

BB
. One might hope to use the sheaf of L2 differential forms on X

RBS
,

which again makes sense on the reductive Borel-Serre compactification. It is again
a fine sheaf [Z1], and its cohomology is H∗

(2)(X,E). However, the L2 sheaf on X
RBS

is not constructible: its stalk cohomology at a boundary point x may be infinite
dimensional. The weighted cohomology sheaf WC•(X

RBS
,E) is designed to be

a good replacement; see Theorem 6.4 below. The idea is the following. For any
stratum XP ⊂ X

RBS
the torus AP acts (by geodesic action) on any parabolic

neighborhood VP . This action should give rise to a decomposition of the stalk
cohomology (of the sheaf Ω•(X

RBS
,E) of all smooth differential forms) at any point

x ∈ XP into weight spaces. We would like to kill all the cohomology with weights
greater than or equal to some fixed value, that is, we would like a weight truncation
of the sheaf of smooth differential forms. Unfortunately, the complex of smooth
differential forms is infinite dimensional, and the torus AP does not act semi-simply
(near XP ) on this complex. So it is first necessary to find an appropriate collection
of differential forms with the same cohomology, which decomposes under the action
of AP . In [GHM] a subsheaf Ω•

sp(X
RBS

,E) of smooth “special” differential forms
is constructed with this property.

Assume G is reductive and AG is trivial. Fix a standard minimal rational
parabolic subgroup P0 ⊂ G. Let A0 be the greatest Q split torus in the center
of P0. Fix a “weight profile” ν ∈ X∗

Q(A0), that is, a rational character of A0.
This will be used to determine weight cutoffs for each stratum. Suppose P is a
standard rational parabolic subgroup. The choice of basepoint x0 ∈ D determines
a lift LP ⊂ P (see §2.7), so the action of P on its unipotent radical restricts to an
action of LP ⊂ P on the complex

C•(NP , E) = HomR(∧•(NP ), E)

(where NP = Lie(UP )) and hence determines a local system

C•(NP , E) = C•(NP , E)×ΓL
(LP \KPAP )
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over the reductive Borel-Serre stratum XP = ΓL\LP /KPAP , cf. (5.1.2). The torus
AP acts on C•(NP , E) so we obtain a decomposition into weight submodules

C•(NP , E) ∼=
⊕

µ∈X(AP )

C•(NP , E)µ.

Using the weight profile ν, define the submodule

C•(NP , E)≥ν =
⊕
µ≥ν

C•(NP , E)ν

where µ ≥ ν means that µ− (ν|AP ) lies in the positive cone spanned by the simple
rational roots α ∈ ∆P . This definition also makes sense when P is an arbitrary
rational parabolic subgroup, by conjugation.

Suppose V ⊂ X
RBS

is a parabolic neighborhood of XP . Then it turns out that
the complex of differential forms which are special throughout V may be identified
with the complex Ω•

sp(XP ,C•(NP , E)) of special differential forms on XP with
coefficients in the (finite dimensional) local system C•(NP , E). Define Ω•

sp(V )≥ν

to be the subcomplex of special differential forms on XP with coefficients in the
subbundle C•(NP , E)≥ν . The subcomplex of Ω•

sp(V ) is independent of the choice
of basepoint.

6.2. Definition. The weighted cohomology W≥νC•(X
RBS

,E) is the sheafifi-
cation of the complex of sheaves whose sections over an open set U ⊂ X

RBS
consist

of smooth differential forms ω on U ∩X such that for each stratum XP there exists
a parabolic neighborhood V = V (ω,XP ) ⊂ X

RBS
with ω|V ∈ Ω•

sp(V )≥ν .

It is possible to similarly define W>νC•(X
RBS

,E). It will coincide with the
sheaf W≥νC•(X

RBS
, E) if, for each rational parabolic subgroup P, the weight

ν|AP does not occur in any of the cohomology groups Hi(NP , E).

6.3. Theorem. The complex W≥νC• is constructible with respect to the canon-
ical stratification of X

RBS
, so its cohomology is finite dimensional. Its restriction

to X is a fine resolution of the sheaf (of sections of) E. The stalk cohomology, and
compactly supported stalk cohomology at a point x ∈ XP are given by

WHj
x
∼= Hj(NP , E)≥ν

WHj
c,x

∼= Hj−d−s(NP , E)<ν

where s = dim(AP ) and d = dim(XP ).

It is possible that these conditions uniquely determine the weighted cohomol-
ogy sheaf in the bounded constructible derived category of X

RBS
. In any case this

theorem is considerably more complete than the corresponding result in §6.6 for
intersection cohomology (which only specifies the region in which these stalk co-
homology groups vanish). This illustrates the fact that the reductive Borel-Serre
compactification is easier to understand than the Baily-Borel compactification.

There are many possible weight truncations. The two extreme truncations
(ν = −∞ and ν = ∞) give rise to a weighted cohomology sheaf on X

RBS
whose

cohomology is the ordinary cohomology H∗(X,E) and the ordinary cohomology
with compact supports H∗

c (X,E) of X, respectively. Another weight truncation
ν = 0 (and E trivial) gives the ordinary cohomology H∗(X

RBS
,C).
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If E1 and E2 are dual (finite dimensional) irreducible representations of G and
if µ + ν = −2ρ then the weighted cohomology complexes W≥νC•(X

RBS
,E1) and

W>µC•(X
RBS

,E2) are (Verdier) dual sheaves. (Here ρ is one-half the sum of the
positive roots.) In particular, for any open set U ⊆ X

RBS
the cohomology groups

W≥νHi(U,E1) and W>µHn−i
c (U,E2)

are dual vector spaces (where n = dim(X)). Thus, taking m = −ρ there are two
“middle” weighted cohomology sheaves (which may coincide),

W≥mC•(E
RBS

) and W>mC•(X
RBS

,E).

The weighted cohomology construction makes sense whether or not D is Her-
mitian. But in the Hermitian case we also have the mapping τ : X

RBS → X
BB

of
§5.3. Let E be an irreducible finite dimensional representation of G.

6.4. Theorem. ([GHM] Theorem 23.2) The above mapping τ induces quasi-
isomorphisms

τ∗(W≥mC•(X
RBS

,E)) ∼= τ∗(W>mC•(X
RBS

,E)) ∼= IΩ•(X
BB

,E)

and in particular the weighted cohomology of X
RBS

is canonically isomorphic to
the intersection cohomology of X

BB
.

6.9. Hecke correspondences. Any g ∈ G(Q) gives rise to a Hecke corre-
spondence X ′ ⇒ X, meaning that we have two finite surjective mappings c1, c2
from X ′ to X. It is defined as follows. Let Γ′ = Γ ∩ g−1Γg, X ′ = Γ′\D. The two
mappings are: Γ′hK �→ (ΓhK,ΓghK). They give an immersion X ′ → X×X whose
image may be thought of as a multi-valued mapping X → X. The Hecke correspon-
dence defined by any g′ ∈ ΓgΓ is the same as that defined by g (cf. [GM2] §6.6).
The composition of Hecke correspondences defined by g, g′ ∈ G(Q) is not the Hecke
correspondence defined by gg′, but rather, it is a finite linear combination of Hecke
correspondences (cf. [Sh] §3.1). So the set of finite formal linear combinations of
Hecke correspondences form a ring, the Hecke ring or Hecke algebra of Γ.

Fix a Hecke correspondence (c1, c2) : X ′ ⇒ X. Differential forms on X may be
pulled back by c2 then pushed forward by c1, and L2 forms are taken to L2 forms
by this procedure. The induced mapping on Hi

(2)(X,E) is called a Hecke operator.
Using the trace formula, J. Arthur ([A]) gave an expression for the Lefschetz number
of this operator, that is, the alternating sum of the traces of the induced mapping
on the L2 cohomology.

Both mappings (c1, c2) : X ′ ⇒ X extend to finite mappings

X ′RBS ⇒ X
RBS

and X ′BB ⇒ X
BB

.

A fixed point x ∈ X ′RBS
is a point such that c1(x) = c2(x). In [GM2] the Lefschetz

fixed point formula for the action of this Hecke correspondence on the weighted
cohomology of X

RBS
was computed. In [GKM] it was shown how the contributions

from individual fixed point components in X
RBS

may be grouped together so as
to make the Lefschetz formula (for the middle weighted cohomology) agree, term
by term, with the L2 Lefschetz formula of Arthur. This gives a purely topological
interpretation (and re-proof) of Arthur’s formula, as well as similar formulas for
other weighted cohomology groups.
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7. A selection of further developments

Throughout this section we assume that X = Γ\G/K is a Hermitian locally
symmetric space, with G semi-simple, as in the preceding section.

7.1. Let X̂ be the closure of X in X
tor

Σ ×X
RBS

. In [GT1] it is shown that the
fibers of the mapping π1 : X̂ → X

tor

Σ are contractible, so there exists a homotopy
inverse µ : X

tor

Σ → X̂, that is, π1µ and µπ1 are homotopic to the identity. The
composition X

tor

Σ → X̂ → X
RBS

allows one to compare the cohomology of X
RBS

and X
tor

Σ .

7.2. In [GHMN] it is shown that the restriction of the weighted cohomology
sheaf to the closure of any stratum of X

RBS
decomposes as a direct sum of weighted

cohomology sheaves for that stratum. (The analogous statement for intersection
cohomology is false.)

7.3. In [Z4], S. Zucker showed that for large p, the Lp cohomology of X =
Γ\G/K is naturally isomorphic to the ordinary cohomology H∗(X

RBS
) of the re-

ductive Borel-Serre compactification. Although this result is much easier to prove
than the original Zucker conjecture, it went surprisingly unnoticed for twenty years.
In [Nr], A. Nair showed that the weighted cohomology WH∗(X

RBS
,E) is canoni-

cally isomorphic to the weighted L2 cohomology of J. Franke [Fr]. In [S1], [S2], L.
Saper showed that the push forward τ∗(IΩ•(X

RBS
,E)) is canonically isomorphic

to IΩ•(X
BB

,E). This gives the surprising result that

IHi(X
RBS

,E) ∼= IHi(X
BB

,E) ∼= W≥mHi(X
RBS

,E).

However, on X
RBS

, the weighted cohomology sheaf and sheaf of intersection forms
are definitely not quasi-isomorphic: Saper’s theorem depends on delicate global
vanishing results for the weighted cohomology groups of various boundary strata.

7.4. Many other compactifications of Γ\G/K were constructed by Satake
([Sa2], [Z2]). Each Satake compactifications depend on a choice of (what is now
called) a “geometrically rational” representation of G. If the representation is ra-
tional, then it is geometrically rational, however the Baily-Borel compactification
arises from a geometrically rational representation that is not necessarily rational.
So the issue of determining which representations are geometrically rational is quite
subtle. See [Ca] and [S3] for more details.

7.5. The most successful method for computing the L2 cohomology involves
understanding relative Lie algebra cohomology and automorphic representations.
See, for example, [Ko, LS, Sch, BW].
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Boston, Boston MA, 1984.

[BC1] A. Borel and W. Casselman, L2 cohomology of locally symmetric manifolds of finite
volume, Duke Math. J. 50 (1983), pp. 625–647.

[BC2] A. Borel and W. Casselman, Cohomologie d’intersection et L2-cohomologie de variétés
arithmétiques de rang rationnnel 2, C. R. Acad. Sci. Paris 301 Ser. 1 no. 7 (1985), pp.

369–373.
[BM] A. Borel and J. C. Moore, Homology theory for locally compact spaces, Mich. Math. J.

7 (1960), pp. 137–159.
[BS] A. Borel and J. P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48

(1973), pp. 436-491.
[BW] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and

Representations of Reductive Groups, Princeton Univ. Press, Princeton N.J., 1980.
[BGM] J. P. Brasselet, M. Goresky, and R. MacPherson, Simplicial differential forms with poles,

Amer. J. Math., 113 (1991), pp. 1019–1052.

[Bro] K. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer
Verlag, New York, 1982.

[Bry] J. -L. Brylinski, Equivariant intersection cohomology, in Kazhdan-Lusztig Theory
and Related Topics, Contemp. Math. 139 (1992), Amer. Math. Soc., Providence R.I.,

1992.
[Ca] W. Casselman, Geometric rationality of Satake compactifications, in Algebraic Groups

and Lie Groups, G. Lehrer ed., Cambridge University Press, Cambridge, UK, 1997.
[Ch0] J. Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Nat.

Acad. Sci. 76 (1979), pp. 2103–2106.
[Ch1] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, in Geometry of the

Laplace Operator, Proc. Symp. Pure Math 36, Amer. Math. Soc., Providence R.I.,
1980, pp. 91–146.

[Ch2] J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Diff. Geom. 18 (1983),

pp. 575–657.
[CGM] J. Cheeger, M. Goresky, and R. MacPherson, L2 cohomology and intersection homol-

ogy for singular varieties, in Seminar in Differential Geometry (S. T. Yau, ed.),
Princeton University Press, Princeton N.J., 1982.

[FC] G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Ergeb. Math. 22,
Springer Verlag, Berlin, 1990.

[Fr] J. Franke, Harmonic analysis in weighted L2 spaces, Ann. Sci. École Norm. Sup. 31
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1. Introduction

This survey article is intended to introduce the reader to several important
concepts relating to Shimura varieties with parahoric level structure at p. The
main tool is the Rapoport-Zink local model [RZ], which plays an important role
in several aspects of the theory. We discuss local models attached to general lin-
ear and symplectic groups, and we illustrate their relation to Shimura varieties in
two examples: the simple or “fake” unitary Shimura varieties with parahoric level
structure, and the Siegel modular varieties with Γ0(p)-level structure. In addition,
we present some applications of local models to questions of flatness, stratifications
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of the special fiber, and the determination of the semi-simple local zeta functions
for simple Shimura varieties.

There are several good references for material of this sort that already exist in
the literature. This survey has a great deal of overlap with two articles of Rapoport:
[R1] and [R2]. A main goal of this paper is simply to make more explicit some
of the ideas expressed very abstractly in those papers. Hopefully it will shed some
new light on the earlier seminal works of Rapoport-Zink [RZ82], and Zink [Z].
This article is also closely related to some recent work of H. Reimann [Re1], [Re2],
[Re3].

Good general introductions to aspects of the Langlands program which might
be consulted while reading parts of this report are those of Blasius-Rogawski [BR],
and T. Wedhorn [W2].

Several very important developments have taken place in the theory of Shimura
varieties with bad reduction, which are completely ignored in this report. In par-
ticular, we mention the book of Harris-Taylor [HT] which uses bad reduction of
Shimura varieties to prove the local Langlands conjecture for GLn(Qp), and the
recent work of L. Fargues and E. Mantovan [FM].

Most of the results stated here are well-known by now (although scattered
around the literature, with differing systems of conventions). However, the author
took this opportunity to present a few new results (and some new proofs of old
results). For example, there is the proof of the non-emptiness of the Kottwitz-
Rapoport strata in any connected component of the Siegel modular and “fake”
unitary Shimura varieties with Iwahori-level structure (Lemmas 13.1, 13.2), some
foundational relations between Newton strata, Kottwitz-Rapoport strata, and affine
Deligne-Lusztig varieties (Prop. 12.6), and the verification of the conjectural non-
emptiness of the basic locus in the “fake” unitary case (Cor. 12.12). The main new
proofs relate to topological flatness of local models attached to Iwahori subgroups
of unramified groups (see §7) and to the description of the nonsingular locus of
Shimura varieties with Iwahori-level structure (see §8.4). Finally, some of the results
explained here (especially in §11) are background material necessary for the author’s
as yet unpublished joint work with B.C. Ngô [HN3].

I am grateful to U. Görtz, R. Kottwitz, B.C. Ngô, G. Pappas, and M. Rapoport
for all they have taught me about this subject over the years. I thank them for their
various comments and suggestions on an early version of this article. Also, I heartily
thank U. Görtz for providing the figures. Finally, I thank the Clay Mathematics
Institute for sponsoring the June 2003 Summer School on Harmonic Analysis, the
Trace Formula, and Shimura Varieties, which provided the opportunity for me to
write this survey article.

2. Notation

2.1. Some field-theoretic notation. Fix a rational prime p. We let F de-
note a non-Archimedean local field of residual characteristic p, with ring of integers
O. Let p ⊂ O denote the maximal ideal, and fix a uniformizer π ∈ p. The residue
field O/p has cardinality q, a power of p.

We will fix an algebraic closure k of the finite field Fp. The Galois group
Gal(k/Fp) has a canonical generator (the Frobenius automorphism), given by σ(x) =
xp. For each positive integer r, we denote by kr the fixed field of σr. Let W (kr)
(resp. W (k)) denote the ring of Witt vectors of kr (resp. k), with fraction field Lr
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(resp. L). We also use the symbol σ to denote the Frobenius automorphism of L
induced by that on k.

We fix throughout a rational prime � �= p, and a choice of algebraic closure
Q� ⊂ Q�.

2.2. Some group-theoretic notation. The symbol G will always denote a
connected reductive group over Q (sometimes defined over Z). Unless otherwise
indicated, G will denote the base-change GF , where F is a suitable local field
(usually, G = GQp

).
Now let G denote a connected reductive F -group. Fix once and for all a Borel

subgroup B and a maximal torus T contained in B. We will usually assume G is
split over F , in which case we can even assume G,B and T are defined and split
over the ring O. For GLn or GSp2n, T will denote the usual “diagonal” torus, and
B will denote the “upper triangular” Borel subgroup.

We will often refer to “standard” parahoric and “standard” Iwahori subgroups.
For the group G = GLn (resp. G = GSp2n), the “standard” hyperspecial maximal
compact subgroup of G(F ) will be the subgroup G(O). The “standard” Iwahori
subgroup will be inverse image of B(O/p) under the reduction modulo p homomor-
phism

G(O) → G(O/p).
A “standard” parahoric will be defined similarly as the inverse image of a standard
(= upper triangular) parabolic subgroup.

For GLn(F ), the standard Iwahori is the subgroup stabilizing the standard
lattice chain (defined in §3). The standard parahorics are stabilizers of standard
partial lattice chains. Similar remarks apply to the group GSp2n(F ). The symbols
I or Ir or Ka

p will always denote a standard Iwahori subgroup of G(F ) defined in
terms of our fixed choices of B ⊃ T , and G(O) as above (for some local field F ).
Often (but not always) K or Kr or K0

p will denote our fixed hyperspecial maximal
compact subgroup G(O).

We have the associated spherical Hecke algebra HK := Cc(K\G(F )/K), a con-
volution algebra of C-valued (or Q�-valued) functions on G(F ) where convolution
is defined using the measure giving K volume 1. Similarly, HI := Cc(I\G(F )/I)
is a convolution algebra using the measure giving I volume 1. For a compact open
subset U ⊂ G(F ), IU denotes the characteristic function of the set U .

The extended affine Weyl group of G(F ) is defined as the group
W̃ = NG(F )T/T (O). The map X∗(T ) → T (F )/T (O) given by λ �→ λ(π) is an
isomorphism of abelian groups. The finite Weyl group W0 := NG(F )T/T (F ) can
be identified with NG(O)T/T (O), by choosing representatives of NG(F )T/T (F ) in
G(O). Thus we have a canonical isomorphism

W̃ = X∗(T ) � W0.

We will denote elements in this group typically by the notation tνw (for ν ∈ X∗(T )
and w ∈W0).

Our choice of B ⊃ T determines a unique opposite Borel subgroup B̄ such that
B∩B̄ = T . We have a notion of B-positive (resp. B̄-positive) root α and coroot α∨.
Also, the group W0 is a Coxeter group generated by the simple reflections sα in the
vector space X∗(T ) ⊗ R through the walls fixed by the B-positive (or B̄-positive)
simple roots α. Let w0 denote the unique element of W0 having greatest length
with respect to this Coxeter system.
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We will often need to consider W̃ as a subset of G(F ). We choose the following
conventions. For each w ∈ W0, we fix once and for all a lift in the group NG(O)T .
We identify each ν ∈ X∗(T ) with the element ν(π) ∈ T (F ) ⊂ G(F ).

Let a denote the alcove in the building of G(F ) which is fixed by the Iwahori
I, or equivalently, the unique alcove in the apartment corresponding to T which
is contained in the B̄-positive (i.e., the B-negative) Weyl chamber, whose closure
contains the origin (the vertex fixed by the maximal compact subgroup G(O)) 1.

The group W̃ permutes the set of affine roots α + k (α a root, k ∈ Z) (viewed
as affine linear functions on X∗(T )⊗R), and hence permutes (transitively) the set
of alcoves. Let Ω denote the subgroup which stabilizes the base alcove a. Then we
have a semi-direct product

W̃ = Waff � Ω,

where Waff (the affine Weyl group) is the Coxeter group generated by the reflections
Saff through the walls of a. In the case where G is an almost simple group of rank l,
with simple B-positive roots α1, . . . , αl, then Saff consists of the l simple reflections
si = sαi

generating W0, along with one more simple affine reflection s0 = t−eα∨s
eα,

where α̃ is the highest B-positive root.
The Coxeter system (Waff , Saff) determines a length function � and a Bruhat

order ≤ on Waff , which extend naturally to W̃ : for xi ∈Waff and σi ∈ Ω (i = 1, 2),
we define x1σ1 ≤ x2σ2 in W̃ if and only if σ1 = σ2 and x1 ≤ x2 in Waff . Similarly,
we set �(x1σ1) = �(x1).

By the Bruhat-Tits decomposition, the inclusion W̃ ↪→ G(F ) induces a bijection

W̃ = I\G(F )/I.

In the function-field case (e.g., F = Fp((t))), the affine flag variety F l = G(F )/I
is naturally an ind-scheme, and the closures of the I-orbits F lw := IwI/I are
determined by the Bruhat order on W̃ :

F lx ⊂ F ly ⇐⇒ x ≤ y.

Similar statements hold for the affine Grassmannian, Grass = G(F )/G(O).
Now the G(O)-orbits Qλ := G(O)λG(O)/G(O) are given (using the Cartan de-
composition) by the B-dominant coweights X+(T ):

X+(T ) ↔ G(O)\G(F )/G(O).

By definition, λ is B-dominant if 〈α, λ〉 ≥ 0 for all B-positive roots α. Here 〈·, ·〉 :
X∗(T )×X∗(T ) → Z is the canonical duality pairing.

The closure relations in Grass are given by the partial order on B-dominant
coweights λ and µ:

Qλ ⊂ Qµ ⇐⇒ λ * µ,

where λ ≺ µ means that µ− λ is a sum of B-positive coroots.
Unless otherwise stated, a dominant coweight λ ∈ X∗(T ) will always mean one

that is B-dominant.
For the group G = GLn or GSp2n, there is a Zp-ind-scheme M which is a

deformation of the affine Grassmannian GrassQp
to the affine flag variety F lFp

for the underlying p-adic group G (see [HN1], and Remark 4.1). A very similar

1This choice of base alcove results from our convention of embedding X∗(T ) ↪→ G(F ) by the

rule λ �→ λ(π); to see this, consider how vectors spanning the standard periodic lattice chain in
§3 are identified with vectors in X∗(T ) ⊗ R.
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deformation FlX over a smooth curve X (due to Beilinson) exists for any group G
in the function field setting, and has been extensively studied by Gaitsgory [Ga].
For any dominant coweight λ ∈ X+(T ), the symbol Mλ will always denote the
Zp-scheme which is the scheme-theoretic closure in M of Qλ ⊂ GrassQp

.

2.3. Duality notation. If A is any abelian scheme over a scheme S, we denote
the dual abelian scheme by Â. The existence of Â over an arbitrary base is a delicate
matter; see [CF], §I.1.

If M is a module over a ring R, we denote the dual module by M∨= HomR(M,R).
Similar notation applies to quasi-coherent OS-modules over a scheme S.

If G is a connected reductive group over a local field F , then the Langlands
dual (over C or Q�) will be denoted Ĝ. The Langlands L-group is the semi-direct
product LG = Ĝ � WF , where WF is the Weil-group of F .

2.4. Miscellaneous notation. We will use the following abbreviation for ele-
ments of Rn (here R can be any set): let a1, . . . , ar be a sequence of positive integers
whose sum is n. A vector of the form (x1, . . . , x1, x2, . . . , x2, . . . , xr, . . . , xr), where
for i = 1, . . . , r, the element xi is repeated ai times, will be denoted by

(xa1
1 , xa2

2 , . . . , xar
r ).

We will denote by A the adeles of Q, by Af the finite adeles, and by Ap
f the

finite adeles away from p (with the exception of two instances, where A denotes
affine space!).

3. Iwahori and parahoric subgroups

3.1. Stabilizers of periodic lattice chains. We discuss the definitions for
the groups GLn and GSp2n.

3.1.1. The linear case. For each i ∈ {1, . . . , n}, let ei denote the i-th standard
vector (0i−1, 1, 0n−i) in Fn, and let Λi ⊂ Fn denote the free O-module with basis
π−1e1, . . . , π

−1ei, ei+1, . . . , en. We consider the diagram

Λ• : Λ0 −→ Λ1 −→ · · · −→ Λn−1 −→ π−1Λ0,

where the morphisms are inclusions. The lattice chains πnΛ• (n ∈ Z) fit together
to form an infinite complete lattice chain Λi, (i ∈ Z). If we identify each Λi with
On, then the diagram above becomes

On
m1 �� On

m2 �� · · · mn−1 �� On
mn �� On,

where mi is the morphism given by the diagonal matrix

mi = diag(1, . . . , π, . . . , 1),

the element π appearing in the ith place. We define the (standard) Iwahori subgroup
I of GLn(F ) by

I =
⋂
i

StabGLn(F ) (Λi).

Similarly, for any non-empty subset J ⊂ {0, 1, . . . , n− 1}, we define the parahoric
subgroup of GLn(F ) corresponding to the subset J by

PJ =
⋂
i∈J

StabGLn(F ) (Λi).
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Note that PJ is a compact open subgroup of GLn(F ), and that P{0} = GLn(O) is
a hyperspecial maximal compact subgroup, in the terminology of Bruhat-Tits, cf.
[T].

3.1.2. The symplectic case. The definitions for the group of symplectic simili-
tudes GSp2n are similar. We define this group using the alternating matrix

Ĩ =
[

0 Ĩn

−Ĩn 0

]
,

where Ĩn denotes the n× n matrix with 1 along the anti-diagonal and 0 elsewhere.
Let (x, y) := xt Ĩy denote the corresponding alternating pairing on F 2n. For an
O-lattice Λ ⊂ F 2n, we define Λ⊥ := {x ∈ F 2n | (x, y) ∈ O for all y ∈ Λ}. The
lattice Λ0 is self-dual (i.e., Λ⊥

0 = Λ0). Consider the infinite lattice chain in F 2n

· · · −→ Λ−2n = πΛ0 −→ · · · −→ Λ−1 −→ Λ0 −→ · · · −→ Λ2n = π−1Λ0 −→ · · ·

We have Λ⊥
i = Λ−i for all i ∈ Z. Now we define the (standard) Iwahori subgroup I

of GSp2n(F ) by

I =
⋂
i

StabGSp2n(F ) (Λi).

For any non-empty subset J ⊂ {−n, . . . ,−1, 0, 1, . . . , n} such that i ∈ J ⇔ −i ∈ J ,
we define the parahoric subgroup corresponding to J by

PJ =
⋂
i∈J

StabGSp2n(F ) (Λi).

3.2. Bruhat-Tits group schemes. In Bruhat-Tits theory, parahoric groups
are defined as the groups G0

∆J
(O), where G0

∆J
is the neutral component of a group

scheme G∆J
, defined and smooth over O, which has generic fiber the F -group G,

and whose O-points are the subgroup of G(F ) fixing the facet ∆J of the Bruhat-
Tits building corresponding to the set J ; see [BT2], p. 356. By [T], 3.4.1 (see also
[BT2], 1.7) we can characterize the group scheme G∆J

as follows: it is the unique
O-group scheme P satisfying the following three properties:

(1) P is smooth and affine over O;
(2) The generic fiber PF is GF ;
(3) For any unramified extension F ′ of F , letting OF ′ ⊂ F ′ denote ring of

integers, the group P(OF ′) ⊂ G(F ′) is the subgroup of elements which fix
the facet ∆J in the Bruhat-Tits building of GF ′ .

Let us show how automorphism groups of periodic lattice chains Λ• give a
concrete realization of the Bruhat-Tits parahoric group schemes, in the GLn and
GSp2n cases. We will discuss the Iwahori subgroups of GLn in some detail, leaving
for the reader the obvious generalizations to parahoric subgroups of GLn (and
GSp2n).

For any O-algebra R, we may consider the diagram Λ•,R = Λ• ⊗O R, and
we may define the O-group scheme Aut whose R-points are the isomorphisms of
the diagram Λ•,R. More precisely, an element of Aut(R) is an n-tuple of R-linear
automorphisms

(g0, . . . , gn−1) ∈ Aut(Λ0,R)× · · · ×Aut(Λn−1,R)
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such that the following diagram commutes

Λ0,R ��

g0

��

· · · �� Λn−1,R ��

gn−1

��

Λn,R

g0

��
Λ0,R �� · · · �� Λn−1,R �� Λn,R.

The group functor Aut is obviously represented by an affine group scheme, also
denoted Aut. Further, it is not hard to see that Aut is formally smooth, hence
smooth, over O. To show this, one has to check the lifting criterion for formal
smoothness: if R is an O-algebra containing a nilpotent ideal J ⊂ R, then any
automorphism of Λ• ⊗O R/J can be lifted to an automorphism of Λ• ⊗O R. This
is proved on page 135 of [RZ]. Thus Aut satisfies condition (1) above.

Alcoves in the Bruhat-Tits building for GLn over F can be described as com-
plete periodic O-lattice chains in Fn

· · · −→ L0 −→ L1 −→ · · · −→ Ln−1 −→ Ln = π−1L0 −→ · · ·
where the arrows are inclusions. We can regard Λ• as the base alcove in this build-
ing. It is clear that since π is invertible over the generic fiber F , the automorphism
g0 determines the other gi’s over F and so AutF = GLn. By construction we have
Aut(O) = StabGLn(F ) (Λ•). This is unchanged if we replace F by an unramified
extension F ′. It follows that Aut satisfies conditions (2) and (3) above. Thus, by
uniqueness, Aut = G∆J

for J = {0, . . . , n− 1}.
Further, one can check that the special fiber Autk is an extension of the Borel

subgroup Bk by a connected unipotent group over k; hence the special fiber is
connected. It follows that Aut is a connected group scheme (cf. [BT2], 1.2.12).
So in this case Aut = G∆J

= G0
∆J

. We conclude that Aut(O) is the Bruhat-Tits
Iwahori subgroup fixing the base alcove Λ•.

Exercise 3.1. 1) Check the lifting criterion which shows Aut is formally
smooth directly for the case n = 2, by explicit calculations with 2× 2 matrices.
2) By identifying Aut(O) with its image in GLn(F ) under the inclusion g• �→
g0, show that the Iwahori subgroup is the preimage of B(k) under the canonical
surjection GLn(O) → GLn(k).
3) Prove that Autk → Aut(Λ0,k), g• �→ g0, has image Bk, and kernel a connected
unipotent group.

4. Local models

Given a certain triple (G,µ,Kp) consisting of a Zp-group G, a minuscule
coweight µ for G, and a parahoric subgroup Kp ⊂ G(Qp), one may construct a
projective Zp-scheme Mloc which (étale locally) models the singularities found in
the special fiber of a certain Shimura variety with parahoric-level structure at p.
The advantage of Mloc is that it is defined in terms of linear algebra and is there-
fore easier to study than the Shimura variety itself. These schemes are called “local
models”, or sometimes “Rapoport-Zink local models”; the most general treatment
is given in [RZ], but in special cases they were also investigated in [DP] and [deJ].

In this section we recall the definitions of local models associated to GLn and
GSp2n. For simplicity, we limit the discussion to models for Iwahori-level struc-
ture. In each case, the local model is naturally associated to a dominant minuscule
coweight µ, which we shall always mention. In fact, it turns out that if the Shimura
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data give rise to (G,µ), then the Rapoport-Zink local model Mloc (for Iwahori-level
structure) can be identified with the space M−w0µ mentioned in §2. See Remark
4.1 below.

4.1. Linear case. We use the notation Λ• from section 3 to denote the “stan-
dard” lattice chain over O = Zp here.

Fix an integer d with 1 ≤ d ≤ n − 1. We define the scheme Mloc by defining
its R-points for any Zp-algebra R as the set of isomorphism classes of commutative
diagrams

Λ0,R �� · · · �� Λn−1,R �� Λn,R
p �� Λ0,R

F0

��

�� · · · �� Fn−1

��

�� Fn

��

p �� F0

��

where the vertical arrows are inclusions, and each Fi is an R-submodule of Λi,R

which is Zariski-locally on R a direct factor of corank d. It turns out that this is
identical to the space M−w0µ of §2, where µ = (0n−d, (−1)d). It is clear that Mloc

is represented by a closed subscheme of a product of Grassmannians over Zp, hence
it is a projective Zp-scheme. One can also formulate the moduli problem using
quotients of rank d instead of submodules of corank d.

Another way to formulate the same moduli problem which is sometimes useful
(see [HN1]) is given by adding an indeterminate t to the story (following a sug-
gestion of G. Laumon). We replace the “standard” lattice chain term Λi,R with
Vi,R := α−iR[t]n, where α is the n× n matrix

0 1
. . . . . .

0 1
t + p 0

 ∈ GLn(R[t, t−1, (t + p)−1]).

One can identify Mloc(R) with the set of chains

L• = (L0 ⊂ L1 ⊂ · · · ⊂ Ln = (t + p)−1L0)

of R[t]-submodules of R[t, t−1, (t + p)−1]n satisfying the following properties
(1) for all i = 0, . . . , n− 1, we have tVi,R ⊂ Li ⊂ Vi,R;
(2) as an R-module, Li/tVi,R is locally a direct factor of Vi,R/tVi,R of corank

d.

Remark 4.1. With the second definition, it is easy to see that the geometric
generic fiber Mloc

Qp
is contained in the affine Grassmannian GLn(Qp((t)))/GLn(Qp[[t]]),

and the geometric special fiber Mloc
Fp

is contained in the affine flag variety

GLn(Fp((t)))/IFp
, where IFp

:= Aut(Fp[[t]]) is the Iwahori subgroup of GLn(Fp[[t]])
corresponding to the upper triangular Borel subgroup B ⊂ GLn. Moreover, it is
possible to view Mloc as a piece of a Zp-ind-scheme M which forms a deformation
of the affine Grassmannian to the affine flag variety over the base Spec(Zp), in anal-
ogy with Beilinson’s deformation FlX over a smooth Fp-curve X in the function
field case (cf. [Ga], [HN1]). In fact, letting e0 denote the base point in the affine
Grassmannian GLn(Qp((t)))/GLn(Qp[[t]]), and for λ ∈ X+(T ), letting Qλ denote
the GLn(Qp[[t]])-orbit of the point λ(t)e0, it turns out that Mloc coincides with
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the scheme-theoretic closure M−w0µ of Q−w0µ taken in the model M . A similar
statement holds in the symplectic case.

The identification Mloc = M−w0µ is explained in §8. It is a consequence of the
determinant condition and the “homology” definition of our local models; also the
flatness of Mloc (see §7) plays a role.

4.2. The symplectic case. Recall that for our group GSp2n = GSp(V, (·, ·)),
we have an identification of X∗(T ) with the lattice {(a1, . . . , an, bn, . . . , b1) ∈
Z2n | ∃ c ∈ Z, ai + bi = c, ∀i}. The Shimura coweight that arises here has the form
µ = (0n, (−1)n).

For the group GSp2n, the symbol Λ• now denotes the self-dual Zp-lattice chain
in Q2n

p , discussed in section 3 in the context of GSp2n. Let (·, ·) denote the alter-
nating pairing on Z2n

p discussed in that section, and let the dual Λ⊥ of a lattice
Λ be defined using (·, ·). As above, there are (at least) two equivalent ways to de-
fine Mloc(R) for a Zp-algebra R. We define Mloc(R) to be the set of isomorphism
classes of diagrams

Λ0,R �� · · · �� Λn−1,R �� Λn,R

F0

��

�� · · · �� Fn−1

��

�� Fn

��

where the vertical arrows are inclusions of R-submodules with the following prop-
erties:

(1) for i = 0, . . . , n, Zariski-locally on R the submodule Fi is a direct factor
of Λi,R of corank n;

(2) F0 is isotropic with respect to (·, ·) and Fn is isotropic with respect to
p(·, ·).

As in the linear case, this can be described in a way more transparently con-
nected to affine flag varieties. In this case, Vi,R has the same meaning as in the
linear case, except that the ambient space is now R[t, t−1, (t + p)−1]2n. We may
describe Mloc(R) as the set of chains

L• = (L0 ⊂ L1 ⊂ · · · ⊂ Ln)

of R[t]-submodules of R[t, t−1, (t + p)−1]2n satisfying the following properties
(1) for i = 0, 1, . . . , n, tVi,R ⊂ Li ⊂ Vi,R;
(2) as R-modules, Li/tVi,R is locally a direct factor of Vi,R/tVi,R of corank n;
(3) L0 is self-dual with respect to t−1(·, ·), and Ln is self-dual with respect to

t−1(t + p)(·, ·).

4.3. Generic and special fibers. In the linear case with µ = (0n−d, (−1)d),
the generic fiber of M−w0µ is the Grassmannian Gr(d, n) of d-planes in Qn

p . In the
symplectic case with µ = (0n, (−1)n), the generic fiber of M−w0µ is the Grassman-
nian of isotropic n-planes in Q2n

p with respect to the alternating pairing (·, ·).
In each case, the special fiber is a union of finitely many Iwahori-orbits IwI/I

in the affine flag variety, indexed by elements w in the extended affine Weyl group
W̃ for GLn (resp. GSp2n) ranging over the so-called −w0µ-admissible subset
Adm(−w0µ), [KR]. Let λ ∈ X+(T ). Then by definition

Adm(λ) = {w ∈ W̃ | ∃ ν ∈Wλ, such that w ≤ tν}.
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Here, Wλ is the set of conjugates of λ under the action of the finite Weyl group
W0, and tν ∈ W̃ is the translation element corresponding to ν, and ≤ denotes the
Bruhat order on W̃ . Actually (see §8.1), the set that arises naturally from the
moduli problem is the −w0µ-permissible subset Perm(−w0µ) ⊂ W̃ from [KR]. Let
us recall the definition of this set, following loc. cit. Let λ ∈ X+(T ) and suppose
tλ ∈ Waffτ , for τ ∈ Ω. Then Perm(λ) consists of the elements x ∈Waffτ such that
x(a)− a ∈ Conv(λ) for every vertex a ∈ a. Here Conv(λ) denotes the convex hull
of Wλ in X∗(T )⊗ R.

The strata in the special fiber of Mloc = M−w0µ are naturally indexed by
the set Perm(−w0µ), which agrees with Adm(−w0µ) by the following non-trivial
combinatorial theorem due to Kottwitz and Rapoport.

Theorem 4.2 ([KR]; see also [HN2]). For every minuscule coweight λ of
either GLn or GSp2n, we have the equality

Perm(λ) = Adm(λ).

Using the well-known correspondence between elements in the affine Weyl group
and the set of alcoves in the standard apartment of the Bruhat-Tits building, one
can “draw” pictures of Adm(µ) for low-rank groups. Figures 1 and 2 depict this
set for G = GL3, µ = (−1, 0, 0), and G = GSp4, µ = (−1,−1, 0, 0) 2. Actually,
we draw the image of Adm(µ) in the apartment for PGL3 (resp. PGSp4); the base
alcove is labeled by τ .

4.4. Computing the singularities in the special fiber of Mloc. In certain
cases, the singularities in Mloc

F̄p
can be analyzed directly by writing down equations.

As the simplest example of how this is done, we analyze the local model for GL2,
µ = (0,−1). For a Zp-algebra R, we are looking at the set of pairs (F0,F1) of
locally free rank 1 R-submodules of R2 such that the following diagram commutes

R⊕R

2

6

6

4

p 0
0 1

3

7

7

5

�� R⊕R

2

6

6

4

1 0
0 p

3

7

7

5

�� R⊕R

F0

��

�� F1

��

�� F0

��

Obviously this functor is represented by a certain closed subscheme of P1
Zp
× P1

Zp
.

Locally around a fixed point (F0,F1) ∈ P1(R)× P1(R) we choose coordinates such
that F0 is represented by the homogeneous column vector [1 : x]t and F1 by the
vector [y : 1]t, for x, y ∈ R. We see that (F0,F1) ∈ Mloc(R) if and only if

xy = p,

so Mloc is locally the same as Spec(Zp[X,Y ]/(XY − p), the usual deformation of
A1

Qp
to a union of two A1

Fp
’s which intersect transversally at a point. Indeed, Mloc

is globally this kind of deformation:
• In the generic fiber, the matrices are invertible and so F0 uniquely deter-

mines F1; thus Mloc
Qp

∼= P1
Qp

;

2Note that in Figure 2 there is an alcove of length one contained in the Bruhat-closure of

all four distinct translations. This already tells us something about the singularities: the special
fiber of the Siegel variety for GSp4 is not a union of divisors with normal crossings; see §8.
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Figure 1. The admissible alcoves Adm(µ) for GL3, µ =
(−1, 0, 0). The base alcove is labeled by τ .

• In the special fiber, p = 0 and one can check that Mloc
Fp

is the union of the
closures of two Iwahori-orbits in the affine flag variety GL2(Fp((t)))/IFp

,
each of dimension 1, which meet in a point. Thus Mloc

Fp
is the union of

two P1
Fp

’s meeting in a point.

We refer to the work of U. Görtz for many more complicated calculations of
this kind: [Go1], [Go2], [Go3], [Go4].

5. Some PEL Shimura varieties with parahoric level structure at p

5.1. PEL-type data. Given a Shimura datum (G, {h},K) one can construct
a Shimura variety Sh(G, h)K which has a canonical model over the reflex field E, a
number field determined by the datum. We write G for the p-adic group GQp

. Let
us assume that the compact open subgroup K ⊂ G(Af ) is of the form K = KpKp,
where Kp ⊂ G(Ap

f ) is a sufficiently small compact open subgroup, and Kp ⊂ G(Qp)
is a parahoric subgroup.

Let us fix once and for all embeddings Q ↪→ C, and Q ↪→ Qp. We denote by p

the corresponding place of E over p and by E = Ep the completion of E at p.
If the Shimura datum comes from PEL-type data, then it is possible to define

a moduli problem (in terms of chains of abelian varieties with additional structure)
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Figure 2. The admissible alcoves Adm(µ) for GSp4, µ = (−1,−1, 0, 0).

over the ring OE . This moduli problem is representable by a quasi-projective OE-
scheme whose generic fiber is the base-change to E of the initial Shimura variety
Sh(G, h)K (or at least a finite union of Shimura varieties, one of which is the
canonical model Sh(G, h)K). This is done in great generality in Chapter 6 of [RZ].
Our aim in this section is only to make somewhat more explicit the definitions in
loc. cit., in two very special cases attached to the linear and symplectic groups.

First, let us recall briefly PEL-type data. Let B denote a finite-dimensional
semi-simple Q-algebra with positive involution ι. Let V �= 0 be a finitely-generated
left B-module, and let (·, ·) be a non-degenerate alternating form V × V → Q on
the underlying Q-vector space, such that (bv, w) = (v, bιw), for b ∈ B, v, w ∈ V .
The form (·, ·) determines a “transpose” involution on End(V ), denoted by ∗ (so
viewing the left-action of b as an element of End(V ), we have bι = b∗). We denote
by G the Q-group whose points in a Q-algebra R are

{g ∈ GLB⊗R(V ⊗R) | g∗g = c(g) ∈ R×}.

We assume G is a connected reductive group; this means we are excluding the
orthogonal case. Consider the R-algebra C := EndB(V ) ⊗ R. We let h0 : C → C
denote an R-algebra homomorphism satisfying h0(z) = h0(z)∗, for z ∈ C. We fix
a choice of i =

√
−1 in C once and for all, and we assume the symmetric bilinear

form (· , h0(i) ·) : VR × VR → R is positive definite. Let h denote the inverse of the
restriction of h0 to C×. Then h induces an algebraic homomorphism

h : C× → G(R)
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of real groups which defines on VR a Hodge structure of type (1, 0) + (0, 1) (in the
terminology of [Del2], section 1) and which satisfies the usual Riemann conditions
with respect to (·, ·) (see [Ko92], Lemma 4.1). For any choice of (sufficiently
small) compact open subgroup K, the data (G, h,K) determine a (smooth) Shimura
variety over a reflex field E; cf. [Del].

We recall that h gives rise to a minuscule coweight

µ := µh : Gm,C → GC

as follows: the complexification of the real group C× is the torus C× × C×, the
factors being indexed by the two R-algebra automorphisms of C; we assume the first
factor corresponds to the identity and the second to complex conjugation. Then
we define

µ(z) := hC(z, 1).

By definition of Shimura data, the homomorphism h : C× → GR is only specified up
to G(R)-conjugation, and therefore µ is only well-defined up to G(C)-conjugation.
However, this conjugacy class is at least defined over the reflex field E (in fact we
define E as the field of definition of the conjugacy class of µ). Via our choice of
field embeddings C ←↩ Q ↪→ Qp, we get a well-defined conjugacy class of minuscule
coweights

µ : Gm,Qp
→ GQp

,

which is defined over E.
The argument of [Ko84], Lemma (1.1.3) shows that E is contained in any

subfield of Qp which splits G. Therefore, when G is split over Qp (the case of
interest in this report), it follows that E = Qp and the conjugacy class of µ contains
a Qp-rational and B-dominant element, usually denoted also by the symbol µ. It
is this same µ which was mentioned in the definitions of local models in section 4.

For use in the definition to follow, we decompose the BC-module VC as VC =
V1 ⊕ V2, where h0(z) acts by z on V1 and by z on V2, for z ∈ C. Our conventions
imply that µ(z) acts by z−1 on V1 and by 1 on V2 (z ∈ C×). We choose E′ ⊂ Qp a
finite extension field E′ ⊃ E over which this decomposition is defined:

VE′ = V1 ⊕ V2.

(We are implicitly using the diagram C ←↩ Q ↪→ Qp to make sense of this.)
Recall that we are interested in defining an OE-integral model for Sh(G, h)K in

the case where Kp ⊂ G(Qp) is a parahoric (more specifically, an Iwahori) subgroup.
To define an integral model over OE , we need to specify certain additional

data. We suppose OB is a Z(p)-order in B whose p-adic completion OB ⊗ Zp is
a maximal order in BQp

, stable under the involution ι. Using the terminology of
[RZ], 6.2, we assume we are given a self-dual multichain L of OB ⊗ Zp-lattices in
VQp

(the notion of multichain L is a generalization of the lattice chain Λ• appearing
in section 4; specifying L is equivalent to specifying a parahoric subgroup, namely
Kp := Aut(L), of G(Qp)). We can then give the definition of a model ShKp that
depends on the above data and the choice of a small compact open subgroup Kp 3.

3In the sequel, we sometimes drop the subscript Kp on ShKp , or replace it with the subscript
Kp, depending on whether Kp, or Kp (or both) is understood.
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Definition 5.1. A point of the functor ShKp with values in the OE-scheme S
is given by the following set of data up to isomorphism 4.

(1) An L-set of abelian S-schemes A = {AΛ}, Λ ∈ L, compatibly endowed
with an action of OB :

i : OB ⊗ Z(p) → End(A)⊗ Z(p);

(2) A Q-homogeneous principal polarization λ of the L-set A;
(3) A Kp-level structure

η̄ : V ⊗ Ap
f
∼= H1(A,Ap

f ) mod Kp

that respects the bilinear forms on both sides up to a scalar in (Ap
f )×, and

commutes with the B = OB ⊗Q-actions.

We impose the condition that under

i : OB ⊗ Z(p) → End(A)⊗ Z(p),

we have i(bι) = λ−1 ◦ (i(b))∨ ◦ λ; in other words, i intertwines ι and the Rosati
involution on End(A)⊗Z(p) determined by λ. In addition, we impose the following
determinant condition: for each b ∈ OB and Λ ∈ L:

detOS
(b,Lie(AΛ)) = detE′(b, V1).

We will not explain all the notions entering this definition; we refer to loc.
cit., Chapter 6 as well as [Ko92], section 5, for complete details. However, in the
simple examples we make explicit below, these notions will be made concrete and
their importance will be highlighted. For example, an L-set of abelian varieties
{AΛ} comes with a family of “periodicity isomorphisms”

θa : Aa
Λ → AaΛ,

see [RZ], Def. 6.5, and we will describe these explicitly in the examples to follow.
Note that one can see from this definition why some of the conditions on PEL

data are imposed. For example, since the Rosati involution is always positive (see
[Mu], section 21), we see that the involution ι on B must be positive for the moduli
problem to be non-empty.

5.2. Some “fake” unitary Shimura varieties. This section concerns the
so-called “simple” or “fake unitary” Shimura varieties investigated by Kottwitz in
[Ko92b]. They are indeed “simple” in the sense that they are compact Shimura
varieties for which there are no problems due to endoscopy (see loc. cit.).

Kottwitz made assumptions ensuring that the local group GQp
be unramified,

and that the level structure at p be given by a hyperspecial maximal compact
subgroup. Here we will work in a situation where GQp

is split, but we only impose
parahoric-level structure at p. For simplicity, we explain only the case F0 = Q
(notation of loc. cit.).

4We say {AΛ} is isomorphic to {A′
Λ} if there is a compatible family of prime-to-p isogenies

AΛ → A′
Λ which preserve all the structures.
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5.2.1. The group-theoretic set-up. Let F be an imaginary quadratic extension
of Q, and let (D, ∗) be a division algebra with center F , of dimension n2 over
F , together with an involution ∗ which induces on F the non-trivial element of
Gal(F/Q). Let G be the Q-group whose points in a commutative Q-algebra R are

{x ∈ D ⊗Q R | x∗x ∈ R×}.
The map x �→ x∗x is a homomorphism of Q-groups G → Gm whose kernel G0 is
an inner form of a unitary group over Q associated to F/Q. Let us suppose we are
given an R-algebra homomorphism

h0 : C → D ⊗Q R

such that h0(z)∗ = h0(z) and the involution x �→ h0(i)−1x∗h0(i) is positive.
Given the data (D, ∗, h0) above, we want to explain how to find the PEL-data

(B, ι, V, (·, ·), h0) used in the definition of the scheme ShKp .
Let B = Dopp and let V = D be viewed as a left B-module, free of rank

1, using right multiplications. Thus we can identify C := EndB(V ) with D (left
multiplications). For h0 : C → CR we use the homomorphism h0 : C → D⊗Q R we
are given.

Next, one can show that there exist elements ξ ∈ D× such that ξ∗ = −ξ and
the involution x �→ ξx∗ξ−1 is positive. To see this, note that the Skolem-Noether
theorem implies that the involutions of the second type on D are precisely the maps
of the form x �→ bx∗b−1, for b ∈ D× such that b(b∗)−1 lies in the center F . Since
positive involutions of the second kind exist (see [Mu], p. 201-2), for some such b
the involution x �→ bx∗b−1 is positive. We have NF/Q(b(b∗)−1) = 1, so by Hilbert’s
Theorem 90, we may alter any such b by an element in F× so that b∗ = b. There
exists ε ∈ F× such that ε∗ = −ε. We then put ξ = εb.

We define the positive involution ι by xι := ξx∗ξ−1, for x ∈ B = Dopp.
Now we define the non-degenerate alternating pairing (·, ·) : D ×D → Q by

(x, y) = trD/Q(xξy∗).

It is clear that (bx, y) = (x, bιy) for any b ∈ B = Dopp, remembering that the left
action of b is right multiplication by b. We also have (h0(z)x, y) = (x, h0(z) y),
since h0(z) ∈ D acts by left multiplication on D.

Finally, we claim that (· , h0(i) ·) is always positive or negative definite; thus we
can always arrange for it to be positive definite by replacing ξ with −ξ if necessary.
To prove the definiteness, choose an isomorphism

D ⊗Q R →̃ Mn(C)

such that the positive involution x �→ xι goes over to the standard positive invo-
lution X �→ X

t
on Mn(C). Let H ∈ Mn(C) be the image of ξh0(i)−1 under this

isomorphism, so that the symmetric pairing 〈x, y〉 = (x , h0(i)y) goes over to the
pairing

〈X,Y 〉 = trMn(C)/R(X Y
t
H).

We conclude by invoking the following exercise for the reader.

Exercise 5.2. The matrix H is Hermitian and either positive or negative
definite. If positive definite, we then have tr(XX

t
H) > 0 whenever X �= 0.

(Hint: use the argument of [Mu], p. 200.)
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5.2.2. The minuscule coweight µ. How is the minuscule coweight µ described
in terms of the above data? Recall our decomposition

DC = V1 ⊕ V2.

The homomorphism h0 makes DC into a C⊗R C-module. Of course

C⊗R C →̃ C× C

z1 ⊗ z2 �→ (z1z2, z1z2),

which induces the above decomposition of DC (h0(z1⊗ 1) acts by z1 on V1 and by
z1 on V2).

The factors V1, V2 are stable under right multiplications of

DC = D ⊗F,ν C×D ⊗F,ν∗ C,

where ν, ν∗ : F ↪→ C are the two embeddings. (We may assume our fixed choice
Q ↪→ C extends ν.) Also h0(z⊗1) is the endomorphism given by left multiplication
by a certain element of DC. We can choose an isomorphism

D ⊗F,ν C×D ⊗F,ν∗ C ∼= Mn(C)×Mn(C)

such that h0(z ⊗ 1) can be written explicitly as

h0(z ⊗ 1) = diag(zn−d, zd)× diag(zn−d, zd),

for some integer d, 0 ≤ d ≤ n. (One can then identify V1 resp. V2 as the span of
certain columns of the two matrices.) We know that µ(z) = hC(z, 1) acts by z−1

on V1 and by 1 on V2. Hence we can identify µ(z) as

µ(z) = diag(1n−d, (z−1)d)× diag((z−1)n−d, 1d).

We may label this by (0n−d, (−1)d) ∈ Zn, via the usual identification applied to
the first factor.

Here is another way to interpret the number d. Let W (resp. W ∗) be the
(unique up to isomorphism, n-dimensional) simple right-module for D⊗F,ν C (resp.
D ⊗F,ν∗ C). Then as right DC-modules we have

V1 = W d ⊕ (W ∗)n−d, resp. V2 = Wn−d ⊕ (W ∗)d.

Finally, let us remark that if we choose the identification of D⊗Q R = D⊗F,ν C
with Mn(C) in such a way that the positive involution x �→ h0(i)−1x∗h0(i) goes
over to X �→ X

t
, then we get an isomorphism

G(R) ∼= GU(d, n− d).

(See also [Ko92b], section 1.)
In applications, it is sometimes necessary to prescribe the value of d ahead of

time (with the additional constraint that 1 ≤ d ≤ n − 1). However, it can be a
delicate matter to arrange things so that a prescribed value of d is achieved. To see
how this is done for the case of d = 1, see [HT], Lemma I.7.1.



SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE 599

5.2.3. Assumptions on p and integral data. We first make some assumptions
on the prime p 5, and then we specify the integral data at p.
First assumption on p: The prime p splits in F as a product of distinct prime ideals

(p) = pp
∗,

where p is the prime determined by our fixed choice of embedding Q ↪→ Qp, and p∗

is its image under the non-trivial element of Gal(F/Q).
Under this assumption Fp = Fp∗ = Qp. Further the algebra DQp

is a product

D ⊗Qp = Dp ×Dp∗

where each factor is a central simple Qp-algebra. We have Dp →̃ Dopp
p∗ via ∗.

Therefore for any Qp-algebra R we can identify the group G(R) with the group

{(x1, x2) ∈ (Dp ⊗R)× × (Dp∗ ⊗R)× | x1 = c(x∗
2)

−1, for some c ∈ R×}.
Therefore there is an isomorphism of Qp-groups G ∼= D×

p ×Gm given by (x1, x2) �→
(x1, c).
Second assumption on p: The algebra DQp

splits: Dp
∼= Mn(Qp).

In this case the involution ∗ becomes isomorphic to the involution on Mn(Qp)×
Mn(Qp) given by

∗ : (X,Y ) �→ (Y t, Xt).

Our assumptions imply that G = GLn × Gm, a split p-adic group (and thus
E := Ep = Qp). Why is this helpful? As we shall see, this allows us to use the
local models for GLn described in section 4 to describe the reduction modulo p of
the Shimura variety ShKp , see §6.3.3. Also, we can use the description in [HN1]
of nearby cycles on such models to compute the semi-simple local zeta function at
p of ShKp , see [HN3] and Theorem 11.7. One expects that this is still possible in
the general case (where D×

p is not a split group), but there the crucial facts about
nearby cycles on the corresponding local models are not yet established.
Integral data. We need to specify a Z(p)-order OB ⊂ B and a self-dual multichain
L = {Λ} of OB⊗Zp-lattices. To give a multichain we need to specify first a (partial)
Zp-lattice chain in VQp

= Dp×Dp∗ . We do this one factor at a time. First, we may
fix an isomorphism

(5.2.1) DQp
= Dp ×Dp∗ ∼= Mn(Qp)×Mn(Qp)

such that the involution x �→ xι = ξx∗ξ−1 goes over to (X,Y ) �→ (Y t, Xt). So ξ
gets identified with an element of the form (χt,−χ), for χ ∈ GLn(Qp) 6, and our
pairing (x, y) = trD/Q(xξy∗) = trD/Q(xyιξ) goes over to

〈(X1, X2), (Y1, Y2)〉 = trDQp/Qp
(X1Y

t
2χ

t,−X2Y
t
1χ).

Next we define a (partial) Zp-lattice chain Λ∗
−n ⊂ · · · ⊂ Λ∗

0 = p−1Λ∗
−n in Dp∗

by setting
Λ∗
−i = χ−1 diag(pi, 1n−i)Mn(Zp),

5It would make sense to include in our discussion another case, where p remains inert in
F , and where the group GQp is a quasi-split unitary group associated to the extension Fp/Qp.

However, we shall postpone discussion of this case to a future occasion.
6For use in §11, note that if we multiply ξ by any integral power of p, we change neither

its properties nor the isomorphism class of the symplectic space V, (·, ·). Hence we may assume
χ−1 ∈ GLn(Qp) ∩ Mn(Zp).
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for i = 0, 1, . . . , n. We can then extend this by periodicity to define Λ∗
i for all i ∈ Z.

Similarly, we define the Zp-lattice chain Λ0 ⊂ · · · ⊂ Λn = p−1Λ0 in Dp by setting

Λi = diag((p−1)i, 1n−i)Mn(Zp),

for i = 0, 1, · · · , n (and then extending by periodicity to define for all i). We note
that

(Λi ⊕ Λ∗
i )

⊥ = Λ−i ⊕ Λ∗
−i,

where ⊥ is defined in the usual way using the pairing (·, ·). Setting OB ⊂ B to
be the unique maximal Z(p)-order such that under our fixed identification DQp

∼=
Mn(Qp)×Mn(Qp), we have

OB ⊗ Zp →̃ Mopp
n (Zp)×Mopp

n (Zp),

one can now check that L := {Λ⊕Λ∗} is a self-dual multichain of OB⊗Zp-lattices.
It is clear that (OB ⊗ Zp)ι = OB ⊗ Zp.

5.2.4. The moduli problem. We have now constructed all the data that enters
into the definition of ShKp . By the determinant condition, the abelian varieties
have (relative) dimension dim(V1) = n2. An S-point in our moduli space is a chain
of abelian schemes over S of relative dimension n2, equipped with OB⊗Z(p)-actions,
indexed by L (we set Ai = AΛi⊕Λ∗

i
for all i ∈ Z)

· · · α �� A0
α �� A1

α �� · · · α �� An
α �� · · ·

such that
• each α is an isogeny of height 2n (i.e., of degree p2n);
• there is a “periodicity isomorphism” θp : Ai+n → Ai such that for each i

the composition

Ai
α �� Ai+1

α �� · · · α �� Ai+n
θp �� Ai

is multiplication by p : Ai → Ai;
• the morphisms α commute with the OB ⊗ Z(p)-actions;
• the determinant condition holds: for every i and b ∈ OB ,

detOS
(b,Lie(Ai)) = detE′(b, V1).

(See [RZ], Def. 6.5.)
In addition, we have a principal polarization and a Kp-level structure (see [RZ],

Def. 6.9). Giving a polarization is equivalent to giving a commutative diagram
whose vertical arrows are isogenies

· · · α �� A−1
α ��

��

A0
α ��

��

A1
α ��

��

· · · α �� An
α ��

��

· · ·

· · · α∨
�� Â1

α∨
�� Â0

α∨
�� Â−1

α∨
�� · · · α∨

�� Â−n
α∨

�� · · ·

such that for each i the quasi-isogeny

Ai → Â−i → Âi

is a rational multiple of a polarization of Ai. If up to a Q-multiple the vertical
arrows are all isomorphisms, we say the polarization is principal.

The fact that EndB(V ) is a division algebra implies that the moduli space
ShKp is proper over OE (Kottwitz verified the valuative criterion of properness in
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the case of maximal hyperspecial level structure in [Ko92] p. 392, using the theory
of Néron models; the same proof applies here.)

5.3. Siegel modular varieties with Γ0(p)-level structure. The set-up is
much simpler here. The group G is GSp(V ) where V is the standard symplectic
space Q2n with the alternating pairing (·, ·) given by the matrix Ĩ in 3.1.2. We
have B = Q with involution ι = id, and h0 : C → End(VR) is defined as the unique
R-algebra homomorphism such that

h0(i) = Ĩ .

For the multichain L we use the standard complete self-dual lattice chain Λ• in Q2n
p

that appeared in section 4. We take OB = Z(p).
The group G = GSp2n,Qp

is split, so again we have E = Qp, so OE = Zp. It
turns out that the minuscule coweight µ is

µ = (0n, (−1)n),

in other words, the same that appeared in the definition of local models in the
symplectic case in section 4.

The moduli problem over Zp can be expressed as follows. For a Zp-scheme S,
an S-point is an element of the set of 4-tuples (taken up to isomorphism)

AKp(S) = {(A•, λ0, λn, η̄)}
consisting of

• a chain A• of (relative) n-dimensional abelian varieties A0
α→ A1

α→ · · · α→
An such that each morphism α : Ai → Ai+1 is an isogeny of degree p over
S;

• principal polarizations λ0 : A0 →̃ Â0 and λn : An →̃ Ân such that the
composition of

A0
α �� · · · α �� An

λn

��
Â0

λ−1
0

��

· · ·α∨
�� Ân

α∨
��

starting and ending at any Ai or Âi is multiplication by p;
• a level Kp-structure η̄ on A0.

Exercise 5.3. Show that the above description of AKp is equivalent to the
definition given in Definition 6.9 of [RZ] (cf. our Def. 5.1) for the group-theoretic
data (B, ι, V, ...) we described above.

Note that the only information imparted by the determinant condition in this
case is that dim(Ai) = n for every i.

There is another convenient description of the same moduli problem, used by
de Jong [deJ]. We define another moduli problem A′

Kp whose S-points is the set
of 4-tuples

A′
Kp(S) = {(A0, λ0, η̄, H•)}

consisting of
• an n-dimensional abelian variety A0 with principal polarization λ0 and

Kp-level structure η̄;
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• a chain H• of finite flat group subschemes of A0[p] := ker(p : A0 → A0)
over S

(0) = H0 ⊂ H1 ⊂ · · · ⊂ Hn ⊂ A0[p]
such that Hi has rank pi over S and Hn is totally isotropic with respect
to the Riemann form eλ0 , defined by the diagram

A0[p]×A0[p]
eλ0 ��

id×λ0

��

µp

A0[p]× Â0[p]
∼= �� A0[p]× Â0[p].

can

��

Here Â0[p] = Hom(A0[p],Gm) denotes the Cartier dual of the finite group scheme
A0[p] and can denotes the canonical pairing (which takes values in the p-th roots
of unity group subscheme µp ⊂ Gm). (See [Mu], section 20, or [Mi], section 16.)

The isomorphism A →̃ A′ is given by

(A•, λ0, λn, η̄) �→ (A0, λ0, η̄, H•); Hi := ker[αi : A0 → Ai].

The inverse map is given by setting Ai = A0/Hi (the condition on Hn allows us to
define a principal polarization λn : A0/Hn →̃ ̂(A0/Hn) using λ0).

In [deJ], de Jong analyzed the singularities of A in the case n = 2, and deduced
that the model A is flat in that case (by passing from A to a local model Mloc

according to the procedure of section 6 and then by writing down equations for
Mloc).

In the sequel, we will denote the modelA (andA′) by the symbol Sh, sometimes
adding the subscript Kp when the level-structure at p is not already understood.

6. Relating Shimura varieties and their local models

6.1. Local model diagrams. Here we describe the desiderata for local mod-
els of Shimura varieties. Quite generally, consider a diagram of finite-type OE-
schemes

M M̃
ϕ�� ψ �� Mloc .

Definition 6.1. We call such a diagram a local model diagram provided the
following conditions are satisfied:

(1) the morphisms ϕ and ψ are smooth and ϕ is surjective;
(2) étale locally M ∼= Mloc: there exists an étale covering V → M and a

section s : V → M̃ of ϕ over V such that ψ ◦ s : V →Mloc is étale.

In practice M is the scheme we are interested in, and Mloc is somehow simpler
to study; M̃ is just some intermediate scheme used to link the other two. Every
property that is local for the étale topology is shared by M and Mloc. For example,
if Mloc is flat over Spec(OE), then so is M. The singularities in M and Mloc are
the same.

6.2. The general definition of local models. We briefly recall the general
definition of local models, following [RZ], Def. 3.27. We suppose we have data
G,µ, V, V1, . . . coming from a PEL-type data as in section 5.1. We assume µ and
V1 are defined over a finite extension E′ ⊃ E. We suppose we are given a self-dual
multichain of OB ⊗ Zp-lattices L = {Λ}.
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Definition 6.2 ([RZ], 3.27). A point of Mloc with values in an OE-scheme S
is given by the following data.

(1) A functor from the category L to the category of OB ⊗Zp
OS-modules on

S

Λ �→ tΛ, Λ ∈ L;

(2) A morphism of functors ψΛ : Λ⊗Zp
OS → tΛ.

We require the following conditions are satisfied:
(i) tΛ is a locally free OS-module of finite rank. For the action of OB on tΛ

we have the determinant condition

detOS
(a; tΛ) = detE′(a;V1), a ∈ OB ;

(ii) the morphisms ψΛ are surjective;
(iii) for each Λ the composition of the following map is zero:

t∨Λ
ψ∨

Λ �� (Λ⊗OS)∨ ∼=

(·,·) �� Λ⊥ ⊗OS

ψΛ⊥ �� tΛ⊥ .

It is clear that one can associate to any PEL-type Shimura variety Sh = ShKp

a scheme Mloc (just use the same PEL-type data and multichain L used to define
ShKp

). It is less clear why the resulting scheme Mloc really is a local model for
ShKp

, in the sense described above. We shall see this below, thus justifying the
terminology “local model”. Then we will show that in our two examples – the
“fake” unitary and the Siegel cases – this definition agrees with the concrete ones
defined for GLn and GSp2n in section 4.

6.3. Constructing local model diagrams for Shimura varieties.
6.3.1. The abstract construction. For one of our models Sh = ShKp

from §5,
we want to construct a local model diagram

Sh S̃h
ϕ�� ψ �� Mloc.

In the following we use freely the notation of the appendix, §14. For an abelian
scheme a : A → S, let M(A) be the locally free OS-module dual to the de Rham
cohomology

M∨(A) = H1
DR(A/S) := R1a∗(Ω•

A/S).

This is a locally free OS-module of rank 2 dim(A/S). We have the Hodge filtration

0 → Lie(Â)∨ →M(A) → Lie(A) → 0.

This is dual to the usual Hodge filtration on de Rham cohomology

0 ⊂ ωA/S := a∗Ω1
A/S ⊂ H1

DR(A/S).

We shall call M(A) the crystal associated to A/S (this is perhaps non-standard
terminology). If A carries an action of OB, then by functoriality so does M(A).
Note also that M(A) is covariant as a functor of A. So if L denotes a self-dual
multichain of OB ⊗Zp-lattices, and {AΛ} denotes an L-set of abelian schemes over
S with OB-action and polarization (as in Definition 5.1), then applying the functor
M(·) gives us a polarized multichain {M(AΛ)} of OB ⊗ OS-modules of type (L),
in the sense of [RZ], Def. 3.6, 3.10, 3.14.
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One key consequence of the conditions imposed in loc. cit., Def. 3.6, is that
locally on S there is an isomorphism of polarized multichains of OB ⊗OS-modules

γΛ : M(AΛ) →̃ Λ⊗Zp
OS .

In fact we have the following result which guarantees this.

Theorem 6.3 ([RZ], Theorems 3.11, 3.16). Let L = {Λ} be a (self-dual) multi-
chain of OB⊗Zp-lattices in V . Let S be any Zp-scheme where p is locally nilpotent.
Then any (polarized) multichain {MΛ} of OB⊗Zp

OS-modules of type (L) is locally
(for the étale topology on S) isomorphic to the (polarized) multichain {Λ⊗Zp

OS}.
Moreover, the functor Isom

T �→ Isom({MΛ ⊗OT }, {Λ⊗OT }),
is represented by a smooth affine scheme over S.

The analogous statements hold for any Zp-scheme S, see [P]. In particular for
such S we have a smooth affine group scheme G over S given by

G(T ) = Aut({Λ⊗OT }),
and the functor Isom is obviously a left-torsor under G. This generalizes the smooth-
ness of the groups Aut in section 3.2. Moreover, by the same arguments as in sec-
tion 3.2, for S = Spec(Zp) the group GZp

is a Bruhat-Tits parahoric group scheme
corresponding to the parahoric subgroup of G(Qp) = G(Qp) which stabilizes the
multichain L 7 .

In the special case of lattice chains for GSp2n, the theorem was proved by de
Jong [deJ] (he calls what are “polarized (multi)chains” here by the name “systems
of OS-modules of type II”).

Now we define the local model diagram for Sh. We assume OE = Zp for
simplicity. Let us define S̃h to be the Zp-scheme representing the functor whose
points in a Zp-scheme S is the set of pairs

({AΛ}, λ̄, η̄) ∈ Sh(S); γΛ : M(AΛ) →̃ Λ⊗Zp
OS ,

where γΛ is an isomorphism of polarized multichains of OB ⊗ OS-modules. The
morphism

ϕ : S̃h→ Sh

is the obvious morphism which forgets γΛ. By Theorem 6.3, ϕ is smooth (being a
torsor for a smooth group scheme) and surjective. Now we want to define

ψ : S̃h(S) → Mloc(S).

We define it to send an S-point ({AΛ}, λ̄, η̄, γΛ) to the morphism of functors

Λ⊗Zp
OS → Lie(AΛ)

induced by the composition γ−1
Λ : Λ⊗Zp

OS
∼= M(AΛ) with the canonical surjective

morphism
M(AΛ) → Lie(AΛ).

It is not completely obvious that the morphisms Λ ⊗ OS → Lie(AΛ) satisfy the
condition (iii) of Definition 6.2. We will explain it in the Siegel case below, as a

7More precisely, the connected component of G is the Bruhat-Tits group scheme. As G.

Pappas points out, in some cases (e.g. the unitary group for ramified quadratic extensions), the
stabilizer group G is not connected.
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consequence of Proposition 5.1.10 of [BBM] (our Prop. 14.1). We omit discussion
of this point in other cases.

The theory of Grothendieck-Messing ([Me]) shows that the morphism ψ is
formally smooth. Since both schemes are of finite type over Zp, it is smooth. In
summary:

Theorem 6.4 ([RZ], §3). The diagram

Sh S̃h
ϕ�� ψ �� Mloc

is a local model diagram. The morphism ϕ is a torsor for the smooth affine group
scheme G.

Proof. We have indicated why condition (1) of Definition 6.1 is satisfied.
Condition (2) is proved in [RZ], 3.30-3.35; see also [deJ], Cor. 4.6. �

We will describe the local model diagrams more explicitly for each of our two
main examples next. Our goal is to show that their local models are none other
than the ones defined in section 4.

6.3.2. Symplectic case. Following [deJ] and [GN]we change conventions slightly
and replace the de Rham homology functor with the cohomology functor

A/S �→ H1
DR(A/S).

What kind of data do we get by applying the de Rham cohomology functor to
a point in our moduli problem Sh from section 5.3? For notational convenience,
let us now number the chains of abelian varieties in the opposite order:

{AΛ•} = An → An−1 → · · · → A0.

Lemma 6.5. The result of applying H1
DR to a point ({AΛ•}, λ0, λn) in Sh(S)

is a datum of form (M0
α→M1

α→ · · · α→Mn, q0, qn) satisfying
• Mi is a locally free OS-module of rank 2n;
• Coker(Mi−1 →Mi) is a locally free OS/pOS-module of rank 1;
• for i = 0, n, qi : Mi ⊗Mi → OS is a non-degenerate symplectic pairing;
• for any i, the composition of

M0
α �� · · · α �� Mn

qn

��
M∨

0

q0

��

· · ·α∨
�� M∨

n
α∨

��

starting and ending at Mi or M∨
i := Hom(Mi,OS) is multiplication by p.

Proof. The pairings q0, qn come from the polarizations λ0, λn. The various
properties are easy to check, using the canonical natural isomorphism H1

DR(Â/S) =
(H1

DR(A/S))∨; cf. Prop. 14.1. �

Our next goal is to rephrase Definition 6.2 in terms of data similar to that in
Lemma 6.5, which will take us closer to the definition of Mloc in §4.

Let L = Λ• be the standard self-dual lattice chain in V = Q2n
p , with respect to

the usual pairing (x, y) = xtĨy. Clearly we may rephrase Definition 6.2 using the
sub-objects ω′

Λ := ker(ψΛ) of Λ⊗OS rather than the quotients tΛ. Then condition
(iii) becomes
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(iii’) (ω′
Λ)perp ⊂ ω′

Λ⊥ , which is equivalent to (ω′
Λ)perp = ω′

Λ⊥ ,

in other words, under the canonical pairing (·, ·) : Λ ⊗ OS × Λ⊥ ⊗ OS → OS , the
submodules ω′

Λ and ω′
Λ⊥ are perpendicular. If Λ = Λ⊥, this means

(·, ·)|ω′
Λ×ω′

Λ
≡ 0,

and if Λ⊥ = pΛ, this means
p(·, ·)|ω′

Λ×ω′
Λ
≡ 0,

since the pairing on Λ⊗OS ×Λ⊗OS is defined by composing the standard pairing
on Λ⊗OS × Λ⊥ ⊗OS with the periodicity isomorphism

p : Λ →̃ Λ⊥

in the second variable. For the “standard system” (Λ0 → Λ1 → · · · → Λn, q0, qn)
as in Lemma 6.5, the (perfect) pairings are given by

q0 = (·, ·) : Λ0 × Λ0 → Zp

qn = p(·, ·) : Λn × Λn → Zp.

Note that if ω′
i := ω′

Λi
, the identity (ω′

i)
perp = ω′

−i ((iii) of Def. 6.2) means
that ω′

• is uniquely determined by the elements ω′
0, . . . , ω

′
n. Conversely, suppose we

are given ω′
0, . . . , ω

′
n such that (ω′

0)
perp = ω′

0 and (ω′
n)perp = pω′

n =: ω′
−n. Then we

can define ω′
−i = (ω′

i)
perp for i = 0, . . . , n, and then extend by periodicity to get an

infinite chain ω′
• as in Definition 6.2 (condition (iii) being satisfied by fiat).

We thus have the following reformulation of Definition 6.2, which shows that
that definition agrees with the one in section 4 for GSp2n.

Lemma 6.6. In the Siegel case, an S-point of Mloc (in the sense of Definition
6.2) is a commutative diagram

Λ0 ⊗OS
�� Λ1 ⊗OS

�� · · · �� Λn ⊗OS

ω′
0

��

�� ω′
1

��

�� · · · �� ω′
n,

��

such that
• for each i, ω′

i is a locally free OS-submodule of Λi ⊗OS of rank n;
• ω′

0 is totally isotropic for (·, ·) and ω′
n is totally isotropic for p(·, ·).

Finally, we promised to explain why the morphism ψ : S̃h→ Mloc really takes
values in Mloc. We must also redefine it in terms of cohomology. Recall we now
have the Hodge filtration

ωAΛ/S ⊂ H1
DR(AΛ/S).

We define ψ to send ({A0 ← · · · ← An}, λ0, λn, η̄, γΛ) to the locally free, rank n,
OS-submodules

γΛ(ωAΛ) ⊂ Λ⊗OS ,

where now γΛ is an isomorphism of polarized multichains of OS-modules

γΛ : H1
DR(AΛ/S) →̃ Λ⊗OS .

The following result ensures that this map really takes values in Mloc.

Lemma 6.7. The morphism ψ takes values in Mloc, i.e., condition (iii’) holds.
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Proof. Setting ωAΛi
= ωi, we need to see that the Hodge filtration ω0 resp. ωn

is totally isotropic with respect to the pairing q0 resp. qn induced by the polarization
λ0 resp. λn. But this is Proposition 5.1.10 of [BBM] (our Prop. 14.1). See also
[deJ], Cor. 2.2. �

Comparison of homology and cohomology local models. One further remark is in
order. Let us consider a point

A = (A0 → · · · → An, λ0, λn, η̄)

in our moduli problem Sh. Note that this data gives us another point in Sh, namely

Â = (Ân → · · · → Â0, λ
−1
n , λ−1

0 , η̄).

(We need to use the assumption that the polarizations λi are required to be sym-
metric isogenies Ai → Âi, in the sense that λ̂i = λi.)

The moduli problem Sh is thus equipped with an automorphism of order 2,
given by A �→ Â.

This comes in handy in comparing the “homology” and “cohomology” con-
structions of the local model diagram. Namely, since M(Ai) = H1

DR(Âi) (Prop.
14.1), an isomorphism γ• : M(A•) →̃ Λ• ⊗ OS is simultaneously an isomorphism
γ• : H1

DR(Â•) →̃ Λ• ⊗ OS . In the “homology” version, ψ sends (A, γ•) to the
quotient chain

Λ• ⊗OS → Lie(A•),

defined using γ−1
• . On the other hand, in the “cohomology” version, ψ sends (Â, γ•)

to the sub-object chain
ω

bA•
⊂ Λ• ⊗OS

(identifying ω• with γ•(ω•)). But the exact sequence

0 → ω
bA →M(A) → Lie(A) → 0

(Prop. 14.1) means that the two chains correspond: they give exactly the same
element of Mloc. In summary, we have the following result relating the “homology”
and “cohomology” constructions of the local model diagram.

Proposition 6.8. There is a commutative diagram

S̃h
hom ψhom

��

��

Mloc

=

��

S̃h
coh ψcoh

�� Mloc,

where the left vertical arrow is the automorphism (A, γ•) �→ (Â, γ•).

6.3.3. “Fake” unitary case. Here the “standard” polarized multichain of OB ⊗
Zp-lattices is given by {Λi ⊕ Λ∗

i }, in the notation of section 5.2.3. Recall that

OB ⊗ Zp
∼= Mopp

n (Zp)×Mopp
n (Zp),

according to the decomposition of Bopp
Qp

= DQp

DQp
= Dp ×Dp∗ ∼= Mn(Qp)×Mn(Qp).
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Let W (resp. W ∗) be Zn
p viewed as a left OB⊗Zp-module, via right multiplications

by elements of the first (resp. second) factor of Mn(Zp) ×Mn(Zp). The ring BQp

has two simple left modules: WQp
and W ∗

Qp
. We may write

VE′ = V1 ⊕ V2

as before. The determinant condition now implies (at least over E′) that

V1 = W d
E′ ⊕ (W ∗

E′)n−d;

(comp. section 5.2.2). Using the “sub-object” variant of Definition 6.2, it follows
that an S-point of Mloc is a commutative diagram (here Λi being understood as
Λi ⊗OS)

Λ0 ⊕ Λ∗
0

�� Λ1 ⊕ Λ∗
1

�� · · · �� Λn ⊕ Λ∗
n

F0 ⊕F∗
0

��

��

F1 ⊕F∗
1

��

��

· · · �� Fn ⊕F∗
n

��

where Fi⊕F∗
i is an OB⊗OS-submodule of Λi⊕Λ∗

i which, locally on S, is a direct
factor isomorphic to Wn−d

OS
⊕ (W ∗

OS
)d.

The analogue of condition (iii’), which is imposed in Definition 6.2, is

(Fi ⊕F∗
i )perp = F−i ⊕F∗

−i.

On the other hand, from the definition of 〈·, ·〉 in section 5.2.3 it is immediate that

(Fi ⊕F∗
i )perp = F∗,perp

i ⊕Fperp
i .

We see thus that the first factor F• uniquely determines the second factor F∗
• (and

vice-versa). Thus Mloc is given by chains of right Mn(OS) = Mn(Zp)⊗OS-modules

F0 → F1 → · · · → Fn

which are locally direct factors in

Mn(OS) → diag(p−1, 1n−1)Mn(OS) → · · · → p−1Mn(OS),

each term locally isomorphic to (On
S)n−d. By Morita equivalence, Mloc is just given

by the definition in section 4 (for the integer d).

7. Flatness

Because of the local model diagram, the flatness of the moduli problem Sh can
be investigated by considering its local model. The following fundamental result is
due to U. Görtz. It applies to all parahoric subgroups.

Theorem 7.1 ([Go1], [Go2]). Suppose Mloc is a local model attached to a
group ResF/Qp

(GLn) or ResF/Qp
(GSp2n), where F/Qp is an unramified extension.

Then Mloc is flat over OE. Moreover, its special fiber is reduced, and has rational
singularities.

We give the idea for the proof. One reduces to the case where F = Qp. In
order to prove flatness over OE = Zp it is enough to prove the following facts (comp.
[Ha], III.9.8):
1) The special fiber is reduced, as a scheme over Fp;
2) The model is topologically flat: every closed point in the special fiber is contained
in the the scheme-theoretic closure of the generic fiber.
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The innovation behind the proof of 1) is to embed the special fiber into the affine
flag variety and then to make systematic use of the theory of Frobenius-splitting to
prove affine Schubert varieties are compatibly Frobenius-split. See [Go1].

To prove 2), suppose µ is such that Mloc = M−w0µ. It is enough by a result of
Kottwitz-Rapoport (Theorem 4.2) to prove that the generic element in a stratum
of the special fiber indexed by a translation element in Adm(−w0µ) can be lifted
to characteristic zero. This statement is checked by hand in [Go1].

We will provide an alternative, calculation-free, proof by making use of nearby
cycles 8. We freely make use of material on nearby cycles from §10, 11.

We fix an element λ ∈W (−w0µ) and consider the stratum of Mloc indexed by
tλ. We want to show this stratum is in the closure of the generic fiber.

The nearby cycles sheaf RΨMloc
(Q�) is supported only on this closure (Theorem

10.1), and so it is enough to show that

Trss(Φr
p, RΨMloc

tλ
(Q�)) �= 0.

But it is clear that
z−w0µ,r(tλ) �= 0

from the definition of Bernstein functions (see [Lu] or [HKP]), and we are done
by Theorem 11.3 (which also holds for the group GSp2n, see [HN1]).

As G. Pappas has observed [P], the local models attached (by [RZ]) to the
groups above can fail to be flat if F/Qp is ramified. In their joint works [PR1],
[PR2], Pappas and Rapoport provide alternative definitions of local models in that
case (in fact they treat nearly all the groups considered in [RZ]), and these new
models are flat. However, these new models cannot always be described as the
scheme representing a “concrete” moduli problem.

8. The Kottwitz-Rapoport stratification

Let us assume Sh is the model over OE for one of the Shimura varieties
Sh(G, h)K discussed in §5, i.e. a “fake” unitary or a Siegel modular variety. We
assume (for simplicity of statements) that Kp is an Iwahori subgroup of G(Qp).
Let us summarize what we know so far.

The group GQp
is either isomorphic to GLn,Qp

× Gm,Qp
or GSp2n,Qp

. These
groups being split over Qp, we have E = Qp and OE = Zp.

The Shimura datum h gives rise to a dominant minuscule cocharacter µ of
GLn,Qp

or GSp2n,Qp
, respectively. The functorial description of the local model

Mloc shows that it can be embedded into the deformation M from the affine Grass-
mannian GrassQp

to the affine flag variety F lFp
associated to G, and has generic

fibre Q−w0µ. Since the local model is flat with reduced special fiber [Go1], [Go2]
(see §7) and is closed in M , it coincides with the scheme-theoretic closure M−w0µ

of Q−w0µ in this deformation. We thus identify Mloc = M−w0µ. (For all this, keep
in mind we use the “homology” definition of the local model diagram.)

The relation between the model of the Shimura variety over Zp and its local
model is given by a diagram

Sh S̃h
ϕ�� ψ �� Mloc

8We emphasize that this proof is much less elementary than the original proof of Görtz [Go1],
relying as it does on the full strength of [HN1].
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of Zp-schemes, where ϕ is a torsor under the smooth affine group scheme G of §6.3
(also termed Aut in §4), and ψ is smooth. The fibres of ϕ are geometrically con-
nected (more precisely, this holds for the restriction of ϕ to any geometric connected
component of S̃h). One can show that étale-locally around each point of the special
fiber of Sh, the schemes Sh and Mloc are isomorphic.

The stratification of the special fibre of Mloc (by Iwahori-orbits) induces strat-
ifications of the special fibers of S̃h and Sh (see below). The resulting stratification
of ShFp

is called the Kottwitz-Rapoport (or KR-) stratification.

8.1. Construction of the KR-stratification. Essentially following [GN],
we will recall the construction and basic properties of the KR-stratification. The
difference between their treatment and ours is that they construct local models in
terms of de Rham cohomology, whereas here they are constructed in terms of de
Rham homology. This is done for compatibility with the computations in §11.

For later use in §11, we give a detailed treatment here for the case of “fake”
unitary Shimura varieties.

Let k denote the algebraic closure of the residue field of Zp, and let Λ̃• = Λ•⊕Λ∗
•

denote the self-dual multichain of OB ⊗Zp-lattices from §5.2.3. Recall that a point
in Mloc(k) is a “quotient chain” of k-vector spaces

Λ̃• ⊗ k → t
eΛ•
,

self-dual in the sense of Definition 6.2 (iii), and such that each t
eΛi

satisfies the
determinant condition, that is,

t
eΛi

= W d
k ⊕ (W ∗)n−d

k

as OB⊗k-modules. We can identify this object with a lattice chain in the affine flag
variety for GLn(k((t))) as follows. Let V•,k denote the “standard” complete lattice
chain from §4.1. Using duality and Morita equivalence (see §6.3.3), the quotient
t

eΛ•
can be identified with a quotient tΛ• of the standard lattice chain V•,k ⊂ k((t))n.

Then we may write
tΛi

= Vi,k/Li

for a unique lattice chain L• = (L0 ⊂ · · · ⊂ Ln = t−1L0) consisting of k[[t]]-
submodules of k((t))n which satisfy for each i = 0, . . . , n,

• tVi,k ⊂ Li ⊂ Vi,k;
• the k-vector space Vi,k/Li has dimension d (determinant condition).

The set of such lattice chains L• is the special fiber of the model M−w0µ at-
tached to the dominant coweight −w0µ = (1d, 0n−d) of GLn. Indeed, the two
conditions above mean that for each i,

invK(Li,Vi,k) = µ

and thus
invK(Vi,k,Li) = −w0µ.

Here invK is the standard notion of relative position of k[[t]]-lattices in k((t))n, rel-
ative to the base point V0,k = k[[t]]n: we say invK(gV0,k, g

′V0,k) = λ ∈ X+(T ) if
g−1g′ ∈ KλK, where K = GLn(k[[t]]). Recall we have identified µ with (0n−d, (−1)d)
and have embedded coweights into the loop group by the rule λ �→ λ(t).

If L• = x(V•,k) for x ∈ W̃ (GLn), this means that x ∈ Perm(−w0µ), which is
also the set Adm(−w0µ), see §4.



SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE 611

Recall that the Iwahori subgroup I = Ik((t)) fixing V•,k preserves the subset
M−w0µ,k ⊂ F lk and so via the identification Mloc = M−w0µ, it also acts on the
local model. The Iwahori-orbits give a cellular decomposition

Mloc
k =

∐
w∈Adm(µ)

Mloc
w .

Here we define Mloc
w to be the set of L• above such that

invI(V•,k,L•) = w−1,

or equivalently
invI(L•,V•,k) = w,

for w−1 ∈ Adm(−w0µ) (which happens if and only if w ∈ Adm(µ)). Here we define
invI(gV•,k, g

′V•,k) = w if g−1g′ ∈ IwI.
Each stratum is smooth (in fact Mloc

w = A�(w)), and the closure relations are
determined by the Bruhat order on W̃ ; that is, Mloc

w ⊂ Mloc
w′ if and only if w ≤ w′.

There is a surjective homomorphism Ik((t)) → Autk, where Aut is the group
scheme G of Theorem 6.3 which acts on the whole local model diagram. The action
of Ik((t)) on Mloc

k factors through Autk, so that the strata above can also be thought
of as Autk-orbits. The morphism ψ is clearly equivariant for Autk, hence we have
a stratification of S̃hk

S̃hk =
∐

w∈Adm(µ)

ψ−1(Mloc
w ),

whose strata are non-empty (Lemma 13.1), smooth, and stable under the action
of Autk. Since ϕk is a torsor for the smooth group scheme Autk, the stratification
descends to Shk:

Shk =
∐

w∈Adm(µ)

Shw

such that ϕ−1(Shw) = ψ−1(Mloc
w ). These strata are still smooth, non-empty, and

satisfy closure relations determined by the Bruhat order.
All statements above remain true over the base field Fp instead of its algebraic

closure k.

8.2. Relating nearby cycles on local models and Shimura varieties.
We will need in §11 the following result relating the nearby cycles on Sh, S̃h, and
Mloc, which follows immediately from the above remarks and Theorem 10.1 below
(cf. [GN]):

Lemma 8.1. There are canonical isomorphisms

ϕ∗RΨSh(Q�) = RΨfSh(Q�) = ψ∗RΨMloc
(Q�).

Moreover, RΨSh(Q�) is constant on each stratum Shw, and if Φp ∈ Gal(Qp/E)
is a geometric Frobenius element, then for any elements x ∈ Shw(kr) and x0 ∈
Mloc

w (kr), we have

Trss(Φr
p, RΨSh

x (Q�)) = Trss(Φr
p, RΨMloc

x0
(Q�)).

Here we use the notion of semi-simple trace, which is explained below in §9.3.
The above lemma plays a key role in the determination of the semi-simple local
zeta function in §11.
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8.3. The Genestier-Ngô comparison with p-rank. We assume in this
section that Sh is the Siegel modular variety with Iwahori-level structure from
§5.3.

Recall that any n-dimensional abelian variety A over an algebraically closed
field k of characteristic p has

#A[p](k) = pj ,

for some integer 0 ≤ j ≤ n. The integer j is called the p-rank of A. Ordinary
abelian varieties are those whose p-rank is n, the largest possible. The p-rank is
constant on isogeny classes, and therefore it determines a well-defined function on
the set of geometric points ShF̄p

. The level sets determine the stratification by
p-rank.

It is natural to ask how this stratification relates to the KR-stratification. In
[GN], Genestier and Ngô have very elegantly derived the relationship using local
models and work of de Jong [deJ]. As they point out, their theorem yields inter-
esting results even in the case of Siegel modular varieties having good reduction at
p: they derive a short and beautiful proof that the ordinary locus in such Shimura
varieties is open and dense in the special fiber (comp. [W1]).

To state their result, we define for w ∈ W̃ (GSp2n) an integer r(w) as follows. Its
image w in the finite Weyl group W (GSp2n) is a permutation of the set {1, · · · , 2n}
commuting with the involution i �→ 2n+1− i. The set of fixed points of w is stable
under the involution, and therefore has even cardinality (the involution is without
fixed-points). Define

2r(w) = #{fixed points of w}.

Theorem 8.2 (Genestier-Ngô [GN]). The p-rank is constant on each KR-
stratum Shw. More precisely, the p-rank of a point in Shw is the integer r(w).

Corollary 8.3 ([GN]). The ordinary locus in ShFp
is precisely the union of

the KR-strata indexed by the translation elements in Adm(µ), that is, the elements
tλ, for λ ∈Wµ. Moreover, the ordinary locus is dense and open in ShFp

.

Proof. By the theorem, the p-rank is n on Shw if and only r(w) = n; writing
w = tλw, this is equivalent to w = 1. We conclude the first statement by noting
that w ∈ Adm(µ) ⇒ λ ∈Wµ.

Finally, the union of the strata Mloc
tλ

for λ ∈ Wµ is clearly dense and open in
Mloc

Fp
. �

Remark 8.4. It should be noted that in [GN] the local model, and thus the
KR-stratification, is defined in terms of the “cohomology” local model diagram,
whereas here everything is stated using the “homology” version. Furthermore, in
[GN] the “standard” lattice chain is “opposite” from ours, so that an element
w ∈ W̃ (GSp2n) is used to index a double coset ĪwĪ/Ī, where Ī is an “opposite”
Iwahori subgroup. Nevertheless, our conventions and those of [GN] yield the same
answer, that is, the p-rank on Shw is given by r(w) is both cases. This may be
seen by using the comparison between “homology” and “cohomology” local model
diagrams in Prop. 6.8, and by imitating the proof of [GN] with our conventions in
force.

8.4. The smooth locus of ShFp
. Also, in [GN] one finds the proof of the

following related fact.
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Proposition 8.5 (Genestier-Ngô [GN]). The smooth locus of ShFp
is the

union of the KR-strata indexed by tλ, for λ ∈ Wµ (in particular the smooth lo-
cus agrees with the ordinary locus).

8.4.1. The geometric proof of [GN]. The crucial observation is that any stra-
tum Shw, where w is not a translation element, is contained in the singular locus.
Genestier and Ngô deduce this by showing that for such w,

(8.4.1) Trss(Φr
p, RΨSh

w (Q�)) �= 1,

which by the general geometric principle explained below, shows that w is singular.
Now (8.4.1) itself is proved by combining the main theorems of [HN1] and [H2],
and by taking into account Lemma 8.1.

Here is the geometric principle implicit in [GN] and a sketch of the proof from
[GN]. We will use freely the material from sections 9.3 and 10 below.

Lemma 8.6. Let S = (S, s, η) be a trait, with k(s) = Fq a finite field. Suppose
M → S is a finite type flat model with Mη smooth. Then x ∈ M(Fqr ) is a smooth
point of Ms̄ only if Trss(Φr

q, RΨM
x (Q�)) = 1.

Proof. Let M ′ ⊂M be the open subscheme obtained by removing the singular
locus of the special fiber of M . We see that M ′ → S is smooth (since M ′ → S is flat
of finite-type, it suffices to check the smoothness fiber by fiber, and by construction
M ′

η = Mη and M ′
s are both smooth). Now we invoke the general fact (Theorem

10.1) that for smooth models M ′, RΨM ′
(Q�) ∼= Q�, the constant sheaf on the

special fiber. This implies that the semi-simple trace of nearby cycles at x ∈M ′
s is

1. �
Proof of Proposition 8.5. We consider the stratum Shw, or equivalently, Mloc

w , for
w ∈ Adm(µ). We recall that Mloc = M−w0µ and the stratum Mloc

w is the Iwahori-
orbit indexed by x := w−1, contained in M−w0µ. For such an x, we have from
[HN1], [H2], [HP] an explicit formula for the semi-simple trace of Frobenius on
nearby cycles at x

Trss(Φq, RΨMloc

x (Q�)) = (−1)�(tµ)+�(x) Rx,tλ(x)(q),

where λ(x) is the translation part of x (x = tλ(x)w, for λ(x) ∈ X∗, and w ∈W0), and
Rx,y(q) is the Kazhdan-Lusztig R-polynomial. This polynomial can be computed
explicitly, but we need only the fact that it is always a polynomial in q of degree
�(y)− �(x). It follows from this and the above lemma that whenever x corresponds
to a stratum of codimension ≥ 1, every point of that stratum is singular.

8.4.2. A combinatorial proof. There is however a more elementary way to pro-
ceed: we prove below that every codim ≥ 1 stratum in Mloc

Fp
is contained at least

two irreducible components. The same goes for ShFp
, proving the proposition.

(There is even a third proof of the proposition, given in [GH].)

Proposition 8.7. Let µ be minuscule. For any x ∈ Adm(µ) of codimension 1,
there exist exactly two distinct translation elements λ1, λ2 in Wµ such that x ≤ tλi

(for i = 1, 2). Thus, any codimension 1 KR-stratum in the special fiber of a Shimura
variety Sh with Iwahori-level structure at p is contained in exactly two irreducible
components.

Proof. We give a purely combinatorial proof. Suppose x ∈ Adm(µ) has
codimension 1. We have x < tν , for some ν ∈ Wµ. By properties of the Bruhat
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order, there exists an affine reflection sβ+k, where β is a B-positive root, such that
x = tνsβ+k. Since sβ+k = t−kβ∨sβ , this means x = tν−kβ∨sβ . The translation
part must lie in Perm(µ) ∩ X∗ = Wµ, hence we have x = tλsβ , for λ ∈ Wµ. By
comparing lengths, we have tλsβ < tλ and tλsβ < sβtλsβ = tsβλ. We claim that
〈β, λ〉 < 0. Indeed, writing εβ ∈ [−1, 0) for the infimum of the set β(a) (recalling
that our base alcove a is contained in the B̄-positive chamber) , we have

tλsβ < tλ ⇔ a and t−λa are on opposite sides of the hyperplane β = 0

⇔ β(−λ + a) ⊂ [0,∞)

⇔ −〈β, λ〉+ (εβ , 0) ⊂ [0,∞)

⇔ 〈β, λ〉 < 0.

We see that sβλ �= λ, and so x precedes at least the two distinct translation
elements tλ and tsβλ in Adm(µ). It remains to prove that these are the only
such translation elements. So suppose now that tλsβ < tλ′ , where λ′ ∈ Wµ; we
will show that λ′ ∈ {λ, sβλ}. As above, there is an affine reflection sα+n such
that tλsβ = tλ′sα+n = tλ′−nα∨sα, where α is B-positive. We see that α = β,
and λ′ − nβ∨ = λ. Thus, λ′, λ, and sβλ all lie on the line λ + Rβ∨. Since all
elements in Wµ are vectors with the same Euclidean length, this can only occur if
λ′ ∈ {λ, sβλ}. �

9. Langlands’ strategy for computing local L-factors

The well-known general strategy for computing the local L-factor at p of a
Shimura variety in terms of automorphic L-functions is due to the efforts of many
people, beginning with Eichler, Shimura, Kuga, Sato, and Ihara, and reaching its
final conjectural form with Langlands, Rapoport, and Kottwitz.

Let us fix a rational prime p, and a compact open subgroup Kp ⊂ G(Qp) at p;
we consider the Shimura variety Sh(G, h)K as in §5.1.

Roughly, the method of Langlands is to start with a cohomological definition
of the local factor of the Hasse-Weil zeta function for Sh(G, h)K, and express
its logarithm via the Grothendieck-Lefschetz trace formula as a certain sum of
orbital integrals for the group G(A). This involves both a process of counting
points (with “multiplicity” – the trace of the correspondence on the stalk of an
appropriate sheaf), and then a “pseudo-stabilization” like that done to stabilize the
geometric side of the Arthur-Selberg trace formula (we are ignoring the appearance
of endoscopic groups other than G itself in this stage). At this point, we can apply
the Arthur-Selberg stable trace formula and express the sum as a trace of a function
on automorphic representations appearing in the discrete part of L2(G(Q)\G(A)).
This equality of traces implies a relation like that in Theorem 11.7 below.

More details on the general strategy as well as the precise conjectural descrip-
tion of IHi(Sh ×E Qp, Q�) in terms of automorphic representations of G can be
found in [Ko90], [Ko92b], and [BR]. These sources discuss the case of good
reduction at p.

Some details of the analogous strategy in case of bad reduction will be given
below in §11. Let us explain more carefully the relevant definitions.

9.1. Definition of local factors of the Hasse-Weil Zeta function. Let p

denote a prime of a number field E, lying over p. Let X be a smooth d-dimensional
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variety over E. We define the Hasse-Weil zeta function (of a complex variable s)
as an Euler product

Z(s,X) =
∏
p

Zp(s,X),

where the local factors are defined as follows.

Definition 9.1. The factor Zp(s,X) is defined to be
2d∏

i=0

det(1−Np
−sΦp ; Hi

c(X ×E Qp, Q�)
Γ0

p)(−1)i+1
,

where
• � is an auxiliary prime, � �= p;
• Φp is the inverse of an arithemetic Frobenius element for the extension

Ep/Qp;
• Np = NormEp/Qp

p;
• Γ0

p ⊂ Γp := Gal(Qp/Ep) is the inertia subgroup.

It is believed that Z(s,X) has good analytical properties (it should satisfy a
functional equation and have a meromorphic analytic continuation on C) and that
analytical invariants (e.g. residues, special values, orders of zeros and poles) carry
important arithmetic information about X. Moreover, it is believed that the local
factor is indeed independent of the choice of the auxiliary prime �. At present
these remain only guiding principles, as very little has been actually proved. As
Taniyama originally proposed, a promising strategy for establishing the functional
equation is to express the zeta function as a product of automorphic L-functions,
whose analytic properties are easier to approach. The hope that this can be done
is at the heart of the Langlands program.

9.2. Definition of local factors of automorphic L-functions. Let πp be
an irreducible admissible representation of G(Qp). Let us assume that the local
Langlands conjecture holds for the group G(Qp). Then associated to πp is a local
Langlands parameter, that is, a homomorphism

ϕπp
: WQp

× SL2(C) → LG,

where WQp
is the Weil group for Qp and, letting Ĝ denote the Langlands dual

group over C associated to GQp
, the L-group is defined to be LG = WQp

� Ĝ. Let
r = (r, V ) be a rational representation of LG. The local L-function attached to πp

is defined using ϕπp
and r as follows.

Definition 9.2. We define L(s, πp, r) to be

det(1− p−s r ϕπp
(Φp ×

2

6

6

4

p−1/2 0
0 p1/2

3

7

7

5

); (kerN)Γ
0
p)−1,

where
• Φp ∈WQp

is the inverse of the arithmetic Frobenius for Qp;
• N is a nilpotent endomorphism on V coming from the action of sl2 on the

representation rϕπp
, namely N := d(rϕπp

)(1×
2

6

6

4

0 1
0 0

3

7

7

5

); equivalently, N is

determined by rϕπp
(1×

2

6

6

4

1 1
0 1

3

7

7

5

) = exp(N);
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• the action of inertia Γ0
p ⊂ WQp

on ker(N) is the restriction of rϕπp
to

Γ0
p × id ⊂WQp

× SL2(C).

Remark 9.3. If πp is a spherical representation, then (kerN)Γ
0
p = V and

therefore in that case the local factor takes the more familiar form

det(1− p−sr(Sat(πp)); V )−1,

where Sat(πp) is the Satake parameter of πp; see [Bo], [Ca].

Any irreducible admissible representation π of G(A) has a tensor factorization
π = ⊗vπv (v ranges over all places of Q) where πv is an admissible representation
of the local group G(Qv). If v = ∞, there is a suitable definition of L(s, π∞, r) (see
[Ta]). We then define the automorphic L-function

L(s, π, r) =
∏
v

L(s, πv, r).

9.3. Problems in case of bad reduction, and definition of semi-simple
local factors.

9.3.1. Semi-simple zeta function. Let us fix p and set E = Ep. In the case
where X possesses an integral model over OE , one can study the local factor by
reduction modulo p. In the case of good reduction (meaning this model is smooth
over OE), the inertia group acts trivially and the cohomology of X ×E Qp can be
identified with that of the special fiber X ×kE

Fp (kE being the residue field of E).
By the Grothendieck-Lefschetz trace formula, the local zeta function then satisfies
the familiar identity

log(Zp(s,X)) =
∞∑

r=1

#X(kE,r)
Np−rs

r
,

where kE,r is the degree r extension of kE in its algebraic closure k. In the case of
bad reduction, inertia can act non-trivially and the smooth base-change theorems of
�-adic cohomology no longer apply in such a simple way. Following Rapoport [R1],
we bypass the first difficulty by working with the semi-simple local zeta function,
defined below. The second difficulty forces us to work with nearby cycles (see §10):
if X is a proper scheme over OE , then there is a Γp-equivariant isomorphism

Hi(X ×E Qp, Q�) = Hi(X ×kE
kE , RΨ(Q�)),

so that the Grothendieck-Lefschetz trace formula gives rise to the problem of
“counting counts x ∈ X(kE,r) with multiplicity”, i.e., to computing the semi-simple
trace on the stalks of the complex of nearby cycles:

Trss(Φr
p, RΨ(Q�)x),

in order to understand the semi-simple zeta function.
How do we define semi-simple trace and semi-simple zeta functions? We recall

the discussion from [HN1]. Suppose V is a finite-dimensional continuous �-adic
representation of the Galois group Γp. Grothendieck’s local monodromy theorem
states that this representation is necessarily quasi-unipotent: there exists a finite
index subgroup Γ1 ⊂ Γ0

p such that Γ1 acts unipotently on V . Hence there is a finite
increasing Γp-invariant filtration V• = (0 ⊂ V1 ⊂ · · · ⊂ Vm = V ) such that Γ0

p acts



SHIMURA VARIETIES WITH PARAHORIC LEVEL STRUCTURE 617

on ⊕kgrkV• through a finite quotient. Such a filtration is called admissible. Then
we define

Trss(Φp;V ) =
∑

k

Tr(Φp; grk(V•)Γ
0
p).

This is independent of the choice of admissible filtration. Moreover, the function
V �→ Trss(Φp, V ) factors through the Grothendieck group of the category of �-
adic representations V , and using this one proves that it extends naturally to give
a “sheaf-function dictionary” à la Grothendieck: a complex F in the “derived”
category Db

c(X ×η s, Q�), 9 gives rise to the Q�-valued function

x �→ Trss(Φr
p, Fx)

on X(kE,r). Furthermore, the formation of this function is compatible with the
pull-back and proper-push-forward operations on the derived catgegory, and a
Grothendieck-Leftschetz trace formula holds. (For details, see [HN1].) We can
then define the semi-simple local zeta function Zss

p (s,X) by the identity

Definition 9.4.

log(Zss
p (s,X)) =

∞∑
r=1

(∑
i

(−1)i Trss(Φr
p; H

i
c(X ×E Qp, Q�))

) Np−rs

r
.

Remark 9.5. Note that in the case where Γ0
p acts unipotently (not just quasi-

unipotently) on the cohomology of the generic fiber, then we have

Trss(Φr
p; H

i
c(X ×E Qp, Q�)) = Tr(Φr

p; H
i
c(X ×E Qp, Q�)).

As we shall see below in §10.2, Γ0
p does indeed act unipotently on the cohomology

of a proper Shimura variety with Iwahori-level structure at p. The definition of Zss

thus simplifies in that case.

As before, the global semi-simple zeta function is defined to be an Euler product
over all finite places of the local functions: Zss(s,X) =

∏
p
Zss

p (s,X).
9.3.2. Semi-simple local L-functions. Retain the notation of §9.2. The Lang-

lands parameters ϕ = ϕπp
being used here have the property that the representation

rϕ on V arises from a representation (ρ,N) of the Weil-Deligne group W ′
Qp

on V ,
see [Ta]. In that case we have for w ∈WQp

ρ(w) = rϕ(w ×
2

6

6

4

‖w‖1/2 0
0 ‖w‖−1/2

3

7

7

5

)

exp(N) = rϕ(1×
2

6

6

4

1 1
0 1

3

7

7

5

),

where ‖w‖ is the power to which w raises elements in the residue field of Qp.
Now suppose that via some choice of isomorphism Q�

∼= C, the pair (ρ,N)
comes from an �-adic representation (ρλ, Vλ) of WQp

, by the rule

ρλ(Φnσ) = ρ(Φnσ)exp(N t�(σ)),

where n ∈ Z, σ ∈ Γ0
p, and t� : Γ0

p → Q� is a nonzero homomorphism (cf. [Ta], Thm
4.2.1).

9This is the “derived category of Q�-sheaves” – although this is somewhat misleading termi-

nology (see [KW] for a detailed account) – on X ×kE
kE equipped with a continuous action of

Γp compatible with the action of its quotient Gal(kE/kE) on X × kE . See §10.
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For each σ ∈ Γ0
p, ρλ(σ) = ρ(σ)exp(Nt�(σ)) is the multiplicative Jordan decom-

position of ρλ(σ) into its semi-simple and unipotent parts, respectively. Therefore a
vector v ∈ V is fixed by ρλ(σ) if and only if it is fixed by both ρ(σ) and exp(Nt�(σ)).
Thus we have the following result.

Lemma 9.6. If (ρ,N, V ) and (ρλ, Vλ) are the two avatars above of a represen-
tation of the Weil-Deligne group W ′

Qp
, then

(kerN)Γ
0
p = V

Γ0
p

λ .

Furthermore ρ is trivial on Γ0
p if and only if ρλ(Γ0

p) acts unipotently on Vλ, and in
that case

(kerN)Γ
0
p = kerN = V

Γ0
p

λ .

Corollary 9.7. The local L-function can also be expressed as

L(s, πp, r) = det(1− p−sρλ(Φp); V
Γ0

p

λ )−1.

Note the similarity with Definition 9.1. The representation ρλ(Γ0
p) being quasi-

unipotent, we can define the semi-simple L-function as in Definition 9.4.

Definition 9.8.

log(Lss(s, πp, r)) =
∞∑

r=1

Trss(ρλ(Φr
p); Vλ)

p−rs

r
.

(The symbol r occurs with two different meanings here, but this should not
cause confusion.)

Remark 9.9. In analogy with Remark 9.5, in the case that (ρ,N, V ) has
ρ(Γ0

p) = 1, in view of Lemma 9.6, we have

Trss(ρλ(Φr
p); V ) = Tr(ρλ(Φr

p); V ),

and the definition of Lss simplifies. The dictionary set-up by the local Langlands
correspondence asserts that if πp has an Iwahori-fixed vector, then ρ(Γ0

p) is trivial
(cf. [W2]). Moreover, in the situation of parahoric level structure at p, the only
representations πp which will arise necessarily have Iwahori-fixed vectors. Hence
the simplified definition of Lss will apply in our situation.

Let π = ⊗vπv be an irreducible admissible representation of G(A). It is to be
hoped that a reasonable definition of Lss(s, πv, r) exists for Archimedean places v,
and if so we can then define

Lss(s, π, r) =
∏
v

Lss(s, πv, r).

10. Nearby cycles

10.1. Definitions and general facts. Let X be a scheme of finite type over
a finite (or algebraically closed) field k. (The following also works if we assume that
k is the fraction field of a discrete valuation ring R with finite residue field, and
that X is finite-type over R, cf. [Ma].) Denote by k an algebraic closure of k, and
by Xk the base change X ×k k.

We denote by Db
c(X,Q�) the ’derived’ category of Q�-sheaves on X. Note

that this is not actually the derived category of the category of Q�-sheaves, but is
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defined via a limit process. See [BBD] 2.2.14 or [Weil2] 1.1.2, or [KW] for more
details. Nevertheless, Db

c(X,Q�) is a triangulated category which admits the usual
functorial formalism, and which can be equipped with a ’natural’ t-structure having
as its core the category of Q�-sheaves. If f : X −→ Y is a morphism of schemes
of finite type over k, we have the derived functors f∗, f! : Db

c(X,Q�) → Db
c(Y,Q�)

and f∗, f ! : Db
c(Y,Q�) −→ Db

c(X,Q�). Ocassionally we denote these same functors
using the symbols Rf∗, etc.

Let (S, s, η) denote an Henselian trait: S is the spectrum of a complete discrete
valuation ring, with special point s and generic point η. The key examples for
us are S = Spec(Zp) (the p-adic setting) and S = Spec(Fp[[t]]) (the function-field
setting). Let k(s) resp. k(η) denote the residue fields of s resp. η.

We choose a separable closure η̄ of η and define the Galois group Γ = Gal(η̄/η)
and the inertia subgroup Γ0 = ker[Gal(η̄/η) → Gal(s̄/s)], where s̄ is the residue
field of the normalization S̄ of S in η̄.

Now let X denote a finite-type scheme over S. The category Db
c(X ×s η,Q�)

is the category of sheaves F ∈ Db
c(Xs̄,Q�) together with a continuous action of

Gal(η/η) which is compatible with the action on Xs̄. (Continuity is tested on
cohomology sheaves.)

For F ∈ Db
c(Xη,Q�), we define the nearby cycles sheaf to be the object in

Db
c(X ×s η,Q�) given by

RΨX(F) = ī∗Rj̄∗(Fη̄),
where ī : Xs̄ ↪→ XS̄ and j̄ : Xη̄ ↪→ XS̄ are the closed and open immersions of the
geometric special and generic fibers of X/S, and Fη̄ is the pull-back of F to Xη̄.

Here we list the basic properties of RΨX , extracted from the standard refer-
ences: [BBD], [Il], [SGA7 I], [SGA7 XIII]. The final listed property has been
proved (in this generality) only recently, and is due to the author and U. Görtz
[GH].

Theorem 10.1. The following properties hold for the functors

RΨ : Db
c(Xη,Q�) → Db

c(X ×s η, Q�) :

(a) RΨ commutes with proper-push-forward: if f : X → Y is a proper
S-morphism, then the canonical base-change morphism of functors to
Db

c(Y ×s η,Q�) is an isomorphism:

RΨ f∗ →̃ f∗ RΨ;

In particular, if X → S is proper there is a Gal(η̄/η)-equivariant isomor-
phism

Hi(Xη̄, Q�) = Hi(Xs̄, RΨ(Q�)).
(b) Suppose f : X → S is finite-type but not proper. Suppose that there is

a compactification j : X ↪→ X over S such that the boundary X\X is
a relative normal crossings divisor over S. Then there is a Gal(η̄/η)-
equivariant isomorphism

Hi
c(Xη̄, Q�) = Hi

c(Xs̄, RΨ(Q�)).

(c) RΨ commutes with smooth pull-back: if p : X → Y is a smooth S-
morphism, then the base-change morphism is an isomorphism:

p∗RΨ →̃ RΨp∗.
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(d) If F ∈ Db
c(X,Q�), we define RΦ(F) (the vanishing cycles) to be the cone

of the canonical morphism

Fs̄ → RΨ(Fη);

there is a distinguished triangle

Fs̄ → RΨ(Fη) → RΦ(F) → Fs̄[1].

If X → S is smooth, then RΦ(Q�) = 0; in particular, Q�
∼= RΨ(Q�) in

this case;
(e) RΨ commutes with Verdier duality, and preserves perversity of sheaves

(for the middle perversity);
(f) For x ∈ Xs̄, RiΨ(Q�)x = Hi(X(x̄)η̄,Q�), where X(x̄)η̄ is the fiber over

η̄ of the strict henselization of X in a geometric point x̄ with center x.
In particular, the support of RΨ(Q�) is contained in the scheme-theoretic
closure of Xη in Xs̄;

(g) If the generic fiber Xη is non-singular, then the complex RΨX(Q�) is
mixed, in the sense of [Weil2].

Remark 10.2. The “fake” unitary Shimura varieties Sh(G, h)K discussed in
§5.2 are proper over OE and hence by (a) we can use nearby cycles to study their
semi-simple local zeta functions. The Siegel modular schemes of §5.3 are not proper
over Zp, so (a) does not apply directly; in fact it is not a priori clear that there is
a Galois equivariant isomorphism on cohomology with compact supports as in (b).
In order to apply the method of nearby cycles to study the semi-simple local zeta
function, we need such an isomorphism.

Conjecture 10.3. Let ShKp
denote a model over OE for a PEL Shimura

variety with parahoric level structure Kp, as in §5. Then the natural morphism

Hi
c(ShKp

×OE
kE , RΨ(Q�)) → Hi

c(ShKp
×OE

Qp, Q�)

is an isomorphism.

In the Siegel case one should be able to prove this by finding a suitably nice
compactification, perhaps by adapting the methods of [CF].

Such an isomorphism would allow us to study the semi-simple local zeta func-
tion in the Siegel case by the same approach applied to the “fake” unitary case
in §11. The local geometric problems involving nearby cycles have already been
resolved in [HN1], and Conjecture 10.3 encapsulates the remaining geometric diffi-
culty (which is global in nature). There will be additional group-theoretic problems
in applying the Arthur-Selberg trace formula, however, due to endoscopy.

10.2. Concerning the inertia action on certain nearby cycles. Let
Sh(G, h)K denote a “fake” unitary Shimura variety as in §5.2, where Kp is an
Iwahori subgroup. Suppose Sh is its integral model over OE = Zp defined by the
moduli problem in §5.2.4. Our goal in §11 is to explain how to identify its Zss

p

with a product of semi-simple local L-functions (see Theorem 11.7). We first want
to justify our earlier claim that the simplified definitions of Zss and Lss apply to
this case. The key ingredient is a theorem of D. Gaitsgory showing that the inertia
action on certain nearby cycles is unipotent.
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We first recall the theorem of Gaitsgory, which is contained in [Ga]. Let λ
denote a dominant coweight of GQp

and consider the corresponding G(Qp[[t]])-

orbit Qλ in the affine Grassmannian GrassQp
= G(Qp((t)))/G(Qp[[t]]). Let Mλ

denote the scheme-theoretic closure of Qλ in the deformation M of GrassQp
to

F lFp
, from Remark 4.1. Let ICλ denote the intersection complex of the closure

Qλ.

Theorem 10.4 (Gaitsgory [Ga]). The inertia group Γ0
p acts unipotently on

RΨMλ(ICλ).

See also [GH], §5, for a detailed proof of this theorem. We remark that Gaits-
gory proves this statement for nearby cycles taken with respect to Beilinson’s de-
formation of the affine Grassmannian of G(Fp[[t]]) to its affine flag variety, but the
same proof applies in the present p-adic setting; see loc. cit.

We can apply this to the local model Mloc = M−w0µ. Because the morphisms
in the local model diagram are smooth and surjective (Lemma 13.1), by taking
[GH], Lemma 5.6 into account, we see that unipotence of nearby cycles on Mloc

implies unipotence of nearby cycles on Sh:

Corollary 10.5. The inertia group Γ0
p acts unipotently on RΨSh(Q�). Con-

sequently, by Theorem 10.1 (a), it also acts unipotently on Hi(Sh×Qp
Qp, Q�).

This justifies the assertion made in Remark 9.5. Together with Remark 9.9, we
thus see that the simplified definitions of Zss and Lss apply in this case, which will
be helpful in §11 below.

11. The semi-simple local zeta function for “fake” unitary
Shimura varieties

We assume in this section that Sh is the model from §5.2: a “fake” unitary
Shimura variety. We also assume that Kp is the “standard” Iwahori subgroup of
G(Qp), i.e., the subgroup stabilizing the “standard” self-dual multichain ofOB⊗Zp-
lattices

Λ̃• = Λ• ⊕ Λ∗
•

from §5.2.3.
Following the strategy of Kottwitz [Ko92], [Ko92b], we will explain how to

express Zss
p (s, Sh) in terms of the functions Lss(s, πp, r).

There are two equations to be proved. The first equation is an expression for
the semi-simple Lefschetz number

(11.0.1)
∑

x∈Sh(kr)

Trss(Φr
p, RΨx(Q�)) =

∑
γ0

∑
(γ,δ)

c(γ0; γ, δ) Oγ(fp) TOδσ(φr).

The left hand side is termed the semi-simple Lefschetz number Lefss(Φr
p). The

right hand side has exactly the same form (with essentially the same notation, see
below) as [Ko92], p. 442 10. Recall that the twisted orbital integral is defined as

TOδσ(φr) =
∫
Gδσ\G(Lr)

φr(x−1δσ(x)),

10Note that the factor |ker1(Q,G)| = |ker1(Q, Z(G))| appearing in loc. cit. does not appear
here since our assumptions on G guarantee that this number is 1; see loc. cit. §7.
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with an appropriate choice of measures (and Oγ(fp) is similarly defined). However
in contrast to loc. cit., here the Haar measure on G(Lr) is the one giving the
standard Iwahori subgroup Ir ⊂ G(Lr) volume 1.

The second equation relates the sum of (twisted) orbital integrals on the right
to the spectral side of the Arthur-Selberg trace formula for G:

(11.0.2)
∑
γ0

∑
(γ,δ)

c(γ0; γ, δ) Oγ(fp) TOδσ(φr) =
∑

π

m(π) Trπ(fpf (r)
p f∞).

All notation on the right hand side is as in [Ko92b] (cf. §4) where the “fake” unitary
Shimura varieties were analyzed in the case that Kp is a hyperspecial maximal
compact subgroup rather than an Iwahori. In particular, π ranges over
irreducible admissible representations of G(A) which occur in the discrete
part of L2(G(Q)AG(R)0\G(A)), with multiplicity m(π). The function fp ∈
C∞

c (Kp\G(Ap
f )/Kp) is just the characteristic function IKp of Kp, whereas f∞ is

the much more mysterious function from [Ko92b], §1 11. The function f
(r)
p is a

kind of “base-change” of φr and will be further explained below.
The equality (11.0.2) comes from the “pseudo-stabilization” of its left hand side,

similar to that done in [Ko92b], §4. One important ingredient in that is the “base-
change fundamental lemma” between the test function φr and its “base-change”
f

(r)
p ; the novel feature here is that the function φr is more complicated than when
Kp is maximal compact: it is not a spherical function, but rather an element in
the center of an Iwahori-Hecke algebra (see below). The “base-change fundamental
lemma” for such functions is proved in [HN3], and further discussion will be omitted
here. Finally, after pseudo-stablilization and the fundamental lemma, we apply a
simple form of the Arthur-Selberg trace formula, which produces the right hand
side of (11.0.2). See [HN3] for details.

Our object here is to explain (11.0.1), following the strategy of [Ko92] which
handles the case where Kp is maximal compact (the case of good reduction). The
main difficulty is to identify the test function φr that appears in the right hand
side.

11.1. Finding the test function φr via the Kottwitz conjecture. To
understand the function φr, we will use the full strength of our description of local
models in §6.3, in particular §6.3.3, and also the material in the appendix §14.

In (11.0.1), the index γ0 roughly parametrizes polarized n2-dimensional B-
abelian varieties over kr, up to Q-isogeny. The index (γ, δ) roughly parametrizes
those polarized n2-dimensional B-abelian varieties, up to Q-isogeny, which belong to
the Q-isogeny class indexed by γ0. (For precise statements, see [Ko92].) Therefore,
the summand roughly counts (with “multiplicity”) the elements in Sh(kr) which
belong to a fixed Q-isogeny class. We will make this last statement precise, and
also explain the crucial meaning of “multiplicity” here.

Let us fix a polarized n2-dimensional B-abelian variety over kr, up to isomor-
phism: (A′, λ′, i′). We assume it possesses some Kp-level structure η̄′. We fix once
and for all an isomorphism of skew-Hermitian OB ⊗ Ap

f -modules

(11.1.1) V ⊗ Ap
f = H1(A′,Ap

f ),

11Up to the sign (−1)dim(ShE), a pseudo-coefficient of a representation π0
∞ in the packet of

discrete series G(R)-representations having trivial central and infinitesimal characters.
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(in the terminology of [Ko92], §4). Since it comes from a level-structure η̄′, this
isomorphism is Galois-equivariant (with the trivial action on V ⊗ Ap

f ).
Associated to (A′, λ′, i′) is also an Lr-isocrystal (H ′

Lr
,Φ) as in §14. In brief,

H ′ = H(A′) is the the W (kr)-dual of H1
crys(A′/W (kr)), and Φ is the σ-linear

bijection on H ′
Lr

such that p−1H ′ ⊃ ΦH ′ ⊃ H ′ (i.e., Φ is V −1, where V is the
Verschiebung from Cor. 14.4). Because of (11.1.1) and the determinant condition,
there is also an isomorphism of skew-Hermitian OB ⊗ Lr-modules

(11.1.2) V ⊗Qp
Lr = H ′

Lr

which we also fix once and for all. (See [Ko92], p. 430.)
From these isomorphisms we construct the elements (γ0; γ, δ) that appear in

(11.0.1). Namely, the absolute Frobenius πA′ for A′/kr acting on H1(A′,Ap
f ) induces

the automorphism γ−1 ∈ G(Ap
f ), and the σ-linear bijection Φ acting on H ′

Lr
induces

the element δσ, for δ ∈ G(Lr). The element γ0 ∈ G(Q) is constructed from (γ, δ)
as in [Ko92], §14. The existence of γ0 is proved roughly as follows. By Cor. 14.4,
we have Φr = π−1

A′ acting on H ′
Lr

. Hence the elements γl ∈ G(Ql) (for l �= p)
and Nδ ∈ G(Lr) come from l-adic (resp. p-adic) realizations of the endomorphism
π−1

A′ of A′. Using Honda-Tate theory (and a bit more), one can view π−1
A′ as a

semi-simple element γ0 ∈ G(Q), which is well-defined up to stable conjugacy. By
its very construction, γ0 is stably conjugate to γ, resp. Nδ.

Let (A•, λ, i, η̄) ∈ Sh(kr) be a point in the moduli problem (§5.2.4). We want
to classify those such that (A0, λ, i) is Q-isogenous to (A′, λ′, i′). Let us consider
the category

{(A•, λ, i, ξ)}
consisting of chains of polarized OB-abelian varieties over kr (up to Z(p)-isogeny),
equipped with a Q-isogeny of polarized OB-abelian varieties ξ : A0 → A′, de-
fined over kr. Of course the integral “isocrystal” functor A �→ H(A) of §14 is a
covariant functor from this category to the category of W (kr)-free OB ⊗W (kr)-
modules in H ′

Lr
equipped with Frobenius and Verschiebung endomorphisms. In

fact, (A•, λ, i, ξ) �→ ξ(H(A•)) gives an isomorphism

{(A•, λ, i, ξ)} →̃ Yp,

where Yp is the category consisting of all type (Λ̃•) multichains of OB ⊗W (kr)-
lattices H• in H ′

Lr
= V ⊗ Lr, self-dual up to a scalar in Q× 12, such that for each

i, p−1Hi ⊃ ΦHi ⊃ Hi, and σ−1(ΦHi/Hi) satisfies the determinant condition.
11.1.1. Interpreting the determinant condition. The final condition on Hi comes

from the determinant condition on Lie(Ai), and Cor. 14.4. Let us see what this
means more concretely. By Morita equivalence (see §6.3.3), a type (Λ̃•) multichain
of OB ⊗W (kr)-lattices H•, self-dual up to a scalar in Q×, inside H ′

Lr
= V ⊗Qp

Lr

can be regarded as a complete W (kr)-lattice chain H0
• in Ln

r . By working with H0
i

instead of Hi, we can work in Ln
r instead of V ⊗Qp

Lr (which has dimLr
= 2n2).

Recall our minuscule coweight µ = (0n−d, (−1)d) of GLn (§5.2.2),and write Φ for
the Morita equivalent σ-linear bijection of Ln

r . The determinant condition now
reads

ΦH0
i /H

0
i
∼= σ(kr)d,

12In particular, these multichains are polarized in the sense of [RZ], Def. 3.14.
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that is, the relative position of the W (kr)-lattices H0
i and ΦH0

i in Ln
r is given by

invK(H0
i ,ΦH0

i ) = σ(µ(p)) = µ(p).

(We write µ(p) in place of µ to emphasize our convention that coweights λ are
embedded in GLn(Qp) by the rule λ �→ λ(p).) The same identity holds for Hi

replacing H0
i , when we interpret µ as a coweight for the group G(Lr) ⊂ AutB(V ⊗Qp

Lr).
By Theorem 6.3 (and the proof of [Ko92], Lemma 7.2), we may find x ∈ G(Lr)

such that
H• = xΛ̃•,W (kr),

where Λ̃•,W (kr) = Λ̃• ⊗Zp
W (kr) is the “standard” self-dual multichain of OB ⊗

W (kr)-lattices in V ⊗Qp
Lr.

The determinant condition now reads: for every index i in the chain Λ̃•,

(11.1.3) invK(Λ̃i,W (kr), x
−1δσ(x)Λ̃i,W (kr)) = µ(p).

Letting Ir ⊂ G(Lr) denote the stabilizer of Λ̃•,W (kr), we have the Bruhat-Tits
decomposition

W̃ (GLn ×Gm) ∼= W̃ (G) = Ir\G(Lr)/Ir.

Equation (11.1.3) recalls the definition of the µ-permissible set (§4.3). The
determinant condition can now be interpreted as:

x−1δσ(x) ∈ IrwIr

for some w ∈ PermG(µ). The equality AdmG(µ) = PermG(µ) holds (this translates
under Morita equivalence to the analogous statement for GLn), and therefore we
have proved that the determinant condition can now be interpreted as:

x−1δσ(x)Λ̃•,W (kr) ∈ Mµ(kr),

where by definition Mµ(kr) is the set of type (Λ̃•) multichains of OB ⊗ W (kr)-
lattices in V ⊗ Lr, self-dual up to a scalar in Q×, of form

gΛ̃•,W (kr)

for some g ∈ G(Lr) such that IrgIr = IrwIr for an element w ∈ PermG(µ) =
AdmG(µ).

Now let I denote the Q-group of self-Q-isogenies of (A′, λ′, i′). Our above
remarks and the discussion in [Ko92], §16 show that there is a bijection from the
set of points (A•, λ, i, η̄) ∈ Sh(kr) such that (A0, λ, i) is Q-isogenous to (A′, λ′, i′),
to the set I(Q)\(Y p × Yp), where

Y p = {y ∈ G(Ap
f )/Kp | y−1γy ∈ Kp},

Yp = {x ∈ G(Lr)/Ir | Irx
−1δσ(x)Λ̃•,W (kr) ⊂ Mµ(kr)}.

11.1.2. Compatibility of “de Rham” and “crystalline” maps.

Lemma 11.1. Fix w ∈ Adm(µ). Let A = (A•, λ, i, η̄) ∈ Sh(kr). Suppose
that A is Q-isogenous to (A′, λ′, i′) and that via a choice of ξ : A0 → A′ we have
ξH(A•) = xΛ̃•,W (kr) as above, for x ∈ G(Lr)/Ir

13.

13Note that x ∈ G(Lr)/Ir depends on ξ, but its image in I(Q)\G(Lr)/Ir is independent of
ξ, and hence the double coset Irx−1δσ(x)Ir is well-defined.
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Then A belongs to the KR-stratum Shw if and only if

Irx
−1δσ(x)Ir = IrwIr.

Proof. Recall that the local model Mloc is naturally identified with the model
M−w0µ and as such its special fiber carries an action of the standard Iwahori-
subgroup of GLn(kr[[t]]); further the KR-stratum Shw is the set of points which
give rise to a point in the Iwahori-orbit indexed by w−1 under the “de Rham” map
ψ : S̃h→ Mloc. Let us recall the definition of ψ. We choose any isomorphism

γ• : M(A•) →̃ Λ̃•,kr

of polarized OB⊗kr-multichains. The quotient M(A•) → Lie(A•) then determines
via Morita equivalence a quotient

V•,kr

tV•,kr

→ V•,kr

L•

for a uniquely determined kr[[t]]-lattice chain L• satisfying tV•,kr
⊂ L• ⊂ V•,kr

(see
§8.1). The “de Rham” map ψ sends the point (A, γ•) ∈ S̃h(kr) to L•. By definition
A ∈ Shw if and only if

invI(L•,V•,kr
) = w,

where the invariant measures the relative position of complete kr[[t]]-lattice chains
in kr((t))n. (Note that w is independent of the choice of γ•.)

In the previous paragraph the ambient group is GLn(kr((t))), the function-field
analogue of GLn(Lr). But it is more natural to work directly with G(Lr). Given L•
as above, there exists a unique type (Λ̃•) polarized multichain ofOB⊗W (kr)-lattices
L̃• in V ⊗Qp

Lr such that pΛ̃•,W (kr) ⊂ L̃• ⊂ Λ̃•,W (kr) and the polarized OB ⊗ kr-
multichain Λ̃•,W (kr)/L̃• is Morita equivalent to the kr-lattice chain V•,kr

/L•. Thus
we can think of ψ as the map

(A, γ•) �→ L̃•.

Thus, A ∈ Shw if and only if

invIr
(L̃• , Λ̃•,W (kr)) = w.

We have an isomorphism of polarized multichains of OB ⊗ kr-lattices

Λ̃•,W (kr)

L̃•
= Lie(A•) = σ−1

(
x−1δσ(x)Λ̃•,w(kr)

Λ̃•,W (kr)

)
.

The second equality comes from Cor. 14.4; the map sending (A•, ξ) to the multi-
chain xΛ̃•,W (kr) may be termed “crystalline” – it is defined using crystalline homol-
ogy. This equality shows that the “de Rham” and “crystalline” maps are compatible
(and ultimately rests on Theorem 14.2 of Oda).

Putting these remarks together, we see that A ∈ Shw if and only if

invIr
(Λ̃•,W (kr) , x−1δσ(x)Λ̃•,W (kr)) = w,

which completes the proof.
�

Remark 11.2. The crux of the above proof is the aforementioned compati-
bility between the “de Rham” and “crystalline” maps. This compatibility can be
rephrased as the commutativity of the diagram at the end of §7 in [R2], when the
morphisms there are suitably interpreted.
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11.1.3. Identifying φr. To find φr we need to count the points in the set
I(Q)\(Y p×Yp) with the correct “multiplicity”. The test function φr in the twisted
orbital integral must be such that

(11.1.4)
∑
A

Trss(Φr
p;RΨSh

A (Q�)) =
∫

I(Q)\(G(Ap
f )×G(Lr))

fp(y−1γy)φr(x−1δσ(x)),

where A ranges over points (A•, λ, i, η̄) ∈ Sh(kr) such that (A0, λ, i) is Q-isogenous
to (A′, λ′, i′) (other notation and measures as in [Ko92], §16, with the exception
that here the Haar measure on G(Lr) gives Ir volume 1).

Now by Lemma 11.1, equation (11.1.4) will hold if φr is a function in the
Iwahori-Hecke algebra of Q�-valued functions

HIr
= Cc(Ir\G(Lr)/Ir)

such that
φr(IrwIr) = Trss(Φr

p, RΨM−w0µ

w−1 (Q�)),
for elements w ∈ Adm(µ), and zero elsewhere. Note that on the right hand side,
w−1 really represents an Iwahori-orbit in the affine flag variety F lFp

over the func-
tion field. The nearby cycles are equivariant for the Iwahori-action in a suitable
sense, so that the semi-simple trace function is constant on these orbits. Hence the
right hand side is a well-defined element of Q�.

We can simply define the function φr by this equality. But such a description
of φr will not be useful unless we can identify it with an explicit function in the
Iwahori-Hecke algebra (we need to know its traces on representations with Iwahori-
fixed vectors, at least, if we want to make the spectral side of (11.0.2) explicit).
This however is possible, due to the following theorem. This result was conjectured
by Kottwitz in a more general form, which inspired Beilinson to conjecture that
nearby cycles can be used to give a geometric construction of the center of the
affine Hecke algebra for any reductive group in the function-field setting. This
latter conjecture was proved by Gaitsgory [Ga], whose ideas were adapted to prove
the p-adic analogue in [HN1].

Theorem 11.3 (The Kottwitz Conjecture;[Ga],[HN1]).Let G=GLnor GSp2n.
Let λ be a minuscule dominant coweight of G, with corresponding Zp-model Mλ (cf.
Remark 4.1). Let Hkr((t)) denote the Iwahori-Hecke algebra Cc(Ir\G(kr((t)))/Ir). Let
zλ,r ∈ Z(Hkr((t))) denote the Bernstein function in the center of the Iwahori-Hecke
algebra which is associated to λ. Then

Tr(Φr
p, RΨMλ(Q�)) = pr dim(Mλ)/2 zλ,r.

Let Kr be the stabilizer in G(Lr) of Λ̃0,W (kr); this is a hyperspecial maximal
compact subgroup of G(Lr) containing Ir. The Bernstein function zλ,r is charac-
terized as the unique element in the center of HIr

such that the image of pr〈ρ,λ〉zλ,r

under the Bernstein isomorphism

− ∗ IKr
: Z(HIr

) →̃ HKr
:= Cc(Kr\G(Lr)/Kr)

is the spherical function fλ,r := IKrλKr
. Here, we have used the fact that λ is

minuscule. Recall that ρ is the half-sum of the B-positive roots of G, and that
dim(Mλ)/2 = 〈ρ, λ〉.

The above theorem for λ = −w0µ implies that

φr(w) = pr dim(Sh)/2 z−w0µ(w−1).
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Now invoking the identity zµ(w) = z−w0µ(w−1) (see [HKP], §3.2), we have
proved the following result.

Proposition 11.4. Let zµ,r denote the Bernstein function in the center of the
Iwahori-Hecke algebra HLr

= Cc(Ir\G(Lr)/Ir) corresponding to µ. Then the test
function is given by

φr = pr dim(Sh)/2 zµ,r.

Remarks: 1) Because φr is central we can define its “base-change” function b(φr) =:
f

(r)
p , an element in the center of the Iwahori-Hecke algebra for G(Qp). We define

the base-change homomorphism for centers of Iwahori-Hecke algebras as the unique
homomorphism b : Z(HIr

) → Z(HI) which induces, via the Bernstein isomorphism,
the usual base-change homomorphism for spherical Hecke algebras b : HKr

→ HK

for any special maximal compact Kr containing Ir (setting I = Ir ∩ G(Qp) and
K = Kr ∩G(Qp)). This gives a well-defined homomorphism, independent of the
choice of Kr. Moreover, the pair of functions φr, f

(r)
p have matching (twisted)

orbital integrals; see [HN3].
2) We know how zµ,r (and hence how its base-change b(zµ,r)) acts on unramified
principal series. This plays a key role in Theorem 11.7 below. In fact, we have the
following helpful lemma.

Lemma 11.5. Let I denote our Iwahori subgroup Ka
p ⊂ G(Qp), whose reduction

modulo p is B(Fp). Suppose πp is an irreducible admissible representation of G(Qp)
with πI

p �= 0. Let rµ be the irreducible representation of LGQp
having extreme weight

µ. Let d = dim(ShE). Then

Trπp (prd/2 b(zµ,r)) = dim(πI
p) prd/2 Tr

(
rµϕπp

(
Φr ×

2

6

6

4

p−r/2 0
0 pr/2

3

7

7

5

))
.

Proof. Write G = G(Qp) and B = B(Qp) and suppose that πp is an irre-
ducible subquotient of the normalized unramified principal series representation
iGB(χ), for an unramified quasi-character χ : T (Qp) → C×. Suppose Kr ⊃ Ir (thus
also K ⊃ I) is a hyperspecial maximal compact, and suppose that πχ is the unique
K-spherical subquotient of iGB(χ). Suppose ϕ : WQp

→ LG is the unramified pa-
rameter associated to πχ. Our normalization of the correspondence πp �→ ϕπp

is
such that for all r ≥ 1, the element ϕ(Φr) ∈ Ĝ � WQp

can be described as

(11.1.5) ϕ(Φr) = ϕπp

(
Φr ×

2

6

6

4

p−r/2 0
0 pr/2

3

7

7

5

)
= (χ � Φ)r

where Φ is a geometric Frobenius element in WQp
, and where we identify χ with

an element in the dual torus T̂ (C) ⊂ Ĝ(C) and take the product on the right in
the group LG. Note that our normalization of the local Langlands correspondence
is the one compatible with Deligne’s normalization of the reciprocity map in local
class field theory, where a uniformizer is sent to a geometric Frobenius element (see
[W2]).

Let fµ,r = IKrµKr
in the spherical Hecke algebra HKr

; it is the image of
prd/2zµ,r under the Bernstein isomorphism

− ∗ IKr
: Z(HIr

) →̃ HKr
.

Further, b(prd/2zµ,r) ∗ IK = b(fµ,r).
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Now by [Ko84], Thm (2.1.3), we know that under the usual left action of HK ,
b(fµ,r) acts on πK

χ by the scalar

prd/2 Tr(rµϕ(Φr)).

Taking (11.1.5) into account along with the well-known fact that elements in Z(HI)
act on the entire space iGB(χ)I by a scalar (see e.g. [HKP]), we are done. �

Remark 11.6. For application in Theorem 11.7, we need the “�-adic” analogue
of this lemma, i.e., we need to work with the dual group Ĝ(Q�) instead of Ĝ(C).
For a discussion of how to do this, see [Ko92b], §1.

11.2. The semi-simple local zeta function in terms of semi-simple L-
functions. The foregoing discussion culminates in the following result from [HN3],
to which we refer for details of the proof.

Theorem 11.7 ([HN3]). Suppose Sh is a simple (“fake” unitary) Shimura
variety. Suppose Kp is an Iwahori subgroup. Suppose rµ is the irreducible rep-
resentation of L(GEp

) with extreme weight µ, where µ is the minuscule coweight
determined by the Shimura data. Then we have

Zss
p (s, Sh) =

∏
πf

Lss(s− d

2
, πp, rµ)a(πf ) dim(πK

f )

where the product runs over all admissible representations πf of G(Af ), and the
integer number a(πf ) is given by

a(πf ) =
∑

π∞∈Π∞

m(πf ⊗ π∞)Trπ∞(f∞),

where m(πf ⊗π∞) is the multiplicity of πf ⊗π∞ in L2(G(Q)AG(R)0\G(A)). Here
Π∞ is the set of admissible representations of G(R) whose central and infinitesimal
characters are trivial. Also, d denotes the dimension of ShE.

Let us remark that it is our firm belief that this result continues to hold when
Kp is a general parahoric subgroup of G(Qp), but some details are more difficult
than the Iwahori case treated in [HN3], and remain to be worked out.

Finally, recall our assumptions on p implied that Ep = Qp and Np = (p). In
more general circumstances one or both of these statements will fail to hold, and
the result will be a slightly more complicated expression for Zss

p (s, Sh).

12. The Newton stratification on Shimura varieties over finite fields

12.1. Review of the Kottwitz and Newton maps. As usual L denotes
the fraction field of the Witt vectors W (Fp), with Frobenius automorphism σ. Let
G denote a connected reductive group over Qp. Then we have the pointed set
B(G) = B(G)Qp

consisting of σ-conjugacy classes in G(L). Let us also assume
(only for simplicity) that the connected reductive Qp-group G is unramified. We
have the Kottwitz map

κG : B(G) → X∗(Z(Ĝ)Γp),

where Γp = Gal(Qp/Qp) (see [Ko97], §7) . We also have the Newton map

ν : B(G) → U
+
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where the notation is as follows. We choose a Qp-rational Borel subgroup B ⊂ G

and a maximal Qp-torus T which is contained in B. Then U = X∗(T )Γp

R , and U+

denotes the intersection of U with the cone of B-dominant elements in X∗(T )R. We
call b ∈ B(G) basic if νb is central, i.e., νb ∈ X∗(Z)R.

Suppose {λ} is a conjugacy class of one-parameter subgroups of G, defined over
Qp. We may represent the class by a unique cocharacter λ ∈ X∗(T ) = X∗(T̂ ) lying
in the B-positive Weyl chamber of X∗(T )R. The Weyl-orbit of λ is stabilized by
Γp. The notion of B-dominant being preserved by Γp (since B is Qp-rational), we
see that λ is fixed by Γp, hence it belongs to U+. Also, restricting {λ} to Z(Ĝ)
determines a well-defined element λ� ∈ X∗(Z(Ĝ)Γp).

We can now define the subset B(G, λ) ⊂ B(G) to be the set of classes [b] ∈ B(G)
such that

κG(b) = λ�

νb * λ.

Here * denotes the usual partial order on U+ for which ν * ν′ if ν′ − ν is a
nonnegative linear combination of simple relative coroots.

12.2. Definition of the Newton stratification. Suppose that the Shimura
variety ShKp

= Sh(G, h)KpKp
is given by a moduli problem of abelian varieties,

and that Kp ⊂ G(Qp) is a parahoric subgroup. Also, assume for simplicity that
E := Ep = Qp. Let G = GQp

, which again for simplicity we assume is unramified.
Let k denote as usual an algebraic closure of the residue field OE/p = Fp, and let
kr denote the unique subfield of k having cardinality pr. Let Lr denote the fraction
field of the Witt vectors W (kr).

We denote by a the base alcove and suppose 0 ∈ a is a hyperspecial vertex. Let
Ka

p (resp. K0
p) denote the corresponding Iwahori (resp. hyperspecial maximal com-

pact) subgroup of G(Qp). We will let Kp denote a “standard” parahoric subgroup,
i.e., one such that Ka

p ⊂ Kp ⊂ K0
p .

We can define a map
δKp

: ShKp
(k) → B(G)

as follows. A point A• = (A•, λ, i, η̄) ∈ ShKp
(kr) gives rise to a c-polarized virtual

B-abelian variety over kr up to prime-to-p isogeny (cf. [Ko92] §10), which we
denote by (A, λ, i). That in turn determines an L-isocystal (H(A)L,Φ) as in §14,
cf. loc. cit. It is not hard to see that δKp

takes values in the subset B(G,µ) ⊂ B(G).
In fact, if we choose an isomorphism (H(A)L,Φ) = (V ⊗ L, δσ) of isocrystals for
the group G(L), then δ ∈ G(L) satisfies

κG(δ) = µ�,

as follows from the determinant condition σ(Lie(A0)) = ΦH(A0)/H(A0), for any
A0 in the chain A• (use the argument of [Ko92], p. 431). Furthermore, the Mazur
inequality

νδ * µ

can be proved by reducing to the case where Kp = K0
p (which has been treated by

Rapoport-Richartz [RR] – see also [Ko03]) 14.

14Note that our assumption that Kp be standard, i.e., Kp ⊂ K0
p , was used in the last step,

because we want to invoke [RR]. The results of loc. cit. probably hold for nonspecial maximal
compact subgroups, so this assumption is probably unnecessary.
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Definition 12.1. We call the fibers of δKp
the Newton strata of ShKp

. The
inverse image of the basic set

δ−1
Kp

(
B(G,µ) ∩B(G)basic

)
.

is called the basic locus of ShKp
.

We denote the Newton stratum δ−1
Kp

([b]) by SKp,[b], or if Kp is understood,
simply by S[b].

The following conjecture is fundamental to the subject. It asserts that all the
Newton strata are nonempty.

Conjecture 12.2 (Rapoport, Conj. 7.1 [R2]). The map

δKp
: ShKp

(k) → B(G,µ)

is surjective. In particular, the basic locus is nonempty.

Remark 12.3. Note that Im(δK0
p
) can be interpreted purely in terms of group

theory: [b] ∈ B(G,µ) lies in the image of δK0
p

if and only if for one (equivalently,
for all sufficiently divisible) r ≥ 1, [b] contains an element δ ∈ G(Lr) belong-
ing to a triple (γ0; γ, δ), which satisfies the conditions in [Ko90] §2 (except for
the following correction, noted at the end of [Ko92]: under the canonical map
B(G)Qp

→ X∗(Z(Ĝ)Γp), the σ-conjugacy class of δ goes to µ|X∗(Z( bG)Γp ) and not
its negative), and for which the following four conditions also hold:

(a) γ0γ
∗
0 = c−1

0 p−r, where c0 ∈ Q× is a p-adic unit;
(b) the Kottwitz invariant α(γ0; γ, δ) is trivial;
(c) there exists a lattice Λ in VLr

such that δσΛ ⊃ Λ;
(d) Oγ(IKp)TOδσ(IKrµKr

) �= 0.
Here Kr ⊂ G(Lr) is the hyperspecial maximal compact subgroup such that Kr ∩
G(Qp) = K0

p .
To see this, use [Ko92], Lemmas 15.1, 18.1 to show that the first three con-

ditions ensure the existence of a c0p
r-polarized virtual B-abelian variety (A′, λ′, i′)

over kr up to prime-to-p isogeny, giving rise to (γ0; γ, δ). In the presence of the first
three, the last condition shows that there exists a kr-rational point (A, λ, i, η̄) ∈
ShK0

p
such that (A, λ, i) is Q-isogenous to (A′, λ′, i′). Hence δK0

p
((A, λ, i, η̄)) = [δ].

Note that by counting fixed points of Φr
p ◦ f for any Hecke operator f away

from p as in [Ko92], §16, we may replace condition (d) with
(d’) For some g ∈ G(Ap

f ), we have Oγ(IKpg−1Kp)TOδσ(IKrµKr
) �= 0.

Since we may always choose g = γ−1, we may also replace (d) or (d’) with
(d”) TOδσ(IKrµKr

) �= 0.

In the Siegel case with Kp hyperspecial, we have the following result of Oort
[Oo] (comp. [R2], Thm. 7.4) which in particular proves Conjecture 12.2 in that
case.

Theorem 12.4 (Oort, [Oo]). Suppose ShK0
p

is a Siegel modular variety with
maximal hyperspecial level structure K0

p at p. Then the Newton strata are all
nonempty and equidimensional (and the dimension is given by a simple formula
in terms of the partially ordered set B(GSp2n, µ)).
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In Corollary 12.8 below, we shall generalize the part of Theorem 12.4 that
asserts the nonemptiness of the Newton strata: in the Siegel case, all Newton strata
of ShKp

are nonempty, when Kp is an arbitrary standard parahoric subgroup. In
the “fake” unitary case, we shall later prove in Cor. 12.12 only that the basic locus
is nonempty (again for standard parahorics Kp).

12.3. The relation between Newton strata, KR-strata, and affine
Deligne-Lusztig varieties. Fix a σ-conjugacy class [b] ∈ B(G), and fix an ele-
ment w ∈ W̃ . Let K̃a

p ⊂ G(L) denote the Iwahori subgroup such that K̃a
p ∩G(Qp) =

Ka
p .

Definition 12.5. We define the affine Deligne-Lusztig variety 15

Xw(b)
eKa

p
= {x ∈ G(L)/K̃a

p | x−1bσ(x) ∈ K̃a
p w K̃a

p },

and for any dominant coweight λ,

X(λ, b)
eKa

p
=

⋃
w∈Adm(λ)

Xw(b)
eKa

p
.

A similar definition can be made for a parahoric subgroup replacing Ka
p (cf. [R2]).

A fundamental problem is to determine the relations between the Kottwitz-
Rapoport and Newton stratifications. The following shows how this problem is
related to the nonemptiness of certain affine Deligne-Lusztig varieties.

Proposition 12.6. Let µ be the minuscule coweight attached to the Shimura
data for Sh = ShKa

p
. Suppose w ∈ Adm(µ). Then for every [b] ∈ Im(δK0

p
), we have

Xw(b)
eKa

p
�= ∅ ⇔ Shw ∩ S[b] �= ∅.

Proof. By Remark 12.3, for all sufficiently divisible r ≥ 1, [b] contains an ele-
ment δ ∈ G(Lr) which is part of a Kottwitz triple (γ0; γ, δ) satisfying the conditions
(a-d). We consider such a triple, up to equivalence (we say (γ′

0; γ
′, δ′) is equivalent

to (γ0; γ, δ) if γ′
0 and γ0 are stably-conjugate, γ′ and γ are conjugate, and δ′ and δ

are σ-conjugate). Then by the arguments in §11 together with [Ko92], §18, 19, we
have the equality

(12.3.1) #{A• ∈ Shw(kr) | A• � (γ0; γ, δ)} = (vol)Oγ(IKp) #Xw(δ)Ir
.

Let us explain the notation. The notation A• � (γ0; γ, δ) means that A• gives
rise to the equivalence class of (γ0; γ, δ); cf. [Ko92], §18, 19. The term vol denotes
the nonzero rational number |ker1(Q,G)|c(γ0; γ, δ), where the second term is the
number defined in loc. cit. Also Ir = K̃a

p ∩G(Lr).
This equality would imply the proposition, if we knew that Oγ(IKp) �= 0. But

this follows from condition (d) in Remark 12.3. �

The following result of Wintenberger [Wi] proves a conjecture of Kottwitz and
Rapoport in a suitably unramified case (cf. [R2], Conj. 5.2, and the notes at the
end).

15Strictly speaking, this is only a set, not a variety. The sets are the affine analogues of the
usual Deligne-Lusztig varieties in the theory of finite groups of Lie type.
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Theorem 12.7 (Wintenberger). Let G be any connected reductive group, de-
fined and quasi-split over L. Suppose {λ} is a conjugacy class of 1-parameter sub-
groups, defined over L. Suppose [b] ∈ B(G) and let K be any standard parahoric
subgroup (that is, one contained in a special maximal parahoric subgroup). Then

X(λ, b)K �= ∅ ⇔ [b] ∈ B(G, λ).

Corollary 12.8. Let Sh be either a “fake” unitary or a Siegel modular variety,
as in §5.

(a) In the “fake” unitary case, for any two standard parahoric sugroups K′
p ⊂

K ′′
p , we have Im(δK′

p
) = Im(δK′′

p
).

(b) In the Siegel case, we have Im(δKp
) = B(G,µ) for every standard para-

horic subgroup Kp.

Proof. Consider first (a). We need to prove Im(δK′
p
) ⊃ Im(δK′′

p
). Clearly it

is enough to consider the case K ′
p = Ka

p and K ′′
p = K0

p . The natural morphism
ShKa

p
→ ShK0

p
is proper, surjective on generic fibers (look at C-points), and the tar-

get is flat (even smooth). Therefore in the special fiber the morphism is surjective.
This completes the proof of (a).

Consider now part (b). In the Siegel case the morphism ShKa
p
→ ShK0

p
is

still projective with flat image, so the same argument combined with Theorem 12.4
yields the stronger result of (b). Here is another argument using Theorem 12.4,
Proposition 12.6 and Theorem 12.7. Let G = GSp2n and µ = (0n, (−1)n). By
Oort’s theorem, Im(δK0

p
) = B(G,µ), so it is enough to prove B(G,µ) ⊂ Im(δKa

p
).

Let [b] ∈ B(G,µ). By Wintenberger’s theorem, there exists w ∈ Adm(µ) such that
Xw(b)

eKa
p
�= ∅, which implies the result by Proposition 12.6.

Note that a similar argument provides an alternative proof for part (a). �

Remark 12.9. Let G = GSp2n, and suppose µ is minuscule. We can give
a proof of Theorem 12.7 in this case using Oort’s theorem, as follows. Let [b] ∈
B(G,µ). By Corollary 12.8, there is a point A = (A•, λ, i, η̄) such that δ

eKa
p
(A) = [b].

Now A belongs to some KR-stratum Shw, so Shw ∩S[b] �= ∅. Now Proposition 12.6
implies that Xw([b])

eKa �= ∅.

12.4. The basic locus is nonempty in the “fake” unitary case. 16

First consider a “fake” unitary variety Sh with µ = (0n−d, (−1)d). We shall
consider both hyperspecial and Iwahori level structures.

Recall that the subset Adm(µ) ⊂ W̃ (GLn) contains a unique minimal element.
To find this element, we consider first the element

τ1 = t(−1,0n−1)(12 · · ·n) ∈ W̃ (GLn),

where the cycle (12 · · ·n) acts on a vector (x1, x2 . . . , xn) ∈ X∗(T )⊗ R by sending
it to (xn, x1, . . . , xn−1). Note that this element preserves our base alcove

a = {(x1, . . . , xn) ∈ X∗(T )⊗ R | xn − 1 < x1 < · · · < xn−1 < xn}.
Hence its d-th power

τ = t((−1)d,0n−d)(12 · · ·n)d ∈ W̃ (GLn),

16This non-emptiness is implicit in both articles of [FM], and can be justified (indirectly)
from their main theorems. Our object here is only to give a simple direct proof.
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is the unique element of Ω which is congruent modulo Waff to tµ, so is the desired
element. This element is identified with an element in GLn(L) using our usual
convention (the vector part is sent to diag((p−1)d, 1n−d)). Via Morita equivalence,
we can view it as an element of G(L). In fact, via (5.2.1), τ becomes the element

τ = (X, p−1χ−1(Xt)−1χ),

where by definition X = diag((p−1)d, 1n−d)(12 · · ·n)d.
Next consider the Siegel case, where µ = (0n, (−1)n). The unique element

τ ∈ Ω which is congruent to tµ modulo Waff is given by

τ = t((−1)n,0n)(12 · · · 2n)n ∈ W̃ (GSp2n).

We will show that either case, τ ∈ G(L) is basic. We will also show that [τ ]
belongs to the image of δK0

p
. By virtue of Corollary 12.8, this will show that the

basic locus of ShKp
is nonempty for every standard parahoric Kp.

Let us handle the second statement first.

Lemma 12.10. Let δ = τ ∈ G(L). Then there exists a Kottwitz triple (γ0; γ, δ)
satisfying the conditions in Remark 12.3. Hence [τ ] ∈ Im(δK0

p
).

Proof. Consider the “fake” unitary case. Note that δ ∈ G(Ln) is clearly fixed
by σ, so that

(12.4.1) Nδ = δn = diag((p−d)n)× diag((pd−n)n),

where the first factor is the diagonal matrix with the entry p−d repeated n times
(similarly for the second factor). This is the image of a unique element γ0 ∈
G(Q) under the composition of the inclusion G(Q) ↪→ G(Qp) and the isomorphism
(5.2.1). In fact γ0 belongs to the center of G, and thus is clearly an elliptic element
in G(R). Moreover, γ0γ

∗
0 = p−n. For all primes l �= p, we define γl to the image of γ0

under the inclusion G(Q) ↪→ G(Ql). We set γ = (γl)l ∈ G(Ap
f ). The resulting triple

(γ0; γ, δ) is clearly a Kottwitz triple satisfying the conditions (a-c,d”) of Remark
12.3 (with r = n). One can check that α(γ0; γ, δ) = 1 from the definitions, but in
fact this is not necessary, as the group to which α(γ0; γ, δ) belongs is itself trivial in
the “fake” unitary case (see [Ko92b], Lemma 2). Hence by Remark 12.3, δ arises
from a point in ShK0

p
(kn), i.e., [τ ] is in the image of δK0

p
.

In the Siegel case, the same argument works, if we let δ = τ ∈ GLn(L2) and
note

(12.4.2) Nδ = δ2 = diag((p−1)2n).

�

Lemma 12.11. The element τ ∈ G(L) is basic.

Proof. We want to use the following special case of the characterization of
ν̄b, for certain b ∈ G(L): suppose we are given an element b ∈ G(L) such that for
sufficiently divisible s ∈ N, we may write in the semidirect product G(L) � 〈σ〉 the
identity

(bσ)s = (sν)(p) σs

for a rational B-dominant cocharacter sν : Gm → Z(G) defined over Qp. Then in
that case, b is basic and

νb =
1
s
(sν) ∈ X∗(T )Γp

Q .
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This follows immediately from the general characterization of ν̄b given in [Ko85],
§4.3.

This characterization applies to the element τ because of the identities (12.4.1)
and (12.4.2). In fact we see that, in GLn, the Newton point of τ is

ντ = ((
−d
n

)n) ∈ X∗(T (GLn))Γp

Q ,

which clearly factors through the center of G. In the Siegel case,

ντ = ((
−1
2

)2n) ∈ X∗(T (GSp2n))Γp

Q .

Thus τ is basic in each case. �

We get the following, which of course we already knew in the Siegel case, by
Theorem 12.4.

Corollary 12.12. Let Sh be a “fake” unitary or Siegel modular Shimura
variety with level structure given by a standard parahoric subgroup Kp. Then the
basic locus of Sh is nonempty.

For (more detailed) information concerning the Newton stratification on some
other Shimura varieties, the reader might consult the work of Andreatta-Goren
[AG] and Goren-Oort [GOo].

13. The number of irreducible components in ShFp

Let Sh be a “fake” unitary or a Siegel modular variety with Iwahori-level struc-
ture as in §5. Recall that Mloc

Fp
is a connected variety with an Iwahori-orbit strati-

fication indexed by the finite subset Adm(µ) ⊂ W̃ , where µ = (0n−d, (−1)d), resp.
(0n, (−1)n). Its irreducible components are indexed by the maximal elements in
this set, namely by the translation elements tλ for λ belonging to the Weyl-orbit
Wµ of the coweight µ.

It is natural to hope that similar statements apply in some sense to Sh. The
varieties ShFp

and S̃hFp
are not geometrically connected (the number of connected

components of ShFp
depends on the choice of subgroup Kp ⊂ G(Ap

f ); see below).
Nevertheless the following two Lemmas (13.1 and 13.2) show that in every connected
component of Sh, all the KR-strata are nonempty.

Lemma 13.1 ([Ge], Prop. 1.3.2, in the Siegel case). If Sh is either a “fake”
unitary or a Siegel modular Shimura variety, and Kp is any standard parahoric
subgroup, then the morphism ψ : S̃h→ Mloc

Kp
is surjective.

Proof. First we claim that it suffices to prove the lemma for Ka
p , our stan-

dard Iwahori subgroup. Indeed, it is enough to observe that the following diagram
commutes

S̃hKa
p

ψ ��

��

Mloc

p

��
S̃hKp

ψ �� Mloc
Kp

,
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and that the right vertical arrow p is surjective on the level of KR-strata: every
AutKp

-orbit in Mloc
Kp

contains an element in the image of p; this follows from [KR],
Prop. 9.3, 10.6. See also [Go3].

Next consider the Siegel case with Iwahori level structure, where this result is
due to Genestier, loc. cit. We briefly recall his argument. It is easy to see that ψ
is surjective on generic fibers, because it is Aut-equivariant, and the generic fiber
of Mloc is a single orbit under Aut. Because ψ is smooth, the complement of its
image is an Aut-invariant, Zariski-closed subset of the special fiber of Mloc. On the
other hand, there is a unique closed (zero-dimensional) Aut-orbit (denoted here by
τ−1) in that fiber which belongs to the Zariski-closure of every other Aut-orbit, and
one can show (by writing down an explicit chain of supersingular abelian varieties)
that the point τ−1 belongs to the image of ψ. It follows that ψ is surjective.

In the “fake” unitary case with Iwahori-level structure, consider the element
τ from §12.4 above. Then the element τ−1 indexes the unique zero-dimensional
Aut-orbit in Mloc = M−w0µ. By Genestier’s argument, it is enough to prove that
τ−1 belongs to the image of ψ, or equivalently, the stratum Shτ is nonempty. But
we have proved in §12.4 that [δ] = [τ ] belongs to the image of δK0

p
. Furthermore,

it is obvious that Xτ (τ)
eKa

p
�= ∅, and hence by Proposition 12.6, we conclude that

Shτ ∩ S[τ ] �= ∅. (Note: Using the element τ ∈ W̃ (GSp2n), this argument applies
just as well to the Siegel case, thus providing an alternative to Genestier’s step of
finding an explicit chain of abelian varieties in the moduli problem which maps to
τ−1.) �

Recall that Sh is not a connected scheme. In fact, for our two examples, the
set of connected components of the geometric generic fiber ShQp

carries a simply
transitive action by the finite abelian group

π0 = Z+
(p)\(A

p
f )×/c(Kp) = Q+\A×

f /c(K
p)Z×

p = Q×\A×/c(KK∞),

where c : G → Gm is the similitude homomorphism, K∞ denotes the centralizer of
h0 in G(R), and the superscript + designates the positive elements of the set; cf.
[Del]. To see the groups above are actually isomorphic, use the fact that c(K∞) ⊃
R+ and c(Kp) = Z×

p , as one can easily check for each of our two examples. Fixing
isomorphisms Ap

f (1) = Ap
f and Qp = C once and for all, an element (A•, λ, i, η̄) ∈

Sh(Qp) belongs to the connected component indexed by a ∈ π0 if and only if the
Weil-pairing (·, ·)λ on H1(A,Ap

f ) pulls-back via η̄ to the pairing a(·, ·) on V ⊗ Ap
f ;

see [H3] §2.
Let Zp ⊂ Qp denote the subring of elements integral over Zp, and fix a ∈ π0.

Let Sh0 denote the moduli space (over e.g. Zp) of points (A•, λ, i, η̄) ∈ Sh such
that

η̄∗ (·, ·)λ = a(·, ·).

Lemma 13.2. Suppose Kp is any standard parahoric subgroup. Then the fibers
of Sh0 → Spec(Zp) are connected. Furthermore, the morphism ψ : S̃h0 → Mloc

Kp
is

surjective.

Proof. By [Del], the generic fiber Sh0
Qp

is connected. In the “fake” unitary

case, Sh0 → Spec(Zp) is proper and flat, and hence by the Zariski connectedness
principle (comp. [Ha], Ex. III.11.4), the special fiber is also connected. In the
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Siegel case Sh0 → Spec(Zp) is flat but not proper, so the same argument does
not apply (but see [CF] IV.5.10 when Kp is maximal hyperspecial). However, the
connectedness of the special fiber still holds and can be proved in an indirect way
from the p-adic monodromy theorem of [CF]; for details see [Yu].

The statement regarding surjectivity follows from the proof of Lemma 13.1:
the local model diagram does not “see” η̄, and so we can arrange matters so that
all constructions occur within Sh0 and S̃h0. �

From now on we assume Kp = Ka
p . The above lemma proves that in any

connected component Sh0, all KR-strata Sh0
w are nonempty.

In fact, because the KR-stratum Shτ is zero-dimensional, the nonemptiness
of Sh0

τ ∩ S[τ ] proves slightly more. The following statement is in some sense the
opposite extreme of the result of Genestier-Ngô in Corollary 8.3.

Corollary 13.3. In the “fake” unitary or the Siegel case with Kp = Ka
p , let

Sh0
τ denote the the zero-dimensional KR-stratum in a connected component Sh0.

Then Sh0
τ is nonempty and is contained in the basic locus of ShKa

p
.

How can we describe the irreducible components in Sh0
Fp

? These are clearly

just the closures of the irreducible components of the KR-strata Sh0
tλ

, as λ ranges
over the Weyl-orbit Wµ. A priori, each of these maximal KR-strata might be the
(disjoint) union of several irreducible components, all having the same dimension.

Corollary 13.4. In the Siegel or “fake” unitary case, Sh0
Fp

is equidimen-
sional, and the number of irreducible components is at least #Wµ.

In the Siegel case, a much more precise statement has been established by C.-F.
Yu [Yu], answering in the affirmative a question raised in [deJ].

Theorem 13.5 ([Yu]). In the Siegel case with Kp = Ka
p , each maximal KR-

stratum Sh0
tλ

is irreducible. Hence Sh0
Fp

has exactly 2n irreducible components. An
analogous statement holds for any standard parahoric subgroup Kp.

It is reasonable to expect that similar methods will apply to the “fake” unitary
case to prove that the number of irreducible components in Sh0

Fp
is exactly #Wµ.

In fact, it would be interesting to determine whether this last statement remains
true for any PEL Shimura variety attached to a group whose p-adic completion is
unramified.

14. Appendix: Summary of Dieudonné theory and de Rham and
crystalline cohomology for abelian varieties

This summary is extracted from some standard references – [BBM], [Dem],
[Fon], [Il], [MaMe], [Me], and [O] – as well as from [deJ].

14.1. de Rham cohomology and the Hodge filtration. To an abelian
scheme a : A→ S of relative dimension g is associated the de Rham complex Ω•

A/S

of OA-modules. We define the de Rham cohomology sheaves

Ria∗(Ω•
A/S).

The first de Rham cohomology sheaf

R1a∗(Ω•
A/S)
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is a locally free OS-module of rank 2g. If S is the spectrum of a Noetherian ring
R, then

H1
DR(A/S) := H1(A,Ω•

A/S) = Γ(S,R1a∗(Ω•
A/S))

is a locally free R-module of rank 2g.
The Hodge-de Rham spectral sequence degenerates at E1 ([BBM], §2.5), yield-

ing the exact sequence

0 → R0a∗(Ω1
A/S) → R1a∗(Ω•

A/S) → R1a∗(OA) → 0.

We define ωA := R0a∗(Ω1
A/S), a locally free sub-OS-module of rank g. The term

R1a∗(OA) may be identified with Lie(Â), the Lie algebra of the dual abelian scheme
Â/S. It is also locally free of rank g. Thus we have the Hodge filtration on de Rham
cohomology

0 → ωA → R1a∗(Ω•
A/S) → Lie(Â) → 0.

Recall that in our formulation of the moduli problem defining Sh(G, h)Kp
, the

important determinant condition refers to the Lie algebra Lie(A), and not to Lie(Â).
Because of this it is convenient (although not, strictly-speaking, necessary) to work
with the covariant analogue M(A) of R1a∗(Ω•

A/S). To define it, recall that for any
OS-module N , we define the dual OS-module N∨ by

N∨ := HomOS
(N,OS).

Let M(A) := (R1a∗(Ω•
A/S))∨ be the dual of de Rham cohomology. This is a locally

free OS-module of rank 2g. By the proposition below, we can identify ω∨
A = Lie(A)

and so the Hodge filtration on M(A) takes the form

0 → Lie(Â)∨ →M(A) → Lie(A) → 0.

It is sometimes convenient to denote D(A)S := R1a∗(ΩA/S) (this notation refers
to crystalline cohomology, see [BBM], [Il]).

Proposition 14.1 ([BBM], Prop. 5.1.10). There is a commutative diagram
whose vertical arrows are isomorphisms

0 �� Lie(Â)∨ ��

∼=
��

D(A)∨S ��

∼=
��

ω∨
A

��

∼=
��

0

0 �� ω
bA

�� D(Â)S
�� Lie(A) �� 0.

14.2. Crystalline cohomology. Let kr = Fpr be a finite field with ring of
Witt vectors W (kr). The fraction field Lr of W (kr) is an unramified extension of
Qp and its Galois group is the cyclic group of order r generated by the Frobenius
element σ : x �→ xp; note also that σ acts on Witt vectors by the rule σ(a0, a1, . . . ) =
(ap

0, a
p
1, . . . ).

Let A be an abelian variety over kr of dimension g. We have the integral
isocrystal associated to A/kr, given by the data

D(A) = (H1
crys(A/W (kr)), F, V ).

Here the crystalline cohomology group H1
crys(A/W (kr)) is a free W (kr)-module

of rank 2g, equipped with a σ-linear endomorphism F (“Frobenius”) and the
σ−1-linear endomorphism V (“Verschiebung”) which induce bijections on
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H1
crys(A/W (kr))⊗W (kr) Lr. We have the identity FV = V F = p (by definition of

V ), hence the inclusions of W (kr)-lattices

H1
crys(A/W (kr)) ⊃ FH1

crys(A/W (kr)) ⊃ pH1
crys(A/W (kr))

(as well as the analogous inclusions for V replacing F ).
The endomorphism F has the property that F r = πA on H1

crys, where πA

denotes the absolute Frobenius morphism of A relative to the field of definition kr

(on projective coordinates xi for A, πA induces the map xi �→ xpr

i ).

14.3. Relation with Dieudonné theory. The crystalline cohomology of
A/kr is intimately connected to the (contravariant) Dieudonné module of the p-
divisible group A[p∞] := lim−→A[pn], the union of the sub-groupschemes A[pn] =
ker(pn : A → A). Recall that the classical contravariant Dieudonné functor G �→
D(G) establishes an exact anti-equivalence between the categories{

p-divisible groups G = lim−→Gn over kr

}
and

{free W (kr)-modules M = lim←−M/pnM , equipped with operators F, V };

see [Dem], [Fon]. Here F and V are σ- resp. σ−1-linear, inducing bijections on
M ⊗W (kr) Lr.

The crystalline cohomology of A/kr, together with the operators F and V , is
the same as the Dieudonné module of the p-divisible group A[p∞], in the sense that
there is a canonical isomorphism

(14.3.1) H1
crys(A/W (kr)) ∼= D(A[p∞])

which respects the endomorphisms F and V on both sides, cf. [BBM]. Moreover,
we have the following identifications

(14.3.2) D(A)kr
:= H1

crys(A/W (kr))⊗W (kr) kr
∼= H1

DR(A/kr) ∼= D(A[p]).

The second isomorphism is due to Oda [O]; see below. The first isomorphism is a
standard fact ([BBM]), but can also be deduced via Oda’s theorem by reducing
equation (14.3.1) modulo p: the exactness of the functor D implies that D(A[p]) =
D(A[p∞])/pD(A[p∞]) = D(A[p∞]) ⊗W (kr) kr. In particular, the kr-vector space
H1

DR(A/kr) inherits endomorphisms F and V (σ- resp. σ−1-linear).
The theorem of Oda [O] includes as well the relation between the Hodge fil-

tration on the de Rham cohomology of A and a suitable filtration on the isocrystal
D(A).

Theorem 14.2 ([O], Cor. 5.11). There is a natural isomorphism ψ : D(A)kr
→̃

H1
DR(A/kr), and under this isomorphism, V D(A)kr

is taken to ωA. In particular
there is an exact sequence

0 → V D(A) → D(A) → Lie(Â) → 0.
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14.4. Remarks on duality. We actually make use of this in a dual formula-
tion. Define H = H(A) to be the W (kr)-linear dual of the isocrystal D(A)

(14.4.1) H(A) = HomW (kr)(D(A),W (kr)),

and define HLr
= H(A)Lr

= H(A)⊗W (kr) Lr. Letting 〈 , 〉 : H × D(A) → W (kr)
denote the canonical pairing, we define σ- resp. σ−1-linear injections F resp. V on
H (they are bijective on HLr

) by the formulae

〈Fu, a〉 = σ〈u, V a〉(14.4.2)

〈V u, a〉 = σ−1〈u, Fa〉(14.4.3)

for u ∈ H and a ∈ D(A) = H1
crys(A/W (kr)).

Of course H(A)kr
:= H ⊗W (kr) kr is the kr-linear dual of D(A)kr

, hence

H(A)kr
= M(A/kr).

Lemma 14.3. Let S = Spec(kr). Equip H = D(A)∨ with operators F, V as in
(14.4.2). Then the isomorphism

D(A)∨kr
→̃ D(Â)kr

of Proposition 14.1 is an isomorphism of W (kr)[F, V ]-modules.

Proof. From [Dem], Theorem 8 (p. 71), for a p-divisible group G with Serre
dual G′ (loc. cit., p. 46) there is a duality pairing in the category of W (kr)[F, V ]-
modules

〈 , 〉 : D(G′)×D(G) →W (kr)(−1)
where W (kr)(−1) is the isocrystal with underlying space W (kr) and σ-linear endo-
morphism pσ. That is, we have the identity

〈FG′x, FGy〉 = pσ〈x, y〉,
or

〈FG′x, y〉 = σ〈x, pF−1
G y〉 = σ〈x, VGy〉.

There is a canonical identification

(A[p∞])′ = Â[p∞].

Now from the above pairing with G = A[p∞] and (14.3.1) we deduce a duality
pairing of W (kr)[F, V ]-modules

D(Â)× D(A) →W (kr)(−1),

which induces the isomorphism of Proposition 14.1. The lemma follows from these
remarks. �

Applying Oda’s theorem (14.2) to Â and invoking the above lemma gives
Lie(Â)∨ = VM(A/kr), thus there is an exact sequence

0 → V H(A) → H(A) → Lie(A) → 0.

Thus, we have

Corollary 14.4. Let F, V be the σ- resp. σ−1-linear endomorphisms of H =
H(A) defined in (14.4.2). There is a natural isomorphism

V −1 H

H
= σ(Lie(A)).

Moreover, on HLr
we have the identity V −r = π−1

A . (Comp. [Ko92], §10, 16.)
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niveau de type Γ0(p), Compositio Math. 123 (2000), no. 3, 303-328.
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A Statement of the Fundamental Lemma

Thomas C. Hales

Abstract. These notes give a statement of the fundamental lemma, which is

a conjectural identity between p-adic integrals.

1. Introduction

Notation. Let F be a p-adic field, given either as a finite field extension of Qp, or
as the field F = Fq((t)). Let Fq (a finite field with q elements and characteristic p)
be the residue field of F . Let F̄ be a fixed algebraic closure of F . Let Fun be the
maximal unramified extension of F in F̄ . For simplicity, we also assume that the
characteristic of F is not 2.

The fundamental lemma pertains to groups that satisfy a series of hypotheses.
Here is the first.

Assumption 1.1. G is a connected reductive linear algebraic group that is
defined over F .

The following examples give the F -points of three different families of connected
reductive linear algebraic groups: orthogonal, symplectic, and unitary groups.

Example 1.2. Let M(n, F ) be the algebra of n by n matrices with coefficients
in F . Let J ∈ M(n, F ) be a symmetric matrix with nonzero determinant. The
special orthogonal group with respect to the matrix J is

SO(n, J, F ) = {X ∈M(n, F ) | tXJX = J, det(X) = 1}.

Example 1.3. Let J ∈ M(n, F ), with n = 2k, be a skew-symmetric matrix
tJ = −J with nonzero determinant. The symplectic group with respect to J is
defined in a similar manner:

Sp(2k, J, F ) = {X ∈M(2k, F ) | tXJX = J}.

Example 1.4. Let E/F be a separable quadratic extension. Let x̄ be the
Galois conjugate of x ∈ E with respect to the nontrivial automorphism of E fixing
F . For any A ∈ M(n,E), let Ā be the matrix obtained by taking the Galois
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conjugate of each coefficient of A. Let J ∈ M(n,E) satisfy tJ̄ = J and have a
nonzero determinant. The unitary group with respect to J and E/F is

U(n, J, F ) = {X ∈M(n,E) | tX̄JX = J}.

The algebraic groups SO(n, J), Sp(2k, J), and U(n, J) satisfy Assumption 1.1.

Assumption 1.5. G splits over an unramified field extension.

That is, there is an unramified extension F1/F such that G×F F1 is split.

Example 1.6. In the first two examples above (orthogonal and symplectic), if
we take J to have the special form

(1.6.1) J =

0 0 ∗
0 ∗ 0
∗ 0 0


(that is, nonzero entries from F along the cross-diagonal and zeros elsewhere), then
G splits over F . In the third example (unitary), if J has this same form and if E/F
is unramified, then the unitary group splits over the unramified extension E of F .

Assumption 1.7. G is quasi-split.

This means that there is an F -subgroup B ⊂ G such that B ×F F̄ is a Borel
subgroup of G×F F̄ .

Example 1.8. In all three cases (orthogonal, symplectic, and unitary), if J has
the cross-diagonal form 1.6.1, then G is quasi-split. In fact, we can take the points
of B to be the set of upper triangular matrices in G(F ).

Assumption 1.9. K is a hyperspecial maximal compact subgroup of G(F ), in
the sense of Definition 1.11.

Example 1.10. Let OF be the ring of integers of F and let K = GL(n,OF ).
This is a hyperspecial maximal compact subgroup of GL(n, F ).

Definition 1.11. K is hyperspecial if there exists G such that the following
conditions are satisfied.

• G is a smooth group scheme over OF ,
• G = G ×OF

F ,
• G ×OF

Fq is reductive,
• K = G(OF ).

Example 1.12. In all three examples (orthogonal, symplectic, and unitary),
take G to have the form of Example 1.6. Assume that each cross-diagonal entry is
a unit in the ring of integers. Assume further that the residual characteristic is not
2. Then the equations

tXJX = J (or in the unitary case tX̄JX = J)

define a group scheme G over OF , and G(OF ) is hyperspecial.
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2. Classification of Unramified Reductive Groups

Definition 2.1. If G is quasi-split and splits over an unramified extension
(that is, if G satisfies Assumptions 1.5 and 1.7), then G is said to be an unramified
reductive group.

Let G be an unramified reductive group. It is classified by data (called root
data)

(X∗, X∗,Φ,Φ∨, σ).
The data are as follows:

• X∗ is the character group of a Cartan subgroup of G.
• X∗ is the cocharacter group of the Cartan subgroup.
• Φ ⊂ X∗ is the set of roots.
• Φ∨ ⊂ X∗ is the set of coroots.
• σ is an automorphism of finite order of X∗ sending a set of simple roots

in Φ to itself.
σ is obtained from the action on the character group induced from the

Frobenius automorphism of Gal(Fun/F ) on the maximally split Cartan
subgroup in G.

The first four elements (X∗, X∗,Φ,Φ∨) classify split reductive groups G over
F . For such groups σ = 1.

3. Endoscopic Groups

H is an unramified endoscopic group of G if it is an unramified reductive group
over F whose classifying data has the form

(X∗, X∗,ΦH ,Φ∨
H , σH).

The first two entries are the same for G as for H. To distinguish the data for H
from that for G, we add subscripts H or G, as needed. The data for H are subject
to the constraints that there exists an element s ∈ Hom(X∗,C×) and a Weyl group
element w ∈W (ΦG) such that

• Φ∨
H = {α ∈ Φ∨

G | s(α) = 1},
• σH = w ◦ σG, and
• σH(s) = s.

3.1. Endoscopic groups for SL(2). As an example, we determine the un-
ramified endoscopic groups of G = SL(2). The character group X∗ can be identified
with Z, where n ∈ Z is identified with the character on the diagonal torus given by(

t 0
0 t−1

)
�→ tn.

The set Φ can be identified with the subset {±2} of Z:(
t 0
0 t−1

)
�→ t±2.

The cocharacter group X∗ is also identified with Z, where n ∈ Z is identified with

t �→
(
tn 0
0 t−n

)
.

Under this identification Φ∨ = {±1}. Since the group is split, σ = 1.
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We get an unramified endoscopic group by selecting s ∈ Hom(X∗,C×) ∼= C×

and w ∈W (Φ).

(3.0.1) Φ∨
H = {α | s(α) = 1} = {n ∈ {±1} | sn = 1}

= if (s = 1) then Φ∨
G, else ∅.

We consider two cases, according as w is nontrivial or trivial. If w is the
nontrivial reflection, then σH = w acts by negation on Z. Thus,

(σH(s) = s) =⇒ (s−1 = s) =⇒ (s = ±1).

If s = 1, then σH does not fix a set of simple roots as required. So s = −1 and
Φ∨

H = ∅. Thus, H has root data

(Z,Z, ∅, ∅, w)

This determines H up to isomorphism as H = UE(1), a 1-dimensional torus split
by an unramified quadratic extension E/F .

If w is trivial, then there are two further cases, according as ΦH is empty or
not:

• The endoscopic group Gm has root data

(Z,Z, ∅, ∅, 1).

• The endoscopic group H = SL(2) has root data

(Z,Z, {±2}, {±1}, 1).

In summary, the three unramified endoscopic groups of SL(2) are UE(1), Gm,
and SL(2) itself.

3.2. Endoscopic groups for PGL(2). As a second complete example, we
determine the endoscopic groups of PGL(2). The group PGL(2) is dual to SL(2)
in the sense that the coroots of one group can be identified with the roots of the
other group. PGL(2) has root data

(Z,Z, {±1}, {±2}, 1).

When the Weyl group element is trivial, then the calculation is almost identical
to the calculation for SL(2). We find that there are again two cases, according as
ΦH is empty or not:

• The endoscopic group Gm has root data

(Z,Z, ∅, ∅, 1).

• The endoscopic group H = PGL(2) has root data

(Z,Z, {±1}, {±2}, 1).

When the Weyl group element w is nontrivial, then s ∈ {±1}, as in the SL(2)
calculation.

(3.0.2) Φ∨
H = {α | s(α) = 1} = {n ∈ {±2} | sn = 1} = Φ∨

G.

From this, we see that picking w to be nontrivial is incompatible with the require-
ment that σH = w must fix a set of simple roots. Thus, there are no endoscopic
groups with w nontrivial.

In summary, the two endoscopic groups of PGL(2) are Gm and PGL(2) itself.
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3.3. Elliptic Endoscopic groups.

Definition 3.1. An unramified endoscopic group H is said to be elliptic if

(RΦG)W (ΦH)�〈σH〉 = (0).

That is, the span of the set of roots of G has no invariant vectors under the Weyl
group of H and the automorphism σH .

The origin of the term elliptic is the following. We will see below that each Car-
tan subgroup of H is isomorphic to a Cartan subgroup of G. (Here and elsewhere,
when we speak of an isomorphism between algebraic groups defined over F , we
mean an isomorphism over F .) The condition on H for it to be elliptic is precisely
the condition that is needed for some Cartan subgroup of H to be isomorphic to
an elliptic Cartan subgroup of G.

Example 3.2. We calculate the elliptic unramified endoscopic subgroups of
SL(2). We may identify RΦ with R{±2} and hence with R. An unramified en-
doscopic group is elliptic precisely when W (ΦH) or 〈σH〉 contains the nontrivial
reflection x �→ −x. When H = SL(2), the Weyl group contains the nontrivial
reflection. When H = UE(1), the element σH is the nontrivial reflection. But when
H = Gm, both W (ΦH) and 〈σH〉 are trivial. Thus, H = SL(2) and H = UE(1) are
elliptic, but H = Gm is not.

3.4. An exercise: elliptic endoscopic groups of unitary groups. This
exercise is a calculation of the elliptic unramified endoscopic groups of U(n, J). We
assume that J is a cross-diagonal matrix with units along the cross-diagonal as in
Section 1.6.1. We give a few facts about the endoscopic groups of U(n, J) and leave
it as an exercise to fill in the details.

Let T = {diag(t1, . . . , tn)} be the group of diagonal n by n matrices. The
character group X∗ can be identified with Zn in such a way that the character

diag(t1, . . . , tn) �→ tk1
1 · · · tkn

n

is identified with (k1, . . . , kn).
The cocharacter group can be identified with Zn in such a way that the cochar-

acter
t �→ diag(tk1 , . . . , tkn)

is identified with (k1, . . . , kn).
Let ei be the basis vector of Zn whose j-th entry is Kronecker δij . The set of

roots can be identified with

Φ = {ei − ej | i �= j}.
The set of coroots Φ∨ can be identified with the set of roots Φ under the isomor-
phism X∗ ∼= Zn ∼= X∗.

We may identify Hom(X∗,C×) with Hom(Zn,C×) = (C×)n. Thus, we take the
element s in the definition of endoscopic group to have the form s = (s1, . . . , sn) ∈
(C×)n. The element σ = σG acts on characters and cocharacters by

σ(k1, . . . , kn) = (−kn, . . . ,−k1).

Let I = {1, . . . , n}. Show that if H is an elliptic unramified endoscopic group,
then there is a partition

I = I1
∐

I2
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with si = 1 for i ∈ I1 and si = −1 otherwise. The elliptic endoscopic group is a
product of two smaller unitary groups H = U(n1) × U(n2), where ni = #Ii, for
i = 1, 2.

4. Cartan subgroups

All unramified reductive groups are classified by their root data. This includes
the classification of unramified tori T as a special case (in this case, the set of roots
and the set of coroots are empty):

(X∗(T ), X∗(T ), ∅, ∅, σ).

We can extend this classification to ramified tori. If T is any torus over F , it is
classified by

(X∗(T ), X∗(T ), ρ),
where ρ is now allowed to be any homomorphism

ρ : Gal(F̄ /F ) → Aut(X∗(T ))

with finite image.
A basic fact is that T embeds over F as a Cartan subgroup in a given unramified

reductive group G if and only if the following two conditions hold.
• The image of ρ in Aut(X∗(T )) is contained in W (ΦG) � 〈σG〉.
• There is a commutative diagram:

Gal(F̄ /F ) −−−−→ Gal(Fun/F )

ρ

; ;Frob �→σG

W (ΦG) � 〈σG〉 −−−−−→
w�τ �→τ

〈σG〉.

It follows that every Cartan subgroup TH of H is isomorphic over F to a Cartan
subgroup TG of G. (To check this, simply observe that these two conditions are
more restrictive for H than the corresponding conditions for G.) The isomorphism
can be chosen to induce an isomorphism of Galois modules between the character
group (and cocharacter group) of TH and that of TG.

We say that a semisimple element in a reductive group is strongly regular, if its
centralizer is a Cartan subgroup. If γ ∈ H(F ) is strongly regular semisimple, then
its centralizer TH is isomorphic to some TG ⊂ G. Let γ0 ∈ TG(F ) ⊂ G(F ) be the
element in G(F ) corresponding to γ ∈ TH(F ) ⊂ H(F ), under this isomorphism.

Remark 4.1. The element γ0 is not uniquely determined by γ. The Cartan
subgroup TG can always be replaced with a conjugate g−1 TG g, g ∈ G(F ), without
altering the root data. However, the non-uniqueness runs deeper than this. An
example will be worked in Section 8.1 to show how to deal with the problem of
non-uniqueness. Non-uniqueness of γ0 is related to stable conjugacy, which is our
next topic.

5. Stable Conjugacy

Definition 5.1. Let δ and δ′ be strongly regular semisimple elements in G(F ).
They are conjugate if g−1δg = δ′ for some g ∈ G(F ). They are stably conjugate if
g−1δg = δ′ for some g ∈ G(F̄ ).
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Example 5.2. Let G = SL(2) and F = Qp. Assume that p �= 2 and that u is
a unit that is not a square in Qp. Let ε =

√
u in an unramified quadratic extension

of Qp. We have the matrix calculation(
1 + p 1

2p + p2 1 + p

)(
ε 0
0 ε−1

)
=
(
ε 0
0 ε−1

)(
1 + p u−1

(2p + p2)u 1 + p

)
.

This matrix calculation shows that the matrices

(5.2.1)
(

1 + p 1
2p + p2 1 + p

)
and

(
1 + p u−1

(2p + p2)u 1 + p

)
of SL(2,Qp) are stably conjugate. The diagonal matrix that conjugates one to the
other has coefficients that lie in a quadratic extension. A short calculation shows
that the matrices 5.2.1 are not conjugate by a matrix of SL(2,Qp).

5.1. Cocycles. Let γ0 and γ′ be stably conjugate strongly regular semisimple
elements of G(F ). We view γ0 as a fixed base point and γ′ as variable. If τ ∈
Gal(F̄ /F ), then

(5.2.2)

g−1γ0g = γ′, (with g ∈ G(F̄ ), γ0, γ
′ ∈ G(F ))

τ(g)−1τ(γ0)τ(g) = τ(γ′),
τ(g)−1γ0τ(g) = g−1γ0g,
γ0

(
τ(g)g−1

)
=
(
τ(g)g−1

)
γ0,

γ0aτ = aτγ0, with aτ = τ(g)g−1.

The element aτ centralizes γ0 and hence gives an element of the centralizer T .
Viewed as a function of τ ∈ Gal(F̄ /F ), aτ satisfies the cocycle relation

τ1(aτ2)aτ1 = aτ1τ2 .

It is continuous in the sense that there exists a field extension F1/F for which
aτ = 1, for all τ ∈ Gal(F̄ /F1). Thus, aτ gives a class in

H1(Gal(F̄ /F ), T (F̄ )),

which is defined to be the group of all continuous cocycles with values in T , modulo
the subgroup of all continuous cocycles of the form

bτ = τ(t)t−1,

for some t ∈ T (F̄ ).
A general calculation of the group H1(Gal(F̄ /F ), T ) is achieved by the Tate-

Nakayama isomorphism. Let F1/F be a Galois extension that splits the Cartan
subgroup T .

Theorem 5.3 (Tate-Nakayama isomorphism [27]). The cohomology group

H1(Gal(F̄ /F ), T )

is isomorphic to the quotient of the group

{u ∈ X∗ |
∑

τ∈Gal(F1/F )

τu = 0}

by the subgroup generated by the set

{u ∈ X∗ | ∃τ ∈ Gal(F1/F ) ∃v ∈ X∗. u = τv − v}.
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Example 5.4. Let T = UE(1) (the torus that made an appearance earlier as
an endoscopic group of SL(2)). As was shown above, the group of cocharacters can
be identified with Z. The splitting field of T is the quadratic extension field E. The
nontrivial element τ ∈ Gal(E/F ) acts by reflection on X∗ ∼= Z: τ(u) = −u. By the
Tate-Nakayama isomorphism, the group H1(Gal(F̄ /F ), UE(1)) is isomorphic to

{u ∈ Z | u + τu = 0}/{u ∈ Z | ∃v. u = τv − v} = Z/2Z.

Let H be an unramified endoscopic group of G. Suppose that TH is a Cartan
subgroup of H. Let TG be an isomorphic Cartan subgroup in G. The data defining
H includes the existence of an element s ∈ Hom(X∗,C×); that is, a character of
the abelian group X∗. Fix one such character s. We can restrict this character to
get a character of

{u ∈ X∗ |
∑

τ∈Gal(F1/F )

τu = 0}.

It can be shown that the character s is trivial on

{u ∈ X∗ | ∃τ ∈ Gal(F1/F ) ∃v ∈ X∗. u = τv − v}.
Thus, by the Tate-Nakayama isomorphism, the character s determines a character
κ of the cohomology group

H1(Gal(F̄ /F ), T ).
In this way, each cocycle aτ gives a complex constant κ(aτ ) ∈ C×.

Example 5.5. The element s ∈ C× giving the endoscopic group H = UE(1) of
SL(2) is s = −1, which may be identified with the character n �→ (−1)n of Z. This
gives the nontrivial character κ of

H1(Gal(F̄ /F ), UE(1)) ∼= Z/2Z.

6. Statement of the Fundamental Lemma

6.1. Context. Let G be an unramified connected reductive group over F . Let
H be an unramified endoscopic group of G. Let γ ∈ H(F ) be a strongly regular
semisimple element. Let TH = CH(γ), and let TG be a Cartan subgroup of G that
is isomorphic to it. More details will be given below about how to choose TG. The
choice of TG matters! Let γ ∈ TH(F ) map to γ0 ∈ TG(F ) under this isomorphism.

By construction, γ0 is semisimple. However, as G may have more roots than
H, it is possible for γ0 to be singular, even when γ is strongly regular. If γ ∈ H(F )
is a strongly regular semisimple element with the property that γ0 is also strongly
regular, then we will call γ a strongly G-regular element of H(F ).

If γ′ is stably conjugate to γ0 with cocycle aτ , then s ∈ Hom(X∗,C×) gives
κ(aτ ) ∈ C×.

Let KG and KH be hyperspecial maximal compact subgroups of G and H. Let
χG,K and χH,K be the characteristic functions of these hyperspecial subgroups. Set

ΛG,H(γ) =(6.0.1)∏
α∈ΦG

|α(γ0)− 1|1/2

[
vol(KT , dt)
vol(K, dg)

] ∑
γ′∼γ0

κ(aτ )
∫

CG(γ′,F )\G(F )

χG,K(g−1γ′g)
dg

dt′
.

The set of roots ΦG are taken to be those relative to TG. The sum runs over all
stable conjugates γ′ of γ0, up to conjugacy. This is a finite sum. The group KT

is defined to be the maximal compact subgroup of TG. Equation 6.0.2 is a finite
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linear combination of orbital integrals (that is, integrals over conjugacy classes
in the group with respect to an invariant measure). The Haar measures dt′ on
CG(γ′, F ) and dt on TG(F ) are chosen so that stable conjugacy between the two
groups is measure preserving. This particular linear combination of integrals is
called a κ-orbital integral because of the term κ(aτ ) that gives the coefficients of
the linear combination. Note that the integration takes place in the group G, and
yet the parameter γ is an element of H(F ).

The volume terms vol(K, dg) and vol(KT , dt) serve no purpose other than to
make the entire expression independent of the choice of Haar measures dg and dt,
which are only defined up to a scalar multiple.

We can form an analogous linear combination of orbital integrals on the group
H. Set

Λst
H(γ) =(6.0.2) ( ∏

α∈ΦH

|α(γ)− 1|1/2

)[
vol(KT , dt)
vol(KH , dh)

] ∑
γ′∼γ

∫
CH(γ′,F )\H(F )

χH,K(h−1γ′h)
dh

dt′
.

This linear combination of integrals is like ΛG,H(γ), except that H replaces G,
KH replaces KG, ΦH (taken relative to TH) replaces ΦG, and so forth. Also, the
factor κ(aτ ) has been dropped. The linear combination of Equation 6.0.3 is called a
stable orbital integral, because it extends over all stable conjugates of the element
γ without the factor κ. The superscript st in the notation is for ‘stable.’

Conjecture 6.1. (The fundamental lemma) For every γ ∈ H(F ) that is
strongly G-regular semisimple,

ΛG,H(γ) = Λst
H(γ).

Remark 6.2. There have been serious efforts over the past twenty years to
prove the fundamental lemma. These efforts have not yet led to a proof. Thus, the
fundamental lemma is not a lemma; it is a conjecture with a misleading name. Its
name leads one to speculate that the authors of the conjecture may have severely
underestimated the difficulty of the conjecture.

Remark 6.3. Special cases of the fundamental lemma have been proved. The
case G = SL(n) was proved by Waldspurger [28]. Building on the work of [5],
Laumon has proved that the fundamental lemma for G = U(n) follows from a
purity conjecture [21]. The fundamental lemma has not been proved for any other
general families of groups. The fundamental lemma has been proved for some
groups G of small rank, such as SU(3) and Sp(4). See [2], [7], [10].

6.2. The significance of the fundamental lemma. The Langlands pro-
gram predicts correspondences π ↔ π′ between the representation theory of dif-
ferent reductive groups. There is a local program for the representation theory of
reductive groups over locally compact fields, and a global program for automorphic
representations of reductive groups over the adele rings of global fields.

The Arthur-Selberg trace formula has emerged as a powerful tool in the Lang-
lands program. In crude terms, one side of the trace formula contains terms related
to the characters of automorphic representations. The other side contains terms
such as orbital integrals. Thanks to the trace formula, identities between orbital
integrals on different groups imply identities between the representations of the two
groups.
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It is possible to work backwards: from an analysis of the terms in the trace
formula and a precise conjecture in representation theory, it is possible to make
precise conjectures about identities of orbital integrals. The most basic identity
that appears in this way is the fundamental lemma, articulated above.

The proofs of many major theorems in automorphic representation theory de-
pend in one way or another on the proof of a fundamental lemma. For example, the
proof of Fermat’s Last Theorem depends on Base Change for GL(2), which in turn
depends on the fundamental lemma for cyclic base change [17]. The proof of the
local Langlands conjecture for GL(n) depends on automorphic induction, which in
turn depends on the fundamental lemma for SL(n) [11], [12], [28]. Properties of
the zeta function of Picard modular varieties depend on the fundamental lemma
for U(3) [26], [2]. Normally, the dependence of a major theorem on a particular
lemma would not be noteworthy. It is only because the fundamental lemma has
not been proved in general, and because the lack of proof has become a serious
impediment to progress in the field, that the conjecture has become the subject of
increased scrutiny.

7. Reductions

To give a trivial example of the fundamental lemma, if γ and γ0 and their stable
conjugates are not in any compact subgroup, then

χG,K(g−1γ′g) = 0 and χH,K(h−1γ′h) = 0

so that both ΛG,H(γ) and Λst
H(γ) are zero. Thus, the fundamental lemma holds for

trivial reasons for such γ.

7.1. Topological Jordan decomposition. A somewhat less trivial reduc-
tion of the problem is provided by the topological Jordan decomposition. Suppose
that γ lies in a compact subgroup. It can be written uniquely as a product

γ = γsγu = γuγs,

where γs has finite order, of order prime to the residue field characteristic p, and
γu is topologically unipotent. That is,

lim
n→∞

γpn

u = 1.

The limit is with respect to the p-adic topology. A special case of the topological
Jordan decomposition γ ∈ O×

F ⊂ Gm(F ) is treated in [13, p20]. In that case, γs is
defined by the formula

γs = lim
n→∞

γqn

.

Let γ, γ0, and γ′ be chosen as in Section 6.1. Each of these elements has a
topological Jordan decomposition. Let Gs = CG(γ0s) and Hs = CH(γs). It turns
out that Gs is an unramified reductive group with unramified endoscopic group Hs.
Descent for orbital integrals gives the formulas [20] [8]

ΛG,H(γ) = ΛGs,Hs
(γu)

Λst
H(γ) = Λst

Hs
(γu).

This reduces the fundamental lemma to the case that γ is a topologically unipotent
element.
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7.2. Lie algebras. It is known (at least when the p-adic field F has char-
acteristic zero), that the fundamental lemma holds for fields of arbitrary residual
characteristic provided that it holds when the p-adic field has sufficiently large
residual characteristic [9]. Thus, if we are willing to restrict our attention to fields
of characteristic zero, we may assume that the residual characteristic of F is large.
In fact, in our discussion of a reduction to Lie algebras in this section, we simply
assume that the characteristic of F is zero.

A second reduction is based on Waldspurger’s homogeneity results for classical
groups. (Homogeneity results have since been reworked and extended to arbitrary
reductive groups by DeBacker, again assuming mild restrictions on G and F .)

When the residual characteristic is sufficiently large, there is an exponential
map from the Lie algebra to the group that has every topologically unipotent ele-
ment in its image. Write

γu = exp(X),

for some element X in the Lie algebra. We may then consider the behavior of
orbital integrals along the curve exp(λ2X). A difficult result of Waldspurger for
classical groups states that if |λ| ≤ 1, then

ΛG,H(exp(λ2X)) =
∑

ai|λ|i
Λst

H(exp(λ2X)) =
∑

bi|λ|i;
that is, both sides of the fundamental lemma identity are polynomials in |λ|. If a
polynomial identity holds when |λ| < ε for some ε > 0, then it holds for all |λ| ≤ 1.
In particular, it holds at γu for λ = 1. The polynomial growth of orbital integrals
makes it possible to prove the fundamental lemma in a small neighborhood of the
identity element, and then conclude that it holds in general. In this manner, the
fundamental lemma can be reduced to a conjectural identity in the Lie algebra.

8. The problem of base points

The fundamental lemma was formulated above with one omission: we never
made precise how to fix an isomorphism TH ↔ TG between Cartan subgroups in
H and G. Such isomorphisms exist, because the two Cartan subgroups have the
same root data. But the statement of the fundamental lemma is sensitive to how
an isomorphism is selected between TH and a Cartan subgroup of G. If we change
the isomorphism, we change the κ-orbital integral by a root of unity ζ ∈ C×. The
correctly chosen isomorphism will depend on the element γ ∈ H(F ).

The ambiguity of the isomorphism was removed by Langlands and Shelstad in
[19]. They define a transfer factor ∆(γH , γG), which is a complex valued function
on H(F ) × G(F ). The transfer factor can be defined to have the property that it
is zero unless γH ∈ H(F ) is strongly regular semisimple, γG ∈ G(F ) is strongly
regular semisimple, and there exists an isomorphism (preserving character groups)
from the centralizer of γH to the centralizer of γG. There exists γ0 ∈ G(F ) such
that

(8.0.1) ∆(γH , γ0) = 1.

The correct formulation of the fundamental lemma is to pick the base point γ0 ∈
G(F ) so that Condition 8.0.1 holds.

For classical groups, Waldspurger gives a simplified formula for the transfer
factor ∆ in [31]. Furthermore, because of the reduction of the fundamental lemma
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to the Lie algebra (Section 7.2), the transfer factor may be expressed as a function
on the Lie algebras of G and H, rather than as a function on the group.

8.1. Base points for unitary groups. More recently, Laumon (while work-
ing on the fundamental lemma for unitary groups) observed a similarity between
Waldspurger’s simplified formula for the transfer factor and the explicit formula for
differents that is found in [27]. In this way, Laumon found a simple description
of the matching condition γ ↔ γ0 implicit in the statement of the fundamental
lemma.

9. Geometric Reformulations of the Fundamental Lemma

From early on, those trying to prove the fundamental lemma have sought geo-
metric interpretations of the identities of orbital integrals. Initially these geometric
interpretations were rather crude. In the hands of Goresky, Kottwitz, MacPherson,
and Laumon these geometric interpretations have become increasingly sophisticated
[5], [6], [21], [22].

This paper is intended to give an introduction to the fundamental lemma, and
the papers giving a geometric interpretation of the fundamental lemma do not
qualify as introductory material. In this section, we will be content to describe the
geometric interpretation in broad terms.

9.1. Old-style geometric interpretations: buildings. We begin with a
geometric interpretation of the fundamental lemma that was popular in the late
seventies and early eighties. It was eventually discarded in favor of other approaches
when the combinatorial difficulties became too great.

This approach is to use the geometry of the Bruhat-Tits building to understand
orbital integrals. We illustrate the approach with the group G = SL(2). The
term χG,K(g−1γ′g) that appears in the fundamental lemma can be manipulated as
follows:

χG,K(g−1γ′g) �= 0 ⇔ g−1γ′g ∈ K
⇔ γ′g ∈ gK
⇔ γ′(gK) = (gK)
⇔ gK is a fixed point of γ′ on G(F )/K.

The set G(F )/K is in bijective correspondence with a set of vertices in the Bruhat-
Tits building of SL(2). Thus, we may interpret the orbital integral geometrically
as the number of fixed points of γ′ in the building that are vertices of a given type.

Under this interpretation, it is possible to use counting arguments to obtain
explicit formulas for orbital integrals as a function of γ′. In this way, the funda-
mental lemma was directly verified for a few groups of small rank such as SL(2)
and U(3).

9.2. Affine Grassmannians. Until the end of Section 9, let F = k((t)), a
field of formal Laurent series. Except for the discussion of the results of Kazhdan
and Lusztig, the field k will be taken to be a finite field: k = Fq.

In 1988, Kazhdan and Lusztig showed that if F = C((t)), then G(F )/K can be
identified with the points of an ind-scheme (that is, an inductive limit of schemes)
[15]. This ind-scheme is called the affine Grassmannian. The set of fixed points of
an element γ can be identified with the set of points of a scheme over C, known as
the affine Springer fiber. The corresponding construction over Fq((t)) is mentioned
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briefly in the final paragraphs of their paper. Rather than counting fixed points in
the building, orbital integrals can be computed by counting the number of points
on a scheme over Fq.

Based on a description of orbital integrals as the number of points on schemes
over finite fields, Kottwitz, Goresky, and MacPherson give a geometrical formula-
tion of the fundamental lemma. Furthermore, by making a thorough investigation
of the equivariant cohomology of these schemes, they prove the geometrical conjec-
ture when γ comes from an unramified Cartan subgroup [5].

9.3. Geometric interpretations. Each of the terms in the fundamental
lemma has a nice geometric interpretation. Let us give a brief description of the
geometrical counterpart of each term in the fundamental lemma. We work with
the unitary group, so that we may include various insights of Laumon.

The geometrical counterparts of cosets gK are self-dual lattices in a vector
space V over F .

The counterpart of the support set, SUP = {g | g−1γg ∈ K}, is the affine
Springer fiber Xγ .

The counterpart of the integral of the support set SUP over G is counting
points on the scheme Xγ . The integral over all of G diverges and the number of
fixed points on the scheme is infinite. For that reason the orbital integral is an
integral over T\G, where T is the centralizer of γ, rather than over all of G.

The counterpart of the integral over T\G is counting points on a quotient space
Zγ = Xγ/Z�. (There is a free action of a group Z� on Xγ , and Zγ is the quotient.)

The geometric counterpart of κ(aτ ) is somewhat more involved. For elliptic
endoscopic groups of unitary groups κ has order 2. The character κ has the form

κ : H1(Gal(F̄ /F ), T ) ∼= (Z/2Z)� → {±1}.
The character κ pulls back to a character of Z�. The rational points of Xγ are
identified with self-dual lattices: A⊥ = A. The points of the quotient space Zγ are
lattices that are self-dual modulo the group action: A⊥ = λ · A, for some λ ∈ Z�.
The character κ then partitions the points of Zγ into two sets, depending on the
sign of κ(λ):

Z±
γ = {A | A⊥ = λA; κ(λ) = ±1}.

(In a more sophisticated treatment of κ(aτ ), it gives rise to a local system on Zγ ;
and counting points on varieties gives way to Grothendieck’s trace formula.)

The counterpart of the κ-orbital integral ΛG,H(γ) is the number

#Z+
γ −#Z−

γ .

The counterpart of the stable-orbital integral Λst
H(γ) is the number

#ZH,st
γ

for a corresponding variety constructed from the endoscopic group.
The factors

∏
Φ |α(γ)− 1|1/2 that appear on the two sides of the fundamental

lemma can be combined into a single term∏
α∈ΦG\ΦH

|α(γ)− 1|1/2.

This has the form q−d for some value d = d(γ). The factor q−d has been interpreted
in various ways. We mention that [24] interprets qd as the points on an affine space
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of dimension d. That paper expresses the hope that it might be possible to find an
embedding Z−

γ → Z+
γ such that the complement of the embedded Z−

γ in Z+
γ is a

rank d fiber bundle over ZH,st
γ . The realization of this hope would give an entirely

geometric interpretation of the fundamental lemma. Laumon and Rapoport found
that this construction works over Fq2((t)), but not over Fq((t)). In more recent
work of Laumon, the constant d is interpreted geometrically as the intersection
multiplicity of two singular curves.

9.4. Compactified Jacobians. Laumon, in the case of unitary groups, has
made the splendid discovery that the orbital integrals – as they appear in the
fundamental lemma – count points on the compactification of the Jacobians of a
singular curve associated with the semisimple element γ. (In fact, Zγ is homeomor-
phic to and can be replaced with the compactification of a Jacobian.) Thus, the
fundamental lemma may be reformulated as a relation between the compactified
Jacobians of these curves. By showing that the singular curve for the endoscopic
group H is a perturbation of the singular curve for the group G, he is able to relate
the compactified Jacobians of the two curves, and prove the fundamental lemma
for unitary groups (assuming a purity hypothesis related to the cohomology of the
schemes).

Figure 1. The singular curve on the left can be deformed into
the singular curve on the right by pulling up on the center ring.
The curve on the left controls Λst

H(γ), and the curve on the right
controls ΛG,H(γ). This deformation relating the two curves is a
key part of Laumon’s work on the fundamental lemma for unitary
groups.

The origin of the curve C is the following. The ring OF [γ] is the completion at
a point of the local ring of a curve C. In the interpretation in terms of Jacobians,
the self-dual lattices A⊥ = A that appear in the geometric interpretation above are
replaced with OC-modules, where OC is the structure sheaf of C.

The audio recording of Laumon’s lecture at the Fields Institute on this research
is highly recommended [23].

9.5. Final remarks.

Remark 9.1. The fundamental lemma is an open-ended problem, in the sense
that as researchers develop new trace formulas (the symmetric space trace formula
[14], the twisted trace formula [16], and so forth) and as they compare trace for-
mulas for different groups, it will be necessary to formulate and prove generalized
versions of the fundamental lemma. The version of the fundamental lemma stated
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in this paper should be viewed as a template that should be adapted according to
an evolving context.

Remark 9.2. The methods of Goresky, Kottwitz, MacPherson, and Laumon
are limited to fields of positive characteristic. This may at first seem to be a
limitation of their method. However, there are ideas about how to use motivic
integration to lift their results from positive characteristic to characteristic zero
(see [3]). Waldspurger also has results about lifting to characteristic zero that were
presented at the Labesse conference, but I have not seen a preprint [32].

Remark 9.3. In some cases, it is now known how to deduce stronger forms
of the fundamental lemma from weaker versions. For example, it is known how to
go from the characteristic function of the hyperspecial maximal compact groups to
the full Hecke algebra [9]. A descent argument replaces twisted orbital integrals
by ordinary orbital integrals. However, relations between weighted orbital integrals
remain a serious challenge.

Remark 9.4. There has been much research on the fundamental lemma that
has not been discussed in detail in this paper, including other forms of the fun-
damental lemma. For just one example, see [25] for the fundamental lemma of
Jacquet and Ye. Other helpful references include [18] and [30].
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tut Henri Poincaré, Conference in honor of Jean-Pierre Labesse, Sept 26, 2003,
http://www.math.jussieu.fr/congres-labesse/programme.html.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

E-mail address: hales@pitt.edu

This work is licensed under the Creative Commons Attribution License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/1.0/ or send a letter to Creative Commons,
559 Nathan Abbott Way, Stanford, California 94305, USA.



Clay Mathematics Proceedings
Volume 4, 2005

Notes on the Generalized Ramanujan Conjectures

Peter Sarnak

Contents

1. GLn 659
2. General G 667
3. Applications 680
4. References 681

1. GLn

Ramanujan’s original conjecture is concerned with the estimation of Fourier
coefficients of the weight 12 holomorphic cusp form ∆ for SL(2,Z) on the upper
half plane H. The conjecture may be reformulated in terms of the size of the eigen-
values of the corresponding Hecke operators or equivalently in terms of the local
representations which are components of the automorphic representation associated
with ∆. This spectral reformulation of the problem of estimation of Fourier coef-
ficients (or more generally periods of automorphic forms) is not a general feature.
For example, the Fourier coefficients of Siegel modular forms in several variables
carry more information than just the eigenvalues of the Hecke operators. Another
example is that of half integral weight cusp forms on H where the issue of the size
of the Fourier coefficients is equivalent to special instances of the Lindelöf Hypoth-
esis for automorphic L-functions (see [Wal], [I-S]). As such, the general problem
of estimation of Fourier coefficients appears to lie deeper (or rather farther out of
reach at the present time). In these notes we discuss the spectral or representation
theoretic generalizations of the Ramanujan Conjectures (GRC for short). While
we are still far from being able to establish the full Conjectures in general, the
approximations to the conjectures that have been proven suffice for a number of
the intended applications.

We begin with some general comments. In view of Langlands Functoriality
Conjectures (see [A1]) all automorphic forms should be encoded in the GLn auto-
morphic spectrum. Moreover, Arthur’s recent conjectural description of the discrete
spectrum for the decomposition of a general group [A2],[A3] has the effect of re-
ducing the study of the spectrum of a classical group, for example, to that of GLn.

c© 2005 Clay Mathematics Institute
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From this as well as the point of view of L-functions, GLn plays a special role. Let
F be a number field, AF its ring of adèles, v a place of F (archimedian or finite)
and Fv the corresponding local field. Let GLn be the group of n × n invertible
matrices and GLn(AF ), GLn(F ), GLn(Fv) · · · be the corresponding group with
entries in the indicated ring. The abelian case GL1, is well understood and is a
guide (though it is way too simplistic) to the general case. The constituents of the
decomposition of functions on GL1(F )\GL1(AF ) or what is the same, the charac-
ters of F ∗\A∗

F , can be described in terms of class field theory. More precisely, if
WF is Weil’s extension of the Galois group Gal(F̄

/
F ) then the 1-dimensional rep-

resentations of F ∗\A∗
F correspond naturally to the 1-dimensional representations

of WF (see [Ta]). As Langlands has pointed out [Lang1] it would be very, nice
for many reasons, to have an extended group LF whose n-dimensional represen-
tations would correspond naturally to the automorphic forms on GLn. The basic
such forms are constituents of the decomposition of the regular representation of
GLn(AF ) on L2(Z(AF )GLn(F )\GLn(AF ), w). Here Z is the center of GLn and
w is a unitary character of Z(AF )

/
Z(F ). In more detail, the L2 space consists

of functions f : GLn(AF ) −→ C satisfying f(γzg) = w(z)f(g) for γ ∈ GLn(F ),
z ∈ Z(AF ) and

(1)
∫

Z(AF )GLn(F )\GLn(AF )

|f(g)|2 dg < ∞ .

Notwithstanding the success by Harris-Taylor and Henniart [H-T] giving a descrip-
tion in the local case of the representations of GLn(Fv) in terms of n-dimensional
representations of the Deligne-Weil group W ′

F , or the work of Lafforgue in the case
of GLn(F ) where F is a function field over a finite field, it is difficult to imagine a
direct definition of LF in the number field case. My reason for saying this is that
LF would have to give, through its finite dimensional representations, an indepen-
dent description of the general Maass cusp form for say GL2(AQ) (see [Sa] for a
recent discussion of these). These are eigenfunctions of elliptic operators on infinite
dimensional spaces with presumably highly transcendental eigenvalues. Arthur in
his definition [A3] of LF gets around this difficulty by using among other things
the GLn cusp forms as building blocks for the construction of the group. With this
done, he goes on to describe a much more precise form of the general functoriality
conjectures.

We turn to GLn and a description of the generalized Ramanujan Conjectures.
According to the general theory of Eisenstein series L2(Z(AF )GLn(F )\GLn(AF ), w)
decomposes into a discrete part and a continuous part. The discrete part coming
from residues of Eisenstein series, as well as the continuous part coming from Eisen-
stein series, are described explicitly in [M-W]. They are given in terms of the discrete
spectrum on GLm, m < n. This leaves the cuspidal spectrum as the fundamental
part. It is defined as follows:

(2) L2
cusp(Z(AF )GLn(F )\GLn(AF ), w)

= {f satisfying (1) and
∫

N(F )\N(AF )

f(ng)dn = 0

for all unipotent radicals N of proper parabolic subgroups P of G(F )}
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The decomposition into irreducibles of GLn(AF ) on L2
cusp is discrete and any ir-

reducible constituent π thereof is called an automorphic cusp form (or represen-
tation). Now such a π is a tensor product π = ⊗

v
πv, where πv is an irreducible

unitary representation of the local group GLn(Fv). The problem is to describe or
understand which πv’s come up in this way. For almost all v, πv is unramified,
that is, πv has a nonzero Kv invariant vector, where Kv is a maximal compact
subgroup of GLn(Fv). If v is finite then Kv = GLn(O(Fv)), O(Fv) being the ring
of integers at v. Such “spherical” πv can be described using the theory of spherical
functions (Harish-Chandra, Satake) or better still in terms of the Langlands dual
group LG. For G = GLn, LG = GL(n,C) (or rather the connected component
of LG is GL(n,C) but for our purposes here this will suffice) and an unramified
representation πv is parameterized by a semi-simple conjugacy class

(3) α(πv) =



α1(πv)
. . . 0

. . .

0
. . .

αn(πv)


∈ LG

as follows: Let B be the subgroup of upper triangular matrices in GLn. For b ∈
B(Fv) and µ1(v), . . . , µn(v) in C let χµ be the character of B(Fv),

(4) χµ(b) = |b11|µ1
v |b22|µ2

v · · · |bnn|µn
v .

Then ψµ = IndG(Fv)
B(Fv) χµ yields a spherical representation of G(Fv) (the induction

is normalized unitarily and at µ’s for which it is reducible we take the spherical
constituent). ψµ is equivalent to ψµ′ with µ and µ′ considered mod Z2πi

/
logN(v)

iff µ = σµ′, where σ is a permutation. In this notation α(πv) corresponds to ψµ(v)

by setting αj(πv) = N(v)µj(v) for j = 1, 2, . . . , n. The trivial representation of
G(Fv), or constant spherical function, corresponds to

(5) µ =
(
n− 1

2
,
n− 3

2
. . .

1− n

2

)
In terms of these parameters the local L-function L(s, πv) corresponding to

such an unramified πv has a simple definition:

(6)
L(s, πv) = det (I − α(πv)N(v)−s)−1

= Πn
j=1 (1− αj(πv)N(v)−s)−1

if v is finite, and

(7) L(s, πv) = Πn
j=1 Γv(s− µj(πv)) ,

with Γv(s) = π−s/2 Γ
(s

2

)
if Fv

∼= R and Γv(s) = (2π)−s Γ(s) if Fv
∼= C .

More generally if ρ : LG −→ GL(ν) is a representation of LG then the local L-
function is defined by

(8) L(s, πv, ρ) = det (I − ρ(α(πv))N(v)−s)−1 .
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We digress and discuss some local harmonic analysis for more general groups.
Let G(Fv) be a reductive group defined over a local field Fv. We denote by Ĝ(Fv)
the unitary dual of G(Fv), that is, the set of irreducible unitary representations of
G(Fv) up to equivalence. G(Fv) has a natural topology, the Fell topology, coming
from convergence of matrix coefficients on compact subsets of G(Fv). Of particular
interest is the tempered subset of Ĝ(Fv), which we denote by Ĝ(Fv)temp. These are
the representations which occur weakly (see [Di]) in the decomposition of the regular
representation of G(Fv) on L2(G(Fv)) or what is the same thing IndG(Fv)

H 1 where
H = {e}. If G(Fv) is semi-simple then the tempered spectrum can be described in
terms of decay of matrix coefficients of the representation. For ψ a unitary repre-
sentation of G(Fv) on a Hilbert space H, these are the functions Fw(g) on G(Fv)
given by Fw(g) = 〈ψ(g)w,w〉H for w ∈ H. Clearly, such a function is bounded on
G(Fv) and if ψ is the trivial representation (or possibly finite dimensional) then
Fw(g) does not go to zero as g → ∞ (we assume w �= 0). However, for other ψ’s
these matrix coefficients do decay (Howe-Moore [H-M])∗ and the rate of decay is
closely related to the “temperedness” of ψ and is important in applications. In
particular, ψ is tempered iff its Kv-finite matrix coefficients are in L2+ε(G(Fv)) for
all ε > 0.

For spherical representations (and in fact for the general ones too) one can use
the asymptotics at infinity of spherical functions (that is, Kv bi-invariant eigen-
functions of the Hecke algebra) to determine which are tempered. For GLn(Fv)
this analysis shows that the πv defined in (3) and (4) is tempered iff

(9) |αj(πv)| = 1 for j = 1, 2, . . . , n if v finite

and

(10) !(µj(πv)) = 0 if v archimedian .

For ramified representations of G(Fv) one can give a similar description of the
tempered representations in terms of Langlands parameters (see Knapp-Zuckerman
[K-Z] for v archimedian).

To complete our digression into more general local groups G(Fv) we recall
property T . Recall that G(Fv) has property T if the trivial representation is isolated
in Ĝ(Fv). Kazhdan in introducing this property showed that if G(Fv) is simple and
has rank at least two then it satisfies property T . One can quantify this property
in these cases (as well as in the rank one groups which satisfy property T ) by
giving uniform estimates for the exponential decay rates of any non-trivial unitary
representation of G(Fv). In [Oh], Oh gives such bounds which are in fact sharp
in many cases (such as for SLn, (Fv), n ≥ 3 and Sp2n(Fv)). In the case that
Fv

∼= R, Li [Li1] determines the largest p = p(G(Fv)) for which every non-trivial
representation of G(Fv) is in Lp+ε(G(Fv)) for all ε > 0. Besides the isolation
of the trivial representation in Ĝ(Fv) it is also very useful to know which other
representations are isolated. For v archimedian and πv cohomological (in the sense
of Borel and Wallach [B-W]) Vogan [Vo1] gives a complete description of the isolated
points.

We return now to the global setting with G = GLn and formulate the main
Conjecture.

∗if say G(Fv) is simple
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Generalized Ramanujan Conjecture for GLn:

Let π = ⊗
v
πv be an automorphic cuspidal representation of GLn(AF ) with a

unitary central character, then for each place v, πv is tempered.

Remarks

(1) At the (almost all) places at which πv is unramified the Conjecture is equivalent
to the explicit description of the local parameters satisfying (9) and (10).

(2) For analytic applications the more tempered (i.e. the faster the decay of the
matrix coefficients) the better. It can be shown (compare with (28) of §2) that
the πv’s which occur cuspidally and automorphically are dense in the tempered
spectrum, hence GRC if true is sharp.

(3) Satake [Sat] appears to have been the first to observe that the classical Ramanu-
jan Conjecture concerning the Fourier coefficients of ∆(z) can be formulated in
the above manner. The GRC above generalizes both these classical Ramanujan-
Petersson Conjectures for holomorphic forms of even integral weight as well as
Selberg’s 1/4 eigenvalue conjecture for the Laplace spectrum of congruence quo-
tients of the upper half plane [Sel]. In this representation theoretic language
the latter is concerned with π∞ which are unramified and for which π = ⊗

v
πv

is an automorphic cuspidal representation of GL2(AQ).

There are some special but important cases of π’s for which the full GRC
is known. These are contained in cases where πv for v archimedian is of special
type. For GL2(AQ) and π∞ being holomorphic discrete series (that is, the case
of classical holomorphic cusp forms of even integral weight) RC was established
by Deligne. For a recent treatment see the book by Conrad [Con]. The proof de-
pends on Γ0(n)\H being a moduli space for elliptic curves (with level structure)
and this leads eventually to an identification of αj(πp), j = 1, 2 in terms of arith-
metic algebraic geometric data, specifically as eigenvalues of Frobenius acting on
�-adic cohomology groups associated with a related moduli problem. The RC, i.e.
|α1(πp)| = |α2(πp)| = 1, then follows from the purity theorem (the Weil Conjec-
tures) for eigenvalues of Frobenius, which was established by Deligne.

Recently, Harris and Taylor [H-T], following earlier work of Clozel have estab-
lished GRC for an automorphic cusp form π on GLn(AF ) for which the following
are satisfied:

(i) F is a CM field.
(ii) Π̃ ∼= Πc (i.e. a contragredient - Galois conjugate condition.)
(iii) Π∞ (∞ here being the product over all archimedian places of F ) has the same

infinitesimal character over C as the restriction of scalars from F to Q of an
algebraic representation of GLn over C. In particular, π∞ is a special type of
cohomological representation.

(iv) For some finite place v of F , πv is square-integrable (that is, its matrix coef-
ficients are square integrable).

The proof of the above is quite a tour-de-force. It combines the trace formula
(see Arthur’s Lectures) and Shimura varieties and eventually appeals to the purity
theorem. To appreciate some of the issues involved consider for example F an
imaginary quadratic extension of Q. In this case F has one infinite place v∞
for which Fv∞ � C. Hence, automorphic forms for GLn(F ) live on quotients
of the symmetric space SLn(C)

/
SU(n), which is not Hermitian. So there is no
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apparent algebro-geometric moduli interpretation for these quotient spaces. The
basic idea is to transfer the given π on GLn(AF ) to a π′ on a Shimura variety (see
Milne’s lectures for definitions of the latter). The Shimura varieties used above are
arithmetic quotients of unitary groups (see example 3 of Section 2). The transfer
of π to π′ is achieved by the trace formula. While the complete functorial transfers
are not known for the general automorphic form, enough is known and developed
by Harris, Taylor, Kottwitz and Clozel to deal with the π in question. Conditions
(i), (ii) and (iv) are used to ensure that π corresponds to a π′ on an appropriate
unitary group, while condition (iii) ensures that at the archimedian place, π′ is
cohomological. The latter is essential in identifying the eigenvalues of π′

v (v finite)
in terms of Frobenius eigenvalues.

In most analytic applications of GRC all π’s enter and so knowing that the
Conjecture is valid for special π’s is not particularly useful. It is similar to the
situation with zeros of the Riemann Zeta Function and L-functions where it is not
information about zeros on !(s) = 1

2 that is so useful, but rather limiting the
locations of zeros that are to the right of !(s) = 1

2 . We describe what is known
towards GRC beginning with the local bounds. If π = ⊗

v
πv is automorphic and

cuspidal on GLn(AF ) then π and hence πv is firstly unitary and secondly generic.
The latter asserts that πv has a Whittaker model (see Cogdell’s lectures [Co]).
That πv is generic for π cuspidal follows from the Fourier Expansions on GLn(AF )
of Jacquet, Piatetski-Shapiro and Shalika [J-PS-S]. Now, Jacquet and Shalika [J-
S] show that for πv generic the local Rankin-Selberg L-function of πv with its
contragredient π̃v,

(11) L(s, πv × π̃v) = det (I − α(πv) ⊗ α (π̃v)N(v)−s)−1

is analytic in !(s) > 1.
This leads directly to bounds towards GRC. Specifically, in the most important
case when πv is unramified, (11) implies that

(12) | logN(v) |αj(πv)| | < 1
2

for j = 1, . . . n, and v finite

and

(13) |!(µj(πv)) | < 1
2

for j = 1, 2, . . . n, and v archimedian .

Within the context of generic unitary representations of GLn(Fv), (12) and (13)
are sharp. Recall that the trivial representation corresponds to µ as given in (5),
so that for n = 2 (12) and (13) recover the trivial bound. However, for n ≥ 3 these
bounds are non-trivial. For n = 3, (12) and (13) correspond to the sharp decay
rates for matrix coefficients of non-trivial representations of SL3(Fv) mentioned
earlier. For n > 3, the bounds (12) and (13) are much stronger (the trivial bound
being n−1

2 ).
For many applications these local bounds fall just short of what is needed (this

is clear in the case n = 2). One must therefore bring in further global information.
The global Rankin-Selberg L-function is the key tool. In fact, it was already used by
Rankin and Selberg in the case n = 2, F = Q and v finite, for such a purpose. The
extension of their analysis to general n and F was observed by Serre [Ser]. However,
this method which uses twisting by quasi-characters αs (a technique which we now
call deformation in a family (see [I-S]) of L-functions, in this case the parameter
being s) and a theorem of Landau [La], has the drawback of only working for v finite
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and also it deteriorates in quality as the extension degree of F over Q increases, the
latter being a result of the increasing number of Gamma factors in the complete
L-function (see [I-S]). In [L-R-S1], the use of the Rankin-Selberg L-functions in
a different way and via deformation in another family was developed. It has the
advantage of applying to the archimedian places as well as being uniform in its
applicability. It leads to the following bounds towards GRC. Let π = ⊗

v
πv be an

automorphic cuspidal representation of GLn(AF ).
For v finite and πv unramified and j = 1, . . . , n

(14) | logN(v) αj(πv)| ≤ 1
2
− 1

n2 + 1
.

For v archimedian and πv unramified and j = 1, 2, . . . , n

(15) |!(µj(πv)) | ≤ 1
2
− 1

n2 + 1
.

In [M-S] these bounds are extended to include analogous bounds for places v at
which πv is ramified.

We describe briefly this use of the global Rankin-Selberg L-function. Let π be
as above and v0 a place at which πv0 is unramified. For χ a ray class character of
F ∗\A∗

F which is trivial at v0, we consider the global Rankin-Selberg L-functions

Λ (s, π × (π̃ × χ)) : = Π
v
L(s, πv × (π̃v × χv))

= L(s, πv0 × π̃v0)LS0(s, π × (π̃ × χ)) ,(16)

where LS(s) denotes the partial L-function obtained as the product over all places
except those in S and S0 = {v0}. Now, according to the theory of the Rankin-
Selberg L-function ([J-PS-S], [Sh], [M-W]) the left-hand side of (16) is analytic for
0 < !(s) < 1. In particular, if 0 < σ0 < 1 is a pole of L(s, πv0 × π̃v0) (which will
be present according to (9), (10) and (11) if GRC fails for πv0) then

(17) LS0(σ0, π × π̃ × χ) = 0 for all χ with χ trivial at v0 .

Thus, we are led to showing that LS0(σ0, π × π̃ × χ) �= 0 for some χ in this family.
To see this one averages these L-functions over the set of all such χ’s of a large
conductor q. The construction of χ’s satisfying the condition at v0 is quite delicate
(see [Roh]). In any event, using techniques from analytic number theory for aver-
aging over families of L- functions, together with the positivity of the coefficients
of L(s, π × π̃), one shows that these averages are not zero if N(q) is large enough
and σ0 is not too small. Combined with (17) this leads to (14) and (15).

The bounds (14) and (15) are the best available for n ≥ 3. For n = 2 much
better bounds are known and these come from the theory of higher tensor power
L-functions. Recall that for G = GLn, LG0 = GL(n,C). In the case of n = 2
and k ≥ 1 let symk : LG0 −→ GL(k + 1,C) be the representation of GL(2,C) on
symmetric k-tensors (i.e. the action on homogeneous polynomials of degree k in
x1, x2 by linear substitutions). The corresponding local L-function associated to
an automorphic cusp form π on GL2(AF ) and the representation symk of LG0 is
given in (8). The global L-function with appropriate definitions at ramified places
is given as usual by

(18) Λ(s, π, symk) = Π
v
L(s, πv, symk) .
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Langlands [Lang2] made an important observation that if Λ(s, π, symk) is analytic
in !(s) > 1 for all k ≥ 1 (as he conjectured it to be) then a simple positivity
argument yields GRC for π.† Moreover, his general functoriality conjectures assert
that Λ(s, π, symk) should be the global L-function of an automorphic form Πk on
GLk+1(AF ). Hence, the functoriality conjectures imply GRC. There have been
some striking advances recently in this direction. The functorial lift π → Πk of
GL2 to GLk+1 is now known for k = 2, 3 and 4. The method of establishing these
lifts is based on the converse theorem (see Cogdell’s lectures [Cog]). This asserts
that Π is automorphic on GLn(AF ) as long as the L-functions Λ(s, π × π1) are
entire and satisfy appropriate functional equations for all automorphic forms π1 on
GLm(AF ) for m ≤ n − 1 (one can even allow m < n − 1 if n ≥ 3). In this way
automorphy is reduced to establishing these analytic properties. This might appear
to beg the question; however for k = 2 (and π = Π2 on GL3 as above) the theory of
theta functions and half integral weight modular forms, combined with the Rankin-
Selberg method, yields the desired analytic properties of Λ(s, π, sym2) (Shimura
[Shi]). For k = 3, 4 the analytic properties were established by Kim and Shahidi
[K-S] , [K]. They achieve this using the Langlands-Shahidi method which appeals
to the analytic properties of Eisenstein series on exceptional groups (up to and
including E8, so that this method is limited) to realize the functions Λ(s,Πk × π′)
above in terms of the coefficients of Eisenstein series along parabolic subgroups. The
general theory of Eisenstein series and their meromorphic continuation (Langlands)
yields in this way the meromorphic continuation and functional equations for these
Λ(s,Πk ×π′). The proof that they are entire requires further ingenious arguments.
Their work is precise enough to determine exactly when Πk is cuspidal (which is
the case unless π is very special, that being it corresponds to a two-dimensional
representation of the Weil group WF in which case GRC for π is immediate).
Now, using that Πk for 1 ≤ k ≤ 4 is cuspidal on GLk+1(AF ) and forming the
Rankin-Selberg L-functions of pairs of these leads to Λ(s, π, symk) being analytic
for !(s) > 1 and k ≤ 9. From this one deduces that for π as above, cuspidal on
GL2(AF ) and πv unramified (if πv is ramified on GL2(Fv) then it is tempered) that

(19) | logN(v) |αj(πv)| | ≤ 1
9

for j = 1, 2 and v finite

and

(20) |!(µj(πv))| ≤ 1
9

for j = 1, 2 and v archimedian .

There is a further small improvement of (19) and (20) that has been established
in the case F = Q [Ki-Sa]. One can use the symmetric square L-function in place of
the Rankin-Selberg L-function in (16). This has the effect of reducing the “analytic
conductor” (see [I-S] for the definition and properties of the latter). Applying
the technique of Duke and Iwaniec [D-I] at the finite places and [L-R-S 2] at the
archimedian place, one obtains the following refined estimates. For n ≤ 4 and π

†This approach to the local statements involved in GRC via the analytic properties of the

global L-functions associated with large irreducible representations of LG has been influential.
In Deligne’s proof of the Weil Conjectures mentioned earlier, this procedure was followed. In

that case, LG is replaced by the monodromy representation of the fundamental group of the
parameter space for a family of zeta functions for whose members the Weil Conjectures are to

be established. The analytic properties of the corresponding global L-functions follows from
Grothendieck’s cohomology theory.
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an automorphic cusp form on GLn(AQ), or if n = 5 and π = sym4ψ with ψ a cusp
form an GL2(AQ), we have

(21) | logp |αj(πp)| | ≤
1
2
− 1

1 + n(n+1)
2

, p finite

and

(22) |!(µj(π∞))| ≤ 1
2
− 1

1 + n(n+1)
2

, p = ∞ .

In particular, if we apply this to a cusp from ψ on GL2(AQ) we get

(23) | logp αj(ψp)| ≤
7
64

, for j = 1, 2 and p <∞

and

(24) |!µj(ψ∞)| ≤ 7
64

, for j = 1, 2 .

(24) is equivalent to the following useful bound towards Selberg’s 1/4 conjecture
concerning the first eigenvalue of the Laplacian λ1(Γ(N)\H) for a congruence quo-
tient of the upper half plane H.

(25) λ1(Γ(N)\H) ≥ 975
4096

= 0.238 . . . .

2. General G

Let G be a reductive linear algebraic group defined over F . The principle
of functoriality gives relations between the spectra of G(F )\G(AF ) for different
G’s and F ’s. In particular, in cases where versions of this principle are known
or better yet where versions of the more precise conjectures of Arthur are known,
one can transfer information towards the Ramanujan Conjectures from one group
to another. For example, if D is a quaternion algebra over F , then the Jacquet-
Langlands correspondence [Ge] from D∗(F )\D∗(AF ) into GL2(F )\GL2(AF ) allows
one to formulate a precise GRC for D as well as to establish bounds towards it
using (19) and (20). In fact, if D

/
Q is such that D ⊗ R ∼= H(R), the Hamilton

quaternions, then the transfer to GL2(AQ) yields only π’s for which π∞ is a holo-
morphic representation of GL2(R). Hence for such D’s the full GRC is known by
Deligne’s results mentioned in Section 1. Our main interest however is in G’s for
which G(Fv) is non-compact for at least one archimedian place v of F . The re-
marks above about quaternion algebras apply to division algebras of degree n over
F using the correspondence to GLn(AF ) established by Arthur and Clozel [A-C].
Another example is that of unitary groups G over F in 3 variables and the transfer
established by Rogawski [Ro] of the non-lifted forms (from U(2)×U(1)) on G(AF )
to GL3(AE) where E is a quadratic extension of F (we discuss this example further
in example 3 below). In all of the above examples the forms are lifted to GLn

and after examining for cuspidality (14) and (15) yield the best approximations to
GRC for the corresponding G. We note that, in the cases above, functoriality is
established using the trace formula.

For a general semi-simple G (for the rest of this Section we will assume that G is
semi-simple) defined over F , the Ramanujan Conjecture can be very complicated.
It has been known for some time, at least since Kurokawa [Ku], that there are
non-tempered automorphic cuspidal representations for groups such as GSp(4). So
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the naive generalization of the GLn GRC is not valid. Today the general belief is
that such non-tempered representations are accounted for by functorial lifts from
smaller groups.

One approach to GRC for more general G, and which is along the lines of
the original Ramanujan Conjecture, is to formulate the problem in a cruder form
which is well-suited for analytic applications of the spectrum. For the latter, one
wants to know the extent to which the local representations appearing as compo-
nents of a global automorphic representation are limited. Put another way, which
local representations in Ĝ(Fv) can be excited arithmetically? Let π = ⊗

v
πv be

an automorphic representation appearing in L2(G(F )\G(AF )). That is, π occurs
cuspidally or as a residues of Eisenstein series or as part of a unitary integral of
Eisenstein series. We will not distinguish the part of the spectrum in which these
occur. This is one sense in which we seek cruder information. Now fix a place
w of F and define the subset Ĝ(Fw)AUT of Ĝ(Fw) to be the closure in the Fell
topology of the set of πw’s for which π = ⊗

v
πv occurs in L2(G(F )\G(AF )). This

closure process is the second sense in which we seek cruder information. We call
Ĝ(Fw)AUT the automorphic dual of G at w. More generally, if S is a finite set of
places of F we define Ĝ(S)AUT to be the closure in Ĝ(S) of ⊗

w∈S
πw as π varies

over all π in L2(G(F )\G(AF )) and G(S) = Πw∈SG(Fw). Similarly, one can define
ĜAUT to be the corresponding closure in ΠvĜ(Fv). By approximation theorems
for adèle groups we can describe these sets in terms of congruence subgroups as
follows.‡ Let S∞ be the set of archimedian places of F . Then Ĝ(S∞)AUT is the
closure of all ⊗

w∈S∞
Πw in Ĝ(S∞) which occur in L2(Γ\G(S∞)) where Γ varies over

all congruence subgroups of G(OF ), OF being the ring of integers of F . Similarly,
if S is a finite set of places containing S∞ then Ĝ(S)AUT is the closure in Π

v∈S
Ĝ(Fv)

of all ⊗
w∈S

πw which occur in L2(Γ\G(S)), as Γ varies over all congruence subgroups

of the S-arithmetic group G(OS), with OS being the ring of S-integers of F . We
can now state the basic problem for G.

Generalized Ramanujan Problem (GRP ):

To determine, for a given G defined over F , the sets Ĝ(Fv)AUT and more
generally ĜAUT.

We emphasize that the local data Ĝ(Fv)AUT is determined by the global group
G. Also, while the set of πw’s in Ĝ(Fw) that arise as the w component of an
automorphic π in L2(G(F )\G(AF )) is typically very difficult to describe, the closure
process in the definition of the automorphic dual makes this task much simpler.
Moreover, the above formulation allows one to measure progress towards GRP by
giving set theoretic upper and lower bounds for ĜAUT. Non-trivial upper bounds
are what are most useful in applications while various methods for constructing

‡At least if G is simply connected and F simple, otherwise the description is more complicated.



NOTES ON THE GENERALIZED RAMANUJAN CONJECTURES 669

automorphic forms (some of which are discussed in the examples below) produce

lower bounds. We denote by Ĝ(Fv)
sph

AUT the spherical part of Ĝ(Fv)AUT.
Let G be defined over F and let H be a semi-simple subgroup of G also de-

fined over F . Then Ĥ(Fv)AUT and Ĝ(Fv)AUT and more generally, Ĥ(S)AUT and
Ĝ(S)AUT, satisfy some simple functorial properties.

If σ ∈ Ĥ(Fv)AUT then

(26) IndG(Fv)
H(Fv) σ ⊂ Ĝ(Fv)AUT .

If β ∈ Ĝ(Fv)AUT then

(27) ResG(Fv)
H(Fv) β ⊂ Ĥ(Fv))AUT .

The induction and restriction computations involved in (26) and (27) are purely
local. Their precise meaning is that any irreducible ψ which is contained (weakly)
on the left is contained on the right-hand side of the inclusions. These inclusions
were proven in [B-S] and [B-L-S1] for Fv = R and in general (that is, for finitely
many places at a time) in [C-U]. The proof of (26) depends on realizing the congru-
ence subgroups of H(F ) as geometric limits (specifically as infinite intersections)
of congruence subgroups of G(F ) and applying the spectral theory of such infinite
volume quotients. In [Ven] a characterization of such intersections of congruence
subgroups of G(F ) is given. (27) is established by approximating diagonal matrix
coefficients of ResG(Fv)

H(Fv) β by matrix coefficients of elements in Ĥ(Fv)AUT. This is
done by constructing suitable sequences of H cycles, in a given congruence quotient
of G, which become equidistributed in the limit. The latter can be done either us-
ing Hecke operators or using ergodic theoretic techniques associated with unipotent
flows.

(26) and (27) may be used to give upper and lower bounds for ĜAUT. For

example, if H = {e} and σ = 1 then (26) applies and since IndG(Fv)
{e} 1 = Ĝ(Fv)temp,

we obtain the general lower bound

(28) Ĝ(Fv)AUT ⊃ Ĝ(Fv)temp .

Next, we illustrate by way of examples, some bounds towards GRP that have
been established using current techniques.

Example 1. SL
Let G = SL2 over Q. The local components of the unitary Eisenstein inte-

grals involved in the spectral decomposition of L2(G(Q)\G(AQ) satisfy GRC at all
places. Moreover, the only residue of the Eisenstein series is the trivial representa-
tion. Hence, the Ramanujan and Selberg Conjectures for the cuspidal spectrum of
SL2(AQ) are equivalent to

(29) ̂SL2(Qv)AUT = {1} ∪ ̂SL2(Qv)temp , for all places v of Q .

For this case (23) and (24) give the best known upper bounds towards (29).
Let G = SL3 over Q. Again, there are no poles of the Eisenstein series yielding

residual spectrum other than the trivial representation. However, there is an in-
tegral of non-tempered unitary Eisenstein series contributing to L2(G(Q)\G(AQ)).
These correspond to the Eisenstein series on the maximal (2, 1) parabolic subgroup
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of G taken with the trivial representation on its Levi. In particular for any place v

of Q, Ĝ(Qv)AUT contains the following non-tempered spherical principal series (we
use the parameters in (4) above):

(29′) Cont(v) =
{
µt =

(
1
2

+ it, −2it, −1
2

+ it

) ∣∣∣ t ∈ R

}
⊂ Ĝ(Qv)

sph
.

If (29) is true then the rest of the Eisenstein series contribution to SL3, consists of
tempered spectrum. Hence using (12) and (13) we see that the cuspidal GRC for
SL3(AQ) is equivalent to:
For any place v of Q

(29′′) Ĝ(Qv)AUT = {1} ∪ Cont(v) ∪ Ĝ(Qv)temp .

The best upper bound on ĜAUT in this case is given by (21) and (22) which assert
that for any place v of Q

Ĝ(Qv)
sph

AUT ⊂
{
µ ∈ Ĝ(Qv)

sph∣∣µ = (1, 0,−1); µ =
(

1
2

+ it, −2it, −1
2

+ it

)
(29′′′)

t ∈ R; µ such that |!(µj)| ≤
5
14

.

}
Using [M-W] one can make a similar analysis for SLn, n ≥ 4.

Example 2. Orthogonal Group
Let f be the quadratic form over Q in n + 1 variables given by

(30) f(x1, x2, . . . xn+1) = 2x1xn+1 + x2
2 + · · ·+ x2

n .

Let G = SOf be the special orthogonal group of (n+1)×(n+1) matrices preserving
f . G is defined over Q and is given explicitly by

(31) G =

g ∈ SLn+1

∣∣∣ gt

 1
In−1

1

 g =

 1
In−1

1

 .

Thus G(Q∞) = G(R) ∼= SOR(n, 1), which has real rank 1. The corresponding sym-
metric space G(R)

/
K with K ∼= SOR(n) is hyperbolic n-space. Let M(R), N(R)

and A(R) be the subgroups of G(R)

(32) A(R) =


 a

In−1

a−1

 ∣∣∣ a ∈ R∗


(33) N(R) =


 1 −ut −1

2 〈u, u〉
In−1 u

1

∣∣∣u ∈ Rn−1


(34) M(R) =


 1

h
1

∣∣∣hth = In+1
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Then P (R) = M(R)A(R)N(R) is a parabolic subgroup of G with Levi factor MA
and unipotent radical N . The spherical unitary dual of G(R) may be described in
terms of the principal series. For s ∈ C let

(35) πs = IndG(R)
M(R)A(R)N(R) 1M ⊗ |a|s .

(For s ∈ C for which πs is reducible we take the spherical constitutent for πs.) In
this normalization s = n−1

2 := ρn corresponds to the trivial representation and the
tempered spherical representations consist of πs with s ∈ iR. For −ρn ≤ s ≤ ρn,
πs is unitarizable and these constitute the complementary series. Moreover, πs is
equivalent to π−s. These yield the entire spherical unitary dual, that is,

(36) Ĝ(R)
sph

=
{
πs mod ± 1

∣∣ s ∈ iR ∪ [−ρn, ρn]
}
.

Here iR is identified with Ĝ(R)
sph

temp and (0, ρn] is identified with the non-tempered

part of Ĝ(R)
sph

. Towards the GRP for Gf we have the following inclusions (n ≥ 3),
see [B-S]:

(37) iR ∪ {ρn, ρn − 1, . . . , ρn − [ρn]} ⊂ Ĝ(R)
sph

AUT ⊂ iR ∪ {ρn} ∪
[
0, ρn − 7

9

]
.

In particular, for n ≥ 4, Ĝ(R)
sph

AUT contains non-tempered points besides the trivial
representation. (37) is deduced from (26) and (27) as follows. Let H be the sub-
group of G stabilizing x2. H together with σ = 1 satisfies the assumptions in (26).
Hence

(38) Ĝ(R)AUT ⊃ IndG(R)
H(R)1 .

The space G(R)
/
H(R) is an affine symmetric space and for general such spaces the

induction on the right-hand side of (38) has been computed explicitly by Oshima
(see [O-M] and [Vo2]). For the case at hand, one has

(39) IndG(R)
H(R) ⊃ {ρn, ρn − 1 . . . , ρn − [ρn]} ∪ iR .

This gives the lower bound in (37).
To see the upper bound, first note that for n = 3 we have

(40) Ĝ(R)
sph

⊂ iR ∪ {1} ∪
[
0,

2
9

]
.

This follows by passing from this SOf to its spin double cover which at Q∞ is
SL2(C) and then invoking the bound (20) for GL2(AE) where E is an imaginary
quadratic extension of Q. If n > 3 we let H be the subgroup of G which stabilizes
x2, . . . , xn−2. Then H = Gf ′ with f ′ a form in 4 variables of signature (3, 1). Thus
according to (40)

(41) Ĥ(R)
sph

AUT ⊂ iR ∪ {1} ∪
[
0,

2
9

]
.

Now apply the restriction principle (27) with the pair G and H as above and with

β a potential non-tempered element in Ĝ(R)
sph

AUT. Computing the local restriction
ResG(R)

H(R) β and applying (41) leads to the upper bound in (37).
One is led to a precise GRC for G at Q∞:
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Conjecture: Let G be as in (31); then

(42) Ĝ(R)
sph

AUT = iR ∪ {ρn, ρn − 1, . . . , ρn − [ρn]} .

Example 3. Unitary Group
Let SU(2, 1) be the special unitary group of 3 × 3 complex matrices of de-

terminant equal to one, that is, such matrices preserving the Hermitian form

|z1|2 + |z2|2 − |z3|2. If g ∈ SU(2, 1) and g =
[

A b
c∗ d

]
with A 2 × 2, b and

c 2× 1 and d 1× 1 complex matrices, then g acts projectively on

B2 =
{
(z1, z2)| |z1|2 + |z2|2 < 1

}
by

gz = (〈z, c〉 + d)−1(Az + b) .(43)

In this way B2 � SU(2, 1)
/
K, with K = S(U(2) × U(1)), is the corresponding

Hermitian symmetric space. The biholomorphic action (43) extends to the closed
ball B2. If e1 = (1, 0) ∈ B2 � B2 then its stabilizer P = {g ∈ SU(2, 1)|ge1 = e1}
is a parabolic subgroup of SU(2, 1). Let Γ be a co-compact lattice in SU(2, 1). It
acts discontinuously on B2 and we form the compact quotient XΓ = Γ\B2 which
is a compact, complex Kahler surface. We examine the Betti numbers bj(χΓ) for
j = 0, 1, 2, 3 and 4. According to the Gauss-Bonnet-Chern formula

(44) χ(XΓ) = b0 − b1 + b2 − b3 + b4 = Vol(Γ\SU(2, 1))

with dg being a suitable fixed normalized Haar measure on SU(2, 1) (this is a special
case of the “Euler-Poincaré measure” in [Ser2]). By duality this yields

(45) Vol(Γ\SU(2, 1)) = b2 − 2b1 + 2 .

It follows that if Vol(Γ\SU(2, 1)) goes to infinity then so does b2(XΓ). Thus for
large volume XΓ will have cohomology in the middle dimension. The behavior
of b1(XΓ) is subtle and in algebraic surface theory this number is known as the
irregularity of XΓ. It can be calculated from the decomposition of the regular
representation of SU(2, 1) on L2(Γ\SU(2, 1)), for a discussion see Wallach [Wa].
We indicate briefly how this is done. The representation IndSU(2,1)

P 1 (nonunitary
induction) of SU(2, 1) is reducible. Besides containing the trivial representation as
a subrepresentation it also contains two irreducible subquotients π+

0 and π−
0 (see

[J-W]). π±
0 are non-tempered unitary representations of SU(2, 1), in fact their K-

finite matrix coefficients lie in Lp(SU(2, 1)) for p > 4, but not in L4. Let mΓ(π+
0 )

and mΓ(π−
0 ) be the multiplicities with which π+

0 (respectively π−
0 ) occur in the

decomposition of L2(Γ\SU(2, 1)). For the example at hand, these multiplicities are
equal (which is a reflection of XΓ being Kahler). The following is a particular case
of Matsushima’s formula (see Borel-Wallach [B-W]) which gives the dimensions of
various cohomology groups of a general locally symmetric space Γ\G/K in terms
of the multiplicities with which certain π’s in Ĝ occur in L2(Γ\G).

(46) b1(XΓ) = mΓ(π+
0 ) + mΓ(π−

0 ) = 2mΓ(π+
0 ) .

We examine the above in the case that Γ is a special arithmetic lattice. Let
E be an imaginary quadratic extension of Q and let D be a degree 3 division
algebra central over E and which carries an involution α of the second kind, that
is, the restriction of α to E is Galois conjugation E/Q. Let G be the Q-algebraic
group whose Q points G(Q) equals {g ∈ D∗|α(g)g = 1 and Nrd(g) = 1}. Here
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Nrd is the reduced norm on D. G is the special unitary group SU(D, f) where
f is the 1-dimensional (over D) Hermitian form f(x, y) = α(x)y. Localizing G at
Q∞ = R we obtain G(R) which is a special unitary group in 3 variables and which
we assume has signature (2, 1), that is, G(R) � SU(2, 1). In this case G(Q)\G(AQ)
is compact and we consider its automorphic dual and specifically Ĝ(R)AUT. The
key to obtaining information about ĜAUT is the explicit description by Rogawski
[Ro] of the spectrum of L2(G(Q)\G(AQ)) in terms of certain automorphic forms on
GL3(AE) (see his Chapter 14 which discusses inner forms). Not surprisingly the Π’s
on GL3(AE) arising this way satisfy conditions similar to (i), (ii) and (iii) on page
6. If π = ⊗

v
πv is an automorphic representation of G(AQ) and is not 1-dimensional

then the lifted form Π = ⊗
w

Πw is cuspidal on GL3(AE). The relation between Πw

for w|v and πv is given explicitly. Thus the GRC for G takes the simplest form:
If π is not 1-dimensional then πv is tempered for all places v of Q. Moreover (14)
and (15) yield corresponding non-trivial bounds on ĜAUT.

We fixate on the representations π±
0 in Ĝ(R). (15) implies that

(47) π±
0 /∈ Ĝ(R)AUT

(see [B-C]).
This upper bound on GRC for this G implies a fortiori that mΓ(π−

0 ) are zero for
any congruence subgroup Γ of G(Z). This combined with (46) has the following
quite striking vanishing theorem as a consequence (and was proved in this way by
Rogawski)

(48) b1(XΓ) = 0, for Γ any congruence subgroup of G(Z) .

In particular, these arithmetic surfaces XΓ have no irregularities and all their non-
trivial cohomology is in the middle degree and its dimension is given by the index
(45).

The vanishing theorem (48) is of an arithmetic nature. It is a direct consequence
of restrictions imposed by the Ramanujan Conjectures. It should be compared with
vanishing theorems which are consequences of Matsushima’s formula, by which
we mean the vanishing of certain cohomology groups of general locally symmetric
spaces XΓ = Γ\G/K, independent of Γ. The vanishing results from the fact that
none of the potential π’s which contribute to Matsushima’s formula are unitary. A
complete table of the cohomological unitary representations and the corresponding
vanishing degrees for general real groups G is given in [V-Z].

Example 4. Exceptional groups
The theory of theta functions and its extension to general dual pairs provides a

powerful method for constructing “lifted” automorphic forms and in particular non-
tempered elements in ĜAUT. Briefly, a reductive dual pair is a triple of reductive
algebraic groups H,H ′ and G with H and H ′ being subgroups of G which centralize
each other. If π is a representation of G then the analysis of the restriction π

∣∣
H×H′

(here π((h, h′)) = π(hh′)) can lead to a transfer of representations on H to H ′ (or
vice-versa). The classical case of theta functions is concerned with G being the
symplectic group and π = w, the oscillator representation. That w is automorphic
was shown in Weil [We] while the general theory in this setting is due to Howe
[Ho]. Recent works ([Ka-Sav], [R-S2], [G-G-J]) for example show that this rich
theory can be extended to other groups G such as exceptional groups with π being
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the minimal representation. For such suitably split G the minimal representation
is shown to be automorphic by realizing it as a residue of Eisenstein series [G-R-S].
For an account of the general theory of dual pairs and the minimal representation
see [Li2].

For example, the dual pair O(n, 1) × SL2 in a suitable symplectic group may
be used to give another proof of the lower bound in (37). Restricting the oscillator
representation to this dual pair one finds that holomorphic discrete series of weight
k on SL2 correspond to the point ρn − k in (37); see Rallis-Schiffmann [R-S1] and
[B-L-S2].

We illustrate these methods with a couple of examples of exceptional groups.
Let G be the automorphism group of the split Cayley algebra over Q (see [R-S]
for explicit descriptions of the group as well as various data associated with it).
G is a linear algebraic group defined over Q and is split of type G2. It is semi-
simple, it has rank 2 and as a root system for a maximal split torus we can take
∆ = {±(e1 − e2), ±(e1 − e3), ±(e2 − e3), ±(2e1 − e2 − e3), ±(2e2 − e1 − e3),
±(2e3 − e1 − e2)} in V = {(a, b, c)|a + b + c = 0} and with the standard pairing
〈 , 〉. Here e1, e2, e3 are the standard basis vectors. The corresponding Weyl group
W is of order 12. It is generated by reflections along the roots and preserves 〈 , 〉.
The long root β1 = 2e1− e2− e3 together with the short root β6 = −e1 + e2 form a
basis and determine corresponding positive roots β1, β2, . . . , β6, see Figure 1. Up to
conjugacy G has 3 parabolic subgroups; P0 the minimal parabolic subgroup, P1 the
maximal parabolic corresponding to β1 and P2 the maximal parabolic corresponding
to β6. The parabolic subgroup Pj factorizes as LjNj with Lj the Levi factor and
Nj the unipotent factor. Here L1 and L2 are isomorphic to GL2. We examine
the automorphic dual ĜAUT associated with the spectrum of L2(G(Q)\G(AQ)) and
specifically Ĝ(R)AUT.

We recall the classification by Vogan [Vo3] of the unitary spherical dual Ĝ(R)
sph

.
The maximal compact subgroup K of G(R) is SU(2) × SU(2). The correspond-
ing Riemannian symmetric space G(R)/K is 8-dimensional. For j = 0, 1, 2 let
Pj(R) = Mj(R)Aj(R)Nj(R) be the Langlands decomposition of the parabolic sub-
group Pj(R). M0(R)A0(R) is a split Cartan subgroup of G(R) and we identify the
dual Lie algebra of A0, denoted a∗R, with V = {(a1, a2, a3) ∈ R3|a1 + a2 + a3 = 0}.
The corresponding root system ∆(g, a) is ∆. Here M0(R) is the dihedral group D4

while M1(R) and M2(R) are isomorphic to SL2(R). For χ a unitary character of
A0(R) let IP0(χ) be the spherical constituent of IndG(R)

P0(R) (1M0(R) ⊗ χ). For j = 1 or
2 and χj a unitary character of Aj(R) and 0 < σ ≤ 1

2 a complementary series rep-
resentation of Mj(R), let IPj

(σ, χ) be the spherical constituent of IndG(R)
Pj(R)(σ⊗χj).

The representations IP0(χ) are tempered and as we vary over all unitary χ these

exhaust Ĝ(R)
sph

temp. The representations IPj
(σ, χ) are nontempered and unitary,

they together with the tempered representations exhaust all the nonreal part of

Ĝ(R)
sph

(i.e. the spherical representations with nonreal infinitesimal characters).

The rest of Ĝ(R)
sph

may be described as a subset of a∗R with α ∈ a∗R corresponding



NOTES ON THE GENERALIZED RAMANUJAN CONJECTURES 675

to IndG(R)
P0(R)(1M0(R)⊗exp(α(·))). According to Vogan [Vo3] the set of such α’s which

are unitary is the brown and red shaded region in Figure 1.

Figure 1. The shaded area together with the outside dots yield
the spherical unitary dual of G2. The dots (that is ρ, β6, β1/2, β6/2

and 0 and their images under W ) are in Ĝ2(R)
sph

AUT. The brown
shaded region is an upper bound for the generic cuspidal part of
Ĝ(R)AUT.
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Note that points in a∗R equivalent under W correspond to the same point in Ĝ(R)
sph

.
The point ρ is half the sum of the positive roots and corresponds to the trivial
representation of G(R). Clearly it is isolated in Ĝ(R) (as it should be since G(R)
has property T ). Also note that for 0 ≤ σ ≤ 1/2 and j = 1, 2, IPj

(σ,1) (which is
real) corresponds to the point σβj in a∗R.

We turn to Ĝ(R)
sph

AUT. Let

C0 = {IP0(χ)|χ is unitary}(49)

C1 =
{
IP1

(
1
2
, χ

)
|χ is unitary

}
(50)

and

(51) C2 =
{
IP2

(
1
2
, χ

)
|χ is unitary

}
.

We have the following lower bound

(52) Ĝ(R)
sph

AUT ⊃ C0 ∪ C1 ∪ C2 ∪ {β4} ∪ {ρ} .

Note that the set of points on the right-hand side of (52) meets a∗R in the set of
dotted points in Figure 1.

We explain the containment (52). Firstly, the point {ρ} is self-evident. Since

C0 = Ĝ(R)
sph

temp its inclusion in (52) follows from (28). One can show the con-
tainment of C1 and C2 by a variation of (26) where we allow H to be a para-
bolic subgroup, specifically P1 and P2 in this case. However, the theory of Eisen-
stein series demonstrates this more explicitly. Form the Eisenstein series EP1(g, s)
on G(Q)\G(AQ) corresponding to P1 and with the trivial representation on M

(1)
1

(where L1 = M
(1)
1 A1). EP1 has a meromorphic continuation in s and is analytic

on !(s) = 0 where it furnishes continuous spectrum in L2(G(Q)\G(AQ)). The
corresponding spherical parameters fill out C1 and place them in Ĝsph

AUT. Similarly
the continuous spectrum corresponding to the Eisenstein series EP2 (with the triv-
ial representation on M

(1)
2 ) yields C2. The remaining point {β4} in (52) is more

subtle. Again one can see that it is in Ĝ(R)AUT using (26). The Lie subalgebra of
g generated by a and the root vectors corresponding to the six long roots is of type
A2. The corresponding subgroup H of G is SL3 and is defined over Q. H(R) and
G(R) are both of rank 2 and they share the split torus A0(R). Choosing β1 and β5

as simple positive roots of ∆(h, a), we find that ρH = β3. Now,
(48′) β4 ∈ IndG(R)

H(R)

(
IndH(R)

H(Z) 1
)
.

This can be shown by considering the density of H(Z) points in expanding regions
in G(R), first by examining H(Z) as a lattice in H(R) and second by using (48′) (see
[Sa2]), the key points being that β2 (or β4) is an extreme point of the outer hexagon
and that ρG = 2ρH − β2. From (48′) and (26) it follows that β4 ∈ Ĝ(R)AUT. As
before, the Eisenstein series provides a more explicit automorphic realization of β4.
In fact it occurs as a residue (and hence in the discrete spectrum) of the minimal
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parabolic Eisenstein series EP0(g, s) (here s denotes two complex variables). See
for example [K2].

The above account for the lower bound (52). It is interesting that there are
other residual and even cuspidal spectra which contribute to various points on the
right-hand side of (52). The Eisenstein series EP1,π(g, s), where π is an automorphic
cuspidal representation on M (1) ∼= PGL2, has a pole at s = 1/2 if the special value
L
(

1
2 , π, sym3

)
of the symmetric cube L-function is not zero, see [K2]. If π∞(π =

⊗
v
πv) is spherical and tempered then the corresponding residue on G(AQ) produces

a point in C2 (for example if π∞ is spherical corresponding to a Maass cusp form

with eigenvalue 1/4 then the corresponding point in Ĝ(R)
sph

AUT is IP2

(
1
2 , 1
)

= β2/2,
that is,:w the point in the middle of the side of the inner hexagon). Similarly, the
Eisenstein series EP2,π(g, s), where π is an automorphic cuspidal representation on
M

(1)
2 � PGL2 has a pole at s = 1

2 if L(
(

1
2 , π
)
�= 0 (see [K2]). If π∞ is spherical and

tempered the residue produces a point in C1 (this time the eigenvalue 1/4 produces
the point β1/2, i.e. the midpoint of the outer hexagon).

It is a deeper fact that {β4} and a dense subset of points in C1 can be produced
cuspidally. In [G-G-J], Gan-Gurevich and Jiang show that S3 ×G can be realized
as a dual pair in H = Spin(8) �S3. Restricting the automorphic minimal represen-
tation of H(A) ([G-R-S]) to S3 ×G yields a correspondence between automorphic
forms on S3 and G. The spherical representation β4 of G(R) is a constituent of this
restriction. Moreover, by comparing what they construct with the multiplicities
of the residual spectrum, they show that β4 occurs as an archimedian component
of a cusp form in L2

cusp(G(Q)\G(AQ)). A dense set of points in C1 corresponding
to cuspidal representations was constructed by Rallis and Schiffmann [R-S2] using
the oscillator representation of w. They realize G × S̃L2 as a subgroup of Sp14.
While this does not form a dual pair they show that nevertheless restricting w to
G× S̃L2 yields a correspondence between forms on S̃L2 and G. In particular, suit-
able cuspidal representations σ of S̃L2 are transferred to automorphic cusp forms
π(σ) on G(AQ) and the corresponding π(σ)∞ lies in C1 (assuming that σ∞ is tem-
pered). For example, choosing σ appropriately, one can produce the point β1/2 in
a∗R cuspidally. In [G-G-J] and [G-G] the authors compute the Arthur parameters
(see (53) below) explicitly corresponding to these cuspidal automorphic forms on
G(AQ). They find an excellent agreement with the Arthur Conjectures for G.

Our discussion above shows that the lower bound (52) is achieved by various
parts of the spectrum. Unfortunately, I don’t know of any nontrivial upper bounds

for Ĝ(R)
sph

AUT (either for this G or any other exceptional group, though for generic
representations upper bounds are given below). An interesting start would be to
establish that β4 is isolated in Ĝ(R)AUT. The natural conjecture here about this
part of the automorphic dual of G is that the inclusion (52) is an equality.

The above are typical examples of the use of dual pairs in constructing auto-
morphic representations and in particular non-tempered ones. As a final example
we consider the case of a group of type F . We fixate on the problem of cohomology
in the minimal degree. Let F4,4(R) be the real split group of type F4 and of rank
4 (see the description and notation in Helgason [He]). The corresponding symmet-
ric space F4,4(R)

/
Sp(3) × Sp(1) has dimension 28. For Γ a co-compact lattice in

F4,4(R) the cohomology groups Hj(Γ,C) vanish for 0 < j < 8, j �= 4 (see [V-Z]).
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For j = 4 the cohomology comes entirely from parallel forms (i.e. from the triv-
ial representation in Matsushima’s formula) and so dimH4(Γ,C) is constant (i.e.
independent of Γ). So the first interesting degree is 8. According to Vogan [Vo1]
there is a non-tempered cohomological representation ψ, which is isolated in F̂4,4(R)
and which contributes to H8(Γ,C). Now let G be an algebraic group defined over
Q (after restriction of scalars) such that G(Q∞) � F4,4(R)× compact and with
G(Q)\G(AQ) compact. Using the classification in [Ti] one can show (see [B-L-S2])
that G contains a symmetric Q subgroup H such that H(Q∞) � SpinR(5, 4)×
compact. According to Oshima’s computation of the spectra of the affine symmet-
ric space F4,4(R)

/
SpinR(5, 4) one finds that ψ occurs discretely in IndF4,4(R)

SpinR(5,4)1.

Hence according to (26), ψ ∈ Ĝ(Q∞)AUT. Since ψ is isolated in F4,4(R) it follows
that ψ occurs in L2(Γ\F4,4(R)) for a suitable congruence subgroup Γ of G(Z). Us-
ing the classification of lattices Γ (see [Ma]) in F4,4(R) one can show in this way
that for any such lattice Γ and any N > 0 there is a subgroup Γ′ of finite index in
Γ such that dimH8(Γ,C) > N (see [B-L-S2]). For a survey of results concerning
nonvanishing of cohomology in the minimal degree see [Li-Sc].

This concludes our list of examples. We return to the general G. In Example
2, the upper bound (37) implies the useful fact that the trivial representation 1
is isolated in Ĝf (R)AUT. It was conjectured by Lubotzky and Zimmer that this
feature is true in general. That is, if G is a semi-simple group defined over F then
the trivial representation is isolated in Ĝ(Fv)AUT for any place v of F (they called
this property τ). Of course, if v is a place at which G(Fv) has property T then there
is nothing to prove. Clozel [Cl1] has recently settled this property τ conjecture,
this being the first general result of this kind. One proceeds by exhibiting (in
all cases where G(Fv) has rank 1 for some place v) an F subgroup H of G for
which the isolation property is known for Ĥ(Fv)AUT and hence by the restriction
principle (27) this allows one to deduce the isolation property for Ĝ(Fv)AUT . For
example if G is isotropic then such an H isomorphic to SL2 (or PGL2) can be
found. Hence by (19) and (20) the result follows. If G is anisotropic then he
shows that G contains an F subgroup H isomorphic to SL(1, D) with D a division
algebra of prime degree over F or SU(D,α), a unitary group corresponding to a
division algebra D of prime degree over a quadratic extension E of F , and with α
an involution of the second kind (cf Example 3 above). Thus one needs to show
that the isolation property holds for these groups. For SL(1, D) this follows the
generalized Jacquet-Langlands correspondence [A-C] and the bounds (14) and (15)
(for GLp(AF ) with p prime there are no non-trivial residual of Eisenstein series so
the discrete spectrum is cuspidal). For the above unitary groups G = SU(D,α)
of prime degree Clozel establishes the base change lift from G over F to G over E
(this being based on earlier works by Kottwitz, Clozel and Labesse). Now G over
E is essentially SL(1, D) over E so one can proceed as above. As Clozel points out,
it is fortuitous that these basic cases that one lands up with are among the few for
which one can stabilize the trace formula transfer at present.

It is of interest (see comment 3 of Section 3) to know more generally which πv’s
are isolated in Ĝ(Fv)AUT? In this connection a natural conjecture is that if G(Fv)
is of rank 1 then every non-tempered point of Ĝ(Fv)AUT is isolated.
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At the conjectural level, Arthur’s Conjectures [A2] give very strong restrictions
(upper bounds) on ĜAUT. While these conjectures involve the problematic group
LF , they are functorial and localizing them involves the concrete group§ LFv

and
its representations. In this way these conjectures impose explicit restrictions on
the automorphic spectrum. For example, if G is a split group over F then the
local components πv of an automorphic representation π occurring discretely in
L2(G(F )\G(AF )) must correspond to certain Arthur parameters. In the unramified
case these are morphisms of the local Weil group times SL2(C) into LG satisfying
further properties. That is,

(53) ψ : WFv
× SL(2,C) −→ LG

such that
(i) ψ

∣∣
WFv

is unramified and ψ(Frobv) lies in a maximal compact subgroup of LG

(c.f. (9)).
(ii) If j is the unramified map of WFv

−→ SL(2,C) which sends Frobv to[
N(v)1/2 0

0 N(v)1/2

]
,

then the corresponding Arthur parameter is the conjugacy class ψ(Frobv, j
(Frobv)) in LG.

Thus the SL(2,C) factor in (49) allows for non-tempered parameters but they are
highly restricted.

In many of these split examples these local restrictions are probably even sharp
and hence yield precise conjectures for Ĝ(Fv)AUT. We note however that it is by
no means clear that the upper bounds imposed on ĜAUT by Arthur’s parameters
are consistent, for example, with the lower bound (26) which must hold for all sub-
groups H. Establishing this would be of interest. As Clozel [Cl3] has shown, the
Arthur Conjectures together with (26) and (27) (in the form extended to Ĝ(S)AUT)
lead to some apparently non-obvious statements and structures for unipotent rep-
resentations of local groups. Assuming a general twisted form of the “Fundamental
Lemma” (see Hales’ lectures), Arthur [A4], using the trace formula, gives a pre-
cise transfer of automorphic forms from classical orthogonal and symplectic groups
to the corresponding general linear group. Hence, if and when this fundamental
lemma is established, one will be able to combine this transfer with the bounds of
Section 1 to get new sharp upper bounds for ĜAUT with G classical.

In the meantime, when G is split over F and the representation of π of G(AF )
is cuspidal and generic, there have been some impressive developments along the
lines of such functorial lifts. Here π being generic means that there is an f in the

space of π such that
∫

U(F )\U(A)

f(ug)ψ(u)du �= 0 for some character ψ of a maximal

unipotent subgroup U of G. Using these lifts one can deduce strong upper bounds
for the part of ĜAUT which corresponds to globally generic cuspidal π’s. Indeed,
the formulation of the generalized Ramanujan Conjectures for such representations
takes the simple form that it does in GLn.

GRC (cuspidal generic): (see [H-PS])

§LFv is simply WFv if v is archimedian and is WFv × SU(2, R) if v is finite.



680 PETER SARNAK

Let G be a quasi-split group defined over F . If π � ⊗
v
πv is a globally generic

automorphic cuspidal representation of G(A) then πv is tempered.

The main progress for functoriality for generic representations is due to Cogdell-
Kim-Piatetski-Shapiro and Shahidi ([C-K-PS-S], see also [K-K] and [A-S]). Their
work is concerned with a split classical group G, that is one of SO2n+1, SO2n or
Sp2n. The corresponding dual groups LG0 are Sp2n(C), SO2n(C) and SO2n+1(C)
respectively. These dual groups have a standard representation in GL2n(C), GL2n(C)
and GL2n+1(C) and hence there should be a corresponding functorial lift from G(A)
to GL(A). In [C-K-PS-S] it is shown that if π � ⊗

v
πv is an automorphic cuspidal

generic representation of G(A) then this lift to an automorphic form on GL(A)
exists. The lift is explicit and one can analyze its local components. It follows that
if one assumes the GRC for GLN then the πv’s above are tempered (that is, the
GRC (cuspidal generic) for G follows from GRC for GLN ). Moreover, using the
results described in Section 1, specifically (14) and (15) one obtains corresponding
sharp bounds towards the GRC (generic cuspidal) for such G’s (see [C-K-PS-S],
[A-S] and [K-K]).

Combining the results above with work of Ginzburg and Jiang ([G-J]) which
establishes the functorial transfer of generic cusp forms on G2(A) (as in example 4
above) to GSp6, one obtains similar upper bounds for the part of Ĝ2(Qv)AUT that
comes from generic cuspidal automorphic representations π of G2(A). For example,
any such π for which π∞ is spherical must have the real part of its parameters lie in
the brown region shaded in Figure 1, which consists of points lying in the hexagon
with vertices 49

100 β, where β is a short root. This comes about from the functorial
lift

G2(C) = (LG0
2) ↪→ SO7(C) = (LSp0

6) ↪→ GL7(C) = (LGL0
7)

and the bound (15) with n = 7. Note that the dotted points in Figure 1 which are
all in Ĝ2(R)AUT, are nongeneric (except for 0 which is tempered) and hence they
do not contradict GRC (generic cuspidal).

These upper bounds on the generic cuspidal spectrum are quite a bit better
than the local bounds that one gets by identifying the generic unitary duals of the
classical groups [L-M-T] and of G2 [Ko]. The proofs of the functorial lifts of generic
cusp forms from the split classical groups to GL are based on the Langlands Shahidi
method and the converse theorem while the transfer of such forms from G2 to GSp6

relies on these forming a dual pair in E7.

3. Applications

The Ramanujan Conjectures and their generalizations in the form that we have
described them, and especially the upper bounds, have varied applications. We give
a brief list of some recent ones.

(1) For GL2

/
F there are applications to the problem of estimation of auto-

morphic L-functions on their critical lines and especially to the funda-
mental “sub-convexity” problem. See [I-S] and [Sa] for recent accounts as
well as for a description of some of the applications of sub-convexity.

(2) The problem of counting asymptotically integral and rational points on
homogeneous varieties for actions by semi-simple and reductive groups as
well as the equi-distribution of “Hecke Orbits” on homogeneous spaces,
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depends directly on the upper bounds towards GRC. For recent papers
on these topics see [Oh], [C-O-U], [G-O], [S-T-T] and [G-M] and also [Sa2].

(3) There have been many works concerning geometric constructions of co-
homology classes in arithmetic quotients of real and complex hyperbolic
spaces. Bergeron and Clozel have shown that the injectivity of the inclu-
sion and restriction of cohomology classes associated with H < G (here
H and G are SO(n, 1) or SU(m, 1)) can be understood in terms of the
isolation properties of these cohomological representations in Ĝ(F∞)AUT.
This allows for an elegant and unified treatment of the constructions of
cohomology classes as well as far reaching extensions thereof. They have
also established the isolation property for some unitary groups. See [Be]
and the references therein.

(4) Müller and Speh [M-S] have recently established the absolute convergence
of the spectral side of the Arthur trace formula for GLn. Their proof
requires also the extension of (14) and (15) to ramified representations of
GLn(Fv), which they provide. Their work has applications to the con-
struction of cusp forms on GLn and in particular to establish that Weyl’s
Law holds for the cuspidal spectrum.

(5) An older application to topics outside of number theory is to the construc-
tion of highly connected but sparse graphs (“Ramanujan Graphs”). These
applications as well as ones related to problems of invariant measures are
described in the monograph of Lubotzky [Lu]. The property τ conjecture
mentioned in Section 2 is related to such applications.

For a discussion of the automorphic spectral theory of GL2(AQ) in classical
language see [Sa]. The recent article [Cl2] is close in flavor to these notes and
should be consulted as it goes into more detail at various places.
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Université de Paris 7

Marc-Hubert Nicole
McGill University

Chu-Feng Nien
University of Minnesota

Omer Offen
Max-Planck Institute for Mathematics,
Bonn

David Ogilvie
University of Chicago

Aftab Pande
Brandeis University

Jeehoon Park
Boston University

Manish Patnaik
Yale University

David Pollack
Wesleyan University

Amritanshu Prasad
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