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Completion of the proof of the Geometrization
Conjecture

John Morgan and Gang Tian *

August 7, 2012

Introduction

This paper builds upon and is an extension of [21]. Here, we complete a proof of
the following:

Geometrization Conjecture: Any closed, orientable, prime' 3-manifold M
contains a disjoint union of embedded incompressible’? 2-tori and Klein
bottles such that each connected component of the complement admits
a complete, locally homogeneous Riemannian metric of finite volume.

Geometric 3-manifolds. Let us briefly review the nature of geometric 3-manifolds,
that is to say complete, locally homogeneous Riemannian 3-manifolds of finite vol-
ume. Any such manifold is modelled on a complete, simply connected homogeneous
manifold; that is to say, it is isometric to the quotient of a complete, simply connected
homogeneous Riemannian manifold by a discrete group of symmetries acting freely.
Here, homogeneous means that the isometry group of the manifold acts transitively
on the manifold. Geometric 3-manifolds come in eight classes or types depending on
the complete, simply connected homogeneous manifold they are modelled on. Here
is the list, where, for simplicity we have restricted attention to the orientable case.

1. Hyperbolic: These are manifolds of constant negative sectional curvature.
The complete, simply connected example of this geometry is hyperbolic 3-
space. It can be presented as C x (0,00) with coordinates (z,y) with z € C
and y € RT and with the metric being (|dz|? + dy?)/y?. Complete hyperbolic
manifolds are the quotients of hyperbolic 3-space by discrete, torsion-free, co-
finite volume subgroups of its isometry group PSL(2,C). These manifolds can
be non-compact; a neighborhood of any end is diffeomorphic to 72 x [0, 00),

*Supported partially by NSF grants DMS 0706815 (Morgan), DMS 0703985 (Tian), and DMS
0735963(Tian)

INot diffeomorphic to S% and with the property that every separating 2-sphere in the manifold
bounds a 3-ball.

?Meaning the fundamental group of the surface injects into the fundamental group of the 3-
manifold.



and the torus cross-sections are all conformally equivalent and have areas that
are decaying exponentially fast as we go to infinity.

2. Flat: These are manifolds with 0 sectional curvature. They are quotients of
R3 by discrete torsion-free, co-finite volume subgroups of its isometry group.
All such manifolds are compact and are finitely covered by a flat 3-torus.

3. Round: These are manifolds with constant positive sectional curvature. They
are quotients of S with its natural round metric by finite groups of isometries
acting freely. Examples are lens spaces and the Poincaré dodecahedral space.

4. Modelled on hyperbolic 2-space times R: At every point two of the
sectional curvatures are 0 and the third is negative. These manifolds are
finitely covered by the product of a hyperbolic surface of finite area with S?.
There are non-compact examples but every neighborhood of an end of one of
these manifolds is diffeomorphic to 72 x [0,00) and the torus cross sections
have areas that decay exponentially as we go to infinity; one direction is of
constant length and the other decays exponentially fast.

5. Modelled on S? x R: There are exactly two examples here: S? x S and
RP34#RP3.

6. Modelled on Nil, the 3-dimensional nilpotent group:

1
0
0

o = 8
[l SR

Any example here is compact and is finitely covered by a non-trivial circle
bundle over T2.

7. Modelled on the universal covering of PSLy(R): Any example is finitely
covered by a circle bundle over a hyperbolic surface of finite area. Non-compact
examples have ends that are diffeomorphic to T2 x [0, 00).

8. Modelled on Solv, the 3-dimensional solvable group
R? x R*.

All examples here are compact and are finitely covered by non-trivial 72-
bundles over S' with gluing diffeomorphism being an element of SL(2,7Z) of
whose trace has absolute value > 2.

Manifolds of the last seven types are easily classified and their classifications have
been long known, see [30]. Finite volume hyperbolic 3-manifolds are not classified.
It was only recently ([8]) that the hyperbolic 3-manifold of smallest volume was
definitely established. It is known that the set of real numbers which are volumes
of complete hyperbolic 3-manifolds is totally ordered by the usual order on R and



also that the function that associates to a hyperbolic 3-manifold its volume is finite-
to-one but not one-to-one. The Geometrization Conjecture reduces the problem
of completely classifying 3-manifolds to the problem of classifying complete, finite
volume hyperbolic 3-manifolds, or equivalently to classifying torsion-free, co-finite
volume lattices in PSL(2,C). These problems remain open.

There is another way to organize the list of eight types of geometric 3-manifolds
that fits better with what Ricci flow with surgery produces:

1. Semi-positive type: compact and modelled on either S or S? x R.
2. Flat: compact with a flat metric.
3. Essentially 1-dimensional: geometric and modelled on Solv.

4. Essentially 2-dimensional: the interior of a compact Seifert fibered 3-
manifold with incompressible boundary; the interior of the base 2-dimensional
orbifold of this Seifert fibration admits a complete hyperbolic or Euclidean
metric of finite area. The manifold is geometric and modelled on either the
universal covering of PSL(2,R), the product of the hyperbolic plane with R,
or Nil.

5. Essentially 3-dimensional: diffeomorphic to a complete hyperbolic 3-manifold
of finite volume.

We shall use information about the structure of the cusps or neighborhoods of
the ends of a finite volume hyperbolic 3-manifold. For any such orientable manifold
H and any end £ of H there is a neighborhood of £ that is isometric to the quotient
of subset of the upper half-space

{(z,y) € C x [yo,00)|yo > 0}

by a lattice subgroup of C acting on the first factor by translations and acting
trivially on the second factor. The quotients of the slices {y = y1} are horospherical
tori in the end. They foliate the neighborhood of the end. Each one of them cuts
off a neighborhood of the end that is diffeomorphic to T? x [0,00). A truncation
of a complete hyperbolic 3-manifold of finite volume is the compact submanifold
obtained by cutting off a neighborhood of each end of the manifold along some
horospherical torus in that end.

Interpretation of the Geometrization Conjecture. The Geometrization Con-
jecture can be viewed as saying that any closed, orientable, prime 3-manifold M
maps to a graph I' in such a way that:

e The map is transverse to the midpoints of the edges and the pre-image of the
mid-point of each edge is an incompressible torus in M.

e Let 7 be the union of the tori that are the pre-images of the midpoints of
the edges of the graph, and let N be the result of cutting M open along T
(so that N is a compact manifold whose boundary consists of two copies of



T). The manifold N naturally maps to the result T of cutting I' open along
the midpoints of its edges. This map induces a bijection from the connected
components of N to those of f, the latter being naturally indexed by the
vertices of I'.

e Each connected component of N is either a twisted I-bundle over the Klein
bottle or its interior admits a complete, locally homogeneous metric of finite
volume (automatically of one of the eight types listed above).

Statement for a general closed 3-manifold. The statement for a general closed,
orientable 3-manifold is that there is a two-step process. The first step is to cut the
manifold open along a maximal family of essential 2-spheres (essential in the sense
that none of the 2-spheres bounds a 3-ball in the manifold and no two of the 2-spheres
are parallel in the manifold), and then attach a 3-ball to each boundary component
to produce a new closed 3-manifold, each component of which is automatically prime.
The second step is to remove a disjoint family of incompressible tori and Klein bottles
so that each connected component of the result has a complete, locally homogeneous
metric of finite volume. Notice that there is a fundamental difference in these two
steps in that in the first one one has to add material (the 3-balls) by hand whereas
in the second step nothing is added. By definition, a closed, orientable, connected
3-manifold M satisfies the Geometrization Conjecture if and only if each of its prime
factors does.

Uniqueness of the decomposition. Every closed 3-manifold has a decomposition
into prime factors and these factors are unique up to order (and diffeomorphism).
Given an orientable, prime 3-manifold M, consider all families of disjointly em-
bedded tori and Klein bottles in M for which the conclusion of the Geometrization
Conjecture holds. We choose one such family 7 with a minimal number of connected
surfaces. Then for any other such family 7 with the same number of connected sur-
faces as T there is isotopic of M carrying 7’ to 7. Thus, families 7 which satisfy the
Geometrization Conjecture and have a minimal number of connected surfaces are
unique up to isotopy. The geometric structures on the complementary components
are not unique. For example, for those components that fiber over surfaces or Seifert
fiber over two-dimensional orbifolds, there are the moduli of the geometric structure
on those surfaces or orbifolds. In addition, there are non-compact examples of types
(4) and (7) that are diffeomorphic,

0.1 Outline of the proof

The basic ingredient for the proof of the Geometrization Conjecture is the existence
and properties of a Ricci flow with surgery. In [21], following Perelman’s arguments,
we showed that for any closed, oriented Riemannian 3-manifold (M, g(0)) there is a
Ricci flow with surgery defined for all time with (M, g(0)) as the initial condition.
This flow consists of a one-parameter family of compact, Riemannian 3-manifolds
(My, g(t)), defined for 0 < t < oco. The underlying smooth manifolds are locally



constant and the Riemannian metrics are varying smoothly except for a discrete
set {t;} of surgery times. At these times the topological type of the M; and Rie-
mannian metrics g(¢) undergo discontinuous (but highly controlled) changes. One
consequence of the nature of these changes is that if M;, satisfies the Geometrization
Conjecture for some ty < oo, then M; satisfies the Geometrization Conjecture for
all 0 <t < oo, and in particular, My satisfies the Geometrization Conjecture.

The strategy for proving the Geometrization Conjecture should now be clear.
Start with any closed, oriented 3-manifold My. Impose a Riemannian metric g(0)
and construct the Ricci flow with surgery defined for all 0 < ¢ < oo with (M, g(0))
as initial condition. Then show, for all ¢ sufficiently large, that M; satisfies the
Geometrization Conjecture. This manuscript concentrates on the topology and ge-
ometry of the manifolds (M, g(t)) for all ¢ sufficiently large.

The nicest statement one can imagine is that (after an appropriate rescaling) the
Riemannian manifolds (M, g(t)) converge smoothly as ¢t — oo (meaning there are no
surgery times for ¢ sufficiently large and up to diffeomorphism as t — oo the metrics
g(t) converge smoothly to a limiting metric g(c0)) to a locally homogeneous metric,
which is automatically complete and of finite volume since the M; are compact. As
we shall see, this essentially happens under certain topological assumptions, namely
infinite fundamental group which (i) is not a non-trivial free product and (ii) does not
contain a non-cyclic abelian subgroup. In this case the limiting metric is hyperbolic.
But in general this scenario is too optimistic, not all manifolds are geometric —
somehow Ricci flow with surgery must allow for the cutting of the manifold into its
prime factors and also allow for the torus decomposition.

A more accurate picture of what happens in general goes as follows. First of all
the discontinuities (or surgeries) perform the connected sum decomposition including
possibly redundant (i.e., trivial) such decompositions which simply split off new
components diffeomorphic to the 3-sphere without changing the topology of the
already existing components. For sufficiently large ¢, every connected component of
M, is either prime or diffeomorphic to S3. Also, the surgeries remove all components
with round metrics and with metrics modelled on S? x R. This is the full extent
of the topological changes wrought by the surgeries. All of these statements follow
from what was established in [21]. Thus, for all sufficiently large ¢ we have the
following: Each connected component of M, either is prime or is diffeomorphic to
53, Furthermore, if connected component of M; has finite fundamental group or
has a fundamental group with an infinite cyclic subgroup of finite index, then it
is diffeomorphic to S3. As we shall show in Part I here, it turns out that given
(Mo, g(0)), there is a finite list of complete hyperbolic manifolds # = Hy [[--- [ Hg
such that for any truncation #H of #H along horospherical tori the following holds.
For all ¢ sufficiently large, there is an embedding ¢;: H — M; such that the rescaled
pulled back metrics %go,’f g(t) converge to the restriction of the hyperbolic metric H.
Furthermore, the image of the boundary tori 7 of H under ¢; are incompressible
tori in M;. Lastly, the complement (M; \ ¢;(int(#), g(t)) is locally volume collapsed
on the negative curvature scale (details on this notion below). Actually, H depends
only on the diffeomorphism type of My. The proof of the existence of H and the
embeddings as required are rescaled versions, valid near infinity, of the main finite-



time results that were used in [21] in the construction of a Ricci flow with surgery
and an understanding of its singularity development. These deal with non-collapsing
and bounded curvature at bounded distance for the rescaled metrics % g(t) ast — oo.

To complete the proof of the Geometrization Conjecture we must show that
the locally volume collapsed pieces satisfy the appropriate relative version of the
Geometrization Conjecture.

The Relative Version of the Geometrization Conjecture: Let M be a com-
pact, orientable 3-manifold whose boundary components are incompressible tori.
Suppose that M is prime in the sense that every 2-sphere in M bounds a 3-ball and
no component of M is diffeomorphic to S2. Then there is a finite disjoint union 7°
of incompressible tori and Klein bottles in int M such that every connected compo-
nent of int M \ T is either diffeomorphic to 72 x R or admits a complete, locally
homogeneous metric of finite volume.

It is a direct argument to see that the relative version of the conjecture implies
the original version of the conjecture when the manifold in question is closed.

Locally Volume Collapsed manifolds.

Definition 0.1. Suppose that M is a complete n-dimensional Riemannian manifold
and w > 0 and 1: M — [0,00) are given. Then we say that M is w locally volume
collapsed on scale v if for every x € M we have

Vol B(z,¢(z)) < wip(x)".

Definition 0.2. Suppose that M is a complete, connected Riemannian manifold
and that M does not have everywhere non-negative sectional curvature. Then we
define

p: M — [0,00)

such that for each x € M the infimum of the sectional curvatures on B(z, p(x)) is
—p~2(x). Then p(x) is the negative curvature scale at x. We say that M is w locally
volume collapsed on the negative curvature scale if it is w locally volume collapsed
on scale p.

The results on Ricci flow as t — oo indicated above produce truncated hyperbolic
submanifolds of (M, g(t)) whose complements are locally volume collapsed on the
negative curvature scale. In fact, given w > 0 for all ¢ sufficiently large the com-
plement of the hyperbolic pieces in (My, g(t)) is w locally volume collapsed on the
negative curvature scale. The idea for studying the complement is to first under-
stand the balls B(z, p(z)) C M;. Rescaling g(t) by p~2(z) gives us a unit ball on
which the sectional curvatures are bounded below by —1. This uniform lower cur-
vature bound implies that any sequence of such balls with ¢ — oo has a subsequence
which converges in a weak sense (the Gromov-Hausdorff sense) to a metric space
that is weaker than a Riemannian manifold but still has some curvature structure,
a so-called Alexandrov space.



Let us briefly list the local models for the limit and the corresponding 3-dimensional
models. By general results the Gromov-Hausdorff limit of a sequence of rescaled balls
o Hxn)B(2n, p(xy)) is an Alexandrov ball of dimension < 3 and curvature > —1.
The fact that the volume of the p~!(x,,) B(xp, p(x,)) are tending to zero as n — oo,
means that the limit has dimension < 2. Also, it turns out that we can assume that
p(zy) < diameter(M,,)/2. This implies that the limit is not a point and hence has
dimension > 1. Thus, the Gromov-Hausdorff limit is either 1- or 2-dimensional.

Let us describe what happens when the limiting Alexandrov space is 1-dimensional.
In this case the limit is either an interval (open, half-closed or closed) or a circle. The
local structure of the 3-manifolds converging to such Alexandrov space near points
converging to an interior point is a product of $2 x (0,1) or T? x (0,1) where the
surface fibers are of diameter converging to zero and the interval has length bounded
away from zero. In fact we can view neighborhoods in the M,, as fibering over the
limiting open interval with fibers of small diameter which are either S2-fibers or
T2-fibers. Near an end point the structure is either a 3-ball or a punctured RP3
(when the fibers over nearby interior points are S?) or a solid torus or a twisted
I-bundle over the Klein bottle (when the fibers over the nearby interior points are
2-tori).

Now we consider the second possibility when the limiting Alexandrov space is
2-dimensional. As we shall see, we write a 2-dimensional Alexandrov space as a
union four types of points for an appropriately chosen dg > 0:

e interior points that are the center of neighborhoods close to open balls in R?,

e points at which the space is an almost circular cone of cone angle < 27 — g,

boundary points that are the center of neighborhoods close to open balls cen-
tered at boundary points of half-space, and

boundary points at which is space is almost isometric to flat cone in R? of cone
angle < 7 — dg.

The local models for neighborhoods of x € M,, in these four cases are:

e S! x R? with a Riemannian metric that is almost a product of a Riemannian
metric on S' with a flat Riemannian metric on R?;

e a solid torus;

o D? xR;

e a 3-ball.

It turns out that these neighborhoods are glued together in a completely standard
way. It then is an elementary problem in 3-dimensional topology to show that a 3-
manifold covered by such neighborhoods intersecting in standard ways satisfies the
relative version of the Geometrization Conjecture.

Thus, for all ¢ sufficiently large, the (M; \ ®.(intH),t 'g(t)) satisfies the relative
version of the Geometrization Conjecture. This then completes the proof of the



Geometrization Conjecture for M, for ¢ sufficiently large, and consequently also for
M.

0.2 Outline of Manuscript

This manuscript has two parts. In Part I we cover the material in Sections 6 and
7 of [27], in particular the material from Lemma 6.3 through Section 7.3. This
preliminary study of the limits as ¢ — oo of the t time-slices (M, g(t)) of a 3-
dimensional Ricci flow with surgery produces a dichotomy. For any w > 0 and
for all ¢ sufficiently large (given w), the ¢ time-slice is divided along incompressible
tori into two parts. The first part is a disjoint union of components each of which
is an almost complete hyperbolic manifold implying in particular that its interior
is diffeomorphic to a complete hyperbolic manifold of finite volume. The second
part, My(w, —), is locally w volume collapsed on the negative curvature scale. Then
we turn to the manifolds M;(w, —) for w sufficiently small and t sufficiently large.
The result we need to handle this case is stated by Perelman as Theorem 7.4 in
[27], but no proof is provided in [27]. The second part of this work is devoted to
giving a proof of Theorem 7.4 from [27] which is stated as Theorem 5.5 below. We
review the background material from the theory of Gromov-Hausdorff convergence
of metric spaces and the theory of Alexandrov needed to establish this result. In
the final section we state and sketch the proof of the equivariant version of the
Geometrization Conjecture for compact group actions on compact 3-manifolds.

0.3 Other Approaches

The Geometrization Conjecture was proposed by W. Thurston in early 1980s. It
includes the Poincaré Conjecture as a special case. Thurston himself established this
conjecture for a large class of 3-manifolds, namely those containing an incompressible
surface; i.e., an embedded surface of genus > 1 whose fundamental group injects into
the fundamental group of the 3-manifold, see [25].

While Perelman’s approach is the most direct, there are other approaches to the
Geometrization Conjecture using Ricci flow with surgery and variations of Theo-
rem 5.5. As was indicated above, if a 3-manifold M admits an incompressible torus,
then it falls into the class of 3-manifolds for which the Geometrization Conjecture
had been established by Thurston himself. A detailed proof of the Geometrization
Conjecture for those 3-manifolds was given in [24] and [25]. In view of this, it suffices
to prove Theorem 5.5 for closed manifolds (again appealing to the Ricci flow results
from [26] and the material in [27] preceding Theorem 7.4). This is route followed
in [15] and [4]. A version of Theorem 5.5 for closed 3-manifolds has been proved
in a series of papers of Shioya-Yamaguchi ([32], [33]). They did not make use of
Assumption 3 of Theorem 5.5 on bounds on derivatives of curvature?, so their result
is more general and can be applied to 3-manifolds that do not necessarily arise from
Ricci flow. However, because they are not relying on estimates on higher derivatives

3Their proof was mostly for manifolds with curvature bounded from below, but the extension to
the case of curvature locally bounded from below is not difficult as they point out in an appendix.



of the curvature as stated in Assumption 3, to prove their result, Shioya- Yamaguchi
need to use a stability theorem on Alexandrov spaces. This stability theorem is
due to Perelman and its proof was given in an unpublished manuscript in 1993.
Recently, V. Kapovitch posted a preprint, [14], which proposes a more readable
proof for this stability theorem of Perelman. Putting all these together, one has a
Perelman-Shioya- Yamaguchi-Kapovitch proof of Theorem 5.5 for closed manifolds
without the assumption of higher curvature bounds. As we have indicated, this
proof requires a more knowledge about Alexandrov spaces, in particular knowledge
about 3-dimensional Alexandrov spaces than the proof we present. It also relies on
Thurston’s result for manifolds with incompressible tori to give a complete proof of
Geometrization.

Our presentation of the collapsing space theory is motivated by, and to a large
extent follows, the Shioya-Yamaguchi paper [33], however it differs from their’s in two
fundamental aspects. First of all, as indicated above, we follow Perelman and add
the assumption concerning the control of the higher derivatives of the curvature, thus
allowing us to simplify the argument and in particular avoid the use of the stability
theorem for Alexandrov spaces. Also, again following Perelman, we directly treat
the case of non-empty boundary so that we do not have to appeal to Thurston’s
proof of the Geometrization Conjecture for manifolds containing an incompressible
surface.

There is another approach to the proof of the Geometrization Conjecture due to
Bessieres et al [2] which avoids using Theorem 5.5 below. This argument also relies
on Thurston’s theorem that 3-manifolds with incompressible surfaces satisfy the Ge-
ometrization Conjecture, so that one only needs to consider the case when the entire
closed 3-manifold is collapsed. Rather than appealing to the theory of Alexandrov
spaces, this approach relies on other deep works in geometry and topology, e.g.,
results on the Gromov norms of 3-manifolds.
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PART I: Geometric and Analytic Results for Ricci Flow with Surgery



1 RICCI FLOW WITH SURGERY 11

1 Ricci flow with surgery

Let us review briefly the way we will apply Ricci flow with surgery in order to
establish the Geometrization Conjecture. Here we are briefly reprising the work in
[21]. Thurston’s Geometrization Conjecture suggests the existence of especially nice
metrics on 3-manifolds and consequently, a more analytic approach to the problem
of classifying 3-manifolds. Richard Hamilton formalized one such approach in [11],
the approach that Perelman successfully adopted, by introducing the Ricci flow on
the space of Riemannian metrics on a fixed smooth manifold:

99(t) = —2Ric(g(1)), (1.1)
ot

where Ric(g(t)) is the Ricci curvature of the metric g(¢). In dimension 3, the fixed
points (up to rescaling) of this equation are the Riemannian metrics of constant sec-
tional curvature. Beginning with any Riemannian manifold (M, go), in [11] Hamilton
showed that there is a solution g(¢) of this Ricci flow on M for ¢ in some interval
such that g(0) = go. The naive hope is that if M is a closed 3-manifold, then
g(t) exists for all t > 0, after appropriate rescaling, and converges to a nice metric
outside a part with well-understood topology. As an example of this, in [12], R.
Hamilton showed that if the Ricci flow exists for all time and if there is an appro-
priate curvature bound together with another geometric bound, then as ¢ — oo,
after rescaling to have a fixed diameter, the metric converges to a metric of constant
negative curvature.

However, the general situation is much more complicated to formulate and much
more difficult to establish. There are many technical issues that must be handled:
One knows that in general the Ricci flow will develop singularities in finite time, and
thus a method for analyzing these singularities and continuing the flow past them
must be found. Furthermore, as we shall see, even if the flow continues for all time,
there remain complicated issues about the nature of the metrics as ¢ tends to co.

Let us discuss the finite-time singularities. If the topology of M is sufficiently
complicated, say it is a non-trivial connected sum, then, no matter what the ini-
tial metric is, one must encounter finite-time singularities, forced by the topology.
More seriously, even if M has simple topology, beginning with an arbitrary metric,
one expects to (and cannot rule out the possibility that one will) encounter finite-
time singularities in the Ricci flow. These singularities may occur along proper
subsets of the manifold, not the entire manifold. Thus, one is led to study a more
general evolution process called Ricci flow with surgery, denoted (M, G), first intro-
duced by Hamilton in the context of four-manifolds, [13]. This evolution process is
parametrized by an interval in time, and for each ¢ in the interval of definition the ¢
time-slice (M, g(t)) is a compact Riemannian 3-manifold. But there is a discrete set
of times at which the manifolds and metrics undergo topological and metric disconti-
nuities (surgeries). In each of the complementary intervals to the singular times, the
evolution is the usual Ricci flow, though, because of the surgeries, the topological
type of the manifold M; changes as t moves from one complementary interval to the
next. From an analytic point of view, the surgeries at the discontinuity times are
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introduced in order to ‘cut away’ a neighborhood of the singularities as they develop
and insert by hand, in place of the ‘cut away’ regions, geometrically nice regions.
This allows one to continue the Ricci flow (or more precisely, restart the Ricci flow
with the new metric constructed at the discontinuity time). Of course, the surgery
process also changes the topology. To be able to say anything useful topologically
about such a process, one needs results about Ricci flow, and one also needs to con-
trol both the topology and the geometry of the surgery process at the singular times.
For example, it is crucial for the topological applications that we do surgery along
2-spheres rather than surfaces of higher genus. Surgery along 2-spheres produces
the connected sum decomposition, which, as we indicated above, is well-understood
topologically, while, for example, (Dehn) surgeries along tori can completely destroy
the topology, changing any 3-manifold into any other.

The change in topology turns out to be completely understandable and amazingly,
the surgery processes produce exactly the topological operations needed to cut the
manifold into pieces that are either prime of are copies on S3, and furthermore, on
each of these pieces the Ricci flow produces metrics sufficiently controlled so that the
topology can be recognized, and the Geometrization Conjecture can be established.

1.1 Main Existence Theorem

Following Perelman ([27]), in [21] we gave a detailed proof of the long-time existence
result for Ricci flow with surgery. First, an elementary definition.

Definition 1.1. We say that a Riemannian metric g on an n manifold M is normal-
ized if for all x € M we have |[Rm(z)| <1 and Vol(B(z,1) > w,/2, where w,, is the
volume of the unit ball in Euclidean n-space. Clearly, if the Riemannian manifold
(M, g) is compact, or more generally of bounded geometry, then there is a positive
constant A so that (M, \g) is normalized.

Theorem 1.2. Fizx e > 0 sufficiently small. Let (M, go) be a closed Riemannian 3-
manifold, with gy normalized. Suppose that there is no embedded, locally separating
RP? contained* in M. Then there is a Ricci flow with surgery, say (M,G), defined
for all t € [0,00) with initial metric (M,go). The set of discontinuity times for
this Ricci flow with surgery is a discrete subset of [0,00). The topological change
in the time-slice My as t crosses a surgery time is a connected sum decomposition
together with removal of connected components, each of which is diffeomorphic to one
of S? x S, RP3#RP3, the non-orientable 2-sphere bundle over S, or a manifold
admitting a metric of constant positive curvature. Furthermore, there are four non-
increasing functions r(t) > 0, k(t) > 0, 6(t) > 0, and h(t) > 0 (independent of
(M, go)) such that: (1) surgery at time t is done with §(t) control along 2-spheres
with curvature > h=2(t) (see the discussion immediately after Definition 15.5 in
[21]); (2) (Mg, g(t)) is k(t)-non-collapsed (see [21] Definition 9.1); and (3) any
point © € M; with R(g(t)) > r~2(t) satisfies the so called strong (C, €)-canonical

4That is, no embedded RP? in M with trivial normal bundle. Clearly, all orientable manifolds
satisfy this condition.
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neighborhood assumption for appropriate choices of C' and € (see [21] Definition
9.78 and Theorem 15.9).

Theorem 1.2 is central for all applications of Ricci flow to the topology of three-
dimensional manifolds. The book [21] dealt with the case that M; = 0 for ¢ suf-
ficiently large, that is, the case when the Ricci flow with surgery becomes extinct
at finite time. Under this assumption, it follows from the above theorem that the
initial manifold M is diffeomorphic to a connected sum of copies of S? x S!, the non-
orientable 2-sphere bundle over S!, and manifolds of the form S3/T", where I' C O(4)
is a finite group acting freely on S3. It was shown in [21] that if M is a simply-
connected 3-manifold, then for any initial metric gg the corresponding Ricci flow
with surgery becomes extinct at finite time, see also ([28] and [5]). Consequently,
M is diffeomorphic to S3, thus proving the Poincaré Conjecture. More generally,
in [21] we showed that if the fundamental group of M? is a free product of finite
groups and infinite cyclic groups, then M; = () for all ¢ sufficiently large. Hence,
these manifolds are diffeomorphic to connected sums of prime manifolds admitting
locally homogeneous metrics modelled either on the round metric on S (i.e., metrics
of constant positive curvature) or on S? x R (the only prime examples of the latter
being S2-sphere bundles over S1).

In the case when M; # ) for every t, we showed (Corollary 15.4 of [21]) that if
M; satisfies the geometrization conjecture for some ¢ > 0 then so does the initial
manifold My. Thus, it suffices to show that for any Ricci flow with surgery (M, G),
for all ¢ sufficiently large the ¢ time-slice (My,g(t)) satisfies the Geometrization
Conjecture in order to conclude that it holds in general for all closed orientable
3-manifolds. This motivates a more detailed study of the time-slices (M, g(t)) as
t — oo for Ricci flows with surgery.

1.2 Review of notation and definitions

Here we recall the technical definitions for Ricci flows with surgery from [21] that
will be used in the arguments we present here.

A generalized Ricci flow of dimension n is a smooth (n + 1)-manifold U together
with a time function ¢: U — R which is a submersion, a vector field x, and a smooth
section gnor of Sym? ((Ker dt)*) subject to the following conditions:

1. x(t) =1.

2. ghor is a positive definite metric on Kerdt, and we denote by Ric(gnor) the
symmetric 2-tensor on this bundle that is the Ricci curvature of the metric

Ghor-

3. Denoting the Lie derivative with respect to x by L,, we have
Ex(ghor) = _2Ric(ghor)'

Said another way, for each point x € U, setting ty = t(x), there is a neighborhood
V™ C t71(tg) and a & > 0 such that integrating flow lines of y though points of V/
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determines a diffeomorphism from V' x (to — &, tp + &) to a neighborhood of = in
U. Furthermore, pulling back gpo gives a smooth 1-parameter family of metrics
g(t), to — & <t <top+& on V that satisfies Equation (1.1), the Ricci flow equation.
The special case of a generalized Ricci flow when the level sets of ¢ are compact
manifolds, or more generally when the flow lines of y determine a global product
structure, is an ordinary Ricci flow. In a 3-dimensional Ricci flow with surgery
(M, G) the complement of the union of the surgery caps is a generalized Ricci flow,
but of course it is not an ordinary Ricci flow since the topology of the time-slices
changes.

Given a Ricci flow with surgery, (M, G), we denote by (M, g(t)) the t time-slice.
This is a compact Riemannian 3-manifold. For any (x,t) € M; and any r > 0 we
denote by B(z,t,r) the ball of radius r centered at x in (M, g(t)). Suppose that for
some At > 0 every y € B(z,t,r) has the property that the flow-line of the Ricci flow
with surgery through (y,t) extends backwards to at least t — A¢. Then we define the
(backward) parabolic neighborhood P(x,t,r,—At) to be the union of these flow lines
on the interval [t — At,t]. We then have an embedding B(x,t,r) x [t — At,t] C M
and the pull-back of the Ricci flow with surgery by this embedding gives an ordinary
Ricci flow on the product. In this case, we say the Ricci flow with surgery contains
the entire parabolic neighborhood P(x,t,r, —At) or alternatively the entire parabolic
neighborhood ezists in (M, G). There are analogous definitions and notation for
forward parabolic neighborhoods P(z,t,r, At).

We shall use other notation and definitions from [21]. Recall that, as we indicated
above, Theorem 15.9 and Corollary 15.10 of [21], describing Ricci flows with surgery,
make reference to two universal constants 0 < € < 1/100 and 10 < C' < oo and four
non-increasing, positive functions x(t), 7(t), 6(t) and h(t). The function (t) is
called the non-collapsing function: for every point (x,t) and radius r with 0 < r <€
with the property that the Ricci flow is defined on all of P(x,t,7,—r?) and has
all sectional curvatures on this set bounded in absolute value by 72 also has the
property that Vol B(z,t,7) > x(t)r3. This function is a step function on [0, €), [e, 2¢),
[2¢, 4€), etc. The function r(t) is the canonical neighborhood function. Every point
(x,t) € M with R(z,t) > r~2(t) has a (C, €)-canonical neighborhood (see below for
the definition of the latter). It is also a step function on the same intervals as s (t).
The function §(¢) is the surgery control function: Surgeries at time ¢ along 2-spheres
are performed along central 2-spheres of strong &(t)-necks. The condition on d(¢) is
that it be less than a universal non-increasing function A(t) which is always less than
e and limits to 0 as ¢ — oo. The function A(t) is also a step function on the same
intervals as x(t) and 7(¢). The three step functions &, r, A are defined by interlocking
induction one step at a time. Finally, h(t) is the surgery scale function in the sense
that the 2-sphere surgeries at time ¢ are done on the central 2-spheres of §(¢)-necks,
2-spheres through a point with scalar curvature h=2(¢). The conditions on h(t) are
two-fold. First, we require h(t) < 32(t)'r(t). Secondly, h(t) must be small enough
so that any point (p,t) in an e-horn whose ‘big end’ has scalar curvature at least
0(t)r(t) and which satisfies R(p,t) > h~2(t) is at the center of a strong §(t)-neck.
The function h(t) can be chosen arbitrarily subject to these two conditions after the
other three functions have been defined for all t.
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One of the conditions that our Ricci flows with surgery satisfy is the curvature
pinching hypothesis. Setting X (x,t) equal to the maximum of the negative of the
smallest eigenvalue of Rm(z,t) and zero, and assuming, as we always shall implicitly,
that the initial conditions are normalized we have

R(z,t) > 2X (z,1) (log(X (z,£)(t + 1)) — 3), (1.2)

see Section 15 of [21].

In doing surgery at time t (see Section 14 of [21]) we remove connected compo-
nents on which the scalar curvature is everywhere at least 7~2(t). These are covered
by (C, €)-canonical neighborhoods and thus by the results in the Appendix of [21]
each such component either admits a round metric or admits a metric modelled on
5?2 x R and hence these components satisfy the Geometrization Conjecture. We
also cut open the e-horns of the limiting incomplete metric along the 2-spheres and
remove the non-compact ends of these horns. We then add surgery caps at time ¢;
these are 3-disks added to the boundary 2-spheres created by the cutting process.
The union of the surgery caps is exactly the set of points in M; at which no flow line
extends backwards, and hence exactly the set of points where the Ricci flow with
surgery fails to satisfy the conditions to be a generalized Ricci flow. Every surgery
cap at time ¢ has diameter < 5h(t) and the scalar curvature on the surgery cap is
bounded between 3h~2(t)/4 and 3h~2(t).

Recall that there are three types of (C, ¢)-canonical neighborhoods:

1. A strong e-neck centered at (x,t). This is an evolving region in the Ricci flow
with surgery on which the flow, after rescaling the metric and time by R(z,t)
and shifting time so that the central point is at time 0, is within € in the cl/d.
topology of the standard product flow on S2 x (—e~1, e71) x [~1,0] where the
scalar curvature of the 2-spheres at time ¢ is (1 — )71

2. A (C,€)-cap is an open submanifold C of a time-slice, diffeomorphic to either an
open 3-ball or the complement in RP?3 of a closed 3-ball, with a neighborhood
N of the non-compact end of C being the final time-slice of a strong e-neck. The
complement C'\ N is called the core of the cap. Furthermore, the diameter
of C is at most CR(y)~'/2 for any y € C. There are also other bounds on
curvature that are not relevant for us here.

3. The other type of (C, €)-canonical neighborhood consists of closed components
of positive curvature. They will not play a role in this paper.

Furthermore, we require that in a (C, €)-canonical neighborhood we have

"W‘ < CR*(z,t) (1.3)

IVR(z,t)] < CRY?(z,t). (1.4)

One of the main results of [21] is that in a Ricci flow with surgery is given € > 0
there is a function r(¢) > 0 and C' < oo so that any point x in the t-time-slice M; of
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a Ricci flow with surgery with R(z) > r~2(t) is either the center of a strong e-neck,
is contained in the core of a (C,€)-cap or is contained in a (C, €)-component.

We shall use one further property of (C, €)-caps that was not required in [21] but
which can be easily seen to be arrange from the construction: every point of N is
itself at the center of an e-neck in M. To see how to arrange this, given € then fix
C so that the result holds for (C,€/5). For any (C, €/5)-cap with €/3-neck N as the
complement of the core. Let N’ be the middle 1/5 of N. Then N’ is an e-neck and
the union of the compact complementary component of N with N’ is a (C,€)-cap
with the extra property that every x € N’ is the center of an e-neck in M. From
now on we take this condition as part of the definition of a (C,€)-cap.

2 Limits ast — o0

We have finished our recap of the results, definitions, and notation from [21] that
are necessary background. We now turn to the geometry of the of the volume non-
collapsed part of the manifolds (M, g(t)) as t — oco.

Recall (Equation 3.7 on page 41 of [21]) that for the 3-dimensional Ricci flow
g(t), one has the evolution equation on its scalar curvature R

e AR + 2|Ric”|* + §R , (2.1)
where Ric® is the trace-free part of Ric. Let Ry (t) be the minimum of the scalar

curvature R(g(t)) of g(t). Then by the usual (scalar) maximum principle we have

> -R: . . 2.2

This inequality remains valid for Ricci flows with surgery, at least as long as Ry <
0, since the surgery is done at a point with large positive scalar curvature. (In
fact, the surgery is done at points where the scalar curvature is much larger that
the threshold 7—2(t) for the existence of canonical neighborhood, so this equation
remains true unless Ry, is greater than this threshold. If Ry, is greater than
this threshold, then the manifold is covered by (C, €)-canonical neighborhoods and
hence has a standard topology as described in the appendix of [21].) Because of the
normalized initial conditions (see Assumption 1 in Chapter 15 of [21]), Rin(0) > —6,

it follows that 3

2t +1/4)

Furthermore, it follows from Equation (2.1) that if Ry, (0) > 0 then the Ricci flow
with surgery becomes extinct after a finite time, and according to the main theorem
of [21], in this case the manifold is a connected sum of 3-dimensional spherical
space-forms (quotients of S by finite groups of isometries acting freely) and copies
of S2-bundles over the circle. If Ry (0) = 0, then by the strong maximum principle
either it Ry () is positive for all ¢ > 0 and the previous case applies, or R(z,0) =0
for all x € My. In the latter case, it follows from Equation (2.1) that either the

Rpnin(t) > (2.3)
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Ricci curvature and thus the sectional curvature vanishes identically and (M, g(0)
is a flat manifold, or Ry, () is positive for all ¢ > 0 and the previous case applies.
The conclusion is that if Ruyin(0) > 0, then the initial manifold M, satisfies the
Geometrization Conjecture. From now on we assume that Ry, (t) < 0 for all ¢,
and hence that Inequality (2.3) holds for the Ricci flow with surgery. In fact as
the Ricci flow with surgery proceeds and possibly breaks the manifold into several
connected components, we remove from the Ricci flow any connected component of
M; on which the scalar curvature is everywhere non-negative. Hence, for all ¢ and
for every connected component C; of M; we have the mingec, R(z,t) < 0.

Definition 2.1. Given a Ricci flow with surgery (M,G) we set V(¢) equal to
the volume of (M;,g(t)) and we define V(t) = V(t)/(t + 1/4)%/2. Define R(t) =
Rumin (£)V?/3(t), where Ry (t) is the minimum of the scalar curvature of (M, g(t)).

Lemma 2.2. For any Ricci flow with surgery V(t) 18 a positive, non-increasing
function of t and R(t) is a negative, non-decreasing function of t

~

Proof. Clearly, V(t) > 0. We have

dv(t)  dV(t)/dt 3 4
T Y R Ty A

Since dV (t)/dt = — [ R(t)dV < —Rumin(t)V (t), we have

av(t) = - 3

—= < V(@) | Rmi — . 2.4
0 < 7O (Roint 55 (2.4)

Inequality (2.3) implies that the right-hand side of the previous inequality is non-

positive, so that V(¢) is a non-increasing function of ¢ in each interval between

successive surgery times. Every surgery also reduces the volume in the sense that

at every surgery time ¢yo we have lim, HtaV(t) > V(tp). The first statement follows.

Similarly, R(t) < 0 since Ruyin < 0. Using the inequality d Ruin(t)/dt > 2R%. (t)/3
and the equation dV (t)/dt = — [ R(t)dV, we have

L

R(t)
it -

Wl N

ROV0) [ (Ruin — BV, (2.5)

which is non-negative since R() < 0. As we have observed before since Ry () is
continuous at surgery times, it follows from the above that at any surgery time tg
we have

_R(t) > R(to).

hmt—nro

O]

Definition 2.3. For a Ricci flow with surgery we define V(00) = limy_,0eV (t) and
R(o0) = limy_, o R(%).

Lemma 2.4. Suppose that (M, G) is a Ricci flow with surgery and that ‘A/(oo) > 0.
Then Ruin(t) is asymptotic to —3/2t, or equivalently R(co)V ~2/3(c0) = —3/2.
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Proof. By Inequality (2.4) we have

d(logV) 3
it 2 (ot 7

Since we are assuming V (co) > 0, it follows that

o0 3
Ruin + ————dit < .
/0 20+ 1/4) ¢ =

Now consider Ruin(t)(t + 1/4) = R(t)/V (t)%/3. Taking limits as ¢ — oo gives
1m0 Runin () (£ + 1/4) = R(00)/V (00)?/3.

Thus, Rmin(t)(t+1/4) has a finite limit as ¢t — co. By the first inequality, that limit
must be —3/2. O

The above results indicate that rescaling the metrics g(¢) by 1/t can lead to
reasonable limits for Ry (t). As the next result shows that the same rescaling
produces produces hyperbolic limits provided that we are working on regions on
which these rescalings converge smoothly, see Section 7.1 of [27].

Corollary 2.5. Let (M,G) is a Ricci flow with surgery. Suppose that we have
r > 0, a sequence t, — o0 as n — o0, and a sequence of parabolic neighborhoods
P(zp,tn, 7v/Tn, —72t,) on which the Ricci flow with surgery is defined with the prop-
erty that the rescaling of space and time in the n"-parabolic neighborhood by t;!
converges smoothly as n — oo to a limit Ricci flow defined on an abstract parabolic
neighborhood P(eo, 1,7, —12). Then, for every s € (1 —r2,1], the sectional curva-
tures of the limit flow are constant on the s time-slice and equal to —1/4s.

Proof. For each n > 1 and each s € [1 —12,1], set g,(s) = ig(stn) on M, . Denote

by Vi(s), Ru(x,s) and R, (s) the volume, the scalar curvature and the function R
as defined above for (M, , gn(s)). By Inequality 2.5 we have

Rltn) — R - 1)t) > /( ; ROV [ (o) = Bl av(s)] as.

1-72)t,

s

Changing variables, replacing s by t,s, he right-hand side can be written as

/1
1—72

Since R is scale invariant, we can rewrite the right-hand side as

/1
1—r2

Rist)V—"(st,) /M (Runin (51) — R(z, st)) dV (st,)

tpds.

Ru(s)Vy, H(s)t, %/ / t (Rymin(s) — Ru(z, 5)) t3/2dV;,(s)
M.stn

tnds

ds.

ﬁn(s)vn_l(s) /M (Rn,min(s) - Rn(l', 8)) an(S)
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Of course
t + 174\ %2
tn ’

Vi(s) = V(sty) - <
and Ry, min(s) — Rn(z,s) < 0. Thus, we have

R(ty) - R((1L —r)ta) >

/1
1-r2

Taking limits as n — oo and denoting the limit metric on P(z, 1,7, —r2) by goo(s),
its scalar curvature by R (z,s) and its volume by V(s), we have

~ tn

R 3/2
R(st) 7 (st) <t+1/4> /| o (i) = R ) Vi (3)| .

R N 1
0> B(00) 7 (c0) /1 - /B 1 o) = Ro,) dVac(s)ds.

Since E(oo)‘A/_l(oo) < 0 and the integrand is < 0, it follows that the integrand is
identically zero, i.e.

Roo min(8) = Roo(z, 5).

But we have already seen that Reomin(s) = —3/4s. This proves that go(s) has
constant scalar curvature equal to —3/4s. It then follows from Equation 2.1 that
Ric®(goo(s)) = 0, and hence g (s) is of constant sectional curvature —1/4s for every
sel—r21]. O

This analysis gives us control on the nature of the (M, 1g(t)) as t — oo, at
sequences points whose times are going to infinity and for which there is a smooth
limit on a parabolic neighborhood, and in fact is the source of the hyperbolic limits
at infinity. But in order to apply this corollary we need to understand when these
rescalings have limits. For this we need three local results that are more delicate.
In the next section we will establish technical results that are used in proving the
following three propositions. In all three propositions we are considering sequences
of time-slices where ¢t — oo and implicitly we are rescaling the metric by 1/¢. It turns
out that these technical results require further conditions, another upper bound, on
the surgery control parameter §(t) (see Assumption 3.9) and on the surgery scale
function h(t) (see Assumption 3.10) beyond those stated in Corollary 15.10 in [21].
Since Corollary 15.10 of [21] is valid as long as 6(¢) was non-increasing and less than
some fixed function A(t) > 0, we can simply take §(¢) less than A(t) and also less
the new upper bound required here. Similarly, since the choices of the r(t),r(t),
and A(t) are independent of the choice of h(t) satisfying the given conditions, we
are also free to add this extra condition as an upper bound for h(¢). Throughout
this section we assume that the surgery control parameter §(t) and the
surgery scale function h(t) satisfy the conditions given in Assumptions 3.9
and 3.10.
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2.1 Three propositions

Next, we state three geometric and analytic propositions that allow us to control the
nature of the Ricci flow with surgery at large times. The first proposition shows that
one can take limits and hence the curvature is close to —1/4t on regions that are
volume non-collapsed with lower curvature bounds. Furthermore, there is a stability
in that the limits exist forward for a certain amount of time. This is Lemma 7.2 of
[27].

Proposition 2.6. (a) Given w > 0,7 > 0, > 0 there is T = T(w,r,§) < oo such
that the following holds for any Ricci flow with surgery (M, G) satisfying Assump-
tions 3.9 and 3.10. If, for some to > T and some xg € My,, the ball B(xg,to, 7v/to)
/2

has volume at least wr3t8 and sectional curvatures bounded below by —T_Qtal, then

|2to Ric(zo,to) + g(zo, to)‘g(to) < &. (2.6)

(b) In addition, given A < oo, there is T' = T'(w,r,&, A) > T(w,r,§), and pro-
vided that to > T', the Ricci flow with surgery contains the entire forward parabolic
neighborhood P (g, ty, Arv/To, Ar*to) and Equation (2.6) holds with (zg,to) replaced
by any (x,t) in this forward parabolic neighborhood.

Before stating the second proposition we need a definition.

Definition 2.7. Given a Ricci flow with surgery (M, G), we define a function from
p: M — (0,00) by setting p(z,t) equal to the largest real number with the property
that Rm|B($,t,p($,t)) > _p—2($’ t)'

The fact that no component of (M, g(t)) has non-negative curvature implies that
the function p exists and takes finite values.

The second proposition is a volume collapsing result at points where p is suffi-
ciently small (see Section 7.3 of [27]).

Proposition 2.8. For any w > 0 there is p = p(w) > 0 such that for all t sufficiently
large (how large depending on w) for any Ricci flow with surgery (M, G) satisfying
Assumptions 3.9 and 3.10, and for any x € My, if p(x,t) < pv/t we have

Vol B(z, t, p(x,t)) < wp*(x,t).

The third result shows that, under the hypotheses of volume non-collapsing with
a lower curvature bound, we have bounds on the norm of the Riemannian curvature
and all its covariant derivatives. (This is the last hypothesis in Theorem 7.4 of [27].)

Proposition 2.9. For every w' > 0 there exist T = F(w') > 0 and constants
K, = Kp(w') < oo, m = 0,1..., such that the following holds for any Ricci
flow with surgery (M, Q) satisfying Assumptions 3.9 and 3.10 and for all t suffi-
ciently large, how large depending only on w'. For any 0 < r < T\/t, for any x € M;,
and for any m > 0. Suppose that the ball B(x,t,r) has volume at least w'r® and
sectional curvatures bounded below by —r~—2. Then the norms of the curvature and
its m*-order covariant derivatives at (x,t) are bounded by Kor—2 and K,,r—tm),

respectively.
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For the rest of this section we assume these three results; they will be proved in
the next section.

2.2 The hyperbolic pieces

Let us begin with some basic definitions from 3-dimensional hyperbolic geometry.
Because of the curvature of the limits arising in Corollary 2.5 we take the following
slightly non-standard definition of a hyperbolic manifold. For us a hyperbolic metric
on a 3-manifold is a Riemannian metric of constant sectional curvature —1/4. By a
hyperbolic manifold we mean a Riemannian 3-manifold with a hyperbolic metric.

2.2.1 3-dimensional hyperbolic manifolds of finite volume

Definition 2.10. Let H be a non-compact, complete, orientable hyperbolic 3-
manifold of finite volume. Then the fundamental group of each end of H is a free
abelian group of rank 2 acting on the S? at infinity of hyperbolic 3-space by parabolic
elements (i.e., elements with a single fixed point on the 2-sphere). Choosing upper
half space coordinates on hyperbolic three space, C x (0, 00), so that the fixed point
of these commuting elements is oo, the group they generate leaves invariant each
plane C x {t}, called the horospheres at infinity and the quotient of each of these
planes by the resulting action of Z x Z is a torus, called the horospherical tori of the
end. The induced metric on the horospherical tori changes by a conformal factor ¢/¢/
as we move from the one at height ¢ to the one at height ¢'. (The distance between
these plans is In(¢'/t).) For all ¢ sufficiently large, the horospherical torus at height
t embeds into H. The region of this end cut off by such an embedded horospherical
torus is called a cusp. Each cusp is foliated by horospherical tori, and every end
of H is a cusp. A truncation H of H is a compact submanifold whose boundary is
a disjoint union of horospherical tori and whose complement, H \ H, is foliated by
horospherical tori and hence contained in the union of the cusps. The complement
is diffeomorphic to 0H x [0, 00).

According to a result of Margulis’s there is a constant wg > 0 such that the
following holds for any 0 < w < wg and any complete hyperbolic 3-manifold, H, of
finite volume.

1. For each end € of H let H, ¢ be covering space corresponding to the fundamental
group of the end. Let T,, denote the horospherical torus in ﬁg with the
property that for each Z € T,,we have Voly, B(z,2) = 8w. Denote by U(w) C
E[g the open set of all points within distance 2 of fw. The projection ﬁg — H
embeds U (w) into H. The image, U(w), is the neighborhood of size 2 about
the horospherical torus T,, C H that is the image of fw, and Voly B(z,2) = 8w
for all z € T,.

2. The open subset of H that is w-volume collapsed on scale 2 consists of the
cuspidal ends cut off by the T}, and a finite number of solid torus neighborhoods
of short geodesics.
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For any 0 < w < wp and for any complete hyperbolic 3-manifold of finite vol-
ume, we define the w-truncation of H, denoted H(w), by taking as boundary the
horospherical torus T}, of each end of H.

Notice that it is not necessarily true that for every point x € H(w) the ball
B(x,2) has volume at least 8w. The reason is that H can have short geodesics and
around each there is a solid torus of points that are w-volume collapsed on the scale
2. Any given hyperbolic manifold has only finitely many such short geodesics. Thus,
given a complete hyperbolic manifold H of finite volume there is a positive constant
w' = w'(H) < wp such that no point of H(w') is w’-volume collapsed on the scale 2.

The next result is a consequence of Mostow rigidity [22] for hyperbolic 3-manifolds
as well as Margulis’s description of the sufficiently volume collapsed regions of a
hyperbolic manifold.

Lemma 2.11. There is are constants vp > 0 and 0 < wy < wo/2 such that the
following holds. Suppose that H and H' are complete hyperbolic 3-manifolds of finite
volume with g’ being the hyperbolic metric on H'. Further, suppose that ¢ H(wy) —
H' is a smooth embedding with ¢*g' within distance vy in the C*°-topology to the
restriction to H(wy) of the metric on H. Then H'\ p(int H(w)) is contained in
the part of H' that is 2wy volume collapsed on the scale of its negative curvature.
Furthermore, this difference is a disjoint union of solid torus neighborhoods of short
geodesics and components diffeomorphic to T? x [0,00) and contained in the cusps
of H. In particular, if H' has at least as many cusps as H, then H and H' are
1sometric.

Proof. Fix 0 < w; << wp/2. It follows easily that the given embedding : H(w7) —
H’ has image whose boundary is contained in the cusps of H' and solid tori about
short geodesics of H'. Furthermore, each boundary torus is parallel in H' to either a
horospherical torus in the cusp that contains it or to the boundary of the solid torus
neighborhood of a short geodesic that contains it. Thus, topologically H’ is obtained
from H by Dehn filling some of its boundary components (i.e., by truncating some
of the cusps and gluing solid tori to the resulting boundaries). Clearly, then H' has
at most as many cusps as H, and if it has as many, then none of the boundary tori
of H are filled in creating H’. In this case ¢ is a homotopy equivalence between

H(wy) and H'. By Mostow rigidity [22], it follows that in this latter case H and H’
are isometric. Ul

2.2.2 Hyperbolic limits at infinity

For this subsection we fix a Ricci flow with surgery (M,G). Now we shall use
the three propositions stated in Section 2.1 to establish that the limits required
by Corollary 2.5 exist and consequently that there exist complete, finite volume
hyperbolic limits for the non-collapsing part of the (M, g(t)) ast — oo. All estimates
on how large t has to be for various conclusions to hold depend on the Ricci flow
with surgery.

Definition 2.12. A geometric limit at infinity of a Ricci flow with surgery, (M, G),
is a based complete Riemannian manifold (H,zs) for which there is a sequence
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(Tp,tn) € M with ¢, — oo such that, setting X,, = (M, , (1/tn)g(tn)), the sequence
of based Riemannian manifolds (X, x,) converges geometrically to (H, ). This
means that for every 0 < R < oo, for all n sufficiently large, there are embed-
dings fn.r: B(Too, R) — X, sending = to x, so that the Riemannian metrics

o r(1/tn)g(ts) converge smoothly to the restriction to B(ze, R) of the hyperbolic
metric on H.

Given a Ricci flow with surgery (M, G) satisfying Assumptions 3.9 and 3.10, for
any w > 0 and any t < co we define

]\Z(w, -)={=ze Mt|VolB(:U,t,p(:U,t)) < wp3($,t)} .

We define s
Mi(w, +) = Mg\ Mi(w, —),

and we set p = p(w) from Proposition 2.8.

According to Proposition 2.8, for all ¢ sufficiently large, we have p(z,t) > pv/t
for all x € M;(w,+). It then follows from Proposition 2.6 that, given any A < oo
and any £ > 0 sufficiently small, for ¢ sufficiently large (given w, &, and A) for every
point € My(w, +) Equation (2.6) holds at every point of P(z,t, Ap\/t, Ap*t). After
rescaling the metrics and time by ¢!, this gives us a Ricci flow on a parabolic neigh-
borhood P = P(z,1, Ap, Ap?) of (incomplete) &-almost hyperbolic manifolds, in the
sense that Inequality (2.6) holds at all points of P. Now suppose that My, (w,+) # ()
for a sequence t,, going to oo, and for each n choose a point z,, € My, (w,+). Consider
the based Ricci flows (M, , ig(tnt), (zn,1)). It follows from the above discussion
that given any A, for all n sufficiently large, all sectional curvatures of the metrics
(1/tn)g(tnt) on B(1t,)g(tn)(Tn, A) for 1 <t < A? are close to constant —1/4t. Fur-
thermore, the volume of B(y¢,)4(t,)(Tn,2) is bounded away from zero as n — oco.
Thus, by Proposition 2.9, all the higher derivatives of the metrics in this sequence are
controlled in these parabolic neighborhoods. This means that these parabolic neigh-
borhoods converge smoothly to a flow on a parabolic neighborhood P(zs,1, A, A?)
which is a flow of incomplete hyperbolic manifolds with the curvature at time ¢ being
—1/4t. This is true for every A < oo, and after passing to a subsequence, these limit
flows can be embedded one in the next to produce a limiting Ricci flow of complete
manifolds

(H, ghyp(t), (Tc0,1)), 1 <t < 00,

where (H, gnyp(t)) has constant sectional curvature —1/4t. The volume of (H, gnyp(1))
is at most limy_,,V (t)/t3/? = 17(00) and hence is finite. The fact that the Ricci
flows on the parabolic neighborhoods converge smoothly to the restriction of the
flow of complete hyperbolic metrics implies that the (M, , (1,t,)g(tn), ) converge
geometrically to H and the that generalized Ricci flows starting with these man-
ifolds (and rescaled by t;!) converge geometrically to the Ricci flow of complete
hyperbolic manifolds. This establishes the following limiting result.

Proposition 2.13. For anyw > 0, for any Ricci flow with surgery (M, G) satisfying
Assumptions 3.9 and 3.10, for any sequence of t, — oo, and for any sequence
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Ty € My, (w,+), after passing to a subsequence, the (M, ,(1/t,)g(tn), xn) converge
geometrically to a complete hyperbolic manifold of finite volume. Furthermore, for
any sequence t,, — oo and for any sequence y, € My , with the property that the
sequence of based Riemannian manifolds (My , (1/t7,)g(t,), yn) has a geometric limit,
that limit is a complete hyperbolic manifold of finite volume.

Proof. The first statement was established in the previous discussion. For the sec-
ond, if there is a geometric limit of associated to the sequence (y,,t,,) € M, then
for some 0 < w < wo we have y, € My (w,+) for all n sufficiently large. Hence,
by the first statement after passing to a subsequence of the y, there is a geometric
limit of the (My , (1/t;,)g(t},),yn), a limit that is a complete hyperbolic manifold of
finite volume. The geometric limit of the entire sequence agrees with the geometric
limit of this subsequence. O

Definition 2.14. Fix 0 < w < wp and v > 0. Let (M, G) be a Ricci flow with
surgery. A w-truncated, v-almost hyperbolic manifold at time ¢ in (M,G) is a
complete hyperbolic 3-manifold H and an embedding ¢: H(w) — M; with the
property that (1/t)p*g(t) is within v in the C*°-topology of the restriction of the
hyperbolic metric of H to H(w).

The following strengthening of Proposition 2.13 follows from the discussion im-
mediately preceding that proposition:

Corollary 2.15. Fiz a Ricci flow with surgery (M, G) satisfying Assumptions 3.9
and 3.10. Given 0 < v < vy and 0 < w < wy there is T(w,v) < oo such that the
following holds and for allt > T (w,v). For any x € My(w,+) there is a w-truncated
v-almost hyperbolic manifold in (M, G) at time t, p: H(w) C My, containing x and
with the property that every flow line in M beginning at a point of o(H (w)) exists for
all t' € [t,2t]. In particular, flowing along these flow lines determines an embedding
of : H(w) x [t,2t] = M. For every t < t' < 2t the metric (1/t')o*g(t') is within
v in the C'*°-topology of the restriction of the hyperbolic metric on H.

Definition 2.16. A w-truncated, v-almost hyperbolic manifold at time ¢ in (M, G)
that satisfies the conclusion of the previous corollary is said to last until time 2t. In
this case the embedding @: H(w) x [to,2to] — M has the property that for every
to < t' < 2t, the restriction of @ to H(w) x {¢'} embeds H(w) as a w-truncated
v-almost hyperbolic manifold at time ¢'.

By a w-truncated v-almost hyperbolic tower starting at time ¢ for (M, G) we mean
a complete hyperbolic manifold H and a sequence of embeddings of ¢y : H(w) —
Moy, k= 0,1,..., such that for each k£ > 0 the image of ¢y is a w-truncated v-
almost hyperbolic manifold at time 2¥¢ that lasts until time 2¥+1¢. Furthermore, the
image of flowing ¢ (H (w)) from time 2¥¢ to time 2¥*1¢, which is & (H (w) x {2FF1¢}),
contains @1 (H(2w)). The tower is said to be constructed from the hyperbolic
manifold H. We denote by 7" C M the union of the images @y, (H (w) x [2Ft, 2F+11]),
and by abuse of terminology we call this subset a w-truncated, v-almost hyperbolic
tower. The k' stage of the tower is the image of $p_.
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Lemma 2.17. For any 0 < w < wy, for v > 0 sufficiently small, for any complete
hyperbolic manifold H of finite volume, and for any w-truncated, v-almost hyperbolic
tower T C M constructed from H, any sequence (Tn,tn) € T with t, — oo has a
subsequence converging geometrically to H.

Proof. We suppose that 0 < v < /3. There is a w’ = w'(H) such that every point
of H(w) is w'-volume non-collapsed on scale 2. It follows that, provided that v is
sufficiently small, every point of T is w’/2-volume non-collapsed on scale 2. Thus,
by Proposition 2.13 given any sequence (x,,t,) € T with t, — oo, after passing to
a subsequence, there is a geometric limit which is a complete hyperbolic manifold
H of finite volume. By the definition of geometric limits, for all n sufficiently large
there is an embedding v: H(w) C Hs with ¥* of the hyperbolic metric on Ho,
within v of the restriction to H(w) of the metric (1/t,)(g(t,). On the other hand,
by the definition of a hyperbolic tower, the restriction of the metric (1/¢,)g(t,) to
H(w) is within v of the restriction of the hyperbolic metric of H to H(w). It follows
that 1* of the hyperbolic metric on H,, is within vg of the restriction to H(w) of
the hyperbolic metric on H. Thus, by Lemma 2.11 either H,, and H are isometric
or H, has fewer cusps than H. But H was chosen to have the minimal number of
cusps of all geometric limits at infinity of (M, G). Consequently, Hy, = H. O

Definition 2.18. We say that the tower T given in Lemma 2.17 converges to H.

Suppose that we have any sequence (z,,t,) € M with ¢, — oo with a geometric
limit H,,. Then there is z € H,, that is wg-non-collapsed on scale 2. Hence,
for a sequence (z),,t,) converging to z, and for all n sufficiently large, we have
(My,, (1/tn)g(tn)) is wg/2 volume non-collapsed at x,. This means that for all n
sufficiently large (xy,tn) € My, (wo/2,+). This shows that for any 0 < w < wq/2
any geometric limit at infinity of (M, G) is in fact the limit of a sequence (z,t,)
with x,, € My, (w,+). In particular, (M, G) has geometric limits at infinity if and
only if My, (w,+) # 0 for a sequence of ¢, tending to oco. It also follows from
this that there is a sequence z,, € M, (w,+) with t,, — oo such that the sequence
(My,, (1/tn)g(tn), zn) has a geometric limit H with the property that H has the
minimal number of cusps among limits among all geometric limits at infinity of

(M, Q).

Proposition 2.19. Fiz a geometric limit at infinity H for (M, G) with a minimal
number of cusps among all such geometric limits. For any w > 0 and v > 0
sufficiently small, there is a w-truncated, v-almost hyperbolic tower T converging to

H.

Proof. We take w < min(wg/2,w'(H)) and v > 0 small. Fix a sequence (2, t,) with
Ty € My, (w,+) with geometric limit H. By the definition of the limiting process,
after passing to a subsequence, for all n there is an embedding o, : H(w/2) C My,
containing the component of M; (w,+) containing z, such that igp,’log(ttn), 1<
t < 2, converges as n — 0o to the restriction of the hyperbolic flow (H, ghyp(t)),1 <
t < oo to H(w/2)x[1,2]. For all n sufficiently large this constructs a w/2-truncated,
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v-almost hyperbolic manifold ¢, : H(w/2) — M, at time t, that lasts to time 2t,,.
This is the first stage of the tower.
Now we fix 0 < v < 1/3.

Claim 2.20. There is Ty > T'(w/4,v) such that the following hold for any t > T;.
Suppose that @: ﬁ/(w/2) — My is a w/2-truncated v-almost hyperbolic manifold at
time t. Then H' has at least as many cusps as H.

Proof. Suppose there is a sequence t, — oo and w/2-truncated v-almost hyperbolic
manifolds H,(w/2) C My, at time t, with each H,, having few cusps than H. Fix
points (zn,tn) € H,(w/2) C My,. Then according to Corollary 2.15 passing to a
subsequence we can extract a limit of the (M, , (1/t,)g(tn), x,) and this limit is a
complete hyperbolic manifold H, of finite volume. By the definition of the limit, for
all n sufficiently large we have an embedding ., : ﬁ/n(w /2) = Hs so that the pull-
back of the hyperbolic metric on H, is within v of the restriction of the hyperbolic
metric on H,,. It follows from Lemma 2.11 that H. has at most as many cusps as
H], for all sufficiently large n and hence it has fewer cusps that H. This contradicts
the choice of H as having the fewest number of cusps among all geometric limits
that are hyperbolic. O

Now we fix ¢ equal to one of the ¢, in the above subsequence with ¢, > T7.
(Recall that 77 > T'(w/4,v).) We relabel the map ¢, above and call it ¢g. It is
amap po: H(w/2) — M; giving a w/2-truncated, v-almost hyperbolic manifold at
time ¢ that lasts to time 2¢. The image o(2t)(H (w/2)) is contained in My (w /4, +)
and contains a component V of My (3w/4,+). Invoking Proposition 2.6 again, we
see that since t > T'(w/4,v), there is a complete hyperbolic manifold H’ of finite
volume and an embedding 1 : F/(w /2) — My containing V' giving a w/2-truncated,
v-almost hyperbolic manifold at time 2t that lasts to time 4t. We claim that H = H.
Denote by ¢’ the hyperbolic metric on H'. Since A = ¢~ topo(2t): H(w) — F/(w/Z)
has the property that )\*gl/lyp is within 1y in the C°°-topology of the restriction of
Ghyp t0 H(w). Also, since ¢t > Ty it follows from the previous claim that H’ has at
least as many cusps as H. Hence, by Lemma 2.11 we see that H’ is isometric to H.
This constructs the map ¢1: H(w/2) — My, which is a w/2-truncated, v-almost
hyperbolic manifold whose image at time 2t contains @o(H (w) x {2t}). This is as
required for the second stage of the tower.

We simply repeat this construction ad infinitum to complete the proof of the
proposition. [

Addendum 2.21. We could produce a more refined version of a hyperbolic tower T
as follows: given w, — oo and v,, — 0o, then there is a monotone increasing function
k(n) such that for every n , the (k(n) + 1)* stage of the tower @y, : H(w/2) x
[2k()¢, 2k(M)+14] is the restriction of a w,-truncated v, almost hyperbolic manifold
that lasts to time 28 +1¢,

Now we fix a hyperbolic tower T converging to H as in Proposition 2.19. For
any t' we denote by T (') the ¢’ time-slice of 7. It is a w/2-truncated, v-almost
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hyperbolic manifold at time ¢'. As we have seen above, given any x., € H with
Vol B(xs0,2) > 8w and any sequence t,, — oo then for all n sufficiently large there
are points x,, € T (t,) so that the (M, , (1/tn)g(tn), xn) converge geometrically to
(H,zs0).

Claim 2.22. Given D < oo for all t' sufficiently large if x € My(wy,+) and if
x & T(t), then dg jpygu(z, T(t') > D.

Proof. 1f the result does not hold for some D < oo then there is a sequence
tn — oo and points (zy,,t,) € M\ T with d(it,)g(t,)(T(t),7,) < D and with
B /t,)g(tn) (Tn,2) > 8wi. Fix a point yoo € H and let y, € T(tn) be a sequence
converging to yoo. Given any point in H (w) there is a sequence 3 € T (t,) converg-
ing to this point. Furthermore, there is r > 0 such that if y/! € T (¢,) is a sequence
converging to a point of H(w), then for every n sufficiently large the ball of radius
r about y/ in (M(t,), (1.t,)g(t,)) is contained in T (¢,).

Since the d(1 /1,)g(t,)(Tn, T (tn)) are bounded above by D < oo, there is an R < oo
such that for all n sufficiently large the almost isometric map 1,: By (%s0, R) — M,
contains the point y,. Let y, € H be a point with ¢, (y,) = yn. The gy, are at a
uniformly bounded distance from z.,, so that passing to a subsequence we can
arrange that the g, converge to a point Yy, in H. Since Vol B(yy,2) > 8wy, it
follows that 7~ € H(w;) and hence there is a sequence y” € T (t,) also converging
to Y. This means that d(i /s, )g(t,)(Yns¥n) — 0 as n — oo. and hence for all n
sufficiently large y,, € T (t,,). This is a contradiction and establishes the lemma. [J

Corollary 2.23. Given w > 0, v > 0 sufficiently small and the w-truncated v-
almost hyperbolic tower T, the following holds for all t sufficiently large. If a w-
truncated v-almost hyperbolic manifold F’(w/Q) C M; at time t contains a point
(z,t) not in T, and with Vol B(y g (z,2) > 8wy, then then H (w/2) is disjoint
from T.

Proof. For cach w' > 0 there is a C(w') < oo such that Removing from H (w/2)
all points that are w’-volume collapsed on scale 2 yields a connected manifold of
diameter < C. Fix w’ << w. It follows from the above, that for all ¢ sufficiently
large, any set X C M; of diameter < C(w') in the metric (1/¢)g(t) that contains the
point (x,t) as in the statement of the corollary is disjoint from 7. This means that if ¢
is sufficiently large then F’(w /2)NT (t) is contained in the solid torus neighborhoods
in H' around short geodesics, solid torus neighborhoods consisting of points at which
H' is w'-volume collapsed on scale 2. The boundary tori of these neighborhoods are
disjoint from 7 and hence if one of these solid torus neighborhoods meets 7T () it
must contain a boundary point of 7 (¢). But the metrics on the balls of radius 2
about these points in the metric (1/t)g(t) within v of hyperbolic metrics on ball of
radius 2 in H' of volume 8(w/2)3. Since w’ << w, this is impossible. Consequently,
H'(w/2) is disjoint from 7. O

Having fixed 7 converging to H, we consider all sequences (z),,t;,) € My (w1, +)
disjoint from 7. We choose such a sequence whose geometric limit has a minimal
number of cusps among all geometric limits of sequences disjoint from 7.
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Let H' be the geometric limit hyperbolic manifold. By the same argument as
before we can also construct a hyperbolic tower 7, disjoint from 7, converging
to H'. to see this first note that by what we have established, for some constant
T > T1, depending on H, H', w, v the following holds.

1. For any t > T, any point € M;(w, +) is either contained in 7 or is contained

in a w/2-truncated, v-almost hyperbolic manifold ﬁ”(w/2) that is disjoint
from 7.

2. For any such H” has at least as many cusps as H'.

We fix t' equal to one of the ¢/, > TJ. Suppose inductively, that we have
constructed stages of a w/2-truncated, v-almost hyperbolic tower ¢ : ﬁ/(w/ 2) —
Moy, k = 0,...,ky. We need to show that the w/2-truncated v-almost hyperbolic
manifold that contains the image ¢} (F/(w’ )) under the flow from 2%t to 2o+t is
isometric to H'. But the hyperbolic manifold H; whose truncation H(w/2) con-
tains this image is disjoint from the original tower 7, and thus by the fact that H’
has a minimal of the number of cusps for w-truncated, r-almost hyperbolic mani-
folds that are disjoint from 7, the same argument applies to show that H; = H'.
We repeat this inductively to construct a w/2-truncated, v-almost hyperbolic tower
T’ converging to H' and disjoint from 7.

Now we repeat this argument for sequences of points in M;(w, +) disjoint from
the union of these two towers. Among all such we take one with a limit which has a
minimal number of cusps among all such and repeat the argument. At each stage we
construct a new hyperbolic tower disjoint from the previous (at least for sufficiently
large time).

There is a uniform positive lower bound to the volume of any truncated version of
a complete hyperbolic manifold of sectional curvature —1/4. Since the renormalized
volume V/(t) limits to V(c0) < oo, it follows that for all ¢ sufficiently large there
is a uniformly bounded number disjoint truncated versions of complete hyperbolic
manifolds of finite volume containing M;(w,+). Thus, there is a bound to the
number of disjoint hyperbolic towers in the Ricci flow with surgery. This means the
above iterative process of constructing towers must terminate after a finite number
of steps. This proves:

Theorem 2.24. For every w > 0 and every v > 0, both sufficiently small, the
following holds. Given a Ricci flow with surgery (M, G) satisfying Assumptions 3.9
and 3.10 there is a finite set of w-truncated, v-almost hyperbolic towers Ti,..., TN
starting at times t1 < --- < ty and converging to hyperbolic manifolds Hy, ..., Hy
with the following properties:

1. The T; are pairwise disjoint.

2. For allt sufficiently large, the union Uflﬂ; contains My(w, +) and is contained
m Mt(w/él, —I—)

Now let us consider what happens when we replace w by a smaller constant
w <w/2.
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Consider limits of sequences of based at z, € M, (vw',+) for a sequence with
t, — oo. These limits also will be complete hyperbolic 3-manifolds of finite vol-
ume. Suppose H’ is one such. Then for an appropriate truncation and for all
sufficiently large ¢ we have embeddings ¢} : F/(w’ ) — M;. The image of this em-
bedding cannot be contained M;(2w’, —) because of the assumption 2w’ < wy.
Thus, ¢,(H (w')) must have non-empty intersection with one of the T;(¢). (We
take t > max(t1,...,ty).) Since the boundary of @} (H (w') is disjoint from 7T;(t),
the w-truncated v-almost hyperbolic manifold ¢}(H (w')) must completely contain
7i(t), and that remains true for all ¢ > ¢. This means that H'(w') = H;(w) and in
fact the only difference between ﬁ/(w’ ) and H;(w) is that in ﬁ/(w’ ) we have trun-
cated the cusps further out. This proves that for all ¢ sufficiently large the towers
w’-truncated v-almost hyperbolic towers are contained in extended versions of the
UN | 7; obtained by extending the embeddings of the H(w/2) to H(w'/2) (which is
possibly for ¢ sufficiently large).

Proposition 2.25. For all w > 0 sufficiently small, and, given w, for all t suffi-
ciently large, the boundary tori of the intersection of the T; with the time-slice M;
are incompressible tori in M.

Proof. For a proof of this result see Sections 11 and 12 (especially Theorem 11.1)
in [12]. The basic point in the argument is to assume that one of the boundary
tori of one of the towers is compressible for all ¢ sufficiently large. We consider the
first-order change in the area of a minimal compressing disk for that boundary torus
under the flow. One shows that the area of this disk goes to zero in finite time, which
contradicts the fact that the torus exists for all time and is not compressible in a
neighborhood, which as t — oo, converges to a complete hyperbolic manifold with
the torus converging to a horospherical torus. Thus, any compressing disk must exit
from this region and this provides a positive lower bound to its area. This gives a
contradiction.

There are alternative proofs. One is due to Perelman, see in Proposition 8.2 of
[27]. A variant of this idea was used by John Lott (see 93.1 in [15]) to give a simpler
proof, one that uses the volume of the metric normalized by the minimum of scalar
curvature. [

2.3 Locally volume collapsed part of the (M, g(t))
At this point let us define

N
My(w, =) = M; \ HT

Then for all ¢ sufficiently large, the manifold M;(w, —) is a compact 3-manifold with
locally convex boundary consisting of incompressible tori. Using the metric (1/t)g(t)
on this manifold, the boundary has a topological collar neighborhood that contains
all the points within distance 1 of the boundary and on which the curvature is close
to —1/4 (how close depending on ¢ with the difference going to zero as t — o).
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Also, the diameter of each boundary component is at most Kw for a constant K
that depends on the limiting hyperbolic manifolds Hy,..., Hy but not on ¢. For
every ¢ sufficiently large, and for every (z,t) € M;(w, —), we have

Vol B(x,t, p(x,t)) < wp(z,t) and

Rm’B(CE,t,p(CE,t)) > —p_Q([B,t).
We take up the study of the (M;(w,—),(1/t)g(t)) in Part II.

3 Local results valid for sufficiently large time

The proofs of Propositions 2.6, 2.8, and 2.9 are based on important technical results
reminiscent of the results which go into the proof of the existence of a Ricci flow
with surgery defined for all time. To establish the existence of limits for the rescaled
flows we must show that the rescaled metrics have uniform non-collapsing at the
base point and have bounded curvature at bounded distance from the base point.
These are the content of the local results in this section. While the conclusions are
the same as the results for bounded time, these results are different in that, unlike
the former results where the constants decay as time goes to oo, the results here
apply uniformly for all time sufficiently large. But to compensate for this, they are
local, requiring a curvature and volume hypotheses near the central point around
which we are working.

In this section Ricci flow with surgery means a Ricci flow with surgery
as in the hypothesis of Theorem 1.2. Later in this section we will put an
additional requirement on the surgery control function §(t).

3.1 First local result

The first result presents local versions of the non-collapsing result, the canonical
neighborhood result and the bounded curvature at bounded distance result. These
results do not follow from the results in Chapters 15 — 17 of [21] since we are
not assuming a finite upper bound on the time. Rather, here we assume that we
are working near a parabolic neighborhood where the curvature and volume are
controlled. This result is Proposition 6.3 of [27].

Proposition 3.1. For every A < oo there are constants k > 0, K1 < 0o, Ko < 00
and 7 > 0 depending on A and for each ty < oo there is a constant 5 = gh(to) >
0, depending as the notation indicates on A and tg, such that the following hold.
Suppose that we have a Ricci flow with surgery satisfying Corollary 15.10 from [21].
Suppose that for some ty < oo the surgery control function &(t) satisfies 6(to/2) < 5.
Suppose also that:

(i) For some ro < /to/2 the Ricci flow with surgery contains the entire parabolic
neighborhood P = P(z¢,to, 70, —73),

(ii) Rm(z,t)| <ry? for all (z,t) € P, and
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(’i’i’i) VO]B(.%(), to, 7”0) > Ailrg.
Then:

1. The Ricci flow with surgery is k-non-collapsed on all scales < ry at every
(m,to) S B(CL’(),t(),AT'()).

2. Any (z,tg) € B(wo,to, Arg) with R(z,tg) > Kirg? has a (C,e)-canonical
neighborhood.

3. If ro <T\/to, then R(x,to) < Kory® for all (x,t0) € B(o, to, Arq).

Proof of non-collapsing. To prove the xk-non-collapsing result we need to consider
a localized version of the arguments in Sections 6, 8, and 16 of [21]. The idea is, given
(z,t9) € B(zo,t0, Arg), to find a path from (x,t) to a point of B(zq,to—r/2,70/10)
whose (-length (see the next paragraph for the definition of ¢-length) is bounded
above by a constant depending only on A. From this, the curvature control on
P(z0,to, 70, —73), and the volume control on B(zo, tg, 7o), we easily establish the non-
collapsing result by the standard argument using monotonicity of reduced volume
as in Theorem 8.1 of [21].

Definition 3.2. Recall call Perelman’s L-length for a Ricci flow. Given a Ricci flow
(M, g(t), we view the flow as a metric on the horizontal sub-bundle in the tangent
bundle of M x [a,b] whose value on the horizontal tangent space at (z,t) is g¢(x).
Let v(7) 0 < 7 < 19 be a path starting at time to and defined by backwards time in
a Ricci flow, in the sense that v(7) € M x {to —7}. Then

L) = / " VT (Ry(r) + [3()2) d,

where 4(7) is the horizontal component of the tangent vector to . We also define
the reduced L-length denoted by

1
2\/T0

We shall denote by ¢ the reduced length function based at (z,ty). Its value at a point
(y,t) with t < tg is the infimum over all paths vy starting at (z, %) and parametrized
by backwards time and ending at (y,t) of L(7).

L= L.

We shall study £ on B(zo, to, 70/10) x {to —r3/2}. To do this we need to invoke a
cut-off function with some control on its first and second derivatives. The following
is elementary (see Equation 8.1 of [26]) and provides the control function.

Claim 3.3. For any A < oo there exist a constant C(A) < oo and a smooth function
¢: (—00,00) — [1,00] such that ¢ =1 on (—o0,1/20) and ¢ increases monotonically
to +00 on [1/10,00) with

2(¢)% /00" > (24 +300)¢" — C(A)¢.
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Fix (z,t9) € B(xo,to, Arg), and let us consider the Ricci flow with surgery where
we rescale the metric and time by ry 2. We set 7 = to/r2 —t. For any 7 < 1/2 and
any path v(7') defined for 0 < 7/ < 7, we define

h(v) = ¢ (di(z0,7(7)) — A(1 = 27)) (L(7) +2V7)

where L(y) = 24/7L(7). Then for any 7 € [to/r3 — 1/2,t0/rE], we define h(y,T) to
be the infimum of h(7) over all paths v parametrized by backwards time starting at
(z,tp/r3) and ending at (y, (to/r3) — 7).

Claim 3.4. Suppose that for every T € (0,1/2] and for every minimum y of the func-
tion h(-,T) every minimizing L-geodesic from (x,to/rd) to (y,to/rd —7) is contained
in the smooth part of the Ricci flow with surgery. Then, denoting the minimum of

h(-,7) by ho(T), we have
ho(7) < 2y/Texp (C(A)(T) + 100v/7) .

Proof. First notice that the maximum principle and the fact that the initial con-
ditions of the original Ricci flow with surgery are normalized, imply that in the
original flow R(z,t) > —ﬁ. Since to > 273, on the interval [to — 73 /2, o] the scalar
curvature is at least —ry 2. This means that in the rescaled flow on the interval
[to/ré — 1/2,t0] (i.e., the interval 0 < 7 < 1/2), the scalar curvature is at least —1.
Since 7 < 1/2, it follows easily that L(y, ) + 2y/7 > 0 on the interval 0 < 7 < 1/2.
Thus, the minimum of h(+, 7) occurs in the region B(xg,t,1/10). Direct computation

using the inequality for ¢ from Claim 3.3 gives

A, (o) 50
d71g<ﬁ>§C(A)+ﬁ'

As 7 — 07 we see that lim,_,g+ L(z,7) = 0, so that lim _,+h(x,7)/\/7 = 2 and
hence lim,_,o+ho(7)/+/T < 2. From this and the above differential inequality, it
follows that

ho() < 2y/Texp (C(A)T + 100y/7) .
O

Since the minimum at time ¢ = to/r3 — 7 must occur in the B(xg,t, A(1 — 27) +
1/10), under the assumption of Claim 3.4, it follows that for each 7 < 1/2 there is
a path (7') parametrized by backwards time and contained in the smooth part of
the Ricci flow with surgery, a path beginning at (x,ty/r2) and ending at a point of
B(zo,to/r3 — 7, A(1 — 27) 4+ 1/10) with

2V7TL(v) < 2y/Texp (C(A)T + 100y/7) .

Again assuming the hypotheses of Claim 3.4 hold, this means that in the original
Ricci flow with surgery for each 7 < r2/2, there is a path v(7'), 0 < 7/ < 7, contained
in the smooth part of the Ricci flow with surgery starting at (x,tp) and ending at a
point of B(wg,to — 7,70/10 + A(1 — 27/73)) with

zﬁ/OT V! (R(y(T) + [5(7'[*) dr’ < 2v/Fexp (C(A)?+ 100\5) 2,
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where 7 = 7/r3. In particular, we have a path ~ which starts at (z,%p) and ends at
a point of B(xo,to —73/2,1/10) and which satisfies this inequality with 7 = 1/2.
The next step is to show that the hypotheses of Claim 3.4 always hold. In order
to see this we must show that paths that meet the surgery disks have larger value
than this hoped-for minimum. This is the reason for the extra condition on §(t).

Claim 3.5. There is a constant 5:4(150) > 0 depending only on A and to such that
the following holds. We fix

Co = Co(A) = 2exp (C(A)/2 + 100\/1/7) .

If5(t) < gh(to) for all't € [to/2,t0], then, for any T < r3/2 and any path (') start-
ing at (x,ty) parametrized by backwards time and meeting the closure of a surgery

cap, we have B
L(~y) > Coro,

and hence B

2VTL(7) > 2vV7Corg,
where T = 7/1r¢.
Proof. Since 12 < to/2 if to € [¢¥, 1), then tg — r3 > 2=, Thus, it follows
immediately from Section 16.5 and in particular Proposition 16.13 of [21] that given
a positive constant C' there is a constant gl(C ,to) such for any t., € [to — rg, to] and

any path v parametrized by 0 < 7 < ¢y —t, we have the following. If §(¢) < 3’(5, to)
for all t € [to/2, 0] and if v meets a surgery cap, then

£(y) > Gk > 20,

We then define 514(750)7‘50 be thg constant 5’(50(A),t0), and we suppose that the
surgery scale constant §(t) is < 0 4(to) for all t € [to/2, to]. O

Arguing as in Chapter 16 of [21] completes the proof that the hypotheses of
Claim 3.4 are always satisfied provided that 6(¢) < 524(750) for all t € [to/2, to].
We conclude the following:

Corollary 3.6. Suppose that §(t) < 324(250) for all t € [to/2,to]. Then for every
0 < 7 < 1r3/2, there is a path v parametrized by backwards time from (x,to) to a
point (y,to — 7) contained in B(xg,to — T,709/10) with the property that

2L () < 2VFexp (C(AYT +100V7) 13,

where T = 7/18.

This is the main step in the proof of k-non-collapsing at all points of B(xg, to, Arg).
Because of the bound on the Riemann curvature on P(xg, to, ro, —r%), for any y €
B(zo,to — 13/2,70/10) the parabolic neighborhood P(y,ty — r3/2,70/4,—13/2)) is
contained in P(zq,to,r0, —73). Thus, connecting (y,to — r3/2) to any point z €
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B(y,to — r3/2,710/4) x {to — 3} by a g(to — r3/2)-geodesic gives an upper bound
on £ on B(y,to —13/2,70/4) x {to — 73}, a finite upper bound that depends only
on A. Also, the curvature bound on P(xo, to, 70, —7“8) and the volume lower bound
of B(zg,to,70) imply that the volume of B(y,to — r3,70/4) x {to — 73} is bounded
below by a constant only depending on A. This proves that there is an open subset
in the (tg — r3)-time slice whose reduced volume is bounded below by a constant
depending only on A. Using monotonicity of reduced volume as in Corollary 6.80
of [21], this proves the existence of a k, depending only on A, such that (z,tg) is
k-on-collapsed on all scales < rg.

Proof of the canonical neighborhood result. Now let us turn to the second
statement, the existence of a canonical neighborhood threshold in B(xq, to, Arg)
depending only on A. Fix A and suppose that there is no such threshold Kj.
Then there are a sequence of constants K, tending to co as n — 00, a sequence
of Ricci flow with surgery (M, G,), a sequence of points (zon,ton) € My, and
constants 7g,, such that the hypotheses of the proposition hold, and there are points
(Ynston) € B(xon,ton, Aron) at which the scalar curvature is at least Kl,nro_,?z but
(yn,ton) does not have a (C,€)-canonical neighborhood. Since at and before any
fixed finite time ¢ there is uniform finite canonical neighborhood threshold r~2(t),
and since ro, < \/ton/2, it follows that ¢, — co as n — oo.

We apply Lemma 9.37 of [21] to the function R(z,t)d; (x, ) and consider only
with points that violate the (C, €)-canonical neighborhood assumption. This allows
us to conclude from the existence of (yn,ton) € B(xon,ton, Aro,) that for all n
sufﬁmently large, there is a point (Zn,t,) € B(Zon,tn,2Arg,) with f € [ton —
T, 2. /2,ton] such that, setting Q,, = R(Tn,1n), we have Q, > K nTOH, the point
(ZTn, tn) does not have a (C, €)-canonical neighborhood and each point

(2,) € Pa = {(,0) | Tt = K10@y <t <, dy(wo, @) < diy (w0, T0) + K15 @ '}

with R(z,t) > 4Q,, does have a (C, €)-canonical neighborhood
Clearly, by the curvature bound on P(zg p, %0 n, 70,0, =y, n) there is a universal
constant a > 0 such that for any t € [ty — 37“%7”/4, to] we have

P(J;O,na t, aro,n, _(aTO,n)2) C P(J/‘O,na tO,nv Ton, _T(2)7n)-

Also, by volume comparison there is a constant A’ < oo depending only on A such
that for every ¢ € [to, — 37‘8’11/4, to] we have

Vol B(zopn,t, arg ) > (A')_1 (argm)?’.

Since

~1/2 2A+1
«

2Arg,, + KWQ (aron),

applying the conclusion in Part 1 of this proposition with A replaced by the max-
imum of A" and (24 4+ 1)/«, we conclude that for all n sufficiently large, the Ricci
flow with surgery (M, Q) is k’-non-collapsed at every point of B, for a universal &’
that depends only on A.
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Use (Tp,t,) as the central point, shift #, to 0 and scale by @Q,,, and restrict
attention to t < 0. This gives us a sequence of based Ricci flows with surgery
(M, G, (Tn,0)) defined for —Q,, < t < 0. The conditions established above
translate to the following:

1. R(Tn,0) = 1.
2. Every point of @nﬁn with curvature > 4 has a (C, €)-canonical neighborhood.

3. At every point of @nlgn the Ricci flow with surgery is ’-non-collapsed on scales
< 7:/27'0,71-

Also, we have @;/Qroyn > Kll/nz, so that @:/27'07” — 00 as n — oo. It follows that
for any D < oo for all n sufficiently large, B, (D) = U_p<t<oB(Tp,t,D) C @nﬁn

Now the argument is identical to the one given in Section 17 of [21]. We sketch
the main points of this argument.

Claim 3.7. Given D < oo there is Q(D) < oo such that R < Q(D) on B(Ty,0,D)
for all n sufficiently large.

Proof. With one modification, this exactly Theorem 10.2 in [21]. The modification
involves the hypothesis in the reference (reformulated in the notation here) that
the @, — oo. This hypothesis together with curvature pinching is used to show
that after rescaling and passing to partial limits of subsequences the curvature of
such limits is non-negative. This non-negativity is used at the very last step when
Hamilton’s strong maximum principle is invoked to rule out a non-negatively curved
Ricci flow with the final slice being an open subset of a non-flat cone. Here we do
not know that Q,, tends to infinity, only that @nto,n > @nraﬁ > K1, — 00. On
the other hand, we have the stronger curvature pinching hypothesis as given in
Inequality (1.2). This is enough to conclude that the curvature of the limits is
non-negative, and hence the proof of Theorem 10.2 applies in this case as well. [

Claim 3.8. For any D < oo there is n(D) > 0 such that for all n sufficiently large
the Ricci flow (M, Gl) contains the entire parabolic neighborhood P(T,,0, D, —n(D))
and has curvature bounded by 2Q (D) there.

Proof. 1t follows immediately from the previous claim, the fact that any point with
R > 4 in has a (C, €)-canonical neighborhood, and Inequality (1.3) that there is a
constant n(D) > 0 such that for all n sufficiently large on any backwards flow line
beginning at a point of B(Zy,0, D) and moving backwards at most time n(D) we
have R < 2Q(D). To complete the proof we must show that for all n sufficiently
large, no such flow line can end in a surgery cap, or equivalently we must show
that the entire parabolic neighborhood P(Z,,0, D, —n(D)) is contained in the Ricci
flow with surgery (M, G)). This is exactly the argument in Lemma 17.7 of [21]:
were there such a flow line for some n sufficiently large ending in a surgery cap,
then (Z,,0) would have a (C,€)-canonical neighborhood in (M/,,G!), and hence
in the original Ricci flow with surgery (M, Gp,), the point (Z,,?,) would have a
(C, €)-canonical neighborhood, contrary to our assumption. ]
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Since the original Ricci flows with surgery, (M,,G,), are x’-non-collapsed at
(Tn,tn), these curvature bounds on parabolic neighborhoods allow us to extract
a smooth limit (Mu,Ts) of a subsequence of the ¢ = 0 time-slices of the based
Ricci flows with surgery (My,, Gp, (Zy,0)). This limit is a complete Riemannian
3-manifold of non-negative curvature with the property that every point y with
R(y) > 4 has a (C,e€)-canonical neighborhood, meaning that either the point is
contained in the core of a (C, €)-cap or is the central point of the final time-slice of
a strong e-neck. It then follows from Lemma 2.20 (or Corollary 2.21) in [21] that
M, has bounded curvature.

Now arguing as in Section 11.2 of [21] we extend the limit manifold (M, Too) to
a limiting Ricci flow with bounded curvature defined backwards for a small amount
of time . The length of time depends on the curvature bound on M. Again we
invoke Lemma 17.7 of [21] to rule out the appearance of surgery caps as we move
backward. Then repeating the argument as in Section 11.2 (see especially Theorem
11.8) of [21] (and invoking Lemma 17.7 from [21] to rule out the appearance of
surgery caps as we move backwards each step), we produce a limiting Ricci flow
defined for all time —oo < ¢ < 0. This limit is a x-solution. But that contradicts
the fact that none of the (Z,,t,) € M, have (C,¢)-canonical neighborhoods, and
completes the proof of the second conclusion in the proposition.

Proof of bounded curvature. Now let us consider the third conclusion, the
curvature bound at bounded distance from (zg,?y) after rescaling. Suppose that
there is no 7 as required. Then there is a sequence 7, — 0 as n — oo, and for
each n a Ricci flow with surgery (M,,G,), points (zon,ton) € My, constants
Tom < Tny/to, and points (yn,ton) wWith R(yn,ton) = Knrai where K,, — oo as
n — oo. Take a shortest geodesic 7, from (2on,t0n) to (Yn,ton). For all n suffi-
ciently large let (zy,t0,) be the last point of v, with R(zy,t0) = Kﬂ’&i. (There
are such points since R(zn,t0n) < 67"0_7721 and R(yn,ton) > Knr&i > Klro_ﬁ for all
n sufficiently large.) Now we apply the version of Theorem 10.2 of [21] described
above (using the stronger curvature pinching hypothesis) to (zn,t0n) and (yn, ton)-
The ratio R(yn,ton)/R(zn,ton) = f{n/Kl and hence tends to co as n — 0o, and
R(zn, ton)ton > Klr&ito,n > Kﬁf also tends to oo as n — oco. The only other
difference is that in Theorem 10.2 of [21] we assumed that the (C,¢)-canonical
neighborhood assumption holds for the entire flow whereas here, we only have it
in B(xg,tg, Arg) for each A. But an examination of the proof given in Section 10 of
[21] shows that is all that is necessary in order to take the requisite limits to produce
the cone limit at the final time. Then the existence of the (C, €)-canonical neighbor-
hoods around the points at final time close to the cone point gives the contradiction.
This completes the proof of Proposition 3.1.

Now we impose the extra condition on the surgery control parameter §(t).

Assumption 3.9. From now on we assume that the surgery control func-
tion 4(t) is at most A(t) as given in Corollary 15.10 of [21] and also at most
the constant 3’225(215) from the previous lemma. Thus, for every ty > 0, the
previous result holds at time ¢y for any A <ty since we also have required
(in [21]) that §(¢) be a weakly monotone decreasing function of t.
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3.2 Second Local Result.

Before stating the second proposition we introduce one new piece of notation. Let

~

h(to) = Supte[to/2,to]h(t)'

Assumption 3.10. The extra condition we require of h(t) is that for all
t < co we have h(t) < Sz(t)r(t). From now on implicitly a Ricci flow with
surgery is assumed to be as in the hypothesis of Theorem 1.2 and in
addition, its surgery control function satisfies Assumption 3.9 and its
surgery curvature function h(t) is assumed to satisfy Assumption 3.10.

The next result is Lemma 6.4 of [27]. It provides parabolic neighborhoods on
which the solution is defined and bounded. Recall that C' is one of the canoni-
cal neighborhood constants and that r(t) is the canonical neighborhood threshold
function.

Proposition 3.11. There exist 7 > 0, 71 > 0, and K < oo such that the following
holds for any Ricci flow with surgery (M, G). Suppose that 1o, ty satisfy 4Cil(t0) <
ro < T1/to. Assume that B(xg,to,r0) has sectional curvatures at least —?"0_2 and the
volume of any sub-ball B(x,to,r) C B(xo,t0,70) is at least (1 — €) times the volume
of the Euclidean ball of the same radius. Then the Ricci flow with surgery contains
the entire parabolic neighborhood P(xg,to,70/4, —7T73) and satisfies R < Kr52 on
this parabolic neighborhood.

The proof of this result is divided into two cases.

3.2.1 Case 1: 4Ch(ty) <o < r(to)

We shall show that in this case, as long as 7 < C3/8 and K > 8C?, the result
holds. (Notice that since r(t) — 0 as t — oo, given any 71 > 0 for all ¢ sufficiently
large, we have r(tg) < T1v/%0.)

Claim 3.12. R < 4C?r? on B(wo,to,70/2).

Proof. Suppose that for some (z,ty) € B(zo,t0,70/2) we have R(z,ty) > 402r()_2.
Since we have no components of positive curvature, the only canonical neighborhoods
we have are strong e-necks and (C, €)-caps. It then follows from the inequality for
R(z,to) that (x,tp) is the central point of a strong e-neck or is contained in a (C, €)-
cap. If (x,tp) is contained in a (C,¢€)-cap, then the diameter of this cap is at most
CR(xg,t9)~"/? < rg/2. Hence, in this case B(z,t,r) contains the (C,¢)-cap and
consequently contains final time-slice of the strong e-neck that forms a neighborhood
of the non-compact end of this cap. If (xg, to) is the center of a strong e-neck, then the
radius of the central 2-sphere in that neck is approximately R(zg,t9) /2 < C~1rg/2.
Thus, in either case B(xg,%o,79) contains a ball centered at a central point of an
e-neck whose radius is larger than the diameter of the central 2-sphere of the e-neck.
This is impossible by the volume assumption on all sub-balls of B(xg,tg,ro). This
completes the proof of the claim. O
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By Inequality (1.3), if (z,¢) has a canonical neighborhood then |0R(z,t)/0t| <
CR?*(z,t). In particular, this inequality holds at any point (z,t) € P(z¢,to,70/2, —73)
with R(z,t) > rg? > r(tg)™2 > r(t)"2. Since R(w,to) < 4C%ry? for all (z,t) €
B(wo, to,70/2) it follows that we have R < 8C?ry? on P (o, to,70/2, —C~r2/8) and
in particular, the flow contains the entire backward parabolic neighborhood. The
reason is that if a backwards flow line starting in B(zo, to,r0/2) hits a surgery cap
at time t > tg— 0*37“8 /8, then the scalar curvature at the point of the cap is at least
3h=2(t)/4 > 3h™2(ty) /4. But the scalar curvature is bounded above by 8C?ry? and
ro > 4Cﬂ(t0) so that the scalar curvature along this flow line is bounded above by
h=2(ty)/2 which is a contradiction.

Thus, it remains to consider:

3.2.2 Case 2: r(ty) < ro < TF1/1o-

Notice that since r(tg) > 4CH(t0) for ty sufficiently large, it is automatic that
4Ci1(t0) < rp in this case. To treat this case we need a couple of preliminary results.
The next lemma is based on the fact that the asymptotic volume of any k-solution is
zero. It gives strong curvature and distance distortion control for sufficiently small
backwards time.

Lemma 3.13. Given w > 0 there are 19 > 0, 0 < B,C < oo and w' > 0 such that
the following hold. Suppose that (U,G) is a generalized 3-dimensional Ricci flow
and suppose that for some 0 < 7 < 79 the open set B = Up<i<+B(zo,—t,.95) C U
has compact closure in U. Suppose also that the volume of B(xg,0,.95) is at least
w and that Rm(z,t) > —1 on B. For any 0 < r < .95 we denote B(r) the union
UogtgrB(fUO, —t,r). Then:

1. For every t € [0, 7], the entire forward parabolic neighborhood P(xq,—t,.9,t)
exists and is a subset of B.

2. R(zx,—t) < B+ C/(t —t) for all (x,—t) € B(1/3).
3. For any t' € [0,7] and any 1/100 <r <1/3 —1/100 we have

P(x0,0,7—1/100, —t") C B(r)n{(x,—t)| 0 <t < t'} C P(x0,0,7+1/100, —t").

4. Vol B(xg, —7,1/4) > w'.

Proof. First, notice that the fact that B has compact closure means that if ¢ is
maximal flow line in B for the vector field x (which recall is part of the structure
of the generalized Ricci flow) then each end of ¢ either is compact and contained
B(x0,0,.95) or B(zg,—7,.95) or is non-compact and is compactified by adding a
point of the form (y, —t) € B(xg, —t,.95) with d_;(zo,y) = .95.

We take 7 < In(v/1.01). Since Rm > —1, and hence Ric > —2 on B, if v(s) is any
smooth path in B(zg, —t,.95), then the derivative of the length of v with respect to
time is at most twice the length of ~. It follows easily that if (y, —t) € B(zo, —t,r)
for some r < (.95)exp(—2t) then the forward flow line through y is contained in
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y € Up<p<iB(xg, —t',rexp(2t)) and, because of the assumption that the closure of
B is compact, exists for all t < 7 —¢. Hence, for ¢’ < 7 and for any r < .9 we have

B(zg, —t',r) C P(20,0,(1.01)r,—t") and P(xqg,—t',r,t') C B((1.01)r). (3.1)

In particular we have P(zg,—t,.9,t) C B for all 0 < ¢ < 7. This proves the first
item.

Now we turn to the second and third items. We continue to assume that 0 < 7 <
In(v/1.01) and we first establish these items under the following:

Stronger volume hypothesis: Suppose that for all ¢ € [0, 7] the volume
of B(xg,—t,.9) is bounded below by some w’ > 0.

We shall show that there are positive constants B, C satisfying the inequality in
the second item, where the constants B and C' are allowed to depend on w’. Having
fixed w’ > 0 and assuming the stronger volume hypothesis, suppose that the second
item does not hold for any constants B,C. We take sequences 0 < B,,C, with
B, + C}, tending to co as n — oo and examples B,, centered at points x,,, defined
for —7, <t <0 with 0 < 7,, <1In(+/1.01) satisfying the stronger volume hypothesis
and with Rm > —1 on B,. We set A, = ay/min(B,,C,), for a constant o > 0
to be determined. For each n we have a point (y,, —t,) € B(zn, —tn,1/3) with
Qn = R(yn, —tn) > By + Cp, /(T — tn), and hence @Q,, — 0o as n — oo.

Claim 3.14. Provided that o > 0 is sufficiently small, for every n sufficiently large
there is a point (y},, —t},) € By satisfying t, <t), < tn+AnQpt and d_y (zn,y;,) < A
with the following properties:

1. Setting Q., = R(y},,t.,), we have Q), > By, + Cy /(10 — t},).

2. R(z,—t) < 2Q!, for every (z,—t) with t,, <t <t + A,(Q.)~! and with
d-t(wn, ) < dog, (w0, yh) + An(@)) /2.

Proof. We begin with (y)), —t;) with d_s (yp,25) < 1/3 and Q) = R(yp, —t;) >
By, + Cp/(mn — t2). If this point does not satisfy the second conclusion, then there
is (yp, —ty) With ) <t < ) + A, (Q0) ™" and d_yy (wn,yn) < d_yg(yn,n) +
An(Q0)~1/2 with QL = R(yl,t}) > 2Q0. Direct computation shows that, pro-
vided that C,, is at least 4, we have R(y}, —tl) > B, + C,,/(1, — tL). We repeat
this argument using (y., —tl) instead of (2, —t%) constructing counter-example
points (y%, —tF) with QF > 2¥Q". Because of the geometric increase in QF we
see that d_ (Y%, z,) < 1/3 4 An(Q9) V(1 + (1/2)V2 + (1/2) + (1/2)32 + ) <
1/3 4+ A, (Q%) 712 /(1 — \/1/2). Since A,, < a+/QY, provided that a > 0 is chosen
sufficiently small, we see that d_ (zy, y¥) < .4 for all k for which the construction
can be performed. But now by compactness, the process must terminate in a finite
number of steps. At the last step we have a point as required. ]

Once we have (y!,, —t]) as in the previous claim, we shift —t/, to zero, rescale by
@), to get a sequence of Ricci flows centered at points (y,,,0). We have curvature
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bounds Rm > —(Q’)~! and R < 2, and hence sectional curvature bounded inde-
pendent of n, on the union U, of balls B(y,,, —t, 4,) for all —A4,, <t < 0. Also
R(y,,0) = 1.

Claim 3.15. Using the shifted and rescaled time and the rescaled metric, U, con-
tains the entire parabolic neighborhood P(yl,,0, A, /2, — Ay, /16); and in particular the
sectional curvature on P(y,,,0, An/2, —A,/16) is bounded independent of n.

Proof. From the construction we have R < 2 on U,. Since Rm > —(Q.)7!, it
follows that Ric < 3 on U,. Invoking Proposition 3.21 of [21] with ro = 1, we
see that the derivative of d_.(y},,z) with respect to time is > —8. Thus, for any
—A,/16 < —t < —t' < 0 we have d_(y},,2) < d_y(y),,2) + An/2 as long as the
forward flow line from (z, —t) to time —¢' remains in U,,. The result follows easily. [

Now let us return for a moment to the B, with the original metric and time
coordinates. By our stronger volume hypothesis and volume comparison (using
the fact that Rm > —1), there is a constant w” > 0 depending only on w’ such
that Vol B(z),, —ty,.1) > w”. Since B(a),—t),.1) C B(y,,—t,,.5), it follows
that Vol B(y,,,—t.,.5) > w”. Again by volume comparison, using the fact that
B(yl,,—t,,,.5) C B(xp, —t),,.9) and the curvature estimate Rm > —1 on B(zy,, —t},,.9),
there is v > 0, depending only on w”, and hence only on w’, such that for any r < .5
we have Vol B(y,, —t\,,r) > vr3.

It follows from these results for the B,,, in the rescaled flow U,, we have Vol B(y,,,0,r) >
vrd for all r < A,/2. The uniform curvature control on the entire parabolic
neighborhood P(y,,,0,A,/2,—A,/16) C U, and uniform volume lower bound on
B(y},,,0,A,/2) C U, implies that, after passing to a subsequence, there is a geo-
metric limit of the (U,, (y),,0)) which is a complete, ancient solution of bounded,
non-negative curvature with scalar curvature at the base point (the limit of the
(y),,0)) equal to 1. We claim that this is a contradiction. The reason is that since
Vol B(y},,0, A, /2) > v(A,/2)3 for every n and since A,, — co as n — oo, this implies
that the asymptotic volume of the 0 time-slice of the limit is > v, and hence using
the fact that the limit has non-negative curvature, the solution is a k-solution for
k = v equal. But this contradicts the fact (see Theorem 9.59 of [21]) that the asymp-
totic volume of a x-solution is zero. This contradiction establishes the inequality in
the second item under the stronger volume hypothesis.

Now continuing to work with the stronger volume hypothesis, we show that there
isa0 < 7p <In(y/1.01) such that the third item holds as long as 0 < 7 < 7. First of
all, because of the bound on R just established and the fact that Rm > —1, we see
that Ric(x, —t) < (B+C/(t —t)) for all 0 < t < 7 and all (z, —t) € B(zq, —t,70/3),
where B = B 4 1. By Proposition 3.21 in [21] for any (x,—t) € B(xq, —t,70/3)
with 0 <t < 7 we have the derivative of the function ds(zo,x) at s = —t is at least

—84/B + C/(r —t)//3. Tt now follows by integrating that

do(zo, ) > d_i(z,20) — (8\/§t + (8\/5)\/72) /V3.



3 LOCAL RESULTS VALID FOR SUFFICIENTLY LARGE TIME 41

Thus, assuming that 7p > 0 is sufficiently small, how small depending only on B
and C, and that 7 < 7y, we see that dy(zg,z) > d_i(xg,x) —1/100 for all 0 < ¢t < 7
and all (z,—t) € B(zg,—t,1/3 —1/100). It follows that for all » <1/3 —1/100 and
all 0 <t <7 we have

P(z0,0,7,—7) C B(r + 1/100).

For 1/100 < r < 1/3 — 1/100, the inclusion B(zg,—t,r — 1/100) C P(x0,0,r,—t)
follows from Equation (3.1). This completes the proof of the third item under the
stronger volume hypothesis

To complete the proof of the second and third items we must show that there
isa0 < 1 <7 < In(v1.01) such that under the hypothesis of the lemma the
stronger volume hypothesis holds provided 7 < 7p; that is to say, that there is a
w’ > 0 depending only on w such that Vol B(zg, —t,.9) > w' for all t € [0,7]. We
denote by Viyp(r) the volume of the ball of radius r in hyperbolic 3-space. First
notice that if Vol B(z,0,.95) > w then by the Bishop-Gromov volume comparison
we have Vol B(x0,0,7) > w(r) = wWyp(r)/Viyp(.95) for every r < .95. We set
w' = w(1/16)/2, and we consider the maximal 7/ such that Vol B(xg, —t,.9) > v’
for all ¢ € [0,7']. We conclude the proof in this case by showing that there is
0 < 19 < 79 such that if 7 < 79 then 7/ = 7. By what we have just established
there are constants B’ and C’ depending only on w’, and hence depending only on
w, such that R(x,—t) < B’ + C'/(7' — t) on Up<i<rB(zo,—t,1/3), and there is
74 > 0, depending only on B’ and C’, and hence depending only on w, such that
if 7/ < 7{ then image of the ball B(xq,—t,1/8) under the Ricci flow from time —t,
with 0 < ¢ < 7} to time 0 includes the ball B(z,0,1/16). This implies that the
volume of the result B of flowing B(xo, —t,1/8) to time 0 is at least w(1/16). On the
other hand, dV/dt = — f RdV < —RpinV. Since Rm > —1, we see that Ry, > —6.
Thus, Vol B < Vol B(zg, —t, 1/8))exp(6t). Taking 7o = min(7},n2/12), we conclude
that

Vol B(xg, —t,1/8) > Vol B/2 > w(1/16) /2.

A fortiori, we have Vol B(xg, —t,.9) > w(1/16)/2 under the same assumption. This
means that it must be the case that 7/ = 7. This shows the volume estimate
Vol B(zp, —t,.9) > w(1/16)/2 holds for all ¢t € [0,7] provided that 7 < 7p. This
completes the proof that the hypotheses of the lemma imply the stronger volume
hypothesis for all 0 < ¢ < 7 provided that 7 < 7y. This completes the proof of Parts
2 and 3 of the lemma.

In the course of proving the second and third parts of the proposition, we showed
that Vol B(xg, —t,1/8) > w(1/16)/2 for every 0 < ¢t < 7. Hence, Vol B(zg, —7,1/4) >
w(1/16)/2. This establishes the last item and completes the proof of Lemma 3.13.

O

Corollary 3.16. (a) Given w > 0 there are 9 > 0, w' > 0, and Ky < oo such
that the following holds for any 0 < 7 < 19. Suppose that we have a generalized
Ricci flow on U and suppose B = supy<;<, B(xo, —t,.95) has compact closure in U.
Suppose that the sectional curvatures are bounded below by —1 on B and suppose
that the volume of the ball B(xo,0,.95) is at least w, then:
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1. R(z,t) < Kot~ ! for all (x,t) € P(x0,0,1/4,—7/2), and
2. the ball B(xg,—7,1/4) has volume at least w'.

(b) Suppose the entire parabolic neighborhood P(1) = P(x¢,0,1, —7) is contained in
U with compact closure. Suppose that Rm > —1 on P and the volume of B(x0,0,1) >
w. There are constants 79 > 0, Ko < oo and w' > 0 such that the above two
conclusions hold with Ty replacing 1o, with IN(O replacing Ko and with w' > 0 replacing
w'.

Proof. Given w > 0 we take 79 and w’ > 0 as in Lemma 3.13, and we set Ky =
Bty 4+ 2C, where B and C are the constants from this lemma. Set P(1/4) =
P(x0,0,1/4,—7). By Lemma 3.13 we have P(1/4) C Up<i<-B(zo,—t,1/3) and
R(z,—t) < B+ C/(r —t) for all (z,—t) € P(1/4). Thus, R < Ko ! on the
parabolic neighborhood P(zg,0,1/4,—7/2). Also, this lemma also implies that
Vol B(xg, —7,1/4) > w'. This proves all the statements in Part (a) on the corollary.

As Part (b), since Rm > —1 on P(1) and since 7 < In(+/1.01), we have

B(xg, —t,.95) C P(1)

for every 0 < t < 7. Also, there is w > 0 depending only on w such that
Vol B(x0,0,.95) > w. We simply apply what we have already established with
w replaced by w. O

The second lemma shows the existence of a sub-ball with a Euclidean volume
estimate for all further sub-balls.

Lemma 3.17. Fizn > 0. For anyw > 0 there is 6y = 6g(w) > 0 such that if B(x,1)
18 a metric ball of volume at least w compactly contained in a n-manifold without
boundary with sectional curvatures at least —1, then there exists a ball B(y,0y) C
B(x,1) such that every sub-ball B(z,r) C B(y,00) of any radius r has volume at least
(1 —€) times the volume of the n-dimensional Euclidean ball of the same radius.

Proof. Recall that a (k,d) strainer centered at a point x in an Alexandrov space
consists of ai,...,ag,b1,...,bg such that for all 1 < 4,5 < k the comparison angles
satisfy: N

Zajxa; > /2 —0 foralli#j

Zaia:bi >7m—9
Zajxb; > )2 —0; foralli # j
Zbizb; > /2 —§ for all i # j.

The size of the strainer is the minimum of the 2k lengths |za;|,|zb;|. In an n-
dimensional Alexandrov space X, for any § > 0 the set of points with an (n,d)-
strainer is an open dense set. Furthermore, for § > 0 sufficiently small, if y € X has
an (n,d) strainer of size s, then there exist a constant r» = r(s) > 0 and a (1 — ¢)
bilipschitz homeomorphism from B(y,r) the ball of radius r in Euclidean n-space.
For more details on all these facts see [3].
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Now fix w > 0 and suppose that the result does not hold. Take a sequence
0 — 0 as k — oo and balls B(zy, 1) that do not satisfy the conclusion for 6 = 6.
Pass to a subsequence and take a limit X of the B(xy,1). Because of the uniform
positive lower bound for the volumes of the B(zy, 1), the limit X is an n-dimensional
Alexandrov ball of radius 1. As such it contains a point y with a (n, d)-strainer (with
d > 0 as above) of size s > 0. This strainer defines a (1 — ¢€) bilipschitz map from
a smaller ball B(y,r(s)) centered at y to the corresponding ball in R™. This then
implies that the result holds for the B(xy, 1) for a sequence of points y; converging
to y and radius r(s). This is a contradiction. O

Definition 3.18. We say that a ball B(x,t¢,7) in a 3-manifold has a Fuclidean
volume estimate if for every sub-ball B’ = B(y,t,s) C B(z,t,r), the volume of B’ is
at least (1 — €) times the volume of a Euclidean 3-ball of the same radius.

With these results in place we return to the proof of Proposition 3.11 in the case
r(tg) < ro. We fix 19 > 0, w’ > 0, and Ky < oo as in Corollary 3.16 for w = (1 —€)
times the volume of a Euclidean ball of radius 1. (Recall that € > 0 is one of
the canonical neighborhood parameters.) We set 6y = min(fy(43w’)/4,1/20) where
Oo(w') is the constant from Lemma 3.17. We shall show that there is 71 > 0 such
that the conclusion of Proposition 3.11 holds provided that r(ty) < ro < F11/%o for
T =19/2 and for K = 2K0T(;1. Suppose that there is no 71 > 0 as required. Then
we take a sequence of 71, — 0 and counter-examples consisting of Ricci flows with
surgery (My,Gy) containing balls B(zy, ty,r,) with r(t,) < 1, < Fi,4/t, for the
given values of 7 and K. Since 7, — 0 as n — oo and since 71, > r(ty), it follows
that ¢, — 0o as n — oo. It follows from the curvature pinching assumption and the
fact that r2t; 1 < ?in — 0 as n — oo, that given any constant 1 < D < oo, for all
n sufficiently large if R(z,t) < Dr,? for some t > r3 /4], then Rm(z,t) > —r,?
and consequently |Rm(z,t)| < Dr, 2.

Clearly, the hypotheses of the lemma and the negation of the conclusion of the
lemma are closed under taking limits of (z,¢,7). Thus, we can choose t, to be the
first time where the lemma fails to hold for the constant 7 ,, and we choose 7, to be
the minimal radius of a counter-example ball at time ¢,,. Our goal is to show that

B, = UOStSTQT%B<xn7 tn — t, Tn)7

has closure in the smooth part of the Ricci flow with surgery (which is a generalized
Ricci flow), and Rm > —r, 2 on B,. If we can establish this, then B,, has compact
closure in the generalized Ricci flow which is the smooth part of the Ricci flow with
surgery. Rescaling by 2, applying the first part of Corollary 3.16 to the rescaled
flow and then rescaling the conclusion of this result by 72, we have R < Koty 17“; 2
on P(xp,ty, /4, —10r2 /2) as required by Proposition 3.11.

We shall establish that B,, has closure contained in the smooth part of the Ricci
flow with surgery and that Rm > —r,, 2 on B,, on segments of time, moving backward
one segment at a time. We shall find At > 0 depending only on €, B, C', and 79, and
we shall show by induction on N that, as long as (N — 1)At < 79, the Ricci flow
with surgery satisfies Rm > —r, 2 on By, N, which is the intersection of B, with the
pre-image in the Ricci flow with surgery of the time interval [t, — N(At)r2, ¢,].
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Let us consider the first step in the induction. The appropriate value of At will
emerge in the course of this argument. By Part (2) of Corollary 3.16

Vol B(xp, tn, mn/4) > w'rz.

By Lemma 3.17 there is a ball B(yp, tn, 6orn) C B(xn, ty, rm/4) that has a Euclidean
volume estimate. Since t,, — 0o as n — oo and since r,, > 7(t,) > 6 2(t,)h(ty),
for all n sufficiently large, Ogr, > 4C’h(tn). Since B(yn,tn,0orn) C B(xn,tn,rn)
we have Rm > —r2 on this ball. Since 6yr,, < 5, the fact that we chose 7, to
be the minimal radius of a counter-example of Proposition 3.11 at time t¢,, implies
that the proposition holds for B(yn,tn,00rn). We have just checked that all the
hypotheses of this proposition hold for B(yn,tn,007,). Thus, the proposition im-
plies that the Ricci flow with surgery (M,,, G;,) contains the entire parabolic neigh-
borhood P(yn, tn, Oorn/4, —mo02r2) and satisfies R < K6, r;2 on this parabolic
neighborhood. By the curvature pinching result, for all n sufficiently large we have
|Rm| < K0y 2r;;2 and Rm > —r;,2 on this parabolic neighborhood. We set

o = min(y/79, K~1/2,1/4)6,

Then |Rm| < a 27,2 on P,(a) = P(yn,tn,arn, —a?r2). The bound on |Rm| on
P, () implies that for any ¢’ € [t, —a?r2/2,t,] we have P(y,,t', ar,/4, —a?r2 /16) C
P,(a) and thus |Rm| < a2r;2 on P(yn,t',ar,/4,—a?r2/16) for all ¢ € [t, —
a?r? t,]. Recall that r, < Ty,\/%, with 7, — 0 as n — oo. Thus, by Part
3 of Proposition 3.1, there is a constant K’ < oo such that |[Rm| < K'a 27?2
on B(yn,t',4ry,) for all n sufficiently large. Since dy, (xn,z) < ry, it follows that
dy (T, Yn) < 21y for all ¥ € [t, — a®r2 /4K’ t,]. Hence, for all such # We have
B(zp,t', 1) C B(yn,t',4r,) and consequently, |Rm| is bounded by K’'a?r2 on the
union of these balls. Since r,, > r(t,) which in turn is at least 6(¢,) 2h(t,) and since
t, — oo as n — oo, for n sufficiently large the closure of B(xzp,t',r,) is disjoint
from the surgery caps for all ¢ € [t, — a?r2/2,t,]. Also, by curvature pinching we
conclude that provided that n is sufficiently large, we have Rm > —r 2 for every
t' € [tn — a?12/2,t,]. We set At = a?/4K’. We have Rm > —r;? on B, 1. This is
the initial step in the induction.

Suppose that inductively for some N > 1 with NAt < 79, we have shown that
Rm > —r, 2 on B, n which is the intersection of B,, with the time interval [¢, —
N(At)r2,t,]. Then, by Part (2) of Corollary 3.16 we see that the volume of the ball
B(xy,t, — N(At)r2,7,/4) is at least w'r3. Hence, by Lemma 3.17 there is a ball
By, tn — N(At)r2,00ry,) C B(xp, t, — N(At)r2,r,/4) that has a Euclidean volume
estimate. Once again the fact that r, > 7‘( n) and t, — oo as n — oo implies
that for all n sufficiently large 6or, > 4C'h( n). The inductive hypothesis imply
that Rm > —r, 2 on B(yl,t, — N(At)r2,0pr,). This shows that the hypotheses
of the proposition hold for B(y/,,t, — N(At)r2,0ry). Since t, — N(At)r2 < t, by
our assumption that ¢, was the first counter-example time for 7y ;, the proposition
applies to B(y/,,t, — N(At)r2,0yr,) to show that the Ricci flow contains the entire
parabolic neighborhood P(yl,,t, — N(At)r2, 07, /4, —1005 °r;, %) and satisfies R <
Koy 27“,7 2 on this parabolic neighborhood. Arguing exactly as in the first step of the
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induction, we see that for all n sufficiently large we have Rm > —r,? on

Utn_(N+1)(At)T%StStn—N(At)T%B(:Cn7 -, Tn),

and that the closure of this union is disjoint from all the surgery caps. Putting
this together with what we have already established by induction, gives us the fact
that Rm > —r, 2 on B, . n+1 and the closure of this neighborhood is disjoint from
all the surgery caps. We continue this way until we have the result on B, n, where
(No — 1)At < 19 < NpAt. Truncating to the time interval [—7p,0] we conclude
that Rm > —r, 2 on B,, and the closure of B, is disjoint from the surgery caps.
Hence, B, is contained with compact closure in the generalized Ricci flow that is
the smooth part of the Ricci flow with surgery. Invoking Corollary 3.16 we see
that R(x,t) < Kor ! for all (z,t) € P(xp,tn,n/4, —1072/2). Since we have taken
K = 2K07'0_1, and 7 = 79/2, this completes the proof of Proposition 3.11 in the
second case, and hence completes the proof of the proposition.

3.2.3 A corollary

Now we can derive an important corollary of Proposition 3.11, which is Corollary
6.8 of [27].

Corollary 3.19. For any w > 0 there exist 7/ = 7/(w) > 0, K' = K'(w) < oo,
7 =7 (w) >0 and 0 = (w) > 0 such that the following holds for any Ricci flow
with surgery (M, G). Let to,ro satisfy 0~ (w)h(to) < ro < 7\/to and assume that
there is a ball B(xg,to,m9) C M on which the sectional curvatures are bounded below
by —1”62 and suppose that the volume of B(xq,to,r0) at least wr%. Then the Ricci flow
with surgery is defined in P = P(xq,to,70/8, —7'r3) and satisfies R(x,t) < K'ry?
for all (x,t) € P.

Proof. Fix 6y = min(fy(w),1) from Lemma 3.17. According to Lemma 3.17 there
is a ball B(y, to,00r0) C B(xo,t0,70) that has a Euclidean volume estimate, and of
course Rm > —ry 2 on this ball. We shall take 6 < 0o/4AC so that the condition
9_1ﬁ(t0) < ro implies that 4Ci1(t0) < oro. Thus, assuming that ro < 7/ty with
7 < 7 from Proposition 3.11, we can apply Proposition 3.11 to B(y,tg,pr¢) and
conclude that the Ricci flow with surgery contains the entire parabolic neighborhood
P(y,to,00r0/4, —7037r) and satisfies R < K962r62 on this parabolic neighborhood.
Since Rm > —ry 2 we have |[Rm| < K6y 27'0_ 2 on this parabolic neighborhood. Thus,
|Rm| < a~2ry? on P = P(y, to, arg, —a’r?) where

a = min(1/4,v/7, K~/%)6,

so that o depends only on w. Of course, for each t € [tg — (arg/2)?,to] we have
P(y,t,arg/2, —(arg/2)?) C P. Now we take 7’ = min(71, 2a~17(8/a)) where 7(8/a)
is the constant in Proposition 3.1. We can apply Proposition 3.1 and conclude that,
provided that (4C/60)h(te) < ro < 7+/fy so that arg/2 < 7(8/a), we have a bound
on the scalar curvature R < Ky(arg/2)"2 on B = Uto—(aro/2)2<t<to B(Y, t, 410) for

some K9 that depends only on «, and hence only on w. By curvature pinching,
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and the fact that 7y 2t;' > (7/)72, assuming that 7 is sufficiently small, if follows
that |Rm| < Ka(arg/2)~2 on B. Now we set (w) = min(K{l/Qa/4,00/4C). Thus,
the scalar curvature on B is at most 0(w) ?ry?/4. Since 0 1h(ty) < 1o, we have
(4C/60)h(tg) < ro. Thus, we see that the scalar curvature on B is at most h(to)/4,
and hence the closure of B is disjoint from the surgery caps, i.e., the closure of B
is contained in the smooth part of the Ricci flow. Since |Rm| < Ka(arg/2)~2 and
since dy, (xo,y) < 10, the open set B contains a parabolic neighborhood of the form
P(x0,to, 70, —7'r¢) for some 7/ depending only on K(/2)72, and hence depending
only on w. This establishes the corollary with this value of 7/ with K’ = 4Kya =2,
and for 7 > 0 sufficiently small. O

4 Proof of Propositions 2.6, 2.8, and 2.9

4.1 Proof of Proposition 2.6

Let us begin by recalling the statement that we shall prove:

Proposition 2.6. (a) Given w > 0,r > 0, > 0 there is T = T'(w,r,§) < 0o such
that the following holds for any Ricci flow with surgery (M, G) satisfying Assump-
tions 3.9 and 3.10. If, for some to > T and some xg € My,, the ball B(xo,to, 7v/t0)
3/

has volume at least wr3t0 2 and sectional curvatures bounded below by —T_Qtal, then

2to Ric(x0, to) + g(o0,t0)lgte) < & (2.6)

(b) In addition, given A < oo, there is T' = T'(w,r,&, A) > T(w,r,£), and pro-
vided that to > T', the Ricci flow with surgery contains the entire forward parabolic
neighborhood P(xg,to, Arv/to, Ar*ty) and Equation (2.6) holds with (xo,to) replaced
by any (x,t) in this forward parabolic neighborhood.

Proof. Fix w > 0,7 > 0, and £ > 0 and suppose that (a) does not hold for
these constants. Take a sequence of Ricci flows with surgery (M, Gy) and points
(Tp,tn) € M, with t,, — oo so that the hypotheses of Part (a) hold for each
B(Zp, tn, ry/ty) but the conclusion fails for (zy,t,). Set s = min(r,7(w)) and
Fn = sy/In where 7(w) is the constant given in Corollary 3.19. Since h(t) — 0
as t — oo, provided that n sufficiently large r,, > 0~ (w)h(t,). Passing to a sub-
sequence allows us to assume this holds for all n. Then the conclusions of Corol-
lary 3.19 hold for B(zy, t,, ) for all n, which means that (M,,, G;,) contains the en-
tire parabolic neighborhood P(xy,,t,, /8, —7'r2) and has scalar curvature bounded
by K'r;2 on this parabolic neighborhood, where 7/ > 0 and K’ < oo are the con-
stants depending on w given in Corollary 3.19. Thus, passing to a subsequence,
rescaling space and time by ¢! = 72s% we have a sequence of parabolic neigh-
borhoods P, = P(xy,1,5/8, —7's%) with metrics hy(t) = (1/t,)g(tnt) on which the

scalar curvature is bounded by K’s~2. Since, by the hypothesis of Part (a) we

have Vol B(xy, tp,7v/tn) > wr3t§/2 and Rm > —r2t,, and since s < r, by vol-
ume comparison, there is a w’ > 0 depending only on w_such that the volume
of B(xp,tn,mn/8) > w'rd. Thus, the final time-slice of P, has volume at least
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w’s3. Consequently, we can extract a subsequence limiting smoothly to an abstract

parabolic neighborhood Ps, = P(200,1,5/8,—7'5?). By Corollary 2.5 the sectional
curvature of the final time-slice of the limit is constant and equal to —1/4, which
means that the Ricci curvature of the t = 1 time-slice of the limit is constant and
equal to —1/2. Since the limiting process is smooth, it follows that Inequality (2.6)
holds for all n sufficiently large.

Now let us establish that given A in addition to w,r, and &, provided that ¢g is
sufficiently large, Inequality (2.6) holds on B(zg, tg, Arg). By the argument in Part
(a) given immediately above, there are constants 7/ = 7/(w) > 0 and s = s(w,r) > 0
(which we take less than 1) and K’ = K'(w) < oo such that for all ¢y sufficiently
large, the scalar curvature on P(zg, o, s7/To/8, —7's%tg) is bounded by K’s~2. Now
take s’ = min(s/8,v/7's, (K')~"1/25/1/2) so that s’ depends only on w and r. Then
the scalar curvature on P(zo, to, s'v/To, —(s')%tp) is bounded by (s')"%t;'/2. Pro-
vided that ¢y is sufficiently large (how large depending on w and ), it follows from
the curvature pinching hypothesis that |Rm| < (s')7%t, 1 on this parabolic neigh-
borhood. Also, by volume comparison the volume of B(zg,to,s'v/to) is at least
(AN LS )3753/ ? for some constant A’ < oo, depending only on w and r. Since we
have required 6(¢) < E;t(%) from Lemma 3.1, for any A" < ¢y/r the conclusion of
Lemma 3.1 holds for B(xg, tg, A'rv/tg) for some constant K| = K|(A’,w,r). Thus,
given any A < oo, there is a constant Ki = K{(A,w,r) such that, provided that
to is sufficiently large, any point of B(xg,tg, Ary/tg) with scalar curvature at least
K7 7’_2t6 L has a (C, €)-canonical neighborhood. Suppose that there is such a point.
Then the ball contains a point with scalar curvature exactly @ = K7 1“_2756 ! which
also has a canonical neighborhood. We set 7 = r/ \/KT . This canonical neighbor-
hood contains the ball of radius 7v/% = (K!)~/?r/ty, and the volume of this ball
is at least /<a773r§/ ? since canonical neighborhoods are k non-collapsed for a universal
k. Also, the sectional curvature on the (C,€)-canonical neighborhood is bounded
below by —677_2755 1. Hence, if t; is sufficiently large, how large depending on 7/ \/ﬁ
and hence depending only on w,r and A, we can apply Part (a) of this result to see
that Inequality (2.6) holds. This is of course absurd, since there are 2-planes where
the sectional curvature is positive and of the order ’F*Qta ! This contradiction shows
that, provided that T is sufficiently large, the scalar curvature on B(xo, to, Ary/to)
is a bounded above by K{'r~2t;! for a constant K/ depending on A,w,r. If t is
sufficiently large, then by the curvature pinching assumption Rm > —T‘_Qta ! on this
ball.

By Lemma 3.1, there is ' depending on A and w such that every point of
B(xo, tg, Ar\/Tp) is k’-non-collapsed on scales r+/tg. In particular, the volume of
B(xo, to, Ar\/to) > (' /A3)r3tg/ %, Now we can apply just established conclusion in
Part (a) of this result once again to see that Inequality (2.6) holds at every point of
B(xo, to, Ar\/to) provided that T is sufficiently large, how large depending on A, w
and r.

Now we establish that for ¢y sufficiently large (given A,w,r, and ) Inequal-
ity (2.6) holds at every point of P(zq,to, Ar\/tg, Ar?ty). We consider the forward
evolution of B(zo,tp, Arv/%p) under Ricci flow on [to, tg + Ar?t]. If Inequality (2.6)
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does not hold for this entire forward parabolic neighborhood, then there is a first
time ¢ > to where it fails. Of course, at ¢’ the weak form of Inequality (2.6) holds.
By the curvature bound, the slice of the forward parabolic neighborhood at time ¢’
is contained in B(zo,t', A'r/ty) for some A’ that depends only on A. On the other
hand, since the Ricci curvature is controlled on the entire evolution from time tg to
time t' < to 4+ Ar’to, we see that the ball B(zq,t',7v/#) has volume bounded below
by a constant times 3 (¢’ )3/ 2 where the constant depends only on w and A. Also,
the sectional curvatures are bounded below by —r'~2(¢')~!. Hence, we can apply
what we just established to see that in fact, provided that T is sufficiently large,
depending on A, w,r, the result holds for the ' time-slice of the forward parabolic
neighborhood, which is a contradiction.

This completes the proof of Proposition 2.6. O

4.2 Proof of Proposition 2.8

Recall the statement that we shall prove:

Proposition 2.8. For any w > 0 there is p = p(w) > 0 such that for all t sufficiently
large (how large depending on w) for any Ricci flow with surgery (M, G) satisfying
Assumptions 3.9 and 3.10, and for any x € My, if p(x,t) < pv/t we have

Vol B(z, t, p(x,t)) < wp(z,t).

Proof. Fix w > 0.

Case 1: For all ¢ sufficiently large we have p(z,t) < 6 '(w)h(t). Since
p(z,t) is defined so that the infimum of the sectional curvatures on B(x,t, p(z,t))
is —p(x,t)72, there is a point (y,t) € B(z,t, p(x,t)) with a sectional curvature at
(y,t) less than —p(z,t)~2/2. Since p(z,t) < 6~ (w)h(t) and h(t) < 32(t)r(t) where
0(t) is a monotone decreasing function of ¢ with limit 0 as ¢t — oo, it follows that,
given K < oo, provided that ¢ is sufficiently large, there is a sectional curvature at
(y,t) which is less than —Kr~2(t). By curvature pinching, again assuming that ¢ is
sufficiently large, we also have R(y,t) > Kr~2(t), so that (y,t) has a (C, €)-canonical
neighborhood.

Claim 4.1. Let Qo = Qo(z,t) = ¢ 2p(x,t)"2/16. Then, provided that t is suf-
ficiently large, every point of B(x,t,p(z,t)) has scalar curvature > Qo and has a
(C, €)-canonical neighborhood.

Proof. By the discussion at above, provided that ¢ is sufficiently large, there is a point
(y,t) € B(z,t,p(x,t)) with R(y,t) > 2Qp. Suppose that the claim does not hold.
Then, there is a point (z,t) € B(x,t, p(z,t)) with R(z,t) = Qo. Since, for all ¢ suffi-
ciently large p(z,t) < 0~ (w)h(t) < r(t), it follows that if ¢ is sufficiently large then
(z,t) has a (C, €)-canonical neighborhood. This canonical neighborhood contains the
ball of radius €~!/2+/Qg > 2p(x,t) centered at (z,t). Since (z,t) € B(z,t, p(x,t)), it
follows that this canonical neighborhood contains B(z,t, p(z,t)). Every point of the
canonical neighborhood has scalar curvature < C'(Qy. But by the curvature pinching
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result, for ¢ sufficiently large, the absolute values of negative eigenvalues of Rm at
any point of this canonical neighborhood are bounded above by an arbitrarily small
constant (depending on t) times the scalar curvature. This means that no point of
the canonical neighborhood, and hence no point of B(z,t, p(z,t)), has Riemannian
curvature with an eigenvalue less than —p(z,t)~2/2. This contradicts the definition
of p(x,t). The contradiction shows that every point of B(x,t, p(x,t)) has curvature
> Q. Since p(xz,t) < 0~ H(w)h(t) < r(t), it follows from this lower bound on the
scalar curvature that every point of B(x,t, p(z,t)) has a (C, €)-canonical neighbor-
hood. O

We keep the notation that (y,t) is a point in B(z,t, p(x,t)) with a sectional
curvature which is < —p~2(x,t)/2. For any K < oo, for t sufficiently large, the
curvature pinching result implies that R(y,t) > Kp~2(z,t). Let Qmax(z,t) be the
supremum of R over B(z,t, p(x,t)). Then, what we have just shown is that we can
write Qumax(2,t) = Cmax(x,t)p~2(x,t) where Ciax(7,t) goes to infinity as ¢t goes to
infinity. The infimum Quin(x,t) of the scalar curvature on B(x,t, p(x,t)). It is at
least Qo(t) > ¢ 2602 /16h2(t) and hence Qi (2, t) goes to infinity as t — co. On the
other hand, we claim that Quin(x,t) cannot be bounded above by any fixed constant
Q independent of ¢ times p~2(x,t). For suppose that it were so bounded. Then
for all ¢ sufficiently large we have a point of B(x,t, p(x,t)) with scalar curvature
< Qp~2%(z,t) and a point of scalar curvature Cyax(w,t)p 2(x,t) where Cyax(7,t)
tends to oo as t does. Furthermore, the canonical neighborhood threshold r(t) is
greater that p(x,t). This contradicts Theorem 10.2 in [21] and shows that the
minimum value Quin(z,t) of R over B(x,t, p(x,t)) is at least Cin(t)p~2(z,t) where
Chnin(t) — 00 as t — oo.

Having established this lower bound for the scalar curvature on B(z,t, p(x,t)),
it follows immediately from the nature of (C,€)-canonical neighborhoods that the
volume estimate for B(z,t,p(x,t)) is bounded above by w(Cuin(t))p®(x,t) where
w(s) is a function that tends to zero as its argument s tends to infinity. It now
follows that for a given w, for ¢ sufficiently large, if p(z,t) < 0 (w)h(t) then
Vol (B(z,t, p(z,t)) < wp?(x,t).

It remains to consider:

Case 2: For t sufficiently large p(z,t) > 6~'(w)h(t). Suppose there is no p
as required. Then there is a sequence p,, — 0 and a sequence of Ricci flows with
surgery (M, G,,) and points (x, t,) with ¢, — oo such that p(z,,t,) < p,,v/tn and
Vol B(Zn, tn, p(Tn, tn)) > wp3(xp, t,). Now we pass to a subsequence so that for all n
we have p,, < 7 (w) from Corollary 3.19. Then according to that corollary there are
7 > 0 and K’ < 0o, depending only on w, such that (M, G,) contains the entire
parabolic neighborhood P(x,, tn, p(zn,tn)/4, —7'p?(2p, t,)) and has scalar curvature
bounded above by K’p~2(xp,t,) on this parabolic neighborhood. As before, let
X (x,t) denote the minimum of 0 and the negative of the smallest eigenvalue of the
Riemannian curvature tensor Rm(z,t). If X(x,,t,)(t, + 1) > e, then it follows
from curvature pinching (Inequality 1.2) that

X(zp,ty) < K’p*2(xntn)/2.
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On the other hand, if X(x,,t,)(t, + 1) < e, then X(z,,t,) < e*t,;!. Since
(T, tn) < Pp/tn, we see that

X(wp,tn) < (64531)P_2($m tn)-

The latter term is less than p~2(z,,t,) for all n sufficiently large. Thus, we see
that for all n sufficiently large there is a constant K", depending only on w, such
that X (z,t) < K"p=%(zy,t,) for all (x,t) € P(zn,tn, p(n,tn)/4, —7 0% (Tn,tn))-
Having the upper bound on the scalar curvature and X, there is a constant K;
depending only on w such that for all n sufficiently large, all sectional curvatures on
P(zp, tn, p(@n, tn) /4, —7 0% (20, tn)) are bounded in absolute value by K1p~2(xp, ty).
We pass to a subsequence so that this inequality holds for all n. Now we set

a = a(w) = min <1/4, VT, (Kl)_l/Q) .

Then (M,,, G,) contains the entire parabolic neighborhood P(zy,, tn, ap(tp, tn), —(ap(rn, ts))?)
and has sectional curvatures bounded in absolute value by a=2p~2(x,,t,) on this
parabolic neighborhood. Since |Rm| < K1p~2(zp,tn) on B(2n, tn, p(zn,t,)) and by
supposition Vol B(xp, tn, p(Tn,tn) > wp(xp, t,), there is a constant w’ > 0 depend-
ing only on w and K such that Vol B(xp, tn, ap(Tn,tn)) > w'a?p?(xp, t,).

We take A = max(a™!, (w')™1), so that A depends only on w. Passing to a
subsequence we can suppose that p,, < 7(A) for all n where 7(A) the constant 7 of
Lemma 3.1 for this value of A. Apply Part (b) of Lemma 3.1 to these neighborhoods
and the constant A. We conclude that there is a constant K5 depending only on A
and hence depending only on w so that

R(ya tn) < K2072/)72(33n7 tn)

for all (y,tn) € B(xn,tn, p(Tn,tn)). By the definition of p(zy,,t,) there is a point
(Yn,tn) € B(xpn,tn, p(xn,ty)) with the smallest negative eigenvalue of Rm(yn,t,) <
—p~%(zp,tn)/2, and hence the ratio of X (yn,tn)/R(yn,tn) is bounded above by
2K5a72, which depends only on w. But, for all n sufficiently large, this contradicts
the pinching inequality since p(xy,t,)/v/n < P, — 0 and hence p(xp, t,) %t, — 0o
as n — oo.

This establishes Case 2 and completes the proof of the Proposition 2.8. O

4.3 Proof of Proposition 2.9

Recall the statement that we shall prove:

Proposition 2.9. For every w' > 0 there exist 7 = F(w') > 0 and constants
K, = Kp(w') < oo, m=0,1..., such that the following holds for any Ricci flow
with surgery (M, G) satisfying Assumptions 3.9 and 3.10 and for all t sufficiently
large, how large depending only on w'. For any 0 < v < T/t, for any v € M,
and for any m > 0. Suppose that the ball B(x,t,r) has volume at least w'r® and
sectional curvatures bounded below by —r~—2. Then the norms of the curvature and
its m*-order covariant derivatives at (x,t) are bounded by Kor—2 and K,,r—tm),

respectively.
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Proof. Fix w’ > 0 and suppose that the result doesn’t hold. Then we have a sequence
of Ricci flows with surgery (M,,,G,) and balls B,, = B(xy,ty, ) C M, with
Tn/\tn — 0 and t,, — 0o as n — oo such that Vol B,, > w'r} and Rm|g, > —r,?,
yet there are no constants Ky, K1, ..., as required for this sequence.

Case 1: r, < 0~ (w')h(t,) for all n sufficiently large. We divide this case into
two subcases: either R(zp,tn) > 7 2(tn) or R(zn,tn) < 77 2(tn). If R(wp,ty) >
r~2(t,), then (z,,t,) has a (C, €)-canonical neighborhood and the existence of the
constants K; as required is immediate from the C*°-bounds, on these neighborhoods,
which follows from the compactness, up to rescaling, of the space of k-solutions..

Thus, we can suppose that R(z,,t,) < r~2(t,). Next, suppose that there is some
point in (yn,t,) € B(xn,tn,mn) with R(yn,t,) > 772(t,). Then there is a point
(2nstn) € B(Tn,tn,rn) With R(zn,t,) = 7~ 2(t,). This point has a (C, ¢)-canonical
neighborhood which contains the ball of radius e 'r(t,). Since r,, < 8~ (w')h(ty),
we have 7, < e lr(t,)/2, provided that n is sufficiently large. It follows that
B(xy, tn, ) is contained in the (C, €)-canonical neighborhood of (zy,t,). Again the
result follow from the C'*°-bounds, up to scale, of (C, €)-canonical neighborhoods.

This means that we can assume that R(y,,t,) < r~2(t,) for all points (yn,t,) €
B(xp,tn, ). Now we rescale by 7,2, and shift ¢,, to zero. This gives us balls of radius
1 on which the scalar curvature is less than 7~2(t,)r2. Since r,, < 0~ (w')h(t,) <
5 (tn)r(t,), this product r~2(t,)r2 tends to zero as n goes to infinity. This implies
that the scalar curvature on these rescaled unit balls is tending to zero as n — oo,
and hence by curvature pinching (recall that the r,/v/t, — 0 as n — o0) all sec-
tional curvatures on these balls are also tending to zero as n — oco. Furthermore, the
canonical neighborhood threshold at time ¢ € [—t,7;,2, 0] for the rescaled and shifted
version of the Ricci flow with surgery is < r(r2t + t,)r, 1. Since r(¢) is a weakly
monotone decreasing function, any point with in the rescaled parabolic neighbor-
hood with scalar curvature > r2r(t,)~2 has a (C, €)-canonical neighborhood. If, for
every n sufficiently large, the Ricci flow with surgery (M,,, G,,) contains the entire
parabolic neighborhood P(x,t,, 7, —72), then we can apply Shi’s theorem (Theo-
rem 3.28 in [21]) to show that, after passing to a subsequence and rescaling by 7,2,
the limit exists on an entire abstract parabolic neighborhood P(xs,0,1,—1) and is
flat. This implies in particular, that all the higher derivatives of the Riemann cur-
vature tensor converge to zero on the 7, 'B (Tn,tn, o) as n goes to infinity. Hence,
the constants K, as required exist if the Ricci flows with surgery are defined on the
entire parabolic neighborhoods P(xy,, ty, rn, —72).

Now suppose that, after passing to a subsequence, for each n the Ricci flow with
surgery does not contain the entire parabolic neighborhood P(zy,,t,, 7, —72). Then
there is a backwards flow line from a point of B(xy,t,, ) that meets a surgery cap
at some time in the interval [t, —r2,t,]. (For example, the ball itself might contain a
point of the surgery cap.) We take the first such cap we reach in flowing backwards
from B(xy, t,, ) and let t/, > t,, —r2 be the corresponding surgery time. Passing to
a subsequence, we can suppose that a = lim,, e (t, — t,)r,? exists. If a > 0, then
we can apply the same argument as before to the smaller parabolic neighborhoods
P(n,tn, Tn, —ar?/2) to conclude there are constants K,, as required.

Thus, we can assume that (¢, —t,)r,;?> — 0 as n — oo. The same curvature
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argument as before shows that the rescaled scalar curvature at any point of the
surgery cap at time ¢’ that lies on a backwards flow line emanating from B(xy,, t,,, 7,)
tends to zero as n — oo. Because the scalar curvature on the union of the entire
surgery cap and the remaining half of the e-neck that the cap is glued onto varies by
at most a fixed multiplicative constant, it follows that the rescaled scalar curvature
on this entire union goes to zero as n — oo. This means that r,,/h(t]) tends to zero
as n — oo where h(t),) is the scale of surgeries at time ¢},.

This implies that for all n sufficiently large, the result of flowing B(zy,tn, )
backwards to time ¢/, is contained in the union of the surgery cap and continuing
half of the e-neck at time ¢/,. Now rescale by h=2(¢/,). The time interval between the
surgery cap and the ball in the rescaled flow in h=2(t,, —t) < r2/h?(t.,) approaches
0 as n — co. After rescaling by h=2(#) here is a bound on the C*°-topology of the
union of the surgery cap at time ¢/, and the half of the e-neck it is glued to (see Part
5 of Theorem 12.5 in [21]). Applying the refined version of Shi’s theorem (Theorem
3.29 in [21], see also Corollary 16.9 of [21]), this implies that rescaling by h=2(t/,) for
all n sufficiently large there are uniform bounds Ky on the curvature and, for each
i > 1 abound K; on the i*" derivatives of curvature on the backward parabolic neigh-
borhood on the time interval [t],t,], whose t,, time-slice is B(zp, tn, ). Rescaling
by h2(t),) to get back to the original scale in M, G,,) gives us the required bound
Koh™2(t!)) on the curvature of B(zy,tn,r,), and bounds K;h~ 9 () on the it
derivatives of the curvature on B(zy, t,, ). Since r,,/h(t])) — 0 as n — oo, this is
a contradiction.

This completes the proof in Case 1 and allows us to assume that we are in the
complementary case. Passing to a subsequence allows us to assume that:

Case 2: 1, > 07 (w')h(t,) for all n. In this case we can apply Corollary 3.19
and conclude that there are constants 7/ > 0 and K’ < oo so that for all n suffi-
ciently large, the Ricci flow with surgery contains the entire parabolic neighborhood
P(zp,tn,mn/4, —7'72) and has R < K'r,;2. Rescaling the metric and time by 7,2
gives us parabolic neighborhoods P(xy,,t,,1/4,—7') on which the scalar curvature
is bounded by K’ and hence by the curvature pinching assumption, the Rieman-
nian curvature tensor is uniformly bounded on these neighborhoods. Applying Shi’s
Theorem (3.28 of [21]) gives us the required constants K;. This is a contradiction,
concluding the proof of Proposition 2.9. O
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5 Introduction to Part I1

In Part I we showed that for any 3-dimensional Ricci flow with surgery with nor-
malized initial conditions, (M, (¢(t)), for any w > 0 for all sufficiently large ¢ the
manifold (M, g(t)) contains a finite disjoint union of truncated hyperbolic mani-
folds of finite volume H with incompressible boundary such that the complement
(M(w, —), g(t)) is w locally volume collapsed.

To complete the proof of the geometrization conjecture it suffices to show that
provided that w is sufficiently small and, given w, that ¢ is sufficiently large, the
manifolds My(w,—) are graph manifolds, that is to say that the M;(w,—) are con-
nected sums of manifolds that are themselves unions along incompressible tori of
Seifert fibrations. For this, it suffices to take a sequence w,, — 0 as n — oo and
for each n choose t,, sufficiently large so that the above results hold for (M, g,) =
(M, (wn, —), (1/tn)g(ty)) (and also t,, — oo as n — oo) and show that, for every n
sufficiently large, M, is a graph manifold. That is to say, it suffices to show that the
relative version of the geometrization conjecture holds for M, for all n sufficiently
large. Since we know that for all ¢ sufficiently large, each component of M;(w, —) is
either diffeomorphic to a 3-sphere or is aspherical, we shall show that these manifolds
are unions along incompressible tori of Seifert fibrations.

5.0.1 Seifert Fibered Manifolds and Graph Manifolds

From now on 3-manifolds are implicitly assumed to be orientable. Recall that a
Seifert fibration structure on a compact 3-manifold is a locally-free circle action on
a 2-sheeted covering M of M such that, denoting the covering transformation on M
by 7, we have 7((-x) = (- for all z € M and all ¢ € S*. Seifert fibration structures
are classified in terms of their base orbifolds, local Seifert invariants, and, when the
base is closed, an ‘Euler class,” see [31] or [23]. A compact 3-manifold is said to be
Seifert fibered if it admits a Seifert fibration structure.

Lemma 5.1. A compact, connected Seifert fibered 3-manifold with compressible
boundary is diffeomorphic to a solid torus. A compact, connected Seifert fibered
manifold with incompressible boundary is diffeomorphic either to T? x I or to a
twisted I1-bundle over the Klein bottle or is geometric in the sense that its interior
admits a complete, locally homogeneous metric of finite volume..

Proof. Let M be a compact, connected Seifert fibered 3-manifold and denote by 3
be the quotient 2-dimensional orbifold. If the boundary of M has a compressible
torus, then the corresponding boundary component of 3 does not generate an infinite
cyclic subgroup of ﬂ?rb(Z). This means that Y is a topological disk with at most
one singular point, and consequently that M is diffeomorphic to a solid torus.
Suppose that OM consists of incompressible tori. If the orbifold Euler character-
istic of 3 is negative, then 3 is equivalent to a hyperbolic orbifold and M admits a
geometric structure modelled on either the universal covering of PSL(2,R) or the
product of R with hyperbolic 2-space. If the orbifold Euler characteristic of ¥ is
positive, then either X is a spherical 2-dimensional orbifold, in which case M is
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geometric and either admits a round metric or is modelled on S? x R, or ¥ is home-
omorphic to S? with at most two singular points. In the later case, M is the union
of 2 solid tori and is hence geometric. Lastly, consider the case when the orbifold
Euler characteristic of X is zero. If ¥ is without boundary, then M is geometric
and either admits a flat metric or a metric modelled on the 3-dimensional nilpotent
group. If 9X # (), then X is either an annulus, a mobius band, or topologically the
2-disk with 2 orbifold singular points of order 2. In these cases, M is diffeomorphic
to either 72 x I or the twisted I-bundle over the Klein bottle. O

Definition 5.2. A graph manifold is a compact 3-manifold with torus boundary
each of whose prime factors can be decomposed along incompressible tori into pieces
that are Seifert fibered.

Lemma 5.3. A prime graph manifold either has incompressible boundary or is a
solid torus.

Proof. Suppose that X is prime and 0X contains a compressible 2-torus. Then
the union of a collar neighborhood of 90X with a compressing 2-disk is compact
submanifold Y of X diffeomorphic to the complement of a 3-ball in a solid torus.
Since X is prime, the complement of Y in X is a 3-ball, and hence X is diffeomorphic
to a solid torus. O

Proposition 5.4. Suppose that M is a closed 3-manifold and suppose that H C M
18 an embedding of a truncated version of a complete hyperbolic manifold of finite
volume into M, suppose that the image of the boundary of H is a disjoint union of
incompressible tori, and suppose that N = M \ int(H) is a graph manifold. Then M
satisfies the Geometrization Conjecture.

Proof. First, notice that since the boundary of H is incompressible in M, any 2-
sphere in N that does not bound a 3-ball in N does not bound a 3-ball in M. Hence,
we obtain the prime decomposition of M by gluing together the prime decomposition,
N’, of N and H along their common boundary. Hence, it suffices to show that the
union, M’, along incompressible tori of a (possibly disconnected) hyperbolic manifold
and a (possibly disconnected) prime graph manifold N’ satisfies the Geometrization
Conjecture. By hypothesis, the boundary of N’ is incompressible. Hence, according
to the previous lemma, each component of N’ is either T2 x I or a twisted I-
bundle over the Klein bottle or further decomposes along incompressible tori into
Seifert fibrations with incompressible boundary. We start with 7y equal to the
boundary components of H together with all the incompressible tori that are used
to divide components of N’ into Seifert fibrations with incompressible boundary.
This collection of tori decomposes M’ into hyperbolic pieces, Seifert fibrations with
incompressible boundary, pieces diffeomorphic to 72 x I and pieces diffeomorphic to
twisted I-bundles over a Klein bottle. Any closed manifold that is a union along the
boundary of twisted I-bundles over the Klein bottle and copies of T2 x I is geometric
(either flat or modelled on the solvable 3-dimensional Lie group). This allows us to
assume that no component of M’ is of this form. Now if distinct components T and
T’ of Ty are parallel, then we remove one of them from the collection and call the new



5 INTRODUCTION TO PART II 56

collection Ty. It divides M’ into the same types of pieces as the original collection
does. We repeat this operation, until no distinct components of 7Ty are parallel tori.
Now if a component T' of Ty bounds a twisted I-bundle over the Klein bottle in M’,
then by assumption it does so on only one side. In this case we change 7g by replacing
T by the 0-section Klein bottle in this neighborhood. Again, the complementary
pieces are of the same types as before. Continuing in this manner, allows us to
assume that no 2-torus in 7g bounds a twisted I-bundle over the Klein bottle and
no distinct 2-tori in 7y are parallel. Hence, all the complementary components of 7y
are geometric. O

5.0.2 The Statement

Reformulating what we have established in Section 2.2, we see that the (M, gn) =
(M, (wp, —), (1/t,)g(t,)) satisfy the hypotheses of the following theorem. The the-
orem then tells us that for all n sufficiently large M,, is a graph manifold.

Theorem 5.5. (Theorem 7.4 of [27]) Suppose that (My, gn) is a sequence of com-
pact, oriented Riemannian 3-manifolds, closed or with convexr boundary, and that
wy, 18 a sequence of positive numbers tending to zero as n tends to co. Assume that:

1. For each point x € M, there exists a radius p = pn(x) such that the ball
By, (x,p) has volume at most wy,p® and all the sectional curvatures of the
restriction of g, to this ball are all bounded below by —p~2;

2. There is a constant K < oo such that the following holds. Each component of
the boundary of M, is locally convex and is an incompressible torus of diameter
at most Kw, and with a topologically trivial collar containing the all points
within distance 1 of the boundary and on which the sectional curvatures are
between —5/16 and —3/16;

3. For every w' > 0 there exist T = 7(w') > 0 and constants K, = Kp(w') < 00
form =0,1,2,..., such that for all n sufficiently large, and any 0 < r < T,
if the ball By, (x,7) has volume at least w'r® and sectional curvatures bounded
below by —r—2, then the curvature and its mt"-order covariant derivatives,
m=1,2,..., at x are bounded by Kor—2 and K,,r~™ 2, respectively.

Then for every n sufficiently large M, is a graph manifold.

Take a sequence w, — 0. Recall from Theorem 2.24 and Proposition 2.25 in Part
1 the following hold provided that we have a Ricci flow with surgery satisfying the
hypotheses of Corollary 15.10 of [21] with the surgery control function §(¢) and the
surgery scale function h(t) satisfy Assumptions 3.9 and 3.10. There is a sequence
t, — oo and a complete, finite volume hyperbolic manifold H such that for each n
there is an embedding of a truncated version H(wy,) of H into My, whose complement
satisfies the first two conditions of the above theorem. Also, by Proposition 2.9 the
third condition in the above theorem also holds of the complement My, \int (H(wy)).
Thus, as a consequence of this theorem we have:



6 THE COLLAPSING THEOREM 57

Corollary 5.6. The Geometrization Conjecture is true for all closed, orientable
3-manifolds.

Sections 6 through 12 are devoted to establishing Theorem 5.5.

5.0.3 Stronger Results

Using the full strength of what was proved in [21] we can in fact make a much
stronger statement about M;. Recall from Proposition 18.9 of [21] and the Poincaré
Conjecture, it follows that for all ¢ sufficiently large, that every component of My is
irreducible and hence either prime or diffeomorphic to S3. Thus, for sufficiently large
time, every S2-surgery is along a separating 2-sphere bounding a 3-ball and produces
the disjoint union of a 3-sphere and a manifold diffeomorphic to the manifold before
surgery. From this we deduce:

Corollary 5.7. Given a Ricci flow with surgery satisfying the hypotheses of Corol-
lary 15.10 in [21] with the surgery control function §(t) and the surgery scale function
h(t) satisfying Assumptions 3.9 and 3.10, for all t sufficiently large there is a finite
set of incompressible tori in My such that each component of the complement satisfies
one of the following:

1. The component is diffeomorphic to S3.
2. The component admits a complete hyperbolic metric of finite volume.

3. The component is the interior of a compact Seifert fibered 3-manifold with
incompressible boundary.

4. The component is closed and admits a locally homogeneous metric of Solv, Nil,
or Flat type.

Since a component of the third and four types either admits a complete, locally
homogeneous metric of finite volume or the component is diffeomorphic to either
T? x R or to the twisted R-bundle over the Klein bottle, we have:

Corollary 5.8. Given a Ricci flow with surgery satisfying Corollary 15.10 of [21]
and with the surgery control function 6(t) and the surgery scale function h(t) satisfy-
ing Assumption 3.9 and 3.10, the following holds for all t sufficiently large. Remov-
ing a finite set of incompressible tori and Klein bottles from M; yields a manifold
each component of which has a complete, locally homogeneous metric of finite vol-
ume.

6 The Collapsing Theorem

6.1 First remarks

According to Theorem 1.17 in Section 1.6 of [1], a closed, connected 3-manifold
admitting a flat metric is Seifert fibered and hence is a graph manifold. If a closed,
orientable 3-manifold has a metric of non-negative sectional curvature then by [11]
it is diffeomorphic to one of the following:
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1. a spherical 3-dimensional space-form,
2. a manifold with a locally homogeneous metric modelled on S? x R, or

3. a flat 3-manifold.
Thus, without loss of generality we can make the following assumption.

Assumption 1. For each n, no connected, closed component of M, admits
a Riemann metric of non-negative sectional curvature.

The idea of the proof of Theorem 5.5 is to consider a sequence of balls of the
form By (;)(2,1) € My, n = 1,2,..., where by definition g/, (z) = p,?(x)gn. The
hypotheses of the theorem and Assumption 1 imply that each of these balls is non-
compact, but locally complete and of sectional curvature > —1. The general theory
of Alexandrov spaces implies that given any such sequence there is a subsequence
that converges in the sense of Gromov-Hausdorff to a ball of radius one in an Alexan-
drov space of curvature > —1 and of dimension at least 1 and at most 3. The hy-
pothesis that the volume of By (,y(, 1) is at most wy and the fact that the w, — 0
imply that the limit is a 1- or 2-dimensional. We then use results on the struc-
ture of Alexandrov spaces of dimension 1 and 2 to deduce strong topological and
geometric information about the structure of these balls in M, for all n sufficiently
large. These local structures can then be pieced together to form a global result,
proving the theorem stated above. We review this background material on Gromov-
Hausdorff convergence and Alexandrov spaces in Sections 8, 9, and 10, but in this
introduction we assume that these basic notions are understood and we formulate
the precise structural results that will be proved. In Section 11 we deduce the local
results, i.e., the possible structures of the balls By (,) (z,1), and in Section 12 we
piece the local results together proving the main topological decomposition result,
Theorem 6.2 below. As we show below this result easily implies that the M, are
graph manifolds for all n sufficiently large.

6.1.1 Adjusting p,
There is one simplification in Theorem 5.5 that is important to point out.

Lemma 6.1. Let M,, w, and p, satisfy the hypotheses of Theorem 5.5 and suppose
that the M, satisfy Assumption 1. After passing to a subsequence, and replacing
wy, and p, by other constants and functions we can arrange that the hypothesis of
Theorem 5.5 are satisfied and in addition the following hold:

1. For any connected component M? of M,, and for any x € M? we have
pn(z) < diam M?,
and
2. if, for some 0 < 11,72 < 1 we have By y(x,71) N By (4)(y,72) # 0 then

1—m < Pn(y) < 1+7”1.
1+re  pplx) 1—ry
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Proof. Without loss of generality we can assume that M, is connected. If M, is
closed, then by assumption it is not the case that Rm > 0 on all of M,,. If M, has
non-empty boundary, then also by assumption Rm is not everywhere positive. Thus,
for each € M, there is a maximum 7,(z) > pp(z) such that the Rm > —r,(z) 2
on B(x,r,(x)). Furthermore, by volume comparison (the Bishop-Gromov theorem)

Vhyp ( 1) 3

vol B(z, 1y (x)) < Wy (),

o VEucl(l)
where Viyp(1), resp. Viua(l), is the volume of the unit ball in hyperbolic, resp.
Euclidean, 3-space. Thus, at the expense of changing the w,, by a factor independent
of n, we define the function p, so that p,(z) is this maximum r,(z). Inequality 2
follows immediately for this choice.

Now suppose (after passing to a subsequence) that for each n there is x € M,
with p,(x) > diam M,,. This implies that Rm(x) > —(diam M,,)~2 for all z € M,
and hence that p, is a constant function; we denote its value by p,. Passing to
a subsequence we can assume that vol(M,)/(diam M,)? tends to a limit (possibly
+00) as n — oo. First, we consider the case when this limit is non-zero. The fact
that the volume divided by the cube of the diameter is bounded away from zero
and the volume inequality assumed in Theorem 5.5 imply that diam M, /p,, tends
to 0 as n — oo. By the hypothesis about the boundary of M, this implies that M,
is closed. Rescaling M, to make its diameter 1 yields a manifold whose sectional
curvatures are bounded below by —(diam M,,)?/p? and whose volume is bounded
away from zero. By Proposition 9.46 we see that passing to a subsequence there
is a smooth limit which has non-negative sectional curvature. This is contrary to
Assumption 1. Thus, we can suppose that vol(M,,)/(diam M, )? tends to zero as n
goes to infinity. In this case we take w!, = vol(M,)/(diam M, )3 and we take p, to
be the constant diam M,,. Obviously, Inequality 2 holds in this case. O

Assumption 2 and notation: Now we fix the constants w, and the func-
tions p,: M, — (0,00) satisfying Lemma 6.1. For any n and any = € M, we
denote by g, (z) the metric p,(z) 2g,. Thus, By, (z,pn(z)) = By ()(z,1) as
subsets of M,,.

6.2 The collapsing theorem

Let us now state the topological theorem that is established using the compactness
of Alexandrov spaces of curvature > —1 and the volume collapsing hypotheses.

Theorem 6.2. Suppose that we have a sequence of compact 3-manifolds satisfying
the hypothesis of Theorem 5.5 and satisfying Assumption 1. Then, for every n
sufficiently large there are compact, codimension-0, smooth submanifolds V, 1 C M,
and Vy, 2 C My, with OM,, C Vy1 satisfying the following.

1. Each connected component of V, 1 is diffeomorphic to one of the following:

(a) a T?-bundle over S* or a union of two twisted I-bundles over the Klein
bottle along their common boundary;
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(b) T? x I or S? x I, where I is a closed interval;
(c) a compact 3-ball or the complement of an open 3-ball in RP3;
(d) a twisted I-bundle over the Klein bottle; or a solid torus.

In particular, every boundary component of Vi, 1 is either a 2-sphere or a 2-
torus.

2. Vn,g N Vn,l = 8Vn,2 N 8Vn,1.

3. If Xo is a 2-torus component of OVy, 1, then Xo C OV, 2 if and only if Xo s
not a boundary component of M,,.

4. If Xo is a 2-sphere component of OV, 1, then XoNOV,, 2 is diffeomorphic to an
annulus.

5. Vo is the total space of a Seifert fibration and OV, 1 NOVy, 2 is saturated under
the induced S*-fibration on OV o.

6. M\int (V0 UV, 1) is a disjoint union of solid cylinders, i.e., copies of D*x 1,
and solid tori. The boundary of each solid torus is a boundary component of
V2, and each solid cylinder D? x I meets Vi1 exactly in D? x OI.

6.3 Proof that Theorem 6.2 implies Theorem 5.5

In deducing Theorem 5.5 from Theorem 6.2 we shall introduce several topological
simplifications in the decomposition given in the conclusion of Theorem 6.2. While
the decomposition given in Theorem 6.2 is deduced from the collapsing theory (in
particular, V;, 1 is the part of M,, close to a 1-dimensional space and V/, o is the part
close to a 2-dimensional space), as we modify the decomposition we work purely
topologically and do not try to keep the connection with the collapsing geometry.

Claim 6.3. It suffices to establish Theorem 5.5 under the assumption that we have
a decomposition as given in Theorem 6.2 that satisfies the following additional prop-
erties:

1. Vi1 has no closed components.
2. Fach 2-sphere component of OV, 1 bounds a 3-ball component of Vi, 1.

3. Fach 2-torus component of OV, 1 that is compressible in M, bounds a solid
torus component of Vi 1.

Proof. By assumption, each closed component of V;, 1 can be decomposed along a
single incompressible 72 into Seifert fibered manifolds, and hence these satisfy the
conclusion of Theorem 5.5. Thus, without loss of generality we can assume that
there are no closed components of V,, ;. In the similar way, we can suppose that
no component of M, is the union of two solid tori, the union of a solid torus and a
twisted I-bundle over the Klein bottle, or the union of two twisted I-bundles over
the Klein bottle along a common boundary torus, since manifolds of the first two
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types admit Riemannian metrics of non-negative sectional curvature and those of
the third type decompose along an incompressible torus into pieces that are Seifert
fibered.

Let C be a 2-sphere component of 8Vn1 If C' bounds a component C of Va1
diffeomorphic to RP3 \ B3, then we remove C from M,, and from V;, ; and replace it
in each with a 3-ball in each. This has the effect of removing a prime factor diffeo-
morphic to RP3 from M,,. This allows us to assume that there are no components
of V1 diffeomorphic to RP3\ B? and hence that the only components of Vi1 with
boundary 2-spheres are either 3-balls or diffeomorphic to S2 x I.

Now let C be a 2-sphere component of 9V}, 1, but not bounding a 3-ball component
of V1. We cut M,, open along C' and cap off the resulting two copies of C' with
3-balls. We add these balls to V,, 1 forming V! 1, and we leave V;, o unchanged. The
resulting subsets V) ; and V,, o satisfy all the conclusions of Theorem 6.2. If we can
show that the result is a graph manifold, then the same is true for M,. Induction
then allows us to assume that every S?-boundary component of Vi,1 bounds a 3-ball
component of V, 1.

Next, we consider a 2-torus component 7" of 9V;, 1 that is a compressible 2-torus in
M,,, but one that does not bound a solid torus component of V,, ;. By Dehn’s lemma
there is an embedded disk in M,, meeting T" only along its boundary, that intersection
being homotopically non-trivial in 7T'. First, suppose that T' separates M,,. We write
M,, = PUrN. A thickening of TUD has a 2-sphere boundary component .S, which we
can suppose (by reversing the labels of the sides if necessary) lies in P. Let R be the
region between 1" and S; it is diffeomorphic to the complement in a solid torus of a 3-
ball. We form A = PUp F where F, is a solid torus, glued in such a way that RUp F’
is diffeomorphic to a 3-ball. We set V,,2(A) = Vy,2NP and V;,1(A) = (V1 NA)UF.
We also form B = RUT N where R is the solid torus obtained from R by attaching a
3-ball to its S%-boundary. We set V;,2(B) = V,,2N N and V;,1(B) = (V,,1 N N)U R.
It is easy to see that M, is diffeomorphic to A# B and that the given decompositions
of A and B satisfy all the conclusions of Theorem 6.2 unless T' bounds a component
of V1 that is a twisted /-bundle over the Klein bottle. In this case, that component
of V.1 is N and R Ur N is Seifert fibered, whereas the conclusions of Theorem 6.2
hold for A. By a straightforward induction argument, this allows us to assume that
every compressible 2-torus component of 9V, 1 that separates M, bounds a solid
torus component of V;, 1. If T" does not separate M,, we cut M,, open along 7', add
a solid torus F' as before to the copy of T" bounding R and add a copy of R to the
other copy of T. Then M,, is diffeomorphic to the connected sum of the resulting
manifold, M, and 52 x S1. Furthermore, adding R [[ F and to V;, 1 and leaving V;, 2
unchanged produces a new decomposition satisfying the hypotheses of Theorem 6.2.
Again a simple induction argument shows that repeated application of this operation
removes all non-separating compressing tori boundary components of V;, 1 without
creating any new compressing tori boundary components that do not bound solid
torus components of V;, 1. This completes the proof of the claim. O

With all these simplifying assumptions in place, we are ready to complete the
proof that Theorem 6.2 implies Theorem 5.5. Let us consider the union, X, of the
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D? x I components of the closure of M, \ (V;,1 UV, 2) and the 3-ball components
of Vj,.1. Every 2-sphere boundary component of V;, ;1 bounds a 3-ball component of
Vi1, each D? x I meets the disjoint union of the 3-balls exactly in D? x dI and the
boundary of each 3-ball contains exactly two disks in common with [[ D? x 9I. It
then follows from the fact that M, is orientable that X is diffeomorphic to a disjoint
union of a finite number of solid tori. Hence, the closure of M, \ 'V}, 2 is a finite collec-
tion of solid tori, components diffeomorphic to 7% x I, and components diffeomorphic
to twisted I-bundles over the Klein bottle. Furthermore, all boundary components
of the T? x I and twisted I-bundles over the Klein bottle are incompressible in M,,.
We remove from M, all components of M, \ V,, 2 diffeomorphic to either T2 x I or
to a twisted I-bundle over the Klein bottle. The result, W,, is a manifold that is
the union of V,, 2 and a collection of solid tori glued in along boundary components.
According to [35], since V}, 2 is a Seifert fibration, W), is a graph manifold. Since
the tori boundary components that we cut along are incompressible, 0W,, consists
of incompressible boundary tori. It follows that each prime factor of W), has the
property that removing a disjoint union of submanifolds diffeomorphic to T2 x I and
twisted I-bundles over the Klein bottle results in an open manifold each component
of which admits complete homogeneous metrics of finite volume. The same is then
true of M,,.
This completes the proof that Theorem 6.2 implies Theorem 5.5.
There is an addendum which will be important later

Remark 6.4. Suppose that every component of M,, is aspherical. Then no compo-
nent of M, is the union of a Seifert fibration and solid tori where at least one of the
solid tori is glued in in such a way as to kill the homotopy class of the generic fiber of
the Seifert fibration. The above argument implies that removing from M,, copies of
T? x I and twisted I-bundles over the Klein bottle yields a manifold each component
of which is aspherical with incompressible boundary and is a Seifert fibration over
a geometric 2-dimensional orbifold or is a T2-bundle over the circle.

The rest of this paper is devoted to the proof of Theorem 6.2.

7 Overview of the rest of the argument

As we indicated above, the proof of Theorem 6.2 proceeds by finding local models for
neighborhoods of every point of M, for all n sufficiently large. This is done as follows.
We show that given any sequence x € M,, after passing to a subsequence, the
unit balls p~!(x) B(z, p(z)) converge in a Gromov-Hausdorff sense to an Alexandrov
space of dimension 0, 1 or 2. The local structures of these spaces are fairly easy to
understand. From these local structures we deduce local models for balls centered
about x in the 3-manifolds M,. We then show that these local models overlap in
sufficiently nice ways that we can deduce the global topology of the M, for all n
sufficiently large.

Here we describe in outline the nature of the convergence in question and the
nature of the limiting spaces (Alexandrov spaces). Then we turn to the local nature
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of the limits and the consequences for the possible local natures of the 3-manifolds
M,. Finally, we indicate how to glue to together the local structures on the M, to
produce the global collapsing results stated above.

The convergence that we deal with is Gromov-Hausdorff convergence, which is a
notion of convergence for general metric spaces. Two metric spaces are close in the
Gromov-Hausdorff sense if they can be isometrically embedded into a third metric
space so that each is contained in a small neighborhood of the other. For example
a n-dimensional manifold which is fibered over a k-manifold with all fibers having
small diameter is close to the k-manifold base. In general, a Riemannian manifold
can be close in this sense to a metric space that is not a Riemannian manifold.
There are however some geometric properties that are preserved under Gromov-
Hausdorff limits. One of the properties that we are interested in is a metric version
of curvature > k for some constant £. The source of this idea is the theorem due
to Toponogov [34] which says that in a complete Riemannian manifold of curvature
> k given a geodesic triangle T' = abc the following holds. Let T = abc be a k-
comparison triangle, i.e., a triangle in the complete, simply connected surface of
constant curvature k with the same pairwise distances. Then the angle of T" at b is
no larger than the angle of T at b. This leads to the following notion. Let X be
a metric space and a,b, ¢ be three points in X. Given a real number k, we define
the k-comparison angle, ékabc to be the angle at b of the k- comparison comparison
triangle abc. Then we say that a metric space has curvature > k if for every 4
points x,a, b, c the sum of the three k-comparison angles at xz formed from these
points is at most 2w. Such spaces are called Alexandrov spaces of curvature > k
if in addition they are complete metric spaces and they are length spaces in the
sense that every pair of points is joined by an isometric embedding of an interval.
Toponogov’s theorem immediately implies that a complete Riemannian manifold of
Riemannian curvature > k is an Alexandrov space of curvature > k.

It is direct from the definition that the Gromov-Hausdorff limit of a sequence of
Alexandrov spaces of curvature > k is again an Alexandrov space of curvature > k.
It is also clear that the Hausdorff dimension of a Gromov-Hausdorff limit is no greater
than the liminf of the Hausdorff dimensions of the spaces in the sequence. Also, it
turns out that an Alexandrov space of finite Hausdorff dimension has an open dense
set that is a topological manifold and the dimension of this manifold is the Hausdorff
dimension of the Alexandrov space, so that in particular, the Hausdorfl dimension
of an Alexandrov space is either co or a non-negative integer. Hence, a Gromov-
Hausdorff limit of Riemannian n manifolds of curvature > k is an Alexandrov space
of curvature > k and Hausdorff dimension at most n. There is also a sequential
compactness result for Alexandrov spaces of curvature > k and dimension < n, and
there are also local versions of these arguments that apply to metric balls instead of
complete metric spaces. Thus, for any sequence x € M, as n — 0o, after passing to a
subsequence there is a Gromov-Hausdorff limit of the unit balls B -2, (@, 1). This
limit is an Alexandrov ball of curvature > —1 and dimension < 3. In fact, because
of the volume collapsing hypothesis the limit is an Alexandrov ball of dimension at
most 2.

If the limit is a point, then it is an easy matter to rescale the manifolds M,



7 OVERVIEW OF THE REST OF THE ARGUMENT 64

so that their diameters are 1 and then pass to a subsequence with a limit which
is an Alexandrov space of curvature > 0 and of dimension 1,2,3. If the limit has
dimension 3, then the bounds on the derivatives of the curvature given in Condition
3 in Theorem 5.5 imply that the convergence is smooth and the limit is a manifold
of curvature > 0. These are completely classified and all of them satisfy the Ge-
ometrization Conjecture. This allows us to assume that the Gromov-Hausdorff limit
has dimension 1 or 2.

The next step is to study the local nature of these limits. Let us describe what
happens when the limiting Alexandrov space is 1-dimensional. In this case it is
either an interval (open, half-closed or closed) or a circle. The local structure of
the 3-manifolds converging to such Alexandrov space near points converging to an
interior point is a product of S x (0,1) or T2 x (0, 1) where the surface fibers are of
diameter converging to zero and the interval has length bounded away from zero. In
fact we can view neighborhoods in the M,, as fibering over the limiting open interval
or circle with fibers of small diameter which are either S2-fibers or T?-fibers. Near
an end point the structure is either a 3-ball or a punctured RP3 (when the fibers
over interior points are S?) or a solid torus or a twisted I-bundle over the Klein
bottle (when the fibers over the interior points are 2-tori).

We cut the manifold M,, open along central tori and 2-spheres, one in each almost
1-dimensional region to produce a manifold M, with boundary a disjoint union of
2-spheres and 2-tori.

Now we consider the second possibility when the limiting Alexandrov space is
2-dimensional. As we shall see, we fix § > 0 sufficiently small and then we write a
2-dimensional Alexandrov space as a union four types of points:

e interior points that are the center of neighborhoods close to open balls in R?,
e points at which the space is an almost circular cone of cone angle < 27 — 4§,

e boundary points that are the center of neighborhoods close to open balls cen-
tered at boundary points of half-space, and

e boundary points at which is space is almost isometric to flat cone in R? of cone
angle <7 — 4.

The next step is to transfer this local information about the 2-dimensional limits
to local models for neighborhoods of x € M,,. In the four cases just listed the local
models are:

e S x B(0,e7!) with a Riemannian metric which, after an overall change of
scale, is almost a product of a flat metric of length 1 on S with a flat metric
on the ball of radius e ! in R?;

e a solid torus;

e fibered over R with each fiber a topological D?;
e a 3-ball.
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It turns out that we have sufficient geometric control over these neighborhoods to
show that they are glued together in completely standard ways. Thus, any compact
subset of the open set of points of the first type is contained in a open set that
is smoothly fibered by circles and the circle fibers of this fibration almost line up
with the circles in the almost product structures. The solid tori over the interior
cone points then are glued in and the circle fibration structure extends to a Seifert
fibration with at most one exceptional fiber for each solid torus. This gives a large
subset of the manifold that is Seifert fibered. The rest of the manifold is made out
of union of cylinders, D? x I, 3-balls and S? x I, with each S? x I containing a
boundary component of M. The cylinders meet end-on-end or meet the 3-balls or
the S? x I in 2-disks ends. Each boundary S2-sphere of a 3-ball or of S% x I that
is not a boundary component of M), meets exactly 2 of the cylinders. Thus, the
union of these regions is diffeomorphic to a disjoint union of punctured solid tori,
one puncture for each S? x I. Furthermore, the torus boundary of each of these
regions is contained in the open subset of M/ which is Seifert fibered and in this
region these tori are isotopic to tori saturated under the fibration structure. Of
course, M, is obtained from M/ by gluing together boundary components. It then
is an elementary exercise in 3-dimensional topology to show that such a 3-manifold
is in fact a graph manifold.

In Section 8 we introduce the basics of Gromov-Hausdorff convergence. In Sec-
tion 9 we turn to the basics of Alexandrov spaces. In Section 10 we study the local
structure of 2-dimensional Alexandrov spaces. Then in Section 11 we deduce the
local structure of the 3-manifolds M,, that follow from the results about Alexandrov
spaces of dimension 2. Finally, in Section 12 we show how to piece together the
local results to give the global structure theorem. Lastly, in Section 13 we extend
the result to an equivariant one for compact group actions, e.g., finite group actions.

8 Basics of Gromov-Hausdorff Convergence

8.1 Limits of compact metric spaces

We begin with a review of Hausdorff and Gromov-Hausdorff limits of metric spaces.

Definition 8.1. Let X and Y be compact metric spaces. Consider a metric space Z
and isometric embeddings of X and Y into Z. The Hausdorff distance in Z between
X and Y is the infimum of @ > 0 such that every point of Y is within distance
a of X and every point of X is within distance a of Y. The Gromov-Hausdorff
distance from X to Y is the infimum over all Z and all isometric embeddings of
X and Y into Z of the Hausdorff distance in Z between X and Y. Equivalently,
the Gromov-Hausdorff distance between X and Y is the infimum of the Hausdorff
distance between X and Y in metrics on X [[Y extending the given metrics on X
and Y. It is easy to see that two compact metric spaces are isometric if and only if
the Gromov-Hausdorff distance between them is 0.

We say that a sequence X,, of compact metric spaces converges in the Gromov-
Hausdorff sense to a compact metric space X, if the Gromov-Hausdorff distance
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between X,, and X, goes to zero as n — co. It is elementary to show that a sequence
of compact metric spaces has at most one compact Gromov-Hausdorff limit up to
isometry.

Suppose that the X, converge in the Gromov-Hausdorff sense to X. Then a
realization of this limit is a sequence of isometric embeddings X,, X — Z,, so that
the Hausdorff distance from X,, and X in Z, goes to zero as n — oco. Equivalently,
a realization is a sequence of metrics d,, on X, [[ Xo extending the given metrics
on the two factors so that the Hausdorff distance in d,, between the two factors goes
to 0 as n — oco. Given a realization we say that a sequence x, € X,, converges to
x € X. If the distance in Z,, between z, and x goes to zero as n — oc.

Lemma 8.2. Given a realization of a Gromov-Hausdorff limit X,,, X C Z,, n =
1,2,---, with the X,, and X being compact Hausdorff spaces, any sequence x, € X,
has a subsequence converging to a point x € X.

Proof. Let the Gromov-Hausdorff distance between X,, and X in Z, be ¢,. Of
course, by definition €, — 0 as n — oo. Then for each n there is a point z,, € X such
that the distance in Z,, between z,, and Z,, is at most ¢,. Passing to a subsequence,
we can assume that the z,, converge to a point x € X. This is the limit of the
corresponding subsequence of the x,. ]

It turns out that in the Gromov-Hausdorff distance every compact space is close
to a discrete metric space.

Definition 8.3. An e-net L is a metric space with the property that d(¢,¢") > e for
all £ # ¢ in L. An e-net in a metric space X is an isometric image L C X of an
e-net with the property that every point of X is within € of a point of L.

Every compact metric space has an e-net and any e-net in a compact metric space
has finite cardinality. It is also clear that the Hausdorff distance between X and an
e-net L in X is at most €. (Let Z = X with the natural embeddings of X and L into
Z.) Thus, a compact metric space X is the Gromov-Hausdorff limit of any sequence
L, C X of ¢,-nets in X provided €, — 0 as n — oo. The following is immediate.

Lemma 8.4. Fiz ¢ > 0 and N < oo. Suppose that L, is a sequence of e-nets,
with the cardinality of L, being at most N for every m. Then after passing to
a subsequence there is an e-net Lo, of cardinality at most N which is the Gromov-
Hausdorff limit of the L,,. Furthermore, for all n sufficiently large there is a bijection
L, — Lo such that the push forwards of the metrics on the L, converge uniformly
to the limiting metric on Lyo.

One can characterize when a sequence of compact metric spaces of uniformly
bounded diameter has a subsequence converging in the Gromov-Hausdorff sense in
terms of the cardinalities of nets in the spaces. The following is elementary.

Corollary 8.5. Let X,, be a sequence of compact metric spaces. Then every sub-
sequence has a further subsequence converging in the Gromov-Hausdorff sense to a
compact metric space if and only if for every e > 0 there is N(€) < oo and for each
n for any e-net L,(€) C X,, the cardinality of Ly(€) is at most N(e).
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Definition 8.6. We shall need a based version of the Gromov-Hausdorff distance.
Let (X, z) and (Y,y) be based, compact metric spaces. We say that the Gromov-
Hausdorff distance from (X,z) to (Y,y) is the infimum of d such that there are
isometric embeddings X,Y C Z such that X is in the d-neighborhood of Y, Y is in
the d neighborhood of X and d(z,y) < d.

In the based context context all e-nets are assumed to contain the base point.
A sequence (X, x,) converges in the based Gromov-Hausdorff sense to a compact,
based metric space (Xoo, Zoo) if and only if for every e-net Lo in (Xoo, o) and a
sequence of €, converging to € and € -nets L, in (X,,z,) and for all n sufficiently
large bijections L, — L, carrying x, to z such that under these bijections the
metrics on the L,, converge to the metric on L.

Definition 8.7. Let X and Y be compact metric spaces. A continuous function
f+ X — Y is an e-approzimation if there is a metric D on X [[Y extending the
given metrics on X and Y such that (i) X is contained in the e-neighborhood of
Y, (ii) Y is contained in the e-neighborhood of X, and (iii) for all y € Y the fiber
f~'(y) is within € of y.

8.2 Limits of complete metric spaces

Gromov-Hausdorff convergence works well for compact metric spaces of bounded
diameter, but using the same definition for complete metric spaces or more gener-
ally for sequences of compact metric spaces with unbounded diameter is much too
restrictive. Here is the appropriate generalization to this case.

Definition 8.8. Let (X,,x,) be a sequence of based, complete, locally compact
metric spaces. We say that (X0, Zoo) 8 the Gromov-Hausdorff limit of the (X,,, z;,)
if for every R < oo there is a sequence of €, — 0 such that the closed balls
(B(zn, R+ €,),x,) converge in the based Gromov-Hausdorff sense to (B (%o, R), Zoo)-

The results on Gromov-Hausdorff limits for compact metric spaces of bounded
diameter immediately generalize in this context.

Proposition 8.9. Let (X,,,x,) be a sequence of complete, based metric spaces. Then
every subsequence has a further subsequence converging to a complete, based metric
space in the Gromov-Hausdorff sense if and only if for each ¢ > 0 and R < oo there
is a uniform bound N (e, R) to the cardinality of any e-net in B(xy, R).

8.3 Manifolds with curvature bounded below

For any k € R we set Hj, equal to the complete, simply connected surface of constant
curvature k. Thus, Hy is a rescaling of the hyperbolic plane by +/|k|~1 if £ < 0, is
R2 if k = 0, and is the round sphere of radius VEk=1 if k > 0.

Suppose that M is a complete, Riemannian manifold with locally convex bound-
ary and with sectional curvature > k. We define the metric on M in the usual way:
for any z,y € M, the distance d(z,y) is the infimum of the lengths of all rectifiable
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paths from z to y. Because the manifold is complete and the boundary in convex,
there is a minimizing geodesic connecting x to ¥, i.e., a geodesic whose length is the
distance between the points. This geodesic is an isometric embedding of an interval
into M. B

For any triple of points a,b,c in M take points a,b,¢ in Hy with the same pair-
wise distallces5 we define the k-comparison angle Zpabc to be the angle at b of the
triangle abc in Hj. It is a fundamental result of Toponogov theory ([34]) that the
k-comparison angle at Zrabc is at most the angle in M between minimal geodesics
~ from b to ¢ and « from b to a. Even more, as we move the point a along o toward
b and keep c¢ fixed the k-comparison angle is a weakly monotone increasing function.
From this we deduce:

Lemma 8.10. Let M be a complete Riemannian manifold with locally convex bound-
ary and with sectional curvatures > k. Let x;a,b,c be four distinct points in X.
Then B B B

Zraxh + Zpbxre + Zipcxa < 2.

Proof. Since the k-comparison angles are at most the angles between minimal geodesics
to x, we need only see that given three geodesics emanating from x the sum of the
3 angles between them is at most 2w. This is clear. O

Lemma 8.11. There is a constant cg = cr(k,n) depending only on k, the dimension
n, and a radius R, such that for any complete Riemannian n-manifold with locally
convex boundary and with sectional curvature > k and any ball B of radius R in M
the cardinality of any e-net in B is at most cr(k,n)e™".

Proof. We begin the proof with an elementary claim, whose proof we leave to the
reader.

Claim 8.12. There is a constant c(k, R) > 0 such that for any triangle abe in Hy,
with both |ab| and |b| bounded above by R, and with |ac| > 2‘\6};] — ]Eﬂ‘ we have

sabe > c(k, R)d(a, ¢).

Also, for each n > 2, there is a constant d(n) such that for all § > 0 there are at
most d(n)d!~" disjoint balls of radius ¢ in S™~! with the round metric of constant
curvature 1.

Fix a complete Riemannian manifold of dimension n with locally convex boundary
and with sectional curvature > k, and let B be a ball in M of radius R and center .
Now consider an e-net L C B. We divide B into N = [2R/€]+1 disjoint annular rings
Ay, ..., Ay each of width < €/2 and we consider L; = L N A;. For any ¢ # (' € L;,
the above claim implies that the comparison angle Z¢z/' is at least c(k, R)e/2. Thus,
the angle at x between minimal geodesics from £ and ¢ to z is at least c¢(k, R)e/2.

If k > 0, then we require d(z,b) + d(b,c) + d(c,a) < 2n/v/k. This will always be implicitly
assumed.
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Thus, there can be at most 2"~ !d(n)c(k, R)! ¢!~ such points. Summing over all
the annuli, we see that the cardinality of L is at most

2" Yd(n)e(k, R)* 2R + 1] ™.
This establishes the result. O
As a consequence, we have

Corollary 8.13. Given a sequence of based, complete Riemannian manifolds of
dimension n with locally convexr boundary and with sectional curvature > k, there is
a subsequence that converges in the Gromov-Hausdorff sense to a complete metric
space.

Let us examine some of the properties of this limiting metric space. The first
involves the notion that arose in establishing the bounds on the cardinalities of
lattices in balls.

Definition 8.14. Let X be a compact metric space. The n-dimensional rough
volume of X, denoted Vr,(X), is defined as

hme—>06€ (X)fnv
where §.(X) is the maximal cardinality of any e-net in X.

Notice that if X is a compact metric space then there is a unique d € [0, co] such
that Vr,(X) = oo for 0 <n < d and Vr,(X) =0 for d < n < co. The constant d
is the rough dimension of X. It follows from the above that for a compact subset
with non-empty interior in a complete Riemannian manifold with locally convex
boundary and with sectional curvature > k its rough dimension is equal to its
topological dimension.

An upper bound on rough dimension passes to Gromov-Hausdorff limits.

Corollary 8.15. Let (X,x) be the Gromov-Hausdorff limit of a sequence of based,
complete Riemannian n-manifolds with locally convexr boundary and with sectional
curvatures > k. Then any compact subset of X has rough dimension at most n.

A second condition that passes to Gromov-Hausdorff limits is the fact that any
two points are connected by a rectifiable path which is an isometric embedding of
an interval into the space, and in particular whose length is equal to the distance
between the endpoints. Such metric spaces are called length spaces. Notice that in
a length space the Gromov-Hausdorff distance from B(z, R) and B(z, R') is at most
|R— R/|.

Lemma 8.16. The Gromov-Hausdorff limit of a sequence of based, complete Rie-
mannian manifolds of dimension n with locally conver boundary and with sectional
curvature > k is a length space.
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Proof. Let (X, x) be the limit of {(M;,p;)} and let y # z be points of X of distance
d apart. Take sequences y;, z; € M; converging (in some fixed realization) to y and
z, and let «; be a minimal geodesic in M; from y; to z;, parametrized at unit speed
by the interval [0,d;]. Passing to a subsequence, we can arrange that there is a
countable dense subset S of [0,d] such that the «;(s) converges to a point y(s) of
X for all s € S. The completion of the set of these images is the required interval
connecting y and z. d

The other condition that passes to limits is related to comparison angles. Let us
first formulate the condition on Riemannian manifolds.
This leads to the following definition:

Definition 8.17. Let X be a metric space. We say that it has rough curvature > k
if for every four points x;a, b, ¢ the k-comparison angles satisfy

kaab + Zkbxc + chxa < 2m.

Theorem 8.18. Let (X, x) be the Gromov-Hausdorff limit of a sequence {(M;,p;)}
of complete Riemannian n-manifolds with locally convex boundary and with sectional
curvature > k. Then X is a length space whose rough dimension is < n with rough
curvature > k.

This leads to the following definition:

Definition 8.19. An Alezandrov space of curvature > k is a complete length space of
rough curvature > k. An Alexandrov space is an Alexandrov space of curvature > k
for some k > —oo. The dimension of an Alexandrov space is its rough dimension.
A geodesic in an Alexandrov space is an isometric embedding of an interval into
the Alexandrov space. We use this notion exclusively from now on, even when
the Alexandrov space is a Riemannian manifold (and there is another notion of
geodesics.)

We have shown:

Corollary 8.20. A sequence of complete Riemannian n-manifolds with locally con-
vex boundary of sectional curvature > k has a subsequence with a Gromov-Hausdorff
limit. Any Gromov-Hausdorff limit of such a sequence of manifolds is an Alexandrov
space of dimension < n and curvature > k.

9 Basics of Alexandrov spaces

It is important to have results not just for Riemannian manifolds with curvature
bounded below but also for Alexandrov spaces, so we translate the results above
into results for Alexandrov spaces.
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9.1 Properties of comparison angles

The condition on the comparison angles in Definition 8.17 is equivalent to other
conditions on angles.

Lemma 9.1. Suppose that X is a complete Alexandrov space with curvature > k.
Let v and v be geodesics (i.e., isometric embeddings of intervals) in X which begin
at the same point x. Let the other endpoint of v, resp. v, be y, resp. z, and let dy
and do be the lengths of v and v. Then for any 0 < s < d; and 0 < t < dy denote
by v(s), resp v(t), the point along v, resp. v, at distance s, resp. t, from x. Then
the comparison angle B

Zi(s)av(t)

1s a weakly monotone decreasing function of either variable s,t when the other is
held fixed. Also, for any 0 < s < dy the distance from z to y(s) is at least as large
as the corresponding distance in the comparison triangle in Hy.

Proof. By symmetry in order to prove the first statement it suffices to take t = dy
and s < d; and show that N B
Zpy(s)xz < Lpyxz.

Applying the defining inequality to {v(s); x,y, z}, yields Zkzv(s)y + Zkz'y(s)a: <.
(The fact that 7 is a geodesic implies that Zipzvy(s)y = w.) This implies that
d(z,7(s)) is at least as large as the distance in Hj between 7(s) and Z, where ¥
is the geodesic in Hy from Z to 3 and 7(s) is the point on this geodesic at distance s
from z. But this implies that Zkfy(s)xz > Zkyxz, as claimed, as well as establishing
the second statement in the lemma. O

Since all comparison angles are bounded above by m, it follows that there is a
limit as s and ¢ tend to zero of Z,y(s)yv(t) which is called the angle between v and
v at x and is denoted Zpyv. If the Alexandrov space is a Riemannian manifold then
the angle between geodesics in the Alexandrov sense is the usual Riemannian angle
between the geodesics.

The defining property of an Alexandrov space leads easily to unique extension of
geodesics.

Lemma 9.2. Let v be a geodesic from x of positive length in an Alexandrov space.

If w and u' are geodesics from x to points z and 2" with v C pNu' then either pu C y/
/!

or i C p.

Corollary 9.3. If v is a geodesic from x to y and z is an interior point of 7y, then
there is a unique geodesic from x to z, namely the sub-geodesic of v with endpoints
x and z.

Lemma 9.4. Suppose that sequences of geodesics cu,, By, emanating from x, converge
to geodesics o and B emanating from x. Then

liminf,, o Zran By > Zrapf.
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Proof. For any ¢ > 0 there are points y € o and z € § such that Zkya:z =a >
(ZraB) — €. By the convergence property there are y,, € «a, and z, € 3, converging
to y and z. Thus, Zkynxnzn converges to a and hence by monotonicity the angle
between a,, and [, at z, is at least a — ¢ for all n sufficiently large. Since this is
true for every e > 0, this proves the result. ]

There is a related fact for smooth manifolds:

Lemma 9.5. Let M be a smooth Riemannian manifold with curvature > k and for
any y € M denote by S,(M) the tangent sphere to M aty. Suppose that A C M s
a compact set, and let U denote the complement of A in M. Then for each y € U
denote by A; C Sy(M) be the subset consisting of all tangent directions at y to
geodesics (i.e. minimal geodesics) from y to A. This is a compact subset of Sy(M).
Then the function on T M|y — R that associates to a unit tangent vector T at y the
distance in Sy(M) of T to Ay is lower semi-continuous.

Proof. Suppose that 7, is a unit tangent vector at y,, € U, the ¥, converge to y and
the 7,, converge to 7, a unit tangent vector at y. Let d,, be the distance in S, (M)
from 7, to A;n. Passing to a subsequence we can suppose that the d,, converge to a
limit d. We must show that d is greater than or equal to the distance from 7 to A;.
For each n there is a geodesic =, from y to A whose tangent vector at y is distance
d, from 7,. Passing to a further subsequence, we can suppose that the -, converge
to a geodesic v from y to A. The tangent a to v at y has the property that the
distance from 7 to a is d. On the other hand, a € A/, so that d is greater than of
equal to the distance from A/, to 7. O

The following is an elementary exercise.

Lemma 9.6. For any € > 0 there is B > 0 such that the following holds. Suppose
that we have three points a,b,c in an Alexandrov space of curvature > —1 and
suppose that d(a,b),d(b,c) are each between 1/10 and 1 suppose furthermore that
d(a,b) +d(b,c) < d(a,c) + . Then the comparison angle Zrabc > (1 — €)m.

9.1.1 Effect of scaling

Let X be an Alexandrov space of curvature > k. The rescaled metric space rX is
an Alexandrov space of curvature > r—2k, and for any z,y, 2 € X the k-comparison
angles in X agree with the r~2k-comparison angles in 7X. As we rescale we always
implicitly rescale the lower bound for the curvature.

Claim 9.7. Let (X,z) be a based Alexandrov space of curvature > k. Suppose
that ry, is a sequence of positive constants converging to 0, then after passing to a
subsequence, the based Alezandrov spaces r; (X, x) converge to a limit (Y,y) that
is a based Alexandrov space of curvature > 0. Furthermore, under this convergence
the comparison angles also converge when the comparison angles in r;' X are Ly2g-

From now on we simplify the notation by dropping the £ from the no-
tation for comparison angles since k will always be clear from the context.
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9.2 The Product Theorem for Alexandrov Spaces of Curvature > 0

Theorem 9.8. Suppose that X is a complete Alexandrov space of dimension n and
of curvature > 0 and that v is an isometric embedding of R into X. Then there
18 a complete Alexandrov space Y of dimension n — 1 and of curvature > 0 and an
isometry Y x R = X in such a way that «y is the image of {yo} X R for some point
Y €Y.

Proof. Let v* be the opposite geodesic rays in v with endpoint z € X. Consider
sequences {z, _} and {x, +}, equidistant from z, tending to the two ends of ~,
(with 2, + € vT). For any y € X consider the comparison angle an7_yxn7+. Since
d(zp +,y) and d(x,,—,y) tend to co and d(xy +,y) + d(@n,—,y) — d(@p,+,Tn ) is
bounded above by 2d(z,y), it follows that the comparison angles converge 7 as
n — oo. This means that, possibly after passing to a subsequence, the geodesics
fn,+ from y to x, 4+ converge to geodesics ’yyi whose union is a geodesic line 7, in X
(i.e., a geodesic embedding R C X)) passing through y. In this way we construct for
each y € X an isometric embedding of R — X passing though y parallel, in some
sense, to 7. The end of 7, determined by 'y;' is called the +-end and the other end
is the — end.

Claim 9.9. For any choice of sequences x,+ tending to infinity in vE and any
geodesics iy + from y to x, + there are limiting geodesic rays 7;/': whose union is an
isometric copy of R in X passing through y. This isometric copy of R is independent
of the choice of the sequences x,, + C y tending to the &-end of v and of the geodesics
Pn,+- Furthermore, for any y' € v, we have v, = .

Proof. Fix a sequence in v going to oo in the negative direction and geodesics from
y to these points with a limiting geodesic ray 7, beginning at y and consider two
sequences in 7y going to infinity in the positive direction and geodesics from ¥ to these
points with limiting geodesic rays. Each of these rays completes 7, to a complete
geodesic, and hence by the unique continuation of geodesics these limiting geodesic
rays in the positive direction are equal. The symmetric argument shows all limiting
geodesic rays from y in the negative direction are identical. This proves the first
statement.

Suppose that y, — y and u,+ are geodesics connecting =, + to y,. Again
the comparison angles converge to 7 so that, after passing to a subsequence, these
geodesics converge to a geodesic copy of R passing though y. The above argument
proves that this copy of R is ,. Now suppose that ¢’ € , and has distance d from
y. By symmetry we can suppose that y' is further toward the positive end of
than y. Let u, be a geodesic from z, 4 to y, let z], be the point on u, at distance
d from y, and let p, o be the subgeodesic of y, with endpoints z,, + and z],. By the
above the ], converge to y’ and the geodesics py o converge to the geodesic ray in 7y,
emanating from ' in the positive direction. On the other hand, the p, o converge to
the geodesic sub-ray of -, emanating from ¢’ in the positive direction. This proves
that 7, = ~,/, proving the second assertion in the claim. O
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This means that given the isometric copy v of R in X we have a well-defined
foliation of X by geodesics of the form -+, for y € X. We denote this foliation by
F(y). Now let us establish a strong notion of parallelism among the geodesics in

F().

Claim 9.10. Suppose that y',y" € ~,. Then the distance from y' to v is equal to
the distance from y" to .

Proof. By symmetry it suffices to show that the distance from 3y’ to 7 is greater
than or equal to the distance from y” to . Let d be the distance from vy’ to y”
and, by symmetry we can suppose that y” lies closer to the +-end of +,. For each
n sufficiently large we take a geodesic pu;, from x, 4 to 3y’ and we set 2], equal to the
point at distance d from 3’ on this geodesic. As n +— oo the points z!! converge to y...
Let D,, be the length of ph . Fix a point z!/ on «y closest to 2!/, let D,, be the distance
from x, to 2/, set d = dD,, /D, and let 2/, be point at distance d’ from 2 along
v toward the negative end. The distance from z/, to ¢’ is bounded independent of
n and hence passing to a subsequence we can suppose that x;z converge to a point
x’ € . Construct the planar comparison triangle §'z, 4, and let z!, resp. 2,
be the point along the side ¥'Z, 4+, resp. Z,Z, y, at distance d, resp. d', from ¥/,

resp. Z,,. Then by of planar triangles |z 2| = %W 7] | and by the fundamental

comparison result for Alexandrov spaces we have |z x/| > |z/'z"|. Thus, in the limit
as n — oo we have that the distance from y” to v is > d(y/,«’), which in turn is
greater than or equal to the distance from 3’ to 7. This completes the proof of the
claim. =

Claim 9.11. Given y € X there is a constant C < oo such that the distance from
any x' € 7 to yy is at most C.

Proof. Take a sequence of points {y,}52 . equally spaced at distance 1 along -,
and for each n let z,, € v be a closest point on v to y,. Then the distance from z,, to
Zn1 is at most 2d + 1, where d is the distance from any point of v, to 7. It follows
that as n — oo the z,, converge to the £-end of v. Hence given any 2’ € ~y there n
such that d(z’, z,) < 2d+ 1, and hence the distance from 2’ to , is bounded above
by 3d + 1. O

Corollary 9.12. Let y, + be a sequence of points converging to the plus and minus
ends of v,. Then geodesic arcs pi,+ from y,+ to x converge to opposite geodesic
rays on v, in particular v is an element of F(vy,). More generally, F(y) = F(vy)-

Proof. Since there is a constant C' < oo such that every x € v is within distance C'
of 7y, it follows the comparison angle between ji,, + and v~ tends to 7, and similarly
with + and — reversed. This proves the first statement. Now we see that for any
element 7/ of F(7) there is a constant C’ depending only on +’ such that every point
of 7/ is within a distance C” of 7, and hence by the same argument it follows that
7/ is also an element of F(v,). O
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It follows that for any two elements 1,2 of F() there is a distance d such that
every point x1 € v is exactly distance d from ~s; that is to say any two elements of
F(7y) are parallel in the sense that they are constant distance apart.

Now we define a function f* by f(y) = limy—eod(@n+,y) — d(zp+,z) and
similarly we define f~ using the points x,, _ instead of ,, ;. By the usual argument,
limits of this type are affine linear on geodesics in flat space. By the comparison
property this implies that f* are convex on any geodesic in X, meaning that if y is a
geodesic arc with endpoints a, b and ¢ is a point on the arc such that d(b, ¢)/d(a,b) =
t, then f*(c) > tf*(a)+ (1 —t)f*(b), and analogously for f~. Thus, f* + f~ is a
convex function on each geodesic and clearly f* + f~ > 0 everywhere. Of course,
fT + f~ is identically zero along .

Proposition 9.13. f* + f~ s identically zero and f* is affine linear on each
geodesic.

Proof. For each n let y, € v, be the point equidistant from z,_ and z,_. We
claim that after passing to a subsequence we can arrange that the vy, converge
to a point yg € v,. Let x, be a closest point on v to y,. Then the difference
d(zp +,%n) — d(Tn,—, ) is bounded by twice the distance from z,, to 7, and hence,
by the previous claim, this difference is bounded independent of n. It then follows
that the x,, are within a bounded distance of x and hence so are the y,. Thus, the
yn have a subsequence converging to yo € ,.

Claim 9.14. Let yo € 7y be the limit of a subsequence of points y, € v, equidistant
from the x4+ and x, . Then fT(yo) = f~(y0) = 0 and x is the unique closest

point of v to yo.

Proof. Let D, = d(xnkﬁ Yo). Since 2D,, = d(zn +,y0)+d(Tn,—,y0) > d(zp 4+, Tn,—) =
2d(zy 4, x), we have D), > d(zp +,x). Taking limits we see that

lim, o0 (d(fﬂn,ia yO) - d(xn,iv l‘)) > 0. (91)

On the other hand, let z¢ € v be a closest point of v to yg, and consider all geodesics
from yo to xg. If any one of these geodesics makes an angle at xq less than 7/2 with
one of the directions along -, then, since angles between geodesics are greater than
the comparison angles, the point x( is not a closest point on v to yg. Thus, any
geodesic from yo to zp makes angle at least m/2 at x¢ with both directions along
~. Since the sum of the angles at xg to the two directions along ~ is at most , it
follows that the angle at xg between any geodesic from y to x¢ and each direction
along « is /2. This means that for every n the comparison angle Zyomoccmi is at
most 7/2. Using comparison triangles we see that

lirnn—>oo (d(xn,:l:v yO) - d(xn,:ty .%'0)) <0. (92)

By symmetry we can suppose that zo lies in v so that d(zp +,z0) < d(@n 4, ).
The only way that Inequalities 9.1 and 9.2 are consistent with this is if both those
inequalities are equalities and in addition x = xy. Equality in Inequality 9.1 means

that f*(yo) = f~ (v0) = 0. O
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Since f* 4 f~ > 0 and is convex on 7, the fact that it is zero at yo € v, implies
that it is identically zero on y,. Since this is true for every element of the foliation

F(v), we see that f* + f~ =0, and hence f is both concave and convex on each
geodesic. Consequently, fT is affine linear on each geodesic. This completes the
proof of the proposition. O

A similar argument shows that given any y € X any closest point on v to y is the
unique point of ' € v with f*(y) = f*(2’). Also, notice that this argument implies
that if y € X \ v, if 2/ € , and if fT(y') = fT(a’), then limnﬁooZy’x’a:mi =7/2.
Since the comparison angles are monotone increasing as we move in along + toward
a2/, it follows that for any 2/ € =, distinct from 2/, we have Zy/a'a” = 7/2. Of
course, there is nothing distinguished about = so in fact given a # b € X with
fH(a) = f+(b) for any ¢ € , distinct from b we have Zabc = m/2. This proves:

Corollary 9.15. Let a,b be distinct points of X with f*(a) = f*(b) and let ¢ € v
be a point distinct from b. Then Zabc = /2.

Now we consider the fibers of Y; = (f*)~!(¢) for t € R. Since f* is affine linear
on each geodesic, for each t the fiber Y; is geodesically convex: any geodesic in X
with endpoints in Y; lies completely in Y;. Also, for each ¢ € R, Y; is a complete
metric space since X is a complete. Hence, for each ¢ € R, the fiber Y; is a complete
Alexandrov space of curvature > 0 and of dimension one less than the dimension of
X. Of course, Y; meets each geodesic in F(v) in exactly one point. Thus, for each
t € R, flowing along the leaves of the foliation F(v) defines an identification of Y;
with Yj.

Claim 9.16. (i) For each t € R the identification Y; with Yy given by flowing along
the leaves of F(7y) is an isometry.

(i) Given t,t" and a € Y; the distance from a to Yy is [t' —t| and the unique closest
point of Yy to a is the intersection of v, N Yy.

Proof. Let a,b € Y;. Let 7, and -, be the elements of F(v) through a and b, and let
ao and by be the intersections of these geodesics with Yy. Then the distance between
a and b is also the distance between ag and 7y, and the unique closest point of 7y, to
ag is by. This proves the first statement.

For the second, note that (f) has norm 1 and for every b the only directions
7 € Sp(X) with (fT) (1) = £1 are the two directions along v,. Since f*(Yy) —
ft(a) =t —t, it follows that any geodesic from a to Yy has length > |t/ — ¢| and
the length is strictly greater than [t — ¢| unless the geodesic lies in 7,. The second
result follows. O

We endow Y x R with the product metric:

(w0, (1) = \Java (w,0/)2 + (¢ — 1)

We define a map ®: Yy x R — X by sending (y,t) to the unique point on v, N
(fH)71(t). We claim that ® is an isometry. Clearly it is a homeomorphism and for
each t € R it is an isometry from Yy x {t} onto Y;. Let us consider the distance
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between a = (y,t) and ¢ = (y/,¢') for t # t'. Let b = (y/,t). Since b and ¢ lie on
the same element of F(y) and f*(a) = f*(b), it follows from Corollary 9.15 that
Zabc = /2, which means that

d(a,c) = \/dy,(y,y)* + (t — t')2.

Of course, we already have established that dy, = dy,. This proves that ® is an
isometry. ]

Corollary 9.17. Suppose that X is an Alezandrov space of curvature > 0 containing
an isometric copy of R™ for some m > 0. Then there is an Alexandrov space Y and
an isometric product decomposition X = R™ X Y with the property that the given
copy of R™ is identified with R™ x {yo} for some yo € Y.

9.3 Strainers

A crucial concept for Alexandrov spaces is that of a strainer®. Let X be an Alexan-
drov space of curvature > k. Fix § > 0. A (n,d)-strainer at a point z € X is a set
{a1,b1,...,an,b,} such that:

1. Zaixaj >m/2 =4 for all i # j.
2. Zbiazbj >m/2— 4 for all i # j.
3. Zaixbj > /2 — ¢ for all i # j.
4. Zaixbi > 7 — ¢ for all 7.

The size of an (n, 0)-strainer is the minimum of the 2n distances {d(x, a;), d(z, b;) }1_;.

Notice that it follows from the defining property that all the angles in the first 3
items are < 7/2 + 2. We say that an Alexandrov space X has strainer dimension
n at x € X if:

e for every neighborhood U of = and every 6 > 0, X there is an (n,J)-strainer
at some point of U, and

e there is a §y > 0 and a neighborhood Uy of x so that no point of Uy has an
(n + 1, p)-strainer.

The following two results are elementary and are proved using the defining prop-
erty of comparison angles and Lemma 9.1, see Theorem 9.4 of [3].

Lemma 9.18. Given n, the following holds for all § > 0 sufficiently small.

e Suppose that x € X has an (n,d)-strainer {a1,b1 ..., an, by} of size s and that
the strainer dimension of X at x isn. Then there is a constant r > 0 depending
only on s and & and a constant € > 0 depending only on § and going to zero as
d does such that the map B(x,r) — R™ defined by y — (d(a1,y),...d(y,an))
is a (1 + €)-bilipschitz homeomorphism from B(x,r) to an open subset of R™.

SCalled “burst points” in [3].
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o [f there is a (n,d)-strainer for X at x, then the strainer dimension of X at x
is at least n.

The strainer dimension of X is the same at every point of X.
The strainer dimension of X is its strainer dimension at any of its points.

Proposition 9.19. If X has strainer dimension n, then X is locally compact and
every compact neighborhood in X has rough dimension n. If X has strainer dimen-
ston oo, then X is not locally compact.

9.4 Alexandrov Balls

For any 0 < R < oo an Alexandrov ball B(z, R) of curvature > k is a metric space
with the property that:

e It is a metric ball centered at z of radius R.

e For every 0 < R’ < R the sub-ball B(z, R') C B(xz, R) has compact closure in
B(z, R).

e for any p,q € B(z, R) with d(x,p) > d(x,q) if d(x,p) + d(p,q)/2 < R, then
there is a geodesic joining p and ¢ in B(zx, R).

e For any points p;a,b,c € B(z, R) with
max(d(p, a), d(p, b),d(p, c)) < R — d(z,p),
the k£ comparison angles satisfy

Zapb + prc + Zcpa < 2.

The first condition is a type of uniform local completeness for balls. One can think
of the second condition in this way. Since we are not assuming any convexity for
balls, the second condition is a weaker but uniform condition replacing the existence
of geodesics for the ball.

Example: 1. Suppose that M is a complete Riemannian manifold with locally
convex boundary and with the sectional curvatures on B(x, R) C M bounded below
by k. Then B(z, R) is an Alexandrov ball of curvature > k.

2. An Alexandrov ball of radius co and curvature > k is a complete Alexandrov
space of curvature > k.

Lemma 9.20. Suppose that B(x, R) is an Alexandrov ball and that v and v are
geodesics emanating from p € B(x, R) of lengths, di,dy which are at most (R —
d(xz,p))/3. Then for 0 < s <dj and 0 < t < dy the comparison angle Zv(s)pv(t) is
a monotone increasing function of either variable when the other is held fized.
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Proof. Let T be any triangle in B(x, R) (with geodesic sides and vertices v, va, v3)
with the property if a is a point on a side of T, then max(d(a,v;))3_; < R —d(z,a).
Then the defining property holds for a;wvi,ve,vs. Suppose that a is on the side
v1vz. This implies that by the argument given in the case of complete Alexandrov
spaces that Zavivg > Zvsvivs, and hence that the monotonicity statement holds for
the comparison angles along the geodesics vjvy and vivs. Given p € B(z, R) and
geodesics v and v emanating from p of length at most (R — d(z,p))/3 and ending
at v and w, for any point a on « there maximum of the distances from a to p, v, w
is less than R — d(a,x) so that the above applies. The result follows. O

Definition 9.21. Fix 0 < R < oo and k. Suppose that R, — R and k, — k. We
say that a sequence of Alexander balls B(z,, R,,) of curvature > k,, converge in the
based Gromov-Hausdorff sense to B(z, R) if (i) R, — R as n — oo and for each
S < R the closed balls B(zy, S) converge to B(z, S). Then B(z, R) is an Alexandrov
ball of curvature > k and the kj-comparison angles in the B(z,, R,) converge to
the k-comparison angles in B(z, R). Implicitly when we discuss Alexandrov balls
they are considered based at the central point of the ball and the Gromov-Hausdorff

distance and/or convergence is the based version.

Lemma 9.22. Fix positive numbers a,b with a +b < 1 — 2¢. Suppose that B(x,1)
and B(x',1) are Alexandrov balls within distance € of each other in the Gromouv-
Hausdorff distance, say that we have a distance function d on B(xz,1)]] B(2/,1)
extending the given distance functions on the balls with the property that each ball
is in the e-neighborhood of the other. Suppose that y € B(xz,a). Then for any point
y' € B(2',1) with d(y,y’) < €, then the balls B(y,b) and B(y',b) are within 4e of
each other in the Hausdorff distance defined by d.

9.4.1 Limits that are products
We need a product result for Alexandrov balls.

Proposition 9.23. Fix r > 0. Let A\, — 0o and §,, — 0 as n — oco. Suppose that
Xy = B(pn, R) is a sequence of Alexandrov balls of dimension N and curvature > k.
Suppose that for each n there are points x,, € X, and compact sets { A}, A} with

d(xp, AZ), d(zp, A,)) > 2r,

AT U A UB(zn,7) C B(pn, R/3).

We also suppose that the comparison angle” ZA;anj{ > 1 — 0. Suppose that the
(A X, xn) converge in the Gromov-Hausdorff sense to an N-dimensional Alexan-
drov space (X, x). Then there is a based Alexandrov space (Y,y) of dimension < N—1
and isometry (X, z) = (Y,y) x (R, 0) with the property that for any sequence of points
2, € Xy, converging to a point z € X and geodesics Y= from z, to AY, the ;& con-
verge to the geodesic rays from z in the positive and negative R-directions in the
product.

"Meaning the angle of the k-comparison triangle with side lengths
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Proof. Denote by g, the metrics on X,,; the rescaled metrics are \2g,. Let ¢F
be geodesics from x, to AF and let yf be the other endpoint of (F. Since the
comparison angle y." z,y, > ZAg xp Al is greater that m — §,,, by monotonicity for
any points u on ¢ the comparison angle Zug rpul is greater than 7 — &,. Hence,
rescaling by the ), and taking limits we see that for points u* on the limiting
geodesic rays (£ the comparison angle Zu~zu™ = 7, meaning that ¢ = ¢(~ U (T is
a geodesic line. Since the X, have curvature > k and the A\, — oo, the limit X has
curvature > 0. Hence, by Theorem 9.8 it splits as a product Y x R in such a way
that ( is the factor in the R-direction through the base point. Furthermore, it also

follows from this proposition that, letting f,, be the function
dz\%gn (A;a ) = d/\%gn (A;a Tn)

the f,, converge to a function f: X — R whose level sets are the parallel copies of
Y in the product structure. Let z, € B(z,,r) be a sequence of points converging
to z € X, and let 7" be a geodesic from z, to AF. It is easy to see that the ~;"
converge to rays in the positive R-direction. Symmetrically, the v, converge to rays
in the negative R-direction. O

Addendum 9.24. Analogous arguments work to show the following: Given a se-
quence of constants and balls as in the previous proposition and sequences of compact
sets A A (AD)T, (Al)~ with each pair {4, A, } and {(A},)", (A],)"} satisfying
the hypothesis of the previous proposition and with the angles ZA%azn(A;l)i con-
verging to /2, the limit can be written isometrically as a product of (Y,y) x (R2,0)
where the limiting geodesics to the four compact sets form the z- and y-axes in the
R2-direction through the central point (y,0).

9.5 The Tangent Cone

Let x € X be a point in a complete Alexandrov space or in an Alexandrov ball.
We define the metric space of germs of geodesics at = as follows. The underlying
set is the set of equivalence classes of geodesics emanating from z, with v and v
being equivalent if and only if their intersection is a non-trivial geodesic. We define
a metric by d([v],[v]) is the angle at x between v and v. It is easy to see that this
distance depends only on the equivalence classes and that it is a metric on the set
of equivalence classes of geodesics emanating from z. The tangent sphere S, (X) is
the metric completion of this metric space, cf [3].

Proposition 9.25. (See [3].) Suppose that X is a complete Alezandrov space or
an Alexandrov ball and x € X. Then S;(X) is a compact metric space of diameter
<m.

Fix an Alexandrov ball X = B(y, R) and curvature > k and of dimension n,
and fix x € X. Consider a sequence of constants Ay — oo as £ — oo. Then the
based Alexandrov spaces (A X, z) are of dimension n and curvature > k/A?. Hence,
passing to a subsequence there is a limit 7, X which is an Alexandrov space of
dimension < n and curvature > 0.

The monotonicity of angles along geodesics easily implies the following:



9 BASICS OF ALEXANDROV SPACES 81

Claim 9.26. T, X is isometric to the cone over the tangent sphere S; X .

Corollary 9.27. Suppose that X is an Alexandrov ball of curvature > k and of
dimension n. Then, S, X is a compact Alexandrov space of dimension n— 1, curva-
ture > 1 and diameter < w, and (AX,z) converges in the Gromov-Hausdorff sense
to T, X, the cone on Sz X, as A\ — oo.

Definition 9.28. T, X is the tangent cone of X at x.

9.6 Consequences of the existence of Tangent Cones

Now using the tangent cone we can establish;

Theorem 9.29. Suppose that X is a complete Alexandrov space or an Alexandrov
ball. Suppose also that X is of dimension n. Then for every 6 > 0, the subset of
points x € X at which X has an (n,d)-strainer is an open dense set.

Proof. If n =1, then X is isometric to either a line, a half-line, a compact interval,
or a circle. All points of X except its endpoints have (1, §)-strainers for every § > 0.

Suppose by induction that we know the result for n’ < n and fix x € X and § > 0.
Then the tangent sphere S, X is an Alexandrov space of dimension n — 1 and hence
has an open dense subset U of points at which S; X has an (n — 1,0)-strainer. It
follows that every point of T, X contained in the cone on U except the cone point has
a (n,d)-strainer. By the above convergence result, it follows that there are points of
X arbitrarily close to z at which X has an (n, §)-strainer. This proves the subset of
points at which X has an (n, §)-strainer is dense.

Clearly from the definition, the set of points with an (n,d) strainer is open in
X. O

Lemma 9.30. For each natural number n there is a constant c(n) so that for any
n-dimensional compact Alexandrov space S with curvature > 1 the n-dimensional
rough volume Vr,(S) is at most c¢(n). For any € > 0 sufficiently small, every e-net
in S has cardinality at most c¢(n)e".

Proof. 1t is easy to see that any such Alexandrov space has diameter < 7. (Actually,
we shall make use of this result only for tangent spheres where we have this bound
immediately.) From this and an induction on dimension it is straightforward to
establish the result. O

Corollary 9.31. There is a constant c¢(n,k, R) such that the following holds. Let
X be a complete n-dimensional Alexandrov space of curvature > k. Then for any
x € X and any R < oo the cardinality of an e-net in B(x, R) is at most c(n, k, R)e™ ™.

This leads immediately to a sequential compactness result for Alexandrov spaces.

Corollary 9.32. Let (X;,x;) be a sequence of complete Alexandrov spaces of di-
mension < n and curvature > k. Then, after passing to a subsequence there is a
Gromov-Hausdorff limit. Any such limit is a complete Alexandrov space of dimen-
sion at most n and curvature > k.
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Proof. This is direct from the previous corollary and Corollary 8.5. O
There is also a version of this result for Alexandrov balls.

Corollary 9.33. Let B(z;, R;) be a sequence of Alexzandrov balls of curvature > k
with Ry — R with 0 < R < 00 as i — oo. Then, after passing to a subsequence, the
balls B(x;, R;) converge in the Gromov-Hausdorff sense to a limit B(xs, R) that is
an Alexandrov ball of curvature > k.

Proof. The above arguments show that for any R’ < R there is a uniform bound
to the cardinality of any enet in B(x;, R’), so that passing to a subsequence we
can arrange that these compact balls converge. Taking a sequence of R, — R
and passing to a diagonal sequence we construct a Gromov-Hausdorff limit of the
B(z,,r;). It is immediate to see that the limit is an Alexandrov ball of curvature
> k. O

Remark 9.34. Gromov-Hausdorff limits of manifolds, or Alexandrov spaces, of a
given dimension can have strictly smaller dimension. From example, a sequence of
n-spheres of radii 7; — 0 is a sequence of n-manifolds with curvature > 0. This se-
quence converges in the Gromov-Hausdorff sense to a point, which is an Alexandrov
space of rough dimension 0.

Definition 9.35. The boundary of an Alexandrov ball is defined inductively on
dimension. Let X be a one-dimensional Alexandrov ball. Then it is either isometric
to either an interval or a circle. Its boundary as an Alexandrov ball is its topological
boundary. More generally, we define the boundary of a higher dimensional Alexan-
drov ball by induction. For X an n-dimensional Alexandrov ball, we define 0X to be
the subset of X consisting of points p for which ¥, is an (n—1)-dimensional compact
Alexandrov space (and hence an Alexandrov ball) with non-empty boundary. Then
0X is a closed subset. Its complement is denoted int X.

9.6.1 Bounding the number of small loops

We give a general result which allows us to bound the number of homotopy classes
represented by small loops.

Proposition 9.36. There is £g > 0 such that the following holds. For any choice
of positive constants £,r e, each at most Ly, there is a constant Ny (¢,r,€) < 00
depending on these constants and the dimension n such that the following holds.
Suppose that B = B(x, 1) is an Alezandrov ball of dimension n and curvature > —1,
that y € B with d(z,y) ={. Let T' C w1 (B, x) denote the image of w1 (B(y,r),y)) —
71 (B, ) defined by sending a loop « based at y to v~ Loy where v is a (fized) geodesic
from x toy. Then, for any group H and surjective homomorphism f: m(B,z) — H
that corresponds to a covering space of B, the number of cosets in C = H/f(T)
represented by loops based at x of length at most € is at most Ny (€, r,¢€).

Proof. Let p: B — B be the covering corresponding to f: 7w (B,x) — H. Fix a lift
Z of x, and let § be the lift of y that is connected to z by a lift of v. We define
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a metric on B as follows: given a, b IS B we set d(a,b) = inf {{(p(w))} as w ranges
over all paths in B connecting @ and b with rectifiable i image under p. (Here, £(p(w))
denotes the length of the path p(w).) Every point of B has a neighborhood that
projects homeomorphically under p and with the property that the metric d agrees
on this neighborhood with the pull back under p of the metric on B.

The pre-image p~ ! (B(y, 7)) is a disjoint union | cec Uc where p induces a covering
map U. — B(y,r). The component U, is the one that contains y. Under the action
of m (B, z) on B, an element a € 7 (B, z) sends U, to Ulf(a)) Where [f(a)] denotes
the coset f(a)- f(I') € C. Notice that for ¢ # ¢ in C' we have U. N Uy = (). Also,
notice that since U, projects onto B(xz,r), U. contains the ball of radius r about
any lift of y contained in U.. This implies that if a,a’ € m(B,x) and [f(a)] #
[f(d'], then d(ay,a'y) > 2r. Let ai,---,a, be elements of 7 (B,x) represented
by loops of length at most ¢ based at x and suppose that the associated cosets
fla) f(D),..., flan)f(T) in C are distinct. We label these cosets c1,...,¢,. Then
the ;% all within distance € of Z and hence ¢ — ¢ < d(%,a;) < { +¢. Set A =
max([1+ (4¢/r)], where [t] denotes the greatest integer less than or equal to ¢t. Then
divide the interval [¢ — ¢, £+ €] into A subintervals each of length at most /2. Then
for one of these intervals there are at least n/A of the y; whose distance to Z lies
in this interval. Hence, we have n’ = [n/A] points, which after relabelling we can
take to be {y1,...,¥y} in B(Z,¢ + r) with the property that d(y;,y;) > 2r for all
i # j and |d(Z,¥;) — d(Z,y;)| < r/2. This implies that for every 1 <i < j < n' the
comparison angle Zg@gj is bounded below by a positive constant depending only
on /,r and £, (prov1ded that £y is sufficiently small.

Notice that since B is a local Alexandrov space, every point of B has a tangent
sphere which is compact and of curvature > 1.

Claim 9.37. For each i =1,...,n let~y; be a geodesic from y; to . Then for each
i 75 J the angle between ~y; and v; at T is at least as large as the comparison angle

4%133/]

Given this claim the result is immediate from the uniform lower bound on the
comparison angles and Lemma 9.30.

Proof. (of the claim) This is the standard monotonicity result on angles and follows
if we can show that the Alexandrov property holds for all quadruples {a;b,c,d} in
B(%,2(y) C B. Here is what we know about B:

1. It is local Alexandrov space of curvature > —1.
2. The ball B(Z,2/3) has compact closure in B.
3. Every pair of points in B(z,1/3) is joined by a geodesic in B(z,2/3).

The reasons for these are: (i) B is locally isometric to B; (i) B(Z,2/3) is a
closed and bounded subset of p~!(B(z,2/3) and the latter is a complete metric
space being a covering of a complete metric space with the covering projection being
distance non-increasing; (iii) Follows from the second and the usual curve shortening
arguments.
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Then according to Remark 3.5 of [3]. these three properties imply that there is
an £y > 0 such that the Alexandrov property holds for all 4-tuples in B(z, 2¢y). This
completes the proof of the claim. O

This completes the proof of the proposition. O

9.7 Directional Derivatives

Let X be either a complete Alexandrov space or an Alexandrov ball, and let f: X —
R be a Lipschitz function. We say that f has a directional derivative at x, if there
is a continuous function f’: S, X — R such that for any geodesic v emanating from
x and parametrized by arc length we have

fO(@) = f(x)

- = f'([HD)-

limy 0

The main example of this is the following:

Lemma 9.38. Let X be a complete Alexandrov space. Let A be a compact subset
of X and let y € X \ A. Let d: X — R be the distance function from A and let
A" C Sy X be the set of tangent directions to geodesics from y to A. Then d is a
Lipschitz function and d has a directional derivative d' at y given by

d'(a) = —cos(d(a, A7)).

Remark 9.39. The same result holds when X is an Alexandrov ball B(z, R) pro-
vided that A and y are contained in B(z, R — d) where d is the distance from A to

Y.

Definition 9.40. Let X be a complete Alexandrov space or an Alexandrov ball, let
U C X be an open set and let f: U — R be a Lipschitz function with a directional
derivative at every point of U. We say that f is reqular at x € U if there is a
direction 7 € S; X such that f.(r) > 0.

Lemma 9.41. Let X be a complete Alexandrov space. Suppose that A is a compact
set and U is an open subset of X, disjoint from A. Then the subset V. C U of points
at which d = d(A,-) is reqular is an open subset.

Proof. Suppose that v € V. Then there is a geodesic v emanating from v such that
(d(A,~(s)) — d(A,v))/s has limit > 0 at s = 0. This means that for any minimal
geodesic a connecting v to A, the angle at v between « and + is greater than 7 /2.
Denote by w the other endpoint of y. By choosing ~ sufficiently short, we can assume
that d(A,w) > d(A,v) and that there is a unique geodesic from v to w. Let v, be
a sequence of points in U converging to v, and let ~, be a geodesic from v, to w.
Then -, converge to v as n — oco. Suppose that for each n there is a geodesic u,
from A to v, such that the angle at v, between p, and 7, is at most 7/2. Passing
to a subsequence we can suppose that the u, converge to a geodesic u from A to v,
and we know the v, converge to . Thus, by Lemma 9.4 the angle between p and
is at most /2, which is a contradiction. O
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Similarly, one shows:

Corollary 9.42. Suppose that we have a sequence of Alexandrov balls B,, = B(xy, Ry)
of curvature > k converging in the Gromov-Hausdorff topology to a limit B =

B(xz, R). Suppose that there are compact subsets A, C B, converging to a com-

pact subset A C B and open subsets V,, converging to V. Suppose that there is a

geodesic from A, to each point of V,,, and suppose that ¢ € V and q, € V, is a

sequence converging to q. Then if d(A,-) is regular at q, then for all n sufficiently

large, d(Ay, ) is regular at qy.

Likewise, we have:

Lemma 9.43. Suppose that f: B — R s a Lipschitz function with directional
derivatives and that g, € f~1(f(q)) is a sequence converging to q. Let v, be a
geodesic from q to q. Suppose that the unit tangent vectors to the v, at q converge
to a tangent direction 7. Then fi(1) = 0.

Proof. This is elementary from the comparison results, see §11.3 of [3]. O

9.7.1 Regular functions on smooth manifolds

We shall need information about level sets of regular functions on smooth manifolds.

Lemma 9.44. Suppose that X is a locally complete Riemannian manifold and that f
is the distance function from a compact set A and that f is reqular (in the Alexandrov
sense) at qo € X \ A. Then there is a neighborhood U of qo and a smooth unit vector
field 7 on U with the property that fé(T) > 0 for all ¢ € U. Furthermore, there is
an open interval J, an open subset U' of R, and a bi-Lipschitz homeomorphism
U 2 U’ x J with the property that the level sets of f|y are identified with the subsets
U x {j} for j € J. In particular, the level sets of f are topologically locally flat,
codimension-1 submanifolds near q.

Proof. Consider the subset of the unit tangent bundle of X consisting of directions
Xq € T, X with the property that fé(xq) > 0 as ¢ varies over an open neighborhood
U of gg. Arguments similar to the above show that this is an open subset O of T X.
If we take U small enough, the fiber of O over every g € U is non-empty. Hence,
after shrinking U, there is a smooth unit vector field 7 defined in a neighborhood U
of ¢ and o > 0 such that f;(7(q)) > a for all ¢ € U. Now we integrate 7 to define a
smooth local coordinate system (z?, ..., 2™) near qo such that 7 = 9/92'. We replace
U be a smaller open set which is the product of an open ball in (22,...,z")-space
with an interval in the x!-direction. Since f’(9/0z') > 0 everywhere, we see that the
level sets of f meet each interval in the z!-direction in at most one point. That is to

say, near g these level sets are given by the graphs of functions ! = ¢(z2,...,z").
Elementary arguments show that the map (z!,...,2") — (f(z!,...,2"%), 2%, ..., 2")
is the required bi-Lipschitz homeomorphism. ]

We also need a fairly restricted version of an analogous result for maps to the
plane. The following is an elementary lemma.
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Lemma 9.45. Given ¢ > 0, the following holds for all € > 0 sufficiently small. Let
B(0,¢71) be the ball of radius e~ in the Euclidean plane centered at the origin. We
denote by (x,y) the Euclidean coordinates on this ball and by 6 the usual coordinate
along the circle. Let g be a Riemannian metric on U = B(0,e~1) x S that is within
e in the CN -topology (where N = [e7']) of the product of the usual Buclidean metric
on B(0,¢71) and the Riemannian metric of length 1 on the circle. Suppose that
F = (f1, f2): U — R? is a map with the property that fi and fy are 1-Lipschitz with
respect to g with directional derivatives at all points of U. Suppose further that the
directional derivatives of f; with respect to g satisfy:

|f{(aa:) -1 <e

1£5(0y) — 1] < e
max(] f1(£0y )], | f2(£0z)|, | £1(£06)], | f3(£0p)]) < e.

Then any fiber F~1(p) that meets B(0,e"1/2) is a circle that is €' -orthogonal to the
family of horizontal spaces B(0,e~1) x {0} in the sense that, fizing a € F~1(p), as
b€ F~1(p) approaches a the angle (measured with respect to product metric) of the
geodesic (in the product metric) from a to b with the horizontal space through a is
within € of /2. Furthermore, any fiber F~1(p) that meets B(0,e~'/2) intersects
each horizontal space {0} x B(0,e71) in a single point.

9.7.2 A smooth limit result

As we have already indicated, the entire argument revolves around considering se-
quences {z,, € My }°° ,, rescaling the metrics g, and, after passing to a subsequence,
extracting a limit (usually a Gromov-Hausdorff limit) of the metric unit balls in the
rescaled metrics. In general, a limit like this can be of dimension 1, 2, or 3 (although
when we use p,%(z,) to rescale the limit, the volume collapsing hypothesis implies
that the limit has dimension 1 or 2) and depending on which it is we get a different
structure for balls. The easiest case to treat is when the limit is 3-dimensional. As
the next theorem shows, because of the assumption on bounds on the curvature
and its derivatives in the statement of Theorem 5.5, such limits are automatically
smooth limits, rather than the more general Gromov-Hausdorff limits that occur in
the other two cases.

Proposition 9.46. Let (M,,g,) and w, be as in the statement of Theorem 5.5.
Suppose that we have a sequence of points x,, € M, such that B, = By, (xpn, pn(zy))
is disjoint from OM, and a sequence of constants N2 with a Gromov-Hausdorff limit
of a subsequence of (Bn, \2gn, T, which is a 3-dimensional Alexandrov space. Then,
passing to a further subsequence, there is a smooth limit of the (Bpn, A2 gn, z,,), which
is a complete manifold of non-negative curvature.

Proof. First step:

Claim 9.47. If (B, A2 gn, z,) converges to a 3-dimensional Alexandrov space, then
there is a sequence of points y, € B, converging to a point y in the limit and
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constants r > 0 and £ > 0 such that for all n sufficiently large Vol Byz (Yn,7) >
3

K2
Proof. Fix ¢ > 0 sufficiently small. Let X be the limiting 3-dimensional Alexandrov
space. By Corollary 6.7 of [3] the subset Rs(X) consisting of points with a (3,4)-
strainer is dense. Choose y € Rs(X) and let y, € M, be a sequence converging to
y. Then there is a (3, 0)-strainer {ay, by, az, ba, as, b3} at y. Let d be the size of this
strainer. Hence for all n sufficiently large, there is a (3, §)-strainer of size d/2 at y,, in
A2 B,,. According to Lemma 9.18 this means that for some r << d/2, but depending
only on d, there is an almost bilipschitz homeomorphism from Bjz, (yn,7) to the
ball of radius r in Euclidean space, where the error estimate goes to zero with 9.
Hence, there is ¢g > 0 such that for any 0 < € < ¢y and for all n sufficiently large,
the cardinality of a maximal e-net in By2g (yn,7) is at least ae3r3 for a universal
constant « > 0. If we choose € > 0 sufficiently small depending on n then the
volume in A2 g,, of any ball of radius ¢/2 centered at a point of B z2g(Yn,7) is at least
(1/2)wo(e/2)? where wy is the volume of the unit ball in Euclidean 3-space. Hence,
Vol Byz g, (Yn, (r+€)) > awer?/16. Taking the limit as e — 0 gives the uniform lower
bound to the volume of the ball of radius Byz,, (yn, 7). O

Second Step: Suppose that y, € B, is as in the previous claim. Then, the
(Bn, A2gy,) are uniformly volume non-collapsed at y,. That is to say for some r >
0 and w’ > 0, for all n the volume of Bya, (yn,r) is at least w'r®. Since the
ball B(yn, p(yn)) has volume is at most w,p(yn)® where w, — 0 as n — oo, it
follows from Bishop-Gromov volume comparison that p(y,)A, +— oo as n tends to
infinity. Hence, for any A < oo, for all n sufficiently large, we have 44 < p(yn)An.
Thus, by our assumption, for all n sufficiently large, the sectional curvatures of
A2 g, on Bjag, (yn,4A) are > ~X2p(yn) "2 > —(4A)~2. Again invoking the Bishop-
Gromov inequality, we see that there is a constant w”(w’, A) > 0 such that for
any s < A and any z € Byz, (yn, A) we have Vol(Byzg, (zn,s) > w”s?. Taking
r = min(A4/\,,T(w")), where 7(w”) is the constant from Condition 3 of Theorem 5.5,
we see that for any z, € Byzy (yn, A) the volume of Byzy (zn,7) > w”r® and the
sectional curvatures on this ball are bounded below by —r~2. Since r < F(w”)\,, it
follows from Proposition 2.9 we have uniform bounds on the curvature and all of its
derivatives at every point of By2, (yn,A) depending only on A and w’. Hence, we
can pass to a subsequence, so that the Bjz . (yn, A) have a smooth limit. Taking
a sequence of A tending to infinity and a diagonal subsequence allows us to pass
to a subsequence so that the (M,, \2g,,y,) have a smooth, complete limit. Since
p(Yn)An tends to infinity, the curvature of the limiting manifold is > 0. O

This result about the 3-dimensional limits will be important as we study the 1-

and 2-dimensional limits.

9.8 Blow-up results

We need two special results about rescaling Alexandrov spaces so as to construct
higher dimensional limits. We need these results in order to handle sequences of
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points z,, € M, converging to a singular point of a 1- or 2-dimensional limit. The
following two results are reformulations in our context of Lemma 3.6 of [32].

Proposition 9.48. Suppose that B, = B(x,,1) is a sequence of Alexandrov balls
of dimension d, of radius 1, and with curvature > k. Suppose that the B, are non-
compact and converge to an interval J with the x, converging to the endpoint x of
J. Fixm/2 < a < 7. Then, after passing to a subsequence, there are points &,, € By,
with d(zp, &n) — 0 as n — oo such that one of the following holds:

1. At every point of B(Zy,1/2)\{Zn} there is a direction in which the directional
derivative of the distance function f, = d(Zy,-) is greater than « . In this case
for every 0 < r' < 1/2 the metric ball B(Zy,1") is homeomorphic to the tangent
cone at T, and if By, are smooth manifolds then the B(ip,r") is diffeomorphic
to a smooth ball in R?.

2. There is a sequence of positive constants (, — 0 as n — 0o such that:

(a) Every point in B(&y,1/2) at which the maximum value of the directional
derivative of f, is at most « is within distance (, of &,, and

(b) there is a point q, at distance ¢, from Z,, at which the mazimum value of
the directional derivative is at most .

In this case, passing to a subsequence there is a limit (X, 2) of the 3¢, ' B(&y,1/2).
This limit is a complete Alexandrov space of curvature > 0 and of dimension
strictly greater than 1. The distance from from z has no critical points at dis-
tance greater than 1/3 from z. If the limit is 2-dimensional then the area of
any unit ball B(y,1) for any y € B(x,1/2) has area at least a positive con-
stant a(«) depending only on «. Furthermore, the restriction of f to subset
{w € X|f(w) > 1/3} is the topological projection mapping of a product with
fibers being either closed intervals or circles.

Proof. We fix o with 7/2 < o < 7 and consider a sequence B,, as in the hypothesis.
We take a point y € J at distance 3/4 from the endpoint = of J, and we take a
sequence ¥y, € B, converging to y. For each n sufficiently large there is a maximum
Zp for d(yp,-). Then &, — z as n — oo so that d(x,,z,) — 0 as n — o0o. One
possibility is that there is a subsequence of n for which f,, = d(&,,-) has no points
outside of Z,, in B, at which the maximum of f], is < «. In this case, the first
conclusion stated in the proposition holds. Otherwise, we can pass to a subsequence
such that for all n there are points distinct from Z,, at which the directional derivative
of f, is bounded above by a. Now consider any sequence (in n) of points ¢, €
By, \ {#,} with the maximum value of the directional derivative for f,, at g, being
at most a. Passing to a subsequence we see that the sequence converges to the
endpoint x of J. In particular, there is a sequence (, — 0 as n — oo such that
the maximum distance of the set of all g, in B(z,,1/2) with the property that the
maximal value of the directional derivative of f,, at ¢, is at most « is {,,. Fix a point
¢n with this property at distance ¢, from &, and rescale the balls by 3¢ !. Passing
to a subsequence there is a limiting based Alexandrov space (X, z) of curvature > 0.
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This space is complete and non-compact. Clearly, it has the property that all critical
points of f = d(z,-) are at distance < 1/3 from z.

Next, we show that X has dimension at least 2. If not, then X is a non-compact
interval and there is a point at distance 1/3 from z at which the maximum of the
directional derivative is at most a and no such points at distances more than 1/3
from z. This means that X is a ray with z being at distance 1/3 from the endpoint,
and the g, converge to the endpoint of X. We claim that this contracts the fact
that &, maximizes the distance from y,. Fix 1/3 < D and consider the interval of
length D (in the rescaled metric) on any geodesic from y,, to g, with one endpoint
being ¢,. These compact intervals converge to an interval of length D in X with one
endpoint being the endpoint of X. It follows that the points at distance 1/3 from
gn On these geodesics converge to z, and hence from n large are arbitrarily close to
Ty,. It then follows that the distance from y,, to g, is greater than the distance from
Yn to &, which is a contradiction.

This shows that X has dimension at least 2. Clearly, by construction, f has only
regular values on f~1(1/3,00). It then follows from the theory of Alexandrov spaces
that f is the projection mapping of a topological product structure. Since the B,
converge to an interval J, for all n sufficiently large the distance function from z,,
is regular on the complement of the ball of radius 1/25 centered at z,,; furthermore,
the fibers of this map are connected. This means that all the fibers of f,, at distance
more than (, from &, are connected. Thus, if the dimension of X is 2 then all the
fibers of f at distance more than 1/3 are either closed intervals or circles.

Still supposing that the dimension of X is 2, we shall show that there is a positive
lower bound to the area of B(z, 1) depending only on «. If this fails for a given value
of «, then there is a sequence of examples B,, ;;, constants ¢, 5 (for the given value
of a) going to zero as n — oo and converging as n — oo to limits (X, z) such that
the area of the B(zy,1) go to zero as k — oo. Taking a subsequence in k we can
assume that the (X, z) converge in the Gromov-Hausdorff sense to a limit (X, z).
Since the areas of the B(z, 1) are converging to zero, X has dimension 1. Taking
an appropriate diagonal sequence we have a sequence By, ;) and constants G,z x
converging to zero such that the rescaled balls 347;(}9),k converge to (X,z). This
contradicts what we just established.

Once we have a universal lower bound to the area of B(z,1) it follows by volume
comparison (since the curvature of X is > 0), that the area of any B(y,1) for any
y € B(z,1/2) is also universally bounded below by a positive constant depending
only on «. O

The following result is a 2-dimensional analogue. The statement and proof are
taken from [33] and are included for completeness.

Proposition 9.49. Suppose that B, = B(x,,1) is a sequence of Alexandrov balls
of radius 1 with curvature > k. Suppose that the B, are non-compact and converge
to an Alexandrov ball B = B(x,1). Suppose that dim B is 2 and diamT,B < .
Then, after passing to a subsequence, there are points &, € By, with d(zy,Z,) — 0
as n — oo and r > 0 independent of n such that one of the following holds:
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1. d(Zn,-) has no critical points in B(Zn,r) \ {Z,}. In this case B(ipn,r’) is
homeomorphic to the tangent cone at T,, and if B, is a smooth manifold then
B(&p, ') is diffeomorphic to a closed ball in Euclidean space for every 0 <
r <.

2. There is a sequence of positive constants (, — 0 as n — oo such that:

(a) Every critical point of d(&y,,-) in B(&y,r) is within distance ¢, of &, and

(b) there is a critical point qy, for d(Zy,-) at distance ¢, from &,.

In this case, passing to a subsequence there is a limit of the (1 B(2n,7). This
limit is a complete Alexandrov space of curvature > 0 and of dimension strictly
greater than 2.

Proof. For any ¢ > 0 there is an e-net in T, B consisting of tangent vectors to
geodesics 71, ..., yn in B with other end points y', ..., y"V. Choosing these geodesics
to be short enough we can assume that Zy‘zy’ > €/2 for all i # j. We let f =
% Z@]\L 1d(y',-). Also, assuming that ¢ > 0 is sufficiently small and the geodesics
are sufficiently short, f has a local max at x and this is the only local max for f in
B(z,r) for some r > 0. '

For each 1 < j < N, let ¥, be a sequence converging to y/. We define f, =
% Zjvzl d(y#, ). Then for all n sufficiently large there is 4,, € B, which is a local
maximum for f, and &,, — x as n — oo. In particular, d(z,, Z,) — 0 as n — co. We
consider the distance function d(Zy,-). Fix r > 0 less than 1/2 the minimum length
of the ; and chosen such that the distance function d(z, -) is regular on B(z, ")\ {z}.
Let C'(n) be set of critical points for d(&,,-) contained in B(Zp,r) \ {Z,}. Then,
passing to a subsequence, either C(n) = () for all n or there is a sequence ¢, > 0
tending to zero such that C'(n) C B(Z,, (,) and there is a point g, € C'(n) at distance
(p from Z,,. In the first case B(Z,,r) satisfies the first conclusion of the proposition
for all n and the proof is complete. In the second case, we choose geodesics v, from
#p to q,. Now consider the sequence ¢, (B(&,,7),4,) and pass to a subsequence
with a limit (Z,z). This is a complete Alexandrov space of curvature > 0. Our
goal is to show that the dimension of Z is greater than 2, so we suppose that Z has
dimension 2. Passing to a further subsequence we can suppose that the ¢, converge
to a point ¢ € Z at distance 1 from z, and the geodesics v, converge to a geodesic
v from z to gq. Denote by 7 the direction of v at z.

Consider the set R’ all geodesic rays emanating from z that are limits as n — oo
of geodesics from #, to y5,. Fix momentarily geodesics v/ € R’. For a < oo let u’
be the point on 77 at distance a from z. Since ¢ is a critical point for d(z,-) we
have Zzqu/ < /2 for all j. Since Zu’zq < Arcsin(1/a) and since Z has curvature
> 0, this implies that Zu/qz > 7/2 — Arcsin(1/a) for all j < N. This shows that
the distance in S, Z between 7 and the directions [R’] tangent to the geodesics R/ is
at least 7/2 — Arcsin(1/a). Also, by construction the distance in S,Z between [R/]
and [R’'] is > €/2 for all j # j'.

Given € > 0 we can choose a sufficiently large, so that there are at most two
points separated by distance at least ¢/2 contained in the closed annular region
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B(7,7/2 4 2Arcsin(1/a))\ B(7,7/2—Arcsin(1/a)) in S, Z. Thus, all but at most two
of the [R7] have distance greater than 7/2+ 2Arcsin(1/a) from 7, and the remaining
(at most two) have distance at least m/2 — Arcsin(1/a) from 7. This means for
all n sufficiently large, all but two of the N the distances at S;, B, between the
direction [v,] and the direction [y5] of any geodesic from &, to v}, are greater than
/24 2Arcsin(1/a) and for the remaining at most two values of j the these distances
of [R?] from 7 are at least 7/2 — 2Arcsin(1/a). This implies that for all n sufficiently
large, the directional derivative of f,at &, is positive in the 7 direction and hence
fn does not have a maximum at Z,,, contrary to assumption. O

9.9 Gromov-Hausdorff limits of balls in the M,

Now we turn from generalities about Alexandrov spaces to special properties of
Gromov-Hausdorff limits of balls in the M,,. Recall that we have a sequence of con-
stants w, — 0 as n — oo and functions p,: M, — [0,00) with the property that
pn(x) < diam(MY) for every n and every z in the connected component M2 of M,,.
Thus, for every n and every x € My, the ball By, (z, p,(z)) is non-compact. Since
M, is itself compact, it follows that for every 0 < r < pp(x), the ball By, (z,r) has
compact closure in B(x, pp(x)). It then follows that the By, (x, p,(z)) are Alexan-
drov balls. Rescaling the metric by p,(x)~2, that is to say replacing the metric g,
on this ball by the metric g, (z) = p,?(x)gn we obtain non-compact Alexandrov
balls By (,)(z,1) of radius 1 with the property that their sectional curvatures are
bounded below by —1, and their volumes are bounded above by w,,. Since w, — 0
as n — 0o, the following is then immediate from Proposition 9.33 and Claim 9.47.

Proposition 9.50. Let x, € M, be given for every n > 1. Then, after passing to
a subsequence, the B -2, (zn, 1) converge to an Alexandrov ball B = B(x,1) of
curvature > —1 and of dimension 1 or 2. The limiting ball contains points at every

distance < 1 from .
This leads immediately to the following corollary.

Corollary 9.51. There is a decreasing sequence of constants €, > 0 tending to zero
as n — oo such that for every n and for any x, € M, there is an Alexandrov ball B
of radius 1, of curvature > —1, and of dimension 1 or 2, such that B,-2(y,)g, (xn, 1)
is within €, in the Gromov-Hausdorff distance of B.

10 2-dimensional Alexandrov spaces

In order get enough information about the structure of balls in the M, limiting (after
rescaling) to a 2-dimensional Alexandrov ball, we need fairly delicate information
about 2-dimensional Alexandrov balls. We shall fix an appropriate § > 0 sufficiently
small and show that there is always a cover a 2-dimensional ball by four types of
neighborhoods (for more details, see Theorem 10.30):

1. balls near flat balls in R?,
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2. balls near flat circular cones of cone angle < 27 — §,
3. balls near flat cones in R? of cone angle < 7 — §, and
4. balls near flat boundary points.

The important facts about 2-dimensional Alexandrov balls that will be used in
establishing the results are the following:

1. If a 2-dimensional Alexandrov ball is nearly flat at one scale then it is nearly
flat at all smaller scales.

2. If a 2-dimensional Alexandrov ball is close to a circular cone of angle > « then
it has an annular region which is fibered by the circles that are metric spheres.
This annular region is nearly flat on scales depending only on «.

3. If a 2-dimensional Alexandrov ball has nearly flat boundary at some point on
one scale then the same is true on all smaller scales.

4. If a 2-dimensional Alexandrov ball is close to a flat cone of angle > « then
there is a region that is a topological product foliated by metric spheres that are
intervals with endpoints in the boundary. Further, every point of intersection
of this region with the boundary is a nearly flat boundary point and the interior
point of this annular region are nearly flat on a scale which is determined by
« and the distance to the boundary.

Establishing these results is the subject of this section.

10.1 Basics

Claim 10.1. A 2-dimensional Alexandrov ball X is a topological 2-manifold, possibly
with boundary. The topological boundary of X is Alexandrov boundary 0X .

Proof. For a proof, see §12.9.3 of [3]. O

Let X be a 2-dimensional Alexandrov ball. We define the cone angle at any
point p € X to be the total length of the tangent sphere 3,. It follows from the
Alexandrov space axioms that if p € int X then the cone angle at p is at most 27
and the tangent cone is a flat circular cone of this cone angle. If p € 0.X, then the
cone angle at p is at most 7, and the tangent cone is a sub-cone of R? of this cone
angle.

Lemma 10.2. Suppose that (X,,x,) is a sequence of 2-dimensional Alexandrov
balls converging to a 2-dimensional Alexandrov ball (X, z) and suppose that y, € X,
converges to y € X. Then:

1. Ify, € 0X,, for alln, theny € 0X.

2. Conversely, if y € 0X, then there is a sequence z, € 0X, converging to y.
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Proof. We begin with a proof of the first statement. Let us suppose to the contrary
that y, € 0X, for all n and that y € int X. Let d, be the Gromov-Hausdorff
distance from (X,,y,) to (X,y). Choose constants A, — oo such that A\,d,, — 0.
Then the Gromov-Hausdorff distance from (A, X, yn) to (A X, y) goes to zero and
the (A, X, y) converge to the tangent cone to X at y. This allows us to assume that
the (X, yn) converge to (C,y) where C is a circular cone and y is the cone point.

Claim 10.3. Given the cone C there is a positive function s(d) defined for 0 < d <
oo and for each € > 0 there is 6 > 0 such that at each point z in the metric sphere
S(y,d) = {w € Cld(y,w) = d} there is a (2,0)-strainer {a1(z), a2(2),b1(z),b2(2)}
with a1(z) = y and with the following property. Setting f = d(ai(z), ) and g =
d(bi(z),-), then (f,g) defines a homeomorphism from a neighborhood of z € C to
an open square R in R? of side length s(d(y,2)), a homeomorphism that is a (1+ ¢)
almost isometry.

Proof. This follows from direct computation in the flat cone C. O

By compactness, for any ¢ > 0 and any € > 0 we can find a finite number of
points z1, ..., 2, in S(y,t) with (2, 0)-strainers {a1(z;) = y, a2(z), b1(z), b2(z:)} and
(1 + e)-almost isometries (f;, g;): U(z;) — R as in the claim with the U(z;) covering
S(y,t).

Now we pass from the cone to the sequence X,,. We choose sequences z,; € X,
converging to z; and points ai(2ni) = Yn, @2(2n,i), b1(2n,i), b2(2n) in X, converging
to a1(z;) =y, a2(z), b1(2i), b2(z;). For all n sufficiently large we have a neighborhood
U(zn,;) and a function (fy i, gn,i): U(zn,:) — R, both defined analogously to the ones
for C. For all n sufficiently large the functions (fy i, gn,i) are a (1 + €)-almost isome-
tries for every ¢. Taking limits we see that for all n sufficiently large, Ui?:lU (2n,)
covers the metric sphere S(y,,t). The following results now follow easily from this
by standard arguments.

Claim 10.4. For any 0 < d < 1 and any ¢ > 0 the following holds for all n
sufficiently large.

1. For each t € (d,1) the metric sphere S(yn,t) is a simple closed, rectifiable
curve whose length is between (1 — €) and (1 + €) of the length of S(y,t) C C.

2. d(Yn,*): B(yn,1) \ B(yn,d) — [d,1) is the projection of a product structure.
The fibers of this projection are the metric spheres S(yn,t), d <t <1.

Proof. The first statement is clear from the existence of the boxes U(z,,;) converging
to the U(z;) and the almost isometries to R. Let us consider the second statement.
For any t > 0, for all n sufficiently large the intersection of U(z,;) with the metric
spheres S(yy, s) are vertical lines. This provides a local product structure in U(zy, ;)
whose projection onto a factor is given by d(yn,-). It is easy to patch these local
product structures together to give a local product structure in a neighborhood of
S(yn, t) whose projection to a factor is given by d(y,, ). For any 0 < d < 1, provided
that n is sufficiently large, this result holds for all ¢ € [d,1) and the local product
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structures around the S(yn,t) fit together to give a product structure as required
on B(yn, 1) \ B(yn,d). [

The previous claim has two important consequences:

Claim 10.5. Fiz 0 < 6 < 1. Then the following hold for all n sufficiently large.
There is an infinite cyclic covering B of B(yn, 1) determined by a surjective homo-
morphism w1 (B(yn,1),yn) = Z and an element a € 71(B(yn, 1), yn) that maps to a
generator of Z and is represented by a loop based at y, of length less than §.

Proof. Take a geodesic L in X,, joining y, to the metric sphere S(y,,1). This
geodesic represents a relative homology class in Y,, = B(y,, 1) modulo the union of
I(X, N B(yn,1)) and S(y,,1). Taking the intersection number with this geodesic
defines a homomorphism from ¢ from H;(Y;) to Z and hence an infinite cyclic
covering p: Y, — Y,. Let 0°(X,) denote the boundary component of X, that
contains y,. Since it is contained in the 1/2-neighborhood of y,, it is a circle and
has intersection number 1 with L, showing that ¢ is surjective. For any 0 < d and,
given d, for all n sufficiently large, it also unwraps the metric spheres near the non-
compact end of B(yn,1) to copies of R. Now fix r > 0 sufficiently small. For any
0 < d for all n sufficiently large (given d), the class of the metric sphere S(yy, d) also
generates the covering transformation. The length of this circle is at most twice the
length of the corresponding circle in the cone (and hence is at most 47d). Thus, the
generating covering transformation moves any point on the pre-image of S(y,,d) a
distance at most 47d. Hence, there is an element a € 71(B(yp, 1), y,) that maps to
a generator under the homomorphism to Z and is represented by a loop based at
yn of length at most 2d + 4wd. Choosing d > 0 less than ¢/(2 + 47) gives the last
statement in the claim. O

On the other hand, for £y > 0 as in Proposition 9.36 there is r < £y and a point
z € C within distance ¢y of the cone point such that B(z,r) is simply connected.
Then, for every n sufficiently large there is a point z, € B(yn,%y) such that the
composition m1(B(2p,7)) = 71 (B(Yn,1),yn) — Z is trivial. Thus, fixing € > 0 and
N > Ns({y,r,€) from Proposition 9.36 we take § = ¢/N. Then for all n sufficiently
large the powers a® for —N < k < N are represented by loops based at y,, of length
less than e. These map to distinct elements in Z. Now applying Proposition 9.36 we
see get a contradiction for all n sufficiently large. This completes the proof of the
first statement.

We turn now to the second statement. Suppose that y € 0X and y, € X,
converges to y. We shall show that d(y,,0X,) goes to zero. If that is true we
simply replace the sequence y, with a sequence z, € 0.X, with the same limit. So
suppose to the contrary that there is d > 0 such that d(y,,0X,) > d. By rescaling
exactly as above, we can assume that the X, converge to a flat cone C in R?,
the y, converge to the cone point, and that the distance from y, to 0.X, goes to
infinity. The distance function from the cone point is regular in the complement
of the cone point and the level sets are arcs with endpoints in the boundary of the
cone. Fix d > 0. It follows that for all n sufficiently large, the distance function
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from vy, is regular on B(yp, 2d) \ B(yn,d). According to Theorem 12.7 of [3] the level
sets of the distance function from y, in this range are topological one-manifolds
with boundary in the boundary of X,,. Since the distance from y, to 90X, goes to
infinity as n — oo, this implies that for all n sufficiently large, the metric sphere
S(yn,t) is disjoint union of simple closed curves for any ¢ € (d,2d). On the other
hand, the exact same arguments as above constructing boxes almost isometric to
squares in R? apply away from the endpoints of S(y,t)®. This means that for any
€ > 0 sufficiently small and, given ¢ > 0, for all n sufficiently large there is an
open covering of S(yy, t) consisting of Uy, U_, J where U, and U_ are the (disjoint)
subsets of points of S(y,,t) within € of the endpoints py and p_ of S(y,t) and J is
an interval with one end in U, and the other in U_. Clearly, this is a contradiction,
since no disjoint union of simple closed curves has such an open cover. ]

Corollary 10.6. Suppose that X,, are 2-dimensional Alexandrov balls converging to
a 2-dimensional Alexandrov ball X. Suppose that x,, € X,, converge to x € X. Let
d, be the distance from x, to 0X, and let d be the distance from x to 0X. Then
d = limy,_ood,.

There is another consequence of this result that will be important later. It is
established by a standard limiting argument.

Lemma 10.7. Given a > 0 there is 6 = §(a) > 0 such that the following holds.
Suppose that B(y,1/2) and B(y',1/2) are 2-dimensional Alexandrov balls of area
> a/8 and curvature > —1 with y € 0B(y,1/2). If the Gromov-Hausdorff distance
between B(y,1/2) and B(y',1/2) is less than §, then § is within distance (0.1) of
OB(y',1/2).

Lastly, we need a uniform area estimate for sub-balls of a ball with given area.

Lemma 10.8. Given a > 0 there is a’ = d'(a) with 0 < da’(a) < a such that the
following holds for any 2-dimensional Alexandrov ball B(z,1) of curvature > —1 and
area > a. For any y € B(x,15/16) and any r < 1/16 the area of B(y,r) is at least
a'r?.

Proof. Tt suffices to prove this result for » = 1/16, since by the Bishop-Gromov
volume comparison, it then follows for any r» < 1/16 (with a different constant a’).
The result for » = 1/16 follows by the usual limiting argument. O

10.2 The Interior

We approximate interior points by cones, including flat cones.

Definition 10.9. Fix g > 0. Let X be an 2-dimensional Alexandrov ball of curva-
ture > —1. Then X is interior u-good at a point y € int X of angle o and on scale r
if B,—2,4(y, 1) is within g in the Gromov-Hausdorff distance of the unit ball centered

81t follows from the second item of Proposition 10.18 that this argument works up to the bound-
ary.
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at the cone point in the circular cone of cone angle o. We say that X is interior
p-flat at y on scale s if By—24(y,1) is within g in the Gromov-Hausdorff distance of
the unit ball in R2.

We need to establish the relationship between being p-flat and having a (2,4)-
strainer.

Lemma 10.10. 1. Given 6 > 0 there are > 0 and d > 0 such that if B is an
Alexandrov ball of curvature > —1 that is interior u-flat at y € B on some
scale d' < d then there is a (2,0)-strainer of size d’ centered at y.

2. Given pu > 0 there is § > 0 and R < oo such that if B is an Alexandrov ball of
curvature > —1 and if there is a (2,6)-strainer of size d, for some 0 < d <1,
at y € B, then B is interior p-flat at y on scale d/R.

Proof. If the first does not hold for some § > 0 there there are sequences juy, dj. — 0
and counter examples yi € By, at scale d}.. The unit balls (d},) ' B(y, d},) converge
to the unit ball in R? and the (d}) ' B(y, d},) are Alexandrov spaces of curvature
> —(d}.)%. Of course, there is a (2, §)-strainer of size 1 at the origin in the unit ball in
R?. Using the upper semi-continuity of comparison angles under limits we see that
for all k sufficiently large there is a (2, §)-strainer of size 1 at yi. The contradiction
establishing the first result follows by rescaling.

If the second does not hold for some p > 0, then there are sequences §; — 0 and
Ri — oo and 0 < di < 1 and counter examples y; € By for these values. The balls
(Ri/di)B(yg, di) have (2, d;)-strainers of size Ry/2 and hence these balls converge
to R%. This means that the (Ry/dy)B(yk,dr/Ri) converge to the unit ball in R?
and hence B is interior p-flat at y on scale di /Ry, for all k sufficiently large, which
is a contradiction. O

The next thing to notice is that being interior p-flat at one scale implies interior
flatness at all smaller scales.

Lemma 10.11. Given p > 0 there is v > 0 such that the following holds. If an
Alezandrov ball X = B(x, 1) of curvature > —1 is interior v-flat at = on scale £ for
some 0 < £ <1, then the ball X is interior u-flat at x on all positive scales < £.

Proof. Suppose that the result does not hold for some p. Then there are sequences
vy, and ¢, with v, tending to 0 as n — oo and X,, = B(x,,1) which are interior
vp-flat at x, on scale ¢, but not interior u-flat at some scale 0 < s, < £,. Since
vn — 0, the sequence £, ' B(xy, ;) converges to the unit ball in R2. Passing to a
subsequence we arrange that the s, /¢, converge to a limit s, with 0 < s < 1. If
s > 0 then the s, ! B(zy,{,) converge to the ball in R? of radius s~!, which implies
that the s, !B(z,, s,) converge to the unit ball in R?, which is a contradiction. If
the s, /l, converge to 0, then for each § > 0 and d < oo for all n sufficiently large,
in s, ' B(zy,£,) there is a (2,8, )-strainer of size d centered at z,, where J, — 0 as
n — oo. This means that the s, !(X,,x,) converge to (R? 0), and hence the unit
balls converge to the unit ball in R?. This is a contradiction. O
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Now, we show that interior good at a point implies locally interior flat in a nearby
annular region where the constants depend on the area. See FiG. 1.

Proposition 10.12. Given p > 0 and a' > 0, there are positive constants sg =
so(a’) and (/' (p,a") such that for all 0 < p' < p'(u,a’) the following holds. Suppose
that a 2-dimensional Alexandrov ball X = B(xz,1) of curvature > —1 and area
> d’ is interior p'-good at x on scale 1. Then X is interior p-flat at every point
y € B(z,7/8)\ B(x,1/8) on all scales < sg. Furthermore, for every b € (1/8,7/8)
the metric sphere S(x,b) is a simple closed curve, and the closed metric ball B(x,b)
1s homeomorphic to a disk.

Proof. Fix p > 0. Suppose we have a sequence u), — 0 and Alexandrov balls
B(xp,1) as in the statement. Then passing to a subsequence these converge to a
flat circular cone (C,p) of area > a/. There is 0 < sg, depending only on o', such
that at every point of B(p,7/8) \ B(p,1/8) the cone C' is interior flat at all scales
< so. Suppose that for each n there is a point y, € (B(xn,7/8)\ B(zn,1/8)) at
which B,, is not interior p-flat on all scales < sg. Then s, 1(B (Yn, So) converges to a
unit ball in R? and arguing as in the previous result, Lemma 10.11, we see that for
all n sufficiently large B, is p-flat at y, on all scales < so. This is a contradiction,
and the first statement follows immediately.

The function d(p,-) is regular on the annular region A = B(p,7/8 \ B(p,1/8)
in the cone C, and in fact for every y € A there is a direction 7 at y with the
directional derivative of the distance from p in the 7-direction equal to 1. Thus,
given § > 0, provided that p’ sufficiently small, the distance d(z,-) is regular on
the annular region A’ = B(x,7/8) \ B(x,1/8), and indeed at every y' € A’ there
is a direction 7’ so that the directional derivative of d(z,-) in the 7/-direction is at
least 1 — 4. It then follows from §11 of [3] and the arguments given in the proof of
Lemma 10.2 that, provided that p’ is sufficiently small, S(x,b) is a simple closed
curve and the closed region bounded by S(z,1/8) and S(z,7/8) is homeomorphic
to a product St x I.

Now let us show that, possibly after making p’ > 0 smaller, the closed metric
balls B(x,b) are homeomorphic to closed disks. If not then there is a sequence of
counter examples B(xy, 1) within distance pj of circular cones for a sequence of
1y, — 0 as k — oo. Passing to a subsequence we can assume that the B(zy, 1) con-
verge to an Alexandrov space Bs,. By the uniform lower bound on the areas, By
is 2-dimensional and hence is a circular cone. If the cone angle of B, is less than
27, invoking Proposition 9.49 we see that there are points &y € B(xg, 1) also con-
verging to the cone point such that for all k sufficiently large the distance function
d(Z, ) has no critical points in B(Z,1/2). (The other possible result according to
Proposition 9.49 is that there is a rescaling of the balls that converges to a limit
of dimension greater than 2. But, this is absurd since the balls in the sequence all
have dimension 2.) It follows that the closed metric balls B(Z,b) are homeomor-
phic to disks for all b € (0,1/2). Now for k sufficiently large, S(xy,3/8) separates
S(Zx,1/4) and S(Z,1/2) and hence the region between S(Z,1/4) and S(xy,3/8)
is homeomorphic to a product. This implies that B(xg,3/8) is homeomorphic to a

disk. Since d(zg,-) is regular on (1/8,7/8) all the closed metric balls B(xy,b) for
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b € (1/8,7/8) are homeomorphic to closed disks. This is a contradiction, proving
the result follows in this case.

Now suppose that B, has cone angle 27, i.e., suppose that it is a disk in R2.
Fix 6 > 0 sufficiently small. Then for all k sufficiently large there is a (2, §)-strainer
at xp of size 1/2. Hence, for all these k there is a bi-Lipschitz homeomorphism
from a ball in R? whose radius is independent of k to a neighborhood of x) whose
image contains a fixed size metric ball about xj. It then follows that this fixed size
metric ball has closure that is homeomorphic to a disk. Since as k — oo all critical
points for the distance function from x; are arbitrarily close to xx, again we achieve
a contradiction for all k& sufficiently large, proving the result in this case. O

Definition 10.13. If B(z, 1) satisfies the statement in the above proposition, then
we say that B(x,7/8) \ B(z,1/8) is a (u, so)-good annular region. (See Fia. 1).
Notice that for any sj < so a (4, so)-good annular region is automatically a good
(i, sj)-good annular region.

10.3 The boundary

We turn to the analogues for the boundary of interior flatness and interior goodness.

Definition 10.14. Fix g > 0. Let B(z,1) be a 2-dimensional Alexandrov ball of
curvature > —1 and let y € X. We say that X is boundary p-good of angle o
and on scale v near y € X if the rescaled ball »~!B(y,r) is within g in the based
Gromov-Hausdorff distance of the unit ball centered at the cone point in a (flat)
2-dimensional cone in R? of cone angle a. We say that X is boundary pu-flat near
y € X on scale r if 7' B(y,r) is within g in the based Gromov-Hausdorff distance
to the unit ball centered at a boundary point of R x [0, c0).

Lemma 10.15. Given p > 0 and o’ > 0 there is 0 < pg(u,a’) < p such that the
following holds for all 0 < /" < pi(p,a’). Suppose that a 2-dimensional Alexandrov
ball X = B(x,1) of curvature > —1 and area > d' is boundary p”-good near x
on scale 1. Then for any b € [1/64,7/8] the metric sphere S(x,b) is an arc with
endpoints in 0X and the closed metric ball B(x,b) is homeomorphic to a 2-disk.

Proof. Fix p > 0 and o’ > 0 and suppose g is sufficiently small, and suppose
that X = B(z, 1) satisfies the hypothesis of the lemma. Since the distance function
from the cone point in a flat cone is regular on the corresponding annular region,
assuming that p” is sufficiently small, the distance function from z is regular on
B(z,7/8)\B(z,1/64). It follows from §11 of [3] and the arguments given in the proof
of Lemma 10.2 that, provided that p” is sufficiently small, for any b € (1/64,7/8)
the metric sphere S(x,b) is an arc with endpoints in 0.X.

We must also show that, provided that p” > 0 is sufficiently small, the closed
metric ball B(z,b) is homeomorphic to a disk. If there is no such p” > 0 with this
property, then we take a sequence of counter-examples B,, = B(zy,,1) for u! — 0.
Passing to a subsequence we can take a limit B = B(z,1) which is a flat cone in
R2. If the cone angle is less than 7 then arguing as in Lemma 10.12 we obtain a
contradiction. It remains to consider the case when the limit is a flat cone of cone
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angle 7. In this case, for all n sufficiently large the distance function from z, has no
critical points outside a fixed size metric ball around x,,, the size of the ball going
to zero as n — o0o. On the other hand, the distance function F;, from a point of
0B,, at distance 7/8 from x,, is regular on a fixed size metric ball about z,. Hence,
a smaller metric ball about x, is contained in a compact region R, of B, that is
fibered by the intersection of R,, with level sets of F},, each of these being intervals.
Thus, R,, is homeomorphic to a disk and contains a fixed size metric closed ball A
about x,, which consequently is also homeomorphic to a disk. For n sufficiently
large all the critical points of the distance function from z,, within distance 7/8 of
x, are contained in A. Hence, the region between B(x,,t) \ A is a product region
for any ¢ < 7/8. The result follows in this case as well. O

The next observation is that boundary flatness near a boundary point at one
scale implies boundary flatness near that point at all smaller scales.

Lemma 10.16. Given pu > 0 for all v/ > 0 sufficiently small, the following holds
for any 0 < ¢ < 1. Suppose that an Alexandrov ball X = B(z,1) of curvature > —1
is boundary v'-flat near x on scale /.

1. For any 0 <r < { if d(x,0X) < rv/, then the ball X is boundary p-flat near
x on scale r. In particular, if x € 0X, the X is boundary u-flat near x on all
positive scales < L.

2. Ify € intX N B(x,7¢/8), then X is interior p-flat at y on all positive scales
< min(¢/8,d(y,0X)).

Proof. 1t follows from Lemma 10.15 that provided that v is sufficiently small 0 B(z, 15/16)
is an arc and each end of this arc is at distance 15/16 from x.

Claim 10.17. Fiz 8 > 0. The following holds for all v' > 0 sufficiently small.
Suppose an Alexandrov X = B(x,1) of curvature > —1 with x € 0X is boundary
V' -flat near x on scale 1. Then for any 0 < r < 7/8, fizing e; and e— on 0X at
distance r from x, and on opposite sides of x on 0X, the comparison angle Zeere,
is greater than m — (.

Proof. 1f /' > 0 is sufficiently small, then there are points at distance max(r,7/8)
from z with this property. The result follows from the fact that as we move points
et,e_ toward x along X, the comparison angle is weakly monotone increasing. [

Let us prove the first statement in the lemma. If this statement does not hold,
then there are sequences v}, — 0 as n — oo and ¢, < 1, constants r, € (0, £,], and
examples X,, = B(xy,1) boundary v -flat near x, on scale ¢, with d(z,,0X,) <
rpv), yet X, is not boundary p-flat near x,, on scale r,. Passing to a subsequence
we can suppose that the r,/¢, — d with 0 < d < 1. Clearly, since the v/, — 0,
the ¢, B(zy,£,) converge to a unit ball in half-space centered around a boundary
point. If d > 0, then the (1/r,)B(x,,{,) converge to a ball of radius d~! in half-
space centered about the boundary point and the result is established. On the other
hand, if the d = 0, then, after passing to a subsequence, the sequence 7, ' B(zy, £,,)
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converges to a complete Alexandrov space (X, ) of curvature > 0. Since the v/, go
to zero, by the previous claim there is a geodesic line in X through z. On the other
hand, since the distance from z;,, to 90X, is at most r,v/, it follows that = € 0X.
Hence, X is the product of R with complete Alexandrov space Y of dimension 1
with a boundary. Clearly, Y is non-compact. Since dY # (), it must be the case
that Y = [0,00) and hence X is isometric to a closed half-space in R?. This proves
that for all n sufficiently large, X,, is boundary flat at z, on scale r,,. The result
now follows.

The second statement is proved by a similar argument, using the first part for
sequences for which d(yy, 0Xy)/l, tends to zero. O

Putting this all together we obtain the analogue of Proposition 10.12 producing
good annular regions. See F1G. 2.

Proposition 10.18. Given u > 0 and a’ > 0 there are positive constants so = sa(a’)
and s; = s1(a’) with 0 < sg < s1 and pi(p,a’) < p such that the following holds for
all 0 < p" < ui(p,a’). Suppose that a 2-dimensional Alexandrov ball X = B(z,1)
of curvature > —1 and area > a' is boundary u"-good near x on scale 1. Then:

1. For every point y € 0X N (B(x,15/16) \ B(x,1/100)) the ball X is boundary
u-flat near y on all scales < s1.

2. For any z € int X N (B(x,7/8) \ B(x,1/64), the ball X is interior u-flat at z
on all scales < min(sg,d(z,0X)).

3. For any b € [1/64,7/8] the metric sphere S(x,b) is an arc with endpoints in
0X and the closed metric ball B(x,b) is homeomorphic to a 2-disk.

Proof. Fix > 0 and @’ > 0. Let v > 0 and v/ > 0 be the constants associated
to p by Lemmas 10.11 and 10.16, respectively. We choose s; so that the following
holds. For any flat cone C in R? with cone point p and with the property that the
area of B(p,1) is at least a’, near every point of d(B(p,15/16) \ B(p,1/100)) the
cone C' is boundary flat on scale s;. Now we show that for ” > 0 sufficiently small
and for every point y € 0X N (B(x,15/16) \ B(x,1/100)) the ball X is boundary
v'-flat near y on scale s;. Suppose not. Then there are a sequence of pj — 0 and
examples X, = B(zy, 1) of area > o’ that are boundary -good near x;, on scale 1,
for which there are points y; € 0Xy, N (B(zg, 15/16) \ B(zk, 1/100)) near which X},
is not boundary v/-flat on scale s;. Passing to a subsequence, we can suppose that
the X} converge to a limit which is a flat cone C of area > a/ with cone point p.
We can also assume that the y; converge to ¥ in B(p,15/16) \ B(p,1/100), and by
Lemma 10.2, we have § € 9C. Thus, C is boundary flat near 7 on scale s1. Hence,
for all k sufficiently large, X} is boundary v/-flat near 3, on scale s1, and hence by
Lemma 10.16 boundary pu-flat near y; on all scales < s;. This is a contradiction,
proving the first statement

We fix sy so that for any flat cone C' in R? with cone point p and with the
area of B(p,1) being at least o/, any point y in the interior of the annular re-
gion B(p,15/16) \ B(p,1/100) of C has the property that C' is interior flat at y
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on scale min(sg,d(y,dC)). We claim that provided that p” is sufficiently small
then every point in the interior of B(x,7/8) \ B(z,1/64) is interior v-flat on scale
min(sz,d(y, 0X)). Again if it does not hold there is a sequence i > 0 converging to
0 and X}, = B(xy, 1) with points yx € int X, N (B(z, 7/8) \ B(w,1/64)) at distance
dj, from 0X, satisfying the hypothesis of the second statement for ) such that Xj,
is not interior p-flat near yy, of scale min(sy,dy). Since pj — 0, the X}, converge
to a flat cone C in R? of area > d. Passing to a subsequence we can assume that
the di converge to d > 0. If d is positive, then passing to a further subsequence we
can assume that the y; converge to 7 € int C' at distance d from 0C. Since C' is
interior flat at y on all scales < min (sg,d), for all k sufficiently large X}, is interior
v-flat at y; on scale min(sy,dy). Hence, by Lemma 10.11, X} is interior p-flat at
yr on all scales < min(sy,dy). Suppose now that d = 0. For each k let z;, € 90X}
be a closest point to y; on 0Xi. Of course, for all k sufficiently large, we have
1/100 < d(xg, zx) < 15/16. By the first part of this result, for every v > 0, for all k
sufficiently large, X is boundary v-flat near nj on all scales < 2dj. It follows that
the (1/2dy)B(z, 2d)) converge to the unit ball in half-space B(z, 1) centered about
a boundary point. Passing to a subsequence we arrange that the points y;, converge
to a point ¥ at distance 1/2 from z and also at distance 1/2 from 0B(Z,1). This
means that B(Z, 1) is interior flat at 7 on all scales < 1/2. It then follows that for all
k sufficiently large (1/2dy)B(zk,2dy) is interior v-flat on scale 1/2 at y, and hence
by Lemma 10.11, interior p-flat at yx on all scales < 1/2. Hence, for all k sufficiently
large, B(xy,1) is interior p-flat at yx on all scales < di. This is a contradiction,
establishing the second item.

The last statement is contained in Lemma 10.15. O

Definition 10.19. A 2-dimensional ball B(x, 1) satisfying the conclusion of the
previous proposition is said to have a (i, s1, s2)-good collar. Notice that if s§ < s1
and s, < sz the a (u, s1, s2)-good collar is automatically a (p, s}, s5)-collar.

10.4 The covering

In the previous subsection we studied balls that are interior good and boundary
good on various scales. Now we show that there is a covering of any ball whose area
is bounded below by a positive constant by such balls where the scales are uniformly
bounded.

Recall from Lemma 10.8 that given any 2-dimensional Alexandrov ball B(Z, 1)
of curvature > —1 and area > a, for any y € B(7,15/16) and any r < 1/16 the area
of B(y,r) is at least a/(a)r?.

Lemma 10.20. Given positive constants a, i, and ro there is a positive constant
r1 = ri(a, u,m9) < 1o such that for any 2-dimensional Alexandrov ball B = B(x,1)
of curvature > —1 and of area > a and any y € 0B N B(x,15/16), the ball B is
boundary pg = pg(p, @' (a))-good near y on some scale r(y) satisfying r1 < r(y) < ro.

Proof. Fix positive constants a, u, and rg, and suppose that there is no r;1 > 0
as required. Then there is a sequence r1, — 0 as n — oo and Alexandrov balls
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B,, = B(xp,1) of curvature > —1 and of area > a with y,, € 9B, N B(x,,15/16)
with the property that B, is not boundary p(j-good at y,, on any scale between 7,
and ro. Passing to a subsequence we can assume that the (B(xy, 1), y,) converge to
(B(7,1),y) withy € 0B(7,1). The Alexandrov ball B(z, 1) is of curvature > —1 and
has area > a. Now for any sequence \, — oo the Alexandrov balls A\, (B(Z,1),7)
converge to the tangent cone of B(Z, 1) at y. Since y € 0B(7, 1), this tangent cone is
a flat cone in R2. It follows that there is 0 < r(y) < ro such that B(z, 1) is boundary
po-good near y on scale r(y). Thus, for all n sufficiently large B,, is boundary pu-
good at y, on scale r(y). Since 71, < 7(y) < ro for all n sufficiently large, this is a
contradiction. O

Corollary 10.21. Given positive constants a, i, and ro there is a positive constant
0 <r =ri(a,pre) < ro and positive constants dp(a, ) > 0, and c(a) such that
setting s1 = s1(d'(a)) and sy = sa2(d'(a)), for any 2-dimensional Alezandrov ball
B = B(z,1) of curvature > —1 and of area > a and for any y € 0B N B(x,15/16),
either:

1. B is boundary u-good near y on scale r(y) and of angle 0, where c(a) < 6 <
7w — 6o and where r1 < r(y) < ro, and furthermore (1/r(y))B(y,r(y)) has a
(1, 81, 82)-good collar, or

2. B is boundary p-flat near y on all scales < ry.

Proof. Given pu > 0 fix 0 < v/ < p as in Lemma 10.16. Then choose dy > 0 such
that any flat unit cone in R? of cone angle between m — §y and 7 is within »//2 in
the Gromov-Hausdorff distance of the flat unit cone of cone angle w. Then chose
r1 =r1(a,v'/2,r9). From the previous result for any y € 0B N B(x,15/16) there is
r(y) with 71 < r(y) < ro such that the ball B is boundary pj(v'/2,d’(a))-good near
y on some scale r(y). Suppose the angle of the comparison cone is < m — §y. Then,
since the area of (1/r(y))B(y,r(y)) is at least a/(a), we see from Proposition 10.18
that (1/r(y))B(y,r(y)) has a (//2,s1,s2)-good collar. Since v/ < u, we see that
(1/r(y))(y,r(y)) has a (u,s1,s2)-good collar. Since v/2 < p, this completes the
proof that Case 1 holds when the comparison angle is less than m — §g, except for
the uniform positive lower bound on the angle. The lower bound on the cone angle
is immediate from the lower bound a’(a) on the area of the rescaled balls. This
completes the proof when the cone angle is less than m — .

Now suppose the cone angle is > 7 — §y. Since uj < v//2, this implies that B
is boundary v’/2-good at y. But in this case by the choice of dy, the cone is within
V' /2 of the flat cone of cone angle 7, and hence B is boundary v/-flat near y at scale
r(y). It then follows from Lemma 10.16 that B is boundary p-flat near y on all
scales < r(y). Since 71 < r(y) this establishes the result in this case as well. O

Proposition 10.22. Given positive constants a, i, and rq, let s1 = s1(d’(a)), s =
s2(d’(a)), 6o = do(a,p), and r1 = ri(a,pu,r0) be as in the previous lemma. Set
so = so(d’(a)) from Proposition 10.12. Then for any d > 0, there is a positive
constant ro = ra(a, 1,19, r1,d) < r1 such that for any 2-dimensional Alexandrov ball
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B(z,1) of curvature > —1 and area > a and for any y € 0B N B(x,15/16) one of
the following holds:

1. B is boundary p-good near y of angle < m — dy on some scale r(y) with r; <
r(y) < ro. Furthermore, (1/r(y))B(y,r(y)) has a (u, s1, s2)-good collar region.

2. B is boundary p-flat near y at all scales < ry.
If z € B(x,7/8) and d(z,0B) > d, then one of the following holds:

3. B is interior p-good at z of angle < 2w — 0y on some scale r(z) with ro <
r(z) <71 and (1/r(2))B(z,r(z)) has a (u, So)-good annular region.

4. B is interior p-flat at z on all scales < ra.

Proof. According Corollary 10.21 one of the first two possibilities holds for every
y € 0BN B(x,15/16).

Now let v be the constant of Lemma 10.11 for x4 and let pg be the minimum of
v/2 and p'(p,a’(a)) as in Proposition 10.12, and let &' > 0 be such that the flat
circular cone of angle 2r — ¢’ is within /2 of the flat circular cone. We replace 8y by
the minimum of §y and ¢’. Fix d > 0 and suppose that the result does not hold for
these values of d, 1, and gy for any ro with 0 < ro < ry. Then there are Alexandrov
balls B, = B(xy, 1) of curvature > —1 and area > a and points z, € B(x,,7/8)
at distance at least d from 0B, for which the result does not hold for a constant
ro., Where 7o, — 0 as n — oo. Taking a subsequence we can arrange that there
is a Gromov-Hausdorff limit (B(z,1),z) with z € B(z,7/8). By Corollary 10.6
we know that d(z,0B(x,1)) is at least d. Hence, for any sequence A\, — oo the
balls A, (B(x,1),z) converge to the tangent cone of B(z,1) at z. Thus, there is
r(z) with 0 < r(z) < 71 such that B(z,1) is interior po-good at z on scale r(z).
Since po < (' (p,a’(a)), it follows that if the angle of the tangent cone is < 2w — dy
then, by Proposition 10.12, the ball (1/r(z))B(z,7(z)) has a (y, so)-good annular
region. Thus, under this assumption on the limiting cone angle, Case 3 holds for
all n sufficiently large, and we have a contradiction. If the limiting cone angle is
> 2w — 6, it follows from the choice of §y and the fact that puy < v/2 that B is
interior v-flat at z on scale r(z) and hence interior p-flat, at all scales < r(z). This
implies that for all n sufficiently large B(xy,,1) is interior u-flat at z, on all scales
< r(z), which implies that Case 4 holds for all n sufficiently large. Once again that
is a contradiction. This completes the proof of the result. O

10.4.1 Geodesics approximating the boundary

Proposition 10.22 refers to points in the boundary and points whose distance from
the boundary is at least d. To understand the points not covered by this result, it
turns out that near the flat part of the boundary it is better to take neighborhoods
centered around geodesics near the boundary rather than balls centered around
boundary points. Here, we follow [33] closely.
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Definition 10.23. Fix a 2-dimensional Alexandrov ball X with curvature > —1.

Suppose that v is an oriented geodesic in X with initial point e_ and final point e
and of length ¢ = /(). We define

fy = gldle,) —d(es,)) and by =d(3, ),

These are 1-Lipschitz functions. Further, for any £ > 0 we define

ve(y) = f5 ! ([=4/4,¢/4]) N h([0,€0)),

and
Te(7) = £ ([=£/4,¢/4]) 0 b3 ([0, €0)).

We denote by Vg('y) = ve(7) \ ve2(y). The ends of vg(7y) are their intersections

with f71(££/4), and the side of vg(y) is its intersection with h7'(£€). For any
—0/4<a<b<[l/4we set

Ve o) () = £5 (@, 8]) N 13 1([0,£0))

and we denote by V¢ (44 (7) its closure. The boundary of D¢ [, 4 (7) is made up of the
side, given by h;l(ﬁﬁ), and the two ends, given by f,y_l(a) and f;l(b). We say that
&0 is the width of the neighborhood and (b — a)f is its length. The level set f;l(O)
is the center line of v¢(7). See F1G. 3.

Lemma 10.24. Fiz £ > 0 sufficiently small. Then there is 0 < ag = ap(§) < 1073
such that for all u > 0 sufficiently small the following hold. Suppose that X = B(x, 1)
is a 2-dimensional Alezandrov ball of curvature > —a3 with X being boundary p-flat
near x on all scales < 1. Suppose that vy is a geodesic of length £ > 1/100 with
endpoints e_,e4 in 0X N B(x,15/16). Then the following hold:

1. There is an arc A in B(x,15/16) with endpoints ex. The arc A and 7 are
within £2£/100 of each other in the Hausdorff distance in X.

2. For each y € U¢(7y) the comparison angle Ze_ye+ 1s greater than m — 6€.

3. For each point y € ve(y) \ ve2(7y) there are points z,w € B(x,1) at distance at
least 1/8 from y such that for any geodesic y from ~y to y, denoting the point
wN vy by a, we have

(a) Zayz > m)2 — €2,
(b) Zzyw > /2 — €2,
(c) Zayw > —&2,
(d) Ze_yz > m — BE.

4. For any level set L of fy in Ue(y) and for any ¢ € [§2,€] the distance from
LN~ to any point of LNh;1([0,¢l]) is less than (14 2€)cl.
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Proof. Direct computation shows that the result holds for £ > 0 sufficiently small
for X being a ball of radius 1 in R x [0, 00) centered about a boundary point when
the comparison angles are measured in curvature 0. By taking o > 0 sufficiently
small we can arrange that if a triangle of side lengths < 2 has Euclidean comparison
angle 3 > /4 then the ratio of the comparison angle in curvature —ag to the flat
comparison angle is arbitrarily close to 1. The result is then immediate by fixing &
and taking limits as ag and p tend to zero. O

Definition 10.25. Fix £ > 0 sufficiently small so that the previous lemma holds.
Let X = B(z,1) be a 2-dimensional Alexandrov ball with curvature > —1 and let
s be given with 0 < s < ap(£). Suppose that we have a geodesic v with endpoints
in 0X. If v¢(v) satisfies the six conclusions in Lemma 10.24, then we say that v¢(y)
is a £-boxr and we call ve2(7) the core of the {-box. For any p > 0 we say that a
geodesic v C X is a p-approximation to 0X on scale s if ~y is a geodesic of length
at least s/100 and if there is a point y € B(x,15/16) near which X is boundary
p-flat on scales < s with v C B(y,s/3) C B(x,15/16) and with the endpoints of -
contained in dX. The point y is a control point for .

Notice that if p is less than a positive constant depending only on & then for
any p-approximation 7 to the boundary of an Alexandrov ball of curvature > —1
on scale s < ag(§) the regions vg(7) is &-box. The point is that s~!B(y, s) is an
Alexandrov ball of curvature > —ad().

10.4.2 Intersections of {-boxes

We need to know how two approximations to the boundary in a single ball are
related, see F1G. 4.

Lemma 10.26. Given & > 0 the following holds for all 0 < u sufficiently small.
Suppose that B(T, 1) is a 2-dimensional Alezandrov ball that is boundary p-flat at ©
on all scales < 1 and that 7,74 are geodesics in B(T,7/8) with lengths £(7;) between
(0.24) and (0.26) and each geodesic with endpoints in OB(Z,1). Suppose that there
are points in x1 € v(7;) and xo € v(¥,) with d(x1,z2) < (0.01). Then there are arcs
A C 9OB(T,1), ay C7; and ag C 74, with the following properties

1. The endpoints of A are the two middle endpoints (measured along OB(Z, 1))
of the union of the endpoints of 7, and those of 75. If the both endpoints of A
are endpoints of 7, then oy =7,; similarly if the two endpoints of A are those
of ¥5. Otherwise, each o shares exactly one endpoint with 7.

2. Fori=1,2 we have d(A, ;) < £2/100 and d(aq, ag) < £2/100.

Proof. Suppose that the result does not hold for some & > 0. Then there is a
sequence p, — 0 and for each n a counter example for u, consisting of B(Z,, 1)
and geodesics 7,, 1,72 C B(Ty,7/8). Passing to a subsequence we can assume that
the B(Zy,1) converge to B(Tw, 1) and the 7, ; converge to 7., ; with endpoints in
0B(Tso, 1). Since the py, — 0, it follows that B(ZT, 1) is a sub-ball of half-space, and
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Yoo,i are sub-geodesics of the boundary. We set Aog = i oo = V0,1 Moo ,2- This arc
is the limit of the arcs A,, on the boundary between the middle (as measured along
O0B(Tp, 1)) two endpoints. Clearly, there are arcs oy, ; C vy, sharing endpoints with
the 7, ; as indicated, converging to A. Thus, the conclusion of the lemma holds
for all n sufficiently large, which is a contradiction and establishes the lemma. [

The same argument as in the previous proof can be used to show the following
result which allows us to compare the way that neighborhoods around two geodesic
approximations to the boundary meet, see FiG. 4.

Corollary 10.27. For all £ > 0 sufficiently small, the following hold for all > 0
sufficiently small. Let X = B(z,1) be a 2-dimensional Alezandrov ball of curvature
> —1. Suppose that X is boundary p-flat near x on all scales < 1. Suppose that
we have geodesics y1 and vy as in the previous lemma. Fiz a direction along 0X N
B(x,15/16) and let endpoints of i, denoted e+(7;), be chosen so that in the given
direction along 0X we have e_(v;) < ey (i) fori =1,2. Then the following hold:

1. For any point y € Ug(y1) NVe(y2), the comparison angles satisfy:

Ze_(m)yes(y2) > m — 10¢

and B
Ze_(v2)ye+(m) > m — 10¢.

2. Suppose that a level set L C T¢(y2) for fy, meets ve(y1). Then for any y1,y2 €
LN ve(v1) we have

| Fon (1) = fro(32)| < E28().

10.4.3 Intersection of (-boxes and boundary p-good balls

We must also compare flat regions near the boundary with balls around boundary
points, see F1G. 5.

Lemma 10.28. Given & > 0 sufficiently small, the following hold for all 0 < p
sufficiently small and given a’ > 0, with s; = s1(a’) as in Proposition 10.18. Suppose
that X = B(x,1) is a 2-dimensional Alezandrov ball of curvature > —1 and area
> d that is boundary pg(u,a’)-good near x on scale 1. Suppose that v C X is
a geodesic of length at most s1/2 contained in A = B(x,15/16) \ B(z,1/64) with
endpoints e+ in the same component of (B(x,15/16)\ B(z,1/64)) N0X. We orient
v so that e_ separates e4 from 0B(x,1/16) along 0X. Then:

1. For any y € ve(7y) the comparison angle Za:ye+ is greater than w — &.

2. For any level set L of d(x,-) that meets Vg [~ (24)¢,(.24)0), the intersection L N
Ue(7y) is an interval with one endpoint in 0X and the other in the side of Ug(7y).

3. The function f, varies by at most 8§4(y) on L N T¢(y).



10 2-DIMENSIONAL ALEXANDROV SPACES 107

Proof. Let v be a geodesic in A = B(x,15/16) \ B(z,1/64) with endpoints z, 2’ in
the same component of A, with 2’ farther from x than z, and let y be a point in the
interior of 7. Choose a point w € X be a point at distance 1/16 from 2’ and farther
from x than 2’. Then, given &, for all u sufficiently small we have Zzyz’ > 7 — £.
This is clear by taking limits as p — 0 since any such limit is a flat cone in R?. Fix
geodesics 31 from y to w and S from z to 2’. Then £; N B2 is a point u. We have

nyw < nyu < Zasyu + Zuyz' < Z:cyz/,

showing that for p sufficiently small we have Zmyz’ > —&.

Since any level set of f, contained in v¢() has diameter less than 2£/, we see
that d(z,-) varies by at most 2£¢ on any such level set. Hence, if L is a level set for
[+ contained in v [_(9.24¢,(0.24¢ (7), the the values of the restriction of d(z,-) to L lie
strictly between the values of the restriction of d(z,-) to either end of v¢(7y). Since
d(x,-) is regular on A, it follows that the level sets of this function contained in A are
intervals with end points in the boundary. The functions d(z, -) and h. are Lipschitz
coordinates on l/g(’}/), so that any level set of d(z,-) that meets v¢|_(0.240¢,(0.24)¢)
crosses each level set of hy in I/g exactly once. It now follows that the intersection
of any such level set of d(x,-) with v¢(7y) is an interval with one endpoint in A and
the other in the side of v¢ (7).

Lastly, let a,b € v [_(0.24)¢,(0.24)¢(7) be two points in a level set for d(x,-). Let
a’,t/ € v be points on the same level sets for f, as a and b, respectively. Then,
|d(z,a) —d(x,a")| and |d(x,b) — d(z, V)| are both < 2£¢ so that |d(z,a’) —d(x,b')| <
4£¢. On the other hand, it follows from the comparison angle inequality that for
points a,b € yNvg(y) we see that |d(x,a) —d(x,b)| > d(a,b)/2. This implies that the
distance along vy from a’ to ¥’ is at most 8¢/, and hence that |f,(a’) — f,(b')] < 8¢,
completing the proof of the third statement. O

Upper bound for £. At this point we choose 0 < & < 107 sufficiently small such
that the three previous results hold for all £ < &;. Then for any £ < & we choose
ap = ap(€) < 1073, These values are fixed from now on.

Now we give an analogue of Proposition 10.18 using e-solid cylinder neighbor-
hoods.

Proposition 10.29. For any & with 0 < £ < &y, let p > 0 be sufficiently small
and let ' > 0 be a positive constant. For i = 1,2, let s; = s;(a’) be as in Propo-
sition 10.18. Then the following holds for all y" less than ui(u,a’). Suppose that
B = B(x,1) is an Alezandrov ball of curvature > —1 and area > a' that is bound-
ary p'-good near x on scale 1. Then A = B(x,7/8) \ B(x,1/64) is contained in
the union of the open set, Uy, of points at which B is interior u-flat on all scales
< min(sy(a’),£%51/100) and the open set, Uy C A, of points within £2s1/100 of
0B(x,1). Furthermore, for any y € 0A the ball B(x, 1) is boundary p-flat near y on
all scales < s7.

Proof. Given £,a’ and p fix Let B = B(x,1) be as in the statement of this propo-
sition for some g < pg(§, p,a’), and denote B(x,7/8) \ B(z,1/64) by A(x). Then
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according to Proposition 10.18 the ball B is boundary p-flat on all scales < s; near
every y € A(x) N OB and for every y € A(z) Nint B the ball B is interior u-flat at
y on all scales < min(s2(a’), d(y)) where d(y) is the distance from y to 9B. Now we
set d = £251/100. Then every point of A either has the property that B is interior
p-flat at this point on all scales < min(sa(a’),d) or it is within d of 9B. O

Now we are ready to reformulate Proposition 10.22 using the approximations to
the boundary.

Theorem 10.30. For every 0 < & < &y, and fixing a > 0, then there is a positive
constant py(a, &) such that for every 0 < p < pi(a,§) Lemma 10.24, Lemma 10.26,
Corollary 10.27, Lemma 10.28, and Proposition 10.29 hold. Furthermore, setting
ro = min(ag(€),107°), there are positive constants 8o, 71,72, S0, 51,52 depending on
& poand a with ro < r1 < 19, such that for any 2-dimensional Alexandrov ball
B = B(z,1) of curvature > —1 and area > a and any y € B(x,7/8) one of the
following two cases holds.

1. The distance from y to OB is at least £?r151/100 and one of the following two
holds:

(a) B is interior p-good at y of angle < 21w — dg on some scale r = r(y) with
ro < r(y) <71 and (1/r)B(y,r) has a (u, so)-good annular region.

(b) B is interior p-flat at y on all scales < ra.

2. There is a point z € OB with d(y, z) < &*r151/100 and one of the following
two holds:

(a) B is boundary p-flat at z on all scales < risy. In this case there is
a p-approximation vy to the boundary on scale r1sy, with the length of
v being r1s1/4, such that y € vgz (). Furthermore, given any b with
—r151/16 < b < r151/16 we can choose p-approximation ~y of length
ri1s1/4 so that f(y) =b.

(b) The ball B is boundary p-good near z of angle < m — 6y on some scale
r=r(z) withry <r <rg and (1/r)(B(z,r) has a (u, $1, $2)-good collar.

Proof. Given 0 < & < &y, a > 0, we fix 0 < p sufficiently small so that Lemma 10.24,
Lemma 10.26, Corollary 10.27, Lemma 10.28, and Proposition 10.29 hold. Now
we set 71,792,009 equal to the constants by the same name in Proposition 10.22 for
these values of a, u,rg. Also, we take sg,s; as in that proposition. Next, we set
d = €?r151/100. Now let sy be the minimum of d and sy(a’). Fix y € B(z,7/8).
If d(y,0B > d, then by Proposition 10.22, Case 1 of this result holds for y. If
d(y,0B) < d, then let z € B be a point with d(y, z) < d. Then z € B(x,15/16),
and by Proposition 10.22 either Case 2(b) holds or B is boundary p-flat at z on
all scales < ry and a fortiori on all scales < r1s1. Suppose that the latter holds.
Orient OB near z and let 74 and v_ be geodesics of length 7151 /4 with endpoints in
0B, consistently oriented, so that e_(v;) = z = ey (7y-). Then these geodesics are
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contained in B(z,r1s1/3) and hence are p-approximations to the boundary. Further-
more, f,. (z) =ris1/4 and f,_(z) = —ris1/4. Hence, f,, (y) > b and f,_(y) <b.
As we deform a geodesic «y keeping its length r1s1/4 and keeping its endpoints in
OB from v, to «y_, the geodesic remains in B(z,r151/3) and consequently remains
a p-approximation to the boundary. Also, the value of f,(y) varies continuously.
Thus, one of the geodesics v with these properties between v, and v_ is such that
fy(y) = b. Since d(y,z) < d and since the distance between v and the arc of 0B
with the same endpoints is at most £r1s1/100, we see that h,(y) < £2r1s1/50. It
follows that y € vg2/9(7), so that Case 2(a) holds for y. O

10.5 Transition between the 2- and 1-dimensional part

We need to understand the passage between the regions of M, close to 1- and
to 2-dimensional Alexandrov balls. A non-compact 1-dimensional Alexandrov ball
B(z,1) is either an open interval of length 2 or is a half-open interval of length ¢
with 1 < /7 < 2.

Lemma 10.31. The following hold for all B > 0 and for all a > 0 less than a
positive constant as(3). Let B(x,1) be a 2-dimensional Alexandrov ball of curvature
> —1 and suppose that there is a point y € B(x,24/25) with the area of B(y,1/100)
being at most a. Then B(x,1) is within B in the Gromov-Hausdorff distance of
1-dimensional Alexandrov ball J.

Proof. Fixing 8 > 0 suppose that the result does not hold for any a > 0. Then there
is a sequence a; — 0 and a sequence B(zy, 1) of 2-dimensional Alexandrov balls of
curvature > —1 and points y; € B(xg,24/25) with the area of B(y,1/100) equal
to ag for which the result does not hold. Passing to a subsequence we can extract
a limit B with the y; converging to 7 € B. Because of the area condition, the
neighborhood B(¥,1/100) must be 1-dimensional, and hence B is a 1-dimensional
Alexandrov ball. O

If we choose 8 > 0 sufficiently small, then it follows that d(x,-) is regular on
B(z,7/8) \ B(x,1/8) and for all t € (1/8,7/8) each connected component of the
level set of {y|d(x,y) =t} is either a simple closed curve or a closed interval.

11 3-dimensional analogues

Now we discuss the structure of balls in a 3-dimensional Riemannian manifold that
are close to the various 1- and 2-dimensional balls that we have been discussing.
Since we shall need the results for 3-dimensional balls near 2-dimensional Alexandrov
balls in our study of 3-dimensional balls near 1-dimensional balls, we start with the
2-dimensional case. Recall that for any x € M, we denote by g/,(z) the rescaled
metric p;,%(x)gn. Throughout this section we consider Byz,, (x,1) where z € M,
and A > pn(x)*l. Of course, the sectional curvatures of these balls are bounded
below by —1. Any time we refer to such Byz, (z,1), unless we explicitly state the
contrary, we are implicitly assuming that it is disjoint from the boundary.
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Let us describe the nature of regions in M, near the four different types of
regions in 2-dimensional Alexandrov balls that we listed in the last section. Here
€>0,6 >0, and p > 0 are fixed sufficiently small, and the statements below hold
for all n sufficiently large.

L. If Byzy, (z,1) is close in the Gromov-Hausdorff sense to a 2-dimensional Alexan-
drov ball B(Z, 1) that is interior u-flat at Z, then there is a neighborhood of z
in M,, on which the metric g, is, after rescaling, C™V-close (for some sufficiently
large N) to a product of a circle of length 1 and a 2-dimensional Euclidean
ball B(0,e~'). These regions are called almost S'-product regions.

2. If By2y, (7, 1) is close in the Gromov-Hausdorff sense to a 2-dimensional Alexan-
drov ball B(%, 1) that is interior p-good at x of angle < 27 — § on scale r, then
there is a neighborhood V' containing B2, (z,3r/4) in M, that is an open
solid torus. Furthermore, the complement of a compact, unknotted sub-torus
S of V is covered by almost S!-product neighborhoods as in 1). The cir-
cle factors in these almost product regions are isotopic in V into 95 and are
homotopically non-trivial in V.

3. If By, (x,1) is close in the Gromov-Hausdorff sense to a 2-dimensional Alexan-
drov ball B(Z, 1) that is boundary p-flat near Z, then there is a neighborhood
of x in M, that is diffeomorphic to a product int D? x I. The complement
of a compact subset of the form D x1I , for D a compact sub-disk of D?, is
covered by almost S!-product neighborhoods of Type 1 above, and the circles
in these product neighborhoods which are outside of D' x I are isotopic in
D% x 1T\ D' x I to the boundary of the D?-factors.

4. If B2y, (2, 1) is close in the Gromov-Hausdorff sense to a 2-dimensional Alexan-
drov ball B(Z,1) that is boundary p-good at T on scale r of angle < 7w — §
then By2, (z,3r/4) is diffeomorphic to a 3-ball. Furthermore, each metric
sphere Sy2  (7,t), for 1/4 <t < 7/8 is contained in the union of two disjoint
neighborhoods of type 3) and an open subset of points of type 1).

Refined versions of all these statements will be established in this section.

11.1 Generic interior points of 2-dimensional Alexandrov spaces

We begin with a description of the 3-dimensional part of a Riemannian 3-manifold
M that is near the ‘generic’ part of a 2-dimensional Alexandrov ball of curvature
> —1.

Lemma 11.1. The following hold for all € > 0, for all > 0 less than a positive
constant pg(€), and, given 0 < so < 1/2, for all € > 0 less than a positive constant
€o(€,50). Suppose that the ball By, (x,1) is within € of a 2-dimensional Alexzandrov
ball B = B(%,1) of curvature > —1 that is interior p-flat at T on all scales < sq.
Then there exist a smooth embedding ¢: S* x B(0,¢™1) — M, with z € p(S* x {0})
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and a constant X' > €'\ such that the metric ©*(X')2gy) is within € in the C1Y/-
topology to the product of the metric of length 1 on the circle and the restriction of
the standard Euclidean metric to B(0,e™1).

Proof. Let us first show that it suffices to prove the first conclusion for sy = 1/2. For,
suppose that we have established the conclusion in this special case with constants
ua(e) and €p(e,1/2), and let us consider the statement for another value 0 < so < 1/2.
Suppose for some p < pa(€) and € < 2spég(€, 1/2), the ball Bz, (x,1) is within é of
B(z,1), the latter being interior p-flat Z on all scales < so. Then B(y24:2),, (%,1) is
within €/(2sg) of ﬁB(f7 250), and the latter is py-flat at T on all scales < 1/2. Since,
by construction, €/(2s¢) < €€, 1/2), the result for sy = 1/2 implies the existence of a
constant (\)? as required. (Of course, (\') > (A/2sq) since B(x2/42)g, (¥,1) is close
to a 2-dimensional ball whereas B(y24,(7,1) has 3-dimensional volume bounded
away from zero.)

Thus, we can now assume that sp = 1/2. Fix € > 0 and suppose that the first
conclusion does not hold for this constant. Then there are sequences pp — 0 and
€r > 0 both tending to zero as k — oo such that for each k there is an index n(k)
and a point x, ) € M, and constants A, > p;(lk)(a:n(k)) so that the ball B, ) =
By2g. i (T k), 1) is within & of a 2-dimensional Alexandrov ball By = B(Zy, 1) that
is interior yy-flat at Ty on all scales < 1/2, yet no x,,(;) satisfies the first conclusion
of the lemma. The fact that the B A4, (T k), 1) converge to a 2-dimensional ball
implies that the volumes v;, of these balls go to zero.

Since pp — 0 and é; — 0, it follows from Lemma 10.10 that for each § > 0 there
is s > 0 such that for all k sufficiently large B, has a (2, )-strainer of size s. Now
we let w be the volume of the unit ball in R? and we rescale B, ) by a constant
ay such that the volume of the unit ball about z,,;) in the rescaled ball is w/2.
This is possible since B, () is a Riemannian 3-manifold and since the volumes of the
By k) tend to zero. It follows from the latter fact and Bishop-Gromov comparison
that the a; — oo. Hence, for every R < oo and every 6 > 0, for all k sufficiently
large, there is a (2, 0)-strainer of size R centered at ) in agB,). After passing
to a subsequence there is a limit, (X, ), of the a;B,,;). Since we arranged that
the volumes of the unit balls in the sequence are constant, by Proposition 9.46 the
limit X is a smooth, complete, non-compact manifold of non-negative curvature
and without boundary, and (after passing to a further subsequence) the convergence
is a smooth. The existence of the (2,Jy)-strainers of size going to infinity in the
sequence implies that there is an isometric copy of R? in X through x. Hence, by
Corollary 9.17, X splits as a product of R? with a complete, connected 1-manifold
without boundary. This 1-manifold cannot be R! because the volume of the unit
ball in X is one-half the volume of the unit ball in Euclidean space. Thus, X is the
product of a circle with R?. Rescaling again by a fixed constant, we can make the
limit the product of the circle of length 1 with R?. The conclusion of the lemma
then holds for all £ sufficiently large by taking limits. This is a contradiction and
proves the existence of the map ¢ as required.

Now let us compare )\ and A. Under (\)2g, the volume of the S'-product
neighborhood is at least me~2/2 whereas its volume under A\2g,, goes to zero with é.
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Thus, N /A — oo as é — 0. O

Definition 11.2. Any time we have an embedding ¢: S' x B(0,e7!) — M with
x € (S x {0}) that satisfies the conclusion of the previous lemma, we say that the
image of ¢ is an S'-product neighborhood with e-control. The point z is said to be
the center of the neighborhood, and the neighborhood is said to be centered at x. The

horizontal spaces of an S'-product neighborhood are the subspaces ({6} x B(0,¢71))
for 0 € S*.

We need a semi-local version of this result. First a definition.

Definition 11.3. Recall that given a point y in an Alexandrov space B and given a
compact subset A of B disjoint from y we denote by A" C S, the compact subset of
the tangent sphere of B at y consisting of the tangent directions at y to all minimal
length geodesics from y to A. Given four compact sets Ay, As, By, B2 disjoint from
y we say that {A].A5, B, By} C Sy form a (2,0)-strainer if the following hold:

1. d(Al,B])>m—0 fori=1,2,

2. d(A}, AY) > m/2 -4,

3. d(B},B}) > m/2 -4, and

4. d(A;, B) > /2 — 0 for all i # j,
where d denotes the distance function on S.

Proposition 11.4. For every ¢ > 0 sufficiently small there is a positive con-
stant ey(€') such that for all 0 < € < eg(€') the following hold. For all 6 > 0
sufficiently small, and, given d > 0 and a length r > 0 with 0 < d,r < 1/2,
there is é(€',€,8,d,7) > 0 such that the following hold for all ¢ < é(€,¢€,6,d,r).
Suppose that By, (x,1) is within € of a 2-dimensional Alezandrov ball B(x,1)
of curvature > —1. Suppose that Ay, As, By are compact subsets of B(x,1). Let
F = (f1, f2): B(z,1) = R? where f1 = 1(d(A1,-) — d(Bi,")) and fo = d(As,-). Let
D = F~Y(R) where R is the rectangle [a,a’] x [c,c]) with side-lengths, o' — a and
c — ¢, each at least r, and suppose that each of Ay, As, By are at distance at least d
from D. Suppose also that for each z € D there is a point b(z) at distance at least
d from z such that the subsets Ay, Ay, BY,b(z) form a (2,0)-strainer in the tangent
sphere S,. Suppose that Al,Ag,Bl are compact subsets of Byz,, (x,1) within é of
Al,Ag,Bl, Tespectwely, and let F: Byag, (7,1) — R? be the map given by F where

(fl,fg) with f1 = ( (Al, ) — d(Bl, )) and fo = d(AQ,'). Set D = F_l(R).
Then.

1. For every z € D there is an St-product neighborhood with e-control, ¢: S' x
B(0,e7') = By, (%,1) centered at Z.

2. The map F:D—>Risa topological S*-fibration.
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8. For any S*-product neighborhood with e-control ¢: S'xB(0,e 1) = Bz, (z,1),
any fiber of ﬁ][) through any point of p(S' x B(0,e71/2)) is contained in
St x B(0,e7Y) and is a circle that is within € of orthogonal to the horizontal
subspaces’ of the S'-product structure and meets each horizontal subspace in
a single point.

Proof. Fix ¢ > 0 and € > 0. Eventually we will put conditions on the size of €, but
for now it is simply fixed. Suppose that we have constants and balls satisfying the
hypothesis of the proposition. Given p > 0, according to Lemma 10.10, if § > 0 is
sufficiently small there is d’ > 0 depending on d and 6 such that B(z, 1) is interior
u-flat at every point of D on all scales < d’. Thus, provided that ¢ is sufficiently
small and that ¢ is sufficiently small (given d’ and ¢), it follows from Lemma 11.1
that every point of R is the center of an S L_product neighborhood with e-control.
Provided that ¢ is sufficiently small, and given § and d, provided that € is suf-
ficiently small, it follows from Theorem 12.7 of [3] the fibers of F |5 are compact,
connected 1-manifolds with boundary in the boundary of Bz, (z,1). Since this

ball is disjoint from the boundary, this implies that the fibers of F'|7 are circles.

Furthermore, by Theorem 11.14 of [3] given ¢ € D and a sequence g, € F~1(F(q))
converging to ¢, any limit 7 in the tangent sphere S; of the directions of any subse-
quence of secant geodesics qq;, satisfies }Z(T) =0 for i = 1,2 (see also, Lemma 9.45).

Now suppose that we have a sequence e, — 0, the other constants (also indexed
by k) sufficiently small for each k so that the results of the previous two paragraphs
hold, and examples indexed by k satisfying the hypothesis for ¢, and the other con-
stants. The following holds at any point Zj, € Dy. Let p: ST x B(0,€) — Byz,, (z,1)
be an S!'-product structure with e-control with the property that Z, € (St x
B(0,e71/2)). Fix geodesics 71k, Y2k, V3,65 Yok from Z to Ay, Aok, B1 g, b(Z), re-
spectively. Passing to a subsequence and rescaling the metric on the S'-product
neighborhoods gives a sequence converging to S' x R? with the Z converging to the
central point p = (1,0). The pre-image under ¢ of these 4 geodesics converge as
k — oo to 4 horizontal straight lines Ly, Lo, L3, Ly in S' x R%. By Proposition 9.23
(or more precisely by Addendum 9.24) we can choose the Euclidean coordinates on
the R2-factor of the limit so that the Ly, L3 are the negative and positive z-axis
and Lo and L, are the positive and negative y-axis. The standard contradiction
argument shows that given ¢ > 0 provided that e > 0 sufficiently small, the sub-
space of the tangent sphere Sy to at any point z € D that is the intersection of the
zero loci f{ and f} in the tangent sphere at z consists of two points within €’ of the
tangent directions to any S'-factor in an S'-product structure with e-control. This
means that, given €, provided that ¢ > 0 is sufficiently small, all limiting directions
of secant lines as in Item 3 are within ¢’ of orthogonal to the horizontal plane in any
Sl-product structure with e-control.

The last thing to see is that, provided that € > 0 is sufficiently small, the fibers
of F meet each horizontal plane at most once. But, given what we established in
the previous paragraph, that is clear from Lemma 9.45. ]

9This means that fixing any ¢ in the neighborhood the limit as ¢’ € F~*(F(q)) approaches ¢ of
the geodesic in the S'-product structure from ¢ to ¢’ is within € of the S*-direction.
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Remark 11.5. The argument in the next to the last paragraph of the proof can
be enhanced allowing us to use the local Sl-product structures with e-control to
establish that F' is a fibration with fibers that are circles close to the fibers of the
local St-product structures. This allows one to avoid the reference to [3].

Addendum 11.6. We formulated this proposition for three fixed compact sets
Ay, Ay, By, a rectangle R defined by coordinate functions f; = %(d(Al, ) —d(By,-))
and fo = d(Asz,-) and a fourth point b(z), depending on z € R, forming (2,9)-
strainers. But it can equally well be formulated with two fixed compact sets A1, As,
a rectangle defined by coordinate functions f; = d(Aj,-) and fo = d(Asg,-), and
points b1(z), b2(z) depending on z € R so that for each z € R the Ay, As, b1(z), ba(z)
form a (2,0)-strainer at z. Details are left to the reader.

Corollary 11.7. There is a universal constant C' < oo such that under the hypothe-
ses of Lemma 11.1 the diameters of the circle factors of the S*-product structure in
the metric A\*g, are bounded above CE.

Proof. Suppose that Byz, (v, 1) is within € of B(Z, 1) which is interior u-flat at scale
ro at y € B(T,7/8). Let ai,as,b1,be be a (2,9) strainer of size ro for y. (Here, §
depends on u and goes to zero as u does.) Suppose that y € Byz, (z,1) is within é
of 7 and 51,52,31,52 are within € of a1, as, b1, by and hence these latter four points
form a (2, ¢’)-strainer at every point of a ball B(y,r) for some r > 0 depending only
on ro. (Here, ¢’ approaches § as ¢ and goes to zero.) Now let p: S' x B(0,e71) &
U C B(x,1) be an S'-product neighborhood centered at y. By the last statement
in Lemma 11.1, provided that € is sufficiently small, this neighborhood is contained
in B(y,r). We have the map F = (d(ay,-),d(az,-)): U — R2. Let p,q be points
of the fiber F~!(F(y)) through y. Then for i = 1,2 we have d(a;,p) = d(a;,q).
Let p,q € B(Z,1) be within € of p and ¢. It follows that for ¢ = 1,2 we have
|d(a;,p) — d(a;,q)] < 4é. This means that under the map F = (d(ay,-),d(az,"))
we have |F(p) — F(q)| < 8. Since for p and ¢ sufficiently small, F is a 2 almost
isometry, we see that d(p,q) < 16€, and hence d(p, q) < 20¢.

This shows that the diameter of the fibers of F' are bounded above by 20é. It
follows from the previous proposition that the diameter of a fiber of F' through the
central point of a S'-product neighborhood is within a factor of 2 of the diameter
of that central fiber. This completes the proof of the corollary. O

Next, we establish a truly global result obtained by piecing together the S'-
product structures to form a global S'-fibration.

11.2 The global S!'-fibration

Proposition 11.8. For all € > 0 sufficiently small the following holds for all € > 0
less than a positive constant €1(€'). Let (M, g) be a Riemannian manifold. Suppose
that K C M is a compact subset and each x € K is the center of an S'-product
neighborhood with e-control. Then there is a finite collection {¢;: S* x B(0,e~1)} of
Sl-product structures with e-control, constants T; < €', and embeddings 1;: S x
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B(0,T;) = S' x B(0,e") that are within € of the inclusion in the C!Y/<1-topology
with the following properties:

1. K is contained in

V = Uipi o 9(S" x B(0,T7)).

2. There is an S*-fibration structure on V whose restriction to each @; o ; (S x
B(0,T;)) agrees with the fibration structure induced by the product structure.

Define a circle action on each @; o 1;(S' x B(0,T;)) as follows. For any p1,p2
in the same fiber F, let {(p1,p2) be the length of the arc on F from py to pa where
the arc moves in the direction of the orientation on the S'-factor and the length is
measured using g. Similarly, let {(F') denote the length of F' in g. Then 0 -p1 = po
when 0 = 27l(p1, p2)/L(F). Pulling this local action back via (¢; o ;)" gives an
action of S on S' x B(0,T;) that is within € in the C!Y/<\-topology of the standard
action coming from the product structure.

The proof of this proposition takes up this entire subsection. For € > 0 sufficiently
small, we set N = [1/¢]. Recall that an S'-product neighborhood U C M is the
image p(S! x B(0,e7 1)) with the property that there is Ay > 0 such that ¢*(\g) is
within € in the CV-topology of gsq, the product of the Riemannian metric of length
1 on St and the usual Euclidean metric on the ball B(0,e™!) in the plane.

11.2.1 Comparing the standard metrics on the overlap

The first thing to do is to show that on the overlap of S'-product neighborhoods
the standard metrics are close.

Claim 11.9. Given € > 0 there is € > 0 such that the following holds. Suppose that
Up = ¢1(St x B(0,e7 1)) and Us = po(S* x B(0,e71)) are S*-product neighborhoods
with e-control in a Riemannian 3-manifold (M, g). Suppose that there is a point

z € (St x B(0,e71/2)) No(St x B(0,e71/2)).

Then fori = 1,2 the circle factor F; though x in the product structure on U; is within
€' of vertical in the product structure of Us_;. The length of this fiber is between 1 —¢'
and 1 + €' times the length of any circle factor in the product structure of Us_; as
is the ratio Ay, /Au,. The homotopy class of F; generates m1(Us—;). [All lengths are
measured using g.]

Proof. Without loss of generality we can assume that Ay, > Ay,. Let ¢ be the
g-shortest homotopically non-trivial loop through = in Us. Its g-length is close to
)\&21 Hence, it is contained in U; and its length with respect to the product metric
gsta on Uy is close to (Ay, /Au,) < 1. Let us suppose that it is homotopically trivial
in U;. Then it bounds a disk contained in the g-neighborhood of size 2)\[}21 of x.
This disk is then contained in Us, which is a contradiction. It follows that ¢ is a
homotopically non-trivial loop in U; through z. Since its length in the metric ggq
on Uj is close Ay, /Ay, < 1, the loop ( generates the fundamental group of U;. It
follows that Ar, /Ay, must be close to one. The errors in these estimates go to zero
as € tends to zero. O
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Corollary 11.10. We continue with the notation of the previous claim. Given
€ >0, if e > 0 is sufficiently small then the restrictions of (gofl)*gstd and (cp;l)*gstd
to 1(ST x B(0,e71/2)) Na(S' x B(0,e71/2)) are within € in the CN -topology.

11.2.2 Bounding the intersections

Now we turn to constructing a finite cover with a uniformly bounded number of
neighborhoods meeting any given neighborhood.

Claim 11.11. Fiz R < oo and € > 0. Then for all ¢ > 0 sufficiently small (in
particular €71 > R+ 1), there is a finite collection of S*-product neighborhoods with

e-control
01(ST x B(0,e™)),...,0or(S* x B(0,e1))

such that the union of the images U} = ¢;(S* x B(0, R)) cover K, and the ¢;(S* x
B(0,R/3)) are disjoint. Furthermore for everyi, j, the Riemannian metrics (; )*gsa
and (go}l)*gstd are within € in the CN -topology for Riemannian metrics on

©i(ST x B(0,e71/2)) N (S* x B(0,e71/2)).

Proof. Fix e > 0 sufficiently small. If ;(S* x B(0, R/3)) N, (S x B(0,R/3)) # 0,
then, by the previous result, the standard metrics on the two images almost agree,
and in particular, their union is contained in ¢;(S* x B(0, R)). Take a collection
{U; = 0i(S* x B(0,e1))} of S'-product neighborhoods with e-control centered at
points of K, maximal with respect to the property that the ¢;(S* x B(0, R/3))
are disjoint. Then the U = ¢;(S! x B(0, R)) cover K. If we have chosen ¢ > 0
sufficiently small, the last statement follows from the previous result. O

Claim 11.12. Given R > 4, there is an integer C = C(R) such that following holds
for all € > 0 sufficiently small. Let (M, g) be a Riemannian 3-manifold. Suppose
that we have a collection {U; = ;(S* x B(0,e1))}; of S'-product neighborhoods
with e-control. Let U; be the image of ¢i(S' x B(0,R + 1)). Suppose also that
©i(S* x B(0,R/3)) N¢;(S* x B(0,R/3)) = 0 for all i # j. Then for each i the
number of j for which Uy N U; # 0 is at most C' — 1.

Proof. This is immediate from volume comparison and the fact that the standard
metrics almost agree on the overlaps of the Us. O

For R < e~ ! we define a reduced S*-product structure with e-control of size R to
be an embedding ¢: S x B(0, R) — M with the property that there is A > 0 such
that p*\2¢g is within € in the CV-topology to the standard product metric ggq on
this product.

Fix 4 < R < ¢! and a covering {U,}sea of K as in Claim 11.12. It follows
directly from Claim 11.12 that we can divide the open sets {U,} into C' groups
Uy, ..., Uc with the following properties:

1. Each U; is the union of a finite number of the U,, denoted U; 1, ..., Ui jo (i) that
are pairwise disjoint in M.
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2. Each U, in the original collection occurs as exactly one of the U; ;, so that in
particular, setting U/ equal to the images ; ;(S! x B(0, R)) for 1 < j < jo(i),

the union Uz-czll/{i’ covers K.

Definition 11.13. For each 0 < D < 1 we define L{i[D] to be the union of the images
i;(S' x B(0, R+ 1— D)). Notice that &/ = 1"},

11.2.3 The Gluing

Suppose that we have an open subset W C M that is the union of restrictions
of Sl-product neighborhoods with a-control to subsets U; = ¢;(S* x B(0, R')) for
some R < R’ < R + 1, and suppose that the circle fibrations of the various U;
are compatible so that they define a circle fibration on W. Suppose also that we
have a reduced S'-product structure with e control ¢: S x B(0, R +2) — M. Let
U= ¢(S'x B(0, R+1)). Assuming that o and e are sufficiently small, let us define
a map from the saturation, Saty (U N W), of U N W under the S'-fibration on W
to S x B(0,R + 2). For o and e sufficiently small Saty (U N W) is contained in
©(S* x B(0, R+ 2)). Suppose that p is a point of Saty (U N W), say p = ¢(0, x).
Let F), be the fiber of the fibration structure on W through p. For each q € F}, we
have (0(q),x(q)) defined by ¢~ 1(q) = (0(q),x(q)). We form

1
T 200

where dup, is the measure induced by the restriction of the Riemannian metric of
M to F, and {(F},) is the length of this circle in M, and define the map

Y(p) = (0(p), 2(p))-

The following is obvious from the definitions

i(p) =

Claim 11.14. If F is an orbit of the S'-fibration on W passing though a point of
U, then &: F — B(0, R+ 2) is constant.

Corollary 11.15. Given €1 > 0, then for all a, e > 0 sufficiently small, the map
#: Saty (UNW) — B(0, R+ 2) is within e in the CN+1-topology of the restriction
to Saty (UNW) C U of the composition of p~1 followed by the projection in product
structure to B(0, R + 2).

Proof. Tt follows immediately from Corollary 11.10 that the fibers of the S'-fibration
on Saty (U N W) induced from the fibration on W are geodesics in a metric that
is CN-close to the metric gsq on U. From this we see that the map p — z(p) is
CN+1_close to the composition of ¢! with the projection to B(0, R + 2) with the
same error estimate. O

It follows from Corollary 11.15 that given €; > 0, there is a constant ag(e1) > 0
such that if a and e are less than a(€1), then we can define a map ¢ : Saty (UNW) —
St x B(0,R + 2) by sending p = ¢(0,7) to ¥(p) = ((p),#(p)). Again invoking
Corollary 11.15, we see that:
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Corollary 11.16. Provided that o and € are less that a(€1), the composition
Saty (U N W) 25 81 x B0, R +2) -2 o(S* x B(0, R + 2))

is within €1 in the CNT1-topology of the inclusion of Saty (UNW) C o(S' x B(0, R+
2)).

Let 8: [0, R'] — [0,1] be a weakly monotone function that is identically 1 near R’
and with 371(0) = [0, R' — 1/C]. We define B;: U; — [0,1] by Bi(¢:(0,x)) = B(|z|),
and extend S; to all of M be defining it to be identically 1 onM \ U;. For all i such
that U;NU # 0, the gradients of the 8; with respect to A\? g are bounded independent
of i. (Recall that /\%]g is the multiple of g which is close to the standard product
metric gstq on U.) We set B: M — [0,1] equal to the product over the i of the ;.
This function is identically 1 in the complement of W and the restriction to U of
B has a gradient with respect to gstq that is bounded depending only on C. Define
U: U — St x B(0, R+ 2) by

~ ~

U(p) = Bp)e~ " (p) + (1= B(p))(p),

where we use the local linear structure on S x B(0,¢~!) to form the linear combi-
nation.

Claim 11.17. Given €; there is aq = ai(€e1) > 0 such that if o and € are less than
ai, then W is within 1 of ¢~ ' in the CN*1-topology using the metrics )\QUg on the
domain and gsq on the range.

Proof. This follows immediately from Corollary 11.16. O

We set W’ C W equal to 371(0). The following is immediate from the definitions
and Claim 11.17.

Claim 11.18. Fiz 0 < €1 << 1/C and oy = aq(e1) from Claim 11.17. Fiz 0 <
e,a < €1. With these conditions on the parameters we have: W' is the union of
©0i(S* x B(0,R")) where R" = R' —1/C. In particular, W' is saturated under the
St-fibration structure on W. The image of ¥ contains S' x B(O,R + 1 —1/C).
Setting ¢': St x B(O,R+1—1/C) — M equal to the restriction of the inverse of
W, we have

1. ¢ is a reduced S*-product neighborhood with € -control of size R+1—1/C.
2. If ¢'(0,2) C W', then ¢'(S' x {x}) is a fiber of the S*-fibration on W', so that

the S-fibration structure on U' coming from the S'-product structure and the
given S'-fibration structure on W' are compatible on the overlap U' N W' and
hence together define an S*-fibration structure on W' U ¢'(S* x B(0,R + 1 —

1/C)).
3. For any T < R+1, the image ©'(S*x B(0,T)) contains (S x B(0,T—1/C)).



11 3-DIMENSIONAL ANALOGUES 119

We denote the image ¢'(S* x B(0, R+1—1/C)) by U’. The claim shows that, at
the expense of shrinking W to W’ and at the expense of deforming ¢ slightly in the
CN_-topology to a reduced S'-product structure with €’-control, ¢': S* x B(0, R +
1—1/C) — M, we can make the S!-fibrations compatible on the overlap, so that
together they define an S'-fibration on the union W’ U U’. One more remark is in
order. If we have not a single reduced S'-product neighborhood with e-control U,
but rather a collection of them Uj, ;, 1 < j < jo(i0), whose images are disjoint, then
we can perform this operation simultaneously on all of them, so as to deform them
all to S'-product neighborhoods with €;-control compatible with the circle fibration
on W'.

Now we are ready to apply this gluing argument by induction to the Uy, ..., Uc.
We begin with ¢;. In the inductive step, deforming and gluing in U;,, we cut down
the S'-product neighborhoods in the neighborhoods that make up the previous ;
by 1/C. The deformation of the maps ¢;, ; produces a reduced S*-product neigh-
borhood with e;-control where the amount of the deformation and €; depend only
on the control we have at the previous step. Thus, we can iterate this construc-
tion C times keeping a fixed control, ¢, on all the S'-product neighborhoods and
a given control on the size of the deformations, provided only that we arrange that
the original control, €, is sufficiently small given C, €, and the desired control on all
deformations.

It follows from the second conclusion of Claim 11.18 that the S*-fibrations induced
by the product structures on the deformed If; are compatible and hence define a
global S'-fibration on the union. It follows from the third conclusion of Claim 11.18
that the union of the deformed S'-product neighborhoods contains K. All the
estimates stated in Proposition 11.8 are immediate from the construction. This
completes the proof of Proposition 11.8.

11.3 Balls centered at points of 0M,

The results about the generic behavior over interior points of the base are enough
to establish what the neighborhoods of the boundary of the M, look like.

Proposition 11.19. Fix é > 0. For all n sufficiently large, for any point x € OM,,
the ball By (»y(,1) is within € of the interval of length 1, and x is within € of the
endpoint of J.

Proof. Suppose that the result is not true. Then after passing to a subsequence
(in n) we can suppose that for each n we have x,, € 0M, for which the result
does not hold. Let T}, be the component of dM,, containing x,, and let C,, be the
topologically trivial collar containing the neighborhood of size 1 of T,,. Since dM,, is
convex and p, < diam M, /2, the balls By (,.)(7n, 1) are Alexandrov balls. Because
the curvatures on the topologically trivial collar which includes the neighborhood of
size 1 about M, are bounded above by —3/16, it follows that p,(z,) < 1/16/3.
Hence, B, = By (3,,)(Tn, 1 /4) is contained in C,. After passing to a subsequence,
we shall show that the By (,.)(zn,1/4) C Cp converge to the interval. Assuming
this, it follows that the By (5,)(zn, 1) also converge to an interval.
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We have already remarked that because of the convexity of dM,, the B, are
Alexandrov balls. Passing to a subsequence, there is a Gromov-Hausdorff limit J
which is an Alexandrov ball of curvature > —1 of diameter 1/4 centered at T =
lim z,,. Because of the volume collapsing condition on the M, it follows that J is
either of dimension 1 or 2. We rule out the possibility that dim J = 2. Suppose to
the contrary that the dimension of J is 2. Let ¢, be the Gromov-Hausdorff distance
from B, to J. Fix ¢ > 0 a universally small constant. We can suppose that € is
sufficiently small so that Proposition 11.4 holds for the given values of € and e. Fix
£y as in Proposition 9.36. Fix é > 0 sufficiently small so that Proposition 11.4 holds.
Then there is a point § of J within distance £y/2 of T that has a (2,d/2)-strainer
{a1,az2,b1,be} of some size d > 0. Then for 0 < r < {y/2, with r sufficiently small
(depending on d and 0), the same set of four points form a (2, §)-strainer centered at
any point of B(7,r) of size d/2. We set F = (f1, fo): B(¥,1) — R? by defining f; =
$(d(a1,-) — d(b1,-)) and fo = d(as,-). Thus, there is a rectangle R in R? with side
lengths 7/, depending only or 7, 6, and d such D = F~!(R) is contained in B(y, 7).
For all n sufficiently large €, < é(¢’,¢,6,d/2,r") from Proposition 11.4 and also less
than £o/2. We lift the (2, §) strainer to four points {ay, az, b1, b2} in By (5,,)(Tn, 1/4)
and define F = (fi, fo) with f; = H(d(@, ) — d(bs, -)) and fa = d)ads, ) and define
D= ﬁ’l(R). According to Proposition 11.4, for all n sufficiently large F:D—>R
is a locally trivial S'-fibration. In particular, w1 (D) = Z. Of course, for any point
Yn € Bg%(xn)(:nn,l/él) within €, of 7 the ball U, = B>\2gn(yn,r’/2) is contained
in D. Consequently, the image, I'n, of the homomorphism 71 (U,) — m1(Ch, 2y
induced by the inclusion mapping is either trivial or infinite cyclic and the quotient
71(Ch, xy) /Ty, contains an infinite cyclic factor.

Since p(z,) < 3, the diameter of T}, in the metric p,2(z,)gy, is at most 3Kwy,
it follows that m1(C,,xy,) is generated by elements represented by loops based at
x, of length at most 6 Kw,. In particular, there is a loop based at z, of length
at most 6 Kw, whose image in 71(C),x,)/T, is of infinite order. Since w, — 0
as n — oo, this contradicts Proposition 9.36. This completes the proof that the
Gromov-Hausdorff limit, J, is an interval.

Now let us show that the boundaries 7, converge to the endpoint of J. Since
wy, — 0 as n — oo, T, converges to some point y € J. Suppose to the contrary that
y € intJ. Fix z # y in J and let 2z, be an approximating point in C,,. Then, for
all n sufficiently large, the distance function from z, is regular in a neighborhood of
T,,. According to Section 13 of [3] this implies that there is a neighborhood of T,
in C, that is topologically a locally trivial fibration over an open interval. This is
absurd since T, is a boundary component of a manifold.

Since By (5,,)(Zn, 1) has diameter 1, it follows that J is isometric to [0, 1). O

11.4 The interior cone points

Proposition 11.20. For any ¢ > 0 sufficiently small, for all € > 0 less than a
positive constant es(€') and for any a > 0, the following holds for all p > 0 less
than a positive constant ps(e,a), for any 0 < ro < ry < 1, and for all € > 0 less
than a positive constant é1(e,a,r1,12). Suppose that, for some n, there are a point
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r € M, and a constant X\ > p~'(z) with the property that the ball Byzg, (x,1) is
within € of a 2-dimensional Alexandrov ball B(Z,1) of curvature > —1 and of area
> a that is interior p-good at T on scale v, where ro < v’ < ri. Every point of
U = By, (z,31"/4) \ Byz,, (x,1'/4) is the center of an S'-product neighborhood
with e-control. B _

There is an open subset U of U containing Byz,, (x,1'/2)\ Byz,, (2,3r"/8) with U
being the total space of an S'-fibration with fibers making angle within € of w/2 with
the_horizontal spaces of the S1-product neighborhoods with e-control at every point
of U and with the fibers isotopic to the Sl-factors by a small isotopy, Furthermore,
given any such U and S'-fibration there is a 2-torus in U that is invariant under
the S'-fibration structure and is contained in By, (x,7'/2). This 2-torus is the
boundary of a solid torus in Byz, (x,7'/2).

Proof. First let us show that it suffices to prove the result when ro = 1 = 1.
For suppose that for every ¢ > 0 sufficiently small and € > 0 less than ey(¢’) and
a > 0 we have positive constants p4(e, a) and €] (e, a) so that the proposition holds
for 7o = r1 = 1. Let o’ be the positive constant associated to a by Lemma 10.8.
Suppose p < p3(e,a’) and é < r2é)(¢,a’). Given balls Bz, (x,1) and B(z,1) as
in the statement for these values of x4 and € and a, and some r’ with ro < ' < ry.
Then (1/7")B(z,r’') is interior p-good at scale 1 at T of area > a’. On the other hand
B1 /12524, (2,1) is within (1/r)é < € (e,a’) of (1/r")B(T,r"). By our assumption
that the result holds in the special case when ro = 71, we see that the conclusion
holds for By /12, (x,r") with 7’ replaced by 1. Hence, by rescaling we see that it
holds for Bz, (x,1) with the given value of 7.

This allows us to assume, as we shall, that 7o = r1 = 1. Suppose that there are
sequences ur — 0 and é; — 0 as k — oo and balls Bkign(k) (wn(k), 1) within € of
standard 2-dimensional balls B(Zy, 1) of area > a that are interior ug-good at Ty on
scale 1 and yet the conclusion of the proposition does not hold for any k. Passing to
a subsequence, we can suppose that the B(Ty, 1) converge to a 2-dimensional ball
B(Tso, 1) of curvature > —1. Because the p; — 0, it follows that B(Zeo, 1) is a
circular cone of some cone angle # < 2x, which is bounded away from zero because
a is greater than zero. Since the é — 0, the Bkﬁgn(k) (Zn(x), 1) also converge to
B(Zo, 1).

Let us first consider the case when 6 = 27 so that B(T«,1) is isometric to a
ball in R?. Then, for any §/2 > 0 for all k sufficiently large there is a (2,0/2)-
strainer {a,asg,by,bs} for Ty (k) Of size 1/2 and there is d’ > 0 depending on § so
that the same set of four points is a (2, §)-strainer at any point of By2g. (T k), d')-
Without loss of generality we can assume that d’ << r’. It follows from Propo-
sition 11.4 that for all k sufficiently large, there are 0 < s < d’ depending on
d’ and ¢ and a closed subset W, ) containing Byag (z(k),s) and contained in

B)‘%gn(k) (Zn(k), d') such that the function F= (]?1, .]?2) where f; = %(d(ﬁl, ) —d(gl, )
and fy = d(ag,-) defines a projection mapping from W, to a closed rectangle in
the plane which is the projection mapping of a fibration of Wy, by circles. Fur-
thermore, by Lemma 11.1, for all k sufficiently large, there is an S'-product neigh-
borhood V' with € control centered at ). Also, according to Proposition 11.4
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the circle of the fibration structure on W) passing through z,,;, is almost or-
thogonal to the horizontal spaces of the S'-product structure centered at that
point and this circle is isotopic in V to the S'-factor. This means that the clo-
sure of V' is a solid torus contained in W, ) whose core is isotopic to the fiber of
the fibration structure on W, ). It follows that the inclusion of V' C Wy in-
duces an isomorphism on fundamental groups, both groups being isomorphic to Z.
Also, it follows that W) \ V' is homeomorphic to T? x I. We have inclusions
VvV C B/\ign(m (Tpk)s 8) € Whay C B/\%gn<k)(xn(k),d’). For all k sufficiently large, the
distance function from x,, is regular on Bkﬁgnm(xn(k’)’ 7/8)\ B)\%gn<k)(xn(k), 5/2),
and consequently, the inclusion of the smaller ball into the larger induces an isomor-
phism on the fundamental group. It then follows from the sequence of inclusions
that the fundamental group of Bki Inii) (:L'n(k), s) is isomorphic to Z and hence the
metric sphere S N2 0 (Tn(k)> 8) is a 2-torus. This 2-torus is contained in W,y \ V
and separates the two boundary components of this region. Since we have already
seen that the difference Wy, \ V is homeomorphic to a product T? x I, it fol-
lows that S)\ing) (T k), 8) 18 isotopic in Wy, to the boundary of W, and that
BA% Inti) (:Un(k), s) is a solid torus. Consequently, since the distance function from

Ty (k) is regular on the pre-image of [s, 7/8] it follows that B A2 (T k), @) is a solid

In(k
torus for every a € [s,7/8]. It is immediate from Propositio<n) 11.8 that there is
an open subset U containing Byzg, (2,7/2) \ Byzg, (x, 31" /8) with U being the total
space of an S'-fibration with fibers making angle within € of /2 with the horizon-
tal spaces of the S'-product neighborhoods with e-control at every point of U and
with the fibers isotopic to the S'-factors by a small isotopy. Furthermore, given any
such U with such an Sl-fibration there is a compact sub-fibration X contained in
it that separates the metric spheres Sz, (z,7/2) and Syz, (x,7'/4). One of the
boundary components dg X of X must also separate these spheres. Of course, Jy X
is a 2-torus. Since the region between the metric spheres is homeomorphic to 72 x I,
it follows that 0y X is parallel to each and hence bounds an unknotted solid torus
in Byzg, (x,7'/2). This contradiction proves the result in the case when the limiting
2-dimensional cone has cone angle 6 = 2.

Now suppose that limiting the cone angle 6 is strictly less than 27. According to
Proposition 9.49 the following holds for all & sufficiently large. There is !, (k) € Mk
such that d/\ign(k) (xn(k), :U%(k)) — 0 as k — oo such that for each k sufficiently large,

one of the following two alternatives holds:
1. the distance function from x’n(k) has no critical points on Byz, (a:'n(k), 1/2)\
{x; (k)}’ or

2. there is ¢ — 0 such that the distance function from z/, k) has no critical points
in Byz, (x’n(k), 1/2) \EA%%(M (asél(k), (k) and has a critical point at distance
(p from m;(k).
In Case 1 the level sets of the distance function are 2-spheres and the metric balls are

topological 3-balls. Let us suppose that Case 2 holds. According to Proposition 9.49
after passing to a subsequence the rescaled balls ¢ 1B/\% . (lc)(avg1 (k) 1/2) converge
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in the Gromov-Hausdorff topology to a complete 3-dimensional Alexandrov space
of curvature > 0. By Proposition 9.46 the limit is actually a smooth, orientable
Riemannian manifold of curvature > 0 and the convergence is C'**°. Thus, the limit
has a soul which is either a point, a circle, or a compact surface of non-negative
curvature.

Claim 11.21. The soul is not a surface.

Proof. If the soul is a surface, then either the limiting 3-manifold or its double
covering is a Riemannian product of a surface with R. The limit cannot be the
product of a surface with R, for if it were, by rescaling we see that the limit of the
B"i i) (T (k> 1) is one-dimensional. If the limiting 3-manifold is a non-orientable
R-bundle over that surface. It would then follow that given any 8 > 0 thereis R < oo
such that for all k sufficiently large any triangle ax’, (kb With lax!, = |ba!, wl =R
has comparison angle less than 3 at 2/, k)" On the other hand, because the limit of
the B/\i O (z! (k) 1) is 2-dimensional, there is By > 0 such that for all &k sufficiently
large there are geodesics from /) *) to points at a fixed positive distance that make a

comparison angle at !, (k) which is least 8y. This contradicts the fact that comparison
angles are lower continuous under limits. O

This shows if Case 2 holds then the soul of the limiting manifold is either a circle
or a point, and hence the level sets d(x/, (k) )~L(b) are either 2-tori or 2-spheres for
every b with (, < b < 1/2 and these bound either solid tori or 3-balls in the metric
ball. In Case 1, the level sets are topological 2-spheres and they bound 3-balls in
the metric ball.

Next, we shall show that in either case, provided that ¢ > 0 is sufficiently small,
the level sets of the distance function from x/, (k) must be 2-tori. Fix 0 < e < e1(€)
such that Proposition 11.8 holds for these values of € and ¢. Consider the annular
region Ay = d(:v;(k), )71([1/4,3/4]). This is a compact subset and if k is sufficiently
large, then every point of this compact set is within € of a point of B(Z, 1) at which
B(Zg, 1) is interior p-flat of some fixed scale s, depending only on a. Provided that
w is sufficiently small, and having taking € sufficiently small, depending on p and a,
by Lemma 11.1 every point of Ay, is the center of an S'-product neighborhood with
e-control and by Proposition 11.8 there is an open subset Uy, x) C M,,(x) containing
Ay that is the total space of a circle fibration where the fibers of the fibration make
angle at most ¢ with the horizontal spaces of the S!'-product neighborhoods with
e-control at every point of Ag. Of course, there is a compact subsurface X; contained
in the base of the fibration with the property that the pre-image, Wp,, of ¥ contains
Ap. Each component of OWj, is a torus. For every b € (1/4,1/2) the level set
d(x!, (k) -)~1(b) separates two boundary components of Wj. Since a 2-sphere in the
total space of a circle bundle cannot separate boundary components of that circle
bundle, it follows that the level sets d(z], (k) )~1(b) are 2-tori.

This implies that for all k sufficiently large, Case 2 holds, and the soul of the
limiting 3-manifold is a circle. Thus, for every k sufficiently large, for every 0 < b <
1/2 the pre-image d(x;(k), )71([0,8]) is a solid torus, denoted T}. We fix b = 3/8. Of
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course, provided that & is sufficiently large B(zy,), 1/4) C Ty C B(y,x), 1/2). This
gives a contradiction and completes the proof of the claims in the first paragraph of
the statement. N

Suppose that we have an open set U with an S L_fibration as given in the second
paragraph of the statement. Since the fibers of U are small, there is a saturated open
subset V' C U that contains the metric sphere at distance 3/8 from x and contained
in A= B(z,1/2) \ B(z,1/4). A slightly smaller compact saturated subset V' also
contains this metric sphere. The boundary components of V' are tori contained
in A. Since V' separates the metric spheres at distance 1/4 and 1/2, so does at
least one of the boundary components of V’'. This boundary component is then
parallel to the metric sphere at distance 1/4 from x and hence bounds a solid torus
in B(z,1/2). O

There is a further result that is not actually necessary for what follows but which
makes the picture clearer and also simplifies somewhat several of the arguments.

Proposition 11.22. Under the notation and hypothesis of the previous proposition,
possibly after making the positive constants us(e,a) and éi(e,a,ri,r2) smaller, the
S1-factors in the local S*-product structures with e-control contained in Byz,, (x, 31" /4)\
Bjag, (z,7'/4) are homotopically non-trivial in Byzy, (x,3r'/4).

Proof. Let us suppose that the result does not hold. The previous argument shows
that we may as well assume that 7o = r; and consider sequences uy, € tending to
0 and a sequence of counter examples By within €5 of 2-dimensional balls B(T, 1)
which are interior pg-flat on scale 1. The limit is a circular cone with cone angle
0 < 27. The fundamental group I'y of By based at x,, is infinite cyclic and the
shortest homotopically non-trivial loop through z,, has a length that tends to zero
as k — oo. Thus, for any € > 0 the number of elements in 7 (By, z,, ) represented
by loops based at x,, of length < e goes to infinity as £ — oco. Fix 0 < d < ¥y,
where ¢y is the constant from Proposition 9.36. Since the circular cone is interior
flat at any point at distance d from the cone point on a scale depending only on d
and the area of the cone is > a, the argument in the proof of the previous result
shows that the following hold for all k£ sufficiently large. For any y € Z with
d(y,z) = d and for any y,, € Bj within €, of y, the ball B(y,,,d/2) is contained
in the total space Vj, of an S!-fibration over a disk with fibers isotopic to the S'-
factors in an S'-product structure. The image of the fundamental group of Vj, in
71(Bg, Tn,,) is then contained in the cyclic subgroup generated by a fiber of the S L
product structures (all such fibers in all such S'-product structures in B(xy, , 7r/8)
are homotopic). But our assumption is that these fibers are homotopically trivial.
This would imply that the image of the fundamental group of Vj is trivial. This
contradicts Proposition 9.36. 0

The topological import of this result about the fundamental group is the follow-
ing:
Corollary 11.23. Under the notation and hypotheses of the second paragraph of

Proposition 11.20, the S1-fibration structure on U extends to a Seifert fibration over
U U By, (x,7"/2) with at most one singular fiber.
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Definition 11.24. B2, (z,7'/4) satisfying the conclusions of Propositions 11.20
and 11.22 and Corollary 11.23 is an €'-solid torus neighborhood near a 2-dimensional
interior cone point, or an € -solid torus neighborhood for short.

Remark 11.25. In fact, a strengthening of this argument (see Theorem 0.2 and
the material in Section 4 of [32]) proves that the order of the exceptional fiber is
bounded above by 27 /a where « is the cone angle of the nearby interior p-good ball
at its central point. We shall not make use of this result.

11.5 Near almost flat boundary points

Now let us turn to the parts of the M, close to flat boundary points of a 2-
dimensional Alexandrov ball. First we need a result that tells us that as we pass
from one 3-dimensional ball to another the points close to boundary points of close
2-dimensional balls don’t change too much.

Lemma 11.26. Given 0 < d < (0.1) and a > 0, there is a positive constant éy(d, a)
such that the following hold for all 0 < € < €(d,a). Suppose that z,z',y € M,
and Byzg, (x,1) and By, (2',1) are within € in the Gromov-Hausdorff distance
of 2-dimensional Alexandrov balls B(%,1) and B(T',1), respectively, of curvature
> —1 and area > a. Suppose that y € Byz,, (7,1/3) N B(yy2g, (2',1/3). Suppose that
(1/2)71 < A/N < 2. Suppose that, viewing y as a point of Byz,, (x,1), it is within é
of a point j € OB(T,1). Then there is z € B(yy2g, (¥, 1) with d(xy2g, (y,2) < d and
with z being within € of a point z € 0B(T',1).

2977.

Proof. We set R = \/X. Let us first consider the case when 1 < R < 2. Then R -
Biwyzg, (y, R71/2) = By, (y,1/2). Let i’ € B(Z',1) be a point within € of y, when
the latter is viewed as a point of Bz, (¢',1). We consider the balls R-B(y', R™'/2)
and B(y,1/2). By Lemma 9.22 the first is within 4Reé of R - B2, (v, R71/2), and
the second is with 4¢ of By, (y,1/2). Since these latter two balls are equal, we
see that R - B(y', R~'/2) and B(y,1/2) are within (4R + 4)é of each other in the
Gromov-Hausdorff distance. Also, it is clear that for of each of these two balls
the curvature is bounded below by —1 and the area is each bounded below by a
positive constant depending only on a. Lastly, by construction y € 0B(y,1/2). By
Lemma 10.7, if, given d and a, ¢ is sufficiently small, then 7 is within distance d/2
of a point w € J[R- B(y', R™'/2)]. Let w € B(yyz,,(2',1) be within distance é of
w. By the triangle inequality, d 24, (y,w) < d/2 + (1 + R)é, and the right-hand
side is less than d if € is sufficiently small. This establishes the result when R > 1.
The other case is symmetric. ]

Now we are ready to study the local structure of points near to 2-dimensional
boundary points, see F1G. 6.

Proposition 11.27. Fiz e > 0 and 0 < € < €y(€’). Then there is a positive constant
&1(€) < & such that for every 0 < £ < &1(€) there is a positive constant fi(§) such
that for any 0 < p < (&) and for any 0 < s1 < ap(§), where ap(€) is the constant
defined just before Proposition 10.29, and for all € > 0 less than a positive constant
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€a2(€,&, 81), the following hold. Suppose that, for some n, there are a point x € M,
and a constant X > p~'(z) with the property that Byz, (x,1) is within é of a 2-
dimensional Alezandrov ball X = B(T,1) of curvature > —1. Suppose that 7y is a
w-approximation to 0X N B(x,3/4) on scale s1. Suppose that v is a geodesic in
Byzg, (%, 1) whose endpoints are within é of those of v. Then:

1. The &-box Ug() is homeomorphic to D? x [0,1] where the disks in this (topo-
logical) product structure are the level sets of f5. The complement of its core,
denoted I/g (%), is homeomorphic to S* x (0,1) x [0, 1] where each circle factor is
the intersection of a level set of f5 with a level set of hy. (These intersections
are called level circles.)

2. Each point of l/g (3) is the center of an S*-product neighborhood with e-control.

3. For any q € l/gﬁ) and any S'-product neighborhood with e-control containing
q, the angle (in the sense given in the footnote to Proposition 11.4) at q between
the level circle S(q) = F~Y(F(q)) through q and the horizontal space of the S*-
product neighborhood is within € of /2. Furthermore, if q is contained in
(St x B(0,e71/2)), then S(q) is isotopic in the S'-product neighborhood to
an S'-factor.

Proof. We fix positive constants €, € < ey(€'), & < &, and s1 < ap(§). Rescaling
has no effect on & nor on p and scales € linearly. Thus, as before, we can assume
that s is fixed throughout the argument. We denote the endpoints of v by e, and
those of ¥ by €+. We work with the metric A2g,, so that in particular, £(5) means
the length of 4 with respect to this metric.

If the endpoints of 7 are sufficiently close to those of 7, then 7 is close to a geodesic
in B(z,1) with the same endpoints as . This geodesic is also a p-approximation
to X and we can simply replace v by this geodesic. This allows us to assume the
following: for any fixed 8 > 0 we can choose ¢ > 0 sufficiently small so that 7 is
within 5 of .

Provided that & > 0 is sufficiently small, u is sufficiently small, and € is sufficiently
small, it follows from Lemma 10.24 that f5 is regular on 7¢(7y). Hence, each level
set L of f, is a Lipschitz surface and these level surfaces foliate 7¢(7y). It also
follows from this lemma that for any y € ug('y) there is a point z such that the set
{((eq)', (e=),, 2"} is a (2,10€)-strainer of size £ at y. Hence, by Proposition 11.4
provided that ¢ is sufficiently small given € and € and provided that € is sufficiently
small given €, ¢, £, s1, we have:

1. every point of Vg (7) is the center of an S'-product structure with e-control,
and

2. the map F' = (f5, hy) determines a fibration of Vg(ﬁ) with fibers that are circles
almost €-orthogonal to the horizontal spaces of the S'-product structures at
the various points. Hence, for £ and p sufficiently small, depending only on e,
and for € sufficiently small, I/g (¥) is homeomorphic to S* x (0,1) x [0, 1] where
the circle-factors are the level circles of F'.
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This establishes the second and third parts of the proposition. We turn to the first
part. We shall show that provided that £ is sufficiently small given €, provided that
w is sufficiently small, and provided that € is sufficiently small given &, e, the level
sets of f5 are homeomorphic to disks. From the immediately preceding discussion,
it follows that the boundary of any level surface for f5 is a single circle. Since
the level sets of f5 are connected, to show these level sets are homeomorphic to
disks it suffices to show that they have virtually abelian fundamental groups and
are orientable. The level sets are orientable since M, is and since they are the level
sets of a regular Lipschitz function so that there is a neighborhood of the level set
in M, that is homeomorphic to the product of the level set with I. Thus, the first
part of the result is completed by showing the following:

Claim 11.28. For & sufficiently small, for u sufficiently small, given &, and for
€ > 0 sufficiently small, the fundamental groups of the level sets of f, are virtually
abelian.

Proof. We suppose that the claim does not hold. Then there are sequences of
& — 0, py tending to zero sufficiently small so that Lemma 10.24 holds for &,
and é, — 0 and counter-examples vg, (7;) with the fundamental groups of the
level sets of f,, not virtually abelian. Take as base points p, the midpoints of
k- Notice that for all k sufficiently large, since the length ¢(7) of the boundary
approximating geodesic vy in the 2-dimensional ball is at least s;/50, by Part 5 of
Lemma 10.24, we have that B(ps,&s1/200) is contained v¢(7;). Also, notice that
the map 71 (Lk, pr) — 71 (ve¢(k), pr) induced by the inclusion is an isomorphism.
We denote by ¢ = £y€s1/200, where £y is the constant from Proposition 9.36.

The above argument shows that given 0 < ¢t < &, for every k sufficiently large
Ve, (k) \ e () is homeomorphic to ST x I x [t&0(vk), £€(vk)) where the circle factors
are the level circles of Fj, = (f5,, h5, ). It follows that for all k sufficiently large there
is a point yx € B(pk, ') and an open set Uy which is the total space of a S*-bundle
over a disk with B(yg,?'/4) C Ux C B(yg,?'/2), and hence 71 (Ug, yx) = Z. It also
follows that for all & sufficiently large LN (ve, (3%) \ V¢ (Fx)) is an annulus and hence,
denoting Ly (t£) by the intersection Ly (t§) = Ly Nvge (), the inclusion map induces

an isomorphism of fundamental groups 71 (L (t£), px) = m1(ve(Vk), pr). Hence, the
inclusion induces a injection 1 (Ly(¢€), pr) — m1(B(pk, £s1/200), pr)-

It follows from Part 4 of Lemma 10.24 that the diameter of L (t£) is at most
4s1(1 + 2€)t€, and hence m1 (L (t§), py) is generated by elements {ci, ..., ¢4} rep-
resented by loops of length at most 8s1(1 + 2£)t£ based at pg. If m (Li(t),pr) =
m1(Lg, px) is not virtually abelian then, since it is the fundamental group of a
non-compact surface, it is a free group of rank at least two. Hence, at least one
of the ¢;, let’s call it ¢y, has the property that no power of the image of ¢; in
1 (B(pk, £51/200), i) is contained in the image of w1 (Ug, yx) — m1(B(pk, &s1/200), pr).
If ¢ is sufficiently small, then contradicts Proposition 9.36, as we see by rescaling by
200/s1€. O

The claim establishes the first part of the proposition and hence completes the
proof of the proposition. O
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The above arguments show that in fact the S'-product neighborhoods in this
result can be chosen in the following way.

Addendum 11.29. Under the hypothesis and notation of the previous proposition,
possibly after making the positive constants 7z(£) and és (e, &, s1) smaller the following
holds. For any point z € ug (5) and any the S'-product structure with e-control
centered at x, p: S' x B(0,e”') — M, the Euclidean coordinates on R? can be
chosen so that the following hold for any point ¢ € p(S! x B(0,e71/2)):

1. For any geodesic ¢ from 7 to ¢, ¢! of intersection of ¢ with the S'-product
neighborhood is within € of the straight line starting at ¢ in the negative
y-direction in the horizontal B(0,e™1).

2. For any geodesics (4 from e+ () to ¢, ¢! of the intersections of (4 with the
S1-product neighborhood are within € of horizontal straight lines in B(0, e 1)
starting at ¢ in the zi-directions.

Definition 11.30. We call any neighborhood v¢(7) for which there is a geodesic y
in a 2-dimensional standard ball satisfying the hypotheses of Proposition 11.27 (and
hence v¢(7) satisfies the conclusions of the last two results) an e-solid cylinder neigh-
borhood at scale s1 near a flat boundary, or simply an e-solid cylinder neighborhood
at scale s1 for short.

Lemma 11.31. For any 0 < £ < & and any 0 < s1 < «ag(§) there are positive
constants €s(€,&,s1) < é(e,&, 1) and pg(§) < T(&) such that following hold for 0 <
w< pg(§) and 0 < € < és(e, &, s1). With notation and assumptions as in the previous
proposition, let ex be the endpoints of 7.

1. For any y € v¢(7), we have Je_ye, >m—8&¢.

2. For eachy € Vg(ﬁ) there are points z,w at distance £(7)/8 from y such that for
any minimal length geodesic o from 7 to y, denoting by a the intersection aN7y
we have that Zayz, Zzyw are each greater than 7 /2 —2£% and Zayw > m—262.
Lastly, ZE_yz > — 6€.

3. For any c € [€2,€] and for any level surface L of f5 the distance from any
point of LN h%l(c 4(y)) to LN~ is at most (14 4&)c- £(7).

4. ve2() contains B(y,£20(7)/10) about the intersection of the center of ve(7)
with ~.

5. The geodesic 7 is within £24(5)/100 of the arc on OB(T,1) with the same
endpoints as .

(Here all distances and £(Y) are measured with respect to \2g,,.)

Proof. The first four items are a direct consequence of Lemma 10.24 and a standard
limiting argument. Let us consider the last statement. If it is false then we have a
sequence (1, — 0 and for each n a sequence €, ,, tending to zero as m — oo and
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counter-examples v, ,, with generating geodesics 7, ,, whose endpoints are within
én,m of those of v, ,, which is a ju,-approximation to dB(Y,, ,,), s1(n)) on scale s1(n).
This means that B(Zpm,1) is boundary u,-flat near y,, ,,, € 0B(Tpm,1/3) on all
scales < s1(n) and Ynm C B(Yy,m, 51(n)) has endpoints in 0B(y,, ,,, 751(n)/8). For
each n, since €, , — 0 as m — oo, passing to a subsequence in m we can assume
that the B(y,, ,,s1(n)) converge to B(y,, «,s1(n)) and that the 7, , converge to a
geodesic Yy, 00 in B(Y,, o0, 51(1n)) of length at least s1(n)/100. By Corollary 10.6 the
endpoints of v, are contained in dB(¥,, ., s1(n)) and indeed are the limits of the
endpoints of the 7, ;,. Now we consider (1/s1(n))BY,, ), s1(n)). Since the u, tend
to zero, these unit balls converge to the unit ball in half-space centered around a
boundary point, and passing to a subsequence in n we can assume that the 7,
converge to a geodesic Yoo,00- Since the limit is a ball in flat half-space it follows
that Y000 is be contained in the boundary. Similarly, the arcs (1/s1(n))om 00 in
(1/51(n))0B(Fp, 00, 51(n)) converge to Yoo,00- Thus, for each n we can choose m(n)
such that both the 7, ;,(n) and the ay, () converge to Yoo co- Since the length of
Yn,m(n) 18 at least s1(n)/100. This shows that the 5 condition holds for all (n, m(n))
for all n sufficiently large, which is a contradiction. O

We shall also need smooth vector fields well-adapted to v¢(7).

Proposition 11.32. Again with the notation and assumptions of Proposition 11.27
there is a smooth unit vector field x on ve(7y) such that, setting d+ equal to the
distance function from the endpoints €1 of 7, we have d’_(x) > 1 — 36§, d (x) <
—1+44¢. Furthermore, on ve(Y) \ vag2(3) we have |h%(x)| < 11€2. Since £ <1072,
gl ~ -

for any points p,q on a flow line of the flow generated by x, with p € v3e/4(7)\vag2(7),
we have

‘ h5(p) — h5(q)

f5(p) = f5(0)
In particular, any maximal flow line of x that meets h%l[(), 3¢/4]) is a closed interval
with endpoints in the ends of v¢(y) and this interval meets each level set of f5 in a
single point.

‘ < 1262,

Proof. We consider the subset V of the unit tangent bundle of I/g () consisting of
all unit tangent vectors 7 at points y for which the following hold:

1. The distance between 7, and 7 in S, (M,) is greater than /2 — 2¢2,
2. The distance between (d-); and 7 is greater than 7 — 6¢.

3. There exists a point w at distance £(7)/8 from y such that (i) the distance in
in the tangent sphere at y, Sy, from 7; to wj, is greater than 7 — 2¢2 and (ii)
the distance in S, from w; to 7 is greater than /2 — 2¢2.

By Lemma 9.5 the subset V' of the unit tangent bundle of l/g (7) is open. By
the previous proposition its image under the projection mapping is all of y € yg(%).
Because of the third item above, for any y € Vg (7) there are antipodes n, s of the
tangent sphere S,(M,) to M, at y such that the directions of geodesics from y to
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7 lie in the ball of radius 262 about n and the directions of geodesics from ¥ to the
point w lie in the ball of radius 4¢2 about s. It follows that the intersection of V'
with Sy (My,) is contained in the collar C' centered around the equator E determined
by n and s, a collar that has width 12¢2. Furthermore, there is a point e on E whose
23¢-neighborhood contains €’_, so that all points of V' NS, (M,,) are contained in the
13¢ ball, denoted D, about the antipode of e.

Unfortunately, the subsets V' N.Sy(M,,) are not convex. We remedy this defect by
replacing V' by V which is obtained by taking fiber-wise (geodesic) convex hull of V.
The latter is an open subset of the unit tangent sphere bundle with convex fibers.
It is an easy exercise in 2-dimensional spherical trigonometry to show that, since
£ < & < 1073, every tangent vector 7/ in V N Sy(My) lies in C N D where C is the
collar of width 14£? centered around E. Thus, every tangent vector 7/ in VﬂSy (M,,)
satisfies the three conditions above with 2¢? replaced by 11¢? in Condition 1 and in
Part (ii) of Condition 3 and 6 replaced by 36§ in Condition 2. We then have that
the distance between (€4.);, and 7 is less than 44¢

It then follows that for every 7 € V we have —11£2 < h%(T) < 11£? and f%(T) >
1—40¢&. Since V has non-empty convex fibers over every y € I/g (%), there is a smooth
vector field y defined on all of ugﬁ) lying in V.

It follows immediately from these inequalities that if y, z lie on the same flow line
of x then

h5(:) ~ Isw)] _ e

5(z) = )l 1-40¢
Since £ < 1073, if £4(7)/2 < hs(y) < 3((7)€/4, then for any point z on the flow line
through y we have £0(7)/4 < hy(z) < T0(7)/8.

This defines a vector field as required on Vg (7). On vge2(7) there is a smooth
unit vector field x’ with the property that d’ (x) > 1 — 36¢, d (x) < —1 + 44¢.
Patching these together with a partition of unity completes the construction of the
vector field as required. O

< 1262,

Definition 11.33. The metric A\?g, that was used in the previous proposition is
called the metric used to define the neighborhood v¢(7¥). By £(77) we always mean the
length of the geodesic 7 with respect to the metric used to define the neighborhood.
By a spanning disk in an e-solid cylinder we mean a 2-disk with boundary contained
in the side of the solid cylinder that separates the ends of the solid cylinder.

11.5.1 Intersections of the v¢(7)

It is important to have control over the intersections of the various e-solid cylinder
neighborhoods near a flat boundary, see F1G. 7.

Lemma 11.34. Given 0 < £ < & there is a positive constant us(€) such that for ev-
ery u < ps(&) and, given 0 < s1 < ap(§), there is a positive constant é4(&, p, s1) such
that the following hold for all € < é4(&, p, s1). For somen, let By = By ()(71,1) C
M, and By = Bg%(m)(xg, 1) € M, be within € of 2-dimensional Alexandrov balls
B1 = B(%1,1) and By = B(%2,1) be of curvature > —1 and area a. Suppose that
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U; € OB(Ti, 1) with d(T;,7;) < £251/100. Suppose that B; is boundary u-flat at j; on
scale s and let ¥; C B(y;,s1/3) be u-approzimations to OB; of length s1/4. Sup-
pose that 7; C B; is a geodesic whose endpoints are within € of those of 7;. Denote
ve(%i) by vi and suppose that vi Nva # 0. Then there are arcs a; C 7; such that the
following hold: .

1. For i =1,2 the length of &; is at least min(¢(71),£(72))/5.

2. FEither for each i = 1,2, the subgeodesic &; contains an endpoint of v; or one
of the &; is equal to 7;.

3. The geodesics &y and o in M, are within £2s1/100 of each other.

Furthermore, y2 meets vy and the intersection of 72 with vy is contained in vg (71)
and Yo meets each level set of f5, in at most one point. In particular, for any c > ¢
the intersection of 7o with the boundary of Uee(71) is contained in the ends of this
neighborhood.

Proof. Suppose that the result does not hold for some £ with 0 < £ < &. Then there
is a sequence j;, — 0 and for each k a constant s;, < a(§), a sequence €, — 0
as m — oo, and counter-examples to the result for these constants. For every k
and m and for ¢ = 1,2 we denote the various constituents of counter-examples
as follows. Let By = Bg;(k,m(xk,m,i) (Tkm,ir 1) C My(g,m) be the 3-dimensional

balls and Byn; = B(Tkm,,1) be the 2-dimensional balls and Ukm,i € OBj.m.i
the control points and 7y, ,, ; C Ekmﬂ- the geodesics of length s1 /4, and Y i C
B(Yg.m.i»51,k/3) C Bi,m,i the geodesics whose endpoints are within é ., of those of
Wk,m,i'

We take points ygm,i € By,m, within é , of gy, ,,, ;. First notice that Jy ,,; and
Ve(Vk,m,i) are both contained in

B )(l’k,m,i)(yk,m,ia 51/3) CB )(xk’myi)(xk,m,ia 10_5)-

/ /
gn(k,'m gn(k,'m

Since these e-solid cylinders intersect, we have

Bg;(kym)(zk,m,l)(ﬁkzmrl’ 10_5) N Bg:l(k’m) ($k,m,2)($k7m72’ 10_5) 7é @

By Lemma 6.1 this implies that g;(km) (Thm1) = Ri’mg;(k,m) (xk,m,2) for some Ry,
with (0.99) < Rym < 1.01.

The ball Bgil(k’m)(xk’m’l)(yk’m’l,817k/3) contains vg(Yim,1) and hence contains a
point of v¢(k m,2). The length of 7y, 2 with respect to g;(km) (Tkm,2) is s11/4, s0
its length with respect to gé(k’m)($k7m71) is Rp ms1,k/4 which is between (0.24)s; j,
and (0.26)sy ;. If follows that 7y 2 C By (wk,m,l)(yk:m:h (0.6)s1,%). Similarly,

gn(k,m

Rk7mBgl (xk},’"L,Q) (yk7m727 Slvk/B) - Bg,/n<k m) (Ik,'m,l) (yk7m71’ Slvk)'

n(k,m)

It follows that Ry m B (Y, 2, 51,k/3) is within 6é ,, of a sub-ball of radius between
(0.32)s1,% and (0.34)s1 % in B(J 1, 51,%)- Passing to a subsequence (in m) so that
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limits B(Uj 00,1, 51,k) and B(Tj, .2, 51,) exist and so that the Ry, ,, have a limit Ry, o,
we see that Ry oo B(Uj 2, 51,6/3) is identified with a sub-ball of B(yy, « 1,51,k), and
this identification is the limit as m — oo of the inclusions

Rk,mBg;LUc m)(fk,mg (yk,m,27 Sl,k/g) C Bg;b (yk,m,la Sl,k)-

(kym)(f”k,m,l

We can also assume that the 7y, ,,, ; converge to geodesics 7y, o, ;- Passing to a subse-
quence we can arrange that the 7 ,,; also converge to geodesics 7, o, ; with the
same endpoints as the 7 o ;. Now we scale by 1/s1 and take a limit of the
(Sl,k)ilB(ykyoo,la s1k) as k — oo. Since the p; — 0, both the two sub-balls
(51,6) " BUr,o0,1:51,5/3) and 87 RB(Ug 0025 51,5/3) 0f (51,4) ' B(Tk 00,1, 515) cON-
verge to balls that are isometric to unit balls centered around boundary points
of [0,00) x R. We can assume that the 7 ., converge to geodesics 7, ,; and that
the 727 o0, Converge to geodesics Wgo,oqi' These limiting geodesics are geodesics in the
boundary so that Y., o ; = Voo 0o+ Furthermore, the intersection Yoo 00,1 M Yoo,00,2
is a sub-geodesic of each and either shares an endpoint with each of these geodesics
or is equal to one of them. Notice also that ve(Yoo,00,1) N Ve(Yoo,00,2) # . Thus,
Yoo,00,1 N Yoo,00,2 has length greater than (0.24). Now construct arcs & m.i C Vi,m,i
converging to the o; and with the property that any time an endpoint of «; is equal
to an endpoint of ¥, , ; the corresponding endpoint of ay, . ; is equal to an endpoint
of Yg,m,i- For all k sufficiently large, and given k for all m sufficiently large these
arcs have the required properties.

The last statement in the proposition follows directly from this. This is contra-
diction and establishes the result. O

We also need estimates about the vector fields from Lemma 11.32 and also about
the distances between the sides of the neighborhoods.

Lemma 11.35. There is a constant 0 < & < &y such that for any 0 < £ < & and
any 0 < s1 < ap(§), with notation and under the assumptions as in Lemma 11.3/,
there are positive constants pe(§) and é5(&, s1) such that the following hold for 0 <

< pe(€) and 0 < € < é(&, s1).

1. For a unit vector field 7y on ve(71) satisfying Corollary 11.82, at any point of
Ve(71) NTe(72) we have
I1f5, (7l > 1 = 508.

2. For any constants c1, co with 26 < ¢; < 3/4 and with

Clglpn(xl) < (0.9)02€2pn(1}2)

each level set of f5, in Ve,e(72) that meets §£7[_.24gh.24gl](;}71) meets Ue,¢(71) in
a disk whose boundary is contained in the side of Ue,e(V1), a disk that separates
the ends of Ue¢(V1).

Proof. The proof of the previous result show that for 4 > 0 and € > 0 sufficiently
small, possibly after reversing the direction of 7o, for every y € ve(71) N ve(72) we
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have Ze_ (31 )ye+(32) > 7 — 10 and Ze_ (32)ye,(31) > 7 — 10¢. The first statement
is immediate from this and Proposition 11.32. It follows immediately from this that
any level set of f5, , meets each flow line for 71 in at most one point.

Now let us establish the second statement. Let y be a point in

ve(Y2) N Ve [—(24)1,(.24)0, (1),

and consider the level surface L for f5, through y. It follows from the limiting
argument in Lemma 11.34 that, given any v > 0, for all £ > 0, u > 0 sufficiently
small, and € > 0 sufficiently small given s, the variation of f5, on L Nwve(71) is less
than v&¢;. Thus, choosing o, pe(€), and €5(&, s1) sufficiently small, this implies that
L does not meet the ends of 7¢(;). Thus, under the given assumptions on ¢; and

c2 we see that LN (h%l([O, cﬁ])) crosses the side of T ¢(71)-
Let us consider the intersection of L with

U = ve,e(M) \ vez (M)

On U the functions f5, and hy, satisfy Lemma 9.45 and hence the intersection of the
level sets of these functions are circles that are almost orthogonal to the horizontal
spaces in S'-product neighborhoods with e-control, circles that meet each of these
horizontal spaces in a single point. This means that L N U is homeomorphic to
S! x (0,1) and is foliated by circles which are the intersections of L with level sets
of hz,. Since L is a disk it follows that each of these circles bounds a disk in L, and
thus, LN e ¢(71) is also a disk. Clearly, since this disk is transverse to the flow lines
of the vector field and meets each flow line in at most one point, it separates the
ends of v ¢(71). O

Addendum 11.36. In the previous two lemmas, we assumed the metrics were
gn(x1) and gy, (z2). The reason for this was that if the By (5,)(2i,s1) have non-
trivial intersection then these metrics are within a multiplicative factor of 2 of each
other. We also have analogous results when we use the same metric, A%g,, in two
balls. The proofs are identical, since this time the metrics agree rather than differing
by at most a factor of 7.

11.6 Boundary points of angle < 7 —

Proposition 11.37. For any 0 < & < & sufficiently small and a > 0, there is
a positive constant uz(§,a) such that for all p < p7(&,a), setting ro = ro(§) and
r1 = 1r1(&§,a,u) as in Theorem 10.30, there is a positive constant é(&,a, ) such
that for all € < és(&,a,p) the following hold. Suppose that for some n there is
a point x € M, with the property that Byz, (v,1) is within € of a 2-dimensional
Alezandrov ball X = B(Z,1) of curvature > —1 and of area > a with the property
that there is Z € 0B(,1) satisfying Condition 2(b) in Theorem 10.30 on scale r,
where 11 <1 < 1o and d(T,z) < £2r1/100) and a point z € By, (x,1) within € of Z.
Then B(z,7r/8) is a topological 3-ball and the distance function, d(z,-), is reqular
on Byzg (2,7r/8)\ Byzg, (2,7/8).
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Proof. The constants £ and a > 0 are given. Let a’ > 0 be the constant associated
to a by Lemma 10.8. Suppose that there is a sequence pur — 0 and for each k a
sequence €, — 0 for which the result does not hold for the given values of £, a
and for r1; = ri1(&, a, ;) being the constant from Theorem 10.30. This implies
that for each k,f there is a counter-example B)‘i,égn(k,z) (2, 1) with these values

of the constants. The balls BAi o) (2, 1) that are within € ¢ of 2-dimensional

Alexandrov balls B(Zj ¢, 1) of curvature > —1 and of area > a, and there are points
Zky € OB(Tpyp, 1) near which B(Ty g, 1) are boundary py-good near on scale r(Zj ¢)
where 71, < 7(Zge) < 7o and Ty € B(Ek,4,§2r17k/4), and points zj ¢ are within € ¢
of Z¢. Clearly, z3 € B)\zgn(k,e)(Zk7g,§27‘1yk/2). The ball BT(zk,z)%Az,ggn(k,e)(Zk7£’ 1) is

within 7(Zx¢) "Léx ¢ of the unit ball r(zx ¢) ' B(Zk.r, 7(Zk¢)), and the latter is bound-
ary pu-good near Zj o on scale 1. Fixing k and, after passing to a subsequence in /,
the 7~ 1(Zy) converges to a 2-dimensional ball B(Zj ~, 1) of area > a’, a ball that
is 2pi-good at Zj oo on scale 1.

Since the p, — 0, passing to a subsequence in k, the balls B(Zj o0, 1) converge
to a flat cone C of radius 1 in R? of angle < 7. The area of C is bounded below
by a’. For each k we can choose (k) such that ékyg(k)/rl’k tends to zero, and a
fortiori €, 41y /7T (Z,0(k)) tends to zero. Then the BT(Ek,e(k))‘2)\;2(,@)%(1@,2(;@))(Zkvf(’f)’ 1)
also converge to C, with the zj, ¢x) converging to the cone point.

At this point in the argument we simplify the notation by re-indexing things
so that (k,¢(k)) becomes k and by implicitly using the metric T(Zk)_Q)\%gn(k) on
B(xg,1). Tt follows that given any ¢ > 0 for all k sufficiently large, the distance
function dy, = d(zx, -) is regular on Ay = B(zy,15/16) \ B(z,(), and in particular
this annular region is homeomorphic to a product with an interval with the slices of
the product structure being the level sets of the distance function. We shall achieve
a contradiction by showing that these level sets are 2-spheres and that the metric
balls that they bound are homeomorphic to 3-balls.

Now we fix ¢ > 0 sufficiently small and let € < €1(¢’) as in Proposition 11.8.
We also suppose that & < min(§p,&1(€')) and we fix s; as in Theorem 10.30. By
passing to a subsequence we can also assume that for all k& we have pup < 1(§)
and €, < éa(e, s1,&). We consider first the case when the cone angle at the cone
point of C'is w. In this case, C is isometric to a unit ball centered at a boundary
point of R x [0,00). Since pr — 0 by Proposition 11.27, there is a constant ¢ > 0
depending on £ and s; and less than agp(§), such that for all k sufficiently large there
neighborhood of z;, homeomorphic to D? x I that contains B(zy, () and is contained
in B(zg,1/2). The boundary of this neighborhood, which is a 2-sphere, separates
the level set for dy = d(zg,-) at distance ¢ from the level set at distance 1/2. Since
the region in between these level sets of di is a product, it follows that all the level
sets of dj, are 2-spheres. Furthermore, since the level set at distance ( is a 2-sphere
contained in a neighborhood of z; homeomorphic to a 3-ball, this level set bounds a
3-ball in this neighborhood. It follows immediately that for all k& sufficiently large,
all the metric balls B(z,t) for ( <t < 15/16 are homeomorphic to 3-balls. This is
a contradiction, proving the result in the case when the cone angle of the limit, C,
is .
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We now examine the case when the cone angle of C is strictly less than 7. Accord-
ing to the Proposition 9.49 there is a sequence of points z;, € M,, ;) with d(z;,, 2x) — 0
such that one of the two following cases holds:

1. the distance function from z; has no critical points in B(z},1/2)\ {z}}, or

2. there is a sequence (; — 0 such that the distance function from z; has no
critical points at distances between (; and 1/2 and has a critical point at
distance (.

In the first case, all the level sets for the distance function from z at distance
strictly between 0 and 1/2 are 2-spheres and the corresponding metric balls are
homeomorphic to 3-balls. Since the level sets of d(z;,-) in this range separate level
sets of d(zy, -), it follows that the level sets for d(zy, -) ! (t) are 2-spheres bounding 3-
balls for ¢ < t < 15/16. In the second case, according to Proposition 9.49 rescaling
the metric by ¢} 2 we get a sequence of 3-manifolds with a subsequence converging
to a 3-dimensional Alexandrov space of curvature > 0. By Proposition 9.46 the
convergence is in fact a smooth convergence and the limit is a smooth complete
3-manifold of non-negative curvature.

Claim 11.38. The level sets of the distance function dj, = d(z),,-) at distance be-
tween (. and 15/16 are topological 2-spheres.

Let us assume this claim for a moment and complete the proof of the lemma. It
follows from this claim that the end of the limiting manifold is homeomorphic to
52 x [0,00). The limiting manifold has a soul which is a manifold of non-negative
curvature. Because the neighborhood of infinity of the limit is diffeomorphic to
52 % [0, 00), the soul must be either a point or RP2. The second case is not possible,
since in this case, by exactly the same argument as given in the proof of Claim 11.21,
the original manifolds would converge to an interval not a 2-dimensional Alexandrov
space of area > a. Since its soul is a point, the limiting manifold is diffeomorphic to
R3. Thus, for all k sufficiently large the level sets of d}, at distance 2(;, bound 3-balls,
and hence for all k sufficiently large all level sets (di)~1(t) for t € [1/16,15/16] are
2-spheres and the associated metric balls are 3-balls.

This shows that, modulo the claim, in all cases, for all & sufficiently large, the
metric spheres at distance t, with 1/16 < ¢t < 15/16, from 2 are topological 2-
spheres and the metric balls they bound are topological 3-balls. As noted before,
this implies that for all ¢ € [1/16,15/16] the level set d(zy,-)"!(¢) is also a 2-sphere
and the associated metric ball is homeomorphic to a 3-ball.

It remains to prove the claim.

Proof. (of the claim) We continue to use the metric 7(Zx) 2 Aign) on M, ,. We
know that the B(z},15/16) converge to a cone C in R? of cone angle < 7 and that

d.: B(z,,15/16) \ B(zh,1/16) — (1/16,15/16)

is the projection mapping of a topologically locally trivial fibration. Let v,~’ be arcs
of length s; on OC centered at the two boundary points of C' at distance 1/2 from
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the cone point. Set b* = 1/2+(s1/10) and b~ = 1/2—s1/10). By Proposition 11.27,
for all k sufficiently large, for geodesics 7j and 7;, whose endpoints are within é of
those of v and ' respectively, the e-solid cylinder neighborhoods v (i) and ve(7},)
in M, satisfy the conclusions of that proposition. Let Uy be the intersection of

A(k) = B(z,,b%) \ B(2;,,07)

with the complement of vg2(Jx) U ve2(7;,). Then by Proposition 11.1 for all k suf-
ficiently large every point of Uy is the center of an S'-product structure with e-
control. Hence, by Proposition 11.8 this compact set sits inside a larger open subset
that is the total space of an S!-fibration with fibers within € of orthogonal to the
horizontal spaces of the S'-product structures with e-control. This implies that
there is an annulus in Uy with boundary contained in ve(7) U v¢(7;,) that sepa-
rates (dj,) "1 (b7) \ (ve(Fk) U vedy)) from (dj)1(b™) \ (ve(3%) U ved;,)). Since (by
Proposition 11.27) the boundary loops of this annulus are homotopically trivial in
ve() Ure(7), it follows that there is a map of S? into B(z},,b")\ B(z},b™) that is
homologically non-trivial in this region. The claim follows. O

We have now completed the proof of Proposition 11.37. O
This argument can be used to prove more, see F1G. 8.

Corollary 11.39. Fiz € > 0 sufficiently small and let € > 0 be less than e1(€') as in
Proposition 11.8 and let  be a positive constant less than &1 (€) (recall that the latter
is at most ). For every a > 0, the following holds for all u less than a positive
constant ug(e, &, a), for ro,m1 and s1 as in Theorem 10.30 for these values of &, a, u,
and for all € less than a positive constant é7(e,&, a, ). Suppose that x € M, has
the property that Byz,, (x,1) is within é of a 2-dimensional Alexandrov ball B(Z, 1)
of curvature > —1 and area > a and Z € TB(%,7/8) has the property that B(T,1)is
boundary p-good near zZ € OB(T,1) on scale r, where r1 < r <rg. Then:

1. For any z € Byzg (v,1) within € of Z and for any b € (r/8,7r/8) the level set
Ly = d(z,-)~1(b) is a topologically locally flat 2-sphere and the metric ball that
it bounds is a topological 3-ball.

2. There are two geodesics y1 and 2 of length r1s1 that are p-approzimations to
OB(Z,1) on scale r1s1 whose mid-points are at distance b from Z. These arcs
are within £2r151/100 of arcs on OB(T, 1) with the same endpoints.

3. For any geodesics 7; whose endpoints are within é of those of v;, every point
of Ly that is not the center of an S'-product neighborhood with e-control is
contained in union ve2 (Y1) U ve2(32), and these e-solid cylinder neighborhoods
satisfy the conclusions of Proposition 11.27 and Proposition 11.52.

4. For any b with |b—1b'| < r1s1/20, and for any point y € Ly within € of a point
Y within §2r151/10 of OB(T, 1), we have y € ve2(F1) U vgz(32).
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5. The level set Ly meets each U¢(7;) in a spanning 2-disk, and for any c €
[€,1] the level set h%_l(cgﬂ(%)) crosses Ly topologically transversally and the
intersection is a circle bounding the disk Ly N Tee(7;).

Proof. The first item is included in the previous. The second item follows from
Lemma 10.24 provided that p is sufficiently small given £&. The third item was also
established in the course of the proof of the previous proposition. Let us consider a
point y as in the fourth item. Let ¥ € B(Z, 1) be a point within € of y and also within
€2r151/10 of OB(%,1). Then for one of 4 = 1,2 the point 7 is within £2rys1/9 of a
point of ve [y 5, /180151718 (Vi) N7yi- Hence, y € ve2(7;) provided that € is sufficiently
small given £,71,s1. Now we establish the fifth item. Let f denote the distance
function from z. Then, provided that € is sufficiently small relative to siry and u is
sufficiently small, it follows from Proposition 10.29 and Lemma 10.28 that f takes
values on Ly strictly less than the values on the end of v¢2(7;) furtherest from z and
strictly greater than the values on the other end of vg2(7;). The statement that the
intersection of Ly N Tee(7;) is a circle for all ¢ € €, 1] follows from Proposition 11.4
applied to the functions f and hs,, again using Proposition 10.29 and Lemma 10.28.
Lastly, to see that each of these circles bounds a disk in L; we will show that
Ly NT¢jo(7s) is a disk. Since Ly N (ve(3:) \ ¢/2(7i)) is a product region, it will then
follow that Ly N v¢(7;) is an open disk and hence that Ly N hil(cﬁﬂ(%)) bounds
Ly N T (i) which is a 2-disk.

To see that Ay = Ly NV¢/p(7:) is a disk we flow this intersection using the vector
field x as in Corollary 11.32 to the end of v¢(¥). According to this corollary any
flow line through the boundary of Ay remains in v¢(7) until it meets the end of the
&-box closest to e;. Using Proposition 10.29 and Lemma 10.28 we see that each
flow line of the vector field crosses Lj at most once. Thus, flowing in this manner
produces an embedding of A; into the end of the £-box. Since the latter is a disk,
since Ay is compact, and since dA; consists of a single circle, it follows that Ay is
also a disk. O

Definition 11.40. Any time we have z € B)z,, (v, 1) satisfying Proposition 11.37
and Corollary 11.39 with r = r(%), we say that the ball Byz,, (2,7/4) is a 3-ball near
a 2-dimensional corner.

11.6.1 Intersection of 3-balls near 2-dimensional corners and ¢-boxes

Lemma 11.41. Given 0 < £ < &y, a > 0 and p < p1(a, &) and given ro, 71, S1, S2 at
most the constants of the same names depending on &, i, a given in Theorem 10.30
with s1 < 1073, there is a positive constant é(&,a,p,70,71,51,52) such that the
following hold for all € < és(§,a,pm,r0,71,51,82). Suppose that for some r with
r1 <1 < 1o the ball By (1)(2,7/4) is a 3-ball near a 2-dimensional corner with the
property that the associated 2-dimensional Alexandrov ball B(Z,1) is boundary p-
good on scale r withry < r < rg at a pointZ and d(Z,T) < £2r1/100 with z within € of
Z and with (1/r)B(Z,r) having a (i, s1, $2)-good collar region. Suppose that ve(7) is
an e-solid cylinder on scale r1s1, meaning that there is a ball Bg%(m/)(a:’, 1) within € of
a 2-dimensional Alexandrov ball B(T',1) with a point y € OB(T',1) with d(¥',T’) <
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€2r151/100 such that B(z',1) is boundary u-flat near y on all scales < r1s1, and
furthermore, there is a geodesic ¥ of length r1s1/4 contained in B(y',r1s1/3) with
endpoints in OB(Y',r1s1/3) with the property that the endpoints of 5 are within é of
those of . Suppose that ve(Y) N By (»)(2,7r/8) # 0. Then 5 C Bg%k(x)(z,r) and
either:

(1) ve(7) C Bg%(m)(a:,r/m) or

(ii) 7 is within 2r151/50 of an arc on OB(Z,7) and, there is an orientation for
5 so that d(z,-) has directional derivative at least 1 — £2/2 at every point of
ve(¥) N7 in the positive direction along 7.

Proof. Suppose that the result does not hold for some £ with 0 < & < &, pu <
u1(a,§) < f(§). Then there is a sequence € tending to zero as k — oo and counter-
examples By = By (k)(mk)(azk,l) and points zp € Bj within é; of 2-dimensional

Alexandrov balls By, = B(Ty, 1) and points 2z, € OB(Zy, 1) as in the statement for a
constant 7, with r; <7, < 1. Also, there are ¥, generating vy, = vg(V). The ve(Vx)
are contained in balls B;, = By (@, y(2},, 1) within é of a 2-dimensional Alexandrov

balls E;c with points 7, € 8?; and geodesics 7, as in the statement. Let y; € B},
be a point within €, of 7. Notice that, since 74 < 1075, by Lemma 6.1 we see
that Rig’( )(xZ) =g (k)(l“k;) for a constant Ry satisfying (0.99) < R; < (1.01).

Passing to a subsequence we can suppose that the Bk converge an Alexandrov ball
Boo = B(Two, 1), the Z converge to z, Zoo € OBw, the Bk converge to B = B(7,1),
the 7}, converge to a point g € aBoo, the geodesics 7, converge to a geodesic 7, of
length 711 /4 with endpoints in dB(Y.,,7151/3), the Rj converge to a constant R,

and the 7}, converge to 7o.. We have RB, @) (yy,,m151) = By ! o (@) (3., Rris1) and,

as a result, RBy (k)(x;)(yfgleSl) is identified with a a sub-ball of nglm(:ck)(zk’fk)-

Since ¢ — 0, passing to the limit RB(7.,,71s1) is identified with a sub-ball of
B(Zoos Too)- I d(Thy, Zoo) < Too/32, then Y C By, )(2k, 7x/16) for all k sufficiently
large and the contradiction is established.

Thus, we can (and shall) assume that d(7.,,Ze0) > Too/32. Since p < p1(a, ),
according to Lemma 10.24 we have that ¥, is within &271s1/100 of the arc on
OB, r151) with the same endpoints as 7,,. Hence R¥., is within R¢?rys1/100
of the arc on OB(Z,7) C B with the same endpoints. The geodesics R7j in
Bg;w(wk)(zk’ 1) converge to Ry, C B(Zxo, Too). Consequently, for all k sufficiently

large Ry is within R&2r1s1/100 of the arc @ on the boundary of B(Zeo, foo) With
the same endpoints as R7y.,. Let ay be arcs on 0B(Zy, 7) converging to @. Then,
for all k sufficiently large, Jj is within &271s1/50 of @ C OB(Zy, k). Let ey (ay)
be the endpoint of this @y furtherest from Zz;. For k sufficiently large consider any
point wy, in Y, Nve(F), and let e4 (7%) be the endpoint of 7, furtherest from zj. Let
Wi € Yo be a closest point on 7., to wg. Then, passing to a subsequence, we can
assume that the wy converge to Weo, € 7, at distance at least 7, /64 from Z,,. Thus,
as k goes to oo the comparison angle szwke+ () converges to Zfooﬁooe+ (V). By
Lemma 10.28, this latter comparison angle is greater than w—&. It now follows that
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for all k sufficiently large, at any point of 5, N v¢(7) the directional derivative of
d(Zk,-) in the tangent direction along 7 pointing toward ey (7x) is greater than
1 — &€2/2. This proves that the conclusions of the lemma hold for all & sufficiently
large, which is a contradiction, establishing the lemma. O

11.7 Balls near open intervals

Now we are ready to describe the parts of M, close to 1-dimensional Alexandrov
balls.

Lemma 11.42. Given € > 0 the following holds for all B less than a positive
constant f1(e'). Suppose that B = By (»)(z,1) is within B of a 1-dimensional ball
J and y € By (5)(x,24/25) is within B of a point § whose distance from every
endpoint of J is at least 1/25. For any z € B with dy ()(y,2) > 1/30 let f =
dgr () (2,-)=dgr (2)(2,y) and set U = f~1(=3/100,3/100). Then By, (,,(y,1/50) C U
and f|ly: U — (—=3/100,3/100) is an € -approzimation for which the following hold:

1. f is the projection mapping of a topological product structure.
2. The fibers of p are homeomorphic to either 2-spheres or 2-tori.

3. There is a smooth unit vector unit field x on U such that for any (minimal)
geodesic vy of length > 1/4000, measured in the metric g),(z), ending at a point
w € U, the angle at w between x(w) and ~'(w) is within € of either 0 or .

4. Given w,w' € By (3)(y,1/50) with dg () (w,w") > 1/4000, the connected com-
ponent of the level surface of the distance function dy () (w,-) through w' is
contained in U and is isotopic in U to a fiber of p.

Proof. 1t is easy to see that if 3 is sufficiently small, then f is an ¢-approximation.

Fix z € B with dg (;)(y,2) > 1/30. Let Z € J be a point within 3 of 2. Provided
that f is sufficiently small there is a point w € J with d(y,w) > .031, d(w, z) > 0.001,
and w separates y and z in J. Let w € B be within 8 of w. Then for any u € U,
the comparison angle Zzwu is close to 7, and the discrepancy d(3) from 7 goes to
zero (uniformly for all u € U) with 8. It follows that all geodesics from z to any
point u € U all have tangent vectors at u that make an angle at most d(3) with
each other. Hence, there is a smooth vector field xy on U such that for every u € U
the angle between x(u) and any geodesic from z to w is at least m — 2d(/3). This
means that (again assuming that [ is sufficiently small) that f is regular and hence
the level sets of f are Lipschitz surfaces fibering U. Furthermore, the vector field
X is transverse to these level sets in the sense that the level curves of x cross each
level surface exactly once. Thus, these level curves can be used to define a product
structure on U so that f is the projection onto the interval factor.

Now consider any geodesic 7 of length at least 1/4000 ending at a point u € U.
By shortening v if necessary we can suppose that the other endpoint w is contained
in B(y,1/25). One of the comparison angles Zzuw or Zzwu is close to 7. It then
follows by monotonicity that the angle at u between v and x is also close to either
0 or m.
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Next, we argue that, provided that 8 > 0 is sufficiently small, the fibers of p are
either 2-spheres or 2-tori. If not we there is a sequence of xy € M, ), constants
B — 0 and examples fi: Uy — (—3/100,3/100) with fibers Ly = p, ' (t) that are
not 2-spheres or 2-tori. Fix points wi € Lg, let di be the diameter of Ly, and rescale,
forming i(U &, Wi ), and, after passing to a subsequence take a limit. This limit is an
Alexandrov space and since dp — 0, it is of dimension 2 or 3 and splits as a product
R x Y where Y has diameter 1. If Y is 2-dimensional, then by Proposition 9.46 the
convergence is smooth and Y is a surface of curvature > 0. Since Y is orientable, it
follows in this case that Y and hence the fibers Ly, for all k£ sufficiently large, are
homeomorphic to either 2-spheres or 2-tori, which is a contradiction.

Suppose that Y is 1-dimensional. Then it is either a closed interval or circle, and
d,;lUk converge to the product R x Y. If Y is a circle, we invoke Lemma 11.1 and
Proposition 11.8 to see that for all £ sufficiently large, any level set of fj, is contained
in an open subset Vi C d,;lUk that is the total space of a circle fibration. We can
take a slightly smaller compact fibration W, C V4 still containing the level set. The
boundary components of Wy, are tori and at least one of them separates the two
ends of d,;lUk. On the other hand, the level set Lj separates two of the boundary
components of Wj. These two facts together imply that for all k£ sufficiently large,
Ly, is a 2-torus, in contradiction to our assumption.

Lastly, suppose that Y is a closed interval. Then invoking Lemma 11.1, Proposi-
tion 11.8 and Proposition 11.27 we see that for all £ sufficiently large every level set
of f}, is contained in the union of the total space of an S'-fibration over an annulus
and two disjoint, simply connected sets of the form v¢(7;) as in Proposition 11.27.
Arguing as in the proof of Claim 11.38, we see that there is a map of the 2-sphere
into U, that separates its ends. It then follows that the fibers of fj are 2-spheres.

The last item follows easily from the third item. O

Definition 11.43. A neighborhood U C B, and a projection mapping f: U — J
satisfying the 4 conditions in the conclusions of the previous lemma is called an
interval product structure €' -control or an € interval product structure. If y € U
and if the image of f is (—3/100,3/100) with f(y) = 0, that the e-interval product
structure is centered at y.

The content of the above lemma is that for 8 < Bi(€') if By (5)(x,1) is within
B of a 1-dimensional Alexandrov ball J and if y € By (,)(x,24/25) is within 3 of
a point of J that has distance at least 1/25 from the endpoints (if any) of J, then
there is an interval product structure with €-control centered at y.

Now we need to understand what happens near the endpoints of the nearby
interval.

Proposition 11.44. There is ay > 0 such that the following holds. Fiz € > 0 and
¢ > 0. Then the following holds for all B less than a positive constant B32(€’, (). For
some n suppose that the ball By () (x,1) is contained in the interior of M, and this
ball is within B in the Gromov-Hausdorff sense to an interval J and the x is within
B of a point T which is at distance at most 1/25 from the endpoint of J. Then for
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any point y € By (,)(z,1) within 3 of the endpoint of J, setting f = dg ) (y,+), the
restriction of f to

By (2)(y,5/8) \ By (2 (y,1/1000)

is the projection mapping of an € interval product structure, Furthermore, one of
the following holds:

1. The closed ball By (y(y,1/2) is diffeomorphic to one of the following: a solid
torus, to a twisted I-bundle over the Klein bottle, to a 3-ball, or to RP3\ B3.

2. There is a constant A >> 1 such that the the ball of radius 2 centered at
y in ABg (v,1) is within distance ¢ of the ball B(y,2) in a complete two-
dimensional Alexandrov space (X,T) of curvature > 0. Furthermore, the
function dgr 1) (y,-) is regular on By (»y(y,1/2) \ By 2)(y,1/3X) and fibers
this subset over [1/3X,1/2) with fibers either 2-spheres or 2-tori. Similarly,
d(y,-) is reqular on X \ B(y,1/3) and fibers this subset over [1/3,00) with
fibers which are either topological intervals or simple closed curves. For any
y € Byzg, (x,1/3) the ball B2y, (y,1) is within 4¢ of the ball B(y,1) C B(Z,?2)
for any g € B(T,1/2) within ¢ of y. Finally, for any y € B(T,1/2) the area of
B(y,1) is at least a;.

Proof. Fix 0 with 7/2 < 6 < 7, and let a; = a;(f) as in Proposition 9.48. Fix
¢ > 0, ¢ > 0, and suppose that there is no constant S(¢’,{) > 0 as required.
Then we have a sequence §, — 0 as k — oo and points z,, € M,, such that
B, = Bgék (xnk)(l’nw 1) is within §y, of a closed interval with x,, being within g of
the endpoint of the interval but none of these examples satisfy the conclusion of the
proposition. It follows that the B,,, converge to an interval and the z,, converge to
its endpoint. At many different steps in the proof we shall pass to a subsequence
using the notation nj for the subsequence. First notice that by Lemma 11.42 for
all k sufficiently large there is an open subset U,, as required with an €-product
structure. Proposition 9.48 tells us that for all k sufficiently large there is another
point &,, € M,,, such that the sequence Z,, also converges to the endpoint, such
that one of two possibilities holds:

1. the distance function from &,, has no points within distance 1/2 of &, (except
of course &, ) at which the maximum value of the directional derivative of the
distance function from z,, is at most 6, or

2. there is a sequence (,, — 0 such that all points within distance 1/2 of Z,,
where the maximum of the directions derivative of the distance function from
Zp, is at most @ are in fact within (,, /3 of Z,, and there is a such a point at
distance ¢y, /3 from &, .

In the first case, the closed balls Bg;% (znk)(:%nk,t) are topological 3-balls for all
0 <t < 1/2. Since for all k sufficiently large, the distance from z,, is regular and
its level sets are close to the corresponding level sets of the distance function from
Zp,, it follows that ngk(mnk)(‘fnkv 1/2) is homeomorphic to a topological 3-ball. By
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Lemma 11.42 its boundary separates the ends of U,,. This proves that the result
(indeed as in 1.) holds for all ny for k sufficiently large in this case, which is a
contradiction.

In the second case we rescale by multiplying the metric by C,j}f, pass to a subse-
quence, and take a limit. The resulting limit is a complete Alexandrov space (X, 7)
of non-negative curvature and of dimension 2 or 3 with = being the limit of the Z,, .
We consider first the sub-case when the result is 3-dimensional. By Proposition 9.46
it is a complete 3-manifold of non-negative curvature, and as such it has a soul. If
the soul is a point, then the limit is diffeomorphic to R? and level sets of the distance
function from T are 2-spheres. If the soul is a circle, then the limit is a solid torus
and the level sets of the distance function from T are 2-tori. If the soul is a Klein
bottle, then the manifold is a twisted R-bundle over the Klein bottle and the level
sets of the distance function from T are 2-tori. If the soul is RP?, then the limit
is a punctured RP3 and the level sets are 2-spheres. Thus, in these cases, for all k
sufficiently large the original B(Z,,,1/2) is diffeomorphic to the limiting complete
manifold. All the distance function from &, is regular at distances between (,, /3
and 1/2 the level sets of the distance function from &,, at distances between ¢, /3
and 1/2 are parallel. Clearly, the level set d(Zy,,-)"1(1/2) is contained in U,, and
separates the ends of Uy, . For all k sufficiently large, the level set d(zy,,-)~1(1/2) is
close to the level set d(&y, ,-)~'(1/2) and is parallel to it in Uy, . Thus, all the above
statements hold for the balls B(x,,,t) for all 1/4 < ¢t < 1/2 for all k sufficiently
large. This shows that in this sub-case the result holds (again as in 1.) for all k
sufficiently large, which is a contradiction.

Suppose now that the limit of the rescalings is 2-dimensional (X,Z). Then by
Proposition 9.48 for any ¥ € B(z,1/2) the ball B(y,1) has area at least a;. The
fact that there are no critical points for the distance function from %,, at distances
greater than (,, /3, and indeed no points in this range where the maximum direc-
tional derivative of the distance function is less than 6, imply the statements about
the fibration structure for both X \ B(%,1/3) and for the

Bgi% (xnk)<j7nk7 1/2) \ Bg;k (Ink)(@nkv an /3)

for all k sufficiently large. Since the boundary of C;,}Bg/(wnk)(wnk, Cn,, /2) is parallel to

the fibers of the €/-product structure on U, , it is homeomorphic to either a 2-torus
or a 2-sphere. Since these level sets converge in the Gromov-Hausdorff topology as
k — oo to the level set of the distance function from T at distance 1/2, it follows
that the latter level set is connected. Since it is a compact Lipschitz 1-manifold, it is
either a simple closed curve or a closed interval. This then is true for all the level sets
of the distance function from 7 at distances greater than 1/3. This shows that the
result (as in 2.) holds, for all ny for k sufficiently large. This is a contradiction. [

11.8 Determination of the Constants

We fix ¢ < 107% a universally small positive constant and let ¢ > 0 less than the
minimum of the constants €y (€') in Proposition 11.4, €1 (¢') in Proposition 11.8, e(€)
in Proposition 11.20, and sufficiently small so that Lemma 9.45 holds. Now we fix £
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with 0 < & < min(&p, &1(€), &2) where & is defined near the end of Section 10, & (€)
is given in Proposition 11.27 and & is given in Lemma 11.35. Having fixed £ we also
have o = ().

Now we define a function é(a) depending on a positive constant a. We do
this as follows: Given a we choose p > 0 sufficiently small so that Lemma 10.26
holds. We also take it to be less than the minimum of d(a'(a))/8 where ¢ is the
constant from Lemma 10.7, (1/2)uf(107%, d/(a)) from Proposition 10.18, u(a,§)
from Theorem 10.30, p2(e) from Lemma 11.1, ps(e,a) from Proposition 11.20 as
modified in Proposition 11.22; 7(§) from Proposition 11.27 and Addendum 11.29,
pa(§) from Lemma 11.31, p5(€) from Lemma 11.34, pe(§) from Lemma 11.35,
w7(§,a) from Proposition 11.37, and pg(e,&,a) from Corollary 11.39. Now we
choose do(a),ro(a),r1(a),re2(a), so(a), s1(a), s2(a) positive functions of a as in The-
orem 10.30 for the given values of £ and pu. With all of these determined, we are
ready to define é(a) for every a > 0. It is the minimum of:

ro(a)d(a’(a))/20 where § is the constant from Lemma 10.7,

(r1(a)/50)ug (107, a/(a)) from Proposition 10.18,
éo(e, min(ry 59, E2r151/100,7950))  from Lemma 11.1,
€y (¢%r151/100,d'(a)) from Lemma 11.26,
é€1(€,a,r1,m2)  from Proposition 11.20 and Proposition 11.22,
éa(€e,&,r1s1)  from Proposition 11.27 and Addendum 11.29,
és3(e,&,m151)  from Lemma 11.31,
€4(&, puyr181)  from Lemma 11.34,
€5(&,m151) from Lemma 11.35,
é6(&,a,u)  from Proposition 11.37,
é7(e,&,a,u)  from Corollary 11.39,
és(&,a, pu, 9,71, 81,82) from Lemma 11.41. and
527“131/1000 where C is the constant in Corollary 11.7.

Next we fix ¢ > 0 to be less than é(a;)/3 where a; is the constant in Propo-
sition 11.44. We then fix 3 > 0 less than min(By, B1(¢'), B2(¢’,¢), 1078) where Sy
is the constant in Lemma 9.6, 81(€¢') is as in Lemma 11.42, and Sa(¢’,() is as in
Proposition 11.44. Now that we have fixed 8 we set a = min(ay, az(5/2)), the lat-
ter constant being as in Lemma 10.31. This fixes the constants d9 = dp(a),r9 =
ro(a),r1 = ri(a), so = so(a), s1 = s1(a), s2 = s2(a).

We require 0 < € < min(é(a), 3/2). We fix € > 0 satisfying all these conditions.
Now we pass to a subsequence of the M,, so that the constant ¢, from Lemma 9.51
is < € for all n, and also so that Proposition 11.19 holds for all n with € taken equal

to S.
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11.8.1 Effect of these choices

By the definition of €, for every x € M, there is an Alexandrov ball B(Z,1) of
curvature > —1 and of dimension either 1 or 2 such that By (,)(w, 1) is within €, in
the Gromov-Hausdorff topology of B(7,1). We divide into three cases:

1. B(7,1) is 2-dimensional and of area > ax(/5/2).
2. B(w,1) is 2-dimensional and of area < a2(3/2).
3. B(z,1) is 1-dimensional.

In the second case by Lemma 10.31 B(7,1) is within 8/2 of a 1-dimensional
Alexandrov ball, and hence By (,)(,1) is within 8 of a 1-dimensional Alexandrov
ball. Thus, these three cases lead to the following two cases:

1. By ()(2,1) is within € of a 2-dimensional Alexandrov ball B(Z, 1) of curvature
> —1 and area > a, or

2. By (z)(, 1) is within § of an interval J.

As indicated in the definition below, having fixed the choices of all the constants
from now on, we redefine the terms e-solid torus, e-solid cylinder, and 3-ball near
a 2-dimensional corner so as to restrict to the cases of interest. First of all these
notions will mean implicitly that they are with respect to all the constants that we
just fixed. Also, in each case there will be one extra condition that was not originally
required.

Definition 11.45. 1. An e-solid torus is a metric ball By () (w,7/2) C M, where
By (2)(z,1) satisfies the conclusions of Proposition 11.20 with the given values of
€, €e,a,1,m0,71,72, 50, and €, and with 7o < r < r;. The 2-dimensional Alexandrov
ball B(7,1) as in that proposition, called the associated 2-dimensional Alexandrov
ball, is pu-good at T on scale r. The extra condition in this case is that the cone
angle of the close circular cone is required to be < 2w — dg.

2. An e-solid cylinder is a subset of the form v¢(y) C M, satisfying Proposi-
tion 11.27. Thus, there are B = By (,)(v,1) C M, containing v¢(y) and an as-
sociated 2-dimensional Alexandrov ball B(Z, 1) as in that proposition within € of B,
a point ¥ € 0B(x,1) with the property that B(Z,1) is boundary p-flat near 7 on
all scales < r1s; and there is a geodesic 7 C B(y,7151/3) of length 71s1/4 that is
a p-approximation to the boundary with the endpoints of ¥ within ¢ of those of 7.
Lastly, the extra condition that we require in this case is d(Z,7) < &2r1s1,/100.

3. A 3-ball near a 2-dimensional corner is a By (;)(2,7/4) C By (u)(z,1) with
r1 <1 < rg, with an associated 2-dimensional Alexandrov ball B(Z,1) and a point
Z € OB(Z,1) as in Proposition 11.37. Thus, d(Z,z) < &r1/100 with B(Z, 1) being
boundary p-good near Z on scale r. The extra conditions in this case is that we
require B(Z, 1) to be boundary u-good near z on scale r and angle < m — dy.

Let us summarize what we have established so far.
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Theorem 11.46. The following hold for every n > 0:
1. Let Y1, C M, be the open subset of all x € M, with the property that By (,)(z,1)
is within B of an interval. Then for any x € Y1, one of the following cases holds:

(a) The ball By (,)(x,1) meets the boundary of My and there is an open subset V
of M,, homeomorphic to T? x [0,1) that contains x. There is a neighborhood U
of the end of V' has an € interval product structure with base being an interval
of length 3/50 with fibers homeomorphic to 2-tori.

(b) The ball By (1)(x,1) is disjoint from OMy, and x is within B of a point of the
interval whose distance to the endpoint of the interval is at least 1/25. Then
there is an open subset U C By (;)(x,1) that contains By ()(x,1/50) with
an € interval product structure p: U — (—3/100,3/100) with fibers which are
homeomorphic to either 2-tori or 2-spheres.

(¢) The ball By (1) is disjoint from OM,, and x is within 1/25 of the endpoint.
Then either:

(i) there is an open subset V C By (p)(w,1) containing By () (z,1/25) with
a neighborhood U of the end of V' that has an € interval product structure
as above, and V is homeomorphic to one of the following: a solid torus,
a twisted I-bundle over the Klein bottle, a 3-ball, or the complement of a
3-ball in RP3, or

(ii) the Conclusion 2 of Proposition 11.44 holds for By ;)(x,1) with ¢ =
é(a1)/3. In particular, there is a constant X\ > p,'(z) such that every
point y in the closure of Bz, (,1/3) the ball By, (y,1) is within é(a)
of a 2-dimensional Alexandrov ball of curvature > 0 and area > a1 > a.

2. Let Yo, C My, be the open subset of all x € M, with the property that By () (x,1)
is within € of a 2-dimensional Alexandrov ball of curvature > —1 and area > a. Then
Ys p, is covered by the union of the following sets: (i) the open subset U gen of points
that are centers of S*-product neighborhoods with e-control, (i) a collection of e-solid
tori, (i11) a collection of 3-balls near 2-dimensional corners, and (iv) a collection of

cores of e-solid cylinders.
3. M, = Yl,n U Yn72.

Proof. Case 1, when By () (x,1) is within £ of an interval, is immediate from Propo-
sition 11.19, Lemma 11.42, and Proposition 11.44.

In the second case, if the 2-dimensional Alexandrov ball B(Z, 1) within € of the
ball By (;)(x,1) is interior pu-flat at T on scale ro, then z is the center of an S
product structure with e-control. If this ball is interior p-good at T on scale r with
r2 <7 <7 and angle < 27 — do, then By (,)(w,7/2) is an e-solid torus. Otherwise,
according to Theorem 10.30 there is a point ¥ € dB(%, 1) with d(z,7) < £?r1s1/100
and B(T,1) is either boundary p-flat near 7 on all scales < rys; or it is boundary
u-good near § on some scale r with 1 < r < rg and angle < m — §g. In the first
case, there is an e-solid cylinder v¢(y) whose core contains x and indeed, given any
—7151/16 < ¢ < r151/16 we can choose this e-solid cylinder so that f5(z) = c. In
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the last case, for any y € By (;)(, 1) within € of g, the ball By (,,)(y,7/4) is a 3-ball
near a 2-dimensional corner containing x. O

Suppose that B = By, (z,1) is within é of B = B(Z,1) and § € B(T,1/2).
Then:

1. If B is interior pu-good at 7 on scale r with 7 < r < 71, then any point of B
within € of a point of B(y, 7r/8) \ B(y,r/8) is contained in Us gen.

2. If B is boundary u-flat at 7 on all scales < r1s1, then any point of B that
is within € of a point of B(y,r1s1/2) at distance at least &2r1s1/100 from
0B(y,r151) is contained in Us gen.

3. If B is boundary p-good at 7 on scale r with r; < r < rg and angle < m — Jg,
and if ¢ € B within € of a point of g € (B(y, 7r/8) \ B(y/8)) with the distance
from g to OB(y,1) being at least £2r151/100, then g € Us gen.

12 The global result

At this point we have fixed all the constants appearing in the last two sections in
such a way that the conclusions of all the results from these two sections hold. As
we have seen, this gives us complete control over the local nature of the (M,,gn)
in the sense that we have complete control over a neighborhood of every x € M,
whose size is determined by p,(z). The purpose of this section is to globalize these
results establishing Theorem 6.2. Since we have arranged that €, < é for all n, the
arguments of this section apply uniformly for all n. For this reason, for most of the
rest of this section we drop n from the notation and denote by (M, g) one of the
Riemannian manifolds (M, g,). We denote the function p,: M,, — R by p and by
¢'(z) the Riemannian metric p=2(z)g.

Definition 12.1. Given a ball Byz,(z,r) we say that r is its rescaled radius and
r/\ is its unrescaled radius.

12.1 Regions of M close to open intervals

We begin the globalization by studying the generic “l-dimensional” regions of M.
We shall construct a compact submanifold with boundary W7 € M which is a first
approximation to the submanifold V) C M (dropping the subscript n) referred to
in Theorem 6.2. The manifold V; will be obtained by deforming W; by an isotopy
supported near its boundary components.

Definition 12.2. We define X; C M to be the subset consisting of all points y € M
for which there is x € M with dy(,)(z,y) < 1/10 and with By (,)(z,1) being within
G in the Gromov-Hausdorff distance of a 1-dimensional Alexandrov ball J in such
a way that y is within 5 of a point ¥ € J whose distance from any endpoint of J is
greater than 1/25. We say that the pair (z,y) satisfying these conditions is an X3
pair.
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Notice that since By (,)(z,1) is non-compact, if the ball By (,)(z, 1) is within g of
an interval J and if dg () (2,y) < 1/10, then the distance from y any non-compact
end of J is greater than 9/10 — 20.

Definition 12.3. We sct U = Uyex, By (y)(y, 1/100).

Claim 12.4. For any z € U there is an X1 -pair (z,y) with dg 1) (y,2) < 0.011 and
hence z € By (5)(z,0.111).

Proof. Since y € By (y)(z,1/10) it follows from Lemma 6.1 that p(y)/p(z) < 1.1.
Since dg(,(y,z) < 1/100, the claim is immediate. O

Thus, z is within 3 of a point Z € J which is at least (1/25) —0.011 — 24 from any
endpoint of J and hence By (;)(z,1/50) is within 43 of the sub interval B(z,1/50)
of J. This is an open interval of length 1/25 centered at zZ. Using the fact (from
Lemma 6.1) that p(z)/p(z) is between 0.889 and 1.111 it follows that By (.)(z,1/100)
is within 55 of an open interval I(Z) of length 1/50 centered at a point Z within 23
of z. From this it follows that there is a smooth line field on U with the property
that if v is any geodesic ending at a point z € U and if the length of « in the metric
d'(2) is at least 1073, then the angle at y between vy and the line field is less than
1/100.

Now we consider UT = Uyex, (Bg(y)(y,1/400) and U™ = Uyex, By (y)(y, 1/500).
Clearly, U_ c U* C U. Suppose that z is in the frontier F' of U~ in M. Then there
is a sequence y, € X1 with the property that dy(,, )(yn,2) — 1/500 as n — oco. In
particular, for all n sufficiently large we have y,, € By (.y(2,1/100) and dg(.)(yn, 2) >
1/600. Thus, y is within 55 of a point I(Z) and all points of I(Z) within 543 of y,, lie
in the same component of I(z) \ {z}.

Definition 12.5. We say that z is a one-sided frontier point of U~ if for every
sequence y, € X; with dg’(yn)(yn, z) — 1/500 for all n sufficiently large the y,, are
within 53 of points 7,, of I(Z) on the same side of Z. Otherwise we say that z is a
two-sided frontier point of U ™.

Our goal is to expand U~ slightly until every point of its frontier is a one-
sided point. It is easy to see that if z is a two-sided frontier point of U~ then
By (2)(2,1/450) is contained in U*. We form the union of U~ with the union of the
Bgy(2)(2,1/500) as z ranges over the two-sided frontier points of U~. We call the
result Us.

Claim 12.6. The open subset Uy contains U~ and is contained in Ut. Any point
of the frontier of Uy is a one-sided frontier point.

Proof. The first statement is clear. Let w be a point of the frontier of Uj, say w
is the limit of y, € U;. We claim that for all n sufficiently large y, € U~. For, if
z is a two-sided frontier point of U~ then By (.(z,1/450) C By (.y(2,1/500) UU".
Thus, the distance, measured in ¢'(z), from y, to the frontier of U; is at least
1/500 — 1/450, and hence the distance measured in ¢’(w) from w to y, is bounded
below by a positive constant independent of n. This is impossible. This shows that
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the frontier of U; is contained in the frontier of U~. Clearly, no two-sided frontier
point of U™ is contained in the frontier of U. O

Since U; € Ut C U , there is a line field on U; with the property that any
geodesic ending at a point y € U; of length at least 10~3 measured with respect to
¢'(y) makes angle at y less than 1/100 with the line field. In particular, for any = at
distance at least 1073 from y, measured with respect to ¢’(y) the distance function
dgr(2) (7, ) has directional derivative > .99 in one of the two directions along the line
field. In particular, the integral curves of the line field meet each component of Uy in
a connected open set. Hence the components of U; are diffeomorphic to 72 x (0, 1),

S? x (0,1) or a bundle over the circle with fiber either 72 or S2.

Proposition 12.7. There is an open subset U] C Uy C M containing X1 with the
following properties:

1. The closure Ull of Ui is a compact submanifold with topologically locally flat
boundary and U] is its interior.

2. The difference Uy \U’l s a disjoint union of connected neighborhoods of the
ends of Uy. Each component of Uy \U’l has diameter less than 1008 and the
integral curves of the line field on Uy foliate this difference by proper open
intervals, so that Uy \U’l s diffeomorphic to a product of a surface with an
open interval.

3. Each component of Uy either is a 2-torus bundle over the circle, or is diffeo-
morphic to a product of either S% or T? with an interval.

4. For each end &€ of U] there is an X1-pair (z,zg) and a neighborhood U(zg) C
Ui of € for which there is an interval product structure py.: U(xg) — J(xg)
with 48-control. Here U(xg) is given the metric g'(xg), the length of the in-
terval J(xg) is 1/250, and this interval is centered at Tg = pg, -

5. Uj is contained in the union of By, (y,1/400) fory € X;.
6. For each point y € X1, the ball By, (y,1/501) is contained in Uj.

Proof. For each end of Uy there are a point z in the corresponding component of the
frontier of U; and a sequence (z,,y,) of Xi-pairs converging to (oo, Yoo) (Which is
not necessarily an (Xi-pair) such that dy ) (Yoo, 2) = 1/500. We take (z,z¢) to
be (2, yn) for some n sufficiently large that dy(y, ) (yn, Yoo) < 8. Then we set U(ze)
to be By (s (ze,1/500). Of course, U(zg) C U~ C Uy. Then the distance function
from x foliates the closure of U(z¢g) by locally flat surfaces in M so that U(xg) is
the interior of a compact, codimension-0 submanifold with locally flat boundary.
Exactly one of the boundary components of each U(xg) is within 105 of the frontier
of Uy, when measured in the metric ¢'(xg). We call this the exterior end of U(xg).
We define U7 to be the open submanifold of U; obtained by removing the region
between the exterior ends of the U(xg) and the corresponding frontier of U;. The
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complement Uy \U’l is diffeomorphic to the product with an interval — the product
structure being given by the integral curves of the line field on U;.

The third item is clear from the construction of Uy and Uj. The 4/3-approximation
is given by

Ulze) L (—1/250,1/250) = B(ze,1/250),

where T¢ is any point of B(Z,1) within § of zg, where f = .d(x,-) — d(x,z¢ and
?:d(fa) _d(f7f5)' O

We fix U] C M as in the above proposition. For each non-compact end & of Uj we
fix an X pair (z,z¢) producing the neighborhood U(xg) of the end together with
a projection mapping py.: U(xg) — J(zg) as in Conclusion 3 of Proposition 12.7.

Now we begin the study of the complementary regions M \ Uj.

Definition 12.8. Suppose that x € M has the property that By, (v, 1) is within
B of an interval J and that z is within 8 of T € J with T at distance at most 1/25 of
an endpoint e of J. Then we say z is close to a 1-dimensional endpoint. In this case
we define V' (z) to be the open set of all points y € By (,)(x,1) with the property y
is within 8 of a point i € J within distance 0.09 of e.

Claim 12.9. Suppose that x € M 1is close to a 1-dimensional endpoint and suppose
that y € By (y)(x,1) is within B of the endpoint of the corresponding interval. Then:

1. V(z) is an open subset of M.

2. The subset V(z) Ndgy ) (y,-)~1(0.055,0.099) contains the non-compact end of
V(z) and is contained in Uj.

8. dg (2 (y,-)(0.06,0.08) is contained in V(z).

4. The distance function dg(y,-) is regular on dg ) (y, )71(0.06,0.08) and each
fiber of dy()(y,-) in this open set is a surface isotopic in U] to the fiber of its
fibration structure.

5. For every t < 0.1 the fiber ¥y = {z|dg/(x) (y,z) =t} has diameter < 43 in the
metric g'(x).

Proof. The first item is clear. It is also clear that V (x) N dy . (y,-) " (0.055,0.099)
contains the non-compact end of V(x). By definition of X, this intersection is
contained in X7 and hence it is contained in Uj. Also, it is also clear that

Z(Jj) = dg’(z) (y, ')_1(0.06, 008)

is contained in V(z). Furthermore, clearly dg(,(y,-) is regular on Z(z) so that the
level sets of this map are compact surfaces. The directional derivative of the distance
function from y makes an angle close to either 0 or m with the vector field given
in Lemma 11.42 and hence this vector field can be used to deform the level sets of
dg ()(y,-) to a fiber of the fibration structure on Uj. Lastly, for each ¢ < 0.1 the
level set 3, is within 23 of the point of the interval at distance ¢ from the endpoint.
It follows that 3; has diameter less than 43. O
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Claim 12.10. Suppose that x,x' are points in M, each close to a 1-dimensional
endpoint. Then:

1. V(x) is not contained in Uj.

2. If V(z) NV (a') # 0, then there is a connected component of M \ U{ contained
inV(z)NV(a).

Proof. Suppose that By (,)(z,1) is within 8 of an interval J and that y € V(x)
is a point within 8 of the endpoint e of J. We shall prove the first statement by
showing that y ¢ Uj. To do this we show that there is no point z € X; with
dgr(z)(z,y) < 1/400 and invoke Condition 4 from Proposition 12.7. Suppose to
the contrary that such a z exists. By the definition of X; there is a point w with
By () (w, 1) within § of an interval J', with dg(,,y(w, 2) < 1/10 and with z within 3 of
a point Z € J' at distance greater than 1/25 from every endpoint of J (and also from
every non-compact end of J'). First, notice by Lemma 6.1 that ¢’(w)/¢'(2) is equal to
a constant between 9/11 and 11/9, so that consequently dy (,)(y, z) < 1/200. Thus,
Y € By () (w,1/9) and y is within 3 of a point 7' € J' at distance at least 1/30 from
the endpoints and non-compact ends of J'. Since By () (w, 1/9)N By (x,1/10) # 0,
it follows that for the constant R defined by R? = ¢'(w)/g'(z) we have (4/5) < R <
(5/4). Of course, R - By (3)(y,1/2) = Bg(uw)(y, R/2). Thus, the ball of radius R/2
about e in R-.J and the ball of radius R/2 about ¥’ in J' are within 4(1+ R) of each
other in the Gromov-Hausdorff topology. But this is absurd since e is an endpoint
of J and ¥’ has distance at least 1/30 from the ends of J’. This contradiction shows
that y & Uj.

Suppose that  and z’ are close to one-dimensional endpoints. Let y € By () (x,1)
and 3 € Bgz(l,/)(x’ , 1) be within 3 of the endpoints of the corresponding intervals.
Also, suppose that V(z) NV (2') # (. This implies that ¢'(x)/¢'(2") is a constant
R? with 9/11 < R < 11/9. Let ¥ be the level set dg ;) (y,-)(0.095) and let ¥’ be
a level set dg(,(y',-) = d for some 0.095 < d < 0.098, chosen so that ¥ NX' = {.
Such a d exists since the diameter of X, respectively X', is less than 43 in the metric
g (), respectively ¢'(2') and ¢’ (), and ¢'(2’) differ by a multiplicative factor R? with
9/11 < R < 11/9. Both ¥ and ¥’ are contained in Uj. Set V'(x) = By (,)(y,0.095)
and V'(z') = By (2)(y/, d). These are compact connected manifolds with connected
boundary ¥ and Y'| respectively. Then V(z) C V/(z) and V(2') C V/(2') and the
complements V'(x) \ V(z) and V'(2’) \ V(a’) are contained in X; and hence are
contained in Uj.

Since V'(z) and V'(2’) are compact, connected submanifolds with disjoint con-
nected boundaries, either V'(z) N V'(2') = 0, V'(z) C V'(a), V'(2') C V'(z), or
V/(x)UV'(2") is a component of M. The last possibility cannot hold for it if did then
the component would be the union of two open sets, each of diameter < 1/4 with
respect to ¢'(z) and this is impossible, since by our choice of p, the ball By () (x,1)
is non-compact. According what was established in the first part of this proof, V' (z)
and V(z') each contain a connected component of M \ U{, and by the above, any
such component is disjoint from (V’(z)\ V(z)) U (V'(2’)\ V(2')). Thus, the second
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and third possibilities satisfy the conclusion of the claim. The first possibility is
ruled out since it is contrary to the supposition that V(z) NV (') # 0. O

For each z close to a 1-dimensional endpoint, V' (z) is the union of an open subset
of U7 and some finite, non-empty collection of complementary components. It follows
from the previous claim that we can find a finite set of such points x1, ...,z close
to 1-dimensional endpoints such that the V(x;) are disjoint and every component of
M \ U7 that is contained in V' (z) for any point z close to a 1-dimensional endpoint
is contained in one of the V(z;). We fix these x; and V(z;). For each ¢ we fix a
point y; € V(x;) within 5 of the endpoint of the corresponding interval. We denote
by Vo(x;) the compact submanifold cut off by the surface ¥; which is a level set of
dg/(xi)(yi, -) at distance 0.07 from y;.

The conclusions of Proposition 11.19 or Proposition 11.44 hold for Vy(x;) C

Bg’(xi)(xiv 1)2
Corollary 12.11. One of the following hold:

1. Int Vo(x;) is homeomorphic to (a) an open 3-ball, (b) the complement of a
closed 3-ball in RP3, (¢) an open solid torus, (d) an open twisted I-bundle over
the Klein bottle, or (e) T? x [0,1) and its boundary is a boundary component
of M.

2. Case 1 does not hold, and there is a constant \; >> p~'(x;) and such that
B = B)\lzg(yi, 2) is within é(a) of a ball of radius 2 in a complete 2-dimensional
Alezandrov space of curvature > 0 satisfying the Conclusion 2(b) of Lemma 11.44,
and d(y;,-) has no critical points in Vo(fﬂi)\B,\gg (yi, 1/3). (Recall that for every
z € BAgg(yi, 1) the ball of radius 1 centered at z is within é of an Alexandrov
ball B(Z,1) of curvature > 0 and of area at least a1 and hence of area at least

a.)

Furthermore, for each i < k the surface ¥; is contained in U{ and ¥; is isotopic in
V(xz;)NU] to a fiber of the fibration structure of Ui (of course ¥; is either a 2-sphere
or a 2-torus). Thus, in the first case the union of Vo(x;) with the component of U{
containing the boundary of Vo(x;) is diffeomorphic to Int Vy(x;). In the second case,
the region between BA?g(yi’ 1/3) and X; is a topological product.

12.1.1 An expansion of U]

After renumbering we can assume the subsets Vy(x;), i = 1,..., ¢, satisfy the second
conclusion in Corollary 12.11 and the subsets Vy(z;), ¢ = £+ 1,...,k, satisfy the
first. We define

Uy = Ui UUE o Vo(i).

Some of the components of U are components of U] and some are strictly larger.
Let us consider components of the latter type. Fix a component C” of U{ that is
not a component of Uj. Then there is a Vj(z;) C C”. If there is only one such Vp(x;)
contained in C”, then C" is the union of a component C" of U{ and Vj(z;). Since
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the boundary of Vj(z;) is parallel in C’ to the fiber of the fibration structure on C”,
it follows that in this case C” is diffeomorphic to Int Vj(z;).

Suppose there are indices i # i’ both greater than ¢ such that Vy(z;) and Vp(zy)
are both contained in C”. Since Vp(x;)NVo(zy) = 0 and since Vy(z;) and Vp(x;) each
have only one non-compact end, it follows that C” is the union of Vy(z;), Vo(zy), and
a connected component C’ of U]. Again using the fact that the boundaries Vj(z;)
and Vp(z) are parallel in C” to fibers of the fibration structure, we see that C” is a
closed component of M and is diffeomorphic to the union of Vj(x;) and Vy(z;) along
their boundary. Being the union of two manifolds each of which is homeomorphic to
the closure of one of the five listed in Conclusion 1 of Corollary 12.11 glued together
along their common boundary, every one of the prime factors of the closed manifold
C" is geometric, or is diffeomorphic to T? x I. (The manifold is prime unless it is
S3 or RP3#RP3.)

From now on we work with U{ and the Vj(z;) satisfying the second conclusion
of Corollary 12.11. Thus, when we refer to V(x;) we implicitly are assuming that
1<i </

Invoking the hypothesis that the boundary of M consists of incompressible tori
and that no closed component of M admits a Riemannian metric of non-negative
sectional curvature, allows us to conclude the following:

Proposition 12.12. The open subset Uy C M constructed in the previous paragraph
satisfies the following:

1. Every component of U{ is diffeomorphic to one of the following:
(a) a T?-bundle or an S?*-bundle over either the circle or an interval with the
fiber(s) over the endpoint(s) being boundary component(s) of M,

(b) a twisted I-bundle over the Klein bottle whose boundary is a boundary
component of M,

(c) an open solid torus, an open twisted I-bundle over the Klein bottle, an
open 3-ball, the complement of a closed 3-ball in RP3, or

(d) the union of two twisted I-bundles over the Klein bottle along their com-
mon boundary.

2. For each non-compact end of Uy is also an end of U] and hence there is a
neighborhood of each non-compact end of Uy of the form U(zg) C Uy as in
Proposition 12.7.

Now we turn to the complement of U}

Proposition 12.13. Let A be a connected component of M \ U{'. Then one of the
following two things holds.

1. For some 1 < i </{, we have A C Vy(x;). Furthermore:

(a) AC Bg’(zi)(yia 1/20).
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(b) Vo(zi) \ Bg(a;)(yi, 1/3Ni) is a topological product with an interval and
the distance function from y; is the projection mapping of this product
structure.

(c) BAfg(yia 2) is within €(a1) of a 2-dimensional Alexandrov ball of B(y;,2)
curvature > —1. FEwvery ball B(Z,1) centered at a point of B(y;,1) has

area > a. Lastly, the distance from vy, is the projection mapping of a
product structure on B(y;,2) \ B(y;,1/3).

2. A is not contained in any V (z) for any point x near a 1-dimensional endpoint
and for every point y € A the ball By, (y,1) is within é of a 2-dimensional
ball B(y,1) of curvature > —1 and area > a.

Definition 12.14. We call a component of M \ U] satisfying Conclusion 2 above a
component close to a 2-dimensional Alexandrov space.

12.1.2 Compact submanifolds W; and Ws

Let A be a component of M \ U’ that is close to a 2-dimensional Alexandrov space.
We shall expand A to a slightly larger compact submanifold denoted A. Let Ul(zxe)
be a neighborhood of an end of U}’ whose closure meets A, and let p(z¢): U(zg) —
J(xg) be its 45-interval product structure. Recall that J(zg) = (—1/250,1/250),
and suppose that A meets the closure of the negative end of this interval. We take
any cross-section %(&) = p,} (—1/300). This surface is either a 2-sphere or a 2-torus
and the region between it and the boundary component of A in the closure of U(x¢)
is a product. We form A by adding these product regions, one for each boundary
component of A, to A. The region p;gl (t —107%,t + 10~%) is a collar neighborhood
of 2(€) in M. We set C(A) equal to the union of A with the collar neighborhoods
of each of its boundary components. Since the neighborhoods U(z¢) have width
at least 1/250 in the metric used to define them, if A, A" are distinct connected
components of M \ U}’ of the type under consideration here, then the closure C(A)
of C(A) and the closure C(A") of C(A’) are disjoint.

Claim 12.15. For no point y € 6(21\) is By (y)(y, 1) within B of an interval. In

particular, for every pointy € 6(1@) the ball By, (y, 1) is within € of a 2-dimensional
Alexandrov ball of curvature > —1 and area > a.

Proof. Fix y € C(A). Then y is within (1/1000) 4 (1/10,000) of A in the metric
used to define U(z¢), and hence, by Lemma 6.1, is within (1/900) of A in the metric
¢'(y). Hence by Proposition 12.7 y ¢ X;. This shows that the manifold 6(;1\) is
disjoint from Xj. Thus, if By, (y, 1) is within 3 of an interval then y is within 3 of a
point § which is within 1/25 of its endpoint. But in this case the distance from y to
the complement of Vj(y), when measured using ¢'(y) is at least .01 and hence Vj(y)
would meet A, which is a contradiction. This proves the first statement. The second
follows immediately from this and the dichotomy set up in Section 11.8.1. O

In particular, the conclusion of Case 2 of Theorem 11.46 applies to 6(@) to give
a covering of it by the four types of metric balls listed in that theorem.
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Claim 12.16. Any e-solid torus, any e-solid cylinder, and any 3-ball B near a 2-
dimensional corner that has a point within 2ry of A (with the distance measured by
the metric used to define the element in question) is contained in C(A).

Proof. This is immediate from the fact that 7 is less than 107% and Lemma 6.1. [

Now consider one of the Vp(z;), 1 < i < ¢, containing complementary components
of U{. In this case we set A; = B)\Zzg(yi, 1/3). We say that A;is a component near
a 1-dimensional endpoint. The open set Uy contains OVj(z;) and this boundary is
parallel to the fibers of UY. Since d(y;, -) is regular on Vo(z;) \ A;, this region is a
product region. Also, OVh(x;) C Uy and is isotopic in Uy to a fiber of its fibration
structure. Thus, it follows that every component of Uf_, (Vo(;) \A\Z) U Uy satisfies
Condition 1 in Proposition 12.12.

In this case we set C/(A;) equal to B)\gg(yi’ 1). In this case for any point y € C(A;)
we see that Byz, (y,1) is within é(a;) of 2-dimensional Alexandrov ball of curvature
> —1 and area > aj;. In particular, the conclusion of Case 2 of Theorem 11.46
applies to 6(/@) to give a covering by the four types of metric balls listed in that
theorem, when we use the metric A\7g at each point of C (X,) As before, any e-
solid torus, any e-solid cylinder, and any 3-ball near a 2-dimensional corner (each of
these defined using the metric A\?g) that has a point within ry of EZ is contained in
C(4;). The C(4;) are pairwise disjoint and are also disjoint from the A associated
to components of M \ Uy near 2-dimensional Alexandrov spaces.

Definition 12.17. We define W5 to be the (disjoint) union of the A, one for each
complementary component A for M \ Uy that is near a 2-dimensional Alexandrov
space and the Ei, 1 <i < /{. At this point we shift notation and use the
symbol A to refer to any component of W,. We set C (W3) equal to the union
of the C (/T) as A ranges over the connected components of Wa, and C(W2) denotes
the closure of C'(W3). We define W; to be the complement of the relative interior of
Wo in M. Then W7 and Wy are compact manifolds with W7 N Wy = W5 which in
turn is the union of those components of 97 that are not boundary components of
M.

We define a metric h(z) on C(Ws) as follows. For # € C(A) with A being
a component close to a 2-dimensional we set h(z) = ¢/(z). For # € C(A) with
A C Vo(zi), 1 <i <k, weset h(z) = \2g where ); is the constant associated to this
component by Proposition 12.13. Since € < é(a), we see that every point y € C'(W5)
has the property that By, (y,1) is within é(a) of a 2-dimensional ball B(y,1) of
curvature > —1 and area > a.

Proposition 12.18. Every component of W1 is one of the following:
1. a T?-bundle or an S?*-bundle over either the circle or a closed interval,
2. a twisted I-bundle over the Klein bottle,

3. a compact solid torus, a compact 3-ball, or the complement of an open 3-ball
in RP3, or
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4. the union of two twisted I-bundles over the Klein bottle along their common
boundary.

Proof. This follows from Proposition 12.12, and the fact that the differences between
A and A are collar neighborhoods of the boundary. O

The following lemma gives the structure of Wy near each of its boundary compo-
nents.

Lemma 12.19. Let X be a boundary component of a connected component A of Ws.
Then there is a point x € Wy such that the following hold:

1. Byzy(x,1) is within € < é(a) of a 2-dimensional Alexandrov ball B(%,1) of
curvature > —1 and area > a.

2. Bp)(x,1/2) contains all points y € A within distance 1075 of © in the metric
h(z).

3. Ifﬁ is close to a 2-dimensional Alexandrov space then dj(,) (z,%) < 2x 1074,

4. There are 0 < a < b < 1 with b —a = 1/8000 such that, setting N(X3) equal
to the connected component of dy(x,-)""(a,b) that contains X, the function
dp(z)(z,*) is regular on N(X) and defines the projection map of a topological
product structure N(X) — (a,b).

5. The boundary component ¥ is isotopic in N(X) to the fiber dp ) (w, )Y@, for
every t € (a,b).

6. There is a connected component N(X) of d(z,-)"1(a,b) C B(T,1) that is within
4é of N(X) and on which d(Z,-) is reqular and defines the projection mapping
of a topological product structure N(X) — (a,b).

Proof. We denote by A the component that has 3 as a boundary component. First
suppose that the corresponding component A of M \ U} is contained in one of the
Vo(zi), 1 < i < k. Then the result is immediate from Proposition 12.13 using the
point y;.

Now suppose that A corresponds to a component A of M\ U} that is close to a 2-
dimensional Alexandrov space. Let U(zg) be the neighborhood of an end of Uy’ that
contains X. In this case we choose a point z in the component of the frontier of U(x¢)
that is not contained in Uy'. Then the distance from z to ¥ is within 2¢’ of 1/8000
when measured using dy(,.), and X has diameter at most ¢’ in this metric. Since
the distance dg(,,)(7e, z) is within 2¢ of 1/8000, which is between (1.1)/8000 and
(0.9)/8000 by Lemma 6.1, the ratio of dj,(,) = dy () and dg(,,) is between 26/25 and
25/26. Since ¢ < 1076, it follows that the distance between any point of ¥ and =,
measured using h(z) = ¢'(z), is between 1/7000 and 1/9000. We denote the distance
from ¥ to x by d, set a = d — (1/16,000), and set b = d+ (1/16,000). We set N(X)
equal to the connected component of dj,,(w, )~(a,b) containing ¥. Then N(X)
contains the neighborhood of size 1075 (when measured in h(z)) about ¥. Notice
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that N(X) is contained in U(zg) and the distance, measured using ¢'(z¢), from x
to any point of N(X) is greater than 2 - 1075, It then follows from Lemma 11.42
that dj,(,)(x, ) is regular on N(X) and that the fibers dj,(,)(z,-) 71 (t) are isotopic in
N() to X for all t € (d — (1/16,000), d + (1/16,000)).

We know that Bj(y)(z,1) is within € of a 2-dimensional Alexandrov ball B(Z, 1)
of curvature > —1 and area > a. Since By (,,)(7e, 1) is within 3 of an interval,
it follows that the ball B(z,1/2) is within 5(¢ + ) of an interval. Thus, d(z,-) is
regular on B(7,1/2) \ B(z,10~%). Hence, this function is regular on N(X) which is
defined to be the connected component of d(Z,-)"!(a,b) within 4¢ of N(X). This
completes the proof of the lemma in this case. O

12.2 A covering of C(W>)

According to Theorem 11.46 and the remark before Definition 12.17, C(W3) has
an opening covering consisting of Us gen, €-solid tori, cores of e-solid cylinders, and
3-balls near 2-dimensional corners. Furthermore, since 79 < 1076 any e-solid torus,
e-solid cylinder or 3-ball near a 2-dimensional corner that meets the rg-neighborhood
of Wy (measured in the metric used to define the element) is contained in C'(W3). Of
course, by compactness we need only finitely many such open sets to cover C(W53).

12.2.1 Seifert fibrations

It will be important in the following to know that any compact subset contained in
the union of Uz gen and e-solid tori is in fact contained in the total space of a Seifert
fibration.

Proposition 12.20. Suppose that X is any compact subset of the union of U gen
and a collection of e-solid tori. Then there is an open subset Z containing X that
is the total space of a Seifert fibration. There is a disjoint union of solid tori in X,
each of the solid tori is saturated under the Seifert fibration and is an unknotted solid
torus in an e-solid torus neighborhood, By, (2i,7i/4). The complement of these
solid tori in Z is saturated under the Seifert fibration and is contained in Uz gen,
and the restriction of the Seifert fibration to the complement is an S*-fibration with
fibers within € of vertical with respect to S'-product structures with e-control.

Proof. X is contained in the union of Ugen and a finite number of e-solid tori
neighborhoods By, (2i,7:/4). Suppose two of these solid tori By and Bz meet.
We number things so that the unrescaled radius of B is great than or equal to
that of By. Then By is contained in the metric ball with center x1 and radius
3r1/4 (measured in the metric h(z1). Of course Usgen contains the union of the
B2y (i, Tri/8) \ Bp(z,)(2i,7i/8). Hence, the expense of expanding these metric
balls to have radius 3r;/4 we can assume that the e-solid tori By,,)(z;,7:/4) are
disjoint. Let X' be the complement in X of the By.,)(zi,7:/4) and let X1 be the
union of X' with the By(.,)(2i,37:/4) \ Bpz,)(2i,7:/4). This is a compact subset of
U3, gen, and hence by Proposition 11.8 it is contained in an open subset Uy C Uz gen
that is fibered by circles that are within € of vertical in the S'-product structures.
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By Corollary 11.23 this fibration extends to a Seifert fibration over the union of Uy
with the By(.,)(2i,7i/4) with at most one exceptional fiber in each of these balls.
This is the required Seifert fibration. O

Corollary 12.21. Let v¢(7) be an e-solid cylinder, and let Dy be a spanning disk
for its core ve2(¥). Then Dy is not contained in the union of Us gen and e-solid tori.

Proof. First, let us suppose that the disk Dy is contained in U gen. Then Uz gen
contains the closure of X = Do Uvg(7) \ ve2/2(7). There is an S Lfibration structure
on an open subset containing X with the property that each fiber is within ¢ of any
Sl-product structure centered at any point of X. This implies that the boundary of
Dy is isotopic to a fiber of this S'-fibration. But the only S'-fibrations whose generic
fibers are homotopically trivial have total space S2. But this is ruled out since no
component of M is homeomorphic to S3. This proves that Dy is not contained in
U2,gen-

Now suppose that Dy is contained in the union of Uz g, and a collection of e-solid
tori. By the above, Dy meets an e-solid torus T' = By, (,)(2,7(2)/4).

Claim 12.22. r(z) < 50627 51.

Given this claim, it follows that any e-solid torus 7' that meets Dy is disjoint
from A = v¢() \ vs1¢2(F). Thus, we can cover Do U (v¢(7) \ ve2(7)) by e-solid tori
and Uz gen in such a way that A is disjoint from all the e-solid tori in the covering.
Then there is a Seifert fibration structure on an open set containing this union, and
the level circles of v¢(7) \ va12(7) are homotopic to a generic fiber of this Seifert
fibration. As before, this is only possible if the component of the total space of the
Seifert fibration is a closed 3-manifold is a 3-dimensional spherical space form.

It remains to prove the claim, which follows immediately from the next claim.

Claim 12.23. Suppose that T' = By,(.)(2,7(2)/4) contains a point of ve(y) at dis-
tance d (in the metric used to define ve(y)) from 5. Then r(z) < 20d + &*r1s1.

Proof. Suppose that r(z) > 20d + ¢2rys1. Let h(z) be the metric used to defined
ve(7). First notice that there is a constant R such that h(z) = R%h(z) and by
Lemma 6.1 we have (1.1)™! < R < (1.1). Thus, if T meets v = v¢(¥) and
contains a point at distance d (measured in the metric used to define v) from
7, then By.y(2,7(2)/4 + (1.1)d) contains a point ¢ € 5. According to Part 5
of Lemma 11.31, there is a point ¢ € B(%, 1) within £271s1/100 of ¢ and there
is a point ¢ € By)(z,r(2)/4 + (1.1)d + 3¢%r151/100) within € of g. Under our
hypothesis 7(z)/4 4 (1.1)d + 3¢%r151/100 < 7(z)/3, so that ¢ € By, (z,7(2)/3).
Now (1/r(2))Bpz)(2,7(2)) is within €/r(2) of (1/7(2))B(z,7(2)) Wthh is within g
of a circular cone C' with cone point z. The point ¢ is within (¢/7(z)) + u of
a point ¢ € C with d(z,q')) < (0.34). Hence, (1/r(2))Bp.)(¢';r(2)/2) is within
4[(é/r(z)) + u] of B(q',1/2) C C. On the other hand, (1/r( ))Bh(z)(q r(2)/2) =
(1/7(2))Bren @) (¢, 7(2)/2) = (R/7(2))Biz)(q',7(2)/2R), and this ball is within
4Ré/r(z) of (R/r(2))B(q,r(z)/2R). It follows that (1/r(2))B(q,r(z)/2 and the ball
(R/r(2))B(q,r(z)/2R) are within 4((R + 1)é/r(z) + p) of each other. But we have
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u < 6(d'(a))/8, é/r(z) < (re/20)0(d’(a))/r(z), r(2) > re, and R < 1.1. This im-
plies that these two balls are within §(a’(a) of each other in the Gromov-Hausdorff
distance. By construction § € 9B(q,1/2), and C, being a circular cone, has no
boundary. This contradicts Lemma 10.7. 0

This completes the proof of the corollary. O

12.3 Fixing the 3-balls

Lemma 12.24. There is a finite set of balls near 2-dimensional corners,
By = By(z,)(w1,7(w1)/8), - BN = By (wn,7(wn)/8),
each meeting C(Ws), such that the following hold:
1. The closures of the By, (wi, 3r(w;)/16) are disjoint.

2. Every ball near o 2-dimensional corner, By, (w,r(w)/8) that meets C(W2),
is contained in one of the By, (w;, Tr(w;)/8),i=1,...,N.

3. If B = Bpy)(w,r(w)/8) is a 3-ball near a 2-dimensional corner, then B is
contained in the union of the B;, Usgen, and the union of the cores of e-solid
cylinders.

Proof. Among all balls By, (w;i,7(w;)/8) in M near 2-dimensional corners that
meet C(Ws), choose one whose rescaled radius is at least (0.9) times the supremum
of the rescaled radii of all such balls. Call this By = By g,)(w1,7(w1)/8). Now
among all balls Bj,,)(w,r(w)/8) near 2-dimensional corners meeting C(W2) with
the property that the closure of By, (w,3r(w)/16) is disjoint from the closure of
By (z) (w1, 3r(w1)/16) choose one whose rescaled radius is at least (0.9) times the
supremum of the rescaled radii of all such balls. Call this Bs. Continue in this
fashion constructing Bj, Bs,...,. First notice that since the rescaled radii of all
balls under consideration are at least r; and since p is bounded on the compact
manifold M, this process must terminate after a finite number of steps, say after
By. Now suppose that B = By, (w,7(w)/8) is a ball near a 2-dimensional corner
that meets C'(Ws). Then the closure of the ball with the same center and with radius
3r(w)/16 must meet at least one of the closures of the By(,,)(wj, 3r(w;)/16). Take
the smallest index j for which this is true. Then by the inductive construction of B;,
we have (0.9)r(w) < r(w;). On the other hand, since the balls have closures that
meet, since r1, 51, &, € < 1075, and since dp(z)(2,y) < 2¢+¢2r151/100, it follows from
Lemma 6.1 that p~'(z)/p~(2;) < 1.01. It then follows that By, (w,3r(w)/16) C
Biy(e;)(wj, Tr(w;)/8) and hence by Corollary 11.39 that B is contained in B; and
the union of Uz gen and the union of cores of e-solid cylinders. This shows that the
collection {By, ..., By} satisfies the conclusion of the lemma. O

For the rest of this section we fix a set of 3-balls B; = Bj,(,,)(wi, r(w;)/8), 1 <
i < N, near 2-dimensional corner points satisfying the conclusion of the previous
lemma.
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12.3.1 Attaching e-solid cylinders to each 3-ball

According to Corollary 11.39 for each ball B; we can choose two disjoint e-solid
cylinders v(i)* with width factor (0.9)¢ such that the boundary sphere of B; passes
through the central point of each of the defining geodesics of the v/(7)*, and such that
every point of the boundary sphere not contained in the cores of these two e-solid
cylinders is contained in U gen. Since the closures of the balls with the same centers
and radii 3r(w;)/16 are disjoint, making these choices results in a pairwise disjoint
collection of e-solid cylinders. The v(i)* are called the e-solid cylinders bisected by
S;, the metric sphere bounding B;, see F1G. 9.

Definition 12.25. For 1 < ¢ < N we define
Ei = B; U I/(i)+ U V(’i)_.
The B; are fixed for the rest of the argument.

Since the By(y,) (wi, 3r(w;)/16) are disjoint, the following is clear from Lemma 6.1.

Claim 12.26. There is no e-solid cylinder that meets two of the EZ Furthermore,
each B; is contained in the ro-neighborhood of Wo using the metric h(x;).

Lemma 12.27. Suppose that an e-solid cylinder, v, meets B; for some i. Then the
intersection of the defining geodesic v for v with B; is contained in the union of the
cores of v(i)* and the ball B2y (wi, (r(w;)/8) — (r151/18)). Also, the intersection
of the core of v with B; is contained in v(i)* U Bz, (wi, t(w;)) U v(i)~, where
t(w;) = (r(w;)/8) — (r151/20).

Proof. Clearly, the second statement follows from the first. We establish the first. By
Lemma 11.34 the intersection of ¥ with v/(i)* is an interval with each endpoint either
being an the endpoint of ¥ or an intersection of ¥ with an end of v(i)*. Also, this
intersection is contained in the core of v(i)*. The result will follows once we show
that the intersection of 7 with the annular region B;\ By,(,,) (w;, (r(w;)/8)—(r151/18))
is contained in the union of the cores of v/(i)*. If ¥ meets this annular region, then
according to Lemma 11.41 it is within £2r1s1/50 of the boundary of the associated
2-dimensional Alexandrov space B(Z;,1). On the other hand, since the defining
geodesics for v(i)" and v(i)~ are within € of y-approximations to B(Z,1) of length
r1s1/4 and midpoint at distance r(w;)/8 from T, it follows that the union of the
cores of v(i)* and v (i)~ contains the middle sub-geodesic of ¥ of length r1s1/8 and
hence contains all points of the annular region within &2r1s1/9 of dB(%,1), and
hence contains the intersection of 4 with this annular region. O

12.4 eChains

At this point we must introduce the notion of chains of e-solid cylinders and 3-balls
near 2-dimensional corners.
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12.4.1 Good intersections of e-solid cylinders

Definition 12.28. Suppose that for i = 1,2 we have e-solid cylinders v(i) =
Vese faibi](Fi) C Bhzs) (i 1). (Recall that implicitly ¢; € [1/10,1] and b; — a; > £;/5,
y; is the control point for v(i), and ¢; is the length of 7; with respect to the metric
h(z;).) We say that the v(2) has good intersection with v(1) if the following hold
with appropriate orientations of the 7;:

1. There is a point in the negative end of v(2) that is contained in
£5,H (b1 = (0.009)¢1,b1 — (0.006)¢1)

in (1), and the positive end of v(2) is at distance at least (0.1)¢s from v(1)
when measured in the metric h(y2).

2. c1l1p(x1) is either at least (1.1)colop(xa) or is at most (1.1) " Lealop(za).

Lemma 12.29. With the notation above, suppose that for i = 1,2 the e-solid cylin-
ders V(i) = V¢ [a,,b;) (Vi) have the property that v(2) has good intersection with v(1).
Then the closure of that intersection is homeomorphic to a closed 3-ball. If

Clglp(:tl) < CQfgp(l'Q), (12.1)

then that 3-ball meets the boundary of the closure U(2) of v(2) in a 2-disk contained
in the negative end of U(2) and the rest of the boundary consists of an annulus in
the side of U(1) together with the positive end of U(1). If the reverse inequality holds
in 12.1, the similar statements hold with the roles of (1) and ¥(2) and ‘positive’
and ‘negative’ reversed. See F1G. 10.

Proof. We suppose that Inequality 12.1 holds. It follows from Lemma 10.27 that
the sides of 7(1) and of 7(2) do not intersect and in fact the side of 7(2) is disjoint
from 7(1). Thus, the intersection of 77(1) and 07(2) is contained in the negative end
of 7(2). By Part 3 of Lemma 11.34, this intersection is a 2-disk. Hence, it cuts off
a 3-ball in 7(1).

The other case is analogous. O

Corollary 12.30. With notation and assumptions above, suppose that Inequal-
ity 12.1 holds. Then the boundary of 7(1)UT(2) consists of the union of two subsets:
(i) the disjoint union of two 2-disks: the negative end of U(1) and the positive end of
7(2), and (ii) an annulus E. These two subsets are glued together along their bound-
aries. The annulus E consists of the union of three annuli glued together along their
boundaries. The first is the intersection of the side of (1) with the complement of
the interior of U(2). The second is the negative end of ¥(2) minus its intersection
with the interior of U(1) and the third is the side of U(2). If the opposite inequality
to Inequality (12.1) holds, then there are similar statements with the roles of 7(1)
and 7(2) and ‘positive’ and ‘negative’ reversed.
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12.4.2 Chains of e-solid cylinders

Now suppose that we have a sequence of e-solid cylinders {v(1),...,v(k)}, with
V(i) = Veyg [a;,b;) (Vi) With the geodesics 7; oriented. We say that these form a linear
chain of e-solid cylinders if:

1. For each 1 <i < k the e-solid cylinder v(i+ 1) has good intersection with v(i).
2. If v(i) N (j) # 0 for some i # j, then |i — j| = 1.
In addition to linear chains there are circular chains.

Definition 12.31. A circular chain of e-solid cylindersis a sequence {v(1),...,v(k)}
of e-solid cylinders, indexed by the integers modulo k, such that for each i, 1 < i < k,
the e-solid cylinder v(i 4+ 1) has good intersection with v(i)}, and for each ¢,j if
v(i)Nv(j) #0 then j=i—1,ior i+ 1 (mod k).

Lemma 12.32. Suppose that {v(1),--- ,v(k)} is a linear chain of e-solid cylinders.
Then (1)U ---Uw(k) is homeomorphic to a 3-ball and its boundary is the union of
the negative end of U(1), the positive end of (k) and an annulus E.

Proof. This is proved easily by induction. O

The same arguments establish the analogue for circular chains.

Lemma 12.33. Let {v(1),...,v(k)} be a circular chain of e-solid cylinders con-
tained in M. Then U;v(i) is homeomorphic to a solid torus.

Definition 12.34. Suppose that v(1),...,v(k) is a linear chain of e-solid cylinders.
The v(7) are the elements of the chain. The extremal elements are v(1) and v(k) and
its free ends are the end of v(1) disjoint from v(2) and the end of v(k) disjoint from
v(k —1). For a chain C of e-solid cylinders, we denote by U(C) the union of the
e-solid cylinders in C'. The subset U(C) is also called the total space of the chain.

12.4.3 Definition of e-chains and their topology

Now we are ready to construct chains made up of e-solid cylinders and the B; which
have been fixed earlier in the discuss (with good intersections).

Definition 12.35. A linear e-chain consists of an ordered set
{C1,B;,,C, Bi,,...,Bi, ,,Ci}, k>1,
where:
1. Each Cj, 1 < j <k, is alinear chain of e-solid cylinders with good intersection.
2. For j # j' we have U(C;) NU(Cj) = 0.
3. For each j, 1 < j <k —1, the ordered collection of e-solid cylinders
{v(ij-1)", Cjv(ijea) "}

is a linear chain of e-solid cylinders with good intersection.
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4. The Eij are distinct balls chosen from the él . ,EN.

5. For every j < k the intersection of B;; with U,,U(Cy,) is equal to the inter-
section of v(ij)* Uwv(i;)~ with B;;.
The elements of the linear e-chain are the I/(ZJ) B;; and the elements of the Cj.
B;, 1,Ck} is the end of € disjoint

and the extremal elements are the

The free ends of a linear e-chain {C1, B iy
from BZl and the end of C}, disjoint from sz -
two e-solid cylinders containing the free ends.

An circular e-chain consists either (a) of an ordered set (up to cyclic permutation
shifting by an even number of terms) {C, B, ..., Cy, B;, } satisfying the conditions
above except that in the third item the indices are taken modulo k, so that the end
of Cy disjoint from By, is v(i)t or (b) of a circular chain of e-solid cylinders up to
cyclic permutation. The elements of the circular e-chain are the v/(i;)*, B;; and the
elements of the Cj.

An e-chain is either a linear e-chain or a circular e-chain.

Given an e-chain C we define the total space, U(C), of the chain to be the union
of the U(C;) as C; ranges over the chains of e-solid cylinders that are elements of C,
and the balls Eij that are elements of C. See F1G. 11.

The next two lemmas describe the topology of e-chains.
Lemma 12.36. Let C be a linear e-chain. Then U(C) homeomorphic to a 3-ball.

Proof. Since each U(C}) is homeomorphic to a 3-ball and the intersection of U(C})
with the boundary of each of B i;_, and BZ is a 2-disk, the first statement is easily
proved by induction. O

The same argument shows the following:
Lemma 12.37. Let C be a circular e-chain. Then U(C) is homeomorphic to a solid
torus.
12.5 Existence theorem for a complete set of e-chains

Now we shall show that we can cover all of W3 by Uz gen, a finite set of e-solid tori,
and a finite disjoint collection of e-chains.

Theorem 12.38. There are a finite number of e-chains C1,...,Cx satisfying the
following conditions:

1. Wy is contained in the union of UfilU(Ci), Uz gen, and a finite collection of
e-solid tori.

2. Fori=1,...,K, the C; are contained in C(W3).
3. UC)NU(Cs) =0 for all i # j.

4. The width factor in each e-solid cylinder element of each C; is between (0.7)&
and (0.9)&.
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5. The free ends of the C; are at distance greater than rqg from Wi.

Proof. The proof of this theorem takes up the entire subsection. Let us begin with
some basic definitions in this context.

Definition 12.39. Let C be an e-chain. We say that C is calibrated if:
(a) U(C) Cc C(Wy).

(b) The width of every e-solid cylinder element of C is between (0.7)¢ and (0.9)¢
and any extremal element of C has width either (0.7)§ or (0.9)€.

(¢) If v is an extremal element of C, then either v is one of the e-solid cylin-
ders v(j)* bisected by one of the B; or v = Vet |—rs1 /16,0 (7) and with the
corresponding free end of C contained in fgl(()).

We say that a collection of e-chains is a calibrated collection if each individual e-
chain in the collection is calibrated, if the total spaces of the e-chains in the collection
are pairwise disjoint, and if for every i the three elements making up B; are all
elements of one of the e-chains.

Claim 12.40. Let v be an e-solid cylinder with generating geodesic 7, and suppose
that the core of v meets the total space of a calibrated e-chain C and also meets its
complement. Then the intersection of ¥ with C consists of either one or two intervals
and each endpoint of each interval is either contained in a free end of C or is an
endpoint of v. Furthermore, the intersection of v with C is contained in the union of
the cores of the e-solid cylinders in C and the balls By, (w;, (r(w;)/8) — (r151/18)).
Lastly, if ¥ meets one of the B; then its intersection with B; is an interval with one
endpoint in the free end of v=(i) and the other an endpoint of 7.

Proof. If v meets an e-solid torus v/ and also meets its complement, then it follows
from Lemma 11.34 that ¥ N/ is contained in the core of v/ and one endpoint of
intersection of 5 with v/ is a point in the core of an end of v/. Also, it follows from
Lemma 11.41 that if v meets one of the B;, then since it meets both B; and its
complement, the geodesic 7 is within ¢2r1s1/50 of an arc on dB(T;, 1), an arc that
contains a point at distance r;/8 from Z;. Then, by Lemma 11.39, v meets one of
v(4)*, for definiteness let us say v(j)* and its intersection with B; is contained in
v(j)* U By, (wj, r(w;)/8 — r151/18). Again since v meets the complement of Ej,
its defining geodesic must meet the end of v(j)* disjoint from Bj;. This shows that,
since v meets both U(C) and its complement, the geodesic 7 meets U(C) and that
this intersection is as claimed in the last statement of the claim. If 74 is completely
contained in U(C), then it follows easily that the core of v is contained in U(C)
which contradicts our hypothesis. Hence, 7 must also have a point p not contained
in U(C). Fix an orientation for 5. Consider the sub-geodesic of ¥ on the positive
side of p. It may be disjoint from U(C). Otherwise, beginning at p € ¥ and moving
in the positive direction, the first point ¢ of U(C) that 5 meets is contained in a
free end of C. If the sub-geodesic on the positive side of ¢ meets one of the B; then
its positive endpoint is contained in B; and the entire sub-geodesic on the positive
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side of ¢ is contained in U(C). Otherwise, it follows from Lemma 11.34 that the
intersection of ¥ with U(C) is contained in sub-chain of e-solid cylinders and is an
interval whose other endpoint either is contained in a free end of C or is an endpoint
of 7. Exactly the same analysis applies to the sub-geodesic of 7 on the negative
side of p. Of course, if both sides of p intersect U(C), then the endpoints of 7 are
contained in U(C). This proves the first statement in the claim

According to Lemma 11.34 the intersection of 7 with any e-solid cylinder in C is
contained in the core of that e-solid cylinder and as we saw above, by Lemma 11.41
and Corollary 11.39 the intersection of &4 with any B; is contained in the union of
By (wi, (r(w;)/8) — (r1s1/18)) and the cores of v(i)*. From all of this, the last
statement in the claim follows easily. O

Definition 12.41. When we say that a free end of an e-chain is within r of Wy
implicitly we are measuring distances with the metric used to define the extremal
e-solid cylinder in the chain having the free end as one of its ends.

Claim 12.42. Suppose that we have a calibrated collection of e-chains. Suppose
that one of the free ends, DT, of one of the chains C in the calibrated collection has
a point at distance < ro from Wo. Let v be the e-solid cylinder in C that has DT
as a free end. Then there is an e-solid cylinder contained in C(Wa) that has good
intersection with v.

Proof. According to Corollary 12.21 there is a point € DT that is not contained in
Us,gen and not contained in any e-solid torus. This means that x is either contained
in the core of an e-solid cylinder or in a 3-ball near a 2-dimensional corner. Since
r € C(Wa), we know that Bj,,(7, 1) is within € of a 2-dimensional Alexandrov ball
B(z,1). Since x is not contained in Usgen nor in an e-solid torus, it follows from
Theorem 10.30, Lemma 11.1, and Proposition 11.20 and that x is within &2r1s1/50
of a point y € 9B(7,1). If B(Z,1) is boundary u-flat at y on scale r1s; then by
Proposition 11.27 there is an e-solid cylinder with generating geodesic 7/ with y in
the core of v¢(7') and with f5(y) = —r1s1/16 4 (0.0075)7151 when 7' is oriented so
that its positive direction exists from v through DT. We set v/ = Ve [—r1s1/16,0]5
where ¢ € [(0.7),(0.9)] is chosen so that Condition 2 in Definition 12.28 holds for v
and v/. Then v and v/ have good intersection and v/ C C(Ws).

Lastly, consider the case when B(T,1) is not u-flat at y on scale r1s1. Then by
Proposition 10.18 z is contained in a 3-ball By, (w,(w)/8) near a 2-dimensional
corner and hence by Lemma 12.24 x is contained in By, (w;, 7r(w;)/8), for some
i,1 <i < N. Since we are supposing that B(Z, 1) is not boundary p-flat y on scale
r1s1 and that z is not contained in Us gen, according to Proposition 10.18 this means
that x is contained in B;. But this is impossible since z is contained in a free end
of the e-chain and since the e-chains are calibrated, together they contain all the
B;. O

Now suppose that we have a calibrated collection e-chains Cy,...,C; with the
property that at least one free end of one of these chains, say DT, has a point
within rg of Wa. Let v be the e-solid cylinder that contains D, and let C; be the
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e-chain that v belongs to. Then by the above claim there is an e-solid cylinder v/
with good intersection with v. If v/ meets U;U(C;) only in v, then we extend C;
by adding 1/(’35’[_74151/16’0}, (where ¢ is either (0.7) or (0.9) chosen so that Condition
2 of Definition 12.28 holds) to the end of this calibrated e-chain, creating a new
calibrated collection of e-chains.

Let us suppose now that v/ meets U;U(C;) in some point not contained in v.
Then by Claim 12.40 we see that, orienting the generating geodesic ¥’ for v/ so that
at z =3 N DT the positive orientation points out of v, and setting o equal to the
open interval in 5’ whose closure has endpoints z and the positive endpoint of ¥/,
the following hold:

1. a meets U = U;U(Cy).

2. Let p € a be the first point (as we move in the positive direction) meeting the
closure of U. Then p is contained in the core of a free end, D", of one of the
C; and v/ meets the extremal e-solid cylinder, denoted " and contained in the
e-chain C;, having D” as an end.

Denote the generating geodesic of "/ by 7”. Let D{ C v” be the level set of f5n
with the property that the distance from D” N5" to DY N7" is (0.0075)(r1s1/4) (in
the defining metric for v”). (Recall that the length of 7" is r151/4.) We divide into
two cases.

Case 1: 7'N DY is not contained in /. In this case we can extend v/ so that its
positive end contains DY N5’. Since v’ meets v”” by Lemma 6.1 the metrics defining v/
and v” differ by a multiplicative factor between (14 3(rys1)~1)? and (1 —3rys1)71).
Thus, since the positive end of v/ was contained in the level set f%l(O), after this
extension the positive end of v/ lies in the level set f:;l(b) for some 0 < b < rys1/16.
Thus, the extension produces an allowable e-solid cylinder. By construction and by
Lemma 6.1 the first condition in Definition 12.28 holds for v/ and v”. Since both v
and v are extremal e-solid cylinders in the calibrated e-chains to which they belong
to, each of their width factors is either (0.7)¢ or (0.9). Thus, taking the width
factor of the extended version of v/ to be (0.8)¢, and using Lemma 6.1 we see that
V(O.g)g has good intersection with v’ and v/. Clearly, v/ meets only v and " and
in this case v/ has spanned between two calibrated e-chains and, with them, forms
a single e-chain or possibly v/ has joined an calibrated e-chain to itself creating a
circular e-chain out of a linear one. Notice that the free ends of the newly formed
e-chain are also free ends of the original set of e-chains. It then follows that the new
collection of e-chains is calibrated.

Case 2: N DY{ is contained in v/. In this case arguing as above we can extend
V40 Veg [y, 51 /16,5 With 0 < b < 7151/16 in such a way that 7' N DY is contained in its
positive end. The extended version of v(gg)¢,(—r s, /16, has good intersection with
V. In this fashion, by extending v we have joined two of the calibrated e-chains
together into one, or possibly we have joined a calibrated e-chain to itself to form a
circular calibrated e-chain out of a linear one.

Thus, in either case, given a calibrated collection of e-chains with at least one
free end that has a point within distance rg of Ws, we are able to create a new
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calibrated collection such that the total space of core is strictly larger. Beginning
with [], B; we continue this inductive process until, by compactness of W, we have
a calibrated collection of e-chains, Cy,...,Ck,, with the property that both the free
ends of every linear e-chain C; have no points within distance rg of Ws.

We set Uy = UfiolU (Ci). There may still be points of W5 that are not contained
in the union of U gen, €-solid tori, and Uy. Suppose that x € Ws is such a point.
Then the ball By, (x, 1) is within € of a 2-dimensional Alexandrov ball B(7,1) of
curvature > —1 and area > a, and as we have argued before, x is within §2r1 51/50
of a point § € OB(Z,1). If B(Z, 1) is boundary p-flat near i then there is an e-solid
cylinder v = v(q.9)¢,[—r1s1/16,r151/16) Whose core contains x, and in fact the level set
fgl(O) contains x. Since the generating geodesic v for v is contained in the r¢/2-
neighborhood of Wy, it does not meet any of the free ends of the C;, and hence by
Claim 12.40 v is disjoint from Vj.

Now suppose that B(Z, 1) is not boundary u-flat near . Then y € W5 is contained
in a ball By, () (w, r(w)/8) near a 2-dimensional corner. As we have seen, this implies
that y contained is one of the By, (w;, 7r(w;)/8). Let B(%;), 1) be the 2-dimensional
of area > a and curvature > —1. Since y is not contained in Us gen, it follows that
y is close to a point ¥ € dB(T, 1), and hence either B(Z, 1) is boundary u-flat near
Y or y € B;. If the first possibility holds then the above shows that y is contained
in the core of an e-solid cylinder. The second possibility contracts the fact that
y & U;U(C;). This proves that any point y € W not contained in Us gen, an e-solid
torus, or Up is in the central disk of the core of an e-solid cylinder. Suppose that
there is such a point and let v be an e-solid cylinder containing the point in the
center 2-disk of its core.

Claim 12.43. Let D be an end of v. Then there is an e-solid cylinder 1/{0'7)5 which
has good intersection with v gy, which contains the core of D, and which is also
disjoint from Vj.

Proof. By Claim 12.42 there is an e-solid cylinder VEO_7)£ with good with good inter-

section with v containing the core of D. Let 7’ be the generating geodesic for v/
Then 7' passes within 2r;s; of 2 and hence is contained in the r¢/2 neighborhood
of W (all distances measured in the defining metric for v’). As a result 4’ does not
meet any free end of any of the C;. It follows from Claim 12.40 that ¢/ is disjoint
from V4. ]

We replace v/ by VE(”)& - Performing the analogous construction for

r151/16,0]"
the other end D" of v produces/a ciﬂibrated e-chain C’ consisting of three e-solid
cylinders, with the property that {C’,C1,...,Ck,} forms a calibrated collection of
e-chains. We then repeat the construction above to expand C’ by adding e-solid
cylinders to form a calibrated collection of e-chains whose free ends are at distance
> ro from Ws. (Notice that it is possible in the process that we join the e-chain C’
to one of more of the existing calibrated e-chains.) By the compactness of Wy, after
a finite number of repetitions of this construction we arrive at a situation where
we have a finite collection of e-chains Ci,...,Cg, which in addition to satisfying

Conditions (a), (b), and (c¢) in Definition 12.39 also satisfy:
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(d) For i =1,..., K, the free ends of the C; have no points within distance ry of
Wa.

(e) W is contained in the union of Us gen, a finite set of e-solid tori, and UX  U(C;).

We say that such a collection is a complete calibrated collection. Clearly, a com-
plete calibrated collection of e-chains satisfies the conclusion of Theorem 12.38. This
completes the proof of the theorem. O

We now fix the complete calibrated collection {C;}X

12.5.1 Smaller versions of e-chains

The next step is to construct smaller versions of the e-chains that lie between the
e-chains and their cores, see F1G. 12.

Definition 12.44. Let v(i) = Vg (4,5, (7:), for i = 1,---  k be a chain of e-solid
cylinders. Consider a consecutive pair v(i), v(i+ 1) with y; being the e-control point
for v(i) and ¢; being the length of 7;. If Inequality 12.1 holds, i.e., if ¢;l;ip(y;) <
Ci+1€i+lp(yi+l)7 then we set

V(1) = V(ce/2) [abi] (Fi)

and
V/(i + ]') = V(ci11€/2),[ai11+(0.001)8; 1 1,b;11] (ﬁﬁ-l)‘

If the opposite inequality holds then we set

V(1) = V(ese/2),[asbs—(0.001),] (i)

and
V/(/I: + 1) = V(Ci+1§/2),[ai+1,bi+1](a{i"rl)'

Thus, we halve the width of both the e-solid cylinders and the truncate the end
of the larger one by 1073 times the length of its defining geodesic. We perform
an analogous operation for each pair of successive £-boxes, so that it is possible
that both ends of v(i) are truncated, only one end is truncated, or neither end is
truncated. In all cases the width factor of v(i) is halved so as to become ¢;§/2.
Notice that in this process we do not truncate any extremal end of the chain.

The result is denoted {v/(1),...,V/(k)}. It is easy to see that the smaller version
of a chain of e-solid cylinders is also a chain of e-solid cylinders. The boundary of
7/ (1)U--- U7 (k) consists of the negative end of 7/(1) union the positive end of 7/(k)
union an annulus E’ (analogous to the annulus F from Lemma 12.32), an annulus
which is properly embedded in v(1)U---Uv(k).

Now let us consider an e-chain. It contains a finite number of disjoint chains
of e-solid cylinders, C1,...,Ck. We have constructed a smaller version C/ of each
of the C;. Now for each ball B; = v(i)~ U By, (i, 7(w;) /8) Uv(i)™ we perform
the construction analogous to the one above on the v(i)*, possibly shifting the
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end not contained in B; and cutting its width in half. Also we replace B; with
Bj = By (s, (wi, ' (w;)/8) where r'(w;) = r(w;) — 0.001r1s1. We set E{ equal to the
union of B! and the modified versions of the v*(i). We define the smaller version
of C, denoted C’, by taking the union of the C! and the E;

Claim 12.45. Let C be one of the e-chains in the complete calibrated collection.

1. The smaller version C' of C has the property that U(C) \ U(C’) C Uz gen-

2. If C is a linear chain then U(C)\ U(C') is homeomorphic to S* x I x I, and it
meets the union of the two free ends in S* x I x OI.

3. If C is a circular chain, the U(C) \ U(C') is homeomorphic to T? x I.

4. Suppose that that y is a point contained in an element of C' which is defined
using the metric h(x). Then By gy (y,&r1s1/20) C U(C).

Proof. All these results, except the last, are easily established by induction given that
the smaller version of a chain of e-solid cylinders is itself a chain of e-solid cylinders.
The last is immediate from the construction and Lemma 6.1 which implies that
neighboring elements of C are define using metrics that differ from each other by a
multiplicative factor R? for some (1.1)7! < R < (1.1). O

Since any point of U(C) \ U(C’) is contained in Us gen, it follows that we have a
finite number of e-chains C; with smaller versions C, of C; with the property that
(i) the U(C;) are pairwise disjoint and (ii) Wa is contained in the union of the
U(C}), Ua,gen, and a finite number of e-solid tori.

12.6 The Seifert fibration containing W, \ U;U(C))

We have constructed e-chains Cy,. .., Cj and smaller versions C, C C; such that Wy
is contained in the union of U;U(C}), Uz gen and a finite number of e-solid tori,
{Bh(z,) (), T(zj)/4)}§y:1, each of which meets Ws.

Lemma 12.46. We can choose the covering referred to above so that e-solid tori
are pairwise disjoint and are disjoint from U;U(C;).

Proof. Suppose two e-solid tori T1 = By,,,)(217(21)/4) and T = By(,)(22,7(22)/4)
meet. By symmetry we can suppose that the unrescaled radius of 77 is at least as
large as that of Tp. Then T3 is contained in By, )(z1,37(21)/4), and hence T3 is
contained in the union of 71 and Uz gen. Consequently, we can remove 75 from the
collection keeping it a covering. This allows us to assume that the T; are disjoint.
Suppose that 71 meets an e-solid cylinder v C By, () (z,1) with generating geodesic
7, with v being one of the elements of one of the e-chains C;. Let v C B(y,r151/3) C
B(Z, 1) where v is a p approximation to dB(7, r1s1) of length r151/4 be the generat-
ing geodesic for the associated 2-dimensional £-box. Then it follows from Claim 12.23
that 7(z1) < 21&r1s;. Suppose p € T1 Nv. Consider the difference of the f5(p) and
f5 on the end of v closest to p. If this difference is at least 50{r1s1, then the value
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of f5 at any point of T} is strictly between the values of f5 on the two ends of v and
differs by at least 20£r1s; from these two values. It then follows that every point g
of T is within € of a point g of B(y,r151/3) that is either contained in v(v) or is
distance more than £r1s;/20 from 0B(y,r1s1). Thus, in this case T} is contained
in the union of v and Uz gen, and hence can be removed from the collection without
destroying the covering property.

Suppose the value of f5(p) is within (0.001)r;s; of the value of f5 on one of the
ends of v. This end is either contained in a neighboring e-solid cylinder v/ in the
e-chain, or v is one of the v(i)* and the end in questions is contained in B;. In
the first case let the generating geodesic for v/ be denoted by 7’. Then because of
the amount of overlap of v and v/ and Lemma 6.1, f5(p) is strictly between the
value of f5 on the ends of v/ and this value differs by at least (0.001)r1s; from the
value of f5 on either end of v/. Thus, the above argument applies to show that
Ty C VvV UUsgen. If v = v(i)* and the end in question is contained in B;, then
because r(z;) < 21&r;s; it follows from Lemma 6.1 that 7 is contained in B;. This
proves that if 77 meets one of the e-solid cylinders in U(C;), then T is contained in
the union of U(C;) and Us gen and hence can be removed from the collection.

Now suppose that 77 meets one of the B; = By, (w;, 7(w;)/8). Since r(z1) <
r1 < r(w;), it follows that T} is contained in By, (w;, 7r(w;)/8). If the intersection
of Ty with A = By, (w;, 7r(w;)/8) \ B; contains a point ¢ within é of a point
g € B(z, 1) which itself is within £2r1s1/100 of a point ¢ € dB(%;, 1), then B(z;, 1)
is boundary p-flat at g’ on scale r1s1 and the above argument shows that r(z;) <
21&rys1. Since T1 meets B;, this implies that dj,g,)(p, wi) < r(w;)/8 + (0.001)r1s1
and hence ¢ is contained in v(i)*. Any point of T N A that is not within ¢ of a point
in the &¢%r151/100-neighborhood dB(Z;, 1) belongs to Us gen. This proves that T3 is
contained in Ez U Uz gen and hence can be removed from the collection. ]

We set
W' = (WQ U; U(Cz) Uj Bh(zj)(Zj, T(Zj)/4)) \ (UlU(CZ/) H Uth(Zj)(Zj’ T(Zj)/S)).

This is a compact set contained in Uz gen. Thus, by Proposition 11.8 there is an S L
fibration V’ — F’ whose total space, V', contains W’. The fibers of this fibration
are within ¢ of the fibers of any ¢ local S'-product structure centered at any point
of W’. By Corollary 11.22 there is a Seifert fibration V — F, where

V=V U?Ll Bh(zi)(zia r(2i)/8),

which agrees with the restriction of the S'-fibration on V' to a saturated open subset
VO C V' that contains V' \ U;By,)(2,7(25)/4). Clearly Wy C U;U(Cj)) UV. The
total space VY is called the reqular part of V. For the rest of the argument, in addition
to fixing the complete calibrated chains C; and the e-solid tori, By, (25, 7(25)/4),
we fix this Seifert fibration V' — F.

12.7 Deforming the boundary of W,

Our next step is to deform Ws by a small isotopy until its boundary is in good
position with respect to the Seifert fibration V' — F introduced in the previous
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subsection. In the case of a torus boundary component, this means deforming that
boundary component by an isotopy until it is contained in the regular part, V°, of
the Seifert fibration and is invariant under the S!'-fibration structure on V°. In the
case of a 2-sphere boundary component, this means that deforming the S2-sphere
by an isotopy until it is the (overlapping) union of spanning disks for two e-solid
cylinder elements of the {C}; and an annulus £ in V° that is invariant under the
Sl-fibration. To produce these isotopies, we find appropriate surfaces near to and
isotopic to each boundary component 3 of Ws.

Let X be a boundary component of Ws5. Then according to Lemma 12.19 there is
a point x € Wy and a ball By, ,(z,1) and a 2-dimensional Alexandrov ball B(7, 1)
within € of By, () (z, 1) satisfying the conclusions of that lemma for ¥. In particular,
there is in an interval (a,b) of length > 1/8000 and a connected component of
dp(z)(x,-) " (a, b) that contains all points within 107> of X in the metric h(z) and on
which dj(,) (x,-) is the projection mapping of a topological product structure. Since
Y is the fiber of an ¢’ projection mapping to an interval, it follows that the diameter
of ¥, measured in ¢'(x¢) is at most € < 1078, Also, the metric h(z) is either much
larger than ¢'(z¢) (when Aisa component close to an interval but which expands
to be close to a 2-dimensional ball) or, by Lemma 6.1, is greater than (0.9) times
g’ (zg). Tt follows that there is an interval (a’,b') C (a,b) with ¥ —a’ > 1075 such
that the pre-image Z = dj (2, -) ' (a/,1') is contained in Wy and each fiber of the
restriction of the distance function dj,,)(w, ) to Z is a surface parallel to ¥. We let
Z' C Z be the pre-image of an interval I of length ()’ — a’)/2 centered in (da’,b’).
Similarly, we have Z C d(z,-)"'(a/,V'), and d(z,-): Z — (d’,b') is a topological
fibration. We shall see the boundary component ¥ of Wy is either a 2-torus or a
2-sphere depending on whether the level sets of d(z, -)|; are circles or intervals. The
easier case, which we deal with first, is when the level sets are circles.

12.7.1 Case 1: The fibers of d(7,-)|; are circles.

Proposition 12.47. In this case ¥ is homeomorphic to a 2-torus and there is a
2-torus X' C ZNVY that is saturated under the S*-fibration structure on VO and is
parallel in Z to X2, see F1G. 13.

Proof. The first thing to see in this case is that every e-chain C; is disjoint from
Z'. For suppose that one of the e-solid cylinders or one of the B; meets Z'. Then,
measured with respect to the metric used to define it, this element has diameter
less than ro < 1076, Hence, its diameter with respect to the metric used to define
Z is less than (1.2)rg. Thus, this element is contained in Z. On the other hand,
since Z has no boundary, Z is contained in the union of Uz gen and a finite number
of e-solid tori. Hence, the closure of the 2ry-neighborhood of Z’' (measured in the
metric defining Z) is contained in the total space of a Seifert fibration (possibly a
different Seifert fibration from the given Seifert fibration on V). At the same time,
this closure contains either an e-solid cylinder or a ball near a 2-dimensional corner.
This contradicts Corollary 12.21.

This means that Z’ C V. Since 7(z;) < 1075, any e-solid torus By,,)(zi,7(2:)/4)
that meets Z’ has closure contained in Z. Since the diameters of the S!-fibers are
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at most 20¢ < 21079, it also follows that any S'-fiber through a point of Z’ is
contained in Z. Thus, there is a compact sub-Seifert fibration of the given Seifert
fibration structure on V with total space X C Z, whose interior contains Z’' and
contains every Bjy.,)(2i,7(2;)/4) that meets Z' and whose boundary is contained
in V9. Since each boundary component of the closure of Z’ separates the ends of
Z, there are two boundary components of X, 01X, on opposite sides of Z’, each
of which separates Z’ from an end of Z. Each of these boundary components is
a 2-torus contained in Z N V? and is saturated under the S'-fibration structure
on V0. Since a 2-sphere in a Seifert fibration cannot separate two of its boundary
components, it follows that the fibers of the restriction of dh(x)(a:, -) to Z' are not
2-spheres; so neither is .. Consequently, 3 is homeomorphic to a 2-torus, and Z
and Z’ are each homeomorphic to the product of 72 with an interval. Since each of
0+ X separates the ends of Z and is also homeomorphic to a 2-torus, each is parallel
to X. We choose Y to be 9, X. The surface ¥’ is a 2-torus is parallel to ¥ in Z,
contained in Z N VY and invariant under the S'-fibration structure on V°. This
completes the proof of the proposition and completes the analysis of Case 1. O

12.7.2 Case 2: The fibers of d(z,-)|; are intervals.

Proposition 12.48. In this case X is homeomorphic to a 2-sphere and is isotopic in
Z to a 2-sphere Y/ that is the overlapping union of spanning disks A* for two e-solid
cylinder elements of the C; and an annulus E contained in VON Z and saturated
under the S*-fibration structure of V°.

The proof of this proposition takes the rest of this subsection.

In this case 97 consists of 2 (topological) intervals; say, 0+Z, and consequently
07 is the disjoint union of two intervals 8+7/ I 0_7' where 8i7/ = 7’ﬂ8i7. Also,
any point of B(Z, 1) within 2rg of 8i7’ is contained in 04 Z.

Claim 12.49. Every point in 07 is within é of a point of UN,U(C))

Proof. (of the claim) Fix 5 € 07 and let Y € By(y)(7,1) be a point within distance
¢ of §. First, let us suppose that B(Z, 1) is boundary u-flat at 7 on scale r1s1. Then
there is an e-solid cylinder v = v¢(7) with the property that y is contained in Dy, the
central disk of the core of v. (Notice that we do not claim that v¢(7) is an element
of one of the C;.) According to Corollary 12.21, Dy is not contained in the union
of Uz gen and e-solid tori, and hence there is either an e-solid cylinder element C' in
one of the chains C; whose core meets Dy or one of the balls B; = By, (wi, r(w;))
has the property that the sub-ball By, (w;,r(w;)/8 — (0.001)7151) meets Dg. Let
h(z) be the metric used to define either C or B;. If Ais a component close to an
interval but which expands to be close to a 2-dimensional Alexandrov ball, then
h(z) = h(z). In this case we set R = 1. If A is a component close to a 2-dimensional
Alexandrov space, then y € By, (2,2 x 107°), hence by Lemma 6.1 h(z) = R*h(x)
for some 0.99 < R < 1.01. This implies that the diameter of Dy in the metric used
to define C or B; is at most (1.01)&2rys;. It follows that Dy C U;U(CY), and hence
y € YU(C)).
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Now suppose that B(Z, 1) is boundary u-good 7 on some scale r with ro <r < r;
and angle < 7 — dp. Then the ball B = By, (y,7(y)/8) is a 3-ball near a 2-
dimensional corner with ¥ € 0B(%,1). According to Lemma 12.24, one of the 3-
balls near 2-dimensional corners that are elements of the C;, say By, (wi, 7(w;)/8),
has the property that B is contained in By, (w;, 7r(w;)/8). In particular, y €
Biy(z;) (wi, Tr(w;)/8). Let B(F;, 1) be the 2-dimensional Alexandrov ball associated
to Bj(z,) (i, 1). Apply Lemma 11.26 to By, (y,7(y)) and By, (7, 1). Since y
within € of a point ¥ € OB(%,1/3) and € < &)(£2r181/100,a), there is a point
z with dy(y)(y,2) < ¢?r151/100 with the property that z is within é of a point
Z € 0B(Ti, Tr(w;)/8). If y € Bya,) (@i, 7(2;)/8—1151), then y € U;U(C)). Otherwise,
z € (B(Ti, 157(z;)/16) \ B(7;,7(x;)/16)) and consequently, by Proposition 10.18
B(w;, 1) is p-flat at Z on scale r1s1. In this case, y is contained in the intersection,
Dy, of the central disk and core of an e-solid cylinder. The argument in the previous
paragraph shows that Dy C U;U(C!), and hence y € U;U(C)) . O

Claim 12.50. Set Z" = d(z, )~ (a’ +3ro, ¥ — 3r¢) and let DY be all the elements of

the complete, calibrated e-chains {Ci}fil containing points within € of 817”. Then
D'l and D" have no elements in common.

Proof. Since the ratio of the metrics used in defining the elements of D[ are at least
0.99 times h(z), it follows that the h(x)-diameter of any element of DY is less than
(1.02)rg. Thus, every element of D/ contains no points of dB(Z,1) outside Z. Let
us show that there is no e-solid cylinder common to D’| and D”. For if there were
there would be points of opposite components of 07" within 3r1s1/4 of each other.
But since B(Z, 1) has curvature > —1 and area > a, it follows from Proposition 10.22
that every point of 07" has a neighborhood of size at least 7151 and at most ry that
meets 92 only points in the same component of Z. This contradiction shows that
there is no e-solid cylinder in common to D’/ and D”. This means the only elements
that can be common to D/| and D” are 3—balls near 2-dimensional corners.
Suppose that there is a B; = By(y,)(w;, r(w;)/8) common to DY and D”. Let
B(Z;,1) be the associated 2-dimensional Alexandrov ball, so that w; € 0B(Z;, 1)
is within € of w; and B(Z;, 1) is boundary p-good at w; on scale r(w;) with r <
r(w;) < ro. Let W) € Z be a point within € of w; € Z C Bjy)(2,1). Then arguing
as above, we see that there is a constant R with (0.99) < R; < (1.01) such that
h(x;) = R?h(x). Hence, R - B(w',r(w;)/8R) is within 4(R + 1)é of B(w;, r(w;)/8).
Hence (R/r(w;))B(w}, r(w;)/8R;)) is within 47~ (w;)((R + 1)é + ) of a disk cen-
tered at the cone point in a flat cone in R%.  Since p < (1/2)uf(107%,d/(a)),
¢ < (r1/50)uf(107% a’(a)), and r; < r(w;), according to Proposition 10.18 this
implies that for every r(w;)/8R < r < 7r(w;)/8R the metric ball B(w/,r) is a disk
and its boundary metric sphere is an arc. In particular, this ball meets only one
of 8+Z" . Since B; C Bprep( (w], Tr(w;) /8max(R, 1)), the ball B; contains points

within € of only one of 817”. This is a contradiction and completes the proof. [

Claim 12.51. There are sub-chains C+ and C_ of the {C;}X |, with no elements in
common, such that every point of 97 is within é of U(Cy).
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Proof. Let C+ be all the elements of the e-chains {C;} that have points within é of
817”, respectively. We have seen that these are disjoint collections. It remains to
show that each is a chain. A point of 8i7” is within é of points of at most two
elements of the {C;} and if it is within € of points in two distinct elements then
these elements are neighboring (i.e., intersecting) elements in one of the original
chains. Let Cq,...,Cr be the elements of C;. For y € 8+7’, for any j, and any
y € U(C;) with d(7,y) < € then y is contained in the smaller version of C} of C;
so that By, (y,£r151/20) is either contained in Cj or is contained in the union of
C; with one of the neighboring elements C): in the chain containing C;. Since every
point of 8+7” is within € of some point in one of the {C;}, it follows immediately
that the C1,...,Cr form a sub-chain of one of the C;. By symmetry the argument
is the same for 9_7 . O

Now we are ready to construct the surface in Z separating its ends and isotopic
to X. It will be a 2-sphere that is the union of an annulus in Z N VY an annulus
invariant under the circle fibration, and two spanning disks for e-solid cylinders.
First, we need a lemma about spanning disks for e-solid cylinders, see FiG. 14.

Lemma 12.52. Let v = v ¢ [q5(7) be an e-solid cylinder which is an element of one
of the chains C;. Let h(y) be the metric used to define v. Then there is a spanning
disk D for v that is contained in the interior of a larger disk A with the following
properties:

1. A is the (overlapping) union of the spanning disk Do for vee (o4 (7) and an
annulus E that is contained in VO and is saturated under the circle fibration
structure on V0.

2. Do N E is an annulus and is a regular neighborhood in Dy of 0Dy and is a
reqular neighborhood in E of one of its boundary components. The intersection
of E with the level sets h%l(ef) are circles for every e € [£/10, c€].

3. The diameter of A in the metric h(y) is less than r151.

Proof. Take a point w on the level set f{l((a +b)/2) at distance (1.1)c&l(5) from 7
and take a minimal length curve a from 7 to w. Set ag be the intersection of o with
h;l([ﬁé(W)/QO, (1.1)cé4(7)]. Then ap C V0 and we set E’ equal to the saturation of
ap under the S'-fibration structure on VC. It is a smoothly embedded annulus in
M of diameter less than 2£rqs;.

Claim 12.53. For every e € [1/10,c| the intersection of E' with the level surface
h%l(eﬁﬁ(:?)) is a circle separating the boundary components of E'. Also, every flow
line of the vector field x meets E' in at most one point.

Proof. According to Addendum 11.29 we can choose the coordinates on the local
Sl-product structure centered at any point of ag, Euclidean coordinates (z,y) for
the ball in R? and a coordinate # for the circle, such that the intersection of oy
with this neighborhood is within € in the C’l—topology of a horizontal line parallel
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to the y-axis oriented so that as we move along o away from 5 we are increasing
y. Then using the fact that the S'-fibration on the saturation of a neighborhood
of a is oriented and that the fibers have an induced metric, there is a natural S'-
action inducing the fibration. The S'-fibration structure in this region is C* close
to the product structure. Thus, we have an an S'-equivariant map oy x S' — E’
and for every 6 € S! the arcs ag x {#} are also within ¢ in the C'-topology of a
horizontal line parallel to the y-axis. Since the directional derivative of hy is close
to 1 on tangent vectors pointing in the positive y-direction and close to 0 on the z-
and f-axes of this local product structure, it follows that hz is strictly increasing on
ap x {6} for every § € S' and hence that the intersection of the level sets of hs with
E'’ are circles separating the boundary components of E’.

It follows from this argument that the tangent space to E’ at every point is close
to the y-0 plane in the local S'-product structures. It follows from Addendum 11.29
that in the local S'-product structures the vector field x is close to the positive
z-direction. Thus, x is transverse to E' and any integral curve for this vector field
crosses E’ at most once. ]

Now we return to the proof of Lemma 12.52. Let D’ be the level set f%l((a +
3b)/4). It is disjoint from E’. Since each integral curve of the vector field x meets
E’ in at most one point, flowing along the flow lines of this vector field defines a
deformation H: E” x I < v, where of E” = E' 1 hz'[56((7)/80,36((7)/40] such
that H|(gx oy is the inclusion of E” C E" and H(E" x {1}) is an annulus A" C D",
Let u be a weakly monotone C* function on [5££(7)/80,3&¢(7)/40] is identically
1 near 5£¢(7)/80 and identically 0 near 3£¢(7)/40. Then we have the embedding
H(e',u(hz(e')) which is an annulus E” connecting the circle E'N h~ (3¢£(7)/40) to

the simple closed curve C! = H((E' N h~ (5¢¢(5)/80),1)) in D'. Let D{ C D' be
the sub-disk bounded by C’. By Pr0p081t10n 11.32 the annulus E” is contained in
([0 €0(7)/10)). We define

A=EnN h; (13¢6(7) /40, (1.1)c€)] U E" U A,.

Then A is an embedded disk. It is the union of the saturation of aoﬁh~ (3¢0(7)/40, (1.1)c&l(7)]

under the S'-fibration and the spanning disk for vee (). Clearly, the diameter of A
measured using h(y) is bounded by 7151, and A N veg 44 (7) is a spanning disk for
all ¢ € [1/10, ¢]. O

We fix an e-solid cylinder elements v* = v, ¢(3%) of the chains C/y, e-solid cylin-
ders that have points within € of 91 Z. For each, invoking Lemma 12.52 we construct
a disk AT which is the union of a spanning disk of v, L€ /Qﬁi) and an annulus B+
saturated under the S'-fibration structure on V. Since A* contains points that are
close to points of 0+ Z and has have diameter less than s is follows that AT c Z”.
Consider the open subset U° of V¥ consisting of the union of all fibers of the S'-
fibration structure that meet Z” N (VY\ (U(C}) UU(C.))). Let B denote the base
of this fibration and let a™ C B be image under the quotient mapping of E* N U°.
Each o is a union of arcs. Let a® be the endpoint of a® which is the image of the
boundary circle of A%,
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Claim 12.54. The points a™ are contained in the same connected component of B.

Proof. Since 7" is connected, there is an arc in Z” connecting QAT and OA~. We
deform this arc slightly, relative to its endpoints, so that it is disjoint from U;U (C;)
and all the e-solid tori By,,)(zi,7(2:)/8) in the covering we have fixed. (This is
possible since the inclusion of the frontier of each of these elements into the element
induces a bijection on connected components.) This deformation can be chosen so
that it does not move the arc more that distance rg in the metrics defining the
elements of the C; and the e-solid tori, and hence does not move the are outside Z”.
The result is an arc in U?. Projecting this arc to B establishes the claim. O

The image of each of A* N UY in B is a a disjoint union of embedded arcs,
denoted 0%, and 6+ N6~ = . Since the points a® (which are endpoints of one of
the components of §%) are in the same component of Z, it follows that there is an
embedded arc o in B from at to a~ that is otherwise disjoint from 6*. We can
choose « so that 67 Ua U~ is a disjoint union of smoothly embedded arcs in B.
The pre-image of « is an annulus F; with the property that AT U E; UA™ is a
smoothly embedded 2-sphere ¥’ C Z”. Since ¥’ meets both C’, in a spanning disk,
it follows that ¥/ separates the ends of Z”. Since Z” is fibered over an interval, it
then follows that Z” is homeomorphic to S? x (a’,b'), that ¥ is a 2-sphere, and that
he region in Z” between Y’ and X is a product region. By construction X’ is the
(overlapping) union of two spanning disks A* Nv* for e-solid cylinder elements and
an annulus £ = E-UEUE™ contained in V° and saturated under the S!-fibration.
For each A¥ the intersection E N A¥ is a regular neighborhood in A* of 9A* and
is a regular neighborhood in E of the corresponding boundary component of F, see
Fic. 15.

This completes the construction for each component > of W; N Wy of a sur-
face ¥/ C Ws isotopic to ¥ in W5 and satisfying the conditions stated in Proposi-
tion 12.48.

12.7.3 Modification of W; and W, by isotopy

We modify the decomposition M = Wi N Wy by isotopy supported near Wi N
Wy = OWsy, an isotopy that moves each boundary component ¥ of W5 onto the
corresponding ¥/ just constructed. Of course, this deformation does not change the
topological type of any component of W; or Wa.

12.8 Removing the solid tori and solid cylinders from W,

The last step in the argument is to remove a disjoint union of solid tori and solid
cylinders from Wy with the following three properties: (i) the union of these solid
tori and solid cylinders contains the intersection Wo N (U;U(C})); (ii) the boundaries
of the solid tori and the sides of the solid cylinders are contained in V° and are
saturated under the S!-fibration structure; and (iii) the ends of the solid cylinders
are contained in the 2-sphere boundary components of Wy and the complement of
the ends of these solid cylinders in each 2-sphere is contained in V° and is fibered
under the S!-fibration structure on V.
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12.8.1 The S'-invariant torus boundary components associated with cir-
cular e-chains

Suppose that C; C Wsy is a circular e-chain. Then according to Claim 12.45 the
submanifold G = U(C;) \ U(C!) is homeomorphic to T? x I. We have a Seifert
fibration V' — F with G contained in the regular part V° of this Seifert fibration.
Furthermore, since the fibers of the S'-fibration on VO are within € of vertical in
the local S'-product structures with e-control center at each point of G, and since
these latter fibers have length at most Cé, it follows that no fiber of the S'-fibration
structure on V° meets both boundary components of G. Consequently, we have
an open saturated subset of V' that contains the complement in Wy of U;U(Cj)
and which is disjoint from U;U (C;) Hence, there is a compact sub-Seifert fibration
X = F of V. — F that contains W5 \ U;U(Cj) and is disjoint from U;U(C)).
One of the boundary components, T;, of X separates the boundary of U(C;) from
the complement of U(C;). Since it is fibered by circles and since it is a boundary
component of an orientable 3-manifold, 7; is homeomorphic to a 2-torus. Since it
separates the boundary components of G' and since G is diffeomorphic to T2 x I, T}
is parallel in G to OU(C!). As such T; bounds a solid torus 7; in U(C;) containing
u(cy).

We perform a similar construction for each circular e-chain C; producing an S'-
invariant torus 7; in U(C;), a torus that bounds a solid torus 7; in the circular e-
chain U(C;). Then we truncate the Seifert fibration along these tori. This produces
a partially compactified sub-Seifert fibration whose boundary components are tori,
the T;, one for each circular e-chain. Each torus boundary component T; of the
sub-Seifert fibration bounds a complementary component 7; of Ws that is a solid
torus in U(C;).

12.8.2 Construction for linear e-chains

Now let C; be a linear e-chain. Then we have the smaller version C] and the difference
U(C;) \ U(C}) is homeomorphic to S' x I x I. Furthermore, since the 2-sphere
boundary components of Wy meet both the e-chains and their smaller versions in
spanning disks, the intersection of this difference with W5 is also homeomorphic to
S x I x I and is contained in V°. We consider the open subset of V0 consisting
of all Sl-orbits that are closer to the complement of U(C;) than they are to U(C!).
This open S!-saturated subset of V0 contains the side of U(C;) and is disjoint from
U(C!). Hence, there is a compact S'-saturated subset X of VY that contains the
side of U(C;) and is disjoint from U(C}). One of the boundary components 9; X
of X separates the side of U(C;) from U(C}). As such, 9;X contains an annulus
E; contained in U(C;) with one boundary circle in each end of U(C;), an annulus
that is saturated under the S'-fibration . The annulus E; is the frontier in U (Ci)
of a solid cylinder in U(C;). The intersection of E; = E; N Wy is also a saturated
annulus and bounds a solid cylinder K; in W containing U(C;) N W5 with each end
of K; being disk in one of the 2-sphere components X' of 9W5. This disk contains a
component of the intersection of U(C;) with ¥’ and is contained in a component of
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the intersection of U(C;) with X'.

12.9 Completion of the Proof

We set Y C W5 equal to the union of the solid tori 7;, one for each circular e-chain C;,
and the solid cylinders K, one for each linear e-chain C;. Recall that T; = 07; and
the sides F; of the K; are contained in V0 and are saturated under the S'-fibration,
and ends of the K; are 2-disks in 2-sphere boundary components of W>. We define
V1 = W1 and we define V5 to be the complement in W5 of the relative interior of Y.

Now let us revert to the original notation of the Riemannian manifolds (M, g»)
and recap our progress to date. We change notation so that Wy, Vi, Wy and Vs be-
come Wy, 1,V 1, W, 2 and V,, 9, respectively. By Proposition 12.18 we see that the
topological type of each component of V,, 1 is one of the types list in Part 1 of Theo-
rem 6.2. Also, by construction V, 5 is the total space of a compact Seifert fibration
and V;,2NVj, 1 consists of an S1-saturated family of torus boundary components and
Sl-saturated annuli contained in 2-sphere boundary components of Vi,1. Further-
more, each S%.-boundary component of V,, 1 meets V;, 2 in exactly one annulus, and
each T%-boundary component of Vi1 is a boundary component of V,, o if and only
if it is not a boundary component of M,,. Lastly, M, \ (int(le U Vn’g) is a disjoint
union of solid tori and solid cylinders. The boundary components of the solid tori
are boundary components of V;, o and the solid cylinders meet the boundary of V;, 2
in annuli saturated under the S'-fibration structure and meet the boundary of Va1
in their end disks. This completes the proof that V,, 1 and V,, o satisfy of all the
conditions required by Theorem 6.2.

This completes the proof of Theorem 6.2 and hence of the Geometrization Con-
jecture (Corollary 5.6).

Notice that we have one extra condition not stated (nor required) in Theorem 6.2.
Namely, for each solid torus component 7; of M, \ (le U ang), the fibers of the
Sl-fibration on its boundary, T;, bound disks in 7;. This means that the Seifert
fibration structure on V;, o does not extend over any of the 7;.

13 The Equivariant Case

In this last section we establish that the decomposition and the locally homogeneous
metrics in the Geometrization Conjecture can be taken to be equivariant with respect
to any compact group action. Arguments here are very similar to ones in [6] where
the case of manifolds with either hyperbolic or elliptic geometry are considered and
rely on those in [17] where the case of actions on locally homogeneous manifolds
modelled Solv, Nil, Flat, H? x R or ﬁQ(R) was considered. Also, the result
is closely related to those of [16] where similar, but slightly, stronger results are
established in the context of 3-dimensional orbifolds. Let us begin with the notion
of a linear action on a family of balls and the definition of equivariant connected
sum.

Definition 13.1. A linear action of a compact group K on a compact n-ball B is
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the action induced from the defining action on a closed ball B in R™ centered at the
origin by an embedding K C O(n). The induced action of K on the boundary of B
is said to be a linear action of K on a sphere of dimension (n—1). A linear action
of a compact group H on a family of compact n-balls is an action for which there
is a subgroup K C H of finite index such that the action is the natural left action
of H on H x i B™ where the action of K on B is linear. Notice that H x g B is
diffeomorphic to a disjoint union of n-balls, the number of balls being the cardinality
of H/K. We also say that the restriction of this action to H X g 0B is a linear action
of H on a family of (n — 1)-spheres.
A linear action on T? is an action preserving a flat metric.

First, we have an elementary result from dimension 2, see [30]:

Proposition 13.2. Any compact group action on a closed surface 32 leaves invariant
a metric of constant curvature on ¥. In particular, any compact group action on S?
or T? is equivariantly diffeomorphic to a linear action.

Proof. The case of finite groups follows from the classification of 2-dimensional orb-
ifolds. The case of actions of positive dimensional groups is elementary. O

Definition 13.3. Suppose that M is an oriented manifold M with a smooth action
H x M — M of a compact group H. Suppose that there is a homomorphism from
O: H — 7Z/27Z which is the orientation character of this action in the sense that for
any h € H and any x € M the map dh,: T, M — Ty, M is orientation-preserving
if and only if O(h) = +1. Suppose that there is a disjoint family of compact
smooth balls B C M invariant under H and an H-equivariant diffeomorphism from
B to a linear action of H on a disjoint union of balls. Lastly, suppose that there
is an orientation-reversing H-equivariant involution ¢ : B — B that induces a free
involution on the components of B. Given M, B and v, we form the H-connected
sum as follows. Let c¢: OB x [0,1] — B with c|spg = Idyp, be an H-equivariant
collar that is identified by the isomorphism to the linear model with the radial
collars. Any two such neighborhoods (coming from different isomorphisms to the
linear action) are equivariantly isotopic in B by an isotopy that is the identity on
the boundary. Given an H-equivariant collar, set C' = ¢(9B x (0,1)). Let B’ C B be
the complement of ¢(0B x [0,1]). Then the connected sum is defined as the quotient
of M\ B’ by the involution on C' defined by (x,t) — (¢¥|s(x),1 — t). The result is
an oriented manifold, with the orientation compatible with that on the M \ B’, that
carries a natural H-action compatible with the action on the M\ B’. This action has
the same orientation character as the original actions. Since the collars are unique
up to equivariant isotopy the resulting connected sum is unique up to equivariant
diffeomorphism. It is the H-connected sum defined by B and 1.

Here is the main equivariant result, which we establish in this section.

Theorem 13.4. Suppose that M is a compact, orientable smooth 3-manifold and
that H x M — M is a smooth action of a compact group H on M with an orien-
tation character Opr. Then there is a disjoint union of oriented, prime 3-manifolds
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P=P[]---]I Pk, an H-action H x P — P with an orientation character Op, an
H-invariant family of balls B on which the H-action is equivariantly diffeomorphic
to a linear action, and an orientation-reversing involution v : B — B acting freely on
the connected components of B such that H x M — M is H -equivariantly diffeomor-
phic to the H-connected sum of P determined by B and v, and with Opr induced by
Op. Furthermore, in P there is an H-invariant disjoint union of incompressible tori
and Klein bottles, T(P) C P, such that P\ T(P) admits an H-invariant Rieman-
nian metric with the property that the restriction of this metric to each connected
component is a complete, locally homogeneous metric of finite volume.

13.1 Preliminary results on compact group actions in dimension 3.

We begin with sub-actions of standard actions.

Proposition 13.5. Suppose that H x (S? x I) — S% x I is the product of the
linear action of a compact group H on S? with the trivial action on I. Suppose that
¥ C 8? x int I is an H-invariant smoothly embedded 2-sphere separating the ends
of S? x I. Let X be the compact, connected submanifold of S? x I with boundary
(S?2 x {0})]]X. Then the identity map from S% x {0} to itself extends to an H-
equivariant diffeomorphism from S? x I to X.

Proof. Let Z be a non-trivial cyclic subgroup (finite or infinite) of H acting in an
orientation-preserving fashion on S? x I. Then the fixed set of Z is the product
of 2 points in S? with the interval. Since ¥ separates the ends of S? x I, each of
these intervals meets . Also, the action of Z on X is orientation-preserving and
hence has exactly two fixed points. Thus, ¥ meets each arc of fixed points for Z in a
single point. Its tangent plane is Z-invariant and thus transverse to the arc of fixed
points. Similarly, if Z is generated by reflection in a codimension-1 subspace of S2,
then the fixed set Fz of Z is the product of a circle in S? with I and hence meets
3. The action of the reflection on ¥ is orientation-reversing and hence is reflection
in a circle in 3. Once again, an examination of the tangent planes shows that X is
transverse to Fz. The circle ¥ N F; separates the ends of the annulus F.
Now let us turn to the proof of the result.
Case when H has dimension 3. In this case the group contains SO(3) and every
orbit is a two-sphere of the form S2 x {t} for some t € I. Being an H-invariant, >
is one of these 2-spheres and the restriction of the product structure is H-invariant.
If H is not of dimension 3, then it is of dimension < 1.

Sub-case when H has dimension 1. Then H contains a circle subgroup and the
quotient of H by this normal subgroup has order 1,2, or 4. The circle subgroup
of H acts with two fixed points on S?, and hence the fixed points of the circle
action on S x I are two vertical arcs. The 2-sphere ¥ is transverse to each arc and
meets each in a single point. We can deform ¥ by an equivariant isotopy until X
meets a regular neighborhood of each arc in a disk at level 1/2. The complement of
these regular neighborhoods V' is an annulus times I and ¥ meets it in an annulus
separating the ends. The quotient V/S! is a rectangle and the image of X NV is
an interval connecting the sides of the rectangle. The induced action of H/S' on
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this rectangle is either trivial or is a reflection about the mid-line. Of course ¥/S*
is invariant under this action. Hence, there is an isotopy of ¥/S', equivariant with
respect to the induced action of H on the rectangle and relative to a neighborhood
of its endpoints to the interval at height 1/2. This isotopy lifts to an S!-equivariant
isotopy of X, relative to a neighborhood of its intersection with the fixed point arcs
to the 2-sphere at level ¢t. This completes the proof when H is 1-dimensional.
Sub-case when H has dimension 0. In this case H is a finite group and there
are finitely many components of fixed points of non-trivial elements of H. The local
models are: (i) arcs of fixed points of cyclic group actions: (ii) annular regions of
reflection fixed points, and (iii) ‘pin wheels’ of n annular regions fixed under reflec-
tions meeting along an arc with the centralizer of the central arc being a dihedral
group. X crosses each of these components transversely, either in a single point if
the component is an arc, in a single circle separating the ends if the component is
an annulus, and in a pin wheel of circles in the pin wheel of annuli in the dihedral
case. There is an equivariant tubular neighborhood v of the union of these fixed
point components given by a product of a tubular neighborhood of the fixed set
in S? x {0} with the interval. Choosing the neighborhood small enough, we can
assume that the intersection 3 N v divides v into two components each of which is
diffeomorphic to a product of ¥ Nv with an interval. Deforming by an H-equivariant
isotopy, we can make this intersection have a constant I-coordinate 1/2. Now we
consider the complement of an open tubular neighborhood. The 3-manifold in ques-
tion is a product of a compact subsurface Y C S% x {0} with I, and (Y x I)N ¥ is
a surface diffeomorphic to Y embedded into Y x [ in such a way that its boundary
is Y x {1/2}.

Let Yp be a connected component of Y. The intersection of ¥ N (Yy x I) is
diffeomorphic to Yy and its boundary is embedded at a constant level 1/2. We
claim that the inclusion ¥ N (Yy x I) — Y induces an isomorphism on fundamental
groups. First, let us show that it is injective. If not, then by Dehn’s lemma and
the loop theorem there is a disk embedded in Yy x I whose boundary is a non-
trivial embedded loop in ¥. Since ¥ N (Yp x I) is a planar surface, every non-trivial
embedded loop separates the boundary components into two non-empty sets. But
then no such loop can bound in Yy x I. Once we know that the fundamental group of
YN (Yp x I) injects into 1 (Yy x I) we have the Seifert-Van Kampen theorem giving
the fundamental group of Yy x I as a free product with amalgamation over in the
maps on fundamental groups induced by the inclusions of ¥ N (Y x I) into the two
sides. If one of these inclusions does not induce a surjective homomorphism then
the fundamental group of the other components does not surject onto m(Yy x I),
but this is absurd since each component contains a copy of Yjp.

Once we know that 71 (X N (Yy x I)) maps isomorphically onto 71(Yy x I), the
same is true of the quotients by the stabilizer of Yy in H. To complete the proof
in this case we invoke an elementary consequence of Dehn’s lemma and the loop
theorem.

Lemma 13.6. Suppose that Y is a compact, connected smooth 3-manifold with
corners. We suppose that'Y is irreducible in the sense every embedded 2-sphere in'Y
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bounds a 3-ball in' Y. We suppose that QY is the union of three compact sub-surfaces
with disjoint interior: 0Y = X1 U(0X 4 x I)UX_ with X4 being connected and with
0X 1 # 0. We suppose that Y has corners exactly along 0X [[0X_. Suppose that
X is the quotient of a planar surface with non-empty boundary by a free action of
a finite group. If the inclusion X, C H induces an isomorphism on fundamental
groups then Y is diffeomorphic to (X4 x I, X4 x{0}) by a diffeomorphism extending
the given product structure on 0X, X I.

Applying this lemma to the submanifold X in [Yy/Stab(Yp)] x I with boundary
Yy/Stab(Yy) x {0} and ¥ N (Yy x I)/Stab(Yy) we conclude that, provided that Y
has non-empty boundary, X has a product structure extending the given product
structure on the boundary. We can choose these product structures on the various
components so that they combine to produce an H-invariant product structure on
[(Yo x I)\ ¥ N X extending the given product structure on the boundary. Putting
this together with the product structure on v N X gives the result in all cases where
Y # S2.

The final case we need to study is when Y = S2. In this case H acts freely on
52, This means that H is a cyclic group of order 1 or 2. If H is trivial, the result is
immediate since any S? C S2 x I that separates the ends is isotopic to a level S2.
In the case when H is of order two, the quotient of S and ¥ by H is RP2. Thus
we need to show that RP? = ¥./H embedded in RP? x I separates into two product
regions. We take an embedded annulus connecting non-trivial embedded loops in
the ends of RP? x I. We can take this annulus transverse to ¥/ H. The intersection
is a finite collection of circles, some trivial and one non-trivial. By a standard inner
most disk argument, we remove all the trivial circles. This makes the intersection a
circle separating the ends of the annulus and generating the fundamental group of
RP2. We can deform ¥/H until this intersection circle is a level . Cutting out a
neighborhood of this annulus gives us a 3-ball By meeting each end, S? x 0+1 in a 2-
disk, Dy. The intersection of ¥/ H with tBy is a disk D separating D, and D_ and
we have a product structure on 9By \ int (DU D_) and the boundary of D is a level
circle in this product structure. It follows easily that there is a product structure
By = D4 x I extending the product structure already given on the boundary and
with D being the disk at level ¢. This completes the proof in the case when the
dimension of H is zero and hence completes the proof of the proposition. O

One consequence of this is that the restrictions of linear actions on balls to in-
variant sub-balls are also linear actions.

Proposition 13.7. Let H be a compact group and let B = H xXg B be a family of
balls with the natural left H action being linear. Suppose further that B' is a family
of compact 3-dimensional balls with B C int B with the property that the inclusion
B' C B induces a bijection on connected components. Suppose that B' is H-invariant.
Then there is a H-equivariant diffeomorphism OB x I — B\ int B’ where the domain
is given the product of the given action on OB and the trivial H-action on I. In
particular, there is an H-equivariant isotopy from the inclusion of B' C B to an
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H -equivariant diffeomorphism of B — B, and consequently the restriction of the
H-action to B’ is linear.

Proof. Clearly, it suffices to prove this in the case when B is connected, and hence
the action is a linear action of H on the unit 3-ball B. In this case B’ is a sub-ball
B’ ¢ B. The sub-ball B’ must contain a fixed point for the entire group action; in
fact it must contain the origin except when H is a cyclic or dihedral group. The
restriction of the action to a small ball B” C B’ centered at p is linear. The region
B\ int B” is equivariantly isomorphic to S? x I with the action being a linear action
on 5% and trivial on I. Invoking the previous result we see that B’ \ B” is itself
equivariantly isomorphic to a product, which means that there is an equivariant
isotopy from B’ to the ball B”, establishing that the action on B’ is equivariantly
diffeomorphic to a linear action. O

13.1.1 Connected sum with linear actions on S°.

Corollary 13.8. Let H x S3 — S3 be a linear action and let B C S be an H-
invariant ball. (We assume only that B is smooth, not that it has any special ge-
ometric properties with respect to the standard metric on S®.) Then there is a
diffeomorphism from 1: S® — S3 carrying the given linear action to a linear action
with the property that 1¥(B) is an invariant hemisphere in S3. In particular, there is
an orientation-reversing, H-equivariant diffeomorphism B — S3\ int B that is the
identity on 0B.

Proof. We use the usual round metric on S3. It is H-invariant. Since the action
of H on S? is linear and leaves invariant a sub-ball, the action fixes a point of B,
say b € B. It follows that the H-action fixes the linear subspace spanned by =b.
Acting by a rotation that sends b to the unit vector in the last coordinate direction
conjugates H into O(3). A small metric metric ball By centered at —b is H-invariant
and disjoint from B, and hence B C S2\ int B;. Stereographic projection from —b
identifies the H-action on S\ int By with a linear action of H on a ball in R3. Thus,
it follows from Proposition 13.7 that B is equivariantly isotopic in S% to S® \ int Bj.
That is to say, there is a diffeomorphism S% — S commuting with the H-action
and sending B to S® \ int B;. This allows us to assume that B is a metric ball
centered at a fixed point of the action of H. Of course, there is an H-equivariant
diffeomorphism of S? to itself that contracts or expands B radially toward its center
until it becomes a hemisphere. This allows us to make B a hemisphere fixed by the
action of H C O(3). O

Proposition 13.9. Let H x M — M be a action of a compact group on a connected
and simply connected 3-manifold. Suppose that this action is an H -equivariant con-
nected sum of linear actions of H on families of 3-spheres. Then there is a diffeo-
morphism M to S3 transporting the given H-action to a linear action.

Proof. Suppose that the H-equivariant connected sum in question comes from B C
M’ and the involution ¢: B — B. Form a finite graph whose vertices are the
connected components of M’ and whose edges are the orbits of the 1-action on the
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connected components of B. The vertices of an edge are the connected components
of M’ that contain the 1-orbit that goes with the edge. Since M is connected and
simply connected, it follows that this graph is a tree. Hence, there is a vertex of
order one; i.e., there is a connected component M}, of M’ that meets B in a single
ball, By. Let By = ¢(By) and let M/ be the component of M’ containing B;. One
possibility is that Bj is in the same H-orbit as By, say By = 7 - By for some 7 € H.
Let M{ = 7M{. Then M] N B = By. Thus, M is the connected sum of M and
M along ¢: By — B;. Let H|, be the stabilizer of M) (which is also the stabilizer
of M{) Then H is generated by H{ and 7. Since the action of H{, on each of M)
and M is linear, it follows from Corollary 13.8 that M/ \ int B; is H{-equivariantly
diffeomorphic to the linear action on B;. It is now easy to see that the action of H
on the connected sum is equivariantly diffeomorphic to the linear action of H on S3
given by ¢- L: H — O(4) where L: H — O(3) is the representation that gives the
linear action of H on 0By and ¢: H — Z/27 is the homomorphism with kernel H),
and Z/2Z is embedded in O(4) centralizing L(H) and O(3). This shows that the
action is linear in this case.

The other possibility is that is that B; is not contained in the H-orbit of Bj.
In this case since M| \ int By is Hj-equivariantly diffeomorphic to By by a map
extending the identity on the boundary, and since By and B; are Hj-equivariantly
diffeomorphic, it follows that forming the connected sum along the H-orbit on By
and B; does not change the H-equivariant diffeomorphism type.

A standard induction on the number of 3-balls in the connected sum then gives
the result. O

13.2 Actions on Canonical Neighborhoods

Regions of sufficiently large scalar curvature in a time-slice M; of the Ricci flow
have canonical neighborhoods. Our goal here is to show that there is an equivariant
version of this result. One type of canonical neighborhood is an e-neck. Recall that
an e-neck in a 3-manifold M is an embedding 1: S?x (—e te™!) — M so that there is
a positive constant R with the property that the pull back of R times the Riemannian
metric on M is within € in the C'/9-topology to the product of the round metric of
curvature 1 on S? and the standard metric on the interval (—e~!,e!). The central
2-sphere of the neck is the image of S? x {0}, and a point is said to be at the center
of the neck if it lies in the central 2-sphere of the neck. Notice that on an e-neck NV
there is a 2-dimensional distribution of 2-planes of maximal sectional curvature. We
denote by Ly the line field on N orthogonal to this distribution. Suppose that we
have a point x contained in the middle half of an e-neck. Suppose that v and ~/ are
geodesics ending at x whose lengths, when measured with respect to the rescaled
metric with R(z) = 1, are at least 103. Then the angle at z between ~ and v’ is
within 5 - 1073 either of 0, if v and 7/ lie on the same side of the 2-sphere factor of
the e-neck containing x, or of 7, if they lie on opposite sides.
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13.2.1 Actions on k-solutions

One source of models for regions of large scalar curvature in a Ricci flow with
surgery are x-solutions. Let us recall the definitions and main results from Section
9 of [21]. A 3-dimensional k-solution is a Ricci flow defined for —oo < ¢ < 0 of com-
plete, non-flat, orientable 3-manifolds of bounded, non-negative sectional curvature.
Furthermore, it is required to be k-non-collapsed in the sense that given any ball
B(z,r,t) for which the sectional curvatures are bounded on the parabolic neighbor-
hood P(z,r,t,—r%) by r~2, we have Vol B(z,t,r) > xr®. According to Proposition
9.83 of [21] any non-compact s-solution either has strictly positive curvature, is iso-
metric to S? x R, or is double covered by S? x R where the covering transformation
is the product of the antipodal action on S? and the involution on R interchanging
the ends. By Theorem 9.89 of [21] each time-slice of a compact k-solution of positive
curvature has a round metric.

Here is an initial classification of compact group actions on a k-solution in the
easy cases.

Proposition 13.10. 1. Any compact group of isometries of a compact k-solution
is finitely covered by a linear action on S°.

2. Any isometric action of a compact group on S% x R is the product of a linear
action on S? and a linear action on R.

3. Let 7 be the involution of S* x R that is the product of the antipodal map on
S? and the reflection in the origin on R. Any isometric action on (S? x R)/7 is
induced from a linear action on S2.

Proof. Since compact k-solutions have round metrics, the first item is immediate.
An action on S? x R must preserve the family of 2-spheres and the perpendicular
family of lines. Thus, projecting to the factors determines isometric actions on 52
and on R. It is clear that the action is the product of these actions on the factors.
In the last case an action of H on the quotient lifts to an isometric action of H
on S? x R, where H fits into the exact sequence:

0—2/22Z — H— H — {1}.

The kernel is central in fact is split by the orientation character on the line, so that
H = H x 7,/27Z, where the second factor is generated by —Id x Ry C O(3) x Iso(R),
and Ry is the antipodal map of S? . The result follows immediately from the first
case. O

Now let us turn to the most interesting case.

Proposition 13.11. If (M, g(t)), —oo < t < 0, is a non-compact k-solution of
positive curvature and if (M, g(0)) is invariant under a compact group H, then the
H-action on M is equivariantly diffeomorphic to a linear action of H on R3.

Proof. Since (M, g(0)) has positive curvature, it has a soul which is a point. We
claim that it has a soul invariant under the H-action. To see this, fix a compact
H-invariant subset X C M and consider the set, A, of all minimal geodesic rays
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starting at points of x. For each such ray ~ let b,: M — R be the Busemann
function for ~; i.e., b, () = limy—ood(x, y(t)) —t. The super level sets of b, denoted
Sa(by) = {x € M|b,(x) > a}, are totally geodesically convex in the sense that if
7' is a geodesic arc with endpoints in S,(b,), then 7 C S,(b,). Now we consider
f = infycab,. This is an H-invariant function whose super level sets, S,(f), are
totally geodesically convex. We claim that each super level set of f is compact. We
can assume that a < —diam(X). First notice that if z € X then f(z) > —diam(X),
so that X is in the super level set S,(f). If So(f) is not compact, then there is a
sequence, T, € S,(f) tending to infinity. Fix a point g € X and take (minimal)
geodesics iy, from xg to z,. Then u, C Sy(f). Passing to a subsequence we can
arrange that the p, converge to a geodesic ray v from zy. But clearly f(vy(t)) <
by(v(t)) = —t, which contradicts the fact that v C S,(f) for some a > —o0.

Let ag be the maximum value of f and set C' = f~!(ag). This is a non-empty,
compact, totally geodesic H-invariant subset of M. Lemma 62 in Section 11.4 and
the argument immediately following it in [29] show that in this case of strictly
positive sectional curvature S,,(f) is a point, and hence it is an H-invariant soul py
for M.

Now consider r = d(pg, -). This is an H-invariant function. For b > 0 sufficiently
small V(r) is a smooth, non-vanishing H-invariant vector field on B(po,b) \ {po}.
Furthermore, if b > 0 sufficiently small the exponential map identifies the action of
H on the closed ball B(pg, b) with a linear action on the closed ball of radius b in the
tangent space Tp, X. The general soul theory implies that there is a smooth vector
field agreeing with Vr on B(po,b) with the property that d(po, -) is increasing along
every flow line of this vector field (except at pg). Averaging the vector field over
H allows us to assume that in addition it H-invariant. As such it determines an
H-invariant diffeomorphism:

M \ B(po,b) = 0B(po, b) x [b, 00),

and hence establishes an equivariant diffeomorphism from H x M — M to a linear
action of H on R? given by the differential of the action at the H-invariant soul
Po- ]

Corollary 13.12. Let M be the final time-slice of a non-compact k-solution of
positive curvature. Suppose that H x M — M is an isometric action of a compact
group, and let B C M 1is an invariant, closed 3-ball. Then the restriction of the
action of H to B is equivariantly diffeomorphic to a linear action.

Proof. Since by Proposition 13.11 the action on M is equivariantly diffeomorphism
to a linear action on R3, there is a compact ball By containing B on which the action
is equivariantly diffeomorphic to a linear action. The result is then immediate from
Proposition 13.7. ]

13.2.2 Actions on the standard solution

The other possible models for regions of large scalar curvature in a Ricci flow with
surgery come from the standard solution. According to Section 12 of [21] this is
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a Ricci flow (M, ho(s)), 0 < s < 1. The Riemannian manifold (M, ho(0)) has
an isometric action of O(3) which fixes a point ¢g, called the tip, and which is
equivariantly diffeomorphic to the natural linear action of O(3) on R?. This action!®
preserves the metric ho(s) for every 0 < s < 1. Any compact group action on any
time-slice, (M, ho(s)), is a subgroup of this O(3)-action and in particular fixes g
and is equivariantly diffeomorphic to a linear action on R3.

Just as in the previous case, this leads to the following result for balls in a time-
slice of the standard solution.

Corollary 13.13. Let (M, ho(s)) be a time-slice of the standard solution. Suppose
that H is a compact group acting isometrically on (M, ho(s)) and that B C M is an
H-invariant 3-ball. Then the action of H on B is equivariantly diffeomorphic to a
linear action.

13.2.3 Canonical Neighborhoods in k-solutions and the standard solu-
tion

Here is a result that was established in Section 9 of [21] about canonical neighbor-
hoods for non-compact k-solutions.

Proposition 13.14. For any € > 0 there is Co = Co(€) < oo, with Co > 10+ such
that the following holds. Suppose that (M,h(t)), —oco < t < 0, is a non-compact
k-solution of positive curvature. Then any point x € (M, h(0)) is either the center
of an €/3-neck or there is a submanifold C C (M, h(0)) with the following properties:

1. C is diffeomorphic to an open 3-ball.
2. There an €/4-neck N(C) contained in C and containing the end of C.

3. The central 2-sphere 3 of N bounds a compact submanifold Cy of C, called the
core of C.

4. The metric has positive sectional curvature at every point of C.

5. Given any points y,z € C and 2-planes P, C T,M and P, C T,M the ratio of
the sectional curvature in the Py-direction and that in P, direction is between

Co and CO_I.
6. The diameter of C is at most CoR~(1/2)(z).
7. The core Cy contains x.

Definition 13.15. Given ¢ > 0 we fix Cy as in the proposition and we call a
submanifold C of the final time-slice of a non-compact x-solution of positive curvature
satisfying the conclusions 1 — 6 of the above proposition an e-cap. We define a twisted
e-cap to be the quotient 7 of S? x (—Cp, Cp) by the involution 7 that is the product

19 Actually, this result is only stated for SO(3) in [21] but by uniqueness result established in
Section 12 of [21], given the initial metric, it holds for O(3)
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of the antipodal map on S? with the map x — —x on the interval. Notice that there
is an €/4-neck N C T with compact complement and every point of N is the center
of an e-neck in S? x R/7.

Clearly, any point of S% xR is the center of an ¢/3-neck and any point of S xR /7
is either the center of an €/3-neck or is contained in a twisted e-cap.

Given € > 0 for any so < 1, there is C1 = C(e, s9) such that for any s < sg the
ball B(q, s,C1) centered at the tip of the s time-slice of the standard solution has
positive curvature and contains an €/4-neck whose complement is compact. Denoting
by ¥, the central 2-sphere of of this neck, the compact submanifold of B(qo, s, C1)
bounded by X is the core of this (C1, €)-cap.

13.2.4 Standard Models for regions of large scalar curvature

In Section 16 of [21] the following is established (though not explicitly stated):

Theorem 13.16. (Canonical neighborhood theorem) Given € > 0 and § > 0 suffi-
ciently small there is an so < 1 and a function r(t) such that the following holds for
C = C(e, s9) = max(Cy(e),Ci(so,€)). Let x € My be a point of the t time-slice of
a Ricci flow with surgery. If R(z) > r=2(t) then, setting g = R(z)g:, one of the
following holds:

1. There are a k-solution (N, h(t)), —oo <t <0, a point (p,0) in its final time-
slice with R(p,0) = 1, and a smooth embedding p: Byo)(p,C) — M with
©(p) =z with ¢*g} within & in the CM% -topology of the restriction of h(0) to
Bho)(p, C).

2. There are s < sg and a smooth embedding ¢ of the ball Bi(s) = B(qo,s,C)
centered at the tip of the s time-slice of the standard solution into My contain-
ing By, (w,10eY) with the property that p*g, is within § in the C/9l _topology
to the restriction of R(o~1(x))ho(s) to Bi(s).

Now we can use this result to extract four kinds of models for regions of large
scalar curvature.

Corollary 13.17. Fix ¢ > 0 sufficiently small. Let sqg and Cy,C be fized as in
the previous theorem. Then there is a positive function r(t) such that the following
holds. If x € My has R(z) > r~2(t), then, setting g, = R(x)g:, one of the following
holds:

1. The connected component of My containing x, with its metric rescaled by R(x),
is within € in the C/9 topology to a round metric of constant curvature 1/3.

2. x is the center of an e-neck in M.

3. There is a twisted e-cap whose core contains x.
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4. There is a non-compact k-solution (N,h(t)), —oo < t < 0, a point (p,0) €
(N, h(0)) with R(p,0) =1, an e-cap C(p) in (N,h(0)) whose core contains p,
and an embedding ¢: C(p) — My sending p to x, such that ©*g| is within € in
the C1V¥_topology to the restriction of h(0)to C(p). Furthermore, the sectional
curvature of My is positive on the image ¢(C(p)).

5. There are s < sy and a smooth embedding ¢ of the ball B1(s) = B(qo,s,C1)
in the s time-slice of the standard solution into My containing By (7,107 1)

with the property that p*g) is within € in the CWeltopology to the restriction
of R(¢~'(x))ho(s) to Bi(s) and the sectional curvatures on the image of ¢ are
positive.

Proof. We take § << € and then fix r(¢) depending on €, sg,d. Three remarks are
in order: (i) When the model is a ball By, g)(p, C') in a non-compact -solution and
(p,0) is the center of an €/3-neck in the k-solution. In this case, since § << € it
follows that x is the center of an e-neck in My; (ii) since R(p,0) = 1 the sectional
curvatures on e-caps C(p) in non-compact k solutions bounded below by a positive
constant. Likewise in Case 5 the sectional curvatures on B(qo, s, C1) are bounded
below by a positive constant independent of s < sy Taking § sufficiently small, it
will then be true that in Cases 3 and 5 that the sectional curvatures on the image
©(C(p)) will be positive. O

Definition 13.18. Fixing € > 0. We say that C(p) and By, s)(qo, s, C1) satisfying
the conclusions of the previous theorem are model strong e-caps, and given x, the
image of a map ¢ from one of these model strong e-caps as in the third or fifth item
of the corollary is called a strong e-cap neighborhood of x, or a strong e-cap. The
neighborhood in the fourth item is called a twisted e-cap.

13.2.5 Limits of group actions

Recall the notion of a geometric limit of a sequence of based, Riemannian manifolds:
A sequence of based, complete Riemannian manifolds {(M,,, gn, Tn)}n>1 is said to
converge geometrically to a based complete Riemannian manifold (M, goos Too) if
there is an increasing sequence of open subsets U, C My, each containing ..,
whose union is M, and, for each n sufficiently large, a diffeomorphism ¢, : U, —
on(Uy) C M, with ¢,(2) = =, such that the ¢ g, converge to g, uniformly in
the C*°-topology on every compact subset of M.
Here is the main result we need about limits of group actions.

Proposition 13.19. Let (M, gn,zy) be a sequence of based, complete Riemannian
3-manifolds and let H be a compact group. Suppose that for each n, ¥, : H x M, —
M, is an effective, isometric group action. We equip H with an invariant metric,
denoted dpy. We suppose that the following two conditions hold:

1. There is R < oo such that for every n > 1 and every element h € H,
d(xy, hzy,) < R.
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2. For any S > 0 and € > 0, there is § = d(¢,S) > 0 such that for all n sufficiently
large and for any x € B(xy,S) and any h,h' € H with dg(h,h') < 6 we have
d(hz,hz) < e.

If the based Riemannian manifolds converge geometrically to a limit (Mso, goo, Too),
then, after passing to a subsequence, there are:

1. an effective, isometric action Yoo: H X My — Moo,

2. an increasing sequence of H-invariant open sets V,, C My, each containing
Too, Whose union is M., and

3. for each n an H-equivariant embedding @,: V, — M,, with d(@,, (), Tn)
tending to 0 as n — oo, such that the @}, g, converge to goo, uniformly in the
C*-topology on every compact subset of M.

Proof. One first goal is to pass to a subsequence and construct a limiting action of
H on M. Let us consider a single element h € H. The distance d(xy,, ¥n(h)x,,) is
bounded independent of n, and hence for all n sufficiently large ¢! is defined on
¥n(h)z, and the distance in My, between ¢! (¢,(h)z,) and s is bounded inde-
pendent of n. Passing to a subsequence we arrange that the sequence ¢, L (h)2n
converges to a point y(h) € M. Passing to a further subsequence we can ar-
range that the differentials of ¢}, "¢, (h)pn at T converge to an isometry from
TrooMoo — TynyMoo. Since v, (h) is an isometry and the ¢, are converging uni-
formly on compact sets to isometries, it follows that the ¢ 14, (h)p, are converging
uniformly on compact subsets of My, to an isometry, which we call 1o (h), of M,
and this isometry is determined by y(h) and the limiting differential at z.

There is a finite set of elements D C H that generate a dense subgroup of H.
Apply the result established in the previous paragraph to pass to a subsequence so
that for every element of D the action of this element on M, converges, uniformly
on compact subsets, to an isometry of M.,. Then for every product p = dj - - - d of
elements of D, the actions of ¥, (p) on M, converge uniformly on compact subsets,
to the product of the limiting actions 1 (d;) on M. That is to say, letting G(D) C
H be the subgroup generated by D, there is an action 9, of G(D) on My, and for
each ¢ € G(D) the diffeomorphisms ¢, 11, (g)p, converge uniformly on compact
subsets to the isometry ¥oo(g).

Now we extend %o to action of all of H on M. Given h € H there is a
sequence g; € G(D) converging to h. The uniform continuity of the v, on compact
sets implies that the ¥ (g;) converge, uniformly on compact subsets of My, to an
isometry 1o (h), which as the notation suggests, depends only on h. This defines
an extension of 1), to an isometric action on M. Using the uniform continuity of
the 1, on compact sets we see that for any h € H the diffeomorphisms ¢, 4, (h)pn
converge uniformly on compact subsets to 1)oo(h). The uniform continuity of the
action in the sequence implies that the killing fields associated with unit vectors in
the Lie algebra of H have uniformly bounded length under di,,. Hence, passing to
a subsequence we can arrange that the maps of the Lie algebra into the vector fields
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on M, converge uniformly on compact sets to a map of this Lie algebra into killing
vector fields on My,. Thus, the limiting action is a smooth action of H on M.

This completes the construction of the limiting effective, isometric action ¥
of H on My, with the property that given any compact set X C My and any
§ > 0 for any h € H for all n sufficiently large the restrictions of ¢, 14, (h)p, and
Yoo(h) to X are within ¢ in the C*°-topology of each other. It remains to replace
the approximating diffeomorphisms ¢, : U, — M, by equivariant diffeomorphism
(shrinking the U, but keeping their union equal to all of M,). For any compact
subset X C M, the subset H - X is compact and hence is contained in U, for
all n sufficiently large. Hence, for all n sufficiently large, for every h € H the
map ¥ (h) Lpptheo(h) is defined on X. Furthermore, as h varies these maps are
all close to each other in the C'*°-topology on X, with the error going to zero (on
X) as n +— oo. Thus, passing to a subsequence we can suppose that eventually
for each compact subset X of M, for all n sufficiently large, the restrictions of
P (h) Lot (h) to X are arbitrarily close together. Since the metrics on the union
of the images of X under these maps are converging to the metric of go, on this
compact set, for all n sufficiently large we can take the center of mass of this set
of points (parametrized by h € H and integrated with respect to a Haar measure
on H of total volume 1) as in [10]. This center of mass map determines a map @,
defined on X. By construction @, is H-equivariant, and is C°°-close to ¢,, with
the error estimates going to zero as n — oco. In particular, §,, is an embedding for
all n sufficient large. As n +— oo these embeddings converge smoothly on X to an
isometry in the sense that @ g,|x converges in the C*°-topology to geo|x-

It is clear that d(®,(¢«), x,) tends to zero as n — co. O

13.2.6 Group actions on strong e-caps and twisted e-caps

Lemma 13.20. Let C be a strong e-cap centered at x € M;. Suppose that H X My —
M, is an isometric action of a compact group. Let Hy be the set of elements in h € H
with the property that hCo N Cy # 0. Then Hy is a subgroup of finite index and there
is an Hy-invariant 2-sphere in the €/4-neck N(C) that is isotopic in N(C) to the
central 2-sphere of the neck.

Proof. Let X be the central 2-sphere of N(C). We claim that for any h € Hy we have
h-¥NX # (. For suppose h¥ is disjoint from ¥. Then either hCy C Cgy, Co C hCo
or Co N hCy = 0. The last violates the assumption that h € Hy. Neither of the first
two is possible since the volume of hCy equals the volume of Cy. This proves that
h-XNX #0 for every h € Hy.

Let d(X) be the diameter of ¥. If follows that if hy,hy € Hp, then hihod is
contained in the 2d(X) neighborhood of ¥, and in particular is contained in N(C).
It follows easily that hihoCoNCo # (). This shows that Hj is closed under products;
it is clearly closed under taking inverses, and hence is a subgroup of H, obviously of
finite index.

Now we consider the unit vector field on N(C) that generates the line field £y )
and points toward Cy. This vector field is invariant under Hy. Using the flow
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generated by this vector field we define a product structure on an open subset U of
N(C) containing the middle half of N(C):

Y x (—a,a) - U.

Now for each h € Hy the 2-sphere h - X is the image under this product structure
of the graph of a smooth function f;,: ¥ — (—a,a). Let f be the average of these
functions over h € Hy. We claim that the image of the graph of f is an Hy-invariant
2-sphere as required.

The fact that action of Hy on ¥ x (—a,a) preserves the unit vector field in the ¢
direction means that it is given by h - (o,t) = h(c), fo(h(c) +t), where h — h is an
action of H on X. From the group law it follows that

fh1h2 (Elﬁz(ﬂ = fh1 (51520') + fh2 (EQU). (13.1)

Applying this with hy = hl_l, and using the fact that f. = 0, we have:

(o) = —for (R o). (13.2)
Now
h(o, (o)) = (ho, fu(ho) + / 1,(0)dg),
g€Hp
whereas

(o f (o) = (Foo, / 1,(io).

g€Hy

Thus, to show that the graph of f is H-invariant we need to show:

/ fo(Fo)dg = fi(Fio) + / fy(0)dg.
g€Ho

g€Hy

But, applying Equation 13.1 with h; = g and hy = g~ 'h, and using the fact that
the volume of Hj is one, we have

o . .
/geHofg(h")dg_ /geHofh(h")dg / f,-1n(@ o)y,

g€Hy

- fu(fio) - / (g o)y
g 0

Now using Equation 13.2 we have

_/ fg*lh(g_lﬁo-) :/ fh*lg(a)dga
g€Hy

gE€Hy

which by the invariance of the measure on Hy under left multiplication is equal to

/ 1,(0)dg,
g€Ho

completing the proof. O
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Now we are ready to show that the actions on the truncated versions of strong
e-caps are linear.

Proposition 13.21. Fiz an integer N. The following holds for all e > 0 sufficiently
small, how small depending on N.

1. Suppose that C is a strong e-cap in a closed Riemannian manifold M, that
H x M — M 1is an isometric action of a compact group, with H having at most N
connected components, and h-CyNCo # O for all h € H. Let X C C be a compact
H -invariant submanifold with boundary a 2-sphere in N(C) isotopic in N(C) to the
central 2-sphere. Then the action H x X — X is equivariantly diffeomorphic to a
linear action on the 3-ball.

2. Suppose that C is a twisted e-cap and that X C C is a compact H-invariant
submanifold whose boundary is a 2-sphere in N(C) isotopic in N(C) to the central
2-sphere. Then H x X — X is double covered by an action H x (52 x I) — S% x I
that is the product of a linear action on S? and a linear action on the interval.

Proof. Fix N < oo and suppose that there is no € as required in 1. Then there is a
sequence of €, — 0 as n — oo and a sequence of counter examples H,, x X,, — X, for
contained in strong €,-caps. Passing to a subsequence we can suppose that the model
e-caps either are all contained in non-compact x-solutions of positive curvature or
are all contained in the standard solution. In the first case, let p, be a soul for
(Np, hy(0)). It is contained in the model for C,, and we denote by z, its image
under the map from the model. We rescale the metrics so that R(p,,0) = 1 and
R(z,) = 1. Then the (X,,x,,g,) converge as n — oo geometrically to the final
time-slice of a non-compact k-solution.

Each group H, has at most N components and has dimension bounded above
by 3, so passing to a subsequence we can assume that all the H,, are isomorphic.
We identify all the H, with H. We claim the two conditions in Proposition 13.19
are satisfied. Fix ¢y > 0. Then for all n sufficiently large €, < €. For any eg-neck
in X with central 2-sphere X for any h € H we have h - X N'Y # (). Since there
is an €p/2 neck at a uniformly bounded distance from p,, it follows that in X there
is an €p-neck at a uniformly bounded distance from x,. Since the central 2-sphere
of this neck is mapped so as to meet itself, it follows that h moves x, a distance
bounded independent of h € H and of n. It is also true that any circle subgroup of H
fixes two points on any central 2-sphere of an ey-neck, and so all such circle groups
have fixed points within a uniformly bounded distance of xz,. This, and the fact
that the metrics are converging uniformly on compact sets as n — oo, imply that
Condition 2 in the hypothesis of Proposition 13.19 holds. Hence, both conditions in
the hypothesis of this proposition hold.

According to Proposition 13.19 there is a limiting action of H on the geometric
limit. This limit is either a x-solution or a time-slice of the standard solution. But
these limit actions are automatically linear actions on R3 so that by Proposition 13.19
for all n sufficiently large we have an equivariant diffeomorphism from X,, to an
invariant ball in a linear action on R3. But as we have already seen, this implies
that for all n sufficiently large, the action on X, is linear. This completes the proof
of the first case.
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The case of twisted e-caps is analogous. O

13.3 Equivariant Ricci flow and linearity of the action on the surgery
regions

13.3.1 Step 1: An equivariant version of the Ricci flow with surgery.

Let M be a compact, orientable 3-manifold and let H x M — M be a smooth
action of a compact group. We fix a Riemannian metric g on M that is H-invariant.
Scaling it by a suitably large positive constant allows us to assume that g is also
normalized. We also fix € > 0 sufficiently small, how small depending on the number
of connected components of H as in Proposition 13.21.

Proposition 13.22. With proper choices one can construct a Ricci flow with surgery
(M, G) with initial conditions (M, g) satisfying the conclusions of Theorem 1.2 and
an action H x M — M that preserves the levels My C M, acts by isometry on each
level, and preserves the flow lines on the smooth part of the Ricci flow with surgery.

Proof. We begin with the H-equivariant compact Riemannian manifold (M, g).
Rescaling the metric g by constant if necessary, we can assume that the initial
conditions are normalized. Since the solution to the Ricci flow equation is unique,
it follows that the maximal Ricci flow (M, g(t)), 0 < ¢ < tp, with this initial data
is H-invariant. At the limiting time, i.e., at the first surgery time, the open subset
) C M consisting of all points where the metrics g(t) converge smoothly to a limit-
ing metric as t — t, is clearly H-invariant, as is the subset Q(p(t9)) C 2 where the
scalar curvature of the limiting metric is at most p=2(¢). (Here, p(tg) = 6(to)r(to),
the functions on the right-hand side being the ones associated to € by Theorem 1.2.)
Surgery is done on the ends of 2. We begin by recalling some of the central concepts
in understanding these ends and then we show that these concepts have equivariant
analogues, eventually leading to a proof that surgery can be done equivariantly.

Recall the notion of an e-horn in 2. We equip €2 with the limiting metric as
t — t;, denoted g(tp). Recall that an e-horn K is the image of a proper embedding
S2 % [0,00) — ) with the following properties:

1. the restriction of the scalar curvature function of §2 to goes to 400 as we go
to infinity in /C.

2. Each point of K is the center of an e-neck in Q and the boundary of K is a
central 2-sphere in an e-neck.

3. The image of OK is contained in Q(p(to)).

In Theorem 11.30 in [21] it was shown that for every § > 0 there is R(§) < oo
such that for any any Ricci flow with singularity at time ¢y and any e-horn K in €2
for this Ricci flow, all points of the I with scalar curvature at least R(d) are centers
of d-necks. Since 2 is defined geometrically, it is an H-invariant subset of M, so
that there is an induced isometric action H x 2 — Q. For any e-horn K let Hx be
the stabilizer in H of the end of K.
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Claim 13.23. For any § > 0 there is a sequence of Hy-invariant d-necks N, C K
tending to infinity in K. The pull back from each N, of action of Hyx is an action on
S2 x (—=671,671) that is the product of a linear action on S? with the trivial action
on the interval.

Proof. Let z, € K be any sequence of points converging to the end of K. Then,
after passing to a subsequence, the based actions (K, x,, Hx), with a sequence of
rescaled metrics g, with the property that in the metric g, we have R(z,) = 1
converge geometrically to an action of Hx on S2 x R preserving the ends. (Notice
that g, = R(x,)g and R(x,) — 0o as n — 00.) From [21] we know that for any
such sequence there is a geometric limit that is S? x R, with the metric being the
product of a round metric on S? with the usual metric on R. For each n let %, be
the central 2-sphere of an J-neck with z,, € %,,. Since Hc is compact an preserves
the end of K, for each element of this group we have hY, N, # (), so that in the
metric g, every element of Hx moves x,, a distance at most twice the diameter (in
gn) of X, which is bounded by 5.

Let £ be the line field on K orthogonal to the 2-plane field of maximal curvature
directions. The group H acts so as to preserve this line field and an orientation of it.
This line field crosses X, transversely with each line meeting ¥,, exactly once. This
means that the leaf space of this line field is identified with ¥,,. The action of S' on
the line field then has two fixed points, meaning that there are two lines stabilized by
the circle action, and hence point-wise fixed by the circle action. Thus, the circle has
two fixed point on X, both of which are within 47 of x,, when distances are measured
using g,,. From this it follows that the actions are uniformly continuous in the sense
of Proposition 13.19. Thus, by that proposition after passing to a subsequence there
is a limiting action of Hx on the geometric limit of a subsequence, which as we have
already said is S? x R. Consequently, the limiting action is the product of a linear
action on S? with the trivial action on R. Proposition 13.19 also implies that given
e > 0 for all n sufficiently large, there is a point y, whose distance from x,, (in g,)
goes to zero as n — oo which is at the center of an Hy invariant e-neck. Since the
T, converge to the end of K, so do the y,. O

At time ty we can choose a H-invariant family of e-horns that make up all the
ends of all connected components of © that meet Q(p(t9)). For each horn K we
construct an Hic-invariant &(to)-neck arbitrarily far out in the horn. Clearly, we can
do this in such a way that the entire family of §(¢g)-necks is H-invariant. Once we
have the H-invariant family of d(tg)-necks, we cut off each horn at the central 2-
sphere of the neck in that horn. This allows us to cut off M at a H-invariant family
of 2-spheres, where the stabilizer of each 2-sphere is isomorphic to a subgroup of
O(3) and the action is &(tg)-close to the orthogonal action, meaning that there is an
H-equivariant, almost isometric diffeomorphism from this collection of 2-spheres to
a linear H-action on a family of 2-spheres.

The next step in the surgery process is to glue in the restriction to a 3-ball
of the initial metric of the standard solution, where the gluing matches (up to an
overall translation and reversal of sign) the distance function from the central point
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of the initial metric of the standard solution with the interval coordinate in the
Hjc-invariant 6(tg)-neck structure. The initial metric of the standard solution is
O(3)-invariant. The gluing is done using a partition of unity which is chosen to
be O(3)-invariant when written in the coordinates of the standard solution and
hence depends only on the interval factor in the §(tg)-neck. This means that the
H-action on the truncated version of M can be extended to an isometric H-action
that is equivariantly diffeomorphic to a linear action on the family of balls we add
in performing surgery. That is to say, the surgery procedure can be done in a
H-equivariant fashion. Repeating this operation at each surgery time produces a
H-equivariant Ricci flow with surgery defined for all time. This completes the proof
of the proposition. O

13.3.2 Step 2: Examination of the components that disappear at finite
time

In order to describe these components we introduce the following notion:

Definition 13.24. An etube T C M is an open submanifold diffeomorphic to
52 x (0,1) such that:

1. T is a union of e-necks in M.

2. There is a disjoint union of two e-necks N1 [] N_ contained in T whose com-
plement is compact. We denote by T" C T the open submanifold, also diffeo-
morphic to S? x (0,1), between the central 2-spheres of Ny and N_.

Given an e-tube T O T we ~denote by U the union of T with the central thirds of
Ny and N_. Then T C U C T and U is diffeomorphic to S% x (0, 1).

Suppose that g is a surgery time. Then for ¢ < ty but sufficiently close to it, the
time-slices M; form an ordinary Ricci flow, so that all these manifolds are identified
and the flow is a flow of metrics g(t) on a fixed manifold, which we denote by M, . As
t — t; the metrics g(t) become singular at a compact subset Xy, C My, . Surgery at
time to involves three operations. First, we cut M, open along a finite H-invariant
family of 2-spheres contained in M, \ Xi,. Denote by M; the result. It naturally
contains Xy,. Second, we remove an H-invariant family of components Y, of Mj
with the property that X;, C Y;,. Third, we attach in an H-invariant way a family
of 3-balls along the entire boundary of M, \ Yy,.

We identify Y, with a subset of M, in the natural way. Then, with respect to
any of the metrics g(t) for ¢ < ¢y sufficiently close to tp, each point of ¥;, has a
canonical neighborhood. Thus, there are components of Y;, that are components
of M, and have positive curvature. All other components or Y;, are covered by
e-necks, e-caps, and twisted e-caps. For components of Y;, that are components of
M, covered by these neighborhoods the possibilities are: (2a) those diffeomorphic
to S and covered by two e-caps, possibly together with an e-tube,(2b) those dif-
feomorphic to RP3 covered by an e-cap and a twisted e-cap possibly together with
an e-tube, (2c) those diffeomorphic to an S%-bundle over S! covered by a union of
e-necks, and (2d) those diffeomorphic to RP3#RP3 covered by the union of two
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twisted e-caps, possibly together with an e-tube. The possibilities for the topology
of components of Y3, that are properly contained in components of M,  are the fol-
lowing: (3a) those diffeomorphic to S? x I and contained in an e-tube, (3b) those
diffeomorphic to B? and contained in an e-cap possibly together with an e-tube, and
(3c) those diffeomorphic to a twisted I-bundle over RP? and contained in twisted
e-cap, possibly together with an e-tube.

Proposition 13.25. Let ty be a surgery time. and let C' be a connected component
of My for t < to, sufficiently close to tyg. Let Ho be the stabilizer in H of C' and
let ﬁc be the group of isometries of the universal covering C that cover elements of
He. If C completely disappears at a surgery time to (i.e. if C' is a component of
Yi, ), then C has a homogeneous metric that is invariant under ﬁc.

Proof. There are three possibilities.
Case 1: (C,g(t) has positive curvature for all ¢ < ¢, sufficiently close to
to. Actually, there are two possibilities here: The first possibility is that (C, g(t))
has positive sectional curvature and the diameter d(¢) of this component converges
to zero as t — ¢, . In this case rescaling the metrics (G, g(t)) so that the diameter
of the manifolds remains constant the metrics converge to a round metric. This
limiting metric is invariant under the action of the stabilize Ho of C'in H so that
C is finitely covered by S with the round metric and H has a finite extension H
by the fundamental group of C' which acts on S3 via an embedding H C O(4).
The second possibility is that C' is a component of M, and for all ¢ < o suffi-
ciently close to tg the component C' has positive sectional curvature in the metric
g(t) but it is not converging to a point at time ¢y. In this case, the Ricci flow ap-
plied to (C, g(t)) exists for some finite time (longer that ¢ty — ¢) and at the limiting
time the metric on C' becomes round. Since the Ricci flow is equivariant under the
stabilizer H¢, we see that C admits an Hg-invariant round metric. Thus, in Case 1
the component C' has a round metric that is invariant under the stabilizer Ho of C
in H.
Case 2a: C is the union of two e¢-caps and possibly an e-tube. Notice that
H¢ is a subgroup of finite index in H so that the number of its components is at
most N. If C'is a union of two e-caps, then C has positive curvature and is already
covered by Case 1. Thus, we can assume that the cores of the two caps Cy and
C{, are disjoint. Thus, C' is the union of the cores of these two caps and an e-tube
T with the property that the boundaries of Cy and C{ are cross sections for the
line field £p. There is a point x in Cy that is not contained in any e-neck. For
any h € He the image hx is contained in either Cy or C). Thus, by Lemma 13.20
there is a subgroup H/, of index at most two in H¢ such that for every h € H/,
the intersection of Cy with its image under A is non-empty. In this case, there
is an H/-invariant submanifold X; C C with boundary 2-sphere contained in T
and a cross section for Lr. According to Proposition 13.21 the action of H/, on
X is equivariantly diffeomorphic to a linear action on the 3-ball. We perform the
analogous construction for Xy C C’, and do it Hg-equivariantly if Hor # He.
Then the He action on X [[ X2 is equivariantly diffeomorphic to a linear action.
The region R between 0X1 and 0X» is an He-invariant subset of T' with boundary
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transverse to the line field L7, which is Ho-invariant. Using this line field and the
fact that the action on the boundary 2-spheres is linear, we see that there is an Hc-
equivariant diffeomorphism from R to a linear action on S? x I. It follows that there
is an embedding Ho C O(3) x O(1) C O(4) and an Hc-equivariant diffeomorphism
from C to the induced linear action of Ho on S3.
Case 2b: (' is the union of a twisted e-cap and an e-cap possibly together
with an e-tube. In this case there is a double cover C' of C with an action of an
extension Ho of Ho by a group of order 2 acting on C' covering the given action of
Hg on C. Thus, this case follows immediately from the previous.
Case 2c: C is an S?-bundle over S' and, for every ¢ < t; sufficiently close
to #p, every point of C is the center of an e-neck. Pass to the universal
covering C’ and let H be the group of isometries of C that normalize the group of
covering transformations of C — C and project to elements of H. Then there is an
exact sequence: _

{1} =2 — H —- H — {1}.

One possibility is that there is a circle subgroup of H whose orbits represent non-
trivial elements in H1(C). Since the fundamental group of a compact, connected
semi-simple group is finite, in this case it follows that the component of the identity
HY of H contains a central circle whose orbits represent non-trivial elements in
H1(C). The quotient of the center of HY by this group then acts effectively on
the quotient C'//S'. This implies that the center of H° has rank either one or two.
The center of the identity component of the covering group H® C H is then either
isomorphic to R or S! x R, and the R acts freely and properly discontinuously on
C with quotient a 2-sphere.

Claim 13.26. We can choose the R C H° to be a normal subgroup of H.

Proof. If the center of H O is R, then this subgroup is a normal subgroup of H. If
the center of HO is isomorphic to S* x R, then H acts on this group through a finite
image. It is easy to see that any finite subgroup of automorphisms of S' x R has an
invariant R-factor. O

Fix a normal subgroup R C H. This group acts freely and properly discontinu-
ously on C' with quotient S2. There is a cross section and hence there is a product
structure C' = S% x R so that R actions by translation in the second factor. Since R
is a normal subgroup of H, the action of H preserves the foliation of C' by the copies
of R. Let H = H/R. It is a compact group. Consequently, H 2(H;R) is trivial and
hence there is a splitting H = Rx H. Let ¥ = S% x {0} and consider the intersection
of H-¥Y — S? x R with {z} x R. This gives a function ,: H — R that varies
smoothly with z € §%2. We form the average of this function using Haar measure
of volume 1 on H. The result is a function 1: S? — R which is H invariant in the
sense that 1 (hx) = 1 (z) for every h € H. This means that the graph of ¢, denoted
Y/, is a 2-sphere transverse to the R-foliation that is invariant under H. We define
a product structure on C so that ¥’ x R so that ¥’ is the 2-sphere cross section at 0
and R acts by translations. This product structure is invariant under H. Since the
action of H on Y/ is equivariantly diffeomorphic to a linear action, it follows there
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is an H -equivariant diffeomorphism from C to an H-action on S2 x R that is the
product of a linear action on S? and a linear action on R.

Now we consider the case when there is no S' C H whose orbits represent non-
trivial elements in H;(C). In this case we use the line field £ that is orthogonal
to the 2-planes of maximal curvature. We suppose that we have chosen ¢ > 0 suffi-
ciently small so that e~! is much larger than the order N of the group of connected
components of H. The line field £ integrates to give a foliation of the universal
covering C by properly embedded lines with quotient space S2. The group H acts
on C preserving this foliation and hence there is an induced action of H on S2. It
follows that every element in the connected component of the identity of H acts on
the quotient space with fixed points, that is to say, it stabilizers one of the flow lines
in C of the line field £. That element then fixes the flow line point-wise, and hence
has fixed points on any 2-sphere cross section.

Fix an e-neck N, in C with central 2-sphere S%. Let H° C H be the subgroup
of index at most 2 consisting of elements preserving the direction of the line field L.
We claim that every element h € H? either has the property that h-S? N S? # () or
hN¢/syNNessn = 0. The reason is that if h-S2NS? = () and yet hN¢/snNNejsn # 0,
then for every 1 < k£ < N the kth power of h moves 52 so that it is contained in N,
but does not meet S2. Since N is the order of the component group of H, it follows
that for some 1 < k < N the k' power of h is in the component of the identity and
hence, by the discussion above, fixes some point of S?. This is a contradiction.

Once we have this dichotomy, it follows easily (provided that e~!/N > 3), that
the subset of elements h € H® with the property that h-S? N S? # () is a normal
subgroup H' of H? with finite cyclic quotient. Fix a product structure on an open
subset of N that contains the middle half of N by integrating the line field Ly
from S2. Then for each h € H’' the image h - S? is a cross section of the product
structure and is the graph of a function from S? — R. Averaging these functions
over H' gives a function whose graph is an H’ invariant cross-section Y contained
in the middle third of N. The translates of ¥ under H? are a finite disjoint union
of 2-spheres and the region between any successive ones is diffeomorphic to S? x I
by a diffeomorphism that sends L& to the tangent line field to the interval factors.
The universal covering of C' is obtained by gluing these product regions end-to-end
infinitely in both directions. Let h;: ¥ — X be the gluing map. To see that the
H - action is equivalent to a linear action we need the following claim.

Claim 13.27. Suppose that H x S?> — S? is a compact group action and that
¥ 8% — S? is a diffeomorphism with the property that there is an automorphism
¢: H — H with ¢¥(hx) = p(h)y(z) for all h € H and all x € S?. Then there
is a one-parameter family of diffeomorphisms vy: S% — S? with 1y = 1 and with
Yi(hx) = @(h)yi(z) for allh € H, all z € S%, and all 0 < t < 1, such that there is

a round metric on S? invariant under H and 1.

Proof. Without loss of generality we can suppose that H acts effectively. Let’s con-
sider the case when H is a finite group. In this case Q = S?/H is a 2-dimensional
orbifold and v induces an orbifold isomorphism ©: Q — @. This orbifold isomor-
phism is isotopic through orbifold isomorphisms to one of finite order (the order of
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the permutation of the exceptional points induced by 7). This deformation lifts to
a deformation of vy as required with ;7 of finite order modulo H. Thus, the group
generated by H and v is finite, and the result follows.

Now suppose that H is of dimension one. Then the quotient space S?/H is an
interval and the result is elementary in this case.

Lastly, if H has dimension greater than 1, then it is SO(3) acting in the standard
way on S? and the map ¢ is determined by ¢ and either is contained in SO(3) or
together with H generates O(3). O

We apply this to C' which is a union {52 x 1322 with ($2 x {1}); glued to
(52 x {0});+1 by the map v1. The subgroup H" acts linearly on (5% x I)g. According
to the previous claim we can deform the product structure on (S? x I)g in an H°-
invariant fashion and so that the group generated by H° and 1, preserves a round
metric on S?. This shows that the action of H° on S? x R! is equivalent to a product
of linear actions. This proves the result when H = H°.

It remains to consider the case when H U C H is of index 2. In this case the
subgroup H' of elements h € H that preserve the direction of the line field and
also fix a point of every S? cross section form a normal subgroup with quotient an
infinite dihedral group. Fix an element 7 € H reversing direction of the line field
Ls. Then H " and T generate an extension of Z/27Z by H'. Averaging cross sections

as before, we obtain a cross section ¥ C C to the line field that is invariant under
H’ and 7. The translates of ¥ under H form a disjoint family of 2-spheres, glued
end-to-end, by a diffeomorphism h; to form C. Invoking the previous claim again
we see that by deforming the product structure on the region bounded by ¥ and
one of its nearest translates, we can arrange that there is a round metric on ¥ that
is preserved by H', 7 and by the gluing diffeomorphism h;. This produces a product
structure C' 2 $2 x R with the property that H is the product of a linear action on
52 and a linear action on R.
Case 2d: C' contains two disjoint quotients of an e-neck by an involution
flipping their ends and these quotients are connected by an e-tube. This
case follows from the previous by passing to the two-sheeted covering.

This completes the proof of the proposition. O

Now let us examine the components of Yy, that are not components of M, . We
have an H-invariant family of e-necks N;. The central 2-sphere of each neck separates
Q(p(to)) from the end on the e-horn containing it. We do surgery on the central
2-spheres on the neck (which form a disjoint union of H-invariant submanifolds on
which the action is linear) and add 3-balls to these 2-spheres and extend the action
to a disjoint union of linear actions of H on a disjoint union of 3-balls. If we consider
t < to but t sufficiently close to tg, there are is a disjoint union of e-tubes and e-tubes
with either e-caps or twisted e-caps attached at one end that contains the disjoint
union of the N;. In fact, it is easy to arrange that the family of IV; has exactly
two members in each of the e-tubes in this collection, one near each end, and each
capped e-tube contains exactly one of the INj, near its non-capped end. For any
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such component T', we denote by Hrp the stabilizer of the submanifold of T" with
boundary the central 2-spheres of all the N; contained in T'.

Let T be an e-tube in this collection with N; and Ny being the e-necks near its
ends. Either Hp is equal to the stabilizer of each N; and Ns, or it contains these
stabilizers as a subgroup of order two and Hr contains an element interchanging Ny
and Ns. According to the surgery prescription, the action of the stabilizer of each
N; on that component equivariantly diffeomorphic to the product of a linear action
on S2 and the trivial action on the interval. Using the flow lines of the line field on
an e-tube, we see that the action on the region between the central 2-sphere near the
ends of the tube is also equivariantly diffeomorphic to a product of linear actions on
5?2 and on the interval (possibly containing a flip interchanging the two ends).

In the case that T is an the e-tube capped with a twisted e-cap, Hr is equal to
the stabilizer of the e-neck, N;, that it contains. Passing to the double covering
reduces this case to the previous one.

Lastly, if the component T is an e-tube capped by an e-cap, then Hrp is equal to
the stabilizer of the neck, Nj, that it contains. We must show that the action on the
3-ball cut off by the central 2-sphere of the N; contained in 7' is linear. We know
that near the boundary the action is a linear action on S? times the trivial action
on I. Since Hr is a subgroup of finite index in H according to Proposition 13.21
provided that we have chosen € > 0 sufficiently small given the number of connected
components of H, that the e-cap contains an Hrp-invariant 3-ball C' on which the
action is linear. Furthermore, the region between the central 2-sphere of N; and oC
is a product region with the product structure being given by an Hp-invariant line
field. Thus, the action on this region is a product of a linear action on S? with the
trivial action on the interval.

We have established the following:

Proposition 13.28. Let ty be a surgery time for a Ricci flow with surgery of compact
3-manifolds and let H be a compact group acting on this Ricci flow with surgery.
Then each component of the H-invariant region Yy, of M, that is removed by doing
H -equivariant surgery at time ty is one of the following types:

1. a component C' of M, with stabilizer Hc acting in such a way that it is covered
by an isometric action on a manifold with a homogeneous metric modelled on
Solv, Nil, R?, S3, or S% x R,

2. diffeomorphic to S? x I and the action of its stabilizer in H is equivariantly
diffeomorphic to the product of a linear action on S? and a linear action on I,

3. diffeomorphic to a 3-ball and the action of its stabilizer is equivariantly diffeo-
morphic to a linear action, or

4. diffeomorphic to the complement of an open ball in RP3 and the action of its
stabilizer is equivariantly diffeomorphic to one one that lifts to an action on
the double cover which is the product