Clay Mathematics Monographs
Volume 1

Kentaro Hori
Sheldon Katz
Albrecht Kilemm
Rahul Pandharipande
Richard Thomas
Cumrun Vafa

Ravi Vakil

Eric Zaslow

American Mathematical Society

Clay Mathematics Institute



cmim-1-title.gxp 6/11/03 11:03 AM Page 2 $

MIRROR SYMMETRY






cmim-1-title.gxp 6/11/03 11:01 AM Page 1 $

Clay Mathematics Monographs
Volume 1

MIRROR SYMMETRY

Kentaro Hori
Sheldon Katz
Albrecht Kilemm
Rahul Pandharipande
Richard Thomas
Cumrun Vafa

Ravi Vakil

Eric Zaslow

American Mathematical Society

Clay Mathematics Institute

S



2000 Mathematics Subject Classification. Primary 14J32; Secondary 14-02, 14N10,

14N35, 32G81, 32J81, 32Q25, 81T30.

For additional information and updates on this book, visit
www.ams.org/bookpages/cmim-1

Library of Congress Cataloging-in-Publication Data

Mirror symmetry / Kentaro Hori... [et al.].
p. cm. — (Clay mathematics monographs, ISSN 1539-6061 ; v. 1)
Includes bibliographical references and index.
ISBN 0-8218-2955-6 (alk. paper)

1. Mirror symmetry. 2. Calabi-Yau manifolds. 3. Geometry, Enumerative. 1. Hori, Kentaro.

II. Series.

QC174.17.59M5617 2003
530.14'3—dc21

2003052414

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in

reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the Clay Mathematics Institute. Requests for such permission
should be addressed to the Clay Mathematics Institute, 1770 Massachusetts Ave., #331, Cam-
bridge, MA 02140, USA. Requests can also be made by e-mail to permissions@claymath.org.

(© 2003 by the authors. All rights reserved.
Published by the American Mathematical Society, Providence, RI,
for the Clay Mathematics Institute, Cambridge, MA.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines

established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Visit the Clay Mathematics Institute home page at http://www.claymath.org/

10987654321 08 07 06 05 04 03



Preface

Contents

Introduction

A History of Mirror Symmetry
The Organization of this Book

Part 1.

Mathematical Preliminaries

Chapter 1. Differential Geometry

1.1.
1.2.
1.3.
1.4.
1.5.

Introduction

Manifolds

Vector Bundles

Metrics, Connections, Curvature

Differential Forms

Chapter 2. Algebraic Geometry

2.1.
2.2.
2.3.
24.

Introduction
Projective Spaces
Sheaves

Divisors and Line Bundles

Chapter 3. Differential and Algebraic Topology

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Introduction

Cohomology Theories

Poincaré Duality and Intersections
Morse Theory

Characteristic Classes

Some Practice Calculations

Chapter 4. Equivariant Cohomology and Fixed-Point Theorems

4.1.

A Brief Discussion of Fixed-Point Formulas

v

x1

xiii
XV

xvii

T W W

11
18

25
25
25
32
38

41
41
41
42
43
45
53

o7
o7



vi

4.2.

4.3.
4.4.

CONTENTS

Classifying Spaces, Group Cohomology, and
Equivariant Cohomology

The Atiyah—Bott Localization Formula

Main Example

Chapter 5. Complex and Kéhler Geometry

o.1.
5.2.
5.3.
5.4.

Introduction

Complex Structure

Kéahler Metrics

The Calabi—Yau Condition

Chapter 6. Calabi—Yau Manifolds and Their Moduli

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Introduction

Deformations of Complex Structure

Calabi—Yau Moduli Space

A Note on Rings and Frobenius Manifolds

Main Example: Mirror Symmetry for the Quintic

Singularities

Chapter 7. Toric Geometry for String Theory

7.1
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

Introduction

Fans

GLSM

Intersection Numbers and Charges
Orbifolds

Blow-Up

Morphisms

Geometric Engineering

Polytopes

7.10.  Mirror Symmetry

Part 2.

Physics Preliminaries

Chapter 8. What Is a QFT?

8.1.
8.2.
8.3.
8.4.

Choice of a Manifold M
Choice of Objects on M and the Action S

Operator Formalism and Manifolds with Boundaries

Importance of Dimensionality

58
62
64

67
67
67
71
74

77
7
79
82
87
88
95

101
101
102
111
114
121
123
126
130
132
137

143

145
145
146
146
147



CONTENTS

Chapter 9. QFT ind=0

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.

Multivariable Case

Fermions and Supersymmetry

Localization and Supersymmetry
Deformation Invariance

Explicit Evaluation of the Partition Function

Zero-Dimensional Landau—Ginzburg Theory

Chapter 10. QFT in Dimension 1: Quantum Mechanics

10.1.
10.2.
10.3.
10.4.
10.5.

Quantum Mechanics

The Structure of Supersymmetric Quantum Mechanics
Perturbative Analysis: First Approach

Sigma Models

Instantons

Chapter 11. Free Quantum Field Theories in 1 + 1 Dimensions

11.1.
11.2.
11.3.
11.4.

Free Bosonic Scalar Field Theory
Sigma Model on Torus and T-duality
Free Dirac Fermion

Appendix

Chapter 12. N = (2,2) Supersymmetry

12.1.
12.2.
12.3.
12.4.
12.5.

Chapter 13. Non-linear Sigma Models and Landau—Ginzburg Models

13.1.
13.2.
13.3.
13.4.

Superfield Formalism

Basic Examples

N = (2,2) Supersymmetric Quantum Field Theories
The Statement of Mirror Symmetry

Appendix

The Models
R-Symmetries

Supersymmetric Ground States

Supersymmetric Sigma Model on 72 and Mirror Symmetry

Chapter 14. Renormalization Group Flow

14.1.
14.2.

Scales

Renormalization of the Kahler Metric

vii

151
154
155
157
160
162
162

169
169
182
197
206
220

237
237
246
254
268

271
271
276
282
284
285

291
291
294
299
307

313
313
315



viii

14.3.

14.4.

CONTENTS

Superspace Decouplings and Non-Renormalization of
Superpotential

Infrared Fixed Points and Conformal Field Theories

Chapter 15. Linear Sigma Models

15.1.
15.2.
15.3.
15.4.
15.5.

The Basic Idea

Supersymmetric Gauge Theories
Renormalization and Axial Anomaly
Non-Linear Sigma Models from Gauge Theories

Low Energy Dynamics

Chapter 16. Chiral Rings and Topological Field Theory

16.1.
16.2.
16.3.
16.4.

Chiral Rings
Twisting
Topological Correlation Functions and Chiral Rings

Examples

Chapter 17. Chiral Rings and the Geometry of the Vacuum Bundle

17.1.

tt* Equations

Chapter 18. BPS Solitons in N'=2 Landau—Ginzburg Theories

18.1.
18.2.
18.3.
18.4.
18.5.

Vanishing Cycles

Picard—Lefschetz Monodromy

Non-compact n-Cycles

Examples

Relation Between tt* Geometry and BPS Solitons

Chapter 19. D-branes

19.1.
19.2.
19.3.

Part 3.

What are D-branes?
Connections Supported on D-branes

D-branes, States and Periods

Mirror Symmetry: Physics Proof

Chapter 20. Proof of Mirror Symmetry

20.1.
20.2.
20.3.
20.4.

What is Meant by the Proof of Mirror Symmetry
Outline of the Proof

Step 1: T-Duality on a Charged Field

Step 2: The Mirror for Toric Varieties

331
335

339
339
348
353
356
378

397
397
399
404
408

423
423

435
437
439
441
443
447

449
449
452
454

461

463
463
464
465
472



CONTENTS

20.5. Step 3: The Hypersurface Case

Part 4. Mirror Symmetry: Mathematics Proof

Chapter 21. Introduction and Overview

21.1. Notation and Conventions

Chapter 22. Complex Curves (Non-singular and Nodal)
22.1.  From Topological Surfaces to Riemann Surfaces
22.2. Nodal Curves
22.3. Differentials on Nodal Curves

Chapter 23. Moduli Spaces of Curves
23.1. Motivation: Projective Space as a Moduli Space
23.2.  The Moduli Space M, of Non-singular Riemann Surfaces
23.3. The Deligne-Mumford Compactification M, of M,
23.4. The Moduli Spaces ﬂg,n of Stable Pointed Curves

Chapter 24. Moduli Spaces ﬂg,n(X, () of Stable Maps
24.1. Example: The Grassmannian
24.2. Example: The Complete (plane) Conics
24.3. Seven Properties of Mg, (X, 3)

24.4.  Automorphisms, Deformations, Obstructions

Chapter 25. Cohomology Classes on My, and M, (X, 3)
25.1. Classes Pulled Back from X
25.2. The Tautological Line Bundles L;, and the Classes v;
25.3. The Hodge Bundle E, and the Classes Ay
25.4. Other Classes Pulled Back from Mg,n

Chapter 26. The Virtual Fundamental Class, Gromov—Witten
Invariants, and Descendant Invariants
26.1. The Virtual Fundamental Class
26.2. Gromov—Witten Invariants and Descendant Invariants
26.3. String, Dilaton, and Divisor Equations for Mg, (X, 3)
26.4. Descendant Invariants from Gromov—Witten Invariants in
Genus 0
26.5. The Quantum Cohomology Ring

Chapter 27. Localization on the Moduli Space of Maps

ix

474

481

483
483

487
487
489
491

493
493
494
495
497

501
502
502
503
504

509
509
512
516
517

519
519
526
927

528
530

535



27.1.
27.2.
27.3.
27.4.
27.5.
27.6.
27.7.

Chapter 28. The Fundamental Solution of the Quantum Differential

28.1.
28.2.

CONTENTS

The Equivariant Cohomology of Projective Space
Example: Branched Covers of P

Determination of Fixed Loci

The Normal Bundle to a Fixed Locus

The Aspinwall-Morrison Formula

Virtual Localization

The Full Multiple Cover Formula for P

Equation
The “Small” Quantum Differential Equation

Example: Projective Space Revisited

Chapter 29. The Mirror Conjecture for Hypersurfaces I: The Fano

29.1.
29.2.
29.3.
29.4.

Case
Overview of the Conjecture
The Correlators S(t,h) and Sx(t,h)
The Torus Action

Localization

Chapter 30. The Mirror Conjecture for Hypersurfaces II: The

30.1.
30.2.
30.3.
30.4.

Part 5.

Calabi—Yau Case
Correlator Recursions
Polynomiality
Correlators of Class P

Transformations

Advanced Topics

Chapter 31. Topological Strings

31.1.
31.2.

Quantum Field Theory of Topological Strings

Holomorphic Anomaly

Chapter 32. Topological Strings and Target Space Physics

32.1.
32.2.
32.3.
32.4.

Aspects of Target Space Physics

535
538
540
542
546
548
551

553
555
556

559
559
562
565
565

571
071
973
o577
580

583

585
585
993

599
599

Target Space Interpretation of Topological String Amplitudes 601

Counting of D-branes and Topological String Amplitudes
Black Hole Interpretation

606
612



Chapter 33.

CONTENTS

Chapter 34. Multiple Covers, Integrality, and Gopakumar—Vafa

34.1.
34.2.
34.3.
34.4.
34.5.

Invariants
The Gromov—Witten Theory of Threefolds
Proposal
Consequences for Algebraic Surfaces
Elliptic Rational Surfaces
Outlook

Chapter 35. Mirror Symmetry at Higher Genus

35.1.
35.2.
35.3.
35.4.
35.5.
35.6.

35.7.

General Properties of the Genus 1 Topological Amplitude
The Topological Amplitude £} on the Torus
The Ray-Singer Torsion and the Holomorphic Anomaly

xi

Mathematical Formulation of Gopakumar—Vafa Invariants615

635
637
639
641
643
644

645
645
647
654

The Annulus Amplitude Fyy, of the Open Topological String 657

F1 on Calabi—Yau in Three Complex Dimensions
Integration of the Higher Genus Holomorphic Anomaly
Equations

Appendix A: Poisson Resummation

Chapter 36. Some Applications of Mirror Symmetry

36.1.
36.2.

Geometric Engineering of Gauge Theories

Topological Strings And Large N Chern—Simons Theory

Chapter 37. Aspects of Mirror Symmetry and D-branes

37.1.
37.2.
37.3.
37.4.
37.5.
37.6.
37.7.
37.8.
37.9.
37.10.

Chapter 38. More on the Mathematics of D-branes: Bundles, Derived

Introduction

D-branes and Mirror Symmetry

D-branes in ITA and IIB String Theory
Mirror Symmetry as Generalized T-Duality
Mirror Symmetry with Bundles
Mathematical Characterization of D-branes
Kontsevich’s Conjecture

The Elliptic Curve

A Geometric Functor

The Correspondence Principle

Categories, and Lagrangians

662

668
675

677
677
680

691
691
692
695
698
704
707
709
714
720
724

729



xii

38.1.
38.2.
38.3.
38.4.

CONTENTS

Introduction
Holomorphic Bundles and Gauge Theory
Derived categories

Lagrangians

Chapter 39. Boundary N = 2 Theories

39.1.
39.2.
39.3.
39.4.
39.5.
39.6.
39.7.
39.8.

Open Strings — Free Theories

Supersymmetric Boundary Conditions in N' = 2 Theories
R-Anomaly

Supersymmetric Ground States

Boundary States and Overlap with RR Ground States
D-Brane Charge and Monodromy

D-Branes in N' = 2 Minimal Models

Mirror Symmetry

Chapter 40. References

Bibliography

Index

729
731
738
744

765
766
793
809
819
847
859
870
884

889

905

921



Preface

In the spring of 2000, the Clay Mathematics Institute (CMI) organized
a school on Mirror Symmetry, held at Pine Manor College, Brookline, Mas-
sachusetts. The school was intensive, running for four weeks and including
about 60 graduate students, selected from nominations by their advisors,
and roughly equally divided between physics and mathematics. The lec-
turers were chosen based on their expertise in the subject as well as their
ability to communicate with students. There were usually three lectures ev-
ery weekday, with weekends reserved for excursions and relaxation, as well as
time to catch up with a rapidly developing curriculum. The first two weeks
of the school covered preliminary physics and mathematics. The third week
was devoted to the proof of mirror symmetry. The last week introduced
more advanced topics.

This book is a product of that month-long school. Notes were taken
for some of the lectures by Amer Igbal, Amalavoyal Chari and Chiu-Chu
Melissa Liu and put into a rough draft. Other parts were added by the
lecturers themselves. Part 1 of the book is the work of Eric Zaslow (with
the contribution of Ch. 7 by Sheldon Katz). Part 2 was based on the
lectures of Kentaro Hori and myself (most of it is Hori’s). Part 3 was based
on my own lectures. Part 4 is the work of Rahul Pandharipande and Ravi
Vakil, based on lectures by Rahul Pandharipande. Part 5 involves various
contributions by different authors. Chs. 31, 32 and 36 were based on my
lectures. Ch. 33 was written by Sheldon Katz. Ch. 34 was written by Rahul
Pandharipande and Ravi Vakil, based on lectures by Rahul Pandharipande.
Ch. 35 was written by Albrecht Klemm. Ch. 37 was written by Eric Zaslow.
Ch. 38 is based on the lectures by Richard Thomas. Finally Ch. 39 was
written by Kentaro Hori.

Given that the authors were writing in different locations, and in the
interest of a more convenient mechanism of communication among various

authors, CMI set up an internet-accessible system where various authors

xiii



xiv PREFACE

could see what each one was writing and mutually correlate their contribu-
tions. The set-up was developed by Gordon Ritter and prove to be crucial
for the completion of the book. Vida Salahi was the manager of the cor-
responding site and set the relevant deadlines for completion and delivery.
She continued to provide tremendous assistance with manuscript prepara-
tion during the months following the school.

We have also had a gratifying abundance of secretarial assistance. In
particular, Dayle Maynard and John Barrett ran the daily activities of the
school, registering the incoming students, producing copies of lectures for the
students, taking care of financial aspects of the school, arranging excursions,
etc. They were greatly assisted by Barbara Drauschke at CMI.

We are especially grateful to Arthur Greenspoon and Edwin Beschler
for their expert editing of the manuscript. They read the final draft care-
fully and made many constructive comments and suggestions. However, the
authors would be responsible for any remaining errors. We solicit help in
correcting possible mistakes we have made.

Alexander Retakh did the typesetting and Arthur Greenspoon made
the index for the book. Their contribution was essential to producing this
volume and is greatly appreciated.

We also wish to thank Sergei Gelfand of the AMS for his editorial guid-
ance and David Ellwood for his supervision of the editorial process through
all stages of the production of this volume.

It is my pleasure to say that this book is the outcome of the CMI’s
generous support of all aspects of this school. I sincerely thank CMI for
this contribution to science and, in particular, Arthur Jaffe for his untiring

efforts in enabling this school to take place.

Cumrun Vafa

Harvard University



Introduction

Since the 1980s, there has been an extremely rich interaction between
mathematics and physics. Viewed against the backdrop of relations between
these two fields throughout the history of science, that may not appear to
be so surprising. For example, throughout most of their history the two
subjects were not clearly distinguished. For much of the 1900s, however,
physics and mathematics developed to a great extent independently and,
except for relatively rare and not-so-deep interconnections, the two fields
went their separate ways.

With the appreciation of the importance of Yang-Mills gauge theories
in describing the physics of particle interactions, and with the appreciation
of its importance in the mathematics of vector bundles, renewed interaction
between the two fields began to take place. For example, the importance of
instantons and monopoles came to be appreciated from both the physical
and mathematical points of view. With the discovery of supersymmetry
and its logical completion to superstring theory, a vast arena of interaction
opened up between physics and mathematics and continues today at a very
deep level for both fields.

Fundamental questions in one field often turn out to be fundamental
questions in the other field as well. But even today mathematicians and
physicists often find it difficult to discuss their work and interact with each
other. The reason for this appears to be twofold. First, the languages used
in the two fields are rather different. This problem is gradually being re-
solved as we recognize the need to become “bilingual.” The second and
more serious problem is that the established scientific methods in the two
fields do not converge. Whereas mathematics places emphasis on rigorous
foundations and the interplay of various structures, to a physicist the rele-
vant aspects are physical clarity and physical interconnection of ideas, even
if they come at the cost of some mathematical rigor. This can lead to fric-

tion between mathematicians and physicists. While mathematicians respect
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xvi INTRODUCTION

physicists for their intuition, they sometimes do not fully trust how those
results were obtained and so they erect their own rigorous foundations as a
substitute for the physical reasoning leading to those results. At the same
time, physicists, who now appreciate the importance of modern mathemat-
ics as a powerful tool for theoretical physics, feel that attempts to build on
a more rigorous foundation, while noble, will distract them from their real
goal of understanding nature. Thus we are at a delicate point in the history
of the interaction of these two fields: While both fields desperately need each
other, the relationship seems at times to be a dysfunctional codependence
rather than a happy marriage!

The aim of this book is to develop an aspect of this interplay known as
“mirror symmetry” from both physical and mathematical perspectives, in
order to further interaction between the two fields. With this goal in mind,
almost half of the book includes introductory mathematics and physics ma-
terial, while we try to emphasize the interconnection between the two areas.
Unfortunately, however, the book also reflects the present status, namely,
we find two distinct approaches to understanding mirror symmetry, without
a clear connection between physical and mathematical methods of proof.
Even the notion of what one means by “proof” of mirror symmetry differs
between the two fields.

Mirror symmetry is an example of a general phenomenon known as dual-
ity, which occurs when two seemingly different physical systems are isomor-
phic in a non-trivial way. The non-triviality of this isomorphism involves
the fact that quantum corrections must be taken into account. Mathemati-
cally, a good analogy is the Fourier transform, where local concepts such as
products are equivalent to convolution products, requiring integration over
the whole space. Thus it is difficult to understand such isomorphisms in the
classical context. In particular, under such an isomorphism, certain compli-
cated quantities involving quantum corrections in one system get mapped to
simple classical questions in the other. Thus, finding such dualities leads to
solving complicated physical questions in terms of simple ones in the dual
theory. Precisely for this reason the discovery of duality symmetries has
revolutionized our understanding of quantum theories and string theory.

It is fair to say that we do not have a deep understanding of the reason
for the prevalence of duality symmetries in physics. Nor do we have a proof

of why a duality should exist in any given case. Most of the arguments in
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favor of duality symmetries involve checking consequences and seeing that
they are indeed satisfied in a non-trivial way. Because there have been so
many non-trivial checks, we have no doubts about their validity, but that
does not mean we have a deep understanding of the inner workings of duality
symmetries. The only heuristic explanation of dualities we know of is the
“scarcity of rich structures,” and consistent quantum theories are indeed
rather rich. So different ways of coming up with similar quantum systems
end up being equivalent!

There is, however, one exception to this rule, mirror symmetry; for we
have a reasonably clear picture of how it works. Moreover, a mathematical
framework to rigorize many of the statements arising from the physics pic-
ture has also been constructed, and the subject is in a rather mature state
of development. It is our hope that by elaborating aspects of this beauti-
ful duality to both physicists and mathematicians, we can inspire further
clarifications of this duality, which may also serve as a model for a deeper
understanding of other dualities and interconnections between physics and

mathematics.

A History of Mirror Symmetry

The history of the development of mirror symmetry is a very complicated
one. Here we give a brief account of it, without any claim to completeness.
The origin of the idea can be traced back to a simple observation of [154],
[223] that string theory propagation on a target space that is a circle of
radius R is equivalent to string propagation on a circle of radius 1/R (in some
natural units). This has become known as T-duality. Upon the emergence of
Calabi—Yau manifolds as interesting geometries for string propagation [41],
a more intensive study of the corresponding string theories was initiated. It
was soon appreciated that N' = 2 supersymmetry on the worldsheet is a key
organizing principle for the study of the corresponding string theories. It
was noticed by [71] and [173] that given an A" = 2 worldsheet theory, it is
not possible to uniquely reconstruct a corresponding Calabi—Yau manifold.
Instead there was a twofold ambiguity. In other words, it was seen that there
could be pairs of Calabi—Yau manifolds that lead to the same underlying
worldsheet theory, and it was conjectured that perhaps this was a general
feature of all Calabi—Yau manifolds. Such pairs did not even have to have

the same cohomology dimensions. In fact, the Hodge numbers h?>¢ for one of
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them was mapped to h% P for the mirror, where d is the complex dimension
of the Calabi—Yau manifold. Moreover, it was seen that the instanton-
corrected cohomology ring (i.e., quantum cohomology ring) for one is related
to a classical computation for the mirror. Phenomenological evidence for
this conjecture was found in [42], where a search through a large class of
Calabi—Yau threefolds showed a high degree of symmetry for the number of
Calabi—Yaus with Euler numbers that differ by sign, as is predicted by the
mirror conjecture. Non-trivial examples of mirror pairs were constructed
in [123], using the relation between Calabi-Yau manifolds and Landau—
Ginzburg models [107], [189], [124]. It was shown in [45] that one could
use these mirror pairs to compute the instanton corrections for one Calabi—
Yau manifold in terms of the variations of Hodge structure for the mirror.
The instanton corrections involve certain questions of enumerative geometry;
roughly speaking, one needs to know how many holomorphic maps exist from
the two-sphere to the Calabi—Yau for any fixed choice of homology class for
the two-cycle image.

The notion of topological strings was introduced in [262] where it ab-
stracted from the full worldsheet theory only the holomorphic maps to the
target. It was noted in [245] and [264] that mirror symmetry descends to
a statement of the equivalence of two topological theories. It is this latter
statement that is often taken to be the definition of the mirror conjecture in
the mathematics literature. In [16] and [17] it was suggested that one could
use toric geometry to propose a large class of mirror pairs. In [265] linear
sigma models were introduced, which gave a simple description of a string
propagating on a Calabi—Yau, for which toric geometry was rather natural.
In [267] it was shown how to define topological strings on Riemann surfaces
with boundaries and what data is needed to determine the boundary condi-
tion (the choice of the boundary condition is what we now call the choice of
a D-brane and was first introduced in [67]). In [24] and [25], it was shown
how one can use mirror symmetry to count holomorphic maps from higher
genus curves to Calabi-Yau threefolds. In [164] a conjecture was made
about mirror symmetry as a statement about the equivalence of the derived
category and the Fukaya category. In [163] it was shown how one can use
localization ideas to compute the “number” of rational curves directly. It
was shown in [108, 109] and [180, 181, 182, 183] how one may refine this

program to find a more effective method for computation of the number of
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rational curves. Moreover, it was shown that this agrees with the predictions
of the number of rational curves based on mirror symmetry (this is what
is now understood to be the “mathematical proof of mirror symmetry”).
In [234] it was shown, based on how mirror symmetry acts on DO-branes,
that Calabi—Yau mirror pairs are geometrically related: One is the moduli
of some special Lagrangian submanifold (equipped with a flat bundle) of the
other. In [246] the implications of mirror symmetry for topological strings
in the context of branes was sketched. In [114] the integrality property of
topological string amplitudes was discovered and connected to the physical
question of counting of certain solitons. In [135] a proof of mirror symmetry
was presented based on T-duality applied to the linear sigma model. Work
on mirror symmetry continues with major developments in the context of
topological strings on Riemann surfaces with boundaries, which is beyond

the scope of the present book.

The Organization of this Book

This book is divided into five parts. Part 1 deals with mathematical
preliminaries, including, in particular, a brief introduction to differential
and algebraic geometry and topology, a review of Kéahler and Calabi—Yau
geometry, toric geometry and some fixed point theorems. Part 2 deals with
physics preliminaries, including a brief definition of what a quantum field
theory is, with emphasis on dimensions 0, 1, and 2 and the introduction of
supersymmetry and localization and deformation invariance arguments for
such systems. In addition, Part 2 deals with defining linear and non-linear
sigma models and Landau—Ginzburg theories, renormalization group flows,
topological field theories, D-branes and BPS solitons. Part 3 deals with a
physics proof of mirror symmetry based on T-duality of linear sigma models.
Part 4 deals with a mathematics proof of the mirror symmetry statement
about the quantum cohomology ring. This part includes discussions of mod-
uli spaces of curves and moduli spaces of stable maps to target spaces, their
cohomology and the use of localization arguments for computation of the
quantum cohomology rings. Even though the basic methods introduced in
Parts 3 and 4 to prove mirror symmetry are rather different, they share
the common feature of using circle actions. In Part 3, the circle action is
dualized, whereas in Part 4 the same circle actions are used to localize the

cohomology computations. Part 5 deals with advanced topics. In particular,
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topological strings at higher genera and the notion of holomorphic anomaly
are discussed, as well as how one can carry out explicit computations at
higher genera. In addition, integral invariants are formulated in the context
of topological strings. Applications of mirror symmetry to questions involv-
ing QFTs that are geometrically engineered, as well as black hole physics,
are discussed. Also discussed is a large N conjecture relating closed and
open topological string amplitudes. Aspects of D-branes and their role in a
deeper understanding of mirror symmetry are discussed, including the rele-
vant categories in the mathematical setup as well as the relevance of special
Lagrangian fibrations to a geometric understanding of mirror symmetry.

Throughout the book we have tried to present exercises that are useful
in gaining a better understanding of the subject material, and we strongly
encourage the reader to carry them out. Whenever feasible, we have tried
to connect the various topics to each other, although it is clear that more
work remains to be done to develop deeper connections among the various
topics discussed — whose further development is, after all, one of the goals
of this book.

There are a number of textbooks that nicely complement the topics cov-
ered here. In particular, quantum field theories are presented for a math-
ematical audience in [68]. An expository book on mirror symmetry, with

emphasis on the mathematical side, is [63].
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CHAPTER 1

Differential Geometry

In this chapter we review the basics of differential geometry: manifolds,
vector bundles, differential forms and integration, and submanifolds. Our
goal is a quick understanding of the tools needed to formulate quantum field
theories and sigma models on curved spaces. This material will be used
throughout the book and is essential to constructing actions for quantum
field theory in Part 2.

1.1. Introduction

Atlases of the Earth give coordinate charts for neighborhoods homeo-
morphic (even diffeomorphic) to open subsets of R?. One then glues the
maps together to get a description of the whole manifold. This is done
with “transition functions” (as in “see map on page 36”). Vector bundles
are constructed similarly, except that at every point lives a vector space of
fixed rank, so one needs not only glue the points together, but also their
associated vector spaces. The transition functions, then, have values in iso-
morphisms of fixed-rank vector spaces. Differentiating a vector field, then,
is a chart-dependent operation. In order to compare the vector space over
one point to a neighboring point (to take a derivative), one must therefore
have a way of connecting nearby vector spaces. Assigning to each direction
an endomorphism representing the difference (from the identity) between
“neighboring” vector spaces is the notion of a connection.

The notions of lengths and relative angles of vectors are provided by a

7

position-dependent inner product, or “metric.” This allows us to compute
the sizes of vector fields and create actions.

Other notions involving vector spaces in linear algebra and high school
vector calculus can be adapted to curved manifolds. While we will use
coordinates to describe objects of interest, meaningful quantities will be

independent of our choice of description.

3
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1.2. Manifolds

As stated above, we describe a manifold by coordinate charts. Let {U,}
be an open covering of the topological space M. We endow M with the
structure of an n-dimensional manifold with the following information. Let
¢va : Uy — R™ be a coordinate chart (one may think of coordinates x, =
(14)%, i = 1,...,n as representing the points themselves, i.e., their pre-images
under ¢,). On U, NUg, we can relate coordinates (z,) to coordinates (z3)

by Ta = a0 @5 (25).

P
n
R U -
o R
Us
FIGURE 1. Two open sets U, and Ug, with coordinate charts
Yo and @g

The map gog = @a © gogl is a transition function. Note that g,g = 95; and
9a898+v9va = 1. As an alternative to this structure, we could form a manifold
based solely on the data of patches and transition functions satisfying the
above relations. A manifold is called “differentiable” if its transition func-
tions are differentiable, and “smooth” if the transition functions are smooth
(C>). If n = 2k and one can (and does) choose ¢, : U, — CF with holo-
morphic transition functions, the manifold is called “complex.” Note that
this extra structure is restrictive. Two complex manifolds may be diffeo-
morphic as real manifolds (meaning there are invertible, onto, differentiable
maps between the two), but there may be no complex analytic mapping be-
tween them (we then say they have different complex structures). Likewise,
two homeomorphic manifolds may have different structures as differentiable

manifolds. Differentiablility depends on the coordinate chart maps ,.

EXAMPLE 1.2.1 (52%). On the two-sphere we can choose coordinates (6, ¢),

but these are “singular” at the poles (the azimuthal angle ¢ is not well de-

fined).
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Instead we consider two patches. Let Us be S?\ {n} and U,, be S?\ {s},

where n and s are the north and south poles.

I
1

FI1GURE 2. The stereographic projection of the sphere. Note
that projecting from the south pole can be effected by sending

00— m—90.

Projecting as shown in the figure gives a map from U, to R%. In terms of 0

and ¢ (which we keep here only for convenience),
x = cot(0/2) cos ¢, y = cot(0/2) sin ¢.

We can also define a complex coordinate z = cot(0/2)e™.

On U, we can project onto R? from the bottom. In order to preserve the
“handedness” of the coordinates, it is convenient to view R? “from below.”
The maps may be easily obtained by replacing 8 ~ w — 0 and ¢ ~ —¢, so
that in this patch the coordinates are

€T
22 + 2

-y

Z = tan(6/2) cosp = = a2
€ )

y = tan(0/2) sin(—¢)

Note that Z = tan(6/2)e™ = 1/z.
On Us NU,, C Us, coordinatized by {(z,y) # (0,0)}, we have

9ns * (ﬂf,y) = (33/(1;2 + y2)7 _y/($2 + y2))

In complex coordinates, gns : z — 1/z, and we see that the two-sphere can be
given the structure of a one-dimensional complex manifold (Riemann sur-
face). Note that the dimension as a complex manifold is half the dimension

as a real manifold.

1.3. Vector Bundles

As mentioned in the introduction, vector bundles are constructed simi-

larly, only now every point carries an additional structure of a vector space
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(“fiber”) over it. Clearly, by retaining the information of the point but for-
getting the information of the vector space, we get a map to the underlying
manifold. In this section, we will focus on smooth vector bundles.!

From the description above, it is clear that the simplest vector bundle,
FE, will be a product space E = M x V, where M is a manifold and V is
an r-dimensional vector space. F is said to be a rank r vector bundle. F is
equipped with the map 7 : E — M, namely 7((m,v)) = m. Such a vector
bundle is called “trivial.”

Locally, all vector bundles are trivial and look like products. So a rank
r vector bundle F is a smooth manifold with a map n : E — M to a base
manifold, M, such that every point x € M has a neighborhood U, > x with
7Y U,) 2 U, xR,

E,

E
/_\\\ _
T
X
M

FiGURE 3. A vector bundle, F, with its map 7 to a base
manifold, M. E, = m!(x) is the fiber over z € M. The
shaded region represents 7~ (U,), where U, 3 z. The curvy

line represents a section of F

From now on we assume we have a cover {U,} of M along each chart of
which E is locally trivial. The choice of isomorphism p, : 7~ 1(U,)=U, x R”
is analogous to a choice of coordinates, so geometric structures will undergo
transformations when different “local trivializations” are chosen. Writing
pa = (T,%4), we have ¥, : 71 (U,) — R".

By analogy with manifolds, we glue together vectors using sg, = g o
Yoty so that (m,v,) € Uy x R™ will be identified with (m, 0151 (va)). Of

More generally, fiber bundles have fibers a fixed topological space, and principal

bundles have Lie group-valued fiber spaces. We focus on vector bundles here.
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course, we insist that ¢g o1y ! be a linear map on the R” fibers, and
-1
Saf = Sﬁoﬂ

SaBSpySya = 1.

Conversely, these data can be used to construct the vector bundle by gluing:
E = HU"‘ X R"/ ~, (z,va) ~ (2, 508(2)(vg)).
e

A “section” v, over U, is a map v, : U, — RY, (think of a vector-valued

function (v}, v2,...,v%)). Thus there is a specific point on the fiber for each

o Voo
point on the base. Two sections v, and vg over U, and Ug make up a
section over U, U Ug if they coincide along the intersection U, N Ug, i.e.,
vg = 5ga(va). A “global section” is a map v : M — E such that mov is the
identity on M. One can check that this is equivalent to v being a section on
Uq Ua. We will denote the space of sections of E over U C M by I'(U, E).
I'(E) will denote global sections. Note that sections can be multiplied by
functions: the value of the section over a point gets multiplied by the value

of the function at that point. Put differently, I'(U, E) is a C°°(U) module.

ExamMpPLE 1.3.1. A section of a trivial bundle M x V is a V-valued
function, f: M — V.

A complex vector bundle is a locally trivial family of complex vector
spaces, and again its rank is half its rank as a real vector bundle. Such a
bundle over a complex manifold is called “holomorphic” if all the transition

functions are holomorphic.

1.3.1. The Tangent Bundle. The classic vector bundle is the tangent
bundle of a manifold. If the manifold is a surface embedded in R? this is
easy to visualize by thinking of the tangent plane at a point as its associ-
ated vector space (though intersections of different tangent planes should be
disregarded). More formally, a vector field v is a differential operator on the
space of functions via the directional derivative: v(f) = D,f (or Vf - v in
calculus notation). In coordinates x%, the obvious differential operators are
=0 and these provide a local trivialization of the tangent bundle. Namely,

ox?

in this coordinate patch, we may express any vector field (differential) as
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v =% éga 2 Clearly v(fg) = gv(f) + fv(g). Between coordinate patches 2

and z¥(x) the chain rule provides transition functions s:

) _oP o
dze  Qx® ozk’
SO .
ox
k_ -
Sa = Oza’

where we have written s : R” — R’ in matrix notation.? A global section
is a global vector field. Note that every vector bundle has the zero section
as a global section. The existence of non-vanishing sections is non-trivial,

especially if we are working in the holomorphic category.

ExaMPLE 1.3.2. We recall from Example 1.2.1 that the two-sphere can
be considered as a one-dimensional complex manifold. Let us look for global,
holomorphic vector fields. By “holomorphic” we mean a vector field v =
vz%, with v® holomorphic. It lives in the holomorphic piece of TM ® C =
Thol @ Tanti—hol, where T is generated by % and Tanti—hol by %. Moving
to the patch coordinatized by w = 1/z, we see that v = UZ%—;U = —v?/22,
and since this must be non-singular at w = 0 (i.e., z — 00), v* must be at
most quadratic in z (note then that v" is also quadratic in w). Therefore
there is a three-dimensional space of global, holomorphic vector fields on the

complex sphere: v = a + bz + cz2, with a, b, c constant complex numbers.

EXAMPLE 1.3.3. The total space of the Mébius bundle is [0,1] x R/ ~,
where (0,7) ~ (1,—r). It is a one-dimensional vector bundle (line bundle)
over the circle S*. Note that x — {x,0} is the zero section, its image iso-
morphic to S*. This bundle has no nowhere-vanishing sections — an issue

related to the non-orientability of the Mobius strip.

ExamMpLE 1.3.4. Consider a path v : R — M. Choose t a coordinate on
R. Then the vector field Oy = % trivializes the tangent bundle of R, since
every vector field has the form fO:, where f is a function. Along the image

v(R) the coordinates (locally) depend on t, so a function f along the image

2Here we sum over repeated indices, a convention we use throughout this book. Note,
however, that when an index is the label of a coordinate chart (such as «, ) then there
is no summation.

3Note that choosing active or passive representation of the linear transformation s
will affect the indices. We often denote vectors by their components, for example. In any

case, consistency is key.
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can be thought of as the function foy : R — R. In particular, fl—]; makes sense.
Therefore we can push the vector 0, forward with vy to create the vector field
V<0, a vector on the image defined by v.0(f) = %. In coordinates y* on
M, the map v looks like t — x®(t), and the chain rule gives
ox® 0
V4O = 9t oz
The vector .0y is often written .

The example above can be generalized. Instead of a path, we can have
any map ¢ : N — M of N to M. Locally, the map can be written as y®(z¥),
where y® and z* are coordinates on M and N, respectively. This allows us
to define the push-forward

0 oy* 0
W*W = Wa—ya

Note that, in general, one cannot pull vectors back.

1.3.2. The Cotangent Bundle. Every bundle F has a dual E* whose
vector space fibers are the dual vector spaces to the fibers of F, so if E, =
7~ 1(x), then E¥ = Hom(E,, R) = linear maps from E to R is a vector space
of the same dimension.

Dual to the tangent bundle T'M is the “cotangent bundle” T* M, and it,
too, has a natural trivialization in a coordinate patch. One defines the basis

dz® to be dual to the basis =25, so that the natural pairing is

ozt
a 8 a 8 a

Here we have sloppily, though conventionally, used the same symbol (, ) for

the natural pairing as for the inner product. An arbitary cotangent vector
(also called a “one-form”) 6 can be written in this basis as 6 = 0,dz®.

Now the transition functions for the tangent bundle determine those

of the cotangent bundle, both a consequence of the chain rule. If in a

new coordinate basis we rewrite 2% as 2& 9. — gk 0

da dx® HF a pzk

(da?, (rga) = 6%, and rewrite dz® = Abd2!, then using (d2', 8%k> = oy, we

must have A%s¥6';, = 6°,. From this we see A = (s7)~!, which is of course

in the relation

how the elements of the dual space should transform.
Note that we could have used an arbitrary position-dependent set of basis
vectors to trivialize the tangent and cotangent bundles, but the coordinate

vectors are particularly natural.
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Tangents push forward, and cotangents pull back. Soif ¢ : M — N, dy*
is a local basis, and 6 = 6,dy"* is a cotangent section of T*N, we define the
pull-back ¢*8 to be a cotangent section of T*M. We define a covector by
its action on a vector, v, so define (p*0,v) = (0, p,v). Let us set v = 8%& S0

(p*0,v) equals the component (¢*0),. Now the push-forward equation gives

8yk
xa

(¢*0)a = 0.

1.3.3. More Bundles. In the last section, we used dual vector spaces
to construct a new bundle, and its transition functions followed naturally
from the original ones through linear algebra. Similarly, we get a whole host
of bundles using duals and tensor products. For example, starting with E
we can form the vector bundle £ @ E, whose fiber at x is E, © E,. If 5,3 is
the transition function for E, then s,3 @ s,g is the transition function for
EQFE.

Given two vector bundles E and F' over M, we can define E & F,
Hom(E, F), E*, E® F, etc.* Note that E ® E decomposes as (E @, E) ®
(E ®q F), where s and a indicate symmetric and anti-symmetric combina-
tions. Recall that if V is a vector space, then A2V or VAV or V@, V
is formed by the quotient V ® V/I where I is the subspace generated by
v; ® vj + v; ® v;. The equivalence class [v; ® vj] is usually written v; A vj,
and equals —v; A v;, as can easily be checked. Thus we write £ ®, E as
A%E. APE can be defined similarly. If E and F are two bundles over M,
then a map f: F — F is a bundle map if it is a map of the total spaces of
the bundles, linear on the fibers, and commutes with projections. In such a
case we can define the bundle Ker(f) C E and Coker(f) = F/Im(f) whose
fibers have the natural linear algebra interpretation.

The bundles APT™* M are particularly important and can be thought of as
totally anti-symmetric p-multi-linear maps (p-tensors) on tangent vectors.

n
If dim M = n, APT*M is a rank bundle of anti-symmetric p-tensors, or
p

“p-forms.” The sections of APT*M are often written as QP(M). Note that
A%V = R for any vector space V, so Q°(M) are sections of the trivial line

bundle, i.e., functions.

4To form the transition functions for Hom(FE, F), simply use the relation for finite-
dimensional vector spaces Hom(A, B) = A* ® B.
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EXAMPLE 1.3.5. From any function f we can form the one-form differ-

ential, df = (%; dx®, which one checks is independent of coordinates. More
invariantly, the value of df on a vector v = v%9, is (df,v) = v*0,f = D, f,

the directional derivative. So the directional derivative provides a map
d: Q% — QY

where we have suppressed the M. It appears that sections of the bundles can

be related in a natural way. We will return to this idea later in this chapter.

A “metric” (more in the next section) is a position-dependent inner
product on tangent vectors. That is, it is a symmetric, bilinear map from
pairs of vector fields to functions. From the discussion before the example,
we learn that g is a global section of T* M ®,T* M. Therefore it makes sense
to express ¢ in a coordinate patch as g = g,dz® ® d:rb; SO gqp 1S symmetric
under a < b.

A “principal bundle” is entirely analogous to a vector bundle, where in-
stead of “vector space” we have “Lie group,” and transition functions are
now translations in the group. Given a representation of a group, we can
glue together locally trivial pieces of a vector bundle via the representa-
tion of the transition functions and create the “vector bundle associated to
the representation.” This is important in gauge theories. However, since
particles are associated to vector bundles defined by representations as just
discussed, we will focus on vector bundles exclusively.

Another important way to construct bundles is via “pull-back.” If
f: M — N is a map of manifolds and F is a vector bundle over N, then
the pull-back bundle f*FE is defined by saying that the fiber at p € M is
equal to the fiber of E at f(p), that is, f*E|, = E|f(,). In terms of transition
functions, the (sg) pull back to transition functions (sy+g) = (sgo f). As a
trivial example, a vector space V can be considered to be a vector bundle
over a point *x. Any manifold induces the map f : M — x, and the pull-back
is trivial: f*V = M x V. If ' is a bundle on N and f : * — N, then
[*E = El|sy. If f: M — N is a submanifold, then f*E is the restriction
of £ to M.

1.4. Metrics, Connections, Curvature

The three subjects of this section are the main constructions in differ-

ential geometry.
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1.4.1. Metrics on Manifolds. On a vector space, an inner product
tells about the sizes of vectors and the angles between them. On a manifold,
the tangent vector spaces (fibers of the tangent bundle) can vary (think of
the different tangent planes on a sphere in three-space) — hence so does
the inner product. Such an inner product is known as a “metric,” g, and
provides the notion of measurement inherent in the word geometry. So if v
and w are two vectors at x, then g(v,w) is a real number. If v(z) and w(x)
are vector fields, then g and (v, w) are x-dependent. Of course, we require

g to be bilinear in the fibers and symmetric, so

g(v,w) = g(w,v), g()\v,w) = )\g(’U,’LU) = g(v,)\w).

In a coordinate patch x%, we can write v = v“a%a, o)
a 0 b 0 _ a, b 0 0
g(v,w)—g(v Bxa’w w)_ g<8m“’8xb)'
We define
o 0

Gab = g(%, w)a
and we see that, in a patch, g is defined by the matrix component functions
gap(z), and (v,w) = v*wge. A manifold with a positive-definite metric
(gap(x) is a positive-definite matrix for all x) is called a “Riemannian man-
ifold.”

ExampLE 1.4.1. What is the round metric on a sphere of radius r in
terms of the coordinates (0,¢)¢ Since % represents a vector in the latitu-
dinal 6 direction, some trigonometry shows that this is perpendicular to the
longitudinal ¢ direction and should be assigned a length-squared equal to 2.

Analogously, the length-squared of ¢ is r2sin® 6. So
goo =17, oo = gop =0, ggp = r’sin’ 4.

The independence of ¢ is an indication of the azimuthal symmetry of the
round metric; indeed, ¢ — ¢ + const is an “isometry.” Note that other

rotational isometries are not manifest in these coordinates.

EXERCISE 1.4.1. Using the chain rule (equivalently, transition functions)
to rewrite % and % in terms of the r'eal and imaginary parts x and y
of the complex coordinate z = cot(0/2)e'?, show that the metric takes the
form (4/(|z|* + 1)?) [dx @ dz + dy @ dy]. We can write this metric as the
symmetric part of (4/(|z|*> +1)?)dz ® dz, where dz = dx + idy, etc. We will

have more to say about the anti-symmetric part in future chapters.
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A metric is an inner product on the tangent bundle. If v%9, and w®d,
are two vectors v and w, their inner product is g(v,w) = g(v?0,, wdy) =
v“wbgab. It is convenient to define w, = wbgab, namely we “lower the index
by contracting with the metric.” Then the cotangent vector or one-form,
wedx®, has a natural pairing with v equal to the inner product of v and
w. In short, the metric provides an isomorphism between the tangent and
the cotangent bundles, exactly as an inner product defines an isomorphism
between V and V*.

The inner product of any vector space can be extended to arbitrary ten-
sor products, wedge (or anti-symmetric) products, and dual spaces. The
metric on the dual space is the inverse metric (this then respects the inner
products between two vectors and their corresponding one-forms). If § and
1 are two one-forms, their point-wise inner product is g(6adz?, ¥ypdx?) =
0a1bpg®®, where we have paired the inverse matrix to g, with g% (i.e.,
9%ger = 0%). Note 8, = (0,0,).

On arbitrary tensor products of vectors or forms of the same degree, we
obtain the inner product by using the metric to raise indices, then contract-

ing.

1.4.2. Metrics and Connections on Bundles. The notion of a met-
ric makes sense for any vector bundle. Thus, given two sections r,s of E,
we can ask for the inner product h(r, s) as a function on the base. In a local
trivialization, one specifies a “frame” of basis vectors e,, a = 1, ..., rank(F).

In terms of this basis, the metric is given by components

hab(x) = h(ea,eb).

Now let us try to differentiate vectors. Taking a hands-on approach, it
is tempting to try to define the derivative of a vector v at a point = as a
limit of
“ove+e) —v(z)”
€

However, this expression makes no sense! First of all, +¢ makes no sense on
a manifold. Instead, we shall have to specify a vector direction along which
to compare nearby values of the vector. Let us choose to look in the ith
direction, and denote the point whose ith coordinate has been advanced by
€ as x + €0;. Secondly, subtraction of vectors living in different spaces makes

no sense either. We will need a way to relate or connect the vector space at
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2 + €0; to that at x. That is, we need an i-dependent automorphism. Since
e is small, we require our automorphism to be close to the identity (in any
frame chosen to describe the vector spaces), so we write it as 1+ €A;, and it
will be invertible for A; an arbitrary endomorphism. Note the i-dependence.
Differentiation, then, requires a direction-dependent endomorphism of tan-
gent vectors — i.e., an endomorphism-valued one-form. Such a form is called
a “connection.”
Now let us try to differentiate in the i¢th direction. We want to write

(1 + eAi)(v(z + €0;)) —v(z)

€

DZ"U =

Let us write v as v*0, and expand (to linear order) the components v* of
the shifted argument by Taylor expansion. We get v*(z + €0;) = v*(z) +
€d;v®(x). Thus, keeping the ath component of the vector and writing the

endomorphism A; as a matrix,
(Di’l})a = 0;v* + (Ai)abvb.

Recapping, given a direction, D maps vectors to vectors: v — D;v. More
generally, the vector w sends v — Dyv = w'D;v = (Dv,w). In the last
expression, we have defined the vector-valued one-form Dv = (D;v)dx’.
Now we can write the shorthand formula Dv = (d + A)v, or D = d + A.

The same procedure holds mutatis mutandis for arbitrary vector bundles
(nothing special about tangent vectors). Given an End(E)-valued one-form
A (a “connection”) and a direction, we compare values of a section s at
nearby points and find the derivative. Then D = d+ A, Ds = (D;s)dz’, and
in a frame e,, D;s = [&-sa + (Ai)absb] eq = (Ds, 0;). Thus, Ds is a one-form
with values in E, or D : T'(E) — Q! ® I'(E). Note that, by our definition,
if f is a function and s a section, D(fs) = (df) ® s + f - Ds. A connection
can also be defined as any map of sections I'(E) — Q! @ I'(E) obeying this
Leibnitz rule.

A vector field /section s is called “covariantly constant” if Ds = 0, mean-
ing that its values in nearby fibers are considered the same under the auto-
morphisms defined by A.

If Dys = 0 for all tangent vectors 4 along a path <, then s is said to
be “parallel translated” along ~. Since parallel translation is an ordinary
differential equation, all vectors can be parallel translated along smooth

paths.
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The curvature measures the non-commutativity of parallel translation

along different paths, as we shall see.

1.4.3. The Levi—Civita Connection. The tangent bundle T'M of a
Riemannian manifold M has a natural connection denoted V : I'(T'M) —
Q' @T(TM), which we will define shortly. This connection can be extended
to the cotangent bundle or arbitrary tensor bundles. Given a metric, we
define the connection V with the properties that it is “torsion-free,” i.e.,
VxY — VyX = [X,Y] for all vector fields X and Y and further Vg = 0,
where ¢ is the metric considered as a section of Sym?T*M. To find this
connection, let us work in local coordinates 2 with 9; = %, 1=1,...,n,
as a basis for tangent vectors. We write V; X for (dz*, VX), the ith covec-
tor component of VX. Define I' by Vj,0; = Fkijc?k. Then the torsion-free
condition says I'*;; = T'*;;. Let us denote (X,Y) = g(X,Y).

EXERCISE 1.4.2. Start with 0;g;1 = 0;(0;, Or) =(V,0, Ok)+(0j, Vo, 0k) =
(T350m, Ok) +(0;, T ikOm) = I} Gk + 1™ ik Gjm- Now add the equation with
1 <> j and subtract the equation with i < k. Using the torsion-free condition
I‘kij = I‘kji, show that

. 1 .
Fljk = _gzm(ajgmk + akgjm - 6mgjk)'

2
Using the result from this exercise, we define V;X = (0;X i)aii +
I xk-2
]k‘ oxt "

EXERCISE 1.4.3. For practice in pulling back metrics and using the Levi—
Civita connection, it is instructive to derive the geodesic equations. Consider
a curve vy : R — M, where M is a Riemannian manifold with its Levi—Civita
connection, V. v is called a geodesic if Vi = 0. This provides a notion
of straightness. Prove that this equation, with components v (t), yields the
“geodesic equation”

vy dyt
ar M
In a flat metric with I' = 0, we recover the usual notion of straight lines.

=0.

EXERCISE 1.4.4. Consider the metric g = %(dm ® dx + dy ® dy) on
the upper half-plane y > 0. Prove that all geodesics lie on circles centered
on the x-axis (or are vertical lines). Hints: First show that only I'*,, =
'Yy, = -1, = —1/y are nonzero. Now write down the geodesic equations

explicitly and re-express all t-derivatives of the path x(t),y(t) in terms of
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Y = dy/dx and y". Show that the geodesic equation implies 3" = —[(3')? +
1]/y, which is solved by curves along (x — a)? + y? = R2.

This metric has constant scalar curvature. By excising circular geodesics
and a few identifying points, one can construct constant scalar curvature
metrics on regions in the shape of “pairs of pants.” Sewing these “pants”
together along like seams leads to the constant curvature metrics on Riemann
surfaces. It is not too hard to see that there are 6g — 6 real parameters to
choose how to do the sewing for a Riemann surface of genus g > 2. These
parameters describe the moduli space of Riemann surfaces, as we will see in
future chapters. More generally, any Riemann surface can be obtained as
the quotient of the upper half-plane by a discrete group of isometries.

One can also map this metric onto the unit disc by choosing coordinates
2= —i%=t where w = x +iy. Then g = (4/(|z|> — 1)?)dz @, dz.

w1

1.4.4. Curvature. Of course, there is a lot to say about curvature.
When the curvature is nonzero, lines are no longer “straight,” triangles no
longer have angles summing to 7, etc. We won’t have time to explore all the
different meanings of curvature: for example, in general relativity, curvature
manifests itself as “tidal” forces between freely falling massless particles. All
of these deviations from “flatness” are a consequence of the fact that on a
curved space, if you parallel translate a vector around a loop, it comes back
shifted. For example, on a sphere, try always pointing south while walking
along a path which goes from the north pole straight down to the equator,
then a quarter way around the equator, then straight back up to the north

pole (see Fig. 4). Your arm will come back rotated by /2.

FIGURE 4. Holonomy is encountered upon parallel transport

of a vector around a closed loop.
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This process can be measured infinitesimally by associating an infinitesimal
rotation (i.e., an endomorphism of the tangent space) to an infinitesimal loop
(i.e., one defined from two vectors by a parallelogram). The curvature tensor
is then an endomorphism-valued two-form,?> which gives the infinitesimal
rotation associated to any pair of directions. By the same reasoning, using
parallel translation we can define a curvature associated to any vector bundle
equipped with a connection.

Note that Vg,0y represents the infinitesimal difference between the vec-
tor field 0, and its parallel translate in the 9; direction. Therefore,6 (vajvai—
Vaivaj)ﬁk represents the difference in the closed loop formed by travel
around a small i-j parallelogram. Generalizing from 0; and J; to arbitrary
vectors, we define

R(X,)Y) =[Vx,Vy] = Vixy],
which maps I'(TM) — I'(TM). (If X and Y are coordinate vectors, then
[X,Y] = 0 and the last term can be ignored. Here the first commutator
really means the difference V xVy —Vy Vx.) This definition makes sense for
any vector bundle with connection, if we replace the Levi—Civita connection
V by the connection D = d + A. Note that we input two vectors into the
curvature and get an infinitesimal rotation out. Further, it is clearly anti-
symmetric with respect to the input vectors. Thus, the curvature is an

endomorphism-valued two-form.

EXERCISE 1.4.5. Given the above definition, compute the Riemann ten-
sor Rijkl defined by [V;, V;]0, = Rijklal. Note that the tangent space at the
identity to the space of rotations is the space of anti-symmetric matrices,
and infer from the norm-preserving property of the Levi—Civita connection
that the Riemann tensor obeys the anti-symmetry Riji = —Rijii (we had to

use the metric to identify a matriz with a bilinear form, or “lower indices”).

EXERCISE 1.4.6. For the tangent bundle, use the definition of curvature
to derive (R;;)¥; in terms of the T*;;’s.

We can use a shorthand to write R = D?, where D = d + A. Then
R =dA+ AN A. Here one must use the wedge product in conjunction with

5A two-form returns a number (or in this case endomorphism) given any pair of
vectors.
6This is hardly a derivation; we are merely trying to capture the gist of curvature in

giving its definition.
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the commutator of endomorphisms. To make sense of this formula, it may

be best to work out the previous exercise.

EXERCISE 1.4.7. On a sphere, we can write the Riemannian curvature

0 R
as R = < ® O) df N d¢. Note that an infinitesimal SO(2) matriz is an

anti-symmetric matriz, as indicated (SO(2) is a consequence of the norm-
preserving or metric condition of the Levi—Civita connection). There is one
independent component, R, the scalar curvature. Show, using any choice of
metric (e.g., the round metric), that [¢,(R/2m)d0d¢ = 2. This is called the

Euler characteristic and is our first taste of differential topology.

1.5. Differential Forms

In this section, we look at some constructions using differential forms,
the principal one being integration. In the previous exercise, we were asked
to perform an integration over several coordinates. Of course, we know
how to integrate with arbitrary coordinates, after taking Jacobians into
consideration. This can be cumbersome. The language of differential forms

makes it automatic.

1.5.1. Integration. Consider [ f(z,y)dzdy on the plane. In polar co-

ordinates, we would write the integrand as f(r, 0)rdrdf, where r is the Ja-

0. 0. :
7 — det g—f ; _ det c.osﬁ —rsin .
= 5 sinf rcosf
Note, though, that as a differential form, the two-form

(O ox oy oy
de N dy = (6 dr+80d9> (8 dr +69d0> =rdr A df.

Therefore, differential forms actually encode Jacobians as transformation

cobian

rules for changing coordinates (or patches). Here lies their beauty. If we
write 0 = f(:v y)dx A dy = Ogpdz® A dmb (take z! =z, x2 = y), so that

ea:y = f/2 then 97"9 = eab 3,« - (f/2) 6ab 8r 39 = (T’f/Q),7
and we see that the Jacobian emerges from the anti-symmetry property of

differential forms. More generally, if 6 is an n-form on an n-manifold, then

0 = fdx'A---Adz™ in local coordinates, and in a new coordinate system Z,

"Here €15 = —eg1 = 1, all others vanishing. In general € is the totally anti-symmetric

tensor in n indices, SO €1234..n = 1, €2134..n, = —1, etc.
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0 = fdet (%) dz* A---Adx", and the Jacobian is automatic. Now if instead
0 is an m-form on an n-manifold (so m < n), then we can integrate 6 over an
m-~dimensional submanifold C, since the restriction of 6 to C' makes sense.
(Technically, on C' we have the pull-back i*f of # under the inclusion map
i : C — M, but this notation is often omitted.) In short, we can integrate
n-forms over n-folds. No reference to coordinates is necessary.

An important form is the volume form associated to any metric. Note,
as above, that the top form dz!'...dz" on an n-manifold is expressed as

|det(g—;)]dy1 ...dy"™ in a new coordinate system. Noting that the metric g,
in the y coordinates obeys /det(g,) = /det(gs)|det (‘g—z) |, we see that the

expression

(1.1) dV = +/det(g)dz' ... dz"

has the same appearance in any coordinate frame, up to a sign which is

determined if we have an orientation. This is the volume form. It is natural,
too, in that det(g) is the inner product (as a 1 x 1 matrix) inherited from g
on totally anti-symmetric n-tensors. The norm, then, is given by the square
root.

The volume form allows us to compute a global inner product on vector
fields, forms, etc., defined over the whole manifold. We define (0,v¢) =
J1(0,9)dV, for any two forms 6 and v of the same degree. Note that
(1,1) > 0, with equality if and only if ¢) = 0.

EXERCISE 1.5.1. Show that the area of a sphere of radius R is 4w R>.

Use several sets of coordinates.

1.5.2. The de Rham Complex. The main tool of differential topol-
ogy is the de Rham complex. This is an elegant generalization to arbitrary
manifolds of the three-dimensional notions of divergence, gradient, curl, and
the identities curl grad = 0, div curl = 0.

We define the exterior derivative d to generalize the total differential of
a function (df) to arbitrary forms. Define

of
= Oze

where again dx® are cotangent vectors (note dz® = d(z%), when z? is consid-

dz®,

df

ered as a coordinate function, so there is no abuse of notation). Note that
d(fg) = (df)g + f(dg) by the product rule, so d is a derivation. We extend
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d to arbitrary forms by defining
d(6y A 0) = dby A Oy + (—1)1%10; A dBs,

where the forms 6; and 2 are taken to be of homogeneous degree and |6 ]
represents the degree of the form. Arbitrary forms are sums of homogeneous
forms, and d is taken to be linear. These rules uniquely specify d. For
example, if § = 0,dz® is a one-form, then

df = d(0,) A dz® — 0,d(dz?) = gea

2da® A da® + 0 = Oyeda® A da®,
i

where we define 6, = %(%Ga - a—gaﬁb) (the equality holds due to anti-
symmetry). In general, if 0 = 04, q,dz A --- A dx% is a p-form, then
df = Zk(8k9a1,_,ap)dxk A dx® A --- A dx®. Most importantly, one checks

that d2 = 0

EXERCISE 1.5.2. Prove that commutativity of partial derivatives is es-

sential.

Let QP(M) be the space of p-forms on an n-dimensional manifold M.
Then d : QP — QP! and d? = 0. We can then form the complex

0— —ot—02— ... —Q"—0,

with d providing the maps. The complex terminates because there are no
anti-symmetric (n + 1)-tensors on an n-manifold. The composition of suc-
cessive maps is zero, so we see that Imd C Kerd at any given stage. Forms
in Ker d are called “closed”; forms in Im d are called “exact.” The de Rham

cohomology is defined as closed modulo exact forms:
HP(M) = {Kerd}/{Imd}|qr.

EXAMPLE 1.5.1. Consider the torus T? = R?/Z?. H*(T?) = R, since
closed zero-forms are constant functions, and there are as many of them
as there are connected components of the manifold. The one-form dx is
well defined and closed, but is not the derivative of a function, since x is
not single-valued on the torus (e.g., x and x + 1 represent the same point).
One can show that any other closed one-forms are either exact or differ from
adz+bdy (a,b constants) by an exact form, so H'(T?) = R2. Likewise, dx A
dy generates H?. There are other representatives of H'(T?). For example,
consider 0(x)dx, where §(x) is a delta function. This is not exact, since

fj:_%% df = 0 for any function on the torus, but fj:_%% 5(z)dx = 1, just
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as fx 152 x = 1. Note that §(x)dx has the property that it is only supported
along the circle {z = 0}, likewise, for §(y)dy. Also, §(z)dx A §(y)dy is only
supported at a point, the intersection of the two circles. The relation between
wedging de Rham cohomology classes and intersecting homology cycles will

be explored in further chapters.
The “Betti number” by (M) is defined to be the dimension of H*(M).

1.5.3. The Hodge Star. The “Hodge star” operator * encodes the
inner product as a differential form. For any p-form 1), define * by the
formula

(0,0)dV =0 N\ ),
where dV is as in Eq. (1.1), for any 6 of the same degree. Clearly,

x : QP(M) — Q" P(M). Defining this operation in terms of indices can
be rather ugly. If 61,...,0, is an orthonormal basis of one-forms, then
%01 = O3 A\ -+ A\ Oy, etc., and x0; = Ojc, where T is some subset of {1,...,n}
and I€ is its (signed) complement. Then *dz! = \/]det(g)|dz!® (sometimes
we will simply write g for det(g)). Clearly *x = +1, and counting minus
signs gives *x = (—1)P(®~P) Note that since * is invertible, it identifies QP
with Q"7P.

EXERCISE 1.5.3. Rewrite the operators of divergence, curl, and gradient
in terms of the exterior derivative, d. You will need to use the Fuclidean
metric on R? to identify vectors and one-forms, and  to identify two-forms
with one-forms (e.g., *(dy A dz) = dx and the like) and three-forms with
functions. Rewrite the relations curlgrad = 0 etc., in terms of d*> = 0.
This exercise is essential. Note that not every vector field on a region U
whose curl is zero comes from a function. The extent to which such vectors

exist is measured by H(U).

Using this exercise, we can understand the fundamental theorem of cal-

culus, Stokes’s theorem, and the divergence theorem as the single statement

J.t0= ],

where OC represents the boundary of C' (we have neglected some issues of
orientation).
We can use the Hodge star operator and the global inner product to

define the adjoint to the exterior derivative. Define the adjoint d! of d by
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(df, ) = (0, d')). We state without proof that for p-forms on an n-manifold,
dh = (=)™t s d s

Note that df : QP — QP71 It is clear that d?> = 0 implies (d7)? = 0.

The Laplacian is defined as A = dd' + d'd. Note that since the adjoint
operator (equivalently, ) depends on the inner product, the Laplacian de-
pends on the metric. We now show that the kernel of A is constituted by
precisely those forms that are closed (annihilated by d) and co-closed (an-
nihilated by dt). For if A¢ = 0, then (¢, (dd' + d'd)¢) = 0, and by the
definition of adjoint this equals (d¢,dp) + (df¢,d'¢), which is zero if and
only if d¢ = 0 and d'¢ = 0. Let HP(M) denote the vector space of harmonic

p-forms.

EXAMPLE 1.5.2. On the torus T? = R? /72, with the metric defined from
Euclidean R?, H' is two-dimensional and generated by dx and dy. Note that
here there is no choice of representatives (up to a choice of basis for R?). It

is no coincidence that H? = H?, as we see below.

Hodge decomposition is the theorem that every form 6 (on a compact

manifold with positive-definite metric) has a unique decomposition as
0 =h+da+dp,

where h is harmonic. Uniqueness follows by showing that zero (the differ-
ence of two decompositions) is uniquely written as the zero composition —
namely, 0 = h + da + d' 3 implies df3 = 0, etc. This is clear, since d in this
equation gives 0 = dd'f3, which after taking the inner product with § says
d'8 = 0 (use the adjoint). Existence of the decomposition is related to the
fact that A is invertible on the orthogonal complement of its kernel.

Since dd'3 # 0 for df 3 # 0, the kernel of d comprises all forms that look
like h + da. Further, all forms da are precisely the image of d. We therefore

conclude that kernel mod image can be identified with harmonic forms:
HP(M) = HP(M,R)

(equality as vector spaces). This identification, of course, depends on the
metric. Note that harmonic forms, unlike cohomology classes, do not form a
ring, since the wedge product of two harmonic forms is not a harmonic form

(though it lies in a cohomology class with a unique harmonic representative).



1.5. DIFFERENTIAL FORMS 23

EXAMPLE 1.5.3. By the wave equation, a vibrating drum has frequencies
corresponding to eigenvalues of the Laplacian. The set of eigenvalues of the

Laplacian is a measure of the geometry of the space. However, the set of
zero modes is a topological quantity.






CHAPTER 2

Algebraic Geometry

In this chapter outline the very basic constructions of algebraic geom-
etry: projective spaces and various toric generalizations, the hyperplane
line bundle and its kin, sheaves and Cech cohomology, and divisors. The
treatment is driven by examples.

The language of algebraic geometry pervades the mathematical proof
of mirror symmetry given in Part 4. Toric geometry is also crucial to the
physics proof in Part 3. Sec. 2.2.2 on toric geometry is only a prelude to

the extensive treatment in Ch. 7.

2.1. Introduction

In this chapter we will introduce the basic tools of algebraic geometry.
Many of the spaces (manifolds or topological spaces) we encounter are de-
fined by equations. For example, the spaces 2% 4+ y?> — R? = 0 for different
values of R are all circles if R > 0 but degenerate to a point at R = 0. Al-
gebraic geometry studies the properties of the space based on the equations
that define it.

2.2. Projective Spaces

Complex projective space P™ is the space of complex lines through the
origin of C"*!. Every nonzero point in C"*! determines a line, while all

nonzero multiples represent the same line. Thus P" is defined by
P" = (€™ {0}) /C*.
The group C* acts to create the equivalence
(X0, X1,..., Xn] ~ [A X0, A X1, ..., A X},

where A € C*. The coordinates X, ..., X,, are called “homogeneous coor-
dinates” and are redundant (by one) for a description of projective space.
In a patch U; where X; # 0, we can define the coordinates z; = X} /X; (for

k # 7). These coordinates are not affected by the rescaling.

25
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EXAMPLE 2.2.1 (P!). Consider P, on which [Xq, X1] ~ [AXo, A\X1]. We
can describe the whole space with two patches (for ease of notation, we use
no indices in this example): U = {Xo # 0} with coordinate u = X;/Xo
(well defined) and V = {X; # 0} with coordinate v = Xo/X;. On U NV,
v = 1/u. Note that Xo = 0 is well defined, as the scaling does not affect
the solutions (the solution set of any homogeneous equation is well defined).

From this we see that P! is the same as S? as a complex manifold.

Note that a linear action on Xy,..., X, induces a holomorphic auto-
morphism of P, where an overall scaling acts trivially. It turns out that
PGL(n+ 1,C) is precisely the group of holomorphic automorphisms of P".

Any homogeneous polynomial f in n + 1 variables defines a subspace
(subvariety) of P™ via the equation f(X) = 0, which respects the scaling

relation. The equation would make no sense if f were not homogeneous.

EXAMPLE 2.2.2. Consider a degree 3 polynomial in P2, f = a1 X3 +
Y3 +a3Z3 +as XY Z +asX?Y + -+ a10Y Z%. There are ten parameters,
etght of which can be removed by a homogeneous, linear change of variables
(a motion induced by PGL(3,C) ), and one of which corresponds to an overall
scaling. In all, there is one complex parameter that cannot be removed, and
this determines the complex structure of the curve defined by f. In fact, it is
an elliptic curve (Riemann surface of genus 1), and the value of its complex
structure parameter j(7) is an algebraic function of the one independent
combination of the a;.

Using the same reasoning (not always valid, but okay here), a degree
5 (“quintic”) polynomial in P would describe a manifold with (5‘5@{1) —
(25 — 1) — 1 = 101 parameters describing its complex structure. (Here we
have used the fact that the number of independent degree d homogeneous

polynomials in n variables is (djﬁfl) )

At this point, we should note that algebraic geometry can be defined
over arbitrary fields, and that the “algebraic” part of the story should be
taken seriously. We will mainly be interested in algebraic varieties as (possi-

“variety” can mean a manifold

bly singular) manifolds, so for our purposes
or a manifold with singularities. We mainly employ the tools of algebraic ge-

ometry to simplify calculations that would be well posed in a more general
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setting. In a sense, algebraic geometry is simpler than differential geom-
etry since all quantities are algebraic, therefore holomorphic, or at worst
meromorphic.

Note:

e P" is a quotient space, or space of C* orbits.

e We remove 0 so that C* acts without fixed points.

e Open sets are complements of solutions to algebraic equations (in
the above, Xo = 0 and X; = 0). This is the Zariski topology.
(C*)™ acts on P" via the action inherited from C"*! (in fact, all
of PGL(n + 1) acts), with fixed points p; = [0,...,1,...,0], i =
0,1,...,n.

The quotiented scaling action is encoded in the way the coordinates

scale (all equally for P™), so this is combinatorial data.

2.2.1. Weighted Projective Spaces. Weighted projective spaces are
defined via different torus actions. Consider the C* action on C* defined by
A (X, Xo, X3, Xyg) — (A"1X7, A2 X5, A3 X3, A4 X,y) (different combina-~
torial data). We define

P?wl,wz,ws,w4) = ((C4 \ {0}) /C*.

Suppose wy; # 1. Then choose A # 1 such that A¥* = 1. Note that
(X1,0,0,0) = (A\*1X1,0,0,0), so we see the C* action is not free (there are
fixed points), and we have a Z/wiZ quotient singularity in the weighted
projective space at the point [1,0,0,0].! Since this singularity appears in
codimension 3, a subvariety of codimension 1 will generically not intersect
it — so it may not cause any problems. However, suppose (wq,ws) # 1,
so that k|ws and k|ws, with & > 1. Then choose A # 1 such that A\* = 1.
Note (0, X2, X3,0) = (0, \"2X5, \"3X3,0), and we have a Z/kZ quotient
singularity along a locus of points of codimension 2. We can no longer
expect a hypersurface to avoid these singularities. (We will see in later

chapters that there are ways to “smooth” singularities.)

1A quotient singularity means that the tangent space is no longer Euclidean space,
but rather the quotient of Euclidean space by a finite group. For example, C? /Zs, where
Zy = ZJ27 acts by (—1,—1), is singular at the origin. One can construct a model for
this space using the invariant polynomials a = X7, b = X2, and ¢ = X; X2, which obey
p = ab — ¢? =0, a quadratic polynomial in C3. The singularity at the origin appears as a
point where both p = 0 and dp = 0 have solutions. Singularities are discussed at greater
length in Sec. 7.5.
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EXAMPLE 2.2.3. We denote by M = P%,1,1,1,2[6] the hypersurface defined
by a quasi-homogeneous polynomial of degree siz in Plll,Ll,lQ‘ For example,
M may be the zero-locus of f = X% + X§ + X§ + X$ + X3, a Fermat-type
polynomial. The singular point in Plll,Ll,LQ is [0,0,0,0,1], since (0,0,0,0,1)
is fized under 7./27 C C*. However, since £(0,0,0,0,1) # 0, the singularity
does not intersect the hypersurface, and the hypersurface is smooth (one
must check that f =0 and df =0 has no common solution in lel,l,l,l,% and

this is immediate, as the origin is excluded).

More generally, we can construct IP’Z{l, and we can expect hypersurfaces
in this space to be smooth if (w;, w;) = 1 for all i # j. Again, this space

have a (C*)"~! action depending on the vector 1.

2.2.2. Toric Varieties. Toric varieties are defined similarly and are
even more general. We start with CV and an action by an algebraic torus
(C*)™, m < N. We identify and then subtract a subset U that is fixed by
a continuous subgroup of (C*)™, then safely quotient by this action (up to

finite quotient singularities) to form
P = (CY\U)/(C)™

The resulting space P is called a toric variety, as it still has an algebraic torus

action by the group (C*)V~" descending from the natural (C*)" action on
CcN.

EXAMPLE 2.2.4. Here we give four examples of toric varieties, along
with the diagrams (fans) that encode their combinatorial data (see Fig. 1).
However, we will not give a general account of going from the diagram to
the construction of the variety. The reader can find a much more thorough
treatment in Ch. 7.

A) The three vectors v; in the toric fan (A) are not linearly independent.
They satisfy the relation 1- vy +1-v9 +1-v3 = 0. The coefficients (1,1, 1)
in this relation encode the scaling action under A\ € C* : z; — Az, Note
that we have introduced a coordinate for each vector. Note that the triple of
vectors v1,v2,v3 are not all contained in a single cone, though any two of
them are (there are three cones in the picture, the white areas). This encodes
the data of the set U = {z1 = 2o = 23 = 0}. When we take C3\ U, the scaling
action has no fized points, and we can safely quotient by C*. The resulting

smooth variety is, of course, P2.
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D
C +
FIGURE 1. Four toric fans. A) The fan describ-
ing P2, consisting of three cones between three vec-
tors: (1,0),(0,1),(=1,—1). B) P!, described by two one-
dimensional cones (vectors): 1 and —1. C) P! x P'. D) The

Hirzebruch surface F;, = P(Op1 & Op1 (n)); the southwest vec-

tor is (—1, —n).

This procedure is quite gemeral, though the specifics will depend on the
diagram.

B) In this one-dimensional diagram, there are two vectors that obey the
relation v + vo = 0. Each vector generates a one-dimensional cone (ray).
The C* action is thus encoded by the weights (1,1) : namely, z; — \z;. As
v1 and ve are not contained in a common ray, we excise U = {z1 = z9 = 0}.
The resulting space is PL.

C.) Set v1 = (1,0), va = (=1,0), v3 = (0,1), and v4 = (0,—1). Here
there are two relations: vi +vo = 0 and vs + v4 = 0. There are therefore
two C* actions encoded by the vectors (1,1,0,0) and (0,0,1,1). Namely,
(A1, A2) € (C*)? maps (21, 29, 23, 24) — (M21, M22, Mz3, A\bzy). The set U
is the union of two sets: U = {z1 = z9 = 0} U{z3 = z4 = 0}. Then
(C*\U)/(C*)? =P! x P,

D.) The southwest vector here is vo = (=1, —n), all others the same as
in (C), which is the special case n = 0. The construction of the toric variety
proceeds much as in (C), except the first relation is now 1-v1+1-va+n-vs3 = 0,
so the first C* acts by (1,1,n,0). The toric space is called the nth Hirzebruch
surface, and denoted F,,. We can see that F,, resembles P* x P, except the

second Pt intermingles with the first. In fact, F, is a fibration of P! over
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P!, trivial when n = 0. We will return to explaining the caption in later
sections.

E.) Another interesting example (not pictured) is to take the diagram
from (A) and shift it one unit from the origin in R3. That is, take vi =
(1,1,0), v = (1,0,1), v3 = (1,—1,-1), and vo = (1,0,0) (the origin be-
comes a vector after the shift). The single relation among these four vec-
tors is (—3,1,1,1). Let ¢ be the coordinate associated to vy. Then U is
still {z1 = 22 = z3 = 0}, as in (A), since v is contained in all (three-
dimensional) cones. The resulting space is (C*\ U)/C* and has something
to do with P? (and with the number 3). In fact, we recover P? if we set
¢ = 0. Also, the space is not compact. We will see that this corresponds to

a (complex) line bundle over P2

2.2.3. Some Line Bundles over P". From the definition of P" we see
there is a natural line bundle over P" whose fiber over a point [ in P" is the
line it represents in C"*!. Define J C P" x C"*! to be {(I,v) : v € I}. J is
called the “tautological line bundle.” Suppose we have coordinates Xj on
C™*! with which to describe the point v. Then X}, is a linear map from the
fiber J; to C. In other words, X}, is a section of Hom(.J, C), the line bundle
dual to J. Let us call this H. Note that the equation X; = 0 makes sense on
P™, and its solution defines a hyperplane (hence the “H”).

From J and its dual H we get lots of line bundles by considering J®¢ =
J®J® - ®J and H®? The transition functions of these bundles are
respectively dth powers of the transition functions for J and H. H®? is also
written H? or Opi (d) or O(d). The trivial line bundle O(0) is also written
O. In fact, sometimes additive notation is used for line bundles, so it is
not uncommon to see H¢ as dH as well. We will try to be sensitive to
these ambiguities. Note that the dual of a line bundle has inverse transition
functions, so J = H~! = O(-1).

EXAMPLE 2.2.5. Consider the hyperplane bundle on P'. According to
the paragraph above, the coordinate Xy is a (global) section. Let us see how
this works. On U = {X # 0}, a coordinate uw parametrizes the points [1,u]
with Xo = 1. On V' the coordinate v parametrizes [v, 1] with Xo = v. Thus
(Xo)v = suv(Xo)v = syv = v
function u. Furthermore, H™ has a transition function u™ on P.

= u, and therefore H has a transition
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EXAMPLE 2.2.6. As another example, consider diagram (D) from Fig. 1,
with vy (the downward pointing vector) and the two cones containing it re-
moved. The resulting diagram has three vectors (v = (1,0), v2 = (=1, —n),
vz = (0,1)), two cones (generated by vi & vs and by vy & v3), and one
relation, (1,1,n) — i.e., v1 + vo + nvs = 0. To construct the corresponding
toric variety, we start with C* and remove U = {21 = 22 = 0} (as v1 and
vy do not share a cone), and quotient by C* acting as \ : (z1,22,23) —
(Mz1, M2, \"23). Define Z to be the resulting space Z = (C3\ U)/C*.
Let us now rename the coordinates Xog = z1; X1 = z9; 0 = 23. We can
cover Z with two patches U = {Xo # 0} and V = {X; # 0}. Note
U = U x C, where U is the open set on P! coordinatized by u = X1/Xo
(invariant under the scaling), and we parametrize C by (y. Thus (u,(y)
represents (uniquely) the point (1,u, (). Also, V 2V x C, with coordinates
v = Xo/X1 and (y representing (v,1,(y). Consider a point (Xo, X1,0) in
C3, with Xo # 0 and X1 # 0. On U we would represent it by coordinates
(u,Cu), withu = X1/Xo and (g = 0/X{. The reason for the denominator in
Cu is that we must choose X € C* to be 1/ X to establish the C* equivalence
(Xo,X1,0) ~ (1,X1/X0,0/XJ) = (1,u,(y). On 'V we represent the point
by coordinates v = 1/u and (v = 0/X7. Note (v = u"Cy. We have thus
established that the space Z represented by this toric fan is described by two
open sets U xC and V xC, with U and V glued together according to P* and
the fibers C glued by the transition function syy = u™. Therefore Z = O(n).

It is now not too hard to see that the first scaling in Example 2.2.4 (D)
defines the direct sum O(n)@® O. The second relation and the set subtraction
effects a quotienting by an overall scale in the C? fiber directions. This is the
projectivization of the direct sum bundle described in the caption to Fig. 1.
The individual fibers are converted into P1’s, but this quotienting has a base

P! dependence, so Fy is a non-trivial P* bundle over P' for n # 0.

Any linear function s, of the coordinates X will also be a section of
H. Further, since we know how the operator 84)3% behaves under scaling, we
casily see that >, ska;;k descends to a linear differential operator (i.e., a
vector field) on P". In other words, we have a map of sections of bundles
T(H®M+D) — T(TP"). Note that multiples of the vector v = 3, Xz0X,
descend to zero on P" since this generates the very scaling by which we

quotient. All such multiples look like fv, with f a function on P", i.e., a
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section of the trivial line bundle C. We have described an exact sequence
(2.1) 0— C— HEOH) _,7p" 0

(the T' symbol has been suppressed). This sequence is called the “Euler

sequence.”

2.3. Sheaves

A sheaf is a generalization of the space of sections of a vector bundle.
Over any open subset U, the sections I'(U) form a vector space with an
action (multiplication) by the space (ring) of functions. We generalize this
notion to the algebraic setting by saying that a sheaf assigns abelian groups
to each open set, and we require these groups to be modules under the action
of holomorphic functions on the open set. The power of this restriction is
that if the abelian groups are free, then they look like sections of vector
bundles I'(U), but, if not, we can talk about more general objects, such as
vector bundles living on subvarieties.

Roughly speaking, a sheaf is the data of sections on open sets, with
sections on unions of sets determined by their restrictions to the different
components.

Let us restrict ourselves to a complex manifold X. A “sheaf” F consists
of

abelian groups F(U) of “sections” o, one for every open set U;
restrictions oy € F(V) for any V C U, o € F(U) with the com-
patibility relations (o|y)|w = o|w for W C V C U;

if o|y, = 0 on all sets U; of an open covering of U, then ¢ = 0 in
FU);

if o € F(U), 7 € F(V) and o|lyny = 7|unv, then there exists
p € F(U UV) which restricts to o and 7 on U and V respectively

(p is unique by the property immediately above).

EXAMPLE 2.3.1. A) Z is the sheaf of integer-valued functions. Over U,
Z(U) are the locally constant, integer-valued functions on U. Then Z(X) is
the group of globally-defined integer-valued functions. This is a vector space
of dimension equal to the number of connected components of X.

B) R and C are sheaves of real and complex constant functions.

C) O is the sheaf of holomorphic functions. O(U) is the set of holomor-

phic functions. Again, dim O(X) is the number of connected components of



2.3. SHEAVES 33

X if X is compact, since the only global holomorphic functions on a compact
connected space are constants.

D) O* is the sheaf of nowhere zero holomorphic functions.

E) QP s the sheaf of holomorphic (p,0)-forms. 0 € QP(U) looks like
Oay...apdz® N\ Ndz%, where 04, . q, are holomorphic functions on U; note
that no dz’s appear.

F) O(FE) are holomorphic sections of a holomorphic bundle E.

Sheaves enjoy many properties from linear and homological algebra. A
map between sheaves defines maps on the corresponding abelian groups, and
its kernel defines the kernel sheaf.

In particular, we can have exact sequences of sheaves. Consider, for

example, the sequence
(2.2) 0—2Z—0—0"—0,

where the first map is inclusion as a holomorphic function and the second
is exponentiation of functions (times 277). Note that the sequence does not
necessarily restrict to an exact sequence on every open set (for example, on
C\ {0} the exponential map is not onto), but is exact for open sets that are
“small” enough. From now on, we restrict ourselves to covers of manifolds
that consist of open sets with trivial cohomology.

If a sheaf S is the sheaf of sections of a vector bundle, then the stalk over
a point p is the closest thing to a fiber of a vector bundle and is defined as
the intersection (direct limit) of S(U) over all U containing p. The stalk can
be thought of as germs of sections, or, by local triviality of vector bundles,

germs of vector-valued functions.

EXaAMPLE 2.3.2. As an example of how a sheaf differs from a vector
bundle, consider P" and the sheaf Opn, the sheaf of holomorphic functions.
This sheaf is also the sheaf of holomorphic sections of the trivial bundle,
and the stalk over any point is the additive group of germs of holomorphic
functions at that point. Now consider a subvariety V. C P". We can consider
Oy, a sheaf over V, or we can consider a sheaf over P with support only
along V. As a sheaf over P, Oy can be defined as holomorphic functions
modulo holomorphic functions vanishing along V. So Oy (U) is the zero group
if U does not intersect V. In fact, the ideal sheaf Jyy of holomorphic functions
(on P™) that vanish along V' is another sheaf not associated to sections of a
bundle.
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For instance, consider Oy, the structure sheaf of a point in P2, namely,
let V.= {p} C P2. We define J, to be the sheaf of holomorphic functions
vanishing at p. Then Op = Opz /Ty, which can also be written as the cokernel

in the exact sequence
0—Jp —0—0,—0.

Note that the stalk of O, over p is just the vector space C of possible values
of holomorphic functions at p. Now the sheaf J, is not a sheaf of sections of
a vector bundle either, and if we want to express O in terms of sheaves that
locally look like sections of bundles, we can do so in the following way. Note
that p can be described as the zero set of two linear functions f, g onP? (e.g.,
if p=[1,0,0] we can take f = X1 and g = X2), i.e., two sections of O(1).
Then Jp looks like all things of the form fsi1 — gsa, where, in order to be a
function, we must have s1,s2 € O(—1). So the map O(—1) ® O(-1) — O,
where (s1,s2) — fs1 — gs2, has image J,. The kernel is not locally free but

that can be taken care of with another map. In all, we have
O(-2) — O(-1)® 0O(-1) — O,
where the first map is s — (gs, fs).
EXERCISE 2.3.1. Check exactness of this sequence.

If we call this whole sequence £*, then the sequence 0 — E®* — O —0
is exact, and in many ways E° behaves precisely like Oy (as it would if this

were an exact sequence of vector spaces or modules).

2.3.1. Cohomology of Sheaves. We now develop the appropriate co-
homology theory for investigating global questions about sheaves. As a con-
sequence, we will have a long exact sequence in cohomology, given an exact
sequence of sheaves.

Cech cohomology is defined for a sheaf relative to a cover {U,} of X.
Our restriction to “good” covers allows us to ignore this possible uncertainty
and work with a fixed good cover {U,}.

That said, we define the (co-)chain complex via

CO(F) =11, F(Ua),
CYF) = (ap) FUa N Up),
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where we require oy, v, = —ovu,u, for o € CY(F), with higher cochains
totally anti-symmetric. The differential 6, : C® — C™*! is defined by
((500’)(]7\/ =0y — 0y, (51/7)U,V,W = PV,W — PUW —l—pUy. Higher ¢’s are defined
by a similar anti-symmetrizing procedure. Note that 62 = 0 (we often ignore

the subscripts). Cech cohomology is defined by
HP(F) = Kerd,/Imdp_1.
A key point is that an exact sequence of sheaves,
0—A—B—C—0,
leads to a long exact sequence in cohomology,
0 — H°A) — H(B) — H°(C) — HY(A) — H'(B) — ....

In particular, the exact sequence Eq. 2.2 leads to the sequence

- — HYX,0%) — H?*(X,7Z). As we will see in the next section, any

line bundle defines a class in H'(X,©*), and the image under the map to

H?(X,7) is called the “first Chern class” of the line bundle, ¢;(L). The

line bundle is determined up to C'° isomorphism by its first Chern class,

although two line bundles with the same first Chern class may not be iso-
morphic as holomorphic line bundles.

Recall that a section is determined by its restriction to open subsets.
Therefore a global section of any sheaf is defined by its values on elements
U, of a covera and must be compatible on overlaps. Thus a global section
o consists of data o, such that o, = og on U, N Upg; i.e., dpo = 0, and we
see that the global sections F(X) are equal to H°(F).

EXAMPLE 2.3.3. On P! we can use our two open sets as a cover (warn-
ing: mot a “good” cover), and a little thought shows that H'(P', O*) is
classified by maps from an annulus to an annulus (or, equivalently, circle
to circle), which are in turn classified by a winding number. This makes
sense, because line bundles are determined by how we glue two copies of
C (with a nonzero function) together along an equatorial strip. Clearly
HY(P,0*) = Z, and the generator is Op (1), or just O(1). If U is the
set Xo # 0 with coordinate w = X1/Xo and V is the set X1 # 0 with coordi-
nate v = Xo/X1, then O(1) has transition function syy = u (on the equator

0

u =€ syy = e represents a map from S' to S' of degree 1). Note that

O(1) is a holomorphic line bundle.
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EXAMPLE 2.3.4. What are the global sections of O(n) = (O(1))™ on
P! (denoted Op1(n))? Let us first recall that O(1) has the transition func-
tion syy = u, so O(n) has transition function u™. Consider the monomials

fv =v* on V. To construct a global section, we need fir = syy fiy = u™* =

u % which will be holomorphic as long as k < n. Therefore 1,v,...,v" give
rise to n + 1 global sections, and there can be no others. Equivalently, we
can think of the coordinate v as representing the homogeneous coordinates

[Xo, X1] = [1,v]. Then the global sections can be generated by the mono-

mials XS,XS_IXl, ..., X7 In short, the global sections are homogeneous
polynomials of degree n.
The same is true on PV: H°Opn(n) = homogeneous polynomials of
N -1
degree n in Xo, ..., Xn. Sodim H*(O(n)) = ( n . ) . In particular,
n J—

the sections of Opa(5) are quintic polynomials in five variables, and there are
9-8-7-6/4! = 126 independent ones.

2.3.2. The Cech—-de Rham Isomorphism. (These few paragraphs
are merely a summary of the treatment in [121], pp. 43-44.)

Here we show that the cohomology Hj (M) defined from the de Rham
complex on M is equal to the Cech cohomology H*(R). The proof depends
on the fact (Poincaré lemma) that if 6 is a p-form with p > 0 on R™ and
df = 0, then 8 = d\. In other words, closed forms are locally exact, meaning
we can find open sets on which their restrictions are exact. At p = 0, the

constant forms are closed but not exact. Therefore, the sequence of sheaves
0—R—C" —Ct—C?*— ...

(here C* represents k-forms) is exact. (Recall that exactness of a sequence
of sheaves means that the sequence is exact for a sufficiently fine — e.g.,
contractible — cover of open sets.)

From this sequence we can construct a series of exact sequences. Let
ZF < AF represent the closed k-forms. We then have

O—>R—>A0i>Zl—>0,

0—>Zl—>A1i>Z2—>O,

0 — Zk-1 —, pAk-1 i>Zk — 0.
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The next result we use is that H¥(A?) = 0 for k& > 0. (This can be
shown by using a partition of unity, but we omit the proof.) Then from the

~

first short exact sequence we get a long exact sequence yielding H¥(R) =
HF=1(Z1). The next short exact sequence tells us H*~1(Z') = H*2(Z?).
We proceed until the long exact sequence from the last sequence above gives
HO(Akfl) i) HO(Zk) . Hl(Zkfl) N 0’
where the last zero comes from H'(A*~!) = 0. This says nothing other than
HO(ZF)
d HD( Ak—l)

At this point, it is helpful, albeit somewhat premature, to mention a

1%

HY(ZF 1) = HYz (M).

similar result that holds for complex manifolds. The usual exterior derivative
d is expressed in real coordinates z, as d = ), dxz, A a—‘za. With (half as
many) complex coordinates z; we can break up d into two parts: d = 9+ 0,
where 0 = ), dzj A % and 0 is the complex conjugate. Note that since O
is not real, we must take it to act on (the tensor powers of) T*M ® C. (We
will have more to say about these operators later.) We also have 9% = 0 and
0% = 0. A form in Ker 9 is called O-closed.

Note that O-closed forms are holomorphic. What’s more, 9 acts on
forms taking values in any holomorphic vector bundle! The reason is that 0
commutes with holomorphic transition functions: Holomorphic means holo-
morphic no matter the trivialization. Thus if F is a holomorphic bundle on

M, or, more specifically, its sheaf of sections, we have the sequence
0—E-LEA L pea%? 2,

where A% are forms Oar...aq,dZ0 N -+ N dz%, and can form the associated
cohomology groups Hg(E)

Now the Cech—Dolbeault isomorphism follows from the 0-Poincaré lemma
(O-closed implies locally 0-exact) and the fact that HP>0(A%*) = 0. The

proof is exactly analogous and states that
k ~ 17k
HY(F) = Hg(E).
Therefore, on a complex n-fold X, we can think about the Cech co-
homology classes H*(E) as E-valued forms with k anti-holomorphic in-
dices. We define the canonical bundle Kx to be the bundle of forms with

n holomorphic indices. Then H" ¥(E* ® Kx) are E*-valued (n,n — k)-
forms. Wedging, using the pairing of F and E* and integrating, gives a map
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Jx - HF(E) x H"*(E* ® Kx) — C. Serre duality, discussed more in the
next chapter, says this pairing is perfect: H" *(E* ® Kx) = H*(E)*.

2.4. Divisors and Line Bundles

A “line bundle” (in algebraic geometry) is a complex vector bundle of

rank 1, with holomorphic transition functions.

EXAMPLE 2.4.1. Some examples are: the trivial bundle, C, whose holo-
morphic sections (i.e., functions) comprise the sheaf O; the tautological line
bundle J over projective space; its dual H = J* = Hom(J, C). Note that the
homogeneous coordinates X; are global sections of H, and that the set of ze-
roes of any global section of H (also called O(1)) defines a hyperplane. H™ is
the line bundle O(n), and its global sections are homogeneous polynomials of
degree n. The canonical bundle Kx = Q" of holomorphic (n,0)-forms over
any complex n-fold X is a holomorphic line bundle. As a generalization,
given any holomorphic vector bundle E of rank r, we can form the (holo-
morphic) line bundle A"E, the “determinant line bundle,” whose transition

functions are the determinants of those for E.

[a=d

Recall that the data of a line bundle is a local trivialization g : 7~ (Uy)
Uy x C or equivalently a set of holomorphic transition functions s, =

Pq © cpgl such that values in C* with
54858a = 1 and 50858ySya = L.

Recalling sheaf cohomology, this data states precisely that the transition
functions s, are closed one-chains in the Cech cohomology of the sheaf O*
(using multiplicative notation for the group of sections). Further, a different
local trivialization corresponding to an isomorphic line bundle is defined by
isomorphisms (of C), fo € O*(Uy); the transition functions s;, 5 = ff_gsaﬁ are
then thought of as equivalent. Note that s’ and s differ by a trivial (exact)
Cech one-cycle, f./ f3- So line bundles up to isomorphism are classified by
closed Cech one-chains modulo exact chains. We learn that H'(X,0%) is
the group of isomorphism classes of line bundles on X. This is called the
“Picard group” of X. The group multiplication is the tensor product of line
bundles, corresponding to ordinary multiplication of transition functions:

ie.,on L® L we have the transition functions 5085a3-
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The relationship
locally defined functions «— line bundles

can be investigated more closely. Any analytic, codimension 1 subvariety V
has (locally) defining functions: V NU, = {fs = 0} (chosen such that f,
has a simple zero along V). On V N Ug we have fg, and on the intersection
fa/ [ is nonzero (zeroes of the same order cancel). Therefore the data {f,}

define a line bundle with transition functions s,g = fo/f3-

EXAMPLE 2.4.2. On P! define D = N+ S, where N and S are the north
and south poles. On U = P\ N with local coordinate u = X1/Xo, D is
written as the zeroes of fy = u. On'V =P\ S with coordinate v = Xo/X1,
D = {fy = —v =0}, and on the overlap fy/fy = —u/v = —u? (the minus
sign was chosen for convenience, as we will see, and doesn’t affect anything).

The chain rule says % = —u28%, which means TP! (a line bundle) also has

transition function syy = —u?.

EXERCISE 2.4.1. Try this for two other points.

Thus D « TPL. We further see from the power of u that TP' = O(2) =
Kpl .

EXAMPLE 2.4.3. The bundle defined by a hyperplane in this way is the
hyperplane line bundle.

Generalizing this, we can define a “divisor”
D= E n;V;
i

to be a formal sum of irreducible hypersurfaces? with integer coefficients n;.
Any given V; can be described on U,, as the zero set of a holomorphic function

e
holomorphic function (section of O*). In U,, we associate to D N U, its
defining function f, = [[;(f%)™, so that if n; > 0, then the zero of f, has

order n; along V; N Uy, while if n; < 0, then f, has a pole of order n;. The

where the f! are defined up to multiplication by a nowhere-vanishing

fa are nonzero meromorphic functions, and since f, and fz must agree (up

2A “hypersurface” is a codimension 1 submanifold that can be written locally as
the zeroes of a holomorphic function, and “irreducible” means it cannot be written as the
union of two hypersurfaces. In the sum we require that an infinite number of hypersurfaces

cannot meet near any point (“locally finite”). Our “divisor” will mean “Weil divisor.”
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to O*) on overlaps, they define a global section of the sheaf of meromorphic

functions modulo non-vanishing holomorphic functions:
Div (M) = HY(M*/O%).

To summarize, a divisor D, with local defining functions f, as above, defines
a line bundle O(D) with transition functions so3 = fo/f3. Note that the f,
define a (meromorphic) section of O(D), since fo = s43f3, whose zero locus
is D.

In practice, it is very convenient to be able to think of hypersurfaces
in terms of the line bundles they describe. A hypersurface defines an ele-
ment of real codimension 2 homology, and we will explore the relationship
between this homology class and a class in de Rham cohomology (or Cech
cohomology) associated to any line bundle by the map H'(O*) — H?(7Z)
from the sequence in Eq. 2.2. These and other topological issues are the

subject of the next chapter.



CHAPTER 3

Differential and Algebraic Topology

We try to convey just a hint of what various cohomology theories and
characteristic classes are, and how they are used in applications essential for

understanding mirror symmetry. Our scope is necessarily limited.

3.1. Introduction

Many physical questions are topological in nature, especially questions
involving so-called BPS states in supersymmetric theories, as there are typ-
ically an integer number of these non-generic states. In this chapter, we
develop some of the topological tools required to address such physical ques-
tions. Since analytical methods in physics typically involve derivatives and
integrals, our approach to topology will be mainly differential and algebraic.
Again, our focus will be on gaining a quick understanding of some of the
constructions used in mirror symmetry — or at least how they are applied

in practice.

3.2. Cohomology Theories

In Ch. 2 we discussed de Rham cohomology d : QP(M) — QPFL(M)
and Dolbeault cohomology O for complex manifolds, 9 : A%?(M) ®@ E —
AYPHL (M) ® E, where E is any holomorphic vector bundle. Particularly
interesting is the example when E = AT}, M.

For a sheaf E we can also construct the Cech cohomology H*(E). When
E = R we have the Cech-de Rham isomorphism, and when F is the sheaf
of holomorphic sections of a holomorphic bundle, we have Cech-Dolbeault.

For completeness, let us recall singular homology and cohomology. We
define singular p-chains to be linear combinations of maps from p-simplices
to a topological space, X. For a map f : A, — X, the restriction to the
kth face of A, is denoted by fi, K = 0,...,p. Let C}, denote the p-chains.
Then the boundary operator 0 : Cp, — Cj,_1 is given by 0f = Zfzo(—l)kfk,
extended to chains by linearity, and the associated homology cycles are

41
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in H,(X). Singular cohomology is formed from cochains C? = Hom(C),Z),
with dO(f) = 0(9f), for € a cochain and f a chain. Then for manifolds X one
has the result Hg,,, = H*(Z). If for singular cohomology we take Hom(Cy, G)
with G an arbitrary abelian group, we get Hs*ing(X; G).IfG=Rand X is a
smooth manifold, then we also have an isomorphism between singular and

de Rham cohomology.

3.3. Poincaré Duality and Intersections

Our aim here is to describe Poincaré duality, an intersection pairing of
(co)homology classes. In this section, H* denotes de Rham cohomology.

The wedge product of forms descends to a map on cohomology
H* @ H' — H*! since O Adn = d(£60 A n) if 6 is closed. This plus Stokes’s
theorem on a closed (oriented) manifold X implies that integration gives a
map [y : H*(X) ® H"%(X) — R (we assume X is compact, or else one of
these cohomology groups must be of forms with compact support). Poincaré
duality says that this pairing is perfect, meaning H* and H"* are duals:
H" k= (H*)*,

Now consider a k-dimensional, closed submanifold (C' C X such that
9C = 0). For any § € H*(X) we can define Jo 0. Stokes’s theorem ensures
that this is independent of the representative of the cohomology class. Thus
/. ¢ 1s a linear map H k — R, and Poincaré duality says that we can represent

this map by an (n — k)-form nc € H**: i.e.,

/9:/ 0 A ne.
C X

nc is called the Poincaré dual class.

In fact, a rather explicit construction of o can be achieved.! The key
lies in a construction for a general (oriented) vector bundle, £.? We define
on the total space of E the “Thom form” &, which is a delta function top
form along each fiber, i.e., sz ® = 1 for any x € M, where pull-back of
® to the fiber is implicit. Next, we prove that a tubular neighborhood of
a submanifold C' is diffeomorphic to its normal bundle Ng/p; of C'in M
(defined by 0 — TC' — TM|c — Ngyy — 0). Extending the Thom form
of N¢/r by zero, we get a cohomology class ®¢ on M whose degree equals

the rank of C’s normal bundle, i.e., the codimension of C.

e only describe the steps; the reader can find references in Ch. 40.

24QOriented” means that the transition functions have positive determinants.
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Now one computes | 17 0 A @c by noting that 1) it restricts to a tubular
neighborhood T of C' (since ®¢ was an extension by zero from T'); 2) T' can
be thought of as a vector bundle, on which we integrate in base and fiber
directions; 3) ®¢ is a top form in the normal directions, so only the part
of # along the base C' can matter; 4) since [ ®c = 1 along each fiber, the
final answer is [, 0. We deduce that [,, 6 A ®c = [;, 0, so ¢ represents
the Poincaré dual class nc. This is a woeful derivation! However, if we only
want a vague sense of the reasoning, it may be adequate.

In conclusion, the Thom class of the normal bundle is the Poincaré dual
class, which can therefore be chosen to have support along (or within an

arbitrarily small neighborhood of) C.

EXAMPLE 3.3.1. On a torus T? = S' x S, the total space of the normal
bundle to one of the S'’s (defined, say, by 62 = 0) is equal to S' xTyS*, where
ToS' is the tangent space to S' at o = 0. The Thom class of the normal
bundle is ® = §(62)dO2, where §(02) is a Dirac delta function. Indeed, it has
support on the first S* and (EXERCISE) it satisfies Jr2OND = f51 6.

Given submanifolds C' and D whose codimensions add up to n, the
degree of nc Anp is n, so C- D = [ nc Anp is a number. Given the fact
that 7o and np can be chosen to have support along C' and D, C - D picks
up contributions only from the intersection points x € C' N D. If we assume
that the intersections are transverse, then the bump forms will wedge to a
volume form for T'M|,, and the integration will produce +1 from each =z,
depending on the orientation. In total, C'- D = > (—1)%. More generally,

we have the following relation:

Ncnp = Nc AN

(to compare with the case discussed, integrate). So the intersection and

wedge products are Poincaré dual.

3.4. Morse Theory

Because there are points in the treatment of quantum field theory where
Morse theory is a helpful tool (see, e.g., Sec. 10.4), we include here a short
discussion.

Consider a smooth function f : M — R with non-degenerate critical

points. If no critical values of f occur between the numbers a and b (say
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a < b), then the subspace on which f takes values less than a is a deformation
retract of the subspace where f is less than b. To show this, one puts a metric
on the space and flows by the vector field —V f/|V |2, for time b — a (this
obviously runs afoul at critical points). Furthermore, the Morse lemma
states that one can choose coordinates around a critical point p such that
f takes the form —(a? + 23 + --- + wi) + xiﬂ + -+ + 22, where p is at
the origin in these coordinates and f(p) is taken to be zero. The difference
between f~1({z < —¢}) and f~'({z < +¢}) can therefore be determined by
this local analysis, and only depends on p (the “Morse index”), the number
of negative eigenvalues of the Hessian of f at the critical point. The answer
is that f~1({z < +e€}) can be obtained from f~!({z < —e}) by attaching
a p-cell along the boundary f~!(0). By “attaching a p-cell” to a space X,
we mean taking the standard p-ball B, = {|z| < 1} in p-dimensional space
and identifying the points on the boundary S*~! with points in the space
through a continuous map f : S#~! — X. That is, we take X I1 B,, with the
relation z ~ f(z) for x € 0B, = S#~1. In this way, we recover the homotopy
type of M through f alone.

In fact, we can find the homology of M through a related construction.
f defines a chain complex C’]"E whose kth graded piece is C%*, where ay, is
the number of critical points with index k. The boundary operator 0 maps
C’;? to C’l]?_l, 0xq = Y Agpxp, where Ay is the signed number of lines of
gradient flow from x, to x;, where b labels points of index & — 1. Such a
gradient flow line is a path x(t) satisfying ¢ = V(f), with x(—o0) = x4 and
x(+00) = xp. To define this number properly, one must construct a moduli
space of such lines of flow by intersecting outward and inward flowing path
spaces from each critical point and then show that this moduli space is an
oriented, zero-dimensional manifold (points with signs). These constructions
are similar to ones that we will encounter when discussing solitons in Ch. 18.
The proof that 9% = 0 comes from the fact that the boundary of the space of
paths connecting critical points whose index differs by 2 is equal to a union
over compositions of paths between critical points whose index differs by 1.
Therefore, the coefficients of the % operator are sums of signs of points in
a zero-dimensional space which is the boundary of a one-dimensional space.

These signs must therefore add to zero, so 9% = 0.
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EXERCISE 3.4.1. Practice these two constructions when M is a tire
standing upright and f is the height function. Practice the following con-
struction of homology as well. Do the same for a basketball. Try deforming
the ball so that more critical points are introduced. Verify that the Morse

homologies are not affected.
The main theorem is

THEOREM 3.4.1.
H*(Cf) = H.(M).

Cohomology can be defined through the dual complex. In fact, by look-
ing at Y-shaped graphs of gradient flow (three separate paths meeting at a
common point), one can define a “three-point function” to produce a prod-
uct on Morse cohomology. We will not use this construction, but it is closely
related to the Fukaya category (when M is taken to be the space of paths

between Lagrangian submanifolds), discussed in Sec. 37.7.1.

3.5. Characteristic Classes

In this section, we focus on the Chern classes.

If the rank of a holomorphic vector bundle equals the complex dimension
of the base manifold, then dimension counting says that a generic section
should have a finite number of zeroes. For example, on any complex manifold
we can consider the holomorphic tangent bundle and the number of zeroes
of a generic holomorphic vector field is the Euler characteristic (for a non-
holomorphic vector field we must count with signs). In general, the integral
of the top Chern class, also called the “Euler class”, encodes this number. Of
course, not all sections are generic and one must account for multiplicities of

certain zeroes. Here we will explore some generic and non-generic examples.

EXAMPLE 3.5.1. On P! consider the holomorphic vector field u% It has
a zero at w = 0. On the patch with coordinate v = 1/u, we must transform
% = —1128%, S0 ua% = —va%, which has a simple zero at v = 0. Of course,
this vector field is just the generator of a rotation, which has fixed points

at the north and south poles. In total, there are two zeroes, and x(P') =

X(8%) = 2.

EXAMPLE 3.5.2. On P! we can consider the vector field %, which has

no zeroes on the patch with coordinate z. However, on the other patch this
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vector field equals —z 8%7 which has a zero of multiplicity 2 at Z = 0, and

the total number of zeroes, counted appropriately, is two.

EXAMPLE 3.5.3. On P? we consider three patches to cover the manifold:
U = {Xo # 0} with coordinates u; = X1/Xo and uy = Xo/Xo, V =
{X1 # 0} with coordinates vi = Xo/X1 (= 1/uy on the overlap) and vy =
Xo/ X1 = ua/u1, and W = {Xs # 0} with coordinates w1 = Xo/ X2 = 1/ug
and wy = X1/X9 = uy /ug. Consider the holomorphic vector field
0

0
5= “16_1“ + Cuza—uQ.

We consider two cases: C =1 and C = 2.

o If C =2, this vector field has a zero in U where uy = ug = 0, i.e.,

the point [1,0,0] in homogeneous coordinates. To look in the other

0 _9v 0 4 Ova 0 _ _,20 _ 0
Oui ~ Oui Ovi + Oui Ovy U1 ov1 V102 Ovg

Proceeding this way and converting u’s to v’s (remember C = 2),

patches, we transform

we find that s = —vla%l —i—vgaim, so it has a zero at vi = v9 = 0,
i.e., [0,1,0], in this patch. In W, s = —211118%}1 - wQE%Z, so the
final zero is at 0,0, 1] (which does not intersect the other patches).
There are three zeroes and x(P?) = 3.

e Consider C = 1. Now we have a zero at [1,0,0] in U, but in V
we see § = —vla%l, which has a family of zeroes where vi = 0. In
W, s = wlc%l, which is zero when wy = 0. This family of zeroes
is the P! C P? where Xq = 0 (the complement of U). In order
to compute the contribution to the Chern class integral, we use the
“excess intersection formula” (cf. Sec. 4.4.1 and Theorem 26.1.2).
This states that the contribution from a zero-locus Y (here Y =
{Xo = 0} 2 P!) of some section of a vector bundle E (of the same
rank as the manifold M, here E = TP? and M = P?) contributes

/ Ctop(E)
v Ctop(Ny/ar)
to the top Chern class, where Ny yr is the normal bundle of Y C M.

In this example, the exact sequence

0 — TP' — TP* — Npi jpz — 0
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tells us that ciop(TP?) = Ctop(T]Pl)Ctop(N]pl/]p2), so after cancelling

we find that the contribution of the zero-locus is
/ ctop(TPY) = x(P') =2 (e.g., from the ezample above).
]P)l

Summing up the zero-loci, x(P?)=1+2=3. The section with C =1
s mot generic enough, but, as we will see in mirror symmetry, one

cannot always obtain a generic section.

EXERCISE 3.5.1. Find a holomorphic vector field on P™ with n+1 isolated

ZETOES.

We now give an account of Chern classes, before actually defining them.
Poincaré duality says that cycles in H,_, are dual to H?, and cohomology
H? is dual to H,, as well. Therefore we can identify H? with H,_,. The
Chern classes ¢, will be given in the next section as classes in H?*, but here
we will discuss them as (n — 2k)-cycles, i.e., cycles of codimension 2k. The
relation between forms and cycles is also seen by the fact that a cohomology
p-form can be chosen (in the same cohomology class) to vanish everywhere
outside of an (n — p)-cycle. For example, on the circle S*, the delta-function
1-form 6(0)df has support on a point.

The examples above demonstrate that the top Chern class is the cycle
associated to a generic section. For a rank r bundle, this is represented by
a codimension 7 cycle or by an r-form. (When r = n we get a collection of
points, possibly with multiplicities.) In fact, since the base manifold sits in
the total space of a bundle as the zero section, the top Chern class represents
the intersection of a generic section with the zero section. So it makes sense
that intersection theory is needed to account for zero sets of non-generic
sections.?

We now give an account of all the Chern classes ¢, for £ < r. Let E
be a rank r complex vector bundle on an n-fold, M. Let s1,...,s, be r
global sections of E (C° but not necessarily holomorphic, so they exist).
Define D, to be the locus of points where the first & sections develop a linear
dependence (i.e., sy A--- A sp = 0 as a section of A¥E). Then the cycles

Dy, are Poincaré dual to the Chern classes ¢,11_j. For example, when k =1

3In general, intersection theory and the excess intersection formula account for non-
generic cases of the type considered here. We will not be able to develop this interesting

subject much further, however.
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the top Chern class ¢, is represented by D1, the zeroes of a single section.
When k = r, the first Chern class represents the zeros of a section of the
determinant line bundle formed by wedging r sections. Indeed, ¢;(F) =
c1(A"E).

3.5.1. Chern Classes from Topology. We would like to impart a
sense of how Chern classes capture the topology of a bundle. This section
is independent of the rest of the chapter.

Just as P"~!, the space of complex lines through the origin in C", is
equipped with a tautological (“universal”) line bundle H~! = Opn-1(—1),
similarly the space G(n) of complex k-planes through the origin in C" has a
universal rank k vector bundle. Clearly, we can include Gi(n) C Gx(n+1),
since C"* C C"*!. To accommodate general bundles, it is convenient to define
the infinite-dimensional space G}, as the direct limit Gy (k) CGr(k+1)C....

It is the set of k-planes in C*°. It, too, has a universal k-bundle,
EkCka(Cooa Ek:{(pav)¢U€P}a

where p is a k-plane.

We will show below that E = Ej is universal in the sense that 1) any
CF-bundle F — X (over any topological space X) is the “restriction” of E
to X via some map ¢ : X — Gy, i.e., the bundle F' is isomorphic to the pull-
back ¢*Ej; and 2) any two such maps are homotopic. Then a calculation
shows that the cohomology of G is a copy of the integers in each even
degree; we call the generators c;(Ey) € H?(G}). Then we can define Chern
classes via pull-back in cohomology; setting ¢(Ey) = @®;c;(Ey), we define the
total Chern class of F' to be ¢(F) := ¢*c(E)). (Later we use cohomology
isomorphisms to express ¢(F) as a differential form.)

We first show how to construct ¢. Cover X by open sets U; (we assume
X is compact, so i@ = 1,...,N) on which F is trivial, and find open sets
Vi, W; such that V; C U; and W; C V;, as in Fig. 1. Then we may choose
bump functions A\; on X equal to 1 on W; and falling off to zero outside V;,
as illustrated. Now say p € F' sits over x, so m(p) = x. Local triviality tells
us there is an isomorphism 71 (U;)=U; x CF, and if we take the projection

to C* we get maps 1 a YU;) — C*, linear on each fiber. We then map p
to v(p) :

v(p) = (@) (p), Ao(@)az(p), - A (@) (p) € T € ©%.



3.5. CHARACTERISTIC CLASSES 49

F1GURE 1. The open sets used to construct ¢.

Each component makes sense even outside of the domains of p;, since the
fall-off of the A; allows us smoothly to extend by zero. Note that v(E,) is
a linear k-plane in CFN C C*, thus a point in Gj. Going from x to this
point in Gj defines ¢. Finally, we can map p to the pair (k-plane v(E,),
v(p))€ Gj x C*>. This map between total spaces of the bundles F' and E,
linear on the fibers, exhibits F' as ¢*F.

The fact that any two such maps v, v; are homotopic comes from defin-
ing v, t € [0,1] by linearly interpolating from vy(e) to vi(e) in C*. One
needs to show that this can be done continuously and without hitting zero
when e is nonzero.

Let H~! = O(—1) be the universal line bundle over CP*. Then it turns
out that the following axioms for Chern classes of rank & complex bundles

F — X completely determine them:

o ¢i(F) € H¥(M,Z), co(F) =1, cis(F) = 0;

o o(f*F) = f*(c(F));

o ¢((F®G)=c(F)cG).

e —ci(H 1) =e(H) is the generator of H2(G},).

Topologically speaking, then, the set of Chern class of a given bundle
determine the cohomology class of its classifying map ¢, and so in simple
cases determine the bundle, with its complex structure, up to homotopy (but

not quite in general). Notice that knowing that two bundles are topologically
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isomorphic as complex CF-bundles does not mean that they are isomorphic

as holomorphic bundles!

EXAMPLE 3.5.4. Consider (complex) line bundles with vanishing Chern
class on an elliptic curve C/(1,7). Any flat bundle has zero curvature, and
therefore vanishing first Chern class. We can define a flat line bundle by
specifying U(1) holonomies around the two different cycles of the elliptic
curve. Topologically, the space of such bundles forms a torus S* x S*. From
a C* point of view, all such bundles are homotopic, though they are different
as holomorphic bundles. This can be seen by studying the kernel of the map
from HY(O*) to H*(Z), whose image is the first Chern class. The kernel
can be seen, from the long exact sequence of the exponential sequence, to be

H'(0)/HY(Z), which is C/Z>.

3.5.2. Chern Classes from Differential Geometry. To a physicist,
the most “hands on” definition of a Chern class of a differentiable vector
bundle is in terms of the curvature of a connection. While Chern classes can
be defined in a more general context, the definition agrees with the definition
given below when it is valid (when things are differentiable).

Let E be a differentiable complex vector bundle of rank r over a differen-
tiable manifold M, and let F' = dA+ A A A be the curvature of a connection
A on E. We define ¢(E), the “total Chern class” of E, by

o(E) =det (1 + iF)
1+ —TrF +...
27
=1+ci(BE)+ca(E)+---€ H(MR)® H*(M,R) & ....

The form ¢(F) is independent of the choice of trivialization (by conjugation
invariance of the determinant) and is closed, by the Bianchi identity DF = 0.
In fact, this definition is independent of the choice of connection. This
follows (not immediately) from the fact that the difference of two connections
is a well-defined End(FE)-valued one-form. Different connections will yield
different representatives of the cohomology classes cj.

We see that the total Chern class is expressed in terms of the Chern
classes ci(E) € H?*(M,R). Note that c¢(E @ F) = ¢(E)c(F), which follows

from properties of the determinant. In fact (though we will not prove it),
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if0 = A — B — C — 0 is a short exact sequence of sheaves, then ¢(B) =
c(A)c(C) (the “splitting principle”).

EXAMPLE 3.5.5. Let us compute the first Chern class of the line bundle
defined by the U(1) gauge field surrounding a magnetic monopole, integrated
over the sphere at infinity. A magnetic monopole is a magnetic version of an
electron, i.e., a source of divergence of magnetic (instead of electric) fields.
We shall give the connection A explicitly. The curvature is just F' = dA,
since the AN A terms vanish for an abelian connection. (F is a combination
of electric and magnetic fields, which can be determined by equating Ag to
the electric potential and A [the spatial components] to the magnetic vector
potential, up to normalization constants.) The Dirac monopole centered at
the origin of R® is defined by

1
,— dy — ydzx).
ZZrz—r(xy ydz)

One computes (check) F = %(x dyNdz+y dzA\dz+zdxAdy). In spherical
L F = L5 (r?sin0df A dg), and it is clear

that the integral f52 c1 =1 for any two-sphere around the origin.

N

coordinates, we can write ¢

ExaMPLE 3.5.6. Note that TrF is the diagonal part of F, meaning it
represents the U(1) C GL(n,C) piece of the holonomy, at the level of Lie
algebras. The first Chern class ¢; = %TrF is also the first Chern class
of the determinant line bundle A"E, which is evidenced by the fact that the
trace measures how the logarithm of the determinant behaves under GL(n, C)
transformations. Therefore, if we are in a situation where the Levi-Civita
connection on a complexr manifold gives a connection on Ty X and find that
c1(Tho1X) = 0 as a differential form, then the holonomy must sit in SU(n).
Of course it is a necessary condition that ¢y = 0 as a cohomology class.
Manifolds for which ¢y = 0 are called Calabi—Yau manifolds.

The Chern Character. Suppose one defines x; such that
c(E) = I[;_y(1 + ;) (here r = rk(E)). Then the Chern character class
ch(E) is defined by ch(E) = ), e" (defined by expanding the exponential).
Let us denote ¢ = cx(FE). Then we find

1 1
ch(E)=r+c + 5(0% —2c9) + é(c“;’ —3ciea+3c3) + . ...

Note ch(E & F) = ch(E) + ch(F) and ch(E ® F) = ch(E)ch(F).
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The Todd Class. With definitions as above, we define

_ x 1 1,5 1
td(E)—il_[ll_exi—1+201+12(cl+02)+240102+....

Note that td(E @ F) = td(E)td(F).

3.5.3. The Grothendieck—-Riemann—Roch Formula. Very often,
one wants to compute the dimension of a Cech cohomology group of some
sheaf or vector bundle E over some variety X. These are typically difficult to
count and may even jump in families. As an example, an elliptic curve has a
family of holomorphic line bundles of degree 0, roughly parametrized by the
dual elliptic curve or the Jacobian. However, only the trivial bundle O has
a section (the constant function). A quantity that does not jump in families
is the alternating sum y(E) = >, (—1)kdim H*(E). The Grothendieck—

Riemann-Roch formula calculates
X(F) = / ch(E) N td(X).
X

If we have other information telling us that some of the cohomology

classes vanish or can otherwise determine their dimensions, the Grothendieck
Riemann—Roch theorem may suffice to determine the dimension of the de-

sired cohomology group.

3.5.4. Serre Duality. One way of relating Cech classes among differ-
ent sheaves is via Serre duality, which we motivate here but do not prove.
If one recalls the Cech-Dolbeault isomorphism on a complex n-fold X,
we can think of H*(E) as Hg(E) Therefore, there is a natural pairing
HF(E) ® H" *(E* ® K);) — C defined by wedging together a (0, k)-form
and a (0,n — k)-form and using the map E ® E* — C, then combining with
the canonical bundle to get an (n,n) form that is then integrated over X.
Basically, then, Serre duality is just wedging and integrating. The statement

is that this pairing is perfect, so
H¥(E) = H" *(E* @ Kx)*.

In the special case where X is Calabi—Yau, K x is trivial and can be neglected

in the formula above.
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3.6. Some Practice Calculations

3.6.1. The Chern Class of P" and the Euler Sequence. To com-
pute the Chern class of P we recall that the homogeneous coordinates,
being maps from the tautological bundle to C, are sections of its dual, the
hyperplane bundle H. To make a vector field invariant under C*, we can
take siaiXi, where s;, ¢ = 1,...,n+ 1 are any sections of H. We thus have
a map from HOM*D o TP (here TP™ represents the holomorphic tangent
bundle), with the kernel sheaf being the trivial line bundle C of multiples
of a nowhere-vanishing generator (X, ..., X,) — Xiaixi >~ (0 in P". This is

the Euler sequence:
0 — C— HOO+) _, 7pr .

Since ¢(C) = 1, it follows from properties of the Chern class that ¢(P") =
o(TP") = c(H® D) = [¢(H)]" L. Let & = ¢1(H). Then ¢(P?) = (1+z)*t1.
Let us recall that a hyperplane represents the zeroes of a global section
of the hyperplane bundle. In fact, this means that x is Poincaré dual to
a hyperplane (=2 P"~!). It follows that Jpn " = 1, since n hyperplanes
intersect at a point (all hyperplanes are isomorphic, under PGL(n + 1),

to setting one coordinate to zero). Further fpl xz = 1, since a generic

cpr
hyperplane intersects a P! C P" in a point. The Euler class of P" is the top

1
Chern class, so ¢, (P") = (n * ) 2™ and
n

/n cen(P") =n+1.

This agrees with our previous observation that the Euler class or top Chern
class (of a bundle of the same rank as the dimension of the manifold) counts
the number of zeroes of a holomorphic section. The integral calculation

above is also the Euler characteristic x(P") =n + 1.

3.6.2. Adjunction Formulas. Let X be a smooth hypersurface in P"
defined as the zero-locus of a degree d polynomial, p (so p is a section of
Opn(d), or H%). Roughly speaking, since p serves as a coordinate near X,
the normal bundle Nx of X in P" is just O(d)|x. As a result, the exact
sequence 0 — T'X — TP"|x — Nx — 0 takes the form

0 —TX —TP"x — O(d)|x — 0.



54 3. DIFFERENTIAL AND ALGEBRAIC TOPOLOGY

Now ch(H) = e = ch(H?) = €% = 1+ c1(HY) +...,50 c(O(d)) = 1+¢; =
1+ dax, and
(I+z)"*
“X)="Grdn

It is useful in what follows to note that the Euler class e(X) of the
normal bundle of a subvariety X C P" is equal to its Thom class, namely
its Poincaré dual cohomology cycle. This means [, 0 = [p, fe(X). In the
case of hypersurfaces, the normal bundle is one-dimensional and the Euler
class (top Chern class) of the normal bundle is the first Chern class. In the
case of O(d), the Poincaré dual class is the first Chern class dz (not “dz”
the differential).

Curves in P2. A degree d curve X in P? has Chern class 1 + (3 — d)x.
Then x(X) = [y c1(X) = [pe c1(X)(dx) = [pe d(3—d)a* = d(3—d). Setting
the Euler characteristic x(X) = 2 —2g, where g is the genus of the Riemann

d—1
surface (number of handles), we find g = (d — 1)(d — 2)/2 = < 5 > .

The Quintic Hypersurface in P*. A quintic hypersurface @ in P* has
c(Q) = (1+2)%/(1 +5x) =1+ 1022 — 4023 (recall * = 0). Note that

c1(Q) =0, so @ is a Calabi-Yau manifold. Its Euler characteristic is

/ —4023 = / —4023(5x) = —200.
Q Pt

We saw in previous chapters that we could find 101 complex deformations,
which (as we will see in later chapters) is the dimension of HY(T'Q) =
H?Y(M), i.e., the Hodge number h?! = h'2. Since h*? = h%3 = 1, the
unique generators being the Calabi—Yau form and its complex conjugate,
we learn that bg = 204 (by = b5 = 0 by simple connectivity). Now, since
the Kéhler form and its powers descend from P™ to a hypersurface, we have
RF*(Q) > 1, and in fact there are no other forms (h®* = 1). For simply-
connected Calabi-Yau’s, A0 = h%0 = 0, so the Hodge diamond has only
hY! and h*! as undetermined, independent quantities. It is easy to see
that x(Q) = 2(h! — h?1), and we have found the compatible results that
bt =1, h?! =101, and x(Q) = —200.

3.6.3. The Moduli Space of Curves, M, ,. (This section is only
a prelude to the treatment given in Ch. 23.) A Riemann surface is a
one-dimensional complex manifold, which means a differentiable, real two-

dimensional manifold with choice of complex coordinates and holomorphic
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transition functions across coordinate charts. The choice of holomorphic
coordinate is often not unique, and the space of such choices (the moduli
space of complex structures or “moduli space (of curves)”) for a genus g
closed surface is denoted M. Infinitesimal changes of the complex structure
(yet to be discussed) of a complex manifold X are classified by the Cech
cohomology group H'(TX). This vector space therefore is the tangent space
to M, at the point defined by a genus g Riemann surface, X. We would like
to compute the dimension of M, = dim¢ H'(TX).

The Grothendieck—Riemann—Roch formula tells us

dime H(TX) — dime¢ HY(TX) = [y ch(TX)td(TX)
= [ +ea(TX)(1+ Le(TX))

= %fxcl(TX) =3 -39,

where the last equality comes from the fact that the Euler class or top Chern
class is just ¢1(TX) for a one-dimensional complex manifold. When g > 2
there are no nonzero vector fields of X and H%(TX) = 0. We conclude that
dim M, = 39 — 3, g > 2. We commented on this fact when we discussed the
constant curvature metric on the upper half-plane in the first chapter.

When g = 1, H*(TX) = C and M is one-dimensional. The automor-
phism can be removed by selecting a distinguished point. When g = 0,
dim H°(T X) = 3 (the generators of PGL(2,C)), and My is a point.

If we include n marked (ordered) points, we denote the space M, ,,, and
we require one additional complex dimension to describe the location of each
marked point: dim M, = 3g —3 +mn. When g = 1 and n = 1, the origin is

marked as a distinguished point, and we have dim M ; = 1.

3.6.4. Holomorphic Maps into a Calabi—Yau. An important space
in mirror symmetry is the space of holomorphic maps from a Riemann sur-
face ¥ into a Calabi-Yau n-fold M (ie., ci(M) = 0). If ¢ : ¥ — M is
a holomorphic map then, in local coordinates on M, ¢ obeys the equation
0¢' = 0. An infinitesimal deformation of ¢ can be generated by a vector
field x* (think “¢ — ¢ + €x”), and the deformed map will still be holomor-
phic if 9x* = 0. That is, x defines an element of Hg(qb*TM) = H(¢*TM).
(x lives in ¢*T'M since it need only be defined along the image curve.)
We will assume here (not always justifiably) that H'(¢*TM) = 0. Then
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Grothendieck—Riemann—Roch gives

dim HO(¢*TM) — dim HY(¢*TM) = [, ch(¢*TM)td(%)
= Js(n+¢*er(TM))(1+ 3c1(2))

= n(l-g),

where at the end we use ¢ (T'M) = 0 (Calabi-Yau). Note that the result
is independent of the homology class of the image. Also note that when
n = 3 and ¢ = 0 the dimension is 3, which is also the dimension of the
automorphism group of a genus 0 Riemann surface (P!). The automorphisms
of the domain change the map pointwise, but do not move the image curve.
Therefore the dimension of the genus 0 holomorphic curves inside a Calabi—-
Yau threefold is zero, so we may expect to be able to count them! Mirror
symmetry will have a lot more to say on this subject.

Note that if M is not a Calabi—Yau manifold, the calculation holds up
until the last line, and the index formula yields n(1—g)+ [, ¢*c1(TM). The
second term is the pairing of the homology class ¢(X) with ¢ (TM) and is
the “degree” of the image.



CHAPTER 4

Equivariant Cohomology and Fixed-Point

Theorems

Certain characteristic classes of bundles over manifolds are very simple
to compute when the manifold and bundle carry an action of a group. This
chapter contains a synopsis of various theorems concerning the localization
of calculations to fixed points of diffeomorphisms, zeroes of vector fields or
sections, or fixed points of group actions. (Some of these topics appear
scattered in other chapters.) We try to motivate the results, but will not
prove the theorems. The main example, Sec. 4.4, highlights our reason for
exploring the subject: to calculate Gromov—Witten invariants.

In fact, we saw in Sec. 3.5 that the zeroes of a holomorphic vector
field give the Euler class of a manifold and that the zeroes of holomorphic
sections give Chern classes of vector bundles. In the case where we have a
holomorphic S! (or C*) action on a manifold, the generator is a holomorphic
vector field and its zeroes correspond to fixed points of the group action.
Therefore, it is reasonable to expect that certain characteristic classes of
bundles with group actions can be localized to the fixed-point sets of these
actions. Given a bundle over the manifold, one can often lift the group
action equivariantly to the total space of the bundle (so that it covers the
original action); such a lift is automatic for the tangent bundle and other
natural bundles on a manifold. The proper integrands to consider will turn
out to be “equivariant cohomology classes.”

For simplicity, we shall only consider actions by products of S* or C*.

4.1. A Brief Discussion of Fixed-Point Formulas

In our interpretation of Chern classes in Sec. 3.5, we saw that the zeroes
of sections contain important topological, intersection-theoretic data. This

allowed us to state generalizations of the Gauss—Bonnet theorem for surfaces.
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Similarly, the fixed-point set F' of an endomorphism f : M — M contains
topological data defined by f, as F' can be recast as the intersection in M x M
of the diagonal with the graph of f, I'y = {(m, f(m)) € M x M}.

The two discussions merge when f is generated by a vector field, v.
Then f is homotopic to the identity, and the intersection calculation gives
the self-intersection of M in M x M, that is, the Euler characteristic, x(M).

The formula, the Hopf index theorem, is

x(M) = Z sgn det <% - 62) :
v(p)=0
Here gTU; is the explicit expression for the action of f, on T'M at a zero of v.

More generally, even if f is not generated by a vector field or homotopic
to the identity, then f* acts on cohomology and the Lefschetz fixed point
theorem, which has a form similar to the equation above, gives the (signed)
trace of the action of f* on H*(M). (In the above, f* = id and we get
X(M) from the trace.) These statements have refinements when M is a
complex manifold and f is holomorphic, so that f* can also act on Dolbeault
cohomology.

Bott extended this kind of reasoning to a holomorphic vector field v
acting on a manifold M with a holomorphic vector bundle £ — M. After
assuming a lift of the action of v on functions to an action on sections of
E, one is able to write characteristic classes of E as exact forms outside the
zero set of v. The construction depends on a dual one-form to v, which only
exists when v # 0. A unified understanding of these techniques led to the
Atiyah—Bott fixed-point theorem, to which we will turn after discussing the

necessary prerequisites.

4.2. Classifying Spaces, Group Cohomology, and

Equivariant Cohomology

Equivariant cohomology is a way of capturing the topological data of
a manifold with a group action in such a way that it enjoys the usual co-
homological properties under pull-back and push-forward. (This is called

“functoriality.”)

ExXaMPLE 4.2.1. If M is a smooth manifold and G a group acting smooth-
ly without fixed points on M, then M /G is a smooth manifold, and equivari-
ant cohomology will be defined to agree with H*(M/G). However, if G has
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various fized points with different stabilizers (subgroups leaving a point fixed),
then we want the equivariant cohomology to “see” these stabilizers. This is
demonstrated most sharply when M is a point {pt} and any G action fizes
pt. Then M/G is always a point, but the equivariant cohomology of a point
should depend on which group is acting, and should give a cohomological in-
variant of the group. If H C G is a subgroup, we should also have a pull-back

map onto the H-equivariant cohomology of a point.

The considerations above lead to the following definition of the equi-
variant cohomology, H(M). First let us warm up with M = {pt}. We will
define HE ({pt}), also denoted H*(G) or Hf, to be H*(BG), where BG is
the “classifying space of G.” BG is defined by finding a contractible space
EG — unique, up to homotopy — on which G acts freely (without fixed
points) on the right, and setting

(4.1) BG = EG/G.

When M = {pt}, H*(G) is also called the “group cohomology.” Cohomology

will be taken with coefficients in Q.

EXAMPLE 4.2.2. This definition comes to life in examples. If G is a
finite group, then BG has fundamental group G and no other non-trivial
homotopy groups. If G = Z, then EG = R and BG = EG/G = R/Z = S*.
Note that 71 (S') = Z.

If G = S, then G is continuous and our intuition might lead us astray.
We note, however, that CP" is the quotient of S**~! by S*. (This can be seen
by taking the usual C™\ 0 and quotienting by C* in two stages, first using
the R freedom to solve |z| = 1, then quotienting by S'.) If we blithely take
the limit n — oo, then S™ becomes “contractible” and BS' is the quotient,
CP*>°. Therefore,

HE ({pt}) = QI
the polynomial algebra in one variable. For multiple S* or C* actions, we

get the polynomial algebra in several variables, so if T = (C*)™*1, then
Hi = H*((CP>®)™ ) = Q[to, . . ., tm).
This will serve as our main example throughout this chapter.

In the example above, the “indeterminate” t is actually the generator of
H*(CP*>) and can be thought of as the first Chern class of the hyperplane
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line bundle, dual to the tautological line bundle over CP*°. Equivalently, in
what follows we can think of ¢ as a complex indeterminate and use the group

C* instead of S'. However, we will continue to consider S! in our discussion.

ExaMpPLE 4.2.3. Classifying spaces can be used to study isomorphism
classes of bundles over compact spaces. A bundle of rank k is defined by
giving a k-dimensional vector space at every point in M, that is, a point
in the (infinite) real Grassmannian Gy, of k-planes. One checks, as in Sec.
3.5.1, that isomorphic bundles give homotopic maps, and that any bundle can
be pulled back from such a map. Therefore, isomorphism classes of bundles
over any space are given by homotopy classes of maps into Gy. But Gy, is
precisely the classifying space of the structure group GL(k), or equivalently
O(k). Complex bundles are classified by maps into the classifying space of

GL(k;C), i.e., the complex Grassmannian.

Now note that G acts on EG on the right and M on the left, so we can

set
MG = FEG Xaq M s

ie., (eg,m) ~ (e,gm). This space has some nice properties. Mg fibers
over M /G with fiber over [Gm]| equal to EG/{g|gm = m}, which is itself
BG,,, with G,,, = {g|lgm = m} the stabilizer of m. Therefore, if G, is
trivial for all M, then Mg is homotopic to M/G, as desired (they have
the same cohomology). We define equivariant cohomology by the ordinary

cohomology of M.

DEFINITION 4.2.4.
Hg(M) = H*(Mg).

Note that sending (e, m) — e gives a map from Mg to BG with fiber M.
The inclusion M — Mg as a fiber gives a map H (M) — H*(M) by pull-
back. We also have an equivariant map M — {pt}, which gives H (M) the
structure of an H*(G) module. Equivariant cohomology classes pulled back
from H*(G) are said to be “pure weight.” In the case that G = S!, we can
think of Hf (M) loosely, then, as being constructed out of polynomial-valued
differential forms. (Soon we will allow denominators in these polynomials —

this is called “localizing the ring.”)

EXERCISE 4.2.1.
(a) Show that if G acts trivially on M, then HE (M) = H*(M) x Hf,.
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(b) Show that if G acts freely on M, then Hj (M) = H*(M/G), and
is a torsion HE-module. (For example, if G =T, then t; acts on
HE(M) by multiplication by 0.)

As we will see in the next section, the essential insight of localization is
that the non-torsion part of H} (M) is contributed by the G-fixed part of
M. The proof involves little more than the previous exercise: Stratify M by
the stabilizer type of points, apply the exercise to each stratum, and glue
them together using Mayer—Vietoris.

When G is the torus T, let ' C M be its fixed locus. A basic result in the
subject is the following: If M is non-singular, then F' is also non-singular.
The vector bundle T)/|r on F carries a natural T-action. The “fixed” part
of the bundle (where the torus acts trivially, that is, with weight zero) is Tp,
and the “moving” part of the bundle (where the torus acts non-trivially) is

the normal bundle Np/5;. The inclusion F' < M induces
HA(M) — Hi(F) = H'(F) ®g Hi(pt) = H'(F)[to, . ., ).

THEOREM 4.2.5 (Localization). This is an isomorphism up to torsion

(that is, an isomorphism once tensored with Q(ay, ..., aum)).

Note that the tensoring simply allows coefficients rational in the ¢;. The
localization theorem of the next section tells precisely which class in H}(F)
corresponds to a class ¢ € Hy(M).

4.2.1. De Rham Model. Not only can equivariant cohomology classes
in this case be thought of as polynomial-valued (or rational-function-valued)
differential forms, one can exploit this fact to build an explicit and simple
de Rham-type construction for computing equivariant cohomology classes!
Let X be a vector field generating the S! action. Let i(X) denote the inner
product by X and define dx = d + ui(X) acting on Q*(M)[u], with u an
indeterminate to which we assign degree 2. Note that d_2>< # 0. In fact, we
must restrict ourselves to X-invariant forms, i.e., forms in the kernel of the
Lie derivative Lx = di(X)+i(X)d. Denoting this space of forms by Q% (M),
we see that d% = 0 on Q% (M)[u], and in fact

H;l (M) = Ker dx/Imdx.

Therefore, ordinary closed differential forms that are killed by i(X) rep-

resent equivariant cohomology classes. Even those that are not may have
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equivariant extensions involving cohomology classes of lower degrees (but

higher powers of u).

4.3. The Atiyah—Bott Localization Formula

Ifi:V < M is a map of compact manifolds, then we can push forward
cohomology (one can use Poincaré duality on V, push forward the homology
cycle, then use Poincaré duality again on M), giving a map i, : H*(V) —
H*** (M), where k is the codimension of V. This map makes sense even if i
is not an inclusion. In this case k can be negative — e.g., if the map i is a
fibering, then i, is integration over the fibers.

A tubular neighborhood of V inside M can be identified with the normal
bundle of V. On the total space of the normal bundle lives the form with
compact support in the fibers that integrates to one in each fiber: the Thom
form, ®y . Clearly, the degree of this form is equal to the codimension of V.
Extending this form by zero gives a form in M, and in fact multiplying by
®y provides an isomorphism H*(V) = H*t*(M, M \ V), which then maps
to H*t*(M). As a result, we see that the cohomology class 1 € H(V) is
sent to the Thom class in H*(M) coming from the normal bundle of V. This
class restricts (to V' by pull-back under inclusion, i*) to be the Euler class

e of the normal bundle of V' in M, Ny/;. Therefore, we see that

This natural structure can be shown to hold in equivariant cohomology by
applying the same argument to the appropriate spaces Mg, Vg, etc.

What makes the localization theorem possible is the ability to invert
the Euler class in equivariant cohomology. Normally, of course, one cannot
invert a top form, as there is no form that would give the zero form, 1, as
the result of wedging.

For example, suppose that V above is a point. Then the formula of
Eq. (4.2) says that pushing forward and pulling back 1 gives the Euler
characteristic of the tangent space of M at V. Of course, this space is a trivial
bundle, but if M carries a group action and V' is a fixed point of this action,
then the tangent space at V' is an equivariant vector space, which splits into
a sum of non-trivial irreducible representations, V;. Note that we need V
to be a fixed point in order to have such a structure. When G is S' the

irreducible representations are two-dimensional and labeled by real numbers
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a; (or more precisely exponentials of the dual of the Lie algebra of S — and
we can take complex coefficients, if we like). Then e(Ny /) = [[; @i, which
is invertible if we allow denominators, i.e., if we work over rational functions
instead of polynomials. (We need not extend our ring all the way to rational
numbers, but our discussion is rather coarse.)

The theorem of Atiyah and Bott says that such an inverse of the Euler
class of the normal bundle always exists along the fixed locus of a group
action. In such a case, i*/e(Ny ) will be inverse to i, in equivariant
cohomology (not just for 1 but for any equivariant cohomology class). Let
F run over the fixed locus. Then, for any equivariant class ¢,

(4.3) o= Z Z]*VZFZ

We noted that pushing forward was accomplished through Poincaré du-
ality, so for the map 7™ : M — {pt}, pushing forward is the same (for
non-equivariant classes) as integration over M. Note, too, that the map
from F to {pt} factors through the map to M : nf'i, = 7. Applying M

to (4.3) then gives the integrated version of the localization formula:

(4.4) /M¢:zF:/Fe(§7§m.

What makes this formula useful is that, as we have seen, computations
in equivariant cohomology — at least for G = S' — are easy to carry out
explicitly.

As an example, we prove that if M has a finite number n of fixed points
under T, then x(M) = n. Note that x(M) = e(Ths). There is a natural
T-action on Ty, inducing a bundle on M, which we also call Tj; by abuse of
notation (adding the adjective “equivariant” to indicate that we are working
on Mr). By the localization formula (4.4),

fema =32, () -t

e(Np/nr) =

EXERCISE 4.3.1. Find the Euler characteristic of (a) P™, (b) the Grass-
mannian of k-planes in C™, and (c) the flag manifold parametrizing com-

plete flags in C™.

In this case, where there are a finite number of fixed points, we are even

given a cell decomposition, as follows. Take a; = ia; (so now the torus
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acting is one-dimensional, with coordinate ¢, say). Then associate to the
fixed point F} the set of points p whose limit under the torus action is Fj:
lim; .o tp = F;. Each cell has even (real) dimension (and is isomorphic to
some C*¥), so M has no odd cohomology, and the ith Betti number of M is

just the number of i-cells in the stratification.

EXERCISE 4.3.2. Check that the Betti numbers of projective space are
what you would expect, and describe these “Schubert cells”. Find the Betti
numbers of the Grassmannian parametrizing planes in C* and describe its
Schubert cells.

4.4. Main Example

The main purpose for introducing equivariant cohomology and the lo-
calization theorem in this text is that computations of Gromov—Witten in-
variants are often done in the toric setting, where S' actions abound and
the localization formula is the main computational tool.

Here we outline the approach about which we will learn much more in
Part 4, especially Ch. 27. We focus on the genus 0 case.

We saw that Calabi—Yau manifolds can be described as hypersurfaces
or complete intersections of hypersurfaces in ambient toric varieties. The
simplest example is the quintic, the threefold described by a homogeneous
polynomial s of degree 5 in P*. There is a nice space of “stable” holomorphic
maps from genus 0 curves to P*. “Stability” is a technical term which we will
not go into now (stable maps will be discused in detail in Ch. 24), but an
open set inside this space of stable maps looks exactly like what you might
expect: The genus 0 curve is P! with coordinates U and V and maps of
degree d look like five-tuples of degree-d polynomials in U and V. One must
quotient this space by automorphisms of the source curve, that is, five-tuples
of polynomials related by PSL(2;C) transformations on U and V should be
equated.

Now S! (or C*) can act on P* in a number of ways, and we consider an
action defined by weights A1, ..., A5, with u € C* acting by (X1,...,X5) —
(pM X1, ..., 1 X5). Then C* also acts on our space of maps to P* by com-
posing the map with this action. The fixed points of this C* action are maps
that send P! to an invariant P! C P* such that the action on the invariant
P! can be “undone” by a PSL(2;C) transformation of U and V. An example
of such a map, say of degree d, is (U, V) — (U%,V?,0,0,0). Note that if we
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assign U and V the weights \1/d and A\9/d, then this map is equivariant
under C*, hence represents a fixed point. In the space of maps of degree d,
for each pair (i,7), 1 < i < j <5, there is a fixed point of the type described
above. There are other fixed-point loci corresponding to holomorphic maps
from a genus 0 curve that consists of two P!’s meeting in a point (node),
mapped as above with degrees d; and dy such that d; + do = d. There are
other types of degenerations as well, but we leave such discussions to Chs.
23 and 24.

What kind of computation on this space concerns us? We know that the
quintic polynomial s defining the Calabi-Yau is a global section of Opa(5).
In fact, the bundle Ops(5) can be used to define a bundle E over the space
of stable maps of degree d, say, where the fiber over a map is the space of
global sections of Ops(5) pulled back to the genus 0 curve, C, by the map
f: C — P* Since s is a global section of Opi(5), it certainly pulls back to

a global section of f*Opa(5). Therefore we induce a natural section s of E.

EXERCISE 4.4.1. Using the G-R-R theorem (Sec. 3.5.3), calculate the
rank of the bundle E. Show that it is equal to the dimension of the space of
quintuples of polynomials discussed, taking into account PSL(2;C) equiva-

lence.

A zero of 5 looks like a map f : C — P* whose image is wholly contained
in the zero set of s. But this zero set is precisely the quintic Calabi—Yau
threefold, so zeroes of s count maps to the Calabi—Yau! Therefore, we want
to count the zeroes of the section 5. We know from our discussion of Chern
classes that the number of zeroes of a section of a bundle whose rank is equal
to the dimension of a manifold (see Exercise 4.4.1) gives the Euler class of
the bundle. Therefore, we want to calculate the Euler class of E, and the

Atiyah—Bott theorem is just what we need.

4.4.1. A Note on Excess Intersection. A subtlety arises due to the
fact that 5 is not only zero when our holomorphic map is an embedding
into a degree d curve in the quintic. Indeed, a degree d map from P' to
the quintic can be a composition of a degree d/k map to the quintic with a
k-fold cover of P! by P! (when k divides d): the image will still lie in the zero
set of s. Such contributions can be accounted for through “multiple cover
formulas.” These multiple cover formulas concern the case where a section

has more zeroes than expected. In our example, s is a section of a bundle
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whose rank equals the dimension of the manifold, but as there are many such
self-covers of P! by P!, we see that 5 has a non-isolated zero set, larger than
expected. The excess intersection formula (Theorem 26.1.2) accounts for
such a non-generic situation. For further details, see the discussion following
the statement of that theorem.

Readers noting that the formula looks a lot like the localization formula
will be assured that the reason is again that we are interested in representing

a class on M by a class on a submanifold (the zero set of a section).



CHAPTER 5

Complex and Kahler Geometry

In this chapter we discuss the basics of complex geometry and Kéhler
metrics, which play an important role in string theory. As we will see in
Ch. 13, manifolds with Kéahler metric admit the N = 2 supersymmetric
sigma models crucial for formulating mirror symmetry. We also discuss the

Calabi—Yau condition.

5.1. Introduction

Here we review the basics of complex geometry. We will focus on Kéahler
metrics, i.e., those for which the parallel transport of a holomorphic vector
remains holomorphic. This property means that the connection splits into
holomorphic plus anti-holomorphic connections on those two summands in
the decomposition of the tangent bundle.

Another consequence of this property is that the metric (in complex
coordinates) is a Hermitian matrix at every point, and is completely de-
termined in a neighborhood by a (non-holomorphic) function, ®, called the
Kahler potential. In fact, ® is not uniquely defined, and corresponds to a
section of a line bundle.

Yet another hallmark of Kéhler geometry is a closed two-form w deter-
mined by the metric, or equivalently its Kahler potential. This “Ké&hler
form” is non-degenerate, and from its definition can be seen to satisfy
w™/n! = dV. Also, w*/k! has the property that it restricts to the induced vol-
ume form on any holomorphic submanifold of dimension k (k = n was just
noted). Since w is a closed two-form on our space X, its cohomology class is
determined by its values on Hy(X,Z), namely the real numbers ¢; = |, oW
where C; are a basis for Ha(X,Z). The t; are called “Ké&hler parameters.”

5.2. Complex Structure

We have already defined a complex n-manifold as a topological space

covered by charts isomorphic to open sets in C™, with holomorphic transition
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functions. Given a real 2n-manifold, one might ask when it can be endowed
with coordinates and transition functions satisfying the requirements of a
complex manifold, and, if so, is this choice unique?

The differential at some point of a path in C" has a real and an imag-
inary part, and multiplication by i = v/—1 sends dz — —dy and dy — dz,
where x and y are the real and imaginary parts. Such a structure must
exist for any manifold that might be a complex manifold. An “almost com-
plex structure” J is a map on tangent spaces that squares to —1: that is,
J € End(T), J> = —1. With an almost complex structure, we have a
pointwise notion of holomorphic and anti-holomorphic tangent vectors (with
complex values), depending on whether the eigenvalue under J is +i. In
local (real) coordinates we can write J in terms of a matrix J%,, where

J(aga) = J g

a Ogc

The theorem of Newlander and Nirenberg makes the following argument.

If the Lie bracket! of two holomorphic vectors is always a holomorphic vector
(“integrability” ), then coordinates can be found whose derivatives are always
holomorphic, i.e., we can find suitable complex coordinates. (Clearly, since
the Lie bracket of coordinate vectors vanishes, the integrability condition
is necessary.) Since P = (1 —4J)/2 is a projection onto the holomorphic
sub-bundle of the tangent bundle (tensored with C) and P = (1 +1iJ)/2
is the anti-holomorphic projection, the condition of integrability for finding
complex coordinates is

P[PX, PY] = 0.

EXERCISE 5.2.1. Define the Nijenhuis tensor by N(X,Y) =[JX,JY]| —
J[X,JY] - J[JX,Y] - [X,Y]. Given two vector fields, N returns a vector.
Show that in local coordinates %, N%. = J%(9qJ% — 0cd%q) — J(0gJ % —
OpJ%q). Show that the integrability condition is equivalent to N = 0. It is
also equivalent to 0*> = 0, where O is the part of d which adds one anti-

holomorphic form degree (see below). Hint: Use the relation you get from
J?2 =1, i.e., 0,(J%J%) = 0.

IThe Lie bracket [X,Y] of two vector fields, X = X®-2. and Y = Y*. 2, is the

oz dxb?
“commutator” (X“aaYb — Y“aaXb)%, where 9, = %, etc.
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Of course, the eigenvalues of J are 44, but we can only find eigenvectors if
we complexify our space, so we work with TM ®C. Let T M and T” M repre-
sent the eigenspaces with respective eigenvalues +i and —i.? We call 7'M the

holomorphic tangent bundle, and T" M the anti-holomorphic tangent bundle.

If 2F = 2% +4y* are holomorphic coordinates, then 0y, = (%k = %(% —z'a%k)
generate 7'M and 0; = 8;; = %(a%k + ia%k) generate T M. If the context

is clear, we sometimes abuse notation and write TM @ C = TM &TM, i.e.,
we write TM for T'M and TM for T" M. This is because the real TM, with
its complex structure J, is isomorphic as a complex vector bundle to T M
(whose complex structure is by multiplication by i) via v — (v — iJv).
Similarly, therefore, T* M represents the holomorphic cotangent bundle.

The decomposition into holomorphic and anti-holomorphic pieces car-
ries through to cotangent vectors and p-forms in general. Thus, a (p,q)-
form 6 is a complex-valued differential form with p holomorphic pieces and
q anti-holomorphic pieces, i.e., § € T'(APT*M ® AYT*M). We can write
0 = Galmapglmquzal...dz“?débl ...dz%. The functions ‘9a1...ap51...5q are in
general neither holomorphic nor anti-holomorphic. Note that this decompo-
sition can be written

QM) = @ NT*MeAMTM = @ QP9(M),
pF+q=n p+g=n

where we have defined QP4(M) as the (p, g)-forms.

On a complex manifold, the operator d : Q? — QP*! has a decomposition
as well:

d=0+0,
where
Q: QPI(M) — QPTLA(M), 0 : QPI(M) — QPITL(A)
are defined by 90 = 37, 0,10, 7d2* A dz'dz7, it 0 = 0, 5d="dz” is a (p,q)-
form.3 9 is defined similarly. Then matching form degrees in d? = 0 gives
?=0, =0,  00+00=0.

In particular, we can define H2?(M) as those (p,q)-forms which are killed
by & modulo those which are 0 of a (p,q — 1)-form. The Cech-Dolbeault

2We have also called these Thot and Tanti—hol-
3We have used multi-indices. Here, for example, I represents a p-element subset of
{1,...,n} and dz¥ =dz"* A--- A d2'P.
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isomorphism says Hg’q(M ) = HY(APT*M). On an almost complex manifold,
d=040+..., where, on (p,q)-forms, say, d is the projection of d onto

(p,q + 1)-forms. The integrability condition of Exercise 5.2.1 is equivalent
to 02 = 0.

EXERCISE 5.2.2. Show that on the complex plane 00f = (i/2)AfdV,
where A is the flat Laplacian —(9% + (95) and dV is the volume form.

The operators J and O are related. In the next chapter, we will see that
deformations of the complex structure can be phrased in terms of deforma-

tions of either of these operators that preserve the defining properties.

5.2.1. Hermitian Metrics and Connections. A Hermitian metric
is a positive-definite inner product TM ® TM — C at every point of a
complex manifold M. In local coordinates z* we can write gﬁdzidij. Then
9;;(2) is a Hermitian matrix for all z.

As a real manifold with complex structure J : TgM — TrM, the Her-

mitian condition is
9g(X,Y) =g(JX,JY).

In terms of the components J,;,", this condition says that J,; = —Jp,, where
Jab = Jogep. Therefore, we can define a two-form w = % bdz® A dab.
In complex coordinates, this can be written w = igﬁdzi A dZ). More

invariantly, we can write the action of w on vectors as
w(X,Y)=g(X,JY).

Now consider a rank r compler vector bundle with metric hy,, a,b =
1,...,r. The metric is said to be Hermitian if hp(z) is Hermitian for all .
Any Hermitian metric on a holomorphic vector bundle defines a Hermit-
ian connection as follows. In a local frame with sections eq(z) generating
the fibers and metric hyp(2), let 2F be local coordinates. Then we take the

connection one-form to be
Ay, = (9ph)h 1, Az =0.

This can be shown to be the unique connection compatible with the Her-
mitian metric (like the Levi-Civita connection for the real tangent bundle)
and trivial in the anti-holomorphic directions (this means it is compatible

with the complex structure). A Kéhler metric is a Hermitian metric on the
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tangent bundle for which the holomorphic part of the Levi-Civita connec-
tion agrees with the Hermitian connection. We now turn to the study of

these metrics.

5.3. Kahler Metrics

As we just saw, the data of a Hermitian metric allow us to define a
(1,1)-form w = %gijdzi A dz’. We say the metric is “Kéhler” if dw = 0.

EXERCISE 5.3.1. Show that Kdhlerity is equivalent (in a coordinate patch)
to @-gﬁ = 0;9,5- Compute the Levi-Civita connection for a Kdhler mani-
fold and show that it has pure indices, either all holomorphic or all anti-
holomorphic. Show that its holomorphic piece agrees with the unique Her-
mitian connection on the tangent bundle compatible with the complex struc-

ture, as claimed above.

An important consequence of Kéahlerity is found by calculating Lapla-
cians. In addition to the usual Laplacian, on a complex manifold a Hermitian
metric determines adjoint operators 97 and ET for @ and 0, respectively (so
(0,30) = (3'0,), etc.):

aapa L qratl atra o grla

From these we can form the Laplacians Ay = 99T +019 and Ag = %T +5T5.
We can represent d cohomology classes ng(M ) with d-harmonic forms
H%’q(M ), as we did with d and A,. But now an important result is that for
a Kdhler metric,
Ag =205 =24,

and so all the operators have the same harmonic forms. As a result, and
pqmr HPI(M),
and therefore the de Rham cohomology decomposes into d cohomology. De-
fine b, (M) = dim H" (M) and h?9(M) = dim HP9(M) = dim HY(APT*M)
(Cech-Dolbeault). Then

since Ay preserves (p, q)-form degree, we have H"(M) =

b(M) = > hPUM).

prg=r
Further, Hodge * says that hP? = A" P74 while h?? = h?P by complex

conjugation. For example, h%! = dim H'(0).

EXAMPLE 5.3.1. The Hodge numbers of T? = C/Z* are h%° = p0! =
W10 = pb1 = 1. The generators are 1,dz,dz, and dz A dZ, respectively.
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EXAMPLE 5.3.2. A Calabi-Yau manifold can be defined as a complex
n-manifold M whose bundle of (n,0)-forms is trivial. This bundle A™T* M
is called the “canonical bundle” and is often denoted Kyr. Triviality of this
bundle means that we can identify the total space of Ky as M x C. So,
corresponding to the unit section M x {1} (i.e., the section is the constant
function 1) must be a nowhere vanishing global holomorphic (n,0)-form, Q.
Further, every global (n,0)-form can be written as fS), for f some function
on M. If M is compact and the form is holomorphic, f must be holomor-
phic and therefore constant, and the space of holomorphic (n,0)-forms is
one-dimensional: h™°(M) = 1. If M is further a simply connected Calabi-
Yau threefold, as we often assume, then by = 0, which implies h*0(M) =
hOY(M) = 0. Serre duality relates H'(O) with H*(O ® Kpy)* = H?(O)* for
a Calabi-Yau threefold, and so dim H%%(M) = 0 as well (we have used the
Dolbeault theorem). In total, Calabi-Yau threefolds have a Hodge diamond
with h%0 = h33 = p30 = 03 = 1, leaving h*! and h*' (= h?? and h'2,

respectively) undetermined (see Fig. 1).

1 010 1 hp,q

0 h21 hll 0

0 hll h21 0
ql|l]0 |01

FiGURE 1. Hodge diamond of a simply connected Calabi-
Yau threefold.

b1 is the number of possible Kihler forms. We will interpret h*>! in the
following chapter.

Another important consequence of Kéahlerity is that the Levi—Civita
connection has no mixed indices, meaning vectors with holomorphic in-
dices remain holomorphic under parallel translation (a real vector can be
written as the sum of a vector with holomorphic indices and its conju-
gate). This says that holonomy maps TM to TM and TM to TM. Since
TeM ®C = TM ©T M, this says that the holonomy sits in a U(n) subgroup
of SO(2n,R), where n = dim¢ M.
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5.3.1. Kahler Potential. The Kéahler condition aing = 0,9,z and its
conjugate equation Gmgﬁ = Org;m means that locally we can find a function
® such that 9k = 0;0;®. The function ® is not uniquely determined: ® and

® + hol 4 hol define the same metric, if hol is any holomorphic function.

EXAMPLE 5.3.3. We return to the sphere S? = P! from the first chapter.
Recall that the round metric on the unit sphere is given by gsg = 1, goy = 0,
and gsp = sin2(9). We mapped the sphere onto the plane by stereographic
projection from the two open sets (complements of the poles) and checked that
the transition functions were holomorphic. The map was x = cot(0/2) cos ¢,
y = cot(0/2)sin¢. Changing to these coordinates (e.g., gpx = 1 - (%)2 +
sin2(0)(g—i’)2, etc.) gives gux = gyy = 4(x*> + y* +1)72, gy = 0 (Show
this). In terms of 2 = = + iy, we find g.z = 2(1 + |2]?)72. We can write
G-z = 0,05[21og(1 + |z|?)], so we find that ® = 2log(1 + |2|?) is a Kdhler
potential in this patch.

On the patch with coordinate Z = 1/z, the metric is g5 = g.z/|Z|* =
2(]2124+1)72 and ® = 2log(1+|Z]?). On the overlap, ® = ®—2log z—2log z.
Note that in this case, e~® has transition function z?2z%. This means that
it can be written as the single component of a 1 x 1 Hermitian metric for
a holomorphic line bundle with transition function z=2, i.e., O(=2), or the
cotangent bundle! The Chern class of this tangent bundle is simply w/2mw,
and [¢ w/2m = x(5%) = 2.

We will encounter another line bundle formed from the Kdhler potential

in later chapters.

We note some properties and examples of Kéhler manifolds (i.e., mani-

folds equipped with a Kéhler metric).

e There exists ® defined locally such that 95 = 8,-5;@.

® w = (i/2)g;dz'dz’ is a closed (real) (1,1)-form, called the “Kéhler
form.” On a compact manifold, w defines an element of H' (M),
and wP defines a non-trivial element of HPP(M). In particular
hPP > 1.

o H'(M) =D, - HPI(M). Ag =245 = 2A.

e P" is Kihler. Consider the function ® = log(ZZ) on C"*!. On
any coordinate patch, this defines a Kéhler potential (Fubini-Study
metric).

e The holonomy is in U(n) C SO(2n). I" has pure indices.
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° Tr(cRﬁdzi AdZ = 00Ing.t

5.3.2. The Kihler Cone. Since a Kéhler metric determines a class in
HY(M), we can ask which classes could possibly come from Kéhler metrics.
From the construction via components 975 the data describing the metric
and the class are virtually the same. However, a non-degenerate Riemannian
metric must imply positive volumes for all submanifolds. We can therefore
anticipate that the set of possible classes will be closed under arbitrary posi-
tive rescalings, with boundary walls where certain submanifolds are assigned
zero volume. In other words, we have a “Kihler cone” inside H''(M), of
the same dimension. At the boundary of the cone, some submanifold has

zero volume and we have a singular metric.

EXAMPLE 5.3.4. We meet one such singularity in Ch. 6, the “conifold.”
The resolution involves a blow-up procedure that puts a P =2 S? where the
singularity was. The total resolved space is Kdhler and is given as a subspace
of C*xP'. When the two-sphere vanishes we recover the singularity. In order
to look at near-singular metrics, one can simply pull back the metric from
C* x P!, with P! assigned an area of € (e.g., wp = €i(l + |z|?)"2dz A dZ))

and let € — 0.

Note that in the interior of the Kihler cone, any class in H%!(M) can
be used to deform the metric slightly. Thus h''1 (M) classifies infinitesimal
deformations of the metric that preserves Kéahlerity. Note that complex form
degrees are also preserved, as the Kéhler class is still (1,1) in the original
metric. In the next chapter we will encounter variations that do not preserve

the complex structure.

5.4. The Calabi—Yau Condition

Let us re-examine the Calabi—Yau condition that the canonical bundle
is trivial. Since the canonical bundle is the determinant line bundle (high-
est antisymmetric tensor product) of the holomorphic cotangent bundle, its
first Chern class equals minus the first Chern class of the holomorphic tan-
gent bundle, TM. Triviality of the canonical bundle is therefore precisely
expressed by the equation ¢1(T'M) = 0. Recalling the definition of the first

Chern class from the curvature of a connection, this tells us that the class of

4The notation Trc is explained in Sec. 5.4.
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TrcR is zero as a cohomology class, but not necessarily identically zero as
a two-form. TrcR depends on the connection, and if we are using a Kéhler
metric and its associated connection, then Trc R depends only on the metric
(as in the last bullet above). In fact, since Kahler implies U(n) holonomy,
Trc R = 0 means the vanishing of the trace part of the connection — which

implies SU(n) holonomy.

EXERCISE 5.4.1. It is amusing and illustrative to see how SU(n) imbeds
in SO(2n). We imagine the following taking place at a fiber over a point
in a complex n-fold. In coordinates =¥, y* adapted to a complex structure
(zF = 2% 4+ iy*), we may write J as the matriz with 2 x 2 block diagonal
components (91 [1)) . (The ordering of the basis is x',y*, 22,9, .. ..) Complex
conjugation takes the block diagonal form with blocks ((1) _01) . Let Q) be the
block anti-diagonal matriz with blocks (9{). Finally, let T be the totally
anti-diagonal matriz (Ty; = 0i4jont1). Now suppose A € SO(2n). If A
respects the complex structure, i.e., if AJ = JA, then A € U(n) C SO(2n).
(Verify. Hint: Use the defining relations of the groups. For example, the
transpose AT is given by AT = TAT.) This condition also characterizes
GL(n,C) C GL(2n,R). In this case, A has 2 x 2 block (not diagonal) form

“ " and the complexr n X n matriz corresponding to A can be found
by replacing such a block with the complex number a + ib. (Verify.) We
call such a matriz Ac. Then the complex trace TrcAc and the real trace
Trr A are related by TrcAc = %(TrRA —iTrr AJ). At the infinitesimal level,
then, su(n) C wu(n) is given by the vanishing of the complex trace. Note
that so(2n) already requires that the real part of the complex trace vanishes.
The curvature measures infinitesimal holonomy, so we can state the SU(n)
holonomy condition in real coordinates as —%(Rab)eche = 0. We must recall
now that the Chern classes were defined using complex traces.

The relation to the Ricci tensor is as follows. The Ricci tensor is de-
fined in real coordinates s* as (Rqe)p°ds®@ds® (one verifies that this motley-
indezed object is indeed a tensor). On a Hermitian manifold we have the
relation (Rae)y® = (Rpe)i®Ja"Jyl. This fact, along with R[abdd =0 (the “al-
gebraic Bianchi identity”; the symbol “[...]” means to take the totally anti-
symmetric piece) and the fact that J?> = —1 allows us to equate the condition
of SU(3) holonomy precisely to Ricci flatness. (Verify. Hints: Start with

RapcfJ.C = 0, apply the algebraic Bianchi identity, rewrite curvature terms
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using the Hermitian property above, and verify that the remaining terms are
zero if and only if the Ricci tensor vanishes. Use the fact that the Riemann

tensor is anti-symmetric in its first two [as well as last two] indices.)

It is therefore natural to ask for a manifold with trivial first Chern
class (¢; = 0) if, for a given complex structure there exists a Kahler metric
(the (1, 1)-condition depends on the choice of complex structure) such that
TreR = 0 pointwise. In 1957, Calabi conjectured the existence of such a
metric and proved that uniqueness (up to scaling) would follow. In 1977,
Yau proved existence. This deep theorem tells us that the moduli space of
complex structures is equivalent to the moduli space of Ricci-flat, Kahler
metrics. Metrics of SU(n) holonomy are important because they (imply the
existence of covariant constant spinors and therefore) allow for superstring
compactification (typically, n = 3). Without Yau’s theorem, describing the
space of possible solutions to the coupled, non-linear differential equations
would be nearly impossible. The moduli space of complex structures, on
the other hand, can be studied with algebro-geometric techniques and is

therefore tractable. We will discuss Calabi—Yau moduli in the next chapter.



CHAPTER 6

Calabi—Yau Manifolds and Their Moduli

We discuss deformations of complex structure and the moduli space of
complex structures of a Calabi—Yau manifold. Our main example of the
quintic threefold and its mirror is developed in detail. Singularities and

their smoothings are also discussed.

6.1. Introduction

In this chapter we describe the geometry and structure of the moduli
space of complex structures of a Calabi—Yau manifold, with the express goal
of investigating these in the example of the (mirror of the) quintic hyper-
surface in P4. It may be instructive to refer to the main example Sec. 6.5 of
this chapter periodically while reading it.

From physics, one wants solutions to Einstein’s equation R, = 0, where
R,,, is the Ricci tensor derived from the metric g. On a Calabi-Yau manifold
with a complex structure, we have a unique solution given by the Ricci-flat
metric in that complex structure. Let us look at the space of all possible
solutions. It turns out that we can deform a solution without changing the
complex structure, and we can deform a solution by changing the complex
structure. To see these two types of solutions, let us look at a nearby metric

g — g+ h, and linearize R, in this new metric.

EXERCISE 6.1.1. Assuming R,, = 0 and V*h,, = 0, perform this lin-
earization to find the following equation (“Lichnerowicz equation”) for h:
Ahyy, + 2Ruo‘yﬁha/g = 0. (Here A = V,V®. The exercise is particularly dif-
ficult, since it requires figuring out how to differentiate tensors covariantly,

which we have not explicitly discussed.)

It turns out that on a complex manifold, because the projection to holo-
morphic and anti-holomorphic degree commutes with the Laplacian, we can
separate the solutions to the Lichnerowitz equation into two types. In com-

plex coordinates z® the solutions (ignoring their conjugates) look like hgp or

77
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h,z. The h; represent different choices of the Kahler class. The hy, are a
new type of deformation.

As we have mentioned, a complex manifold has a notion of holomorphic-
ity furnished by the charts. Two manifolds are isomorphic as complex mani-
folds if there is a holomorphic diffeomorphism between them. With different
charts and different transition functions, the same underlying differentiable
manifold may have several complex structures. The hg;, represent deforma-
tions of the complex structure. In this chapter, we investigate the space of
complex structures of a Calabi—Yau manifold. This is called “Calabi—Yau
moduli space.”

More generally, we can consider any complex manifold and try to vary

the complex structure.

EXAMPLE 6.1.1 (T?). The prototypical exzample of a manifold with a
moduli space of complex structures is the complex torus or “elliptic curve,”
C/7Z2, formed under the identifications z ~ z +mA1 +nda for fixed nonzero
(and non-proportional over R) A1, Ao, with m,n € Z. Let us note immediately

that a lattice is not uniquely determined by A1 and Aa, two vectors in R2. In

fact,
(Xl> B (a b) <A1> = <A1>
)\/2 C d )\2 )\2

(a,b,c,d € Z) generate the same lattice if and only if we can write A = UN
for some integral matriz, U. These equations say AU = 1, which means
that A must be invertible. So the lattice is defined only up to GL(2,Z)
transformation. By taking Ao to — )Xo if necessary, the complex number T =
A2/A1 can be chosen to have positive imaginary part, so that only PSL(2,7)
acts on this ratio (“P” since —1 acts trivially). Now every elliptic curve
is isomorphic to one with Ay = 1, since we can define a complex-analytic
isomorphism z — w = z/\1. Then w lives on an elliptic curve with \; = 1.

From here on, we take \y =1 and set T = A\a/\1. T is therefore well defined

b
only up to PSL(2,7Z) transformation 7 — g:j:s, with | ¢ J € SL(2,Z).
c
(This group is generated by T : 7 +— 7+ 1 and S : 7 — —1/7.) Are there
complex-analytic maps between elliptic curves with different nearby values
of T (not related by PSL(2,7)? The fact that there are not will follow from

our general discussion. We denote the elliptic curve by E;.
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7/

7

=

T

FIGURE 1. The moduli space of an elliptic curve.

The parameter T is a coordinate for the moduli space of complex struc-
tures (see Fig. 1). The elliptic curve admits a flat metric (which descends
from the flat metric on C, invariant under the quotiented translations), so
the tangent bundle is trivial. E; is therefore a Calabi—Yau one-fold, and it is
instructive to treat it as such. Note that by(E;) = 2. A basis for the homol-
ogy one-cycles can be taken to be the circles a and b, which are the respective
images from C of the line segments connecting z and z + 1 (resp. z + 7).
The Calabi—Yau holomorphic (1,0)-form is simply dz, which we recall is not

exact. The pairing between dz and the cycles a and b looks like

Ta=§, dz=1= A,

M= §dz =T = Xo.

These integrals are called “periods.” Note that we can recover T from my/m,.
We learn that periods can determine the complex structure. This might seem
obvious, but elliptic curves are not always presented in such a tidy form. A
degree 3 polynomial f in P? determines a curve of genus g = (351) =1 that
has the structure (induced from P?) of a complex manifold. Therefore, it is
holomorphically isomorphic to E., for some 7. 7 must be determined by the
ten coefficients a; of f, and one can calculate the periods to find it.

We will follow a similar procedure for the (mirror of the) Calabi—Yau

quintic in P*.

6.2. Deformations of Complex Structure

For a higher-dimensional Calabi—Yau, the situation is more difficult, and
one typically can’t describe the moduli space globally. Locally, however,

we can look at what an infinitesimal deformation of the complex structure
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would look like (this deforms the very notion of holomorphicity, since the
holomorphic coordinates are chosen subordinate to some complex structure).

Infinitesimal deformations of the complex structure form the would-be
tangent space to the moduli space of complex structures.! There are several
ways of doing this. First, we can note that a complex structure is defined by
an almost complex structure (an endomorphism J : Tk M — Tr M such that
J? = —1) whose Nijenhuis tensor N vanishes. We can look at first-order
deformations of these equations, modulo changes of the local form of the
complex structure associated to coordinate redefinitions. This already has
the appearance of a cohomology class.

It will be convenient to switch first to complex coordinates. Let us fix
a complex structure and compatible complex coordinates z',...,z". J is
diagonalized in these coordinates, so that J%, = 1%, and JEE = —iéag, with
mixed components zero. (Note that JEE must be the complex conjugate of

J%, since J is a real tensor.) Now send J — J + €.

EXERCISE 6.2.1. Linearize the equation (J +¢€)? = 0 to get Je+eJ = 0,

and conclude that the pure indices of € vanish.

One can linearize the equation N = 0, where N is the Nijenhuis tensor
associated to J + ¢, to conclude de = 0. In this equation, €, = (eagaa)dég is
interpreted as a (0, 1)-form with values in the holomorphic tangent bundle,
so its action as a one-form on a (anti-holomorphic) tangent vector produces
a (holomorphic) tangent vector. There is a conjugate equation for €,ngi—nol

as well.

EXERCISE 6.2.2. Perform the linearization mentioned above. Hint: It is
convenient to take the two input vectors X and Y for the Nijenhuis tensor

to be the holomorphic vectors 0, and Oy.

If 2’ represents new (not necessarily complex) coordinates and M =

( gf,) is the Jacobian matrix, then J’ = M ~'JM, where we have used ma-
trix notation. Infinitesimally, if x’ is close to z then it is generated by a
o)
- ox’
J' = J + 0vnol + Oanti—hol-

vector field v* and M ij = 6’3 + 27”;. In complex coordinates, this means

EXERCISE 6.2.3. Check this.

1t could happen that an infinitesimal deformation makes sense but that no finite

deformation can be formed from it. For Calabi—Yau manifolds, this will not be the case.
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So (focussing on the upper holomorphic index, for example), coordinate
transformations change J by dv. We conclude that infinitesimal deforma-

tions of the complex structure are classified by the cohomology group
Hz(TM).

By the Cech-Dolbeault isomorphism, this vector space has an interpretation
in Cech cohomology as H'(T'M). This gives vector fields over overlaps along
which we infinitesimally twist the overlap functions to produce a deformation

of the original complex manifold.

EXAMPLE 6.2.1. If M is a Riemann surface with no infinitesimal auto-
morphisms (so, no holomorphic vector fields, H*(TM) = 0, which is true for
g > 2) then the Grothendieck—Riemann—Roch formula tells us (see Ch. 3)
that dim H(TM) — dim HY(TM) = 3 — 3g, so dim HY(TM) = 3g — 3.
The moduli space of genus g > 2 curves, My, has dimension 3g — 3. When
g = 1, dim H(TM) = 1 (it is generated by the global holomorphic vec-
tor field 9,), so 3 —3g = 0 = dim HY(TM) = 1. Indeed, we saw that
the moduli space was one-dimensional, coordinatized by 7. When g = 0,
dim H(TM) = dim H°(O(2)) = 3, 50 3 —3g = 3 = dim H(TM) =0, i.e.,

P! is “rigid” as a complex manifold. The moduli space is a point.

EXAMPLE 6.2.2. If M is a Calabi-Yau three-manifold, the canonical
bundle (the bundle A3T* M of holomorphic (3,0)-forms) is trivial; hence so is
its dual AT M. Since we have wedge pairing A - TMQA?*TM — A3STM =1,
we learn that TM = (A2TM)* = A*T*M. So HY(TM) = H'(A*T*M) =
H?Y(M), and the Hodge number h>' therefore counts the dimension of the
moduli space of complex structures of a Calabi—Yau.

There is a more hands-on way of seeing these isomorphisms. Let
Q = Qupedz®dz’dz¢ be the holomorphic three-form (in some patch). Then
we can map (€%c0,)dz° to a holomorphic (2,1)-form €%eQup.dzedzbdzC.

We now have a complete understanding of the Hodge diamond of a
Calabi—Yau threefold.

Another way of seeing the space H%(TM ) arise is by considering defor-
mations of the O operator by a vector-valued one-form: 9 — 0 + A. Lin-
earizing (0 + A)? = 0 in A gives A = 0, and the same arguments involving

coordinate transformations can be made.
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6.3. Calabi—Yau Moduli Space

6.3.1. Unobstructedness. So far, we have constructed the space of
infinitesimal deformations. In doing so, we neglected quadratic terms in
our deformation parameter. To be sure that a finite deformation exists, we
must solve the equations without truncation and show that the solution, if
written as a power series of solutions at each finite order, converges. This is
the content of the theorem of Tian and Todorov.

If we look for finite deformations of & we need to solve (9 + A)? = 0 for
finite A. This amounts to the equation A + %[A, A] = 0. If we write A as
an expansion in a formal parameter, A = At + Ast? 4 ..., then equating
powers of ¢ gives the equation (above) 9A4; = 0 for n = 1 and

_ 1l

OAn + 5 ;[AZ, Ap] =0
for n > 2. It is possible to show that the sequence of equations can be solved
inductively (i.e., A, = A, 1) in a given gauge choice, using the dd-lemma
that comes from the Kéhler form. We refer the reader to the literature (see
Ch. 40) for more details.

EXAMPLE 6.3.1. The zero set Q of a degree 5 polynomial p in P* is
a Calabi—Yau manifold, since c1 = 0 follows from the adjunction formula
c(Q) = (14+2)°/(1+5x). We discussed early on that the coefficients of p can
be thought of as complex structure parameters. Indeed, the exact sequence
of bundles over @,

0—TQ — TP* — OB)lg —0
(recall Ngps = O(5)|q ), leads to the long exact sequence (on Q)
HY(TQ) — H(TP') — H(0(5)|Q) — H'(TQ) — H'(TP").

The ends of this sequence are zero, since () does mot have automorphisms
if smooth and since H'(P*) = 0.2 As a result, we can express H'(TQ) as
H°(O(5)|q)/H(TP*). Now H°(O(5)|q) are precisely degree 5 polynomials
not vanishing on Q — so p is excluded, and there are 126 — 1 = 125 of
them — and H(TP*) = 5% — 1 is the 52 — 1 = 24-dimensional space of

2This can be shown to follow from the long exact sequence associated to the Euler
sequence restricted to Q: 0 — O — O(1)®° — TP* — 0.
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automorphisms of P* that must be subtracted. In total, we learn h*' = 101,
as previously claimed.

Mirror symmetry associates to the quintic a “mirror” C~2, whose Hodge
diamond is “flipped”: K (Q) = h21(Q) = 101, and h*1(Q) = K1 (Q) = 1.
We will construct the family of@ by quotienting a one-parameter subfamily
of the different Q’s by a discrete group and then taking care of singularities

coming from fixed points.

We therefore expect an honest moduli space M s of complex structures
of M, of dimension h?!(M). A natural set of questions now emerges. Can we
find coordinates on moduli space? Is there a natural metric? Is it Kahler?
Can we find the Kéhler potential? Is the K&hler potential associated to a
line bundle? Does this line bundle have a natural interpretation, and can we
find its metric? The answer to all of these questions is Yes, as we presently

learn.

6.3.2. The Hodge Bundle. In different complex structures, the de-
compositions of the tangent (or cotangent) bundle into holomorphic and
anti-holomorphic parts are different. Therefore, what was a closed, holo-
morphic (n,0)-form in one complex structure will no longer be of type (n,0)
(nor holomorphic) in another complex structure. However, the form will still
be closed, as the exterior derivative d is independent of complex structure.
In fact, in this description it is easy to see that, to linear order, a (3, 0)-form
can only change into a linear combination of (3,0)- and (2, 1)-forms. The
change can be measured by H>!, which is what we already know.

We learn that the cohomology class in H? representing the holomorphic
(n,0) form must change over the moduli space of complex structures, M.
In fact, H? forms a bundle over the moduli space, and the Calabi-Yau form
is a section of this bundle, its multiples thus determining a line sub-bundle.
The bundle of H3 can be given a flat connection, since we can use integer
cohomology, which does not change locally, to define a local trivialization of
covariant constant sections. (Specifying the covariant constant sections is

enough to define a connection.)

EXAMPLE 6.3.2. Consider the family M; of zero loci of the polynomials
Po=X%2—t=01nC, ie, My = {X = ++/t}. Note that when t = 0,
P, = X2, and P, and dP; are both zero at X = 0, so this is a singular

“submanifold.” We therefore restrict our “moduli space” to Cy\ {0}. Overt
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we have the “cohomology bundle” with fiber HO(M;) generated by functions
equal to 1 on one point and 0 on the other. These functions (sections) are
flat in the connection described above. A flat bundle has no curvature, but
the vectors can be rotated when transported around a non-trivial loop. Such a
rotation for a flat bundle is called a “monodromy.” (In physics it is known as
a “Wilson line.”) On C;\{0} there is a non-trivial loop t — €*™@t, x € [0,1],
which induces an automorphism of homology and cohomology following from
+v/t — FVt. Therefore the total space of the cohomology bundle can be
described as RY x R x C?/{((r,0); (v1,v2)) ~ ((r,0 4 27); (va,v1))}, where
t =re,

We call such a cohomology bundle a “Hodge bundle,” and such a connec-
tion the “Gauss—Manin connection.” The Hodge decomposition (at weight
three, for threefolds) of M will change over Calabi—Yau moduli space; we
study, therefore “variations of Hodge structure.” In our studies, we will
find that the line bundle determined by the Calabi—Yau form is the Kéhler
line bundle, and a natural metric on this bundle will give rise to the Kahler
potential on moduli space, from which physical quantities are determined.
(In physics this line bundle is called the “vacuum line bundle.”)

Now the Calabi-Yau form, defined up to scale, wanders through H? as
we vary the complex structure. In fact, its position as a line in H® (or point
in PhS_l) can be used to describe the complex structure. Note that this
description will be redundant, since we know we only need h%! = %h?’ -1
parameters. (Here h® = b3.)

Now let M be a Calabi-Yau threefold (or any odd-dimensional Calabi-
Yau manifold), and let H denote the Hodge bundle over My, with fibers
H3(M;C). There is a natural Hermitian metric on H derived from the inter-
section pairing of three-cycles. Let 6,7 € H3(M; C). Define (6,1) =i [ OAT.
Note this is Hermitian since (n,0) = (6,n)*. In fact, the anti-symmetry
of the intersection pairing on H3(M;Z) means that we can find a “sym-
plectic basis” of real integer three-forms oy, (%, a,b = 1,...,h3/2, such
that (g, ) = (8% 3°) = 0, with (ag, 3°) = i6,” (this is akin to finding
real and imaginary parts of complex coordinates). This basis is unique up
to a Sp(h®;Z) transformation (i.e., up to preservation of the intersection
form). Dual to this basis we have a basis (A%, By) for H3(M,7Z) such that
S g b = 6%, fBa B = 6,°, all others zero.
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6.3.3. Periods and Coordinates on Moduli Space. Since we have
a basis for cohomology, we can expand the Calabi—Yau form € as 2 =
2%, — wpB®, for some 2% wy, a,b = 1,... h3(M)/2 = h®>Y(M) + 1. The
coordinates z* and wyp will change as we move in Calabi—Yau moduli space,
since ) will change. In fact, as we have mentioned, since the location of (2
in H3(M) determines the complex structure, the 2* and w, determine the
point in moduli space — even over-determine it, as can be seen by counting
parameters (moduli space is h%!(M)-dimensional).

It is immediate from the dual basis relations that z% and w, can be

expressed in terms of the “period integrals”

za‘ :/ Q7 wb :/ Q
a By

Therefore we can express the complex structure (redundantly) in terms of
periods fCQ of the Calabi—Yau form. This is exactly what we did in de-
scribing the elliptic curve earlier in this chapter.

In fact, it can be shown that the z* alone locally determine the complex
structure (see references in Ch. 40). We can therefore imagine solving for
the wp in terms of the z%. Then the 2% are only redundant by one extra
variable, but there is also an overall scale of € that is arbitrary, and it is

often convenient to keep the 2% as homogeneous coordinates on M.

6.3.4. The Vacuum Line Bundle. Since the Calabi-Yau form is
unique only up to scale, it defines a complex line in the Hodge bundle,

i.e., a line sub-bundle. We can define a natural metric on this line bundle
h= Q) = (2,9) :i/Q/\ﬁ.

If z is a coordinate on moduli space and f(z) is a holomorphic function,
then Q — e/())Q defines the same projective section, but h — hef ef. We
see that h indeed transforms like a Hermitian metric on a line bundle in a
new trivialization defined by e/ (never zero). We saw such a phenomenon

previously, where we noted that
K = —log||Q|®> = —log/Q/\ﬁ

(up to an irrelevant constant) transforms as a Kahler potential,

K — K — f — f. We therefore can define a metric on moduli space by

9.5 = 005K,
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and this is well defined no matter the gauge choice of €, since f + f is killed
by 00.

We are not done yet. We already decided that the tangent space to
moduli space is H*!(M) and there is a natural Hermitian pairing given by
the intersection form (or integration). As well, we can choose harmonic (=
g—harmonic) representatives 6, 1, and compute their inner product as forms
using the unique Ricci-flat metric in that complex structure. This metric is
called the Weil-Petersson metric. Or, one can look at the variation of the
Ricci-flat metric corresponding to the chosen directions and compute the
inner product using the inner product on metrics as sections of Sme(T]ng ).
Fortunately, as we will show, these metrics and the one defined from K above
are the same!

To see the metric in more detail, let us write the variation of € with

respect to a coordinate direction 2 as

0,2 = (3,0) piece + (2,1) piece
(6.1) = kol + Xa,
where there are no other terms since the variation of a holomorphic (1,0)-

form dx has a (1,0) and a (0, 1) piece. Then, keeping track of form degrees
and using Eq. (6.1), one finds,

005K :z%P;%: QA%ﬂ

1 = == 1
= ————— [0,97NQ [ QNGO+ ——— [ D ND;
UQAQP/ / b +fQAQ/ b
fXa/\XE
fana’

EXERCISE 6.3.1. To check the claim, write the variation of the Ricci-flat

metric corresponding to the ath direction as
0g 1 =
600 = [ =L ) =——_0r° ~
(0a9)m (aza)wj Q|2 7" (Xa pov)

v 0
(07 Xa apr = —32p" (525 )-
We have answered all of our questions about moduli space. It is Kéhler,
with Kéhler potential associated to the metric on the vacuum sub-(line)

bundle of the Hodge bundle. It is easy to write down explicitly.
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Eq. (6.1) is useful in deriving identities by comparing form degrees.

Consider: [ Q% = 0, since there are no (3, 3) pieces. This means
(2% — w8, @ = Dewaf3?) = we — 20wy = 0,
where 0, = %. This says that w, = 2%0.w, = 0¢(2%Ww,) — w,. Define
G = z%w,.

Then we see 2w, = 9.G, which means w. can be derived from G. Summing
with z¢ on both sides, we get z°0.G = 2G, so G is homogeneous of degree 2

i the z%.

EXERCISE 6.3.2. Show that h = e & = i[Q A Q is given by

i/Q/\ﬁzi(Eaé)ag—z“ 2G).

6.4. A Note on Rings and Frobenius Manifolds

We learn from the study of topological field theories that physical opera-
tors correspond to tangent vectors on the moduli space of theories, since we
can use them to perturb the Lagrangian. Since these operators form a ring,
this says that there is a product structure on the tangent space to the moduli
of topological theories. Such a structure, with a few more requirements such
as compatibility with the metric and a direction corresponding to the iden-
tity operator, defines a “Frobenius manifold.” In the case of Calabi—Yau
manifolds, we saw two types of deformations, hence two types of moduli
space (and two Frobenius manifolds), Kéahler and complex. The Kéhler de-
formations form a ring defined by the “Gromov—Witten invariants,” which
will be discussed later in the text (the “A-model”). The complex deforma-
tions (the “B-model”) form another ring, which we now discuss. When M
is the quintic threefold, mirror symmetry relates the Kéhler ring/Frobenius
manifold (A-model) of M (a quintic in P*) with the complex ring/Frobenius
manifold (B-model) of M, another Calabi-Yau. For this case, both rings
are commutative.

The ring structure on the B-model can be defined with a symmetric
three-tensor ®,;,. on moduli space. Using a metric to raise the last index,
such a tensor defines a map TX ® TX — TX, i.e., the indices are the struc-

ture constants of the ring. Thus, given three tangent vectors or elements in
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H?Y(X) = HY(TX), we need to produce a number. Let y, be a basis for
HYTX),a=1,...,h%(X). Then

oo = / ( Q™ A A XE) AL
X

which can be explained simply as follows. x, is a (0, 1)-form with values in
the tangent bundle. The wedge product of three x’s is therefore a (0, 3)-form
with values in AT X = 1, where in the formula, the holomorphic three-form
(with indices) was used to map A*T'X to the trivial bundle 1, by contraction.
After doing so, we are left with a (0, 3)-form, which we wedge with €2 to get
a (3,3)-form to be integrated.

We now show that the Frobenius structure can also be derived from G.
This function, the “prepotential,” encodes all the data of the topological
theory, and mirror symmetry is most often shown by demonstrating the

equivalence of prepotentials.

EXERCISE 6.4.1. Let x4 be the (2,1) piece of 0,8 (see Eq. (6.1)), con-
sidered as an element of H'(TM). Show

Ra,b,c = 8aabacg-

We learn that every geometric structure on moduli space is encoded in

the function G, which is itself determined by the period integrals.

6.5. Main Example: Mirror Symmetry for the Quintic

In this section, we apply our knowledge of moduli space geometry to
gain a complete understanding of the moduli space in the simplest threefold
example. The differential equations, along with the mirror program, lead to
striking mathematical predictions whose verification occupies much of this
text.

While we shall only study this one example, it should be mentioned
that all of the techniques we use can be generalized to arbitrary Calabi—
Yaus inside toric varieties. Though the level of complexity grows in general,
the crux of mirror symmetry is well captured by the quintic. (The quintic
threefold will be revisited in Sec. 7.10.)

6.5.1. The Mirror Quintic. Let M be a quintic hypersurface in P*,
meaning the zero locus of a homogeneous, degree five polynomial, in other

words the zero-set of a section of Ops(5). We saw in Example 6.3.1 that
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there were 101 independent (up to PGL(5,C)) parameters describing the
polynomial, which we can interpret as h%!'(M) = 101 complex structure
parameters. The (1,1)-form on P4 (e.g., from the Fubini-Study Kéihler
metric) Poincaré-dual to a hyperplane descends to the single non-trivial
generator of H!(M).3

The “mirror quintic” is another Calabi—Yau manifold M with reversed
Hodge numbers, i.e., hl’l(ﬂ) =101 and hQ’I(M) = 1. It can be constructed
as follows. Consider a one-dimensional sub-family of quintics defined by the
equation Y, a; X? —5¢ [, X; = 0 for some coefficients a;, i = 1,...,5 and 9.
Note that each member of this family has the property that it is preserved
under X; — A X;, where ) is a fifth root of unity and 3, k; = 0 (mod 5).
In fact it is the largest sub-family on which this group G of transformations
acts. In fact, when one remembers the scale invariance of P* one sees that
G = (Z5)3. We will define M by considering the quotient

M = <Z a; XP — 5¢HXZ->/(Z5)3.

Note that the a; can be absorbed by a diagonal PGL(5,C) action, so we
momentarily set a; = 1. In the next sections, it will be convenient to reinstate
the a; as parameters, albeit redundant ones. As we will see, G = (Zs5)> has
fixed points, which means M is singular unless we resolve the singularities
somehow. (We will defer doing so, however, until the end of the chapter.)

Consider g1 € G, g1 : (X1, X2, X3, X4, X5) — (AX1, Xo, X3, X4, M X5),
A5 = 1. g1 generates a Zs subgroup of G and clearly fixes the points in M
where X1 = X5 = 0. The fixed curve C defined by

X, =X5=0, XS+ X2+ X7 =0,

is a degree 5 curve in P22 {X; = X5=0} and therefore has genus (5;1) =0,
x(C) = —10. There are other fixed curves and points in M as well, and
their resolution produces new H! classes, as we shall see. All told, after
resolving to get a smooth manifold, hl’l(ﬁ) = 101 and hQ’I(M) = 1. Thus
1) is the only parameter describing complex variations of M.

In fact, % is slightly redundant, since the holomorphic motion
X1 — AX1 maps ]T/[/d, to M,w. We learn that only 1° is a good coordinate

for the (complex structure) moduli space of M.

3Note here that we use M to denote any manifold in the family of manifolds. We will

add a label if a particular member of a family of manifolds is needed.
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M can have another type of singularity, namely, M is singular if
P =0 and dP = 0, where P = Y, X? — 5¢ [, X;. Setting {?TP; = 0 gives
X} =1X1X2X3X5. Multiplying by X4 gives X = 1 [ X;, and the same is
true for the other X;. Thus >, X7 —5¢ [], X; = 0 and all X} must be equal.
This means, modulo action by G, that all X}, = 1, and then X = ¢ [[ X;
implies ¢ = 1 (or really ¢° = 1).

EXERCISE 6.5.1. Investigate the neighborhood of (1,1,1,1,1) by expand-
ing monhomogeneous coordinates around 1 when v = 1 (remember scale
invariance) and conclude that the singularity point is a conifold singularity.

(See Sec. 6.6 later in this chapter before attempting.)

Finally, ¥ — oo is the singular variety X; ... X5 = 0, which is the union
of five P*’s ({X; = 0}), meeting along lower-dimensional projective spaces
defined by common zero sets of the coordinates. The neighborhood of this
singularity (¢ large) will be important in the sequel.

Now consider the Hodge bundle H for M and its associated Gauss-
Manin connection and Hermitian metric. A symplectic basis can be written

(a1, as, B, 3?%), with dual basis (A!, A%, By, Bs). Since the «, 3 form a basis

for H3(M), we can express the Calabi-Yau form Q at a point in moduli

space as a linear combination:
O =zlag + 22as — wlﬁl — w262

for some z%, w,. It is immediate from the dual basis relations that

z“:/ Q, wb:/ Q.
a By

Therefore we can express the complex structure (redundantly) in terms of
periods [, Q of the Calabi-Yau form.

EXAMPLE 6.5.1. [t is instructive to recall the elliptic curve, Er = C/(1,T).
The Calabi—Yau form is Q = dz, and a symplectic basis of cycles is a, the
horizontal circle from 0 to 1, and b, the circle from 0 to 7. Dual to these we
have o = dx — (11 /72)dy and B = (1/m2)dy (Check). Note the orientation
is such that anNb = fa A B = +1. Now we can reconstruct the coordinates
for moduli space from faQ =1 and be = 1, whose ratio is 7. Consider
the family of elliptic curves X3 +Y3 4+ Z3 — 3 XY Z = 0 parametrized by
Y. In this case, Q and o and B are Y-dependent, and T can be recovered

from the quotient. In fact, one can write down differential equations in
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governing the periods fc Q, and T can be recovered from the solutions. We

will do exactly the analogue of this for the mirror quintic.

6.5.2. The Calabi—Yau Form. First let us write down the Calabi—
Yau form explicitly. Define the form Z on C® by Z = >, (—=1)kdX; A --- A
XiA---NdXs5 (note that we replace d Xy by Xj). This form is not invariant
under scalings, but %E, where P is some degree 5 polynomial, is invariant

and therefore is well defined on P* (though singular along the quintic P = 0).

EXERCISE 6.5.2. (easy) 7 fv 1dz = 1, where « is a circle around the

origin. Compute % 55% %du A dv where 7, is a contour around the plane

u=0 in C?. (Answer: dv)

Now let vp be a small loop around P = 0 in P*. Then

-
P

is a well-defined holomorphic (3,0)-form on P = 0. The reasoning is simple

Yl

from the exercise above. Since P can be considered as a coordinate in a
direction normal to P = 0 (as long as this variety is non-singular), we can
rewrite d Xy, say, as (%) dP , and the dP/P gets integrated to a constant.
Therefore,

O— Xsd X1 NdXo NdX3
N
oP
In nonhomogeneous coordinates, one can set X5 = 1 above and replace X;
by z;, i =1,...,3, as coordinates on P = 0 (X is determined by P = 0.)

Let I'; be a basis for Hz(M). Define the periods

(6.2) QE// =
I ’YPP

We will find differential equations for £2; in terms of the a; and .

6.5.3. The Picard—Fuchs Differential Equations. By using simple
scaling arguments, we will be able to derive differential equations obeyed by
the ;. It will turn out that these are enough to determine all of the periods
in the neighborhood of a singular point in complex structure moduli space
(¢ — o0). Such differential equations for the periods are called “Picard—

Fuchs” equations.
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Recall that M is defined by quotienting the zero set of the polynomial
> aiX? —5¢ [[; X; by a (Zs)? action (then resolving the singularities). By
the explicit form of the €2; given in Eq. (6.2), we have the following relations:

(1) Qi()\al,...,kag,,)@) = )\_IQi(al,...,ag,,l/J). Let (81,...,86) =
(ai,...,as,v). Taking % gives (at A =1)

0
%:Sja—sj‘l—l QZ:O

This says that the €2; are homogeneous of weight —1 in the coordi-
nates.

(2) Qila,...,Naj,..., \%as,¢) = Qi(a1,...,a5,1), as the change
can be absorbed by the PGL(5,C) transformation X; — AXj,
X5 — A1 X5. Now 8% at A =1 gives

0 0
(aia—ai — a5a—a5) Q”L = 0.

This means ); is a function of a; ... as.
(3) The relation (X71)°...(X5)° = (X1 ... X5)® gives the equation

Note that the toric nature of P4 was crucial here, as we used scalings in our
argument. The five powers of 1 in the product of the 8%1 are ultimately due
to the weights of the C* quotienting action. In fact, the Picard—Fuchs equa-
tions for Calabi—Yaus in toric varieties can be derived from the toric data
and provide many interesting examples of mirror symmetry calculations. We
will not pursue such generalities here, however.

ai...as

The first two equations say that ; = %wz( EDE ). Therefore, we put

z = % and rewrite the last equation.

1
1
[8a1 e 8% - (581/,)5] @w(z) = 0.
Now on a function of z, we have 9,, = a%az = aii@, where © = zdilz. So we

can replace Jy, . ..0q5 by L_@5.

ai...as



6.5. MAIN EXAMPLE: MIRROR SYMMETRY FOR THE QUINTIC 93

EXERCISE 6.5.3. Show %&bWﬂz) = —W@@ + N)f(2). Show,
using this commutation relation, that
1) Lol s045).. 04 1)
5¢ 5¢w- (5¢)6 w.
Putting things together, we get

[0° = 2(50 +5)...(50 + 1)] w = 0.
Using z(© + 1) = Oz, we get
©[0% —52(50 +4)...(50 + 1)] w = 0.
We now focus on the equation
(0% —52(50 +4)...(50 +1)] f = 0.

Define £ to be the differential operator in brackets. Then L£f = 0. It can
be shown that the periods obey this equation, factored from the fifth-order
equation that precedes it. The reason the periods obey a fourth-order equa-
tion is as follows. The first derivative of Q lives in H>? @ H?!; the second
mixes with H'? as well. Clearly, the fourth is expressible in terms of lower
derivatives.

Due to the logarithmic derivatives in £, the solutions have singularities.

EXAMPLE 6.5.2. Consider ©3f = 0. A basis for solutions is
1 1,1
=1 =1 = _(—1nz)?
fo=1, =5z fo 2(2m‘ nz)%,
where fo is a basis for Ker®, f; for Ker©2/Ker©, etc. These solutions

undergo a monodromy transformation, due to the branch cut: fi(e*™z) =

111
fi(z) + fo(z), etc. The monodromy matric M = [0 1 2| is mazimally
0 01

unipotent, meaning (M — 1)* does not vanish until k = 3, the order of the

differential equation.

At z = 0 our equation looks like ©* = 0, and we expect our monodromy
structure to be maximally unipotent, with one invariant holomorphic solu-
tion, as in the example. Let us look for a holomorphic solution by power
series methods. Write fo = > o7 ¢,2". Noting ©z" = nz", then Lfy = 0

leads to the recursion

nie, =50Bn—1)+4)...(5(n—1)+1)cp_1.



94 6. CALABI-YAU MANIFOLDS AND THEIR MODULI

We get ¢, /cn_1 = (5n)!/[n°(5n — 5)!], whence
A (5n)!  T'(5n+1)
") (D(n+1))>
In fact, we can write a family of solutions f = Y ¢(n, p)z" ", where
P
c(n,p) = T(5(n+p)+1)/T(n+p+1)°. We put f, = Z%! (ﬁ%) flp=o0-
Then fj is our holomorphic solution, and the fy<3 have (In 2)F singularities

(f4, of course, is a linear combination of fy,..., f3). Note that the f; are
not themselves periods of integral cycles. The cycle not vanishing as z — 0
must correspond to the holomorphic solution. Then, Poincaré duality tells
us about the leading singularities of the periods of three other cycles, so the
three other periods look like fi + less singular solutions. Finally, these addi-
tional terms are fixed by requiring the periods to have integral monodromies

around the singular points of moduli space.

6.5.4. Mirror Symmetry. The beauty of mirror symmetry comes from
the interpretation of our function G of the coordinate z (we haven’t yet said
how to relate the solutions f,, to the periods z* and w,). The philosophy
is that M and M define the same physical theory (for why, see the physics
chapters!). The measurable quantities of the physical theory are the triple
pairings rqp.c, defined through G by its derivatives (in our example, there is
only one coordinate for moduli space).

The interpretation of the k44 . for M is in terms of holomorphic maps
(from genus 0 curves) into M, which meet the three divisors dual to the
H"b! classes corresponding to the differentiated directions in moduli space.
The first approximation to this quantity is by degree 0 maps, or points in
M.* The number of points intersecting three divisors is equal to the triple
intersection. Higher-degree maps correct this “classical” intersection, which
is why the ring defined by the k4. is called the “quantum cohomology
ring.” Roughly speaking, the higher-degree maps are weighted by e~Are?,
so the expansion we derive is valid near where M has large radius, which
corresponds to being on moduli space near where M is maximally unipotent
(z = 0), also called “large complex structure.” Mirror symmetry allows us
to compute this ring with the equivalent, mirror model on M , and extract

these numbers of curves (“Gromov-Witten invariants”).

44Degree,” here, is the class of the image curve, written as d[P'], where [P!] generates

the one-dimensional H"'(M).
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One writes I = G/(2°)? as a function of ¢t = t(z) = 2!/2° (recall that
the z® were homogeneous coordinates on moduli space). It has the form (up
to some factors of €™) F = 3t3 + lower order + Fist(q), where ¢ = ™

and Fi,g represents the degree d > 0 curves. Then

Finst = Z qud-
d>0
A decade of developments in mathematics has been geared toward the proper
formulation and computation of the K4. Many of the remaining chapters of
this text will describe these calculations.

As for the approach via differential equations, we note only that the
manipulations we have performed can be done (with varying computational
ease) in any toric variety in which a Calabi-Yau can be expressed as a
hypersurface or a complete intersection of such. A version of mirror symme-
try can be performed for non-compact Calabi-Yaus as well (“local mirror
symmetry”). Some of these non-compact Calabi—-Yaus are local models of
resolutions of singularities. We conclude this chapter with a discussion of
several such examples, as well as the conifold singularity (at z = 1) of M ,

which we encountered earlier.

6.6. Singularities

We turn now to a brief discussion of singularities in Calabi—Yau man-
ifolds. Singularities and their smoothings are not just important for un-
derstanding the mirror quintic; their local geometries often have interesting
physical interpretations as well.

There are many different types of singularities and ways of smoothing
them. In this section, we will consider just a few. In the case of a Calabi-
Yau singularity, we are directed somewhat in our smoothing by the condition
that we want the smooth manifold to have trivial canonical bundle (hence
no “discrepancy” in the canonical bundle — such resolutions are thus called
“crepant”). The conifold singularity appears frequently and with import in

string theory, so we turn now to a discussion.

6.6.1. The Conifold Singularity. The conifold singularity refers to

a singular point in a threefold that locally (in some coordinates) looks like

XY -UV =0
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in C*. Note that the polynomial p = XY — UV is zero at the origin, and
dp =YdX + XdY — VdU — UdV = 0 there too, so the origin is singular.
This can take other guises. For example, if A = (X+Y)/2, B=i(X-Y)/2,
C=i{U+V)/2, D= (U-1V)/2, the conifold looks like

(6.3) A2+ B*+C*+D*=0,

which is known in the mathematical literature as an “ordinary double point”

or “node.”

EXAMPLE 6.6.1. Show that at z = 1 the mirror quintic M has a conifold
singularity at the point (1,1,1,1,1).

Let us investigate the region around the singularity more closely. Set
7 = (ReA,Re B,ReC,Re D) and § = (Im A,Im B,Im C,Im D). Set r? =
72 + 42 and let us consider 72 > 0, fixed. The real and imaginary parts of
Eq. (6.3) say

P -2 =0, Z-y=0.

The first says that 22 = %TQ, so Z lives on an S3, while the second says that
i/ is perpendicular to Z with ¢2 = %7“2. Thus for a fixed 72 > 0 and given z,
there is an S? of choices for . Thus we have an S? fibered over S3. In fact,
all such fibrations are trivial, and we get S? x S3. At 2 = 0 we only have
Z =1y =0, a point. In total, a neighborhood of the conifold locus looks like

a cone over S? x S (see Fig. 2).

A B C

3 3 3

S S S

F1GURE 2. A. The conifold singularity. B. Its deformation.

C. Its resolution.

Deformation: We can deform the defining equation of the conifold so

that it is no longer singular at the origin. For example, put

XY -UV =e.
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As this smoothing of the singularity results from changing the polynomial,
it corresponds to the desingularization arising from deforming the complex
structure (e.g., z # 1 for M ). For simplicity, let us use the form of Eq.
(6.3) for the conifold and change the right-hand side from 0 to R?, with R
a positive real number. Then the analysis proceeds as before, only now we
have
2 —i? = R, Z-y=0.

Again, we have a family of S? x S3, only this time the minimum radius 53
is R, when 3y = 0.

In fact, if we write =7 / \/m , then the defining equations become

—,

=1, z-§=0.

In fact, this is the equation for the total space of T%53, with « : T*S% — §3
given by (ﬁ?, g) — 7. To see the relation, replace dx; by y; in d of the equation
f=R? (i.e., df =0), where f = 2% +--- + 22 — R2

Resolution: Another way to remove a singularity on a space X is to con-
struct a smooth space X which looks exactly like X away from the singular

points.

EXAMPLE 6.6.2. The Blow-up of a Point. Consider C2. We can consider
a new space C? where the origin is replaced by a new set as follows. Any
smooth path toward the origin contains an extra piece of data in addition
to its endpoint, namely the line tangent to the path at the origin. This line
defines a point in [A1, \a] in PL. (You can consider the same construction in
R2, where you remember the slope of the path at the origin — the resulting
space sort of looks like a spiral staircase.) Formally, define C2c C?2x P! by
the equations

X1 = Xo)1.

Note that when (X1, X2) # (0,0), [A1, A2] is completely determined (remem-
ber scaling), but when X1 = Xo = 0, the \; can range over all of P*. The
map 7 : (X1, Xo;[A1, A2]) — (X1, X2) from C2 to C2? is therefore an iso-
morphism outside the origin, while m=1((0,0)) = P, This set is called the
“exceptional divisor.”

This procedure generalizes to C* with P~ as an exceptional divisor,
where we use the equations X;\j = X;\;. In addition, we can blow up along
a subvariety by considering slices in the normal direction, in which case the

variety appears as a point.
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To resolve the conifold, first note that the first form of the conifold can

X U
be presented as det <V v = 0. We now resolve the singular point by

considering a new space Z C C* x P! defined by

X U A1 .
= 0; ie.,
V'Y A2

(6.4) XA +UX =0, VAM+YX=0.

Note that by sending (X, Y, U, V; A1, A2) — (X, Y, U, V) we have a map from
Z to the conifold.

EXERCISE 6.6.1. Show that this map is an isomorphism outside of the

oTigin.

The singular point at the origin 0 has been replaced by 771(0) = P! =
S2. In this new space, therefore, we have an extra element in the homology
class Ho, and since it is defined by algebraic equations, we in fact get new
classes in h?? and therefore h! (by Poincaré duality) as well. If we vary
the size of the blow-up P! and let it shrink to zero, we recover the conifold
singularity.

The space Z has another description. Let us cover Z by two sets, A =
{\M # 0} and B = {2 # 0}. On A let u = A\y/\;. Then Eq. (6.4) implies
X = —Uu, so (u,U) are coordinates on A. On B we have v = A\;/A\2 and
U = —vX, so (v, X) are coordinates on B, and on the overlap U = —u~1X
tells us that these coordinates form Opi(—1). Including V' and Y shows us
that Z is the total space of O(—1) @ O(—1). This is perhaps the most basic
“local” (non-compact) Calabi-Yau threefold.

The process of varying a complex structure from a smooth Calabi—Yau
so that a conifold singularity appears, and then resolving that conifold so

that a new S? appears is called a “conifold transition.”

6.6.2. Calabi—Yau Surface Singularities. Singularities within a Ca-
labi—Yau surface (two—fold) are classified by finite subgroups I' of SU(2), and

have a local description as C2/T.

0 .
EXAMPLE 6.6.3. LetI' = Zy 1 be generated by <§ §_1> , € = e2mi/(n+1)

We can coordinatize C?/T' by invariant polynomials v = X"t v = Y+l

and t = XY. These obey the relation uv — t"*1 = 0, so these singularities
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can be described by the equations uv = t" 1 in C3. These are called the A,

singularities.
The McKay correspondence says that there is a relationship,
finite subgroups of SU(2) «— simply laced (i.e., ADE) Lie algebras,

which is described as follows.” Let V; be the irreducible representations
of I' C SU(2). Let R be the representation induced by the fundamental

representation of SU(2). Decompose

Vi® R @ Cz‘j . V]
J

Then the McKay correspondence states that Cj; is the adjacency matrix of
the affine version of the associated Lie algebra. Further, the resolution of
C2/T has, in its middle homology, spheres intersecting in the pattern of the
Dynkin diagram of I', with one sphere for each vertex and an intersection
for each edge.

This correspondence has a physical interpretation in terms of “geometric

engineering,” to be discussed in Sec. 36.1.

EXAMPLE 6.6.4. For I' = Zy, the irreducible representation k is given
by &k, where € = €2m/N (clearly k ~ k+ N). Then R = 1 & —1 and
ko R=(k+1)® (k—1). So Cyj = d,_;| 1, which is the adjacency matriz
of a cycle of N + 1 wvertices. This is the Dynkin diagram of the affine Lie
algebra An. Not all the spheres are linearly independent, and if we excise a
dependent one, we recover An.

To “see” the spheres, consider an ordinary double point inside a surface:
22 + y? + w? = € (we tacitly assume that deformation and resolution are
equivalent for surfaces, as they both introduce two-spheres, and we work
with the former). Write this as x> + y?> = € — w?, and let us assume € is
real and positive. The right-hand side has two solutions, at wy = *++/€, at
which there is a single solution for x and y, i.e., x =y = 0. At a fized real
value of w between w_ and w4, there is a real x-y circle of solutions. The
family of circles forms a non-trivial two-cycle. For higher A, singularities,

we can replace the right-hand side by a polynomial € — P,y1(w), which has

5The D, singularities are defined by the polynomial u?+tv>+t"~1, Eg by u’+v> +t*,
E7 by u? + 0® +vt®, and Es by u? + 0 + ¢°.
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n + 1 roots. A similar analysis yields the desired cycle of spheres between

r0018.

6.6.3. Surfaces in a Calabi—Yau. If B is a surface in a Calabi-—Yau

M, then we have the sequence
0—TB —TM|g — Ng/ — 0.

Now taking A® tells us A°’TB ® Ng;y — APTM = 1, by the Calabi-Yau
condition. Thus Np/p; = A%T* B, which is the canonical bundle of B. We
learn that Np/); & KB, i.e., the local geometry of a surface inside a Calabi-
Yau is its canonical bundle, which is intrinsic to the surface.

Toric descriptions of the canonical bundles of some Fano surfaces can be
found in Ch. 7. These geometries are important for local mirror symmetry,
which is similar to the compact version of mirror symmetry developed in this
book. Though we do not describe the mathematics of local mirror symmetry

here, the same physical proof applies (see Sec. 20.5).



CHAPTER 7

Toric Geometry for String Theory

7.1. Introduction

We saw a brief introduction to toric varieties in Sec. 2.2.2. In this
chapter, we give a more thorough treatment.

Toric varieties have arisen in a wide range of contexts in mathematics
during recent decades, and more recently in physics. We do not attempt
completeness here, but instead focus on certain themes that recur in the
interaction of toric geometry with string theory, providing many examples.
Many topics that could have been covered here have been completely omit-
ted.

To anchor the subject matter, here is a formal definition of a toric variety.

DEFINITION 7.1.1. A toric variety X is a complez algebraic variety con-

r

taining an algebraic torus T = (C*)" as a dense open set, together with an

action of T on X whose restriction to T C X is just the usual multiplication
onT.

EXAMPLE 7.1.2. Consider CP" with homogeneous coordinates expressed

as (x1,...,Zr+1). The dense open subset
T={z:2;#0,i=1,...,r+1} C CP"

is isomorphic to (C*)" and acts on CP" by coordinatewise multiplication,

giving CP" the structure of a toric variety.

As the utility of toric varieties came to be appreciated, two standard
ways of characterizing them emerged. Normal toric varieties (meaning that
all singularities are normal) can all be described by a fan, and projective toric
varieties (with a specified ample line bundle) can all be described by lattice
points in a polytope. Toric varieties that are both normal and projective can
be described by either a fan or a polytope, which turn out to be related to

each other. Reinterpretation of certain data for a fan as data for a polytope

101



102 7. TORIC GEOMETRY FOR STRING THEORY

leads to a geometric construction of mirror manifolds. We develop both of
these descriptions and their relationships.

We start by discussing fans of toric varieties. This description of toric
varieties is given in Sec. 7.2, emphasizing the use of homogeneous coordi-
nates. We explain how to construct toric varieties from fans and conversely.
The gauged linear sigma model (GLSM), which is closely related to toric
geometry, is studied in Sec. 7.3. In particular, in the absence of a super-
potential, the set of supersymmetric ground states of the GLSM is a toric
variety. Conversely, toric varieties can be described as the set of ground
states of an appropriate gauged linear sigma model. This link is explored
further in Sec. 7.4, where we explicitly identify the connection between in-
tersection numbers in toric geometry and charges in the GLSM. We also
develop the geometry of curves and divisors in that section. In Sec. 7.5 we
discuss orbifolds in toric geometry and see how they arise naturally in a
general context. Sec. 7.6 considers toric blow-ups, and Sec. 7.7 toric mor-
phisms. In Sec. 7.8 we take a look at the application of toric geometry to
N = 2 geometric engineering.

The final sections are devoted to polytopes and mirror symmetry. In
Sec. 7.9, we explain how to construct toric varieties from polytopes and
the converse. This section also relates the fan and polytope descriptions of
toric varieties. Sec. 7.10 is devoted to mirror symmetry. We will formu-
late Batyrev’s geometric construction of mirror symmetry for Calabi—Yau
hypersurfaces in toric varieties as an interchange of the fan and polytope
descriptions. Then we relate the toric language to the physical description

of mirror symmetry given in Ch. 20.

7.2. Fans

Let N be a lattice, and set Ng = N ® R. We will denote the rank of
N by r. At times, we will fix an isomorphism N =~ Z" which induces an
isomorphism Ny ~ R". At other times, there will be benefits to thinking of

N as an abstract lattice.

DEFINITION 7.2.1. A strongly convex rational polyhedral cone o C Np
15 a set
o ={av; + agvy + -+ + agvg | a; > 0}

generated by a finite set of vectors vy, ..., v in N such that o N (—o) = {0}.
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Without further comment, strongly convex rational polyhedral cones

will simply be referred to as cones in this chapter.

DEFINITION 7.2.2. A collection ¥ of strongly convex rational polyhedral

cones in Ny is a called a fan if

(1) each face of a cone in ¥ is also a cone in 3, and

(2) the intersection of two cones in X is a face of each.

There will also be a need for the dual lattice M = Hom(T,C*) ~
Hom(N, Z) of characters of T'. The natural pairing between M and N will
be written as (, ) : M x N — Z. We will also need the accompanying vector
space Mr = M ® R.

7.2.1. Constructing Toric Varieties from Fans. There are two
standard ways to construct a toric variety Xy from a fan ¥ yielding the
same result. The original construction associates an affine toric variety
X, = SpecC[g N M] to each cone in o € X, then glues them together in a
natural way to obtain Xy. We will not discuss the details of this construc-
tion here, but will recover another description of X, later in this chapter.

Instead, it is more convenient for applications to mirror symmetry to
construct toric varieties via homogeneous coordinates.

Let ¥ be a fan in Ny, and let (1) be the set of edges (one-dimensional
cones) of 3. For each p € (1), let v, € N be the unique generator of the
semigroup p N N. This v, is referred to as the primitive generator of p.
Identifying p with v,, the set ¥(1) can be thought of as a subset of N.

For ease of exposition, we assume that the v, span Ng as a vector space
for the rest of this chapter.

Putting n = |X(1)], the toric variety Xy is constructed as a quotient of
an open subset in C" as follows.

To each edge p € ¥(1) is associated a coordinate x,. It is sometimes
convenient to choose an ordering {vy,...,v,} of ¥(1). Then the coordinates
can be denoted by (x1,...,z,) if desired.

Let S denote any subset of (1) that does not span a cone of ¥. Let
V(S) C C" be the linear subspace defined by setting z, = 0 for all p € S.
Now let Z(X) C C" be the union of all of the V(S). The toric variety will
be constructed as a quotient of C" — Z(3) by a group G.
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To define G, consider the map ¢ : Hom(X(1),C*) — Hom(M,C*) de-
fined by sending a map (of sets) f : 3(1) — C* to the map (of groups)

m = [Toesa) F0) M0,
In coordinates, ¢ is very easy to write down. If v; has coordinates
(vj1,...,vjr) relative to a convenient basis for M, then ¢ can be expressed

as the map

(7.1) ¢ (C" = (C), (t-ot) = ([T T
j=1 j=1

The group G is defined as the kernel of ¢:

(7.2) G = Ker(Hom(E(l), C*) -2 Hom(M, c*)).

Since G C Hom(%(1),C*), we have g(v,) € C* for each g € G and p € X(1).
This gives an action of G on C" by

g (x1,...,2n) = (g(v1)x1, ..., g(vn)Ty).

It is easy to see that G preserves C" — Z(X). Then set

(7.3) Xy = (C" - Z(%)) /G.

Xy contains the dense open torus T' = (C*)"/G, which acts on Xy, by
coordinatewise multiplication. It is easy to see that this torus has rank
r, so that Xy is an r-dimensional toric variety. In fact, there are natural

identifications
T~ N ®C* ~ Hom(M,C").

With this identification, Eq. (7.2) can be expressed as T' = (C*)"/G, and
the identification of T'— Xy is obvious from comparison with Eq. (7.3).
It is not hard to see that Xy, is compact if and only if the union of the
cones o € Y. is equal to all of Ng. This point will be amplified in Sec. 7.2.2.
One of the nice features of toric varieties is that it is easy to describe
T-invariant subvarieties. Let 0 € X be a cone generated by edges p1, ..., pg.

To this cone is associated the codimension k subvariety

Ze ={x € Xy |xp, =+ =x,, =0},
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where the x; are the homogeneous coordinates of x. Clearly Z, is T-
invariant, and the assignment o — Z, clearly reverses the order of inclu-
sions. It is not hard to see that these are all of the non-empty T-invariant
subvarieties of Xx. Thus,

Classification of T-invariant subvarieties. The assignment ¢ — Z,
gives an order reversing correspondence (cones in fan)«— (non-empty 7-
invariant subvarieties).

Note that, in particular, the edges of ¥ are in one-to-one correspondence
with the set of T-invariant divisors in Xyx.. In general, if ¢ is a k-dimensional
cone, then Z, is an (r — k)-dimensional subvariety of Xy,.

Note also that if a set of edges {p1,...,p;} does not span a cone in ¥,
then the solution to the equations x,, = --- = x, = 0, viewed as equations
in C", are contained in Z(X). These equations define the empty set in Xs.

Each Z, is in fact a toric variety. To construct its fan, simply replace
N with the quotient N’ of N by the sublattice spanned by o N N. Then
project each cone in Y, which contains o as a face to N’, to get a new fan
in N'.

We now give some examples, some of which were briefly introduced in
Sec. 2.2.2. The first two examples are two-dimensional. Note that for a
compact two-dimensional toric variety, ¥ is completely determined by its
edges X(1).

0,1)

(1,0)

-1-1)

FIGURE 1. The fan for CP?

EXAMPLE 7.2.3. We consider CP? as a toric variety described by the
fan X spanned by the three edges {(—1,—1),(1,0),(0,1)} as shown in Fig. 1.
We will fix this ordering of the edges throughout. This fan will be derived in
Sec. 7.2.2, but for now we accept this as given.

There are seven cones in X.: the trivial cone {0} of dimension 0, the three
one-dimensional cones spanned by each of {(—1,—1)} {(1,0)}, and {(0,1)},
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and the three two-dimensional cones spanned by the sets

{(1,0),(0,1)}, {(=1,-1),(0, )}, {(=1,-1),(1,0)}.

Thus the only set of edges that does not span a cone in ¥ is S = 3(1) =
{(17 0)7 (07 1)7 (_17 _1)} Hence Z(Z) = Z(S) = {(07 07 0)} - CS'
The group G 1is defined as the kernel of

¢:(C*) = (C)?2,  (t1,ta,t3) > (] 'ta, t] 1 13).

Thus G is the diagonal group {(t,t,t) | t € C*} ~ C*. We immediately
recover the usual definition of CP? as (C* — {(0,0,0)})/C*, where the C*
acts diagonally on C3.

The torus T defined in Sec. 7.1 is recovered in this context as (C*)3/C*,
where C* is embedded diagonally in (C*)3.

The only non-empty T-invariant subvarieties are CP? itself, the coor-
dinate lines, and their pairwise intersections. This can also be seen from
toric geometry. We summarize the calculations in Eq. (7.4), where cones

are described in terms of generators.

o Lo
{0} CP?
{(=1,-1)} r1=0
{(1,0)} r2 =0
74 (0.1} ma=0

{(1,0),(0,1)}  {(1,0,0)}
{(_17_1)7(0’ 1)} {(0’1’0)}
{(=1,-1),(1,0)} {(0,0,1)}

The reader can easily check that this correspondence reverses the order

of inclusion.

ExXaMPLE 7.2.4. We consider the compact toric variety associated with
the fan ¥ with edges (1) = {(1,0),(—1,—-n),(0,1),(0,—1)}, shown in
Fig. 2. This is the Hirzebruch surface F,.

In this example, {vi,ve} and {vs,v4} do not span a cone in 3, and any
set of edges that does not span a cone in X must contain at least one of these
sets. From this, it follows that Z(X) = {x1 = v2 = 0} U{z3 = x4 = 0}. The
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0,1)
(1,0)
0,-1)

(-1,-n)
FIGURE 2. The fan for F,
group G is the kernel of the map ¢ : (C*)* — (C*)? defined by
Pt1,ta, s, ta) = (tity 'ty "tats ).
Thus G can be identified with (C*)? via the embedding
(A1, A2) = (A1, A1, AT A2, Aa).

There are four T-invariant divisors D1, ..., Dy corresponding to the four
edges. Since {v1,v2} does not span a cone in X, it follows that D1 and D2 are
disjoint. Similarly, Ds and D4 are disjoint. All other pairs of these divisors
meet in a point, since the corresponding edges span a two-dimensional cone
of .

It is easy to see from the above description that F,, is a CP' bundle over
CP. Simply define F,, — CP' by (t1,to,t3,t4) — (t1,t2). A glance at the
action of G shows that this mapping is well defined, and the fibers of ¢ are
immediately seen to be isomorphic to CP! as well. The fibers over (1,0) and
(0,1) are respectively D1 and Ds.

Ifn =0, there is a well-defined projection onto the CP' with coordinates
(t3,t4), and it follows quickly that Fy is simply CP! x CP'. The divisors D3

and Dy are fibers of the second projection in this case.

In Sec. 7.4 we will calculate D? = —n to see that the different F,, have
different geometries. In Sec. 7.7 we will see how to recognize the map F, —
CP! directly from the fan. The more general toric construction of projective
bundles is very useful in string theory, for example, in constructing F-theory

compactifications.

EXAMPLE 7.2.5. Consider the total space of the bundle O(—3) on CP?.
We have already seen that CP? contains the torus (C*)2. Restricting O(—3)
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over this (C*)? subset, then removing the zero section, we get a torus T =
(C*)3. 1t is easy to define an action of T on O(=3), hence O(=3) is a
three-dimensional toric variety.

Let us construct O(—3) from a fan ¥ in R3. We put

¥(1) ={(1,0,1),(0,1,1),(—-1,-1,1),(0,0,1)}.

The convex hull of (1) is a triangle in the plane z = 1 with vertices
{v1,v2,v3}; vq lies in the interior of this triangle, subdividing it into three
smaller triangles. The three-dimensional cones in ¥ are the cones over these
triangles. The remaining cones in 3 consist of the faces of these cones. Note
that these cones do not span R3, which is consistent with the fact that O(—3)
is not compact. (Non-compact toric varieties similar to this one are useful
in geometric engineering, which is discussed in Sec. 7.8.)

We compute that Z(X) = {(x1 = x2 = x3 = 0}. Also, G is the kernel of

¢ (C = (T3, (t1,ta,t3, L) — (tat3 ), toty L trtatats),
so that
(7.5) G ={(t,t,t,t7>)]},

which is isomorphic to C*.

There are four T-invariant divisors D1, ..., Dy. Since {vi,v2,v3} do not
span a cone in X, the divisors D1, Do, D3 have an empty intersection. All
other triples of divisors meet in a point, since the corresponding edges span a
three-dimensional cone. The toric description of the D; (see the discussion
preceding Example 7.2.3) shows immediately that Dy is compact, while the
other D; are non-compact.

Projection to the first three factors gives a map Xs, — CP? whose fibers
are isomorphic to C, so Xx is a line bundle over CP?, as claimed. The
divisor Dy is identified with the zero section of the bundle, and the divi-
sors D1, Do, D3 are the restrictions of these bundles over the corresponding
coordinate lines x1 =0, o =0, x3 =0.

In Sec. 7.4, we will be able to identify that the bundle is indeed O(—3).

At this point, we make contact with the construction Xy = UsexnX,.
Let 0 € ¥ be an r-dimensional cone. In our context, we can define X, C X5
as the subset obtained by setting x, = 1 for all p € ¥(1) that are not edges

of 0. It can be seen that this agrees with the usual definition.
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Now let ¥, C X be the fan consisting of o and all of its faces. Then it
is straightforward to check that Xy_ ~ X,. This is a useful way to do local
calculations.

We close this section by giving a useful criterion for smoothness.
Smoothness Criterion. A toric variety Xy is smooth if and only if each
cone o € ¥ is generated by a Z-basis for the intersection of the linear span
of o with N.

PRrROOF. Consider a top-dimensional cone o € ¥, and form Xy, with the
above property. Then the group G for Xy, is trivial, and Xy, ~ X, ~ C".
So Xy is locally smooth, hence smooth.

The converse is readily explained using X, = Spec C[g N M] to explicitly
identify generators of the maximal ideal of X, at its origin with generators

of the dual cone &. Details are left to the reader. O

It is easy to check that all the fans given above satisfy this criterion,

hence all the toric varieties are smooth.

7.2.2. Constructing Fans from Toric Varieties. In Sec. 7.2.1 we
saw how much information can be read off from the fan. In this section, we
explain how to construct the fan from a given normal toric variety.

The key idea is a slight modification of the description of the order-
reversing correspondence given in Sec. 7.2.1. The new element is a descrip-
tion of the T-invariant subvarieties as closures of T-orbits.

Let us start with a toric variety X containing the torus 7'~ (C*)". We
consider the lattice N = Hom(C*,T') & Z" and construct a fan Ng.

Elements of N are homomorphisms v : C* — T, which are called one-

parameter subgroups. If we identify 7" with (C*)", we fix the identification
Z" ~ N, (at,...,ap) — (t— (t% ..., t%7)).

Now let 1) be a one-parameter subgroup, and consider the induced map
f:C* — X defined as f(t) = ¢(t) - 1, where 1 denotes the identity element
of T. The image of f is entirely contained in 7. Suppose that lim; . f(¢)
exists in X. Then the orbit closure Z, = m is a non-empty
T-invariant subvariety of X. From Sec. 7.2.1, we expect that there is a
corresponding cone hiding somewhere in this description.

The extraction of the cone is simple. Consider the set of all ¢ for which

Zy, exists. On this set, we define the equivalence relation ¢ ~ ' if Z, = Z.
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Fixing an equivalence class, we take the closure of the convex hull in Ny
of all one-parameter subgroups in the fixed equivalence class. This gives a
cone. The collection of all cones obtained in this manner forms a fan ¥, and
X ~ Xy.. We illustrate this below when we revisit Examples 7.1.2 and 7.2.3.

Here is a clarifying consequence of this construction. Suppose that
1 € N is contained in some cone of a fan ¥. Then there is precisely one
cone o € Y such that 1 is contained in the relative interior of ¢. For this o,
we have Zy, = Z,.

Note how this explains the compactness criterion for toric varieties as
follows. Suppose that the union of the cones in ¥ is a proper subset of Ng,
and let ¥ be a one-parameter subgroup not contained in this set. Then ) (t)
does not have a limit in Xy, as t — 0, so Xy, cannot be compact.

We illustrate by continuing with Examples 7.1.2 and 7.2.3.

EXAMPLES 7.1.2 AND 7.2.3 REVISITED. We will start from scratch with the
description given in Ezample 7.1.2 of CP? as a toric variety. We can use

the rescaling of coordinates in CP? to set the first coordinate of an element
of T to 1. This identifies

T ={(1,t1,t3) | t; € C*} ~ (C*)%

We will use this isomorphism T ~ (C*)? and the above construction of the
fan to derive the fan for CP? given in Example 7.2.3.

With this identification, the torus action is given by (t1,t2)-(z1, x2, x3) =
(z1,t129, tox3) for (t1,t2) € T = (C*)? and (21,2, 23) € CP%

The 1-parameter subgroups of T are indexed as above by (a,b) € Z2, which
represents the one-parameter subgroup 1, ,(t) = (t%,t*) € N=Hom(C*,T).

Using the embedding of T in CP?, we can study lim; o (t) € CP2.

There are seven possibilities for these limit points and their orbit closures.

limy 9 9(t) closure of orbit of lim; g 1 (t)

a>0,b>0 (1,0,0) {(1,0,0)}
a<0,b>a (0,1,0) {(0,1,0)}

(7.6) b<0,b<a (0,0,1) {(0,0,1)}
a=b<0 (0,1,1) {z1 =0}
a>0 b=0 (1,0,1) {zy =0}
a=0,b6>0 (1,1,0) {x3 =0}
a=b= (1,1,1) CP?
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A pictorial description is given in Fig. 8, with limit points indicated.
The closures of the regions defined in the first column of Eq. (7.6) define
the seven cones in the fan for CP? given in Fig. 1. Note that we have
also recovered the correspondence between cones and non-empty T -invariant

subvarieties given in Eq. (7.4).

b

1'3:0

1,1{0 1,0,0
 (ab) (1,130) (1,0,0)

(0,1,0)

(1,0,1)
11,1 *2=0
A1)

(0?0’1)
I = 0

FIGURE 3. One-parameter subgroups and limit points for CP?

We close this section by giving an example explaining the need to restrict

to normal toric varieties.

EXAMPLE 7.2.6. Let X C CP? be the plane curve defined by the equation
173 = azg This has a non-normal singularity at (1,0,0), but it is a toric
variety: The torus T = C* is embedded in X wvia t — (1,t3,t?). If we
attempt to apply the above construction of a fan, we get the one-dimensional
fan with two edges generated by {1} and by {—1}. But this is the fan for
CP!, not X. The intrinsic reason for the occurrence of CP' is that CP' is

the normalization of X via the map (z1,x2) — (23, 23, z173).

7.3. GLSM

The gauged linear sigma model (GLSM) is a two-dimensional gauge the-
ory. We will explore gauge theories in more detail in Sec. 15.2. For present

purposes, we restrict our attention to theories without a superpotential.
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We consider a two-dimensional U(1)® gauge theory with vector super-
fields V1, ..., Vs, and n chiral superfields @1, ..., ®,. The charge of ®; under
the a'" U(1) will be denoted by Qi,q, and the scalar component of ®; will
be denoted by ¢;. The Lagrangian has the form

(7'7) L= Lkin + Lgauge + LD,07

where the three terms are respectively the kinetic energy of the chiral su-
perfields, the kinetic energy of the gauge fields, and a Fayet—Iliopoulos (FT)
term and theta angle. Rather than describe these terms, we content our-
selves with writing down the potential energy deduced from Eq. (7.7):

s

e2 - ?
(7.8) Ule) =) 5 (Z Qialdil* — ) .
=1

a=1
Here, the e, are the gauge couplings and the r; are real parameters (“FI
parameters” ).
To find the supersymmetric ground states of this theory, we set the
gauge fields to zero and find the zeros of the potential energy. This gives

the system of equations
n

(7.9) ZQi,a’¢i|2 =g, a=1,...,s.
i=1

The supersymmetric ground states are parametrized by the solutions of Eq.
(7.9) modulo gauge equivalence.
Main Point. For general charge assignments and appropriate choice of
FI parameters, the space of supersymmetric ground states is an (n — s)-
dimensional normal toric variety whose fan has n edges.

We defer the geometric characterization of the fan to Sec. 7.4, where we
will identify the charges @); o with certain intersection numbers.

We prepare to construct a fan . First define the subgroup G = (C*)* C
(C*)™ by the embedding

(7.10) (t1,...,ts) — <ﬁtal’“,...,ﬁta"'“>.
a=1 a=1

The torus is given by T' = (C*)"/G.

It is easy to see (essentially linear algebra) that we can choose a collection
S = (v1,...,v,) of elements of N such that replacing ¥(1) by S in the
definition Eq. (7.2) of G as a subgroup of (C*)" yields Eq. (7.10). Note
that the v; have not been assumed distinct, although they will be distinct
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for most charge assignments. For ease of exposition, we assume that the
v; are distinct, and we let 3(1) be the set consisting of all elements of the
collection S.

We now describe a fan ¥, assuming that the FI parameters have been
appropriately chosen. For now, we take “appropriately chosen” to mean
that there are sufficiently many solutions to Eq. (7.9), so that the set of
solutions of Eq. (7.9) with all ¢; # 0 modulo gauge equivalence projects
surjectively onto T = (C*)"/G. We will explain this condition geometrically
in Sec. 7.4.

We consider all subsets P = {vj,,...,v;, } C S such that there are no
solutions of Eq. (7.9) with ¢;, = --- = ¢;, = 0. If there are any such P
consisting of a single element v, let (1) C S be the set obtained from S by
removing all of these v. Then it can be shown that there is a unique fan X
with edges equal to 3(1) with the following property: The subsets of ¥(1)
that do not span a cone of ¥ are precisely those subsets P considered above
that are subsets of ¥(1).

We assert that for this X, the toric variety Xy is precisely the space
of supersymmetric ground states. We do not explain the details here, but
remark that the assertion is essentially a reformulation of the construction
of toric varieties by symplectic reduction.

Note that the fan can depend on the choice of FI parameters. In such
a case, the toric varieties can be related by birational transformations such
as blow-ups or flops.

There may also be values of the FI parameters for which the space of
supersymmetric ground states is not a toric variety. It can even be empty,
as in the case of a U(1) gauge theory with charges (1,1). In that case, Eq.
(7.9) reads

[¢1] + |po|* =,

which clearly has no solutions if r < 0.

The dependence of the theory on the FI parameters can be understood
in terms of the GKZ decomposition.

Note that for general toric varieties, the group G need not be (C*)%, as it
may contain finite groups as factors. We would need an orbifold to produce
such toric varieties as a space of supersymmetric ground states. We will

return to this point in Sec. 7.5.
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EXAMPLE 7.3.1. We consider a U(1) gauge theory with four chiral su-
perfields with respective charges (1,1,1,—3). We have already found a fan
that produces the required group G: the fan in Example 7.2.5, yielding the
group G given in Eq. (7.5).

We have in this case a single FI parameter r. Then Eq. (7.9) in this

case becomes the single equation

62| 4 |¢3] + |p3|® — 3|oal® = 7

If r > 0, then we cannot have ¢1 = ¢po = ¢p3 = 0. This determines the
fan X to be the fan of Example 7.2.5 (see especially the determination of
Z(X)). So the space of supersymmetric ground states is the total space of
the bundle O(—3) on CP2.

If r < 0, then we cannot have ¢4 = 0. Here we do not get a fan with
four edges; instead we remove the fourth edge generated by (0,0,1) and get
a cone over a triangle. As we will see in Example 7.6.3, this is a Zs orbifold

of C3, and the bundle O(—3) is obtained by blowing up this singularity.

7.4. Intersection Numbers and Charges

We begin this section by explaining how the charges in the GLSM are
related to the toric variety of supersymmetric ground states. Later in this
section we will relate the charges to intersection numbers in the toric variety.
For ease of exposition, we assume that the toric variety is smooth.

Suppose we start with a GLSM with gauge group U(1)® and n chiral
superfields ®1,...,®,,. We use the construction of Sec. 7.3 to obtain a set
¥(1) ={v1,...,vn} of edges, where for ease of exposition we have assumed
that ¥(1) = S in the terminology of Sec. 7.3. By construction, the Q; o are

the relations among the v;, i.e.,
n
Zvai:O, a=1,...,s.
i=1

Conversely, if we start with the set (1), we can form the rank s lattice
A of all Z-linear relations among the {v;}. A basis for A is a collection of

relations
n
/
E Qi Vi =0, a=1,...,s.
i=1

It is clear from linear algebra that the Q;,a are precisely the charges of

the original superfields ®;, with the understanding that the gauge group G



7.4. INTERSECTION NUMBERS AND CHARGES 115

may need to be written as a product of s copies of U(1) in a different way,

depending on the choice of basis for A.

EXAMPLE 7.4.1. We look at CP? again with the fan given in Fig. 1.

The generators of the edges satisfy the linear relation
1(1,0) +1(0,1) + 1(—-1,-1) =0,

which generates the lattice of relations in this case. It is easy to see that
CP? arises as the space of supersymmetric ground states of a U(1) GLSM
with three chiral superfields with charge vector (1,1,1).

Here and in what follows, it is convenient to organize the data in two
matrices P|Q:

1 0|1
0 111
-1 -1 1

In general, row vectors of P are generators of the edges, and column vec-
tors of Q are generators of the lattice A of relations. Each row corresponds
to a field in the GLSM, and each column in Q corresponds to a U(1) charge.

EXAMPLE 7.4.2. We next turn to F,, given by the fan in Fig. 2. The

lattice of relations is given by the matrices

1 010 1
-1 —n |0 1

P =
@ 0 1|1 0
0 -1 |1 —n

This toric variety is therefore the space of supersymmetric ground states
of a U(1)? gauge theory with four chiral superfields, having respective charges
(0,1), (0,1), (1,0), and (1,—n), as can be checked directly.

We now describe the relationship between charges and intersection num-
bers. Let Xy be a toric variety. For each p € (1), we let D, be the T-
invariant divisor Z, (we have changed the symbol Z to D to emphasize that

these are divisors). Note that
77 ~ ®P€Z(1)Z -D,.

Each character m € M may be viewed as a holomorphic function on

T. Its extension to Xy need not be holomorphic but is certainly at least a
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rational function. The zeros and poles of this rational function define the
principal divisor
m) = 3 (m.u,)D,
peX(1)

which is naturally viewed as an element of Z>(1). We thus have a map
M — 7Z*M) | which is an inclusion if the one-dimensional cones span Ng.
This inclusion map is given by a matrix P whose row vectors are the v,
with p € ¥(1). The examples in Sec. 7.4 give examples of such matrices P.

Here is the main result we need about divisors and divisor classes:

THEOREM 7.4.3. ¥Ya,D, and Za;Dp are linearly equivalent
& They are homologically equivalent
< They define the same line bundle
< They differ by (m) for some m € M

PROOF(SKETCH). If ¥a,D, and ¥a),D, differ by (m), then they are
linearly equivalent by definition. Linear equivalence of divisors D and D’ is
the same condition as O(D) ~ O(D’) for any variety. Since the homology
class [D] of a divisor is the topological first Chern class ¢ (O(D)), it follows
that linearly equivalent divisors are homologically equivalent. Proofs of the

other equivalences will be omitted. O

Part of the assertion of Theorem 7.4.3 can be strengthened: It is a fact
that any divisor is linearly equivalent to a T-invariant divisor. We therefore

have an exact sequence
(7.11) 0—M—2"Y 5 4, (X5) — 0,

where A,_1(Xyx) is the Chow group of all divisors modulo linear equivalence.
We see that A,_1(Xy) is a finitely generated abelian group of the form
7® @ H, where s = n —r and H is a finite sum (possibly empty) of finite
groups Zy,. In particular, A, 1(Xs)/torsion ~ Z°.

The Chow group Ay (Xy) of k-dimensional cycles modulo rational equiv-
alence is also easy to describe from the toric data for any k, but we do not
need this here.

Let us now apply Hom(—, C*) to the exact sequence Eq. (7.11). We get

an exact sequence

(7.12) 0 — Hom(4,_1(Xx),C*) — Hom(Z>",C*) — Hom(M,C*) — 0.
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Note that the surjection in Eq. (7.12) is naturally identified with the
map ¢ from Eq. (7.1). Comparing Eq. (7.12) with the definition Eq. (7.2)
of G, we see that G ~ Hom(A,_;(Xy),C*).

Recall from Sec. 7.3 that for toric varieties arising from the GLSM, we
will get G ~ (C*)®. This will require that A,_;(X) has no torsion, H = 0. If
H is nonzero, G acquires a finite abelian factor. For the rest of this section,
we will assume that H = 0 and consequently G ~ (C*)®. The general
situation can be dealt with as an orbifold of the special case considered
here. Orbifolds will be considered in Sec. 7.5.

The key observation is that the exponents of the inclusion
(7.13) G — Hom(z*W,C*) ~ (C*)*W)

are given by the matrix () whose column vectors are generators of the lattice
A of relations. More precisely, identifying G with (C*)*, Eq. (7.13) is given
by the embedding Eq. (7.10). As discussed earlier in this section, ) can be
identified with the charge matrix of the corresponding GLSM.

An element (Q} ,,. .., @}, ,) € A can be viewed as a linear functional on
Z>(1) which takes the basis element ¢; to Q;a. This functional annihilates
the image of M in Z*1). By Eq. (7.11), it can therefore be viewed as an
element in Hom(A,_1(X),Z), which is isomorphic to Ha(X, Z).

This gives a practical guide to computations. The columns of ) corre-
spond to a basis for A, i.e., to a basis for Hy(X,Z). The rows of @ correspond
to the T-invariant divisors D1, ..., D,. Since we are free to choose a conve-
nient basis for A, we usually choose a basis of homology classes of irreducible

curves (', ...,Cs. Unwinding the definitions, we conclude that
(7.14) Qia=D; - C,.

For applications to mirror symmetry, it is best to choose the C, to form
a generating set for the Mori cone of classes of effective curves when this is

possible. There is a systematic way to find generators.

THEOREM 7.4.4. The Mori cone (the cone of effective one-cycles) is

spanned by curves corresponding to (r — 1)-dimensional cones.
PROOF. See [219, Prop. 1.6]. O

A convenient interpretation of the intersection numbers in Eq. (7.14)

is to use intersections with the C; to put coordinates on the Chow group
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A,_1(Xx). Then the intersection numbers in the i*" row of @) are coordinates
of the divisor D; in the Chow group.

We now relate this discussion to the GLSM, as promised earlier. Suppose
we start with a charge matrix @ and choose a set of edges S = {v1,...,v,}
as in Sec. 7.3. Note that A, _1(Xx) only depends on S, not on the actual fan
¥ with (1) C S, so we will denote this common Chow group by A,_1(S5).

It is straightforward to see that the FI parameters naturally live in the
Chow group A, —1(S): The assignment of an FI parameter to a charge vector
is naturally an element of A*, and we have already seen that A is dual to
Ap—1(Xy).

The divisor classes of the T-invariant divisors D; span a cone
At ((S)®R C A,—1(S) @ R. If the FI parameters are chosen to lie in
the interior of AT | (S) ® R using the identification described in the preced-
ing paragraph, then the space of supersymmetric ground states forms a toric
variety. This is the precise version of what we meant in Sec. 7.3 when we
said that the FI parameters need to be “appropriately chosen.” The GKZ
decomposition alluded to earlier is a decomposition of AT |(S) ® R into
subcones. We get different toric varieties of supersymmetric ground states
when the FI parameters are picked in the interiors of different cones in the
GKZ decomposition.

If, in addition, the FI parameters are chosen to lie in the Kéhler cone of
Xy, then the toric variety of supersymmetric ground states is precisely Xs.
If we choose a basis for A that generates the Mori cone, then the condition
that the FI parameters lie in the Kéhler cone is simply the condition that
all r; are positive.

We now return to our examples.

EXAMPLE 7.4.1, REVISITED. We rewrite the matrices P|Q as

pp 1 0|1
P2 0 1 1
p3 —1 —1 |1

labeling the rows by the three edges p;.

We see that A1(CP?) ~ Z and that the three coordinate lines associated
to edges p1,pa, p3 are in the same class in Ay (CP?), the class of a line in
CP2. The column of Q corresponds to the class L of a line as well; the fact
that each entry of Q is 1 follows from the equality D; - L =1, 1 =1,2,3.
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EXAMPLE 7.4.2, REVISITED. We return to F,,. As we have seen in Exam-
ple 7.2.4, the divisors Dy and Dy are fibers of F,, viewed as a CP' bundle
over CP'. We denote their common cohomology class by f. We let D3 and
Dy have cohomology classes H and E respectively, as in Fig. 4. The con-
figuration of the four divisors is also shown in Fig. 4. The divisors are also
curves since F,, is two-dimensional.

From the choice of coordinates, we see that H = E+nf. Thus the Mori
cone is generated by f and E. We use these for the columns of Q. The
intersection numbers in the first column are immediate from the geometry
shown in Fig. 4: Clearly f>=0, while f-H=D1-D3=1 and f-E=D{-Ds=1.
For the second column, all intersection numbers with E are clear, except E>
but this can be calculated since E-E=FE-(H—-nf)=0—n=—n.

1 0|0 1 =—fo -
-1 nmn |0 1 =—fo o
divisors
0 1 1 0 =—H
f f

0 -1 1 -n =—E

I -

f E

| |

curves

FIGURE 4. Divisors and intersections on Fj,

If n > 0, the existence of a curve E with self-intersection number —n
shows that F,, # CP! x CP".

In particular, if n = 1, then E> = —1, so that E is an exceptional
divisor and can be blown down to a point on a smooth surface. Using toric
geometry we will see in Sec. 7.6 that Fy is CP? blown up at a point. As a
sneak preview, note that the fan for Fy can be obtained from the fan for CP?
by inserting the edge corresponding to E and then subdividing the fan. More

generally, we will see that subdividing a fan corresponds to blowing up.
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F 1= (CP2 CPZ

H

1-1) E

EXAMPLE 7.4.5. The same considerations hold even if Xy is not com-
pact. We again take up the bundle O(—3) over CP? from Example 7.2.5.
For the matrices P|Q, we get

-1 -1 1 1 —x1 =0
1 01 1 —x9=0
0 11 1 —x3=0
0 0 1| -3 «— zero section
7
C

Note that the charges (1,1,1,—3) coincide with those of the GLSM con-
sidered in Example 7.5.1, as they must. Here the curve C associated with
the column of Q is the zero section over a line in CP2. It clearly intersects
each of the first three divisors at one point.

Recall from Ezample 7.2.5 that Xx, is a line bundle over CP?. We now
show conclusively that this bundle is O(—3), as claimed. Note that since C
is contained in the zero section Dy, the intersection C - Dy is given by the
degree of the normal bundle of Dy, restricted to C. Since C - Dy = —3, we
conclude that the bundle is indeed O(—3), as claimed.

Finally, we note that for each of the examples in this section we have cho-
sen our basis of A to correspond to generators of the Mori cone. Therefore,

each of these toric varieties arises as the space of supersymmetric ground
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states of the GLSM with indicated charge vectors if we choose positive FI

parameters.

7.5. Orbifolds

In this section we show how to analyze orbifolds.

DEFINITION 7.5.1. A rational polyhedral cone is simplicial if it can be
generated by a set of vectors vy,...,vi, which form a basis for the vector

space that they span. A fan ¥ is simplicial if each cone in X is simplicial.

‘We can now state the extension of the smoothness criterion to a criterion
for orbifolds.

Orbifold criterion. A toric variety is an orbifold if and only if its fan is

simplicial.

ProOF. Consider an r-dimensional cone o € ¥ generated by vi,...,vp.
Then we compute that G for X5 is a finite group, so that X, ~ C"/G is
an orbifold. Hence X is an orbifold.

The converse is non-trivial, but follows from the following statement in
the literature: If X is a rationally smooth algebraic variety of dimension r
admitting an action of a torus 7" with an isolated fixed point x and only
finitely many T-invariant (closed irreducible) curves, then the number of
such curves containing x equals r. If Xy is a toric orbifold and o € ¥ is an
r-dimensional cone, then the point x = Z, satisfies the stated hypothesis.
Identifying the T-invariant curves containing x with the codimension 1 faces

of o, we conclude that ¢ has r codimension 1 faces, hence is simplicial. [

REMARK 7.5.2. Intrinsically, G is the quotient of N by the sublattice
generated by the v;.

We now consider certain global orbifolds. Suppose we have a simplicial
fan, and in addition suppose that there is a sublattice N’ C N such that all
top-dimensional cones in ¥ are generated by a Z basis for N’

Since N, = Ng, we can view X as a fan in N}, obtaining an auxiliary
toric variety Xy nv which is smooth. Note, however, that the torus has
changed: We must take 77 = N’ ® C*. The natural map 7" — T = N @ C*
induced by the inclusion of N’ in N is easily seen to be a finite quotient

mapping (this is clear in coordinates). It is therefore not surprising that
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the original toric variety Xy, = X, y defined using the lattice N is a global
orbifold of the smooth Xy v by the finite group N/N'.
We give an example, which also illustrates how to describe certain orb-

ifolds by toric geometry.

EXAMPLE 7.5.3. We consider a particular Zs orbifold of CP? (chosen
because it will be used to construct the mirror of plane cubic curves in
Sec. 7.10).

Recall that the embedding of T = (C*)? in CP? is given by (t1,t2) €
(C*)? + (1,t1,t2) € CP?. Consider the Zs subgroup of (C*)? generated
by (w,w?), where w = e2™/3 . This generator extends to act on CP? as
coordinatewise multiplication by (1,w,w?).

To construct a fan for (C]I’D2/Zg, the quotient of CP? by this subgroup,
we must first understand the torus T' = T /Zs (note that T and T' are in-
terchanged when comparing to the above general discussion). Observe that
t— (1,t1/3,t2/3) is a well-defined one-parameter subgroup of T" which can-
not be lifted to T, so that the lattice N’ of one-parameter subgroups of T"
is strictly larger than N. It is easy to see that N' = N + Z(1/3,2/3). We
simply take the same fan X, drawn relative to the lattice N' rather than N.
These two fans are pictured in Fig. 5. The toric variety Xs, N+ is the orbifold

CP?/Zs.

FIGURE 5. The fans for CP?/Z3 and CP?

The generators of the one-dimensional cones are (—1,—1),(1,0),(0,1).
If we change to coordinates in Ny = Ngr adapted to the choice of gener-
ators {(2/3,1/3),(1/3,2/3)} of N', then the generators of the edges have
coordinates (2,—-1),(—1,2),(—1,-1).
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To see the orbifold from this vantage point, consider the cone o generated
by (2,—1),(—1,2). Since det ( % 5') = 3, the vectors (2,—1) and (—1,2)
generate a sublattice of N' of index 3, hence X, 1is the affine toric variety
C?/Zs.

7.6. Blow-Up

In the Fi case of Example 7.4.2, we mentioned that blow-ups of a toric
variety can be obtained by subdividing the fan. We now explain this in a

little more detail.

DEFINITION 7.6.1. A fan ¥’ subdivides the fan 3 if
(1) (1) C ¥'(1), and

(2) each cone of ¥/ is contained in some cone of X.

Note that ¥'(1) is allowed to equal X(1). See Example 7.6.4.

Suppose that ¥’ subdivides X. Let /(1) = {p1, ..., pm}, where the edges
are ordered so that 3(1) = {p1,..., pn}. Then we assert that there is a well-
defined map Xyy — Xy defined in terms of the homogeneous coordinates
by projection onto the first n factors.

We need to check that (i) C™ — Z(X') projects into C"* — Z(X), and (ii)
this projection is compatible with the group actions.

Requirement (i) follows immediately from the assumption that >’ sub-
divides ¥, and requirement (ii) is easy to check. The map Xy — Xy is
clearly birational, since it is an isomorphism on a dense open set (the torus
T).

To blow up a T-invariant smooth point p € Xy, we find the r-dimensional
cone o € ¥ corresponding to p. If the primitive generators of o are vy, ..., v,

we add a new edge generated by
Up4l = U1 + -+ + Uy,

and then we subdivide 0. Combining these new cones with the cones of X
(except o but including all proper faces of o) we get a new fan ¥/, yielding
the blow-up.
In the GLSM, we would add a new field, and an extra U(1) with charges
(1,...,1,—1,0,...) corresponding to the relation vy + - -+ + v, — v, 41 = 0.
For general subdivisions, we wind up blowing up more general T-invariant
ideals. This ideal is supported on the union of all the T-invariant subvari-

eties of Xy corresponding to cones in ¥ that are not cones of Y. In the
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above example of the blow-up of a point, the only cone of ¥ that is not a
cone of ¥/ is o, so we conclude that the only thing that was blown up is the
point Z,.

We can now do some interesting examples.

EXAMPLE 7.6.2. We blow up the orbifold C*/{£1} at the origin, resolv-
ing this A1 singularity. Using the technique of Fxample 7.5.8, we can choose
coordinates for N so that the fan for C?/{£1} consists of the cone spanned
by vi = (1,0) and va = (1,2) as well as its faces. Inserting the edge spanned
by v3 = (1,1) and subdividing, we obtain the fan ¥ depicted in Fig. 6. The
toric variety Xy, is smooth and is equal to the blow-up of C?/{#£1} at the
singular point. Since vy has been added, the divisor D3 is the exceptional
divisor of the blow-up. The relation vi +vy —2vs = 0 gives the charge vector
(1,1, -2), leading to D? = —2, the well-known result for the resolution of

an Ay singularity.

(1,2) (1,2)
(LD
(1,0) (1,0)

FIGURE 6. The fans for C2/{+1} and its blow-up

This example can be generalized to give the resolution of an A, singu-
larity. The A, singularity can be written as C?/Z, 1, where the generator
of the Zn+1 acts as multiplication by (w,w™), with w = exp(2wi/(n+1)). Its
fan X can be taken to be the one generated by (1,0) and (1,n +1).

We subdivide ¥ by inserting the edges spanned by v; = (1,i), for i =
1,...,n. The resulting fan X' defines a smooth toric variety Xsy. The
relations vi—1 + vi+1 — 2v; = 0 lead as before to DZ-2 = —2. The D; in fact

form a chain of CP's. This is the well-known resolution of an A, singularity.

ExXaMPLE 7.6.3. Consider the simplicial fan ¥ consisting of the cone
spanned by (—1,—1,1),(1,0,1),(0,1,1), as well as its faces. This defines
an affine toric variety, which is in fact the cone over the anti-canonical
embedding of CP%. It can be seen directly to be isomorphic to the orb-
ifold C3/Z3, the Zs3 generator acting as multiplication by (w,w,w), with



7.6. BLOW-UP 125

w = exp(27i/3). It can be blown up by inserting the edge generated by
(0,0,1) and subdividing ¥ to get a new fan X', which we recognize as the
fan of Ocp2(—3) considered in Example 7.2.5.

We thus see that Ogp2(—3) is the blow-up of C3/Zs at its singular point.
The map Xs» — Xy is the blow-down map. These fans are depicted in

Fig. 7. We already saw this example from a different point of view in Fux-

ample 7.3.1.
0,0,1
001 ©,1,1) ©,1,1)
11,1 -1, A
11D (1,0,1) LD (1,0,1)

FIGURE 7. The fans for Ogp2(—3) and C3/Z;

EXAMPLE 7.6.4. Consider the fan X consisting of the cone o generated
by (1,0,0),(0,1,0),(0,0,1), and (1,1,—1), as well as its faces. The toric
variety Xs s singular, and the singularity is not an orbifold singularity
since o is not simplicial.

This is the singularity called a node in the mathematics literature and a
conifold singularity in the physics literature.

This singularity can be blown up in two distinct ways to yield smooth
toric varieties, as depicted in Fig. 8.

There are no new edges added to the fan in either case, hence there is
no exceptional divisor. In either case, there is a new two-dimensional cone
o (spanned by (1,0,0),(0,1,0) and by (0,0,1),(1,1,—1) in the respective
cases), so there is an exceptional curve Z,, which can be seen to be a CP!
(in fact, any one-dimensional compact toric variety is necessarily CP'). The

birational map between the two blow-ups is called a flop.

It is an essentially combinatorial result that any toric variety can be

desingularized.

THEOREM 7.6.5. There exists a refinement v of any fan ¥ such that

X5 — Xx 15 a resolution of singularities.
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CP! CP!

flop 4%
smooth ) — = v smooth

1

blowdowx /olowdown

conifold singularity

FiGURE 8. The fans for the conifold singularity and its blow-ups

7.7. Morphisms

We have seen several examples of morphisms of toric varieties in pre-
vious sections: F,, — CP!, O(-3) — CP?, orbifolds, and blow-downs. A
systematic understanding is helpful in applications. For instance, we can
construct fairly general line bundles or projective bundles. The last con-
struction is very useful for constructing Weierstrass fibrations used to build

F-theory compactifications.

DEFINITION 7.7.1. Let ¥ be a fan in Ng and let ¥’ be a fan in Ng. A
morphism from X to X consists of a homomorphism 1) : N — N’ such that

for each o € X, the image of o under ¢ ® R is contained in some cone of
Y.

The mapping 1 : N — N’ induces a natural mapping of tori
T=N®C—-T =N ®C.

We leave it to the reader to check that this extends to a mapping X5, — Xsv.

The global orbifold considered in Sec. 7.5 gives a class of simple exam-
ples. In that case, we have N’ is a sublattice of N, ¢ : N’ — N is the
inclusion mapping, 1 ® R is the identity map, and ¥ = ¥/,
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FIGURE 9. The fan of CP! x CP! and T-invariant curves

EXAMPLE 7.7.2. The fan ¥ for CP' x CP!, depicted in Fig. 9, has edges
spanned by (1,0),(0,1),(—1,0),(0,—1). These in turn correspond to four
T-invariant curves, whose configuration is also shown in Fig. 9.

Note that projection onto either coordinate defines a morphism of fans
from ¥ to the standard fan for CP* (whose edges are the positive and negative
rays in R). The corresponding morphisms of toric varieties are just the two

projections onto the respective CP' factors.

0,1)
—— a0 <=
(t1,t2) c ((C*)2 CcF,
F,
(0,-1) Cpl
(-1,n)
t1 € C* C CP!
CP!

FIGURE 10. The CP! bundle structure of F),
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EXAMPLE 7.7.3. Now let n > 0 and consider instead the fan for F,, given
in Example 7.2.4. In this case, projection onto the first factor, depicted in
Fig. 10, maps this fan to the fan for CP' as in the previous example, but
projection onto the second factor is not a map of fans, since the image of
the cone spanned by (—1,—n) and (0,1) under the second projection is all
of R, which is not contained in a cone of the fan for CP*. This reflects the
fact, observed before, that F, is a non-trivial CP* bundle over CP'.

We can see that this is a locally trivial CP' bundle from the toric geome-
try using the ideas in this section. We restrict the bundle over the affine open
subset C C CP' obtained by removing the edge of the fan for CP' spanned
by (—1). Correspondingly, we must remove the edge spanned by (—1,—n)
in the fan for F,. We obtain the fan in Fig. 11, which is clearly a product
C x CP'. We can similarly see the product structure over the other affine
piece of CP!.

CP' x C CP!

FIGURE 11. Local triviality of F, as a CP! bundle

EXAMPLE 7.7.4. We return to the fan ¥ of Ogp2(—3) and now note that
it can be constructed directly from the fan X' of CP%. Each three-dimensional
cone in ¥ is spanned by (v1,1), (ve,1),(0,0,1), where

{U17U2} C {(_17 _1)7 (170)7 (07 1)}

spans a two-dimensional cone of Y.

Projection onto the first two coordinates defines a map from X to Y/,
which gives rise to the projection m : Ogp2(—3) — CP2. Reasoning as in
Ezxample 7.7.3, we see that this is a locally trivial line bundle. The global
structure of this bundle (i.e., that it is O(—=3)) can be deduced directly from
the toric data. The general rule is that if new edges are formed by lifting the
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(0,0,1)

(-1,-1,1)

0,1)

s

-
(-1,-1) T

(1,0)

FIGURE 12. The fan description of O(—3) and its projection
to CP?

edges spanned by v; € N to (v, k;) € NBZ (and adding the edge (0, ...,0,1)
over the origin), then the resulting bundle is O(— Y k;D;), as can be checked.

Note that the edge spanned by (0,0,1) projects to the 0 cone. Since
Ziy = CP?, we conclude that D 90,1y maps surjectively to CP2. As a check,
we have already seen that this divisor is the zero section. The other edges

project to edges, so the other T-invariant divisors map to divisors in CP':

D(flvflvl) = Tril({ml = O})
Duoyy = m ({z2 =0})
Doy = w ({3 =0})

Do) = the zero section CP2.

ExaMPLE 7.7.5. We can modify the discussion about line bundles to
construct projective bundles or even weighted projective bundles, generalizing

Example 7.7.3. Here is an example that arose in string theory. Consider
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the matriz P giving the edges of the fan X.

-1 -2 -2 -3

1 0 -2 -3
o 1 -2 -3
0 -1 -2 -3
0 0 1 0
0 0 0 1
0O 0 -2 -3

We leave it as an exercise to the reader to determine what the correct
cones are. Projection onto the first two coordinates maps the fan to the fan
for Fy. The fibers are the weighted projective spaces CP(1,2,3) (note that
CP(1,2,3) is the toric variety associated to the fan with edges generated by
(_27 _3)7 (17 O)v (07 1))

This toric variety contains Calabi—Yau hypersurfaces whose fibers over
F5 are elliptic curves in CP(1,2,3). This is a typical way to construct elliptic

fibrations for F-theory compactifications.

7.8. Geometric Engineering

The idea of geometric engineering is to construct geometric models with
desired properties so that the resulting string theory, M-theory, or F-theory
compactification has the desired physics. Toric geometry provides a useful
way to engineer these geometries, as it is easy to do direct physical com-
putations in that case. Geometric engineering will be revisited briefly in a
broader geometric context in Sec. 36.1.

For example, one way to produce an N' = 2 SU(2) gauge theory in four
dimensions is to produce a Calabi—Yau threefold X containing a surface F,,
which can be blown down to the base CP!. We consider type ITA string
theory compactified on X. There are two massive states corresponding to
D2-branes wrapping the fibers of F,, (with either orientation). In the limit
where the fiber shrinks and the base CP! gets large in such a way as to
decouple gravity, we get a field theory in which these massive states become
massless and join up with an existing U(1) associated to the volume of the
fiber to form an SU(2) vector.

A local model for this geometry is the canonical bundle of F;,, with F},

embedded as the zero section. This can be constructed by toric geometry.
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To do this, recall Example 7.7.4, where we showed how to construct the
fan of O(Kgp2) = Ogp2(—3) from the fan of CP? and how to generalize this
to more general bundles over toric varieties. In particular, let us use this
method to construct the canonical bundle over F5.

The result can be described in terms of the matrices P|Q for F5 and
KF2 :

1 0]0 1
—1 -2 1
F, = 0
0 1|1 0
0 -1 |1 -2
1 01] o 1
~1 -2 1] o0
Kp = 0 11| 1 o0
0 -1 1] 1 -2
0 01]-2 0

Once we have the toric data, we can directly derive field theory results
using mirror symmetry. The prepotential can be understood from an ap-
propriate Picard—Fuchs system of equations, which can be deduced from the
matrix () of charges.

We can see more about this local geometry directly from the toric data.
Projection onto the first coordinate defines a map Kp, — CP! for which
the divisors Dy and Dy are fibers. We can find the fan for either of these
divisors using the description in Sec. 7.2.1. Using D; to illustrate, we need

to project onto Z3/Z - (1,0,1). We use the isomorphism
22 (1,0,)~ 72, [(a,b,c)] — (c—a,b+c—a)

to identify D as the toric variety associated with a two-dimensional fan
with edges generated by (1,0), (1,1), and (1,2). This is the resolution of an
Aj singularity from Example 7.6.2. So the local Calabi—Yau threefold looks
like a resolution of an A; singularity fibered over a CP!. This geometry can
be generalized to A,, singularities and their resolutions fibered over CP!.
The Picard—Fuchs equations for the mirror correspond to Picard—Fuchs
equations for quantum cohomology. These equations can be proven to hold

directly in many situations.



132 7. TORIC GEOMETRY FOR STRING THEORY

7.9. Polytopes

We now switch gears and discuss projective toric varieties and their
relationship with polytopes. Our polytopes will be in Mg, the dual space
of NR.

DEFINITION 7.9.1. An integral polytope in Mg is the convex hull of a
finite set of points in M.

In the sequel, we will drop the adjective “integral” and refer to these
simply as polytopes.
The r-dimensional polytopes are the data needed to describe projective

toric varieties.

7.9.1. Toric Varieties from Polytopes. Consider an r-dimensional
polytope A C Mgr. We choose an ordering mg, ..., m; of AN M. Since
M = Hom(T,C*), we interpret the m; as nowhere vanishing holomorphic

functions on T'. These functions give rise to a map
(7.15) f:T —CPF f(t) = (mo(t),...,mu(t)).

It is easy to see that f is an embedding. We define CPPA to be the closure of
f(T) in CP*. There is an action of T on CP*: The element ¢ € T acts on CP*
as coordinatewise multiplication by (mg(t),...,mg(t)). This gives CPa the
structure of a toric variety. Note that this abstract variety structure does
not depend on the chosen ordering of A N M.

We can rewrite Eq. (7.15) as y; = m;(t), where (yo, ..., yx) are homoge-
neous coordinates on CP*. Now suppose that we have an additive relation
> a;m; =0 in M with Y a; = 0. Then CPA C CP* satisfies the homoge-

neous polynomial equation

(7.16) T =11v"
a;>0 a; <0
It is frequently easy to use Eq. (7.16) to define CPa C CP* directly.

A simple modification of this construction gives non-normal toric va-
rieties: Instead of using all of AN M to define Eq. (7.15), use a subset
whose convex hull is still A. For example, if A = [0, k], then CPx is the
rational normal curve of degree k in CP*, but if we use a proper subset
{0,a1,...,a;,k} of AN M, the closure of the image of t — (1,t%,...,t%,tF)
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defines a non-normal curve of degree k in CP*!. For instance, Example 7.2.6
arises using the subset {0, 2,3} of [0, 3] to define the embedding Eq. (7.15).
If we stick to normal varieties, then we can construct the fan directly

from the polytope A. First, for each face F' of A, define the cone
orp ={v € Ng | (m,v) < (m’,v) for all m € F and m' € A}.

Then the set of all of these cones, as F' varies over all faces of A, forms a

fan, the normal fan Xa.
THEOREM 7.9.2. Xy, ~ Pa.

We will not prove this here, but will merely observe that the isomorphism
is defined by

(T1,...,2p) — (ﬁ mz{mo,vz‘>7 o ﬁ $§mk,vi>> '
i=1

i=1
As usual, (z1,...,%,) are homogeneous coordinates in X5, and Ya(l) =
{Ul, ey Un}.

EXAMPLE 7.9.3. Let A C R? be triangle with vertices {(0,0), (1,0), (0,1)}.
Then Eq. (7.15) becomes f(t1,t2) = (1,t1,t2). The image is dense, and
PA ~ CP?.

The normal fan can be computed from the definition to be precisely the
fan for CP? given in Example 7.2.3. Note that the edges of this fan are
the inward-pointing normals to corresponding faces of A. This is how the
normal fan gets its name.

In the next section, we will “derive” this directly from the geometry of
CP2.

EXAMPLE 7.9.4. Let A C R? be triangle with vertices {(0,0), (2,0), (0,2)}.
Note that the normal fan is unchanged from Exzample 7.9.3, since the shape
of the polytope is unchanged. The toric variety is still CP? but the embedding

has changed. There are six points of
AnM ={(0,0),(1,0),(2,0),(0,1),(1,1),(0,2)}.
The torus is therefore embedded in CP® as
(7.17) (t1,t2) = (1,1, 85, to, tita, 13).
This extends to CP? as the well-known Veronese embedding of CP?:

(z1, T2, 23) — (23, 2120, 23, 123, ToX3, 73).
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EXAMPLE 7.9.5. Let A C R? be the quadrilateral with vertices

{(0,0),(2,0), (1,1), (0, 1)}

This also contains the lattice point (1,0). Note that we have obtained this
from the polytope of Example 7.9.4 by cutting off the corner (0,2).

The normal fan changes to the fan of Fy (Example 7.2.4), which is the
blow-up of CP? at a point (Example 7.4.2). So CPA ~ F.

The embedding in Eq. (7.17) is modified to

(t1,2) = (1,10, 87, b, tats).
If we tried to extend this to a map from CP?, we would get
(7.18) (z1, 2, 23) = (23, 122, T3, T123, ToT3).

But this is not defined at (0,0,1)! So we must blow up (0,0,1) to make Eq.
(7.18) well-defined, and it is not difficult to see that it is an embedding. So
we see directly that Pa ~ F1 as well.

Vot

FiGurE 13. Blowing up the toric variety associated to a polytope

More generally, blowing up corresponds to cutting out an edge of A.
Fig. 13 gives an illustration of part of a polytope and the normal fan, before
and after blowing up. It demonstrates how cutting off an edge corresponds
to subdividing a fan.

We close this section with an easy way to picture the topology of CPa
directly from A. We content ourselves with examples here.

For the first example, consider the map p : CP? — R? given by

(21,29, 3) ( | 22 |? , | 23 |? )

|21 2+ (@ P+ s P72y P+ 22 2 + [ 2 2
The image of y is the set of all (a,b) € R? satisfying a > 0,b6>0,a+b < 1,
forming the triangle A C R? from Example 7.9.3. The fiber of a point in the
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interior of the triangle is a compact torus S! x S!, the fiber over an interior
point of an edge is an S', and the fiber over a vertex is a point.

An even simpler example is CP! with bundle Ocp1 (1), in which case A
is the interval [0, 1]. We have the map u : CP* — R given by
| 22 |?
(71, 72) — [z 2+ |22 2
The image of  is [0,1]. The fiber of y over an interior point of [0, 1] is S1,
and the fiber of u over each of the endpoints is a point. This description
leads immediately to the homeomorphism Pa ~ S2. Both of these examples
are pictured in Fig. 14. The example of CP! is actually embedded in the
example of CP? as the line 23 = 0. Note that the bottom edge of the triangle
in the left half of the figure can be identified with [0, 1], compatibly with the

lattice.

{x3 =0} ~ §?

[1,0,0] [0,1,0]

(0,0) (1,0)

FIGURE 14. The topology of CP? and a coordinate line as
described by its polytope

In general, there is a continuous map p : CPA — A such that the fiber

of p over an interior point of a k-dimensional face of A is homeomorphic to

(SHE.

7.9.2. Polytopes from Toric Varieties. In this section, we construct
polytopes from projective toric varieties. The idea is simple. Suppose we

have a toric variety T C X embedded in a projective space CP*. This defines
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a hyperplane class Ox (1) on X. We will need to assume that the action of
T extends to an action on CP*, acting by coordinatewise multiplications.

To construct a polytope A, we need to choose an isomorphism between
Ox(1) and O(D), where D is some fixed T-invariant divisor. Making a
different choice for D will result in a translation of A, so the choice of D is
essentially irrelevant.

In the usual way, we identify sections of O(D) with meromorphic func-
tions f on X such that (f)+ D > 0, where (f) is the divisor of f. Thus each
coordinate function z; on CP¥ is identified with a meromorphic function f;
on X. The condition that the T-action extends to CP* implies that the
restriction of f; to T is a character of T. We let m; denote this restriction
and identify it with an element of M. Then A is the convex hull of the
{m}.

EXAMPLE 7.9.3, REVISITED. We consider CP? with hyperplane class identi-
fied with O(D1). The isomorphism between Ox (1) and O(Dy) is defined by
division by x1.

Thus, the coordinates {x1,x2,x3} correspond to the meromorphic func-
tions {(1,xa/x1,23/x1)} respectively. The coordinates on the torus are given
by

(t1,t2) = (z2/m1, 3/ 21),
so the characters are (0,0),(1,0), and (0,1), and we arrive at the polytope
A that led us to CP?. We illustrate this polytope in Fig. 15, together with

the corresponding monomials on CP?.

L3

0,1)

x1 (0,0)

FIGURE 15. The polytope for CP? with bundle O(1)

EXAMPLE 7.9.6. For a toric variety X defined by a fan X, we have
O(-Kx) =~ O exayDp)-  In particular, Ocp2(3) ~= O(—Kcpz) =~
O(D1+Dy+D3), where Dj is defined by the section x; of Ogp2(1), i =0, 1,2.
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A basis of I'(O¢p2(3)) is given by the ten homogeneous monomials of degree 3
m T, T2, T3.

Then with our choice Ogp2(3) ~ O(Dy + Dy + D3), the degree 3 polyno-
mial s is identified with the meromorphic function s/(x1x223) on CP?. The

T action on the vector space

V= { ° .se r(ow(g))}
T1X2X3

has weights spanning the polytope A C Mg depicted in Fig. 16. The cones

over the proper faces of A form a fan in Mg also depicted in Fig. 16, which
we recognize as the fan of CPQ/Z;; in Example 7.9.4. We will use this to

illustrate mirror symmetry in Sec. 7.10.

3
T3

(-12) (-1,2)
(-1.-1) ll 2-1) (-1.-1) -
i x5

FIGURE 16. The polytope for CP? with bundle Ogp2(3)

7.10. Mirror Symmetry

In this final section, we relate toric geometry to mirror symmetry. First
we explain Batyrev’s construction of mirror symmetry. Then we relate this

to the physical description of mirror symmetry in Ch. 20.

7.10.1. Batyrev’s Construction. Batyrev has introduced a beauti-
ful construction of mirror symmetry for Calabi—Yau hypersurfaces in toric

varieties, based on the notion of duality for reflexive polytopes.

DEFINITION 7.10.1. An integral polytope is reflexive if

(1) for each codimension 1 face F' C A, there is an np € N with
F={meA|(m,np) =-1}, and



138 7. TORIC GEOMETRY FOR STRING THEORY

(2) 0 €int(A).
The polar polytope A° of A is the convex hull of the np in Ng.

THEOREM 7.10.2. A polytope A is reflexive if and only if CPa is Goren-
stein and Fano. A polytope A is reflexive if and only if A° is reflexive.

PROOF. See [16]. O

The Gorenstein condition on a variety is a condition on its singularities.
This means that even though there is no notion of top degree holomorphic
forms at the singularities, the canonical bundle extends to a bundle at the
singularities. Omce there is a canonical bundle, then the Fano condition
means as usual that the anti-canonical bundle is positive.

Batyrev’s construction can be described as follows. Start with a reflexive
polytope A. Then its normal fan XA coincides with the fan formed by taking
the cones over the faces of A°. Anti-canonical hypersurfaces are given by
sections of the anti-canonical bundle Oxy, (32,5, (1) O(Di)). These define
Calabi—Yau hypersurfaces X C CPa.

Theorem 7.10.2 says that A° is reflexive, so we can apply the same
construction starting with A° in place of A. The result is a family of Calabi—
Yau hypersurfaces X° C CPpeo.

The assertion is that the family X is mirror to the family X°.

Note that if we use the usual embedding CPa < CP* with k=|ANM|-1,
then anti-canonical hypersurfaces in CIPa are defined by linear equations in
the coordinates of CP*.

REMARK 7.10.3. We actually need to blow up Xa,, by subdividing as
in Theorem 7.6.5. The required result is actually a bit stronger: there is a

subdivision for which the blow-up is projective.
Here is an example.

ExXAMPLE 7.10.4. We consider an example of one-dimensional mirror
symmetry. A one-dimensional Calabi—Yau is an elliptic curve. Perhaps the
simplest algebraic examples are the plane cubic curves in CP?. Let us find
the mirror family.

First we need the polytope A for CP* with bundle O(3) described in
Example 7.9.6.

The one-dimensional faces of A are defined by the linear inequalities

—a—b>-1,a>-1, b> -1
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respectively. So A° is the convex hull of the points (—1,—1), (1,0), and
(0,1) respectively. The cones over the faces of A° form the fan for CP?, as
it must. The polytopes are shown in Fig. 17.

FIGURE 17. The polytopes for CP? and its mirror

As in Ezample 7.9.6, let f : CP? — CP?, (x1, 19, 73) +— (23,...,23) be
the 3-fold Veronese embedding, which is also the anti-canonical embedding
of CP2. Each section of O(3) defines a cubic curve in CP?. Each monomial
corresponds to a character in M. Multiplicative relations among sections
correspond to additive relations among characters. For example, ps + p1op =
2pg tells us that the image of CP? under f is contained in the hypersurface
{ysy10 = yS} C CPY, where (y1,-..,Y10) are homogeneous coordinates on
CP?. See Fig. 18. The equations defining the Veronese image can all be

found similarly.

3
L1

3
o ps pyo pro

FIGURE 18. The polytope for CP? and bundle O(3) with a dependency
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In Example 7.5.3, we saw that cones over the proper faces of A form a
fan X° in My defining CP?/Z3. The anti-canonical class of CP? /Z3 consists
of Zs-invariant cubics. We can take a?‘i’, a?%, ﬁ:g, T1Z2Z3 as a basis for the Zs-
invariant cubics in CP?, where the &; are coordinates in the CP? with the
Zs action.

These monomials correspond to lattice points of the polytope A° in Ny,
and cones over proper faces of A° form a fan Y that defines CP2.

The polytope description gives an embedding CPz/Zg < CP? defined by
X, = :i‘?, 1 =1,2,3 and Xg’ = I12223, where the X; are coordinates on
CP?/Zs. This equation can be deduced from the relation

(1,0) + (0,1) + (=1,—1) = 3- (0,0).

ExaMpPLE 7.10.5. We now consider the famous example of quintic hy-
persurfaces in CP*. The construction of the mirror family by Greene and
Plesser consists of invariant quintic hypersurfaces in CP* /73, where 73 is

the group of all automorphisms of the form
(7.19) (o1,...,a5) with a? =1, Hai =1.

This can be seen by Batyrev’s construction. One way to see this is to
start with the fan for CP* with edges given by

-1 -1 -1 -1

1 0 0 0
(7.20) 0 1 0 0
0 0 1 0
0 0 0 1

Quintic hypersurfaces in CP* are anti-canonical, so the construction of Bat-
yrev applies.

The polytope A° for the mirror is the convex hull of the rows of Eq.
(7.20). Note that A°NN consists of six points, namely the points represented
by the rows of Eq. (7.20) together with the origin, which we denote by vg.
These give an embedding CPao C CP5. We let the coordinates on CP® be
(Y0,-..,Ys5), with yo corresponding to the origin in A°. From the relation
> v = Bug, we deduce the equation

(7.21) Y1 ys = Y
for CPpo.
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The orbifold description of Greene and Plesser follows immediately: The

transformation
(7.22) yi:;ﬁi5’i:1,...,5, Yo = &1 -+ I5

is tnvariant under the Zg automorphism group Eq. (7.19) and defines the
isomorphism CPpo ~ (CIP’4/Z§. The anti-canonical hypersurfaces in CPao
are given by linear expressions in the y;. Under the isomorphism induced by
Eq. (7.22), these correspond to Zg—z’m}am’ant quintics, as claimed.

Alternatively, the identification CPao ~ (CIPA/Zg could have been deduced
by identifying the normal fan of A° with the fan consisting of the cones over
the proper faces of the polytope A corresponding to the sections of O(5) on
CP*, then applying the methods of Sec. 7.5.

7.10.2. Relation to the Physical Description of Mirror Sym-
metry. This final section is not self-contained, as it refers to material to be
presented in Ch. 20. We include it here while the ideas of toric geometry are
fresh in the reader’s mind. We describe part of the relation between toric
geometry and the field theoretic description which will be given in Ch. 20.

We introduce n twisted chiral fields Y7,...,Y},; r twisted chiral fields
¥1,..., %, and parameters ti,...,ts (mirror to the Kéhler parameters of
Xsx). The gauge group is U(1)®. As usual, 7 is the dimension of Xy, and
s is the number of independent charges; if ¥ has n edges, then s = n — r.
The charge matrix will again be denoted as Q) = Q; 4, where 1 <17 < n and
1<a<s.

Then the required superpotential is

(7.23) W= (Z Y (zn: QiaYi — ta>> + zn: e Vi,
a=1 =1 =1

ExAMPLE 7.10.6. We return to the quintic. The quintic is related to
the non-compact theory of CP* with bundle O(—5). This can be described
by a U(1) gauge theory with charges (1,1,1,1,1,—5). Labeling the charged
twisted chiral fields as Y1,...,Ys, Yp, the superpotential Eq. (7.23) becomes

5
W=S(Yi+ - +Y5—5Yp—t)+ > e Vife 7
i=1
The Y -constraint gives Y1 + -+ -+ Ys = 5Yp + t. Exponentiating gives

5
(7.24) H e¥i = qed'",
i=1
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where ¢ = et. For q = 1, this is precisely the same as the equation of the

toric variety CPao given in Eq. (7.21) after the change of variables y; = ¥

and yo = €YP. The case of general q requires a rescaling.
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CHAPTER 8

What Is a QFT?

One of the central developments of the past century in theoretical physics
was the development of a subject called quantum field theory. This subject is
still being developed by physicists. This was at first motivated by an attempt
to understand quantum electrodynamics. However it is now believed that
all of physics should be based on some quantum field theory. This is mainly
because all the known forces and matter in nature can be described by some
quantum field theory.

This is also precisely the main obstacle in rigorously connecting modern
physics with mathematics. Many of the constructions in quantum field the-
ories, though based on sound physical arguments, are mathematically con-
jectural and very few quantum field theories have rigorously been proven to
exist.

The aim of Part 2 is to develop QFT in as much detail as is essential
in understanding mirror symmetry. However, mathematical rigor will not
be our main focus, for the reason mentioned above. Instead, we will aim at
familiarizing the reader as to how to think about QFT. So our aim is not to
define what a quantum field theory is, but to introduce it through a number
of examples. We start with easy examples and build toward more difficult
and interesting ones. In a sense this section can be viewed as a “practical

guide” to quantum field theories.

8.1. Choice of a Manifold M

The starting point for defining a quantum field theory is the choice of
a manifold M of dimension d. For most, but not all, QFTs the manifold is
viewed as a Riemannian manifold with a smooth metric on it. If the metric
is positive definite we sometimes refer to it as a Fuclidean QFT. For many
physical applications we will also consider manifolds with d — 1 positive
directions and one negative direction of the metric, as in the d-dimensional

Minkowski space. The manifold M may or may not have boundaries. In
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case it does have boundaries some additional information is needed at the

boundaries to define the quantum field theory.

8.2. Choice of Objects on M and the Action S

The next ingredient is the choice of objects to consider over M. Roughly
speaking, in the QFT one aims to integrate over the space parametrizing
these objects. The objects are also called fields. The operation of integration
over the fields is also called the path-integral. For example, we may consider
a principal bundle over M with a connection. In physics terminology the
choice of the connection is called “picking a gauge field.” We may also be
considering sections of a vector bundle over M. These fields are sometimes
called matter fields. Quantum field theories associated with connections and
sections of associated vector bundles are called “quantum gauge theories.”

As another example of QFTs we may consider the space of maps
(8.1) X: M—>N

for some target manifold N. The field theories associated with integrating
over the space of such maps are called sigma models. Sometimes we may be
interested in considering various choices of metrics on M. Integrating over
such choices is called “quantum gravity.”

In integrating over the field space we have to choose a measure on it.
In most cases there is a natural choice of a measure on these spaces. The
measure is also usually weighted (in the case of Euclidean signature) by
exp(—S), where S is a functional on the space of fields in question and is
called the action. In the Minkowski signature the measure is modified by
the weight exp(i5).

8.3. Operator Formalism and Manifolds with Boundaries

One can also consider the case where M has some boundary components:

This can only occur when the dimension of M is greater than or equal to
1. In such a case, in defining the integration over the field space we have to
specify boundary conditions for fields on B;. The space of field configurations

on each B; gives rise to a Hilbert space H;, and the path-integral, as we shall
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see, can be viewed as a multilinear map
®;H; — C.

If we glue two manifolds along their boundaries, the path-integral can be
performed by pairing the states corresponding to the boundaries that were
glued. This is compatible with the definition of the path-integral as cor-
responding to the sum over all field configurations (i.e., we fix the field
configuration on the boundary we are gluing and then sum over all possible
field configurations on the glued boundary).

In the case M = N x I, where N is a manifold without boundaries and
I is an interval of length T, the path-integral gives rise to a linear map (by

dualizing the Hilbert space corresponding to one of the boundaries):
UT):H—H.
Using the sewing property of QFTs we learn that U(T1)U(T3) = U(T1 +T3).

This in turn defines an operator H as the generator of U,
U(T) =exp(—TH)

in the Euclidean case, or
U(T) = exp(—iTH)

in the case where I corresponds to the negative direction in the signature (the
“time”). H is called the Hamiltonian and in most theories is a Hermitian

operator.

8.4. Importance of Dimensionality

As is clear from these examples, in quantum field theories we are typi-
cally interested in integrating over infinite-dimensional spaces. It turns out
that the greater the dimension d of M, the more complicated the integra-
tions over these spaces. In fact (ignoring gravitational theories), the only
non-trivial quantum field theories that are believed to exist (i.e., for which
some kind of integration over the infinite-dimensional space exists) have
d < 6 and most of the standard ones have d < 4.

Quantum field theories in different dimensions can be related to each
other by an operation known as “Kaluza—Klein reduction.” Roughly speak-

ing this means considering the situation where

M=NxK
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and where K is much less than N. The action S may be very large for field
configurations that are not constant over K, so the path-integral, which is
weighted by e, localizes to field configurations that are constant along K.
This gives rise to an “effective” path-integral over field configurations that
have only constant modes along K.

Certain path-integrals do not depend on the metric on the manifold. In
such cases taking the volume of K to be small reduces the path-integral to a
simpler one on N, which is a lower-dimensional manifold (and can possibly
be 0-dimensional) and is easier to compute.

Luckily for us, the study of mirror symmetry entails studying quantum
field theories with d = 2, so our aim is to study mainly low-dimensional
quantum field theories. We start with quantum field theories with dimension
d = 0 and work our way up gradually to d = 2.

One nice feature of this way of proceeding is that in cases of d = 0,1 we
can make many things (if not everything) mathematically rigorous. More-
over, many of the ideas relevant for the more complicated case of d = 2
already show up in these cases.

The case of d = 0, corresponding to when M is a point, is already
very interesting. In this case QFT is equivalent to carrying out some finite-
dimensional integrals, which of course can be rigorously studied. We use this
simple case to set up the basic ingredients of quantum field theories and also
introduce fermionic fields and supersymmetry, which are quite important
in the study of mirror symmetry. Already in this context we can discuss
rigorously the important notions of localization and deformation invariance
that often arise in supersymmetric quantum field theories.

The case of d = 1 is also known as quantum mechanics, as the quantum
aspects of particles are captured by it (where M corresponds to the world-
line of the particle). In this case we introduce the notion of supersymmetric
sigma models as well as supersymmetric Landau-Ginzburg models (sigma
models with extra potential functions on the target manifold). For d = 1 we
can introduce the notion of the operator formulation of quantum theories.
The operator formulation on manifolds M arises when it has some bound-
aries (which occurs only for d > 1). This is related to the fact that such
quantum field theories need extra data at the boundary to make sense of

them.
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We then move on to the case of d = 2 QFTs. We start with some rela-
tively simple examples, involving essentially free theories (sigma models with
target manifolds being flat tori). These are already complicated enough to
provide us with the basic example of mirror symmetry known as T-duality.
We then move on to more complicated cases involving sigma models on
Kahler manifolds, their reformulation in terms of gauge theories, and their
connection to Landau—Ginzburg theories. The notion of superspace is intro-
duced and used effectively. It turns out that properties of superspace play a
crucial role in the formulation and physical proof of mirror symmetry, and

we devote a large portion of this part of the book to developing these ideas.






CHAPTER 9
QFT in d = 0

In this section we will consider zero-dimensional quantum field theories, i.e.,
when M is a point. The simplest case is taking the field X to correspond
to maps from M — R, which in this case can be identified with a variable
X. The action S[X] in this case is just a function of the variable X. The

partition function is an integral given by
(9.1) Z = /dX e SIXI

The correlation functions in this zero-dimensional QFT are just weighted

integrals given by

(9.2) (f(X)) := /dX F(X) e SE
Sometimes it is useful to consider normalized correlation functions given by

[dX f(X)e S
[dX e=SIX]

(9.3)
Another way of determining the correlation functions is to deform the action

(9.4) S8 =85+ aifiX).

Then the correlation functions are given by the derivatives of the partition

function with respect to the parameter a;,

aZ(Oé, ai)

. (X)) = —F—— )
(9.5) oy ==
where « is a parameter of S and
(9.6) Z(a,a;) = /dXe_S/(X).

As an example, consider the toy model with action

(07

(9.7) S[X] = 2X2 +ieX3.
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We typically want the action to have certain reality properties but here we
will not worry about that. The partition function here depends on two pa-
rameters; we write Z(«, €). Notice that for € = 0 the action is just quadratic
and we can write down the exact partition function,
(9.8) Z(0,0) = /2~

Q@
We often define the normalization of the measure of integration such that we

get rid of the factor 4 / , 1.e., we consider the normalized partition function

Z(a,€)
Z(a,0)"
If e < 1, then we can expand the partition function in powers of € to

obtain a perturbative expansion,

o yr s o X3
(9.9) Z:/dX e_2x2_“X3:/dXZe g2 “! )

We assume that the perturbative expansion exists and do not worry about
issues of convergence.

Now we will introduce the machinery of Feynman diagrams, which are
very useful methods for perturbative computations in QFTs. Even though
the introduction of this machinery is not necessary in this rather simple
example, setting it up in a simple situation will help in understanding Feyn-
man diagrams in the more complicated case of higher-dimensional quantum

field theories. Consider the function
(9.10) Fla,J) = / e §XTHIX

J is known as “the source” in physics. We can perform the integration by

completing the square,

(9.11) f(a, J) :/ SO -DP+d \/%eéi,

Using the function f(«, J) we can write down some other useful integrals as
the derivatives of this function. In particular, we have

(9.12) /XTeSXQ ix = 2T j;;‘; J)

J=0

Pairs of % act together for a non-vanishing contribution to the above quan-
tity. This can be seen from the form f o exp(J2 /2a). First aaj brings
down a term < J from the exponent, then another 8 7 absorbs it. That there

must be a second one to absorb it can be seen from the fact that if it were
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not absorbed, setting J = 0 at the end would yield zero. Since each 8%
corresponds to an X, we see that in computing the integral of X" with the
Gaussian measure, we have to consider all ways of choosing pairs of them.
This operation when used for computing such integrals is called “choosing

pairs” and “contracting them.” This contraction is also called Wick con-

traction.
Each pair of % gives a factor of é and therefore % gives
1
(9.13) (=)"/2 x (# of ways of contracting).
@

Sometimes we draw lines to show possible contractions. Such a line is called
a propagator. Therefore each propagator is weighted with a factor of é
Let us go back to computing the partition function Z for our toy model,
Eq. (9.7). Consider the first non-trivial correction to Z(«,0),
(—ie)®
2!

(9.14) O(e)? /dX X3 x X3 xe 2%,

The graphical representation of this integral is shown in Fig. 1.

WV

- (O—
\\f_/

contract pairwise

FIGURE 1. There is one vertex for each X? and the three
edges emanating from the vertex are in one-to-one correspon-
dence with the three X'’s

The vertices of the graph come from terms in the action with higher
powers of X. In general, a term of the form X* leads to a vertex with k
edges emanating from it. The above example involves the case k = 3. The
first graph gives a factor of §(—ie)?(1)% x 3!, and the second graph gives
a factor of $(—ie)?(1)? x 3%, The numbers 3! and 32 reflect the number
of ways the contraction can be done to yield the same diagram. Note that
altogether we have 3! 4+ 32 = 15 possible pairs of contractions, this is as
expected because the total number of X’s is six and choosing a pair of them

can be done in 6 x 5/2 = 15 ways. The total value of the integral in Eq.
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(9.14) is the sum of factors from the two diagrams. These diagrams are called
Feynman diagrams. In general we obtain both connected and disconnected

diagrams.

EXERCISE 9.0.1. Show that
(9.15) Z(a,€) = 2 connected graphs

Moreover, show that the combinatorial factor associated to each connected
graph is given by (—3lie)Va~F /| Aut(G)|, where V is the number of vertices
of the graph, E is the number of edges, and |Aut(G)| denotes the order of
the automorphism group of the graph.

F := —1In Z is usually called the free energy and is given by minus the

sum of the connected graphs.

9.1. Multivariable Case

Consider the case of multiple variables X; with (i = 1,...,N) and the

action given by
(9.16) S(X;, M, C) = %XiMZ‘ij + CiijinXk.

We assume that the matrix M is positive definite and invertible. Since for
C = 0 the action is quadratic, we can evaluate the partition function to
obtain

(27r)N/2

/det(M)

The term C’iijinXk in the action leads to a vertex as shown in Fig. 2,

(9.17) Z(M,C=0)= /HdXz‘e_%Xz‘M“Xa‘ _

with three lines meeting at a point and a factor of —Cjjy.

F1GURE 2. The Feynman diagrams with more fields will have
edges labeled by the fields. To each vertex we associate a

factor —Cjx,



9.2. FERMIONS AND SUPERSYMMETRY 155

To determine the partition function for small C' we have to expand the
exponential of the cubic (and higher-order terms) in powers of C' (and other
higher-order couplings) and use Feynman rules to determine the coefficients
in the perturbative expansion as shown before in the case of a single variable.

In this case a propagator connecting X* and X7 carries a factor of (M _1)1-]-.

9.2. Fermions and Supersymmetry

We are interested mainly in supersymmetric quantum field theories.
These theories, apart from having ordinary (also called “bosonic”) variables
such as X?, also have Grassmann variables 1%, which are called “fermionic”
or “odd” fields. These form an associative and up to sign, commutative
algebra. There is a Zy gradation that assigns to all the bosonic variables
a +1 and to all the fermionic variables a —1, and is compatible with the
multiplication in the algebra. The fermionic variables have commutation

properties given by
(9.18) Xip® = X7, ol = —gplyp.

The second property in the above equation implies that ()*)?> = 0. Note

that pairs of 1/’ behave like bosonic variables since
(9.19) PP = (WOPO)Y

The rules of integration over Grassmann variables are different from

bosonic variables and are defined by

(9.20) /dwzo, /¢d¢:1.

In the case of many Grassmann variables we have

(9.21) /1/;1--~1/;”d¢1--~d1/;”:1.

The integrals involving permutations of the n fields are given by +1 depend-
ing on the parity of the permutation. Any other integral over the fermionic
fields (i.e., with less than n fermionic fields) is zero. The action S(X?,1)%)
is Grassmann even, which means that we need to have an even number of

1¥®*’s in each term. In order to evaluate the partition function

(9.22) 7 / [ axi [[ave e S5,
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we have to expand it in powers of 9)* and keep only the terms having each
¥® exactly once. As an example, consider the case when the action only has

fermionic variables,
(9:23) S(6) = 50 Mig.

The partition function in this case is given by
(9.24) 7= / [ awte 2% = pi(a).
k

Pf(M) is the Pfaffian of M and is such that Pf(M)? = det(M).

The smallest number of fermionic variables that can have a non-trivial
action is two (as the action has to have an even number of them). Consider
the most general action of one bosonic variable and two fermionic variables

given by
(9.25) S(X, !, 4?) = So(X) — ¢'*S1(X).
The partition function is given by

Z = / AX di dip?e S0+ ¥ ¥?51X)
(9.26) = / dX diptdy?e=0 (1 + 1?8 (X))

= / dX dytdy?e ™0 + / dX dyptdip?e 0l p? S (X).

The first term vanishes due to v’ integration, and we get
(9.27) Z = / dXe 08 (X).

We thus see that we can integrate out the odd variables and end up with an
integral purely in terms of bosonic variables.
For a special choice of Sp(X) and S1(X) the above theory has a sym-

metry, known as supersymmetry. Let
1
(9.28) So(X) = 5(ah)2 and  S1(X) = 9%h,

where h is a real function of X and dh := h'. In other words, consider the

zero-dimensional QFT defined by the action

(9.29) S(X,1,19) = %(811)2 — O?hp1ehs.
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There are symmetries of this action generated by odd parameters, which are
symmetries that exchange bosonic fields with fermionic fields and are known

as supersymmetries. Consider the following transformation of the fields:

5 X =elhy + €2,
(9.30) o1 =€>0h,
S1hy = — €' Oh.

Here € and 1); are Grassmann odd variables, therefore they anti-commute
with each other. They denote the infinitesimal parameters generating the
supersymmetry. It is easy to check that the action is invariant under this

transformation.

EXERCISE 9.2.1. Show that the integration measure dXdidis is also
invariant under this transformation. (In showing this you will develop a
concept known as superdeterminant and its infinitesimal version, the super-

trace, which one encounters when dealing with both even and odd variables).

9.3. Localization and Supersymmetry

In the context of this very simple supersymmetric quantum field the-
ory we will illustrate an important principle that occurs in supersymmetric
theories in general. This phenomenon, known as localization, allows one
to compute partition functions (and certain correlation functions) of super-
symmetric theories by showing that the relevant path-integrals defining the
quantum field theory reduce to a much smaller-dimensional integral, and
in ideal situations reduce to counting contributions of certain points in the
field space.

Suppose Jh is nowhere zero. Then we will show that
(9.31) Z = /e_s dX dipy dipy = 0.

The basic idea is to trade one of the fermionic fields with the supersymme-
try transformation variable. Put differently, we choose the supersymmetry
transformation to set one of the fermions in the action to be zero, and then
use the rules of Grassmann integration to get zero. For example, if we con-
sider €! = €2 = —41/0h, which is allowed if Oh # 0, then the v field will

be eliminated from the action. This motivates us to consider the change of
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variables
Sy UY1e
X=X Oh(X)’
(9.32) {b\l 1=04(X)¢1,
b =1 + o,

where « is an arbitrary function of X. Since the action is invariant under

the supersymmetry transformation (X, 1, 17) — ()? ,0, 122), we have

(9.33) S(X,1,) = S(X,0,1)).
The integration measure is written in the new variables as

N 92h ( X) SO
(9.34) dX din dips = | a(X) — (Oh(X))? ¢1¢2 dX dipy dips .

Thus the partition function is given by

(9.35) zZ = / diy / e=SX092) (X)dX dis

_o(® 0?2 h( )
— S(Xaova)
/ e Oh(X))? 1had X dipy dipy.

The first term vanishes since 121 does not appear in the integrand and the

integral over 121 gives zero by the following rule of Grassmann integration:

(9.36) /d&l 1=0.

The second term survives the Grassmann integration, but it also vanishes
since it is a total derivative in X.

Now let us consider a more general situation where dh may be zero for
some X'’s. In this case the change of variable above is singular at such X'’s.
Let us integrate over the fermionic fields and the X, with an infinitesimal
neighborhood of points where dh = 0 is deleted. Then the above argument
still applies and for this part of the contribution we get zero. On the other
hand, if 0h = 0 then d¢; = 0. That is, in the vicinity of the points where
0h = 0, we cannot trade the supersymmetry transformation variable with
one of the fermionic fields, i.e., the points where 9h = 0 are the fixed points
of odd symmetry shown in Eq. (9.30). Thus we see that the computation
of the partition function localizes to the vicinity of the fixed point set. This
is the localization principle: The path-integral is localized at loci where the

R.H.S. of the fermionic transformation under supersymmetry is zero. This
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principle holds for any QFT with supersymmetry. We will now use this
result to compute the above partition function in a simple way.

We know from the localization principle that the partition function gets
contributions only from the critical points of h. Let us consider the case
in which h is a generic polynomial of order n with isolated critical points.
Then it has at most n — 1 critical points.

Near the critical point X, h can be written as
(9.37) h(X) = h(X.) + %(X ~X,)?

Since the partition function localizes at the critical points we can consider
the infinitesimal neighborhood of such points and keep only the leading
terms in the action suitable for this infinitesimal neighborhood. In other
words, we can forget about the higher-order terms. Near each critical point
X, the partition function becomes (including the suitable normalization of

the measure discussed before)
dXdz/)lcw Cla2(X-X) > "(Xe)
(9.38) / _— Precyly L
2 Z ol = 2 (]
Thus we see that the partition function is an integer given by

_ 8*h(xo)
(9:39) 7= 8% [0%h(xo)|

This result implies that if n, the order of h, is odd, then Z = 0, because
there are as many critical points with positive 0?h as with negative, and if
the order of h is even, then Z = 41, the sign depending on whether the
leading term in h is positive or negative (because the number of positive
and negative §%h differ by one).

The fact that the partition function turns out to be an integer is at first
surprising. It seems as if it is counting something. This turns out to be
explainable when we discuss a related one-dimensional QFT, in which case
the same computation arises and is related to counting the dimension of a
subspace (the ground states) of a Hilbert space.

From the above result we see not only a localization principle, but also a
hint of a deformation invariance of the result. In other words, the partition
function seems to be sensitive (up to sign) only to the order of the polynomial
in h. We will now explain this deformation invariance, which is another

general property shared by supersymmetric quantum field theories.



160 9. QFT INd=0
9.4. Deformation Invariance

If we have a quantum field theory with a symmetry, meaning that the
action and the measure are invariant, then the correlation function of quan-
tities that are variations of other fields under the symmetry vanish. In other
words, if f = §g, where dg denotes the variation of g under some symmetry,
then

(9.40) (= [ re5 = [ o9 = [ s(ge%) =0

This follows from a change of variables of the integral and is valid as long as
the “integration by parts” that could potentially lead to boundary terms is
absent. In other words, as long as g is not too big at infinity in field space
this should be valid. This general idea applies to both bosonic and fermionic
symmetries. Here we wish to apply it to fermionic symmetries.

For the supersymmetric quantum field theory at hand we take g =
Op(X )11 and consider the variation of g under the supersymmetry transfor-

2

mation shown in Eq. (9.30) with ¢! = ¢2 = ¢ and f = §.g, which is given

by

f=0cg = 0°pd X1 + Ip(X) 5ty
= e(Opdh — O priba).

Thus since {f.g) = 0 we see that

(9.41)

(9.42) (0pOh — 0% piprafa) = 0.
Since
(9.43) § = 5 (0h)? — P,

we see that under the change h — h + p in the action
(9.44) 5,8 = Ohdp — O*ph1hs.
Thus it follows from Eq. (9.42) that

(9.45) (0,5) =0.

This implies that the partition function is invariant under the change in the
superpotential. This is true as long as p is small at infinity in field space
compared to h (otherwise the boundary terms in the vanishing argument
discussed above will be present). If h is a polynomial of order n, then p could

be a lower-order polynomial with the vanishing argument still applicable
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(p can even be of degree n as long as the X" term is smaller than that in h).
In particular transformations of the form A — Ah with A > 0 do not change
the partition function if the leading term in A is not changed. Thus we see
that the partition function is invariant under a large class of deformations
of the action.

This idea can also be used to evaluate the partition function. For exam-
ple, consider rescaling h — Ah with A > 1. In this case the action is very
large and exp(—S) very small, except in the vicinity of the critical points of
h. This effectively reduces the problem to the local computations we have
already encountered in the context of the localization principle.

In fact without any computations we can also gain insight into the result
for the partition function by considering the deformations of h. Since the
partition function is invariant under deformation of h, it is easy to see from
Fig. 3 that, if h is a polynomial of order n, then we can deform A such that
it has no critical points if n is odd and only one critical point if n is even.
Using the invariance under the rescaling of h we can now see that if n is odd
the partition function vanishes as it has no critical points and if n is even
the answer comes from a single point and the answer is +1 with the sign

determined by the sign of 9%h at the critical point.

n=odd

n=cven

F1GURE 3. Deformation invariance is a powerful tool in com-

putation of partition function in supersymmetric theories
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9.5. Explicit Evaluation of the Partition Function

One of the advantages of considering such a simple example is that we
can actually do the integral directly and check the results we obtained based
on localization and deformation invariance principle. We integrate out the

fermionic fields to obtain
1 1 2, 52
7 ——— | dX di dipoe 3 (OM) 0"t
\/% / 7?1 ¢2

1 1 2
= [ dX§*he 30N
V2T / ‘

We define a new coordinate y = dh. Then the above partition function is

(9.46)

1 1.2
9.47 Z:D—/d e~3V = D,
(9.47) Nl

where D denotes the degree of the map X +— y = Oh(X). Here D enters the
equation because the change of variable from X to y = dh is not one-to-one.
From the property of the degree of the map (which counts the number of
preimages of a given point taking into account the relative orientation of
each preimage with respect to its image), we know that D is zero when n is

odd and +1 when n is even. In other words, we find
(9.48) Z =0,if n=o0dd and +1 if n = even.

This result is in agreement with what we obtained using localization and

deformation invariance arguments.

9.6. Zero-Dimensional Landau—Ginzburg Theory

Now we consider the complex analogue of the theory considered before.
The variables are doubled: (X,1,2) — (2,Z,11,%2,101, %), where z is a
complex bosonic variable and ; are complex fermionic variables, with 1,

denoting the complex conjugate variable. The action is given by

(949) S(Z7 271#171;&27&171[)2) = |8VV|2 - (32W)¢11/12 - (W)EIEQ’
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where W (z) is a holomorphic function of z.! The action is invariant under
the transformations
6z ="y + 24hy, 67 := 0,

(9.50) 5y :=20W, ¢y := 0,

O1hy = — e'OW, 1)y :=0
and

0% ::E1E1 + EQEQ, 0z :=0,
(9.51) §py =2 OW, Sty =0,

Sty = —EOW, iy :=0.

So now we have four real (or two complex) supersymmetry transformations.

Note that if we restrict to the transformations with €! = €2 and el = €2,

then the above SUSY transformations are such that §% = 0,32 = 0.
The localization principle discussed before, applied to this case, implies
localization near the critical points of W. If the critical points of W are

isolated and non-degenerate, then near the critical point z.

(9.52) W(z) = Wi(z)+ %(z )t
(9.53) ¢S = emlalz=z)l tavrvatay vy

1 _
7= / e~ dzdzdy dipodip, dipy
T

1
(9.54) = E T’alz/ea(z’zc)Fdsz
. T

2e:0W (2)=0
= Z 1 = # of critical points of W.
20:0W (2)=0
Thus the partition function of this theory counts the number of critical
points of the holomorphic function W (z).

In general the computation of correlation functions in supersymmetric
theories (other than the function 1, which is the partition function) is not
easy. However, if we have enough supersymmetry, we can compute correla-
tion functions of certain fields that are invariant under some of the super-
symmetries. The fact that we have so many supersymmetries in this example

suggests that we should be able to compute some correlation functions in

IWe sometimes write f(z) for a holomorphic function of z, and f(z,z) for a non-

holomorphic function.
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this theory. In fact, as we will now see, there is an interesting relation be-
tween supersymmetry and holomorphicity for this QFT. If we consider the
correlation function (f), where f = 2Z! with nonzero i and I, this would
in general lead to a rather complicated integral that is not possible to eval-
uate using any localization principle. This is in accord with the fact that
this f is not invariant under any of the supersymmetries. However, we can
restrict to either functions of z or functions of Z. These f’s do preserve half
the supersymmetry since 62 = 0 and 6z = 0. Thus correlation functions
of holomorphic or anti-holomorphic quantities can be calculated using the
localization principle. In particular, for holomorphic f we apply the local-
ization principle to the 6 supersymmetry variation. This implies that again
the correlation function localizes to the points where W = 0:

— 71 o ;771 72
() = [ EERLEA p)eS

:/ diff(zna%vﬁe—%‘@w'?

Due to localization we only need to determine the partition function near

(9.55)

the critical points of W,

de= Y e [ G202 oy 2= 3w

2
20:0W (2¢)=0

= Z f(ze).

2c:0W (2¢)=0

(9.56)

Similarly, if g(Z) is an anti-holomorphic function, by considering the ¢ su-

persymmetry variation we have
(9-57) @)= >, gz
Ze:0W (Z:)=0
9.6.1. Chiral Ring. We saw above that we can calculate the correla-
tion functions of fields that are invariant under the ¢ transformations. Such

fields are called chiral fields. Note that the product of two chiral fields is

again a chiral field, because

(9.58) 5(f9) = (6f)g + f(8g).

Among fields made up only of bosonic fields the chiral fields are holomorphic
functions of z. We can also construct fields that are trivially chiral. Consider

fields of the form given by h = dA. Since 5 =0 (recall we are taking € = €2)
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it follows that 6h = 0. It is natural to consider the § cohomology, i.e., the
equivalence classes of chiral fields modulo the addition of trivially chiral

fields. As usual the cohomology elements can be viewed as
(9.59) {60 =0}/{® = 0A}.

The study of this cohomology is also very natural to consider from the view-
point of the QFT, because the addition of trivially chiral fields to the chiral

fields does not affect the correlation functions:

(9.60) (f +0A) = (f).

This follows from the 6 symmetry of the action. The QFT gives a natural
evaluation on the cohomology elements (analogous to the integration of top
forms on manifolds in the context of de Rham cohomology).

We can also study the corresponding cohomology ring. We consider
the product of chiral fields and consider only the cohomology class of the
product (as usual, one can check that the product does not depend on the
choice of the representatives). In the present context this cohomology ring
is called the chiral ring.

We will now evaluate the chiral ring for bosonic fields. Note that if f(z)

is a holomorphic function of z then

(9.61) oz (f(2)11) = f(2)0W (2).

This implies that the bosonic chiral fields (which are holomorphic functions
of z) are trivially chiral if they have a 0W(z) as a factor. In other words,

we find that the chiral ring is given by

(9.62) R = C[z]/{T},

where 7 is the ideal generated by the OW. As an example, consider
_ 1 n+1l

(9.63) W(z) = m—— Az,

(where \ is a constant). Since OW = 2™ — A, this implies that the chiral
ring is generated by one element z with the relation z = A. Thus the
ring elements are given by R = {1,z,2%,...,2" '}. Moreover, since the
correlation functions make sense as evaluations on the cohomology elements,
we learn that the correlation functions of z*t*" and 2*\* are equal. This can
also be checked directly from the computation of the correlation function for

chiral fields, as shown in Eq. (9.56). In fact in this case one easily sees that
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(z") is zero for all r except when r = 0 mod n, in which case the correlation

function is
(9.64) (2Fm) = nAk.

9.6.2. Multivariable Case. The supersymmetric quantum field theo-
ries we have studied can of course be naturally extended to many variables,
both in the real case as well as in the Landau—Ginzburg case. Here we will
write the LG case explicitly and leave the other case as an exercise for the
reader.

For multi-variable LG theory we have variables (z;, 9%, %) and their
complex conjugates, where¢ = 1,--- N. The action is a simple generalization

of the action considered before and is given by

(9.65) S(z;, i, i) = Z|8Wz1,..., V)2 = 0:0,W Winpd — B0, W .

Localization implies that the partition function and correlation functions of
holomorphic functions (or anti-holomorphic functions) localize at the critical

points of W, 9;W = 0Vi. The chiral ring in this case is given by
(9.66) R =Clz1,...,2n]/{Z},

where 7 is the ideal generated by ;.
An interesting set of examples we will encounter later involves LG the-
ories with a quasi-homogeneous superpotential W. These are W’s that are

polynomials in the z; with the property that
(9.67) WAz, o AN 2y) = AW (21, ..., 28)

for some weights ¢g;. We can think about this as introducing a gradation on
the fields, where z; has grade ¢; and the products of fields are compatible
with the addition of the gradation. In physics terminology one calls this a
U(1) charge. In this case the chiral ring R will also inherit the gradation.
We will mainly encounter cases where W corresponds to an isolated
singularity. This means that if we consider 0;/W = 0 for all 7, the only

solution is at the origin, z; = 0.

EXERCISE 9.6.1. Show that for an isolated quasi-homogeneous singular-

ity the Poincaré polynomial of the chiral ring (also known as the singularity
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ring) defined by P(t) = >y cr tQ where Qq is the gradation of the chiral
field X, is given by

_ l—q;
(9.68) P(t) = H %

Show that this implies that the dimension of R is
. (I—a)

9.69 dimR = —

(9.60 ",

and that for every element of charge Q. there is an element of charge D—Qq

(the analogue of Poincaré duality for LG theories), where
(9.70) D= (1-2q).

This is why we sometimes say that the corresponding LG theory has dimen-

sion D given by the above formula.






CHAPTER 10

QFT in Dimension 1: Quantum Mechanics

In this chapter we consider one-dimensional quantum field theories, also
known as quantum mechanics. We give a brief introduction to quantum
mechanics and discuss certain aspects of it in the context of supersymmetric
quantum mechanics.

We introduce various examples. In particular we consider supersymmet-
ric quantum mechanical systems corresponding to maps from one-dimen-
sional space to target spaces that are Riemannian manifolds (we also spe-
cialize to the case of Kdhler manifolds). These are known as sigma models.
We discuss the operator formalism of supersymmetric quantum mechanics
and relate the Hilbert space in this context with the space of differential
forms on the manifold. The supersymmetry operator gets identified with
the d operator and the Hamiltonian with the Laplacian acting on differen-
tial forms on the manifold. Above all, the supersymmetric ground states
will be the main focus of the discussion. These turn out to correspond to
‘po-
tential” on the manifold (i.e., a choice of function on the manifold) which

¢

cohomology elements of the manifold. We also consider introducing a

deforms the theory, and relate certain aspects of this quantum-mechanical
system to Morse theory.

These examples will serve as simple concrete models to appreciate the
structure of the supersymmetry algebra. It is also a good preparation for
the (1 4+ 1)-dimensional supersymmetric field theories to be discussed in

upcoming chapters.

10.1. Quantum Mechanics

We start with a brief introduction to quantum mechanics without super-
symmetry. In the path-integral formalism, which generalizes our discussion
of zero-dimensional QFT, the partition function and the correlation func-
tions are expressed as integrations over fields defined on a one-dimensional

manifold. Also, we will have an alternative formulation — the operator

169
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formalism — based on states and operators, which only exists for QFTs
with d > 1. As noted before, this arises when we consider manifolds with
boundaries, which in this context corresponds to considering an interval as
the manifold.

The one-dimensional space on which we formulate the QFT is either a
finite interval I, the real line R or the circle S'. It is parametrized by time
t. We first consider the case of a single bosonic field X, a map into a target

manifold that for the moment we take to be R:
(10.1) X:I,R or S' =R

We consider the action

(10.2) S:/Ldt:/{% (%>Q—V(X)}dt.

Here L is known as the Lagrangian. This is the action of a particle (of
mass 1) moving in the target space R under the influence of the potential
V(X). The equation of motion for the particle can be obtained by looking at
configurations X (¢), which extremize the above action for a fixed boundary

value. That is,

dX _[dX av

Using integration by parts, we obtain the equation of motion (the Euler—
Lagrange equation),
2

(0 £x__dv

In the zero-dimensional case considered in the previous chapter we had no
time derivatives and the action had only a potential term. The action, as
shown by Eq. (10.2), has no explicit time dependence and the system has
time translation symmetry. Namely, the action is invariant under X (t) —
X(t + «) for a constant a. If we let @ depend on ¢, a = «(t), the action

(10.5) 58 = /dt a(t) <%X2 + V(X)> ;

where the dot over the field denotes d/dt. For a configuration that obeys

the equation of motion, Eq. (10.5) must be zero for any «(t). Integration
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by parts yields

d (1.
10.6 — (X224 V(X)) =0.
(106) & (3 ven)
The quantity
1.
(10.7) H= 5X2 +V(X)

is a constant of motion. This is the energy of this system, or the Hamiltonian
in the canonical formalism. In general, following the same procedure one
can find a constant of motion, or a conserved charge, for each symmetry of
the action. This is called Noether’s procedure and the constant of motion
is called the Noether charge.

Let us consider the integral
(10.8) Z(Xo,t2; X1,11) = /DX(t) SN,

where integration is over all paths connecting the points X7, X9 such that
X(t1) = X1 and X(t2) = X2 as shown in Fig. 1. This integral is called a

FiGURE 1.

path-integral for the obvious reason. Since S(X) is real we are summing up
phases associated with different paths and the convergence of the integral is
a subtle problem. One can actually avoid this difficulty by considering the
“Euclidean theory” (which will also be useful for other purposes). This is
obtained by “Euclideanizing” the time coordinate ¢ by the so-called Wick

rotation:!

(10.9) t — —iT.

IThe reason that it is called “Euclidean theory” will become clear when we consider
(141)- or higher-dimensional quantum field theory.
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Then the action becomes S(X) — iSg(X), where Sg(X) is the Euclidean

action

(10.10) Su(X) = / {% (%)2 —i—V(X)}dT.

The path-integral is now given by
X(m2)=X2
(10.11) Zp(Xo, 19, X1,71) = / DX (7)™ 9B,
X(m)=X1
Note that the kinetic term is positive semi-definite and the integral has a
better convergence property (as long as the potential V(X)) grows at infinity
in X). We can also consider the partition function as the Euclidean path-

integral on the circle Sé, of circumference 3:

(10.12) Zp(B) = / DX (1) e 50,
X(r+8)=X(7)

The most subtle part of the story is to define the measure of integration.
One way of defining it is to divide the time coordinate into intervals and
use a single variable in each interval. After the integration is done over
all the intervals we can take the size of the interval to zero. There are
technical issues here about how to make sense of this process. For the one-
dimensional path-integrals there are ways of rigorously defining the path-
integral using random walk techniques. In a “free field theory,” by which
we mean the action is quadratic, we can define it as a generalization of Eq.
(9.17) where the matrix M is now of infinite size. As we will see, one can
define the determinant of such an infinite matrix by so-called zeta function
regularization. If the theory is not free but the interaction term is small, one
can define the path-integral as the perturbation series in the small coupling
constant, as was done in the zero-dimensional example. In particular, just
as in the zero-dimensional QFT of Ch. 9, we can formulate a notion of

Feynman diagrams, with propagators and vertices etc.

EXERCISE 10.1.1. Formulate Feynman diagram perturbation theory for

quantum mechanics by following steps similar to those for the zero-dimen-
sional QFT.

Starting from path-integrals, we can move to the operator formalism,

which is how quantum mechanics was historically formulated. In general
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terms, the Hilbert space and operator formulation arises when we consider
manifolds with boundaries. To each boundary we associate a Hilbert space
that corresponds to fixing the field configurations at the boundary. In the
case at hand, i.e., one-dimensional QF T, the boundary is just a point. Fixing
the value of the field at the boundary corresponds to choosing delta function
distributions in this case. More precisely, the Hilbert space H in this case
is the space of complex-valued square-normalizable functions of the variable
X, i.e., H = L?*({R;C), with its standard inner product

(10.13) (f9) = [ TEg0)ax.

This Hilbert space is considered to be the space of “states.” Let us consider

a mapping of a state at time t; to a state at time ts,

(10.14) Ziyity tH — H,
given by
(1015) 00 e DX = [ 20X, 1050, 1) f(X2)AX2

This is the operator representing the time evolution of the states. If the

action is invariant under the time translation, as in Eq. (10.2), then
(10.16) Z(XQ, to; X1, tl) = Z(XQ, to —t1; X4, 0) =: th—tl (XQ, Xl)

and Zi,. 4, = Ziy—t1;0 =: Zt,—t,- By definition, we have
(10.17) /ZtS_tQ(Xg,XQ)Zt2_t1(X2,X1)dX2 = Ziy—1, (X3, X1),

which expresses the obvious fact that the time evolution from t; to to and
then from t¢9 to t3 is the same as the evolution from ¢; to t3. In short,

ZyZy = Zp. Thus, the time evolution operator can be written as
(10.18) Zy = e

for some operator H. The Noether charge in the classical theory corresponds,
in the quantum theory, to the generator of the associated symmetry trans-
formation.? The generator H of the time translation is called the “Hamilton-
ian.” It is a Hermitian operator and the time evolution operator Z; = e~ #H
is a unitary operator.

It turns out that H can be described in a systematic fashion for quantum-

mechanical systems. In particular, in the system with the classical action

tis a good exercise to show this using the path-integral.
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described by Eq. (10.2), the Hamiltonian, which is also known as the energy
of the system, is given by Eq. (10.7) or

1
(10.19) H = 35p* + V(X),

where p is the conjugate momentum of X, p = 65/6X = dL/dX, with S
and L as in Eq. (10.2). In the classical theory, X and p obey the relation

(10.20) {X.p} =1,

where {, } is the Poisson bracket. It turns out that in quantum theory H
corresponds to the operator given by the same expression, where the Poisson
brackets are replaced by commutators and X and p satisfy the commutation

relation
(10.21) [X,p] =i.

From the above commutator it follows that when acting on the space of

functions of X we can identify X with multiplication by X and p with the

operator
d
10.22 = —i—.
(10.22) pi= i
Thus X and p become Hermitian operators (we ignore boundedness issues

—itH ig replaced with e~ "H,

for the moment). In the Euclidean theory, e
which is not a unitary operator. We will not show why this dictionary
between the path-integral and operator formulations of quantum mechanics
works as indicated here, but just use it and check in examples how it works.

Now consider the partition function on the circle Sé of circumference (3.
This can be considered to be the Euclidean path-integral on the interval of
length G with the values of X at the initial and final end points identified

and integrated over. Thus, it is given by

(10.23) ZE(B) = /XmZEﬁ(Xl,Xl) =Tr eiﬁH.
10.1.1. Examples. Simple Harmonic Oscillator. Consider the La-
grangian
Loo 1o
(10.24) L= §X + §X .

The Hamiltonian is given by

(10.25) H=P X i ix) L
. = — - = — 2 — —
2 Ty T oW P 2’
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where the last term is due to the fact that [X,p] = i. We define new

operators

(10.26) a=—(p-iX), af = %(p—kiX),

so that the Hamiltonian has a simple expression,
(10.27) H=dala+ %
The operators a and af obey the commutation relations

(10.28) [a,a'] =1,

(10.29) [a,a] = [af,al] =0,

from which it follows that

(10.30) [H,a] = —a, [H,d]=adl.

Thus, if |1) is a state of energy F, i.e., if it satisfies

(10.31) H|) = El),

then we have

(10.32) Halyp) = (E — Dalp), and Ha'lyp) = (E + 1al|y).

Namely, a and a' lower and raise the energy by one unit and for this reason
they are called the lowering and raising operators respectively. The ground

state |0) is defined as the state annihilated by the lowering operator,

(10.33) al0) = 0.
This state has energy Ey = 1/2. The corresponding wave-function obeys the
differential equation (—z’dix — i X)¥o(X) = 0 that corresponds to
(p —iX)|0) = 0. There is a unique solution (up to an overall constant)
given by
(10.34) Ty(X) = e 2.
The Hilbert space is spanned by states [n) = (a)?|0) of energy
1

(10.35) E,=n+ 5

Since we have determined the spectrum we can evaluate the partition
function:

S 1 1

10.36 Z(B) =Tr e PH = Bntz) =
(10-36) (B)=Tre nz_% N SN IP)
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We can also evaluate the partition function in the path-integral formal-

ism

(10.37) Z(B3) = / DX (t) exp <—/dt <%X2 + %X2)> .

X(t+8)=X(t)

The Euclidean action can be written as

1 1oy, 1o\ 1
(10.38) 2/dt<2X +5X ) = 2/th@X,

where © = dt2 + 1. Let f,(t) be the orthonormal eigenfunctions of the

operator ©,

(10.39) OFa(t) = Anfalt), / Fut) fon ()t = 61 .

Then we can expand X(¢) in terms of the eigenfunctions f,(t), X(t) =

Y nCnfn(t). We can use ¢, as the new variables in the path-integral,

(10.40) =S — 73 Ladnch
dey,
10.41 DX(t) = .
(10.41) =T
The path-integral then becomes
10.42 A2 =
( ) H det(@)
The eigenvalues of the operator © are
9 2
(10.43) Ao =1+ (%) ,

where n runs over all non-negative integers and there is one mode (constant
mode) for n = 0 and there are two modes (cos(2mnX/3) and sin(2mnX/[3))

for n > 1. Thus, we have

(10.44) H < (2””)2)_1.

We can write the above product as

(10.45) Z2(8) = ﬁ (%) 1;[( (27m) 2)‘1‘

n=1
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The second factor is a convergent product and is given by (/(2sinh(3/2)).
The first factor is divergent and requires a regularization. This is done by

the zeta function regularization, as we now show. We consider a function

(10.46) ao=> (=),

n=1

which is convergent for sufficiently large Re(s) and can be analytically con-
tinued to near s = 0. If we take the derivative at s = 0, we obtain
¢1(0) = >°°° | log(2mn/B)~2 and the infinite product can be identified as
[1°°,(2mn/B) 2 = exp ] (0). We note that the function (;(s) is related to
Riemann’s zeta function ((s) = Y00, n™° by (i(s) = (8/2m)?%¢(2s) and
therefore ¢}(0) = 2log(3/27)((0) + 2¢’(0). Using the property ((0) = —1/2
and ¢’(0) = —(1/2)log(27) of Riemann’s zeta function, we obtain ¢;(0) =
—log(B/2m) — log(2m) = —logB. Thus, the first factor of Eq. (10.45) is
regularized as exp ({(0) = 1/ and the partition function is given by

_ 1 g
~ B 2sinh(8/2)

This agrees with the result obtained in the operator formalism.

(10.47) Z(8)

Sigma Model on a Circle. As another example we consider the case
when the target space is the circle S}% of circumference R and the potential
is trivial, V(X) = 0. The field X is now a periodic variable

(10.48) X~X+R.

The action is given by

1.
(10.49) S(X) = / §X2dt,
and the Hamiltonian is
1 1 d?
10.50 H=_p’=——.
(10.50) o T Toux?
The eigenfunctions and the eigenvalues of the Hamiltonian are
) 2 2,2
(10.51) Py = 2™XIR o — 7;%: ,n € Z.

Using the operator formalism we find the partition function to be

(10.52) Z(B)=Tre P = N~ o/ R

n=—oo
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In the path-integral approach we have
(10.53) /DX e SeX /DXe o 2()%dr,

Here the integration is over all maps of Sé to 5’11%. The topological type of
the map (i.e., the connected component in the space of all maps) is classified
by the winding number, m, which is an integer. Thus, the path-integral is

the sum over all possible winding sectors

(10.54) Z(p) = /DX e 98(Xm)

m=—0oQ

where X, is a variable that represents a map of winding number m, X,,(3) =

X (0) + Rm. It is convenient to express the variable X, as

R

(10.55) X (7) = m; + Xo(7),
where X((7) is a periodic function. The action for this X, is given by

m2R? [P 1 d?
10.56 Sp(Xnm) = Xo | —=== | Xodr.
( ) B (Xm) 28 +/0 0< 2d72> odt
Then the path-integral becomes

ﬁ 2

(1057) Z e 2[3 /DXDG Xo( %#)XodT

m=—0oQ
The integrals over Xy are common to all m:

RVB 1 |
VI et (— )

dr2

(10.58)

The first factor is from integration over the zero mode (constant mode). The
factor 1/v/2m comes from the definition of the measure (as in Eq. (10.41))
and the factor v/ arises because the normalized zero mode is 1/y/8 and
therefore the integration variable takes values in [0, R/f3] rather than [0, R].
On the other hand, det’ ( 7 22> in the second factor is the determinant of
the operator —dd—; acting on the nonzero modes For each n # 0 there is

one mode with eigenvalue (2n/3)? for —-%4;. Thus, the determinant is

T 2mn\ 2
(10.59) det (_W> =11 (%) - 8,

n#0
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where the zeta function regularization is assumed (and the computation in

the previous example is directly applied). Thus the path-integral gives

R > _ m2R2
(10.60) Z(ﬂ):\/m e

This looks different from the result obtained from the operator formalism,
Eq. (10.52), but in fact it is exactly equal to that due to an identity known
as the Poisson resummation formula.?

Sigma Model on the Real Line R. Let us finally consider the theory of
single bosonic field X without a potential, V' (X) = 0. The action is simply

1.
(10.61) S:/§X2 dt.

This theory can be considered to be the sigma model on the real line R. The

Hamiltonian is given by

1
(10.62) H = §p2.
For any k, the plane-wave
(10.63) Up(X) = kX

is the momentum eigenstate of momentum p = k. This is of course the

Hamiltonian eigenstate of energy
1
(10.64) Ey =3 k2.

Unlike in the previous two examples, the wave-functions ¥j are not square-

normalizable but satisfy the orthogonality relation
(10.65) / W (X)UdX = 276k — I).

Also, the spectrum is continuous and the partition function Z(3) = Tr e~

is not well defined. If we consider this theory to be the R — oo of the sigma

3The Poisson resummation formula can be obtained as follows. We first note the
identity

oo

i 5(m+27rn):% Z eme,

n=-—oo m=-—00

Multiplying by e~ %" and integrating over x, this identity yields

i 67%(27_”1)2 _ % i / eimz7%12d‘r _ \/217(—0( f; efﬁ'mﬂ.

n=-—oo m=-—00

In the case at hand, o = §/R?.
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model on Sk, then by using Eq. (10.60) the partition function can be written

as

2 . hmR_woR

. R ome?

10.1.2. More General Sigma Models. So far we have considered a

m=—00

rather simple target space, namely the flat space or a circle. We can also
consider quantum-mechanical systems with the target being manifolds with
non-trivial topology and metric. These more general cases are also known
as non-linear sigma models.

Consider the case of a non-linear sigma model with target space a Rie-

mannian manifold with metric g;;(X). The action in this case is

(10.67) S=1[dt gij(X)L-9X,
We can expand the metric in Riemann normal coordinates around any point,
(10.68) gl-j(X) = 5@‘ + Cijlele + -

Thus we see that we have a quadratic term in the action as well as quar-
tic and higher-order terms (involving the curvature). This makes explicit
computations in the path-integral more difficult. It is possible to obtain the
path-integral as a perturbation series, starting from the quadratic term in
the fields, but it will be very hard to obtain the exact result in this way. In
this case, it turns out that the operator approach is more powerful.

Recall that in the quantum theory X is the position operator and the
associated conjugate momentum is

oS

10.69 P == = g;;0.X’.
( ) 5 9ij Ot

X and P satisfy the commutation relation
(10.70) (X', Pj] = id%.

To define the Hamiltonian, we start from the classical expression of the
energy for this system, which is given by
1

H= 5gii (X)P,P;.

In the quantum theory the above expression for the Hamiltonian is ambigu-
ous, because X and P do not commute. Requiring H to be Hermitian places
some constraint but is not strong enough to fix H uniquely. It is clear from

the above expression that H is a kind of Laplacian acting on functions over



10.1. QUANTUM MECHANICS 181

the manifold. But one has many inequivalent quantum choices for H that

reduce to the same classical object.

EXERCISE 10.1.2. Show why the above Hamiltonian is related to the

Laplacian acting on functions on the manifold.

This ambiguity in the choice of quantization of this system is related to
different ways of making sense of the measure in the path-integral. As we
will see when we discuss the supersymmetric sigma model, maintaining su-
persymmetry fixes the ambiguity in operator-ordering for the Hamiltonian.

At any rate, once we fix a choice of Hamiltonian we can compute, for
example, the partition function on a circle, which in the operator formula-
tion is given by Tr e #H  in terms of the spectrum of the Laplacian on the

manifold.

10.1.3. Semi-Classical Approximation. If the action is not qua-
dratic in the fields it is difficult to determine the spectrum exactly and
to compute the partition function. In such cases an approximation scheme
can be used to express the partition function in terms of an expansion pa-
rameter.

Let S(X) be the action and X be a solution of the classical equations

of motion, i.e.,

08
(10.71) — =0.
0X |x_x,
Then we can expand the action around the classical solution,
(6X)% 628
10.72 S(X) = S(X. —
(10.72) (0 =50+ 555 5]

Keeping only the terms in the action up to quadratic order in § X, we can

evaluate the partition function as

Z :/DX en (X))

; . 2 525(x,,)

(10.73) =50 [ pyx o4
%eiS(XCZ);.
det(%)

A good approximation to the path-integral is to take the above Z summed

over all the classical solutions to the system, and include the determinant
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of the operator obtained by integrating over the quadratic terms near each
classical solution. This is called the semi-classical approximation. In general
this is only an approximation valid when the fields do not vary too much
from the classical configurations. As we will see later in the context of su-
persymmetric theories, however, for certain computations the semi-classical
computation is exact. In fact, we have already seen examples of this in the
context of the zero-dimensional supersymmetric QFTSs, where we saw that
the sum of the contributions of the path-integral near the critical points of a
superpotential, which are analogues of the classical solutions in this context,
give the exact result. The analogue of the determinants in that context gave

us the +/— sign contributions.

10.2. The Structure of Supersymmetric Quantum Mechanics

We now embark on the study of quantum mechanics with supersym-
metry, or supersymmetric quantum mechanics. In quantum mechanics, in
general, it is very hard to find exact information such as the spectrum of
the Hamiltonian and the correlation functions. This is also true for super-
symmetric quantum mechanics. However, a particular class of data can be
obtained exactly in supersymmetric theories, the most important of which
are the supersymmetric ground states. This will be the focus of the present
section. Also, one can exactly evaluate correlation functions of operators
that preserve a part of the supersymmetry. We will see that these data can
be obtained by employing the localization principle and deformation invari-
ance, as discussed before in the context of zero-dimensional supersymmetric
QFTs.

10.2.1. Single-Variable Potential Theory. We start our study with
a specific example. The example is the supersymmetric generalization of our
potential theory with a single variable x. The theory has a superpartner of

x that is a complex fermion 1. The Lagrangian is given by

(10.74) L= %a';? - % (1 (z))? + % (WJ - W) — h'(x)Pp,

where 1) is the complex conjugate of 1, Y =1'. The second term, —% (W (x))?,
is the potential term —V (). Needless to say, 1 and 1 are anti-commuting

variables. The Lagrangian is real, as one can check by using the property

@) = TP =y,
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Let us consider a transformation of the fields

dr = e —e),
(10.75) = e(iz+ M (z)),
oY = &(—i+ K (),

where € = €1 + i€2 is a complex fermionic parameter and € is its complex
conjugate, € = €*. Under this variation of fields, the Lagrangian changes by

a total derivative in time dL = %Q -+ ) and therefore the action is invariant:
(10.76) 55 — / SLdt =0,

as long as the boundary variation vanishes. Thus, the system has a sym-
metry associated with the transformation shown in Eq. (10.75). Since the
variation parameter is fermionic, such a symmetry is called a fermionic sym-

metry. We can also see that (up to the equations of motion)
(10.77) [(51, 52]1‘ = 2i(61€2 — 62?1).%", [(51, (52]1# = 2i(61€2 — 62?1)1&,

where §; is the fermionic transformation Eq. (10.75) with the variation pa-
rameter € = ¢; (i = 1,2). Roughly speaking, the square of the fermionic
transformation is proportional to the time derivative. Such a fermionic
transformation is called a supersymmetry. We refer to this situation by say-
ing that the classical system with the Lagrangian shown in Eq. (10.74) has
supersymmetry generated by Eq. (10.75). This QFT is a one-dimensional
generalization of the supersymmetric zero-dimensional QFT discussed be-
fore. In fact, if we take the one-dimensional space to be a circle S! of radius
B, in the limit where § — 0, the path-integral is dominated by configurations

which are independent of the position on the S*.

EXERCISE 10.2.1. Show this in the Fuclidean formulation of the path-

integral.

In other words, in this limit we can consider the fields z and 1 to be in-
dependent of t. It is then easy to see that the action as well as the super-
symmetry transformations reduce to what we have given for the case of the
zero-dimensional supersymmetric QFT.

To find the conserved charges corresponding to the supersymmetry, we

follow the Noether procedure. Namely, we take the variational parameter
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€ to be a function of time, € = €(t), and see how the action varies. The

variation takes the form

(10.78) 5/Ldt = /(—ié Q —ie Q)dt

where
(10.79) Q=1 (it +h'(x)),
(10.80) Q=1 (—iz+ h'(z)) .

These are the conserved charges associated with the supersymmetry. We
call them supercharges. As one can see, Q and Q are complex conjugates of

each other,
(10.81) a=0q

and the number of supercharges is two in real units.

Let us quantize this system. Conjugate momenta for x and v are given
by p = OL/di and 7wy = OL/O = itp.* The idea behind m; = it is
that by partial integration the fermionic part of the action is given by
[ (i) — B (x)yep)dt. We consider this as the first order formalism of the
classical mechanics S = [{pdq — H(p,q)dt} (which will also yield that the
fermionic part of the classical Hamiltonian is h” (m)@@b) By moving from the
classical system to the quantum system, we have the canonical commutation

relation given by

(10.82) [z, p] =1,
and {9, Ty} =i or
(10.83) {9} =1,

with all the other (anti-)commutators vanishing. Here the only novel fea-
ture is that between pairs of fermionic operators we have anti-commutation

relations rather than commutation relations.” The Hamiltonian is given by

1 1 1 — —
(10.84) H = S5+ 5 (W (@))* + 51" (2) By - ¥).
Here we have chosen a specific ordering in the last term. In the classi-
cal theory h”(z)(cyp — (1 — ¢)iip) are equivalent for any ¢, but in the

4The ordering for Grassmann derivatives has been chosen such that (0/091) (Y11h2) =

—ths.
5{a,b} := ab + ba.
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quantum theory the change in c alters the Hamiltonian because of the anti-
commutation relation shown in Eq. (10.83). Later we will see the reason
behind the choice ¢ = 1/2. To complete the quantization we must determine
the representation of these operators. In the case of a bosonic variable, the
(bosonic) Hilbert space is the space of square-normalizable wave-functions
and the action of the operators on such a function ¥(z) is given by

(10.85) FU(z) = 2 U(z), pU(z) = —%xy(w).

(The ¥ notation emphasizes that x is being thought of as an operator.)
For the fermionic variables, we note that the anti-commutation relations
{4,9} = 1 and {9,v} = {b,¥} = 0 look like the algebra of lowering and
raising operators: [a,a] = 1 and [a,a] = [af,a'] = 0, which we found in
the simple harmonic oscillator. Indeed, if we define the fermion number

operator F' such that
(10.86) F =1y,

it satisfies the commutation relation with 1 and :

(10.87) [F. ] = =9, [F,9] = 4.

As in the quantization of the harmonic oscillator, we define a state |0) an-

nihilated by the “lowering operator”
(10.88) ¥|0) = 0.

Then one can build up a tower of states multiplying |0) by powers of the
“raising operator” 1. However, by the fermionic statistics, E2 = 0 and the
height of the tower is just 1. Namely, the space is the two-dimensional space

spanned by ©

(10.89) 0), v|0).

With respect to this basis the operators are represented by the matrices
0 1\ — 0 0

(10.90) P = <O 0) , Y= (1 O) .

The total Hilbert space of states is thus given by

(10.91) H = L*(R,C)|0) @ L*(R, C)¥|0).

6We note that the algebra of 1 and 1) is the same as the Clifford algebra on R*. The

above representaion is its unique irreducible representation.
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We denote the first and second components as

(10.92) HP = L2(R,C)|0),

(10.93) HE = L2(R, C)9|0),

and call them the space of bosonic states and the space of fermionic states

respectively. The operator F' = 19 is zero on H? and F = 1 on HF. Thus,

there is a Zo grading on H given by (—1)%".

The charges Q and QT = Q given by Eq. (10.79) and Eq. (10.80), or
(10.94) Q=1 (ip+1(2),
(10.95) Q=v(—ip+H(x)),
commute with the Hamiltonian
(10.96) H.Q) = [H,Q) = 0,
and are indeed conserved charges in the quantum theory.

EXERCISE 10.2.2. Verify the above commutation relation using the com-
mutation relations of x, p, ¥ and 1. Also show that the supercharges gen-
erate the fermionic symmetry shown in Eq. (10.75). Namely, for any com-
bination of (z,1,v), O = O(z,1,v), we have

(10.97) 50 =5,0], 6 :=eQ + Q.

Note that the Hermiticity, as in Eq. (10.81), means ot =—5 (e.g., (eQ)T
Qtel = Qe = —€Q), which is consistent with (60) = 5Ot since [25\, o)t
(o1, 51].

The supercharges act on the Hilbert space and map bosonic states to
fermionic states and vice versa. This can be considered the consequence of

the relation
(10.98) Q- =-(-D"Q. QD" =-(-D7Q.
which follows from

(10.99) [F,Ql=Q, [F.Q]=-Q.

Because of the relations 92 = 1) = 0, the supercharges are nilpotent:

(10.100) {Q.Qt={Q.Qt=0.
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Now let us compute the anti-commutation relation between @ and Q:

{Q.Q} ={w(ip+ 1 (x)),(~ip + I'(x))}
={Wip, ¥ (=i)p} + {Yh'(x), 1/ (x)}
+i{gp, OI (2)} — i{ Ol (x), 9p}
(10.101) =p® + (W (2))? + ippyl’ (x) + isph! (x)Pp
— Wb/ (2)yp — ibpdl! (z)
=p” + (W(2))” +i(Yy — ¥)[p, ' (2)]
=p + (' (2))? + 1" () () — ).
We note that this is equal to 2H. Specifically, the supercharges obey the

anti-commutation relation

(10.102) {Q,Q} = 2H.

We shall call a quantum mechanics with a Zy grading (—1)F a supersym-

metric quantum mechanics when there are operators Q and @ obeying the
(anti-)commutation relation given above. Such a quantum mechanics has
special properties which will be described below. Note that we have cho-
sen the operator ordering in Eq. (10.84) so that the resulting theory is a

supersymmetric quantum mechanical system.

10.2.2. The General Structure of Hilbert Space and the Super-
symmetric Index. We now derive some general properties of supersym-
metric quantum mechanics.

By definition, supersymmetric quantum mechanics (with two super-
charges) is a quantum mechanics with a positive definite Z-graded Hilbert
space of states H with an even operator H as the Hamiltonian and odd
operators @ and Q' as supercharges. These operators obey the following

commutation relations:

(10.103) Q*=Q" =0,
(10.104) {Q,Q"} = 2H.

As a consequence, the supercharges are conserved:

(10.105) [H,Q] = [H,Q'] =0.
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The operator defining the Zs-grading is denoted by (—1)F. Hereafter we
use QF and @ interchangeably. Since the Hamiltonian is even and the su-
percharges are odd, H(—1) = (-1)"H, Q(—-1)F = —(-1)FQ, Q(-1)F =
—(=1)'Q. We denote the even subspace of H (on which (—1)" = 1) by H?
and the odd subspace (on which (—1)f = —1) by HF. The Hamiltonian
preserves the decomposition H = H? @ H' while the supercharges map one

subspace to the other:
(10.106) Q.QN: HP — HF,
(10.107) Q,Q" : HI — HPE.

The first consequence of the algebra and the positive-definiteness of the

Hilbert space is that the Hamiltonian is a non-negative operator
(10.108) H=13{Q,Q"} >o0.

A state has zero energy if and only if it is annihilated by Q and QT:
(10.109) Hla) =0 < Qla) = Q|a) =0.

Due to the non-negativity of the Hamiltonian, a zero energy state is a ground
state. States annihilated by @ or @ are states invariant under the super-
symmetry and are called supersymmetric states. What we have seen above
is that a zero energy ground state is a supersymmetric state and vice versa.
Thus, in what follows we call such a state a supersymmetric ground state.

The Hilbert space can be decomposed in terms of eigenspaces of the
Hamiltonian
(10.110) H= P Hu) Hln,, = En

n=0,1,...

We accept the convention that Fyp =0 < F} < Fy < --- (if there is no zero
energy state we set H(y = 0). Since Q, Q and (—1)F commute with the

Hamiltonian, these operators preserve the energy levels:
(10.111) Q.Q.(-1)F : Hipy — Mo,

In particular, each energy level H, is decomposed into even and odd (or

bosonic and fermionic) subspaces
_ B F
and the supercharges map one subspace to the other:

A . B F . F B
(10.113) Q.Q :Hpy — My Hiny — Hiny-
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Let us consider the combination @ := Q + QF, which obeys
(10.114) Q3 = 2H.

This operator preserves each energy level, mapping Ha) to H{n) and vice

versa. Since Q% = 2E,, at the nth level, as long as E,, > 0, Q is invertible

and defines an isomorphism
B o~ F
(10.115) H(n) = H(n).

Thus, the bosonic and fermionic states are paired at each excited level. At
the zero energy level H g, however, the operator ()1 squares to zero and
does not lead to an isomorphism. In particular the bosonic and fermionic
supersymmetric ground states do not have to be paired.

Now, let us consider a continuous deformation of the theory (i.e., the
spectrum of the Hamiltonian deforms continuously) while preserving super-
symmetry. Then the excited states (the states with positive energy) move in
bosonic/fermionic pairs due to the isomorphism discussed above. Some ex-
cited level may split to several levels but the number of bosonic and fermionic
states must be the same at each of the new levels. Some of the zero energy
states may acquire positive energy and some positive energy states may be-
come zero energy states, but those states must again come in pairs of bosonic
and fermionic states. This means that the number of bosonic ground states
minus the number of fermionic ground states is invariant. This invariant

can also be represented as
(10.116) dim H ) — dim H{) = Tr (1) e 1.

This is because in computing the trace on the right-hand side the states with
positive energy come in pairs that cancel out when weighted with (—1)%, and
only the ground states survive. This invariant is called the supersymmetric
index or the Witten index and is sometimes also denoted by the shorthand
notation Tr (—1)%.

Since Q? = 0 we have a Za-graded complex of vector spaces

(10.117) HE L 1B &oyF L 6B,
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and thus we can consider the cohomology of this complex,

_Ker@: HB — HE

H(Q) = ImQ:HFE — HB’

(10.118) e
P er@:H" —H

H (Q)::ImQ:HBH'HF'

The complex shown in Eq. (10.117) decomposes into energy levels. At each
of the excited levels, it is an exact sequence, and the cohomology vanishes.
This is seen by noting that if the vector |a) at the nth level is @Q-closed,
Q|a) = 0, then by the relation 1 = (QQ' + QTQ)/(2E,,) that holds on Hn)
we have |a) = QQT|a)/(2E,); namely |a) is Q-exact. At the zero energy
level Hg), the coboundary operator is trivial, @ = 0, and the cohomology
is nothing but HZ%) and H{B) themselves. Thus, we have seen that the

cohomology groups come purely from the supersymmetric ground states
(10.119) HP(Q) =H(), H"(Q) =H(y.

In other words, the space of supersymmetric ground states is characterized
as the cohomology of the Q)-operator.

So far, we have assumed only the Zs-grading denoted by (—1)F. How-
ever, in some cases there can be a finer grading such as a Z-grading that
reduces modulo 2 to the Zs-grading under consideration. Such is the case if
there is a Hermitian operator F with integral eigenvalues such that e™f =
(—=1)¥. In fact, the example we discussed earlier has a fermion number F
that gives a Z grading (although in the Hilbert space only two values of F’
were realized). The Hilbert space H can be decomposed with respect to the

eigenspaces of I’ as H = @,czHP and the bosonic and fermionic subspaces
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are simply H? = @p even P and HE = ®p odaHP. Furthermore, if Q) has
charge 1,

(10.120) [F,Q] =@,
the Zs-graded complex shown in Eq. (10.117) splits into a Z-graded complex

(10.121) Qg1 Qg @ g1 Q)

)

and there is a cohomology group for each p € Z:
_ Ker@:HP — HPHL
 ImQ:HP L - HP

Of course, the space of supersymmetric ground states is the sum of these

(10.122) H?(Q)

cohomology groups and the bosonic/fermionic decomposition corresponds
to
(10.123) iy = P H(Q), H = P H(Q).
p even p odd
The Witten index is then the Euler characteristic of the complex
(10.124) Tr (—1)" =) (=1)?dim H?(Q).
PEL

It is possible to generalize this consideration to the case with a Zog-grading.
This is left as an exercise for the reader.

Finally, we provide a path-integral expression for the Witten index
Tr (—1)F e=PH together with that for the partition function Z(3) = Tr e

on a circle of circumference 3. These are given as

(10.125)  Z(B) = Tr e P = / DXDYDY|ap o SEK b0

(10.126)  Tr (—1)F = Tr (—1)F 1 = /DXWDEIP oSBT

where the subscript AP and P on the measure means that we impose anti-

periodic and periodic boundary conditions on the fermionic fields:

AP : (0) = —(8), ¥(0) = —(B),
P:y(0) = +9(3), ¢¥(0) =+¢(8).

The fact that inserting (—1)f" operator corresponds to changing the bound-

(10.127)

ary conditions on fermions is clear from and follows from the fact that
fermions anti-commute with (—1)¥". So before the trace is taken, the fermions

are multiplied by an extra minus sign. What is not completely obvious is
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that without the insertion of (—1)% the fermions have anti-periodic bound-
ary condition along the circle. To understand this, let us consider the cor-
relation functions on the circle with insertions of fermions. Due to the
fermion number symmetry, the number of v insertions must be the same
as the number of 9 insertions for the correlators to be non-vanishing. We
consider the simplest case with the insertion of ¥(¢;) and t(t3). Let us start
with to = 0 < t; < 3, and increase t5 so that it passes through ¢; and “comes
back” to 8. Due to the anti-commutativity of the fermionic operators, when
to passes through tq, the correlation function receives an extra minus sign.
Thus, the ordinary correlation function (1)(t1)t(t2)) S5 which corresponds
to the trace without (—1)F, is antiperiodic under the shift to — t5 + 3. The
rule (10.125)-(10.126) will also be confirmed when we explicitly compute the
partition functions in simple models, both in the path-integral and operator
formalisms.

We saw in the operator representation that Tr(—1)F e %" is indepen-
dent of 3. What this means in this context is that in the path-integral
representation on a circle of radius 8 with periodic boundary conditions,
the path-integral is independent of the radius of the circle. One can directly
see this in the path-integral language as well. Namely, the change of the
circumference is equivalent to insertion of H in the path-integral. This can
in turn be viewed as the @ variation of the field Q (in view of the com-
mutation relation {Q,Q} = 2H). For periodic boundary conditions on the
circle, @ is a symmetry of the path-integral (this only exists for periodic
boundary conditions for fermions because there is no constant non-trivial
¢ that is anti-periodic along S'). And as in our discussion in the context
of zero-dimensional QFT, the correlators that are variations of fields under
symmetry operations are zero. Thus the insertion of H in the path-integral
gives zero, which is equivalent to § independence of the Witten index in the

path-integral representation.

10.2.3. Determination of Supersymmetric Ground States. Let
us find the supersymmetric ground states of the supersymmetric potential

theory. The supercharges are represented in the (|0),|0)) basis as

(10.128) Q=v(ip+ 1 (z)) = (d/dw 3 W () 8) ;
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— 0 —d/dz+ N
(10.129) Q = (—ip+ H(z)) = (0 / x0+ (x)> .

We are looking for a state ¥ = f1(x)|0) + f2(x)1|0) annihilated by the
supercharges, Q¥ = QU = 0. The conditions on the functions f;(x) and

fa(x) are the differential equations

(10.130) (% + h'(:r)) fi(z) =0,
(10.131) (—% + h’(w)) fa(z) = 0.

The equation itself is solved by
(10.132) fi(z) = c1e™ "M@ fo(z) = cp @,

It appears there are two solutions, but we are actually looking for square-
normalizable functions. Whether e %) or e"®) is normalizable or not
depends on the behaviour of the function A(x) at infinity, x — +oo. We
consider three different asymptotic behaviors of h(z). (We assume polyno-
mial growth of |h(z)| at large x.)

e Case I: h(z) —» —o0 as ¢ — —oo and h(z) — 400 as © — 400
(Fig. 3 (I)), or the opposite case where the sign of h(x) is flipped. In this
case the functions e (*) and e™*) are diverging in either one of the infinities
x — Fo00 and are both non-normalizable. Thus, there is no supersymmetric

ground state. The supersymmetric index is of course zero:
(10.133) Tr(-1)F =o.

e Case II: h(z) — oo at both infinities z — foo (Fig. 3 (II)). In this
case e @) decays rapidly at infinity and is normalizable, but ¢™®) is not.

Thus, there is one supersymmetric ground state given by
(10.134) U = e @),

Since this state belongs to H?, the supersymmetric index is
(10.135) Tr (-1 = 1.

e Case III: h(x) — —oo at both infinities x — +oo (Fig. 3 (III)). In

—h(z)

this case e is not normalizable but e®) is. Thus, there is again one

supersymmetric ground state given by

(10.136) U = "@0).
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This time this state belongs to Hf and the index is

(10.137) Tr(-1)F = —1.

I\ A

I IT ITI

FIGURE 3

10.2.4. Example: Harmonic Oscillator. We now consider the ex-
ample of a supersymmetric harmonic oscillator. Namely, the case where the
function h(x) is given by

W 2

(10.138) h(z) = 525

so that the potential V' (z) = (h/(x))? is that of the harmonic oscillator

u12
(10.139) V(z) = 7;62.

Note that we have a parameter w which was set equal to £1 in the treatment
of bosonic harmonic oscillator, see Fig. 4. As we will see later this is an
important example that provides the basis of the semi-classical treatment of
the more general models. (This semi-classical method will be one of the main
tools in our discussion of supersymmetric QFTs in subsequent sections).
Following the previous analysis, which is valid for any polynomial h(x),
we find that there is one supersymmetric ground state in both the w > 0
and w < 0 cases. For w > 0, since h(x) grows to +oo at infinity, |z| — oo,

the supersymmetric ground state is given by
(10.140) U,ng = e 2977|0).
For w < 0, h(z) descends to —oo at infinity, and the state is given by

(10.141) U, = e 21735 0).
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Note that in both cases, the z dependence of the wave-function V¥ is of the

form

1
(10.142) exp (—5 |w] 562) .

> <0

FIGURE 4.

In this model, not only the supersymmetric ground states but also the
exact spectrum of the Hamiltonian can be obtained. The Hamiltonian is
given by
(10.143) H = —p* + —w"z* + zw(y, ]

2 2 2
The part (1/2)p? + (w?/2)x? =: Hos is the same as the Hamiltonian for the

simple harmonic oscillator and has the spectrum

w| ] |w]
10.144 —_—, — — 42 .
(10.144) B, g
each with multiplicity 1, as was analyzed before in the case |w| = 1. (The
two pieces of H commute, so we analyze the spectra independently.) Note
that the first eigenvalue |w|/2 is positive; it is called the zero point oscillation
energy. Now the “fermionic part” of the Hamiltonian (w/2)[¢,¢] =: H; is

represented as the matrix

w (=1 0
10.145 Hp == ,
( ) F=3 (0 1)

in the (]0),1|0)) basis. Note that one of the eigenvalues, —|w|/2, is negative

and we call it the fermionic zero point energy. Thus the spectrum of the
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total Hamiltonian H is given by

07 ’w‘vmw’?"'
w > 0,
|w’72‘w|73|w’7 e

(10.146)

w <0.

{ ], 2], Bl -
0, |w|’ 2|w’7 T
In both the w > 0 and w < 0 cases, the zero energy is attained as a conse-
quence of the cancellation of the zero point oscillation energy |w|/2 and the
fermionic zero point energy —|w|/2. Note the boson—fermion pairing for pos-
itive energy, as was anticipated by our general discussion of supersymmetric
theories.
We now calculate the partition function and the Witten index. The

Hilbert space factorizes as
(10.147) H=(L*R,C) ®|0)) & (L*(R,C) ® ¥|0)) ,= L* ® C*

where L? := L?(R, C) is the Hilbert space of the bosonic harmonic oscillator,
on which Hoyse acts non-trivially, and C? := C|0) @ C|0) is the space on
which H; acts non-trivially. Given this factorization, the partition function
and the Witten index are given by
(10.148)
Z(B) := Try e PH = Tr, e PHose . Ty e =PHs
Tr (=) := Try[(—1)F e ] = Trp2 e PHose . Treo [(—1)F e PHF,

Now we can calculate the individual parts

o0
- _ 1 1
(10.149) Trpo e Mo = " e ltallel = —— ———
n=0 €2 —e 2
(10.150) Tree e PHr =% 4 e%
(10.151) Tree[(—1)F e PH =% — %
Thus
eBTW + e_ﬁ_zw
Z(8) = Tre M =———— = coth(f|w|/2)
e 2 — e 2
(10.152) s
_N\F _—BH _ - _ v _
Tr(—1)"e =5 AT T 1] +1.
e 2 —e 2

Note that the partition function depends on the circumference 3 of S*

whereas the supersymmetric index does not.
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The independence of the supersymmetric index from (3 can be exploited
to relate it to the computation done for the zero-dimensional QFT. Namely
we consider the limit 6 — 0, in which case in the path-integral computation
only the time independent modes contribute, and we are left with a finite-
dimensional integral that is exactly the same integral we found in the context
of the zero-dimensional QFT. This also explains why the Witten index is
equal to the partition function for the supersymmetric system considered

for the zero-dimensional QFT.

10.3. Perturbative Analysis: First Approach

Let us come back to the potential theory with general superpotential
h(z). The semi-classical method can be used to compute the supersymmet-
ric index exactly, thanks to supersymmetry. This also provides the starting
point for determining the supersymmetric ground states, not just the index.
In the case at hand both the number of ground states and the supersymmet-
ric index have been computed directly and the semi-classical analysis may
appear as unnecessary. However, this method is extendable to more general

models where exact ground state wave-functions are hard to obtain.

10.3.1. Operator Formalism. As we have seen, the supersymmetric
index is unchanged under smooth deformations of the theory. It is conve-
nient to compute the supersymmetric index in the limit where we rescale h

according to
(10.153) h(z) — Ah(z), A> 1.

The Hamiltonian is then given by

2
(10.154) H:%ﬁ+%ﬂﬂmﬁ+%wwmam.

As A — oo, the potential term becomes large and the lowest energy states
become sharply peaked around the lowest values of (h'(x))2. Suppose there
is a critical point x; of h(z) where the potential term vanishes and let us

expand the function h(z) there:

(10.155) m@:h@»+%M@mm—mﬂ+%M%w@—mP~u



198 10. QFT IN DIMENSION 1: QUANTUM MECHANICS

We assume that the critical point is non-degenerate, that is, h”(z;) # 0. If

we rescale the variable as (x — x;) = %(m — T;), the expansion becomes

(10.156) h(z) = h(x;)+ ih”(fﬂi)(%_ii)Q"”

o W (@) (T—7:)*+O0(A7?).

6)\3/2

This shows that the Hamiltonian is expanded as a power series in A\~/2 as
1 1 SO 1 —

A2 H () 0N,

(10.157)

where p = —id/dZ. Thus, we can consider the perturbation theory in A~1/2,

where the leading term in the Hamiltonian is

1 A2 A _
(10.158) Hy = §p2 + 7h”(x,-)2(:v —z)* + S h (@), .
This is nothing but the Hamiltonian for the supersymmetric harmonic os-
cillator with w = h”(z;). Thus, the ground state in the perturbation theory

around z; is given by

(10.159) W, =3 @m0y 4 . if 1" (z;) > 0,
(10.160) W, = e 2 @E—)Th10) 1o B () < 0,
where + - -- represents subleading terms of the power series in A2 We

can find the subleading terms so that the energy is strictly zero to all orders
in A\='/2. (To see this, insert the expansion shown in Eq. (10.156) into
either of the expressions e_%h(m)\@ or egh(m)Em).) Namely, we have one
supersymmetric ground state that is exact in the perturbation theory. The

supersymmetric index of this perturbation theory is

(10.161) Tr(-1)F = { o) >0,

-1 A'(z;) <0.
If there are N critical points x1, ..., xy, and if all of them are non-degenerate,
then there are N approximate supersymmetric ground states Wi,..., Uy
that are exact in the perturbation theory around each critical point. Con-
sidering the sum of such perturbation theories as a deformation of the actual
theory, we can compute the Witten index. It is simply the sum of the index

for each perturbation theory and is given by

N
(10.162) Tr (1) = sign(h”(z:)).
=1
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It is easy to see that this agrees with the exact result obtained earlier. For
example, in Case II, the number of x; with h”(z;) > 0 is greater by one
compared to the number of z; with h”(z;) < 0, and the sum shown in Eq.
(10.162) equals 1.

As we have seen, the number of exact supersymmetric ground states is
at most 1. Thus, although the above semi-classical analysis reproduces the
exact result for the Witten index, it fails for the actual spectrum of super-
symmetric ground states. This means that the states Wq,..., ¥y are not
exactly the supersymmetric ground states of the actual theory. The failure
cannot be captured by perturbation theory since the ¥; are supersymmetric
ground states to all orders in the series expansion in A%/2. The effect that

—1/2 Later in

gives energy to most of these states is non-perturbative in A
this chapter, we will identify this non-perturbative effect and show how to
recover the exact result by taking it into account. The non-perturbative

effect is called “quantum tunneling.”

10.3.2. Path-Integral Approach — Localization Principle. We
next evaluate the Witten index using the path-integral. As we noted earlier,
this is done by computing the path-integral on a circle of arbitrary radius

(we choose it to be 1),
(10.163) Tr (—=1)F = / DXDEDY|p ¢ SeXbD),

where the periodic boundary condition is imposed on the fermions. The

Euclidean action is given by

2 2
(10.164) Sgp = /0 {% (%) + %(h’(m))z + Edii_lﬂ + h//(x)@qp} dr.

This action is invariant under the supersymmetry transformations

dx = e —e,
(10.165) 5 = e<—d—x+h’(l‘)>7
dr

oY) = € <d—$ + h'(:n)) ,
dr
which is compatible with the periodic fermionic (and bosonic) boundary
conditions.
Recall from our discussion of the zero-dimensional QFT that if the ac-

tion is invariant under some supersymmetries, the path-integral localizes to
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regions where the supersymmetric variations of fermionic fields vanish. This
follows simply from the integration rules over fermions and applies to any
supersymmetric QFT in any dimension. We will thus apply the localization
principle to this one-dimensional QFT. By the localization principle, the
path-integral is concentrated on the locus where the right-hand side of the

fermion variations 6 and 81 vanishes. Namely, it is concentrated on

d
(10.166) T W(2) =0,
dr
which is given by the constant maps to the critical points z1,...,znN.

The path-integral around the critical point x; is given by the Gaussian
integral, keeping only the quadratic terms in the action. Setting £ := x — z;,

the action in the quadratic approximation is given by

(10.167) sgu/;”{;g <—j—;+h”( ))gﬂz)( + W (a )) ¢}dT.

The path-integral around the constant map to x; is given by

oS _ det(a + " (z;))
/ DEDYDYlp et (=2 + (W (x:))2)
_ Hnezun + 1 (z:))
VInez(n® + (07(2:))?)
_ R (x;)
[P ()|

Summing up the contributions of all the critical points, we obtain
N
(10.168) Tr (—1)" e 7 = "sign(n(xs))

which is the same result obtained in the operator formalism. Note also that,
as before, the non-constant modes along the S! (indexed by Fourier mode n)
cancel among bosons and fermions and we are left with the constant mode,
which thus leads exactly to the computation for the supersymmetric QFT
in dimension 0.

Note that the periodic boundary condition for the fermions is crucial
for the existence of supersymmetry, as shown by Eq. (10.165), in the path-
integral. If we imposed anti-periodic boundary conditions there would be no
supersymmetry to begin with and our arguments about localization would

not hold. This is the reason the partition function without the insertion of
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(—=1)¥ (i.e., with anti-periodic boundary conditions for fermions) does not

localize near the critical points.

10.3.3. Multi-Variable case. Let us consider a supersymmetric po-
tential theory with many variables. We consider a theory of n bosonic and
2n fermionic variables !, ¢!, ¢! (I =1,...,n), where ¢! and 1’ are com-
plex conjugate of each other. The Hamiltonian and the supercharges in this

case is a simple generalization of the ones in the single-variable case:

H =5 301 + 5Orhe) + 500 v

10.169
( ) Q =¢I(Zp1 + Orh),
Q =y (—ipr + Orh),
where h(z) is a function of x = (z!,...,2"). It is in general difficult to
find the supersymmetric ground states. (If h(z) = ﬁvzl h(z"), however,

we have a decoupled system, and the supersymmetric ground state is the
tensor product of the supersymmetric ground states of the single-variable
theories.)

We now perform the semi-classical analysis to find the supersymmetric
ground states. As before, we rescale h(x) as Ah(z) with A > 1. Assume that
the critical points {x1,---,xn} of h(X) are isolated and non-degenerate.

Near each critical point z; we can choose coordinates §(;) such that
1
h(w) =h(w;) + 5010sh(w:) (&' — o)) (@” — )+

(10.170)
_hxz +ch z) _|_

In the large X limit, the ground state wave-functions are localized near the

critical points and the approximate ground states around x; are given by

(10.171) T, = o l= L Alef? 1(€(;))” H ¢J|O
J:e <0

Note that the number of ¢!’s is #{J|cf]i) < 0}, which is the number of
negative eigenvalues of the Hessian 0;0sh at x;. This number is called the

Morse index of the function h(x) at the critical point x;. Thus,

(10.172) number of ¥'’s in ¥; = Morse index of h(x) at z; =: ;.
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The approximate ground state is bosonic if the Morse index is even and
is fermionic if the Morse index is odd. The Witten index of the system is

therefore
(10.173) Tr (—1)F =) (=)™,

As in the single-variable case, it is not necessarily the case that there are
as many supersymmetric ground states as the number of critical points of
h(zx). It is quite likely that some non-perturbative effect lifts some of this
degeneracy. As promised before, this will be identified later in this chapter
as the quantum tunneling effect.

There are, however, cases where the number of critical points does agree
with the number of supersymmetric ground states. For example, if each of
the critical points has even Morse index, then all these approximate ground
states W; are really the supersymmetric ground states. This is because lifting
of zero energy states to positive energy states is possible only for pairs of
bosonic and fermionic states. In particular, in the large A limit where all
other states have large positive energies, the number of supersymmetric
ground states is the same as the number of critical points. Likewise, if each
of the critical points has odd Morse index, then all the ground states are
fermionic and these span the space of supersymmetric ground states, at least
in the large A limit. In the next example we consider a model to which this

remark applies.

10.3.4. Complex Case, n = 2m (Landau—Ginzburg Model). Let
us consider the case with an even number of variables n = 2m and let
us combine the 2m bosonic variables (') = (2!,y', ..., 2™, y™) into m

complex variables
(10.174) A=t 4yt i=1,...,m.

We consider the case in which the function h(z!) is the real part of a holo-
morphic function —W (2%) of (2%) = (z1,...,2™) (the minus sign here is not

essential; it is simply to match convention in later sections):

(10.175) h(z!) = —Re W (2Y).
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We introduce the complex notation also for the fermions:

(10.176) W= T i P =T gy
(10.177) W =T iV =g — g

They are related under the Hermitian conjugation by (W')T = 7" and
(")t =%, The Lagrangian of the system is expressed as

m
L=Y" (W + i 0" + W O’ — i\@-W)
(10.178) =1
1 . .
—5 2 (00 WO + 0 W' )
i,

This theory is the one-dimensional QFT version of the zero-dimensional
Landau-Ginzburg theory discussed before. We shall refer to the holomorphic
function W as the superpotential.

We now assume that W has N critical points p1,...,pnx that are all
non-degenerate, det 9;0;W (p,) # 0. At each critical point one can expand
the holomorphic function W (z%) in the form

m

(10.179) W(z)=> () +0((z"?%),

i=1
by an affine change of coordinates if necessary. Since (z + iy)? = 22 — y% +
2izy, the function h(z!) = Re W (z%) is written as

m
(10.180) n(a) = 3 {= @)+ )2} + (=),
i=1

In particular, the Morse index is ;4 = m. This is true at all critical points.
Namely, the N approximate ground states defined around the N critical
points of W all have (—1)" = (—1)™; they are all bosonic or all fermionic.
Thus, there is no chance for some of them to be lifted to positive energy
states. We see that the number of supersymmetric vacua is at least N and
the actual number is also IV for a sufficiently large scaling parameter A.

This system has more symmetry compared to the models we have been
studying. As in the zero-dimensional version, it has extended supersymme-
try. We recall that in the supersymmetric quantum mechanics considered
so far, the supersymmetry transformation has one complex parameter €. In

the present model, there are actually two complex fermionic parameters €
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and e_, where the transformation rules are
02" = ep )t — e_q)t, 02 = —e " + ey,
(10.181) Pt =ie_ 3 — e W, 6 = —ie T — € 0;W,
(5@1 = —ZE+ZZ - €_a{W, (5’¢7 == Z.G_t,_?i - E_&W
If we set e = e_ = ¢, we recover the original supersymmetry. By the

Noether procedure, we find the four supercharges Q+ and @ that generate

the supersymmetry transformations via 6O = [g, O] with

(10.182) S=ie Q —ie Qp —ie Q_+ie Q..
These are expressed as
, i —. P
(10.183) Qi = vipi = SO, Q- = U'pi+ 50O,
_ — i _ _ i
(10.184) Qp = Upi+ 50 OW, QU = Upi— SHOW.

We note that the ordinary supercharges @ and @ are simply the linear
combinations @ = i(Q_- + @Q,) and @ = —i(Q_ + Q4), which is consistent
with 6. —c = €Q +€Q. Under an appropriate choice of operator ordering for

the Hamiltonian H, these supercharges obey the anti-commutation relations

(10.185) {Qa. Qs}t = dapH,
(10.186) {Qa, Qp} = {Qa, Qp} = 0.

An extremely important fact is that the system can be considered as a
supersymmetric quantum mechanics with the supercharges Q = Q 4 this
itself obeys our favorite relation @2 = 0 and {Q,Q'} = H. (The choice of
Q . is not essential; any one of the four Q. and Q<+ will do the job.) In
particular, one can identify the space of supersymmetric ground states as
the Q _-cohomology group.

In fact, this last remark enables us to determine the space of ground
states exactly. To see this, we first focus on the fermion number operator.
The system has, as before, the fermion number symmetry F under which ¢!
and 1! have opposite charges. One can consider another “fermion number”

operator
m . .
(10.187) Fy =) ("' — 'y,
i=1
under which 9? and 9? have the same charge but it is opposite to the charge

of ¥ and 9%. This is not a symmetry of the system since the Lagrangian
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shown in Eq. (10.178) is not invariant, but there is nothing wrong in con-
sidering it as an operator acting on the Hilbert space of states. Now let us

consider conjugating Q 4 with the operator \/XFV:
— — —Fy— Fy
(10.188) Q. —Qu=vX2 "Q VX",

Since 9" and 1" have opposite charges under Fy, the effect of cojugations is
equivalent to the rescaling of the superpotential W — AW in the expression
of Q + (up to an overall constant multiplication). Since the Q _-cohomology
and Q L a-cohomology are isomorphic — under the isomorphism \/XFV, the
space of supersymmetric ground states is invariant under the rescaling pa-
rameter A — it follows that one can use the result of the semi-classical
analysis at large A, as far as the spectrum of ground states is concerned.

Thus, there is a one-to-one correspondence
(10.189) supersymmetric ground states «— critical points of W.

The ground states all have the same fermion number (—1)".
The extended supersymmetry has another advantage. Let us consider
a correlation function on the circle S', where we put periodic boundary

condition for fermions,
(10.190)  (O(7)---O(7s)) = /waﬂpes@:w’wom) - O(7s).

We note that the (Euclidean) time derivative of z* is the @, commutator

dz’ i A i A T
o= (@ v} = {00

Thus, if an operator O commutes with Qy, [Q.,O] = 0, the correlation

(10.191)

function (4 O) vanishes,

(10.192) <Z—f (’)> =—({Q.,v'10) =0.

It is clear from Eq. (10.181) that a holomorphic combination of the coordi-

nates 2* is () -invariant:

_ . 9
(10.193) 0o f(=1)] = 0, if a—; 0.

Thus, the correlation function <”Cll—ZTi f1(z%(11)) - - fs(2%(7s))) vanishes. This

means that

(10.194) %m(zi(n)) o fs(Z () =0, a=1,...,s.
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The correlation function of operators fi(z*(71)),..., fs(2*(7s)) is indepen-
dent of the “insertion points” 71,...,7s. One can actually push the compu-

tation further; the correlator is given by

N
(10.195) (A () fsGEE)) =D fi(pa) -+ fs(pa),
a=1
where p1, ..., p, are the critical points of W (assumed to be non-degenerate).

This is exactly as in the zero-dimensional case discussed before. In fact,
the localization principle tells us that the path-integral localizes on the @
fixed points; the locus where dz*/dr = 0 (and ;W = 0). This reduces the
computation to zero dimensions and gives us Eq. (10.195). Similarly, we
can develop the notion of chiral ring, etc., as was done in the context of
the zero-dimensional QFT. The fact that the correlation functions of chiral
fields do not depend on 7 is a hint of the topological nature of this quantum
mechanical system. It also implies that the chiral ring is defined without

reference to any particular points 7;.

10.4. Sigma Models

We now move on to supersymmetric systems with more interesting target
manifolds. We will see a beautiful relation between the topology of the target
manifold and the ground state structure of the supersymmetric sigma model.
We also consider turning on superpotentials on the target manifold, viewed
as Morse functions on the manifold, which leads to a physical realization of

Morse theory.

10.4.1. SQM on a Riemannian Manifold. We consider the super-
symmetric quantum mechanics of a particle moving in a Riemannian mani-
fold M of dimension n with metric g. This is the one-dimensional analogue
of the supersymmetric non-linear sigma model in 1 + 1 dimensions, which
will be the main focus of later sections. We assume that M is oriented and
compact, although compactness will be relaxed when we later deform the
theory by a potential. We denote a (generic) set of local coordinates of M
by ! = !, ... 2"

The theory involves n bosonic variables ¢! representing the position of
the particle and their fermionic partners ! and !, which are complex con-

jugates of each other. More formally, if we denote by 7 the one-dimensional
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manifold parametrized by the time ¢, the bosonic variables define a map
(10.196) ¢:T — M,

which is represented locally as z! o ¢ = ¢!. The fermionic variables define

sections
(10.197) Y, e T(T,¢"TM ® C),

which are complex conjugates of each other, where ¢ is locally represented

by ¢ = 1/)1(8/3$1)|¢. The Lagrangian of the system is given by

(10.198) L = %gmbfqbu égu@thuﬂ — D" p7) - %RUKLWE%KW,

where
(10.199) Dyp" = 0" + T 007 "

with FﬂK the Christoffel symbol of the Levi—-Civita connection. Under the

supersymmetry transformations

(10.200) 5ot = el —&),
(10.201) sl = e(ig! — T ™),
(10.202) o' = e(—id" — Ty "),

the action is invariant
(10.203) 5/Ldt =0,

and the classical system is supersymmetric. By the Noether procedure, we

find the corresponding conserved charges (supercharges)

(10.204) Q = igrvle’,
(10.205) Q = —igrlé’.

The Lagrangian is also invariant under the phase rotation of the fermions
(10.206) Wl — e vl Pl — eyl
The corresponding Noether charge is given by

(10.207) F = grty’.
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Let us quantize the system. The conjugate momenta for ¢! and !
are given by pr = 9L/ ool = gr;67 and Tyl = 191 s¢”7 and the canonical

(anti-)commutation relations are given by

(10.208) [¢',ps] =id";,
(10.209) {v', ¥’} =g¢",

with all other (anti-)commutators vanishing. In terms of the conjugate mo-

menta p; the supercharges are given by

(10.210) Q=ipr, Q=—ip;.

To find the quantum mechanical expression for the Hamiltonian H, we face
the usual problem of operator ordering. Here we fix this ambiguity so that

the supersymmetry relation

(10.211) {Q,Q} =2H

holds. We also note that the supercharges Q and @ have opposite F-charges
(10.212) [F,Q]=Q, [F.Q] = -Q.

As a consequence, ' commutes with the Hamiltonian

(10.213) [H,F] = 0.

Namely, F' is a conserved charge in the quantum theory. It is easy to see
that F' generates the phase rotation, as shown by Eq. (10.206). We call this
F' a fermion number operator.

Quantization is not complete unless we specify the representation of the
above algebra of observables. Here there is a natural one. It is represented

on the space of differential forms,
(10.214) H=QM)®C,

equipped with the Hermitian inner product

(10.215) (w1, ws) = / w1 A *wa.
M
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The observables are represented on this Hilbert space as the operators given
by

(10.216) o = alx,
(10.217) pr = —iVy,
(10.218) o = diln,
(10.219) O = 9"ig000,

where iy is the operation of contraction of the differential form with the
vector field V. If we denote by |0) the vector annihilated by all 1'’s (as
was used in the previous treatment of the representation of the algebra of

fermions), we find the following correspondence,

(10.220) 0) 1

(10.221) 20 o da!

(10.222) 200 o da! Ada?
(10.223) o

(10.224) PPy s dat A--- Ada™,

Since [F,¢!] = ¢!, the fermion number (F-charge) of the state correspond-

ing to a p-form is p. Thus the decomposition by form-degree
n
(10.225) H=PrM) ecC
p=0

coincides with the grading by the fermion number.

The supercharge @ is then given by

(10.226) Q=i pr = da' AV = da’ A % =

which is the exterior derivative acting on differential forms. The other su-

percharge () is defined as the Hermitian conjugate of Q,
(10.227) Q=Q"=d.

The Hamiltonian H is defined so that the supersymmetry relation, Eq.
(10.211), holds and is represented as

(10.228) H=1%{Q,Q} = 3(dd +d'd) = A,
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where A is the Laplace—Beltrami operator. Thus, the supersymmetric ground

states, or the zero energy states, are simply the harmonic forms
n
(10.229) My = H(M,g) = D H(M,g),
p=0

where H (M, g) is the space of harmonic forms of the Riemannian manifold
(M, g) and HP(M, g) is the space of harmonic p-forms.

We recall that the space of supersymmetric ground states can be char-
acterized as the cohomology of the Q-operator. In the present case, since

there is a conserved charge F' with

(10.230) [F,Q] =@,

the @Q-complex and the (Q-cohomology are graded by the fermion number
F = p. Since this is the form-degree and ) is identified as the exterior
derivative d, the graded Q-cohomology is the de Rham cohomology

(10.231) HP(Q) = HY, ,(M).
From the general structure of supersymmetric quantum mechanics, we have
(10.232) Hoy) = H(M, g) = H*(Q) = Hpr(M).

With respect to the F-charge, this refines to

(10.233) HP(M, g) = HY, 5 (M).
The supersymmetric index is the Euler characteristic of the ()-complex,
namely
(10.234)
n n
Tr (—1)" =) (1P dim H?(Q) = > _(~1)’dimH})(Q) = x(M),
p=0 p=0

which is the Euler number of the manifold. Here deformation invariance is
the familiar statement that the harmonic forms are equal to the de Rham

cohomology classes, which are diffeomorophism invariants.

EXERCISE 10.4.1. Using the independence of Witten index Tr (—1)F e=8H
from B, derive an expression for the Euler number of a manifold in terms
of an integral involving the Riemann curvature tensor over the manifold. In
particular, consider the limit 3 — 0 of the path-integral, and argue that the

finite-action field configurations contributing to the path-integral localize to
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constant modes independent of time, reducing the path-integral to a zero-
dimensional QFT, involving an integration over the manifold (this can also
be derived using the localization principle and the supersymmetry transfor-
mation of the fermionic fields). Moreover, the fermionic integration brings
down Riemann curvature terms from the quartic fermionic term in the ac-
tion Eq. (10.198) leading to the desired integral over the manifold.

10.4.2. Deformation by Potential Term. We can modify the La-
grangian by adding a potential term constructed by a real-valued function
hon M,

(10.235) h:M—R.

The modification is given by addition of

(10.236) AL = —1g!0rhdsh — D0 hip' 7

to the Lagrangian, where

(10.237) D;dsh = 9105h — I'K,0h.

The supersymmetry transformations are modified as
(10.238) sl = e — el

(10.239) ol = e(id" =TI’ + g"o,m),
(10.240) o0l = &(—id! — TL TR + g1 an).

The supercharges are modified accordingly:
(10.241) Q = ¢'(igrs¢” + 0rh) =4 (ipr + Orh),
(10.242) Q = Yl (—igrs¢” + 0rh) = ' (—ipr + Orh).

The fermion rotation symmetry ¢! — e and ! — e~ is preserved

and the conserved charge is again
(10.243) F = grply?.

The canonical commutation relation is not modified, and we can use the
same representation of the algebra of variables as before. In particular, the
Hilbert space of states is the space of differential forms Q°(M). We see that
the supercharges are represented as
(10.244) Q = d+d¢' Noth=d+dhA = e Mde =: d,

(10.245) @ = (d+dhA\)f = dfe™" =d].
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The Hamiltonian is chosen so that the supersymmetry relation holds, namely
1 — 1
(10.246) H={QQ)= E(dhd,t +dldy).

The space of supersymmetric ground states is isomorphic to the cohomology
group of the Q-operator. Since the conserved fermion number F' counts the
form-degree, and () has charge 1, the -complex and cohomology are graded
by the form-degree. However, this () and the Q before the deformation are

related by the similarity transformation

(10.247) Q= e "Que",

and the ()-complex is isomorphic to the old one

(10.248)

0 —— Q) —4 o) —%— ... L orm) —% 0
e M e M e N

0 QD(M) e d el Ql(M) e d el L e~ hd el QH(M) e d el

Therefore,

(10.249) HEy = HP(Q) = HY Qo) = Hp (M),

In particular, the dimension of the supersymmetric ground states is inde-

pendent of the choice of the function h.

10.4.3. SQM on a Kahler Manifold. We study here the supersym-
metric sigma model in the case where the target space M is a Kahler man-
ifold. The focus will be on the extended supersymmetry and two kinds
of fermion number operators. The readers do not have to check all these
formulae in detail. They follow from the formulae in the non-linear sigma
model in (14 1) dimensions, which will be derived systematically in Ch. 12
and Ch. 13.

We recall that a Kahler manifold is a complex manifold with a Hermitian
metric g such that the two-form w defined by w(X,Y) = g(JX,Y) is closed.
In terms of the local complex coordinates (z¢) = (2,...,2"), where n is the
complex dimension of M, the Kéahler form is written in terms of the metric

tensor g;; as
(10.250) w = ig;dz" A dZ.

The Kéhler condition reads as 9;g;; = 0;¢,; and the Christoffel symbol can
be written as F;k = g"0;g,7.
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As before, the sigma model is described by scalar fields ¢* and @’ rep-
resenting the map ¢ : 7 — M, and fermions %, ", 1%, ¢)* that represent
the sections 1,1 € I'(T,¢*TM ® C). The Lagrangian is as shown in Eq.

(10.198). In terms of the complex variables it is expressed as
(10.251) L= g;50'¢" + igiy! Dy’ + igig' Dy? + Rygpb FopTpt
This system has an extended supersymmetry as in the theory of complex

variables with the potential determined by h = —Re W. The supersymmetry

variation has two complex parameters e and e_ and is given by

5@257' = €+Ei — 671/)7;, 6?1)7 = _E+¢? + E—W’ B
(10.252) oy’ = i ¢t - e+r§k@_¢k, 8" = —ie_¢' — ar%wfp’f,

0Pt = =it ' — e Tyluk, 647 = ie T — e TTTyk,
By the Noether procedure, we find four supercharges Q+ and @,
(10.253) Qt = g’ Q- = gib' ¢,
(10.254) Qy = 970", Q_ = g’
The ordinary supercharges Q and Q are simply the linear combinations
Q=1i(Q-+Q,) and @ = —i(Q_ + Q+). The Lagrangian shown in Eq.
(10.251) is invariant under two kinds of phase rotation of fermions:
(10.255) Pl RGO,
(10.256) Pl ell@= Byt gt s eil=a=B)yT,
We call the o and 3 rotations vector and azial rotations, respectively. (The
names have a (141)-dimensional origin.) The corresponding Noether charges
are given by
(10.257) Fy = gg()" = '), Fa = gi(70" + ).
The fermion number F' for a general Riemannian manifold equals Fl4, and
Fy is the new one present only if M is a complex manifold. In fact, in
terms of real coordinates they can be written as Fy = —igIKEIJ[E@Z)L and
Fy = grg'X, where J Ii is the matrix for the complex structure.

The canonical commutation relations are expressed in terms of the com-

plex coordinates as
(10.258) [¢",pj] = 0%}, [¢', p5] = 107,
(10.259) {0, 97} = ¢, (¥, 47} = g7,
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where p; = 0L/ Pt = 9,737 and p; = 0L/ 83? = gijéi. All other (anti-)commu-
tators vanish. The supercharges are now operators

(10.260) Q+ =U'pi, Q- =V'pi,

(10.261) Q, =vp;, Q_ =v'p;,

that generate the supersymmetry transformations in Eq. (10.252) via 5=

i€, Q_—ie Qi —ie,Q_+ie_Q 1. Under the operator ordering for the Hamil-

tonian H chosen before, these supercharges obey the anti-commutation re-

lations

(10.262) {Qa, Qp} = dapH,

(10.263) {Qa, Qp} = {Q4, Qp} = 0.

The commutators with the vector and axial fermion numbers Fy and F4
are

(10264) [FV7Q:E] = _Q:b [FV7§:I:] = _@:I:a

(10.265) [Fa,Q+] = TQx, [Fa, Q4] = Q1.

As a consequence Iy and F4 are conserved charges:
(10.266) [H,Fy) =[H,F4] = 0.

The two fermion numbers commute with each other,
(10.267) [Fv, Fa] =0,

and therefore the Hilbert space of states H = Q(M) ® C decomposes with
respect to the quantum numbers of Fy, and F4. We note here that

(10.268) Yo d2A, YT - dZA,
(10.269) W gl ez, W gTig )05

Thus, by looking at the action of Fy and Fj4, as shown in Eqgs. (10.255)—
(10.256), we see that the state corresponding to a (p, ¢)-form

(10.270) 0= iy 3,02 N NdEP NAZN - N dZ

has Fy charge —p 4+ q and F4 charge p 4+ q. Thus, the decomposition with
respect to the Hodge degree,

(10.271) QM)®C= EnB QP9(M),
pq=1
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diagonalizes Fy and Fa:

Fy=—
(10.272) V=P e,
Fa=p+q
We note that
. /9 .
(10.273) Q_ =Y'p; — dz* (—Z > = —i0,
02"
ral e -7 0 =
(10.274) Q+ ='p; — dz _Zﬁ = —i0,
(10.275) Q_=Q" <l
(10.276) Qr=Q —id
where 9 and 0 are the Dolbeault operators
Qp+1,q(M)
0
OPa(M) -
E)
QPatL(M).

By the commutation relations given by Eq. (10.262) and {Q,Q} = 2H, we
find

H = {0, Q\}=90 +29= A,
(10.277) = {Q_,Q"}y=00"+0t0 = Ay
_ 1 v Legat gty = L

= 5{Q.Q"} = 5(dd" +d'd) = SA.

That the Laplacians associated with 0, 0 and d agree with each other (up
to a factor of 2) is a well-known fact in Kahler geometry. In any case, the

space of supersymmetric ground states is the space of harmonic forms

n
(10.278) Moy =H(M,g) = @ H"(M,qg),
pg=1
where HP4(M, g) is the space of harmonic (p, ¢)-forms corresponding to the
ground states with vector and axial charges qy = —p + ¢ and g4 = p + q.
Note that the ground states of F-charge r correspond to

(10.279) H'(M,g)= @ H"(M,g).
ptg=r
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The commutation relations

(10.280) (Q.,Q\y=H,
2

(10.281) QL =0,
show that Q + by itself defines a supersymmetric quantum mechanics. In
particular, the space of supersymmetric ground states is identified as the

Q -cohomology group. Since

(10.252) APy + FO.@,) =Ty [H-Fv + Fa). Q] =0,

the Q -complex is (Z @ Z)-graded and is given by the Dolbeault complex

(10.283) 0— o) -2 api () 2. ... 2

— QP"(M) — 0,

where p is the charge for %(—Fy + F4). Thus, the space of supersymmetric
ground states with charge (qv,qa) = (—p + ¢,p + q) is isomorphic to the
Dolbeault cohomology group

’ ~ p,q
(10.284) HPA(M, g) = HP(M).

This is also a well-known fact in Kahler geometry or Hodge theory. Sim-
ilar comments apply for )_-cohomology, and we have the isomorphism
’HP,(I(M79) o~ Hg’q(M).

10.4.4. Landau—Ginzburg Model. Suppose there is a non-trivial ho-
lomorphic function W on our Kéhler manifold M (which is possible only if
M is non-compact). To the Lagrangian as shown in Eq. (10.251), we can

consider adding the term
1 - 1 1 .
(10.285) AL = —Zg”&'W%W - §D¢6¢WWW - 5D;65WWW.

W will be called the superpotential. This system also has extended super-
symmetry generated by two complex parameters, where the transformation

law is modified by

ASY = e gT0W,  ASYT = —1e gU0;W,
(10.286) 2 i
2

APt = —Se_gIoW.  AfY = —
The expression of the supercharges is modified accordingly. As for the

fermion number symmetry, Fy is broken by the added term while F4 re-

mains a symmetry of the system. The quantum Hilbert space is still given
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by
2n
(10.287) H = (M),
=1

on which the supercharges act as

iQ_ =0+ %8W/\, iQ_=—(0+ %aWA)T,
(10.288) ; ;
iQy =0-Z0WA, iQy=—(0- 3

The space of supersymmetric ground states is isomorphic to, say, the Q 4-

OWA)T

cohomology group.

Although Fy is not a symmetry, one can consider it as an operator
acting on the Hilbert space (as Fy = —p + ¢ on (p, q)-forms). As we dis-
cussed earlier, conjugation by the operator \/XFV has an effect of rescaling
W — AW in the expression of Q . Since the cohomology is not affected by
the conjugation, the spectrum of supersymmetric ground states is invariant
under the rescaling of the superpotential W.

Suppose the superpotential W has only non-degenerate critical points
P1,...,pN. In the large A limit, the ground state wave-functions will be
localized at the critical points. Then the behavior of the manifold M away
from the critical points is irrelevant, and one can use the earlier analysis
done for M = C™. For each critical point p;, we obtain the approximate
supersymmetric ground state ¥;. These states all have the fermion number
F = Fj = n, and therefore there is no room for tunneling. The exact
quantum ground states are in one-to-one correspondence with the critical
points of W. In particular, we have shown that the Q -cohomology vanishes

except in the middle dimension,
(C#(crit. pts.) ¢ =n,
0 {#n.

We will explicitly construct the cohomology classes below.

(10.289) H%JM) = {

10.4.5. Kahler Manifold with a Holomorphic Vector Field. Let

us consider a Kéhler manifold M of dimension n that has a holomorphic

8.
Ozt

whose Hilbert space of states is

vector field v = v'(z) We will consider a quantum mechanical system

(10.290) H= P Q"P(M,A"Ty),
P,q=0
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with an operator Q5 given by
(10.291) Qs=0+svA.

Here s is a real parameter and vA is the exterior multiplication by v. The
operator Qs is nilpotent, Q?> = 0, and if we define the Hamiltonian by
H, = %{QS,QE}, we obtain a supersymmetric quantum mechanics with
supercharge Q5. The space of supersymmetric ground states is of course the
s cohomology group.

The first thing to notice is that the dimension of the @Qs-cohomology
group is independent of the value of s as long as it is nonzero. To see this,
let D be the operator acting as D = ¢ on the subspace Q*(M,AITyy).
Then we find et?Q e P = Q,, and therefore the Q s-cohomology group
is isomorphic to the Qs cohomology group. Now let us take the limit s — oo.
Then the ground state wave-function is localized at the zero of v, which we
assume to be a smooth submanifold My of M of dimension m. In the strict
s = oo limit, the system reduces to the quantum mechanics on My with
supercharge 0. The supsersymmetric ground states of the limiting theory
are composed of the cohomology classes of the Dolbeault complex on M
with values in A®*T}hy,. Since a zero energy state of the full theory remains

as a zero energy state in this limit, we have the inequality
(10.292) dim Mgy < dim Hy** (Mo, A*Tasy ).

We will now show that, under certain circumstances, the opposite in-
equality also holds. Let Ny /s be the normal bundle Ty s, /T, of Mo in
M. The assumptions are
(i) a neighborhood of My in M is exactly isomorphic, to a complex manifold,
as a neighborhood of the zero section of Nz /ar,

(ii) under that isomorphism, v is tangent to the fibres,

(iii) the normal bundle has a trivial determinant bundle, or c1(Nyy,/37) = 0.
We will also choose the metric on the neighborhood so that it is induced
from a metric on My and a fibre metric. Assumptions (i) and (ii) hold if v
generates a U(1) action on M with a simple zero at My so that it can be
written as v =), al-zla/ 02", where z* are normal coordinates. Let Q be the
holomorphic section of Ny /s that exists if (iii) is obeyed. Let us choose
a smooth function f(r) such that f = 1 for r < e but f = 0 for r > 2e,

where € is such that the neighborhood of My in question is in the region
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Jo]* = gi70'07 < 3e. Let us put

(10.293)
W= S O (o) By T) - Blgy ) A
= 917, Gip7,, 02t Dain_m’

where f(®)(r) is the pth derivative of f(r). Then under a suitable choice of
+ signs in the above formula, one can show that (9 + vA)¥ = 0.

Let us consider the map
(10.294) a € Q% (Mo, A°Thg,) — W A a € Q0 (M, A*Twy),

where 7 : Npg /s — Mo is the projection map. It is easy to see that Oa =0
means (0 + vA)(¥ A 7*a) = 0 and also ¥ A 795 = £(0 + vA) (¥ A *3).
Namely, O-closed/exact forms are mapped to Q1 = (0 + vA)-closed/exact
forms. Thus, the above defines a map from the Dolbeault cohomology group
of My to the Q1-cohomology group. Furthermore, contracting by the inverse

of Q at My, we recover «:

(10.295) Q7L (U AT ag = o

This shows that the map is an isomorphism, and therefore
(10.296) Ho) = Hy'* (Mo, A*Thg,)-

Landau—Ginzburg Model, Revisited. Let us compare the expressions
for Qs in Eq. (10.291) and Q. in Eq. (10.288). They are identical if
we replace Tys by Ty, and v by OW. One can therefore apply the above
argument to the Landau—Ginzburg model as well. Let My be the subset of
M consisting of the critical points of the superpotential W. Then in general

we have a bound
(10.297) dim Hé (M) < dim H*(My).
+

Suppose, as before, that W has only non-degenerate critical points, so that
My is a set of points, My = {p1,...,pn}. Then the assumptions analogous to
(i)(ii)(iii) hold, and one can construct a one-to-one map
H*(My) — HéJr (M). Namely, one can explicitly construct the @ -cohomology
classes. The result is

(10.298)

U, = Z if(p)(Haw"2)6i1.__in5(gi171(931W) . .g(gipjpaij)dsz-H ceedzt,
p=0
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where z; is a coordinate system near p;.

10.5. Instantons

Consider the supersymmetric quantum mechanics on a Riemannian man-
ifold (M, g) deformed by a function h as was introduced in Sec. 10.4.2. We
consider the case where h is a Morse function, namely, all the critical points

are isolated and non-degenerate. We denote the critical points by
(10.299) Zl,...,TN-

Consider rescaling the function h as

(10.300) h — Ah, with A > 1.

This does not change the number of supersymmetric ground states, as dis-

cussed before. The Hamiltonian of the system is
1 1 1 —
(10.301) Hy=5A+ iAQg”thaJh + ixDlaJhW,wJ].

At large A, low-energy states are localized near the critical points of h, where
the potential term (\2/2)g!”9;hdsh vanishes. As discussed in the single-
variable case, we can consider perturbation theory around each critical point

x;. We can choose coordinates z! around the critical point z; such that
n
(10.302) h=h(z)+ > ez +0((2")?).
I=1

The coefficients ¢; are the eigenvalues of the Hessian of h at the critical
point x;, ;0;h(x;). The higher-order terms O((x)3) in Eq. (10.302) are
subleading in the perturbation theory. The deviation of the metric (from the
flat one) around the critical point can also be considered as subleading in
the perturbation theory, and one can replace gr; by grs(x;). For simplicity,
we choose it as grj(z;) = dr7. (This can be done either by deforming the
function h or the metric g;y; we know that neither affects the QQ-cohomology
and hence the number of supersymmetric ground states.) Thus the leading
order terms of the Hamiltonian in the perturbation theory at x; are given
by

(10.303) Hy(z;) = Z {%p% + %)\26%@1)2 + %)\C[[El7wj]} .
I=1
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Thus, we find the supersymmetric ground state at leading order in pertur-

bation theory at z;,
(10.304) > ICICORN | )
J: c7<0

The number of ¥/’s that multiply |0) is the Morse index of h at x;,

(10.305) Wi = # of negative eigenvalues of the Hessian of h at x;.
(0)

i

case, one can find the modification ¥; of \IJZ(O

This shows that the wave-function ¥; "’ is a p;-form. As in the single-variable

) so that it remains the zero
energy state to all orders in perturbation theory. Since the perturbation
theory also preserves the fermion number symmetry F' we see that W; is still

a w;-form,
(10.306) U, € Q¥ (M) ® C.

As ‘IIZ(O), U, is supported around and peaked at x; in the large A limit (see

Fig. 5). Note that ¥; is an exact supersymmetric ground state in the pertur-

n
I
|
|

FIGURE 5

bation theory. Other states have diverging energy if we consider the A\ — oo
limit. Since the number of supersymmetric ground states is independent of
A we see that the number of supersymmetric ground states does not exceed
the number of these perturbative zero energy states, namely the number
of critical points. However, in general, the perturbative ground states are
only approximate ground states in the full theory. This can be seen in the

example described below.

EXAMPLE 10.5.1 (M = S2?). Consider the case when the target space is
S2 and h is the height function as in Fig. 6. We find two critical points,
one with Morse index p = 0 and the other with p = 2. Thus, there are two
perturbative zero energy states; one is a zero-form and the other one is a

two-form.
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2-form

~_,—— 0-form
FIGURE 6.

However, we can also consider the deformed sphere such that the height

function has many more critical points, as shown in Fig. 7.

2-form 2-form
IR aaa SR I

1-form

\/ﬂ 0-form

FIGURE 7.

This time we find four critical points, one with Morse index p = 0, one
with p = 1, and two with p = 2. Thus, there are four perturbative zero
energy states: one zero-form, one one-form and two two-forms. So, there
is a discrepancy in the number of perturbative zero emergy states between
the two theories corresponding to the two different choices of the function
h. However, as we have seen, the number of zero energy states of the full
theory should not depend on the choice of h. Thus, in either one of the
two theories or both, the perturbative ground states are not really the actual
ground states of the full theory. For the first choice of h, the two perturbative
ground states are both bosonic, (—1)F =1, and it is impossible for both to
become nonzero energy states. Thus, these two perturbative ground states
are really the supersymmetric ground states of the full theory. Therefore we
see that the mumber of supersymmetric ground states in the full theory is
two. In particular, not all the four perturbative ground states in the second
example are exact, and only two linear combinations of them are the actual

zero energy states.
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Let us come back to the general story. As we have seen explicitly in
the above example, it is not necessarily the case that each ¥; determines
a supersymmetric ground state in the full theory. In other words, it is not

necessarily the case that
(10.307) QV; =0 for all 7.

Although this holds to all orders in perturbation theory, in general this
should somehow be modified in the full theory. Namely, we expect to have

an expansion

N
(10.308) QWi = W;(V;,QU) +---,
j=1
where +--- involves nonzero energy states in perturbation theory. Since

these latter states have large energies ~ A, the terms + - - - are smaller com-
pared to the first N terms by powers of A~!, and will be omitted henceforth.

Thus, what we want to compute is

(10.309) (U;,QU;) = /@ A #(d + dh\)Y,.
M
Since VU, is a pj-form and QW; = (d + dhA)V; is a (u; + 1)-form, the above

matrix element can be nonzero only if
(10.310) i = pi + 1.

We will compute this matrix element using the path-integral formalism.

10.5.1. The Path-Integral Representation. We thus wish to com-
pute non-perturbative corrections to the matrix elements of () between the
perturbative ground states, in the limit of large A. In this limit the ground
state wave-functions are sharply peaked near the critical points of h. In
other words, to leading order, the Morse function h, viewed as an operator,
acting on the ground state, gives the value of h at the corresponding criti-
cal point. This implies that the matrix element of () between perturbative
ground states, to leading order in 1/), is equal to
(10.311)

(U;,Q¥;) =

1
li 0. —-TH h 7TH\IIZ‘
h(l‘l) . h(IE]) + 0(1/)\) Tl—I}cl)o( 7 € [Qa ]e >7
where for ¥; we can take any function that has non-vanishing overlap with

the ith critical point and vanishes at all the others. The operator e 7 as
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T — oo projects that state to the perturbative ground state corresponding

to the ith critical point. The commutator [@, h] can be expressed as

(10.312) [Q,h] = 01h[Q, "] = drh Y.

Thus we have a path-integral expression of the matrix element

(10.313)

Tim (0, Q. M ) = | DeDuDT e ST ob
p(—o0)=m:, p(+o0)=r;

Here the integration region is the space of fields satisfying the boundary

condition that ¢(—o00) = z; and ¢(c0) = z; and that d¢! /dr, ¢ and ! fall

off sufficiently fast as 7 — +oo. The Euclidean action is given by

[e.o]

1 dolde’
Sg = /dT{ gleidi + 5 ”azha;hwuwaTW
(10.314) —o0

_ 1 _ _
+ AD;dshpl T + 5RUKLWM%L}.

The bosonic part of the action can be written as

00 I
Sbosonic :/ dr <2 ‘d¢ )\ ]‘]8 h + )\ialh>
(10.315) o ,
-3 / dr C;i +AgMash| T Ah(z;) — h(2):

In the above equation we used the boundary condition ¢(—oc0) = z; and
¢(400) = x;. Thus we see that the configurations that minimize the action

are such that

(10.316) C;if + Ag"0sh = 0 if h(z;) = h(zi) S 0.

Such a configuration is called an instanton. The name comes from the fact
that the transition from z; to x; happens at some “instant” (though not
really) within the infinite interval of (Euclidean) time —oo < 7 < co. We
are interested in how many instantons there are. Clearly, an instanton ¢(7)
is deformed to another instanton by shifting 7: ¢'(7) = ¢(7 + §7). To see
whether there are more deformations, we take the first-order variation of

Eq. (10.316). It is straightforward to see that it is given by

(10.317) Dio¢! := D 5¢! + A\g'! DO hép® =0
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Thus, the number of deformations (including the shift in 7) is given by
the dimension of the kernel of the operator D.. We note that the fermion

bilinear term in the action in Eq. (10.314) is given by

(10.318) Ssu =/ dr g1 Dy’ = —/ dr gry D" 7.

—00

For the path-integral in Eq. (10.313) to be non-vanishing, since there is a
single insertion of 1, the number of 1) zero modes must be larger than the
number of 1 zero modes by 1. Namely, the path-integral is non-vanishing

only if
(10.319) IndD_ = —IndD; =dimKerD_ —dimKerD, = 1.

Localization. In the semi-classical limit the path-integral receives domi-
nant contributions from the configurations where the action is minimized.
This is the standard reason to look for instantons (even in non-supersym-
metric theories) but in general an instanton merely provides the starting
point of the semi-classical approximation. In the supersymmetric quantum
mechanics, there is a more fundamental reason to consider instantons — the
localization principle. The path-integral picks up contribution only around
certain instantons and the quadratic approximation at the instantons pro-
vides an exact result. In particular, one can see that the path-integral
chooses a sign in Eq. (10.316) which was not specified in the previous argu-
ment.

The point is that the action Sg and the boundary conditions are invari-

ant under the Euclidean supersymmetry

(10.320) ol = b — el
I
(10.321) 5y = (—% +2g"Byh - rgKM)K) ,
I
(10.322) 5ol = (% g - rgKWM) |

Now, the integrand [@Q, h] = !Orh is invariant under the e-supersymmetry
(generated by Q):

(10.323) 5 (plorh) = 0.
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Thus, the path-integral receives a contribution only from J.-fixed points.
This requires
do’

10.324 = = X¢"7a,h.
(10.324) I g0y

This is nothing but one of the instanton equations, Eq. (10.316). Moreover
the sign — is chosen and hence the path-integral is non-vanishing only if
h(z;) > h(z;). Thus, the relevant instanton for the present computation is
an ascending gradient flow which starts from z; and ends on z;, or a path

of steepest ascent from z; to x;.

10.5.2. Fermion Zero Modes and Relative Morse Index. Asnoted
above, we are interested in the index of the operator D_. This index is ac-
tually equal to the difference between the Morse index of h at x; and the

one at x;. Namely,
(10.325) IndD_ = pj — p.

Thus, as long as p; = p; + 1 (the case we are considering) the condition in
Eq. (10.319) for non-vanishing of the path-integral is satisfied.

Eq. (10.325) is actually valid for any map ¢ : R — M such that
¢(—o0) = x; and ¢(o0) = xj. This relation will be important also when
we discuss non-linear sigma models in 1 + 1 dimensions. It can be proved
as follows.

We generalize our definition of the Hessian (which has been defined at
the critical points of h as the matrix of the second derivatives) to an arbitrary
point x of M. The Hessian Hy, at x is defined as the linear map T, M — T, M,

(10.326) Hy, - vl — ¢" Djoxho¥.

With respect to an orthonormal frame, H}, is represented as an nxn symmet-
ric matrix and therefore it can be diagonalized by an orthogonal matrix with
real eigenvalues \;. Let us consider a trajectory ¢(7) such that ¢p(—oc0) = z;
and ¢(oo) = x;. Then the family of matrices Hy(¢(7)) defines families of

eigenvectors and eigenvalues
(10.327) Hp(o(m))er(r) = Ar(m)er(r), —oo < 7 < 00.

The family of eigenvalues A;(7) is called the spectral flow. (We depict in

Fig. 8 an example.) We choose ef(7) to define an orthonormal basis of
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Ficure 8. The Spectral Flow: An example for the case
dim M = 7. The Morse index at z; is u; = 2 whereas that at
xj is p1; = 3. One of the eigenvalues (\2(7)) goes from negative
to positive but two of them (A3(7) and A4(7)) go from positive to

negative

Ty(ryM at each 7. The relative Morse index Au = p; — p; counts the net
number of eigenvalues that go from positive to negative. Namely,

(10.328)

Ap = {15 Ar(=00) > 0, Ar(oo) <0} — #{J; Aj(—00) <0, Aj(o0) > 0}.

Let us consider the operators

p A1(7)
10.329 Dy = — g
( ) + dr + : ’
An(T)
acting on square-normalizable functions of 7 with values in R"™. These are

essentially conjugate of each other 25+ = —D'. The equations

(10.330) Defr=0
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are solved by

(10.331) Fre(r) = erexp <i /0 ’ AI(T')dT'> .

where ey is a column vector with 1 at the I-th entry and zero at the oth-
ers. The solution f;_(7) is square-normalizable if and only if A\;(—o0) > 0
and A;(oco) < 0. Similarly, f;4(7) is square-normalizable if and only if
Aj(—00) < 0 and Aj(co) > 0. Thus, we see that

(10.332) Ap = dimKer D_ — dimKer Dy = IndD_.

The operator D_ can be identified as the operator acting on the sections of
the bundle ¢*T' M,

(10.333) D_ =D, — ¢*Hy,

where D, is the connection with respect to which the sections e;(7) are all

parallel. On the other hand, we recall that
(10.334) D_ =D, — ¢"Hy,

where D is the operator induced by the Levi-Civita connection of (M, g).
Since D, and ET are connections on the same bundle, the index of D_ and

that of D_ are the same. Thus, we see that
(10.335) IndD_ =IndD_ = Ay,

which is what we wanted to show.
Genericity Assumption. We make here an assumption that the Morse

function h is generic in the sense that
(10.336) KerDy =0

for any gradient flow (instanton) from z; to z; with u; = p; + 1. By
the relation IndD_ = Ap = 1, each steepest ascent v/(7) has no other
deformation than the shift in 7. We denote this one-dimensional modulus

by 7. Thus, the instanton configuration deformed by 7 is
(10.337) YL (r) =+ (1 + 7).

71 parametrizes the “position” of the instanton in the infinite interval of

Euclidean time.
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10.5.3. Evaluation of the Path-Integral. We are finally in a po-
sition to evaluate the path-integral. As we have seen above, under the
assumption that h is generic, an instanton has a one-dimensional modulus
representing the “position” 71 of the instanton. By the localization principle,
we can exactly evaluate the path-integral in the quadratic approximation.

Changing the variables by ¢! = fyil + ¢, the action in the quadratic

approximation is

(10.338) Sg = A(h(z;) — h(x;)) +/ <%ID_£\2 - D_W> dr,

where D_ is the operator acting on the sections of 7 T'M. There is a
one-dimensional kernel of D_ given by

d ; d’#l

and there is no kernel of D, . Thus, there is one ¢ zero mode, one 1) zero
mode and no v zero mode. The integration variable for the £ zero mode is
71 and we denote by 1 the variable for the ¥ zero mode. In particular the

variable v is expanded as

—, dyl
(10.340) ol = Oy
dr
where + - -+ are nonzero mode terms which do not contribute to the path-
integral. The nonzero mode path-integral simply gives the ratio of the

bosonic and fermionic determinants, which cancels up to sign

/
D_
(10.341) _detD-

\/det' DI D_

The zero mode integrals are

oo _ _ d 1
(10.342) /_ N dr / dipg o ;: rh Y
[e'e) d I
(10.343) - / _dn d—zl(n)a[h(fy(n)) = h(z;) — h(z;)

Collecting the two and recovering the classical action factor e~*h(zi)=h(z:))
we obtain the following expression for the contribution of the instanton 7 to
the path-integral as shown in Eq. (10.313):

(10.344) +(h(x;) — h(z)) e~ Ah(zj)—=h(z:))
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Summing up the instantons and including the prefactor from Eq. (10.311),

we obtain

(10.345) (U;,Q¥;) = va o~ Mh(z;)—h(z:))
v

where n, is +1 or —1 depending on the instanton -.

The sign of n, can be determined as follows. The result shown in Eq.
(10.345) shows that the integral [,, ¥; A *QW; receives dominant contri-
butions along the steepest ascents. For each steepest ascent v, n, is 1 or
—1 depending on whether the orientation determined by \I'_J A *QV,; along
~ matches with the orientation of M or not. The form W¥; defines an ori-
entation of the p;-dimensional plane ngi_)M of negative eigenmodes of the
Hessian of h at xz;. By the spectral flow of the Hessian H}, this plane can
be transported along the steepest ascent and we obtain a sub-bundle T}~
of v*T'M with the orientation determined by W;. Starting with the space
of negative eigenmodes of the Hessian at x; we obtain another sub-bundle
T with the orientation determined by W;. In the generic situation, only
a single eigenvalue goes from positive to negative along the ascent and the
eigenmode is the tangent vector vy to . Then T, is a sub-bundle of T
and the complement is spanned by vy. Now, Q¥; = (d + AdhA\)¥; defines
an orientation of Rv, @ T ; it is the one determined by v, and ¥;. Thus,
n~ = 1 if this matches with the orientation determined by ¥; and n, = —1

otherwise.

10.5.4. Morse—Witten Complex. From what we have seen by the

path-integral analysis, we conclude that in the one-instanton approximation

(10.346) QY; = Z qjjznve—w(zj)—h(zi))'
Jipg=pi+1 vy

The exponential can be eliminated by rescaling the wave-functions Wy. This
is the action of the supercharge @ on the perturbative ground states. Since
the original supercharge @ is nilpotent, @2 = 0, it should also be nilpotent
when acting on W;’s. Thus, if we define the graded space of perturbative

ground states

(10.347) ct = P Cy,,
Hi=H
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we have the cochain complex with the coboundary operator given by the
supercharge

(10.348) 0—c® Lot % 2om %,

The space of supersymmetric ground states is of course the cohomology of

this complex. This complex is called Morse-Witten complex.

ExaMPLE 10.5.2 (Example 10.5.1, revisited). Let us come back to the
example of S? and examine the case with the second choice of function h
as shown in Fig. 7 which is redrawn in Fig. 9. We see that there are two
steepest ascents from the critical point A with u = 0 to the critical point B

with =1, 1 and vo. However, they have opposite orientations and thus
(10.349) QU4 =0.

From the critical point B, there is one steepest ascent 3 to one critical
point C with pu = 2 and there is another one 4 to another critical point D

of i = 2. If we use the orientation of S? for both ¥c and ¥p, we have
(10.350) QUp =Ye — VUp.

Since there is no critical point of higher Morse index we have

(10.351) QVe =QVYp =0.

Thus we obtain

(10.352) H°(Q) =C,
HY(Q) =0,
H*(Q)=C

This is indeed the correct cohomology of S2.

The Relation Q? = 0. As mentioned above, the nilpotency relation Q% = 0
should hold for the supercharge (). However, it may not be obvious in the
realization given by Eq. (10.346). We have seen that it is indeed the case
in the above example. Actually, one can show explicitly that @2 = 0 holds
in general, as long as M is a finite-dimensional manifold. What we need to

show is that, for z; and z; such that p; = p; 4+ 2, we have

(10.353) > dony | | D ny | =0

kipp=pi+1 \vyi—k v'ik—j
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FI1GURE 9. The Gradient Flow Lines

Here ~ runs over the gradient flow lines from x; to x; and ' runs over the
gradient flows from x;, to z;. To show this, we consider the space of gradient
flow lines from a critical point z, to another critical point xy:
(10.354)
d
M(zg,m) =4 ¢ R— M & = 29" 0uh, /R,
(1) = .

lim ¢(7) =z, lim (7
T——00 T—+400

where /R means modding out by the shift in 7. This is a manifold of
dimension p(zp) — p(ze) — 1. The choice of orientation of the negative
subspace Té;)M determines an orientation of ngj)M , and these determine
an orientation of all M (x4, zp). For the x; and z; with p;—p; = 2, M(x;, x5)
is a one-dimensional oriented manifold. The boundary of M(z;,x;) consists
of “broken flow lines” where breaking occurs at the critical points x; with

pi = p; + 1. Namely, we have

(10.355) OM(ziz5) = | M, 2r) x Mg, xy),

T pp=pi+1

and one can show that this holds including the orientation. On the other
hand, for x; and xp with pg = pu; + 1, M(x;, z1) is a discrete set of oriented
points consisting of gradient flow lines from z; to xy, and it is easy to see

that n., determines the orientation of the point represented by . Namely,
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we see that

(10.356) HM(zi,zp) = Y ny
yii—k
Since the number of boundary points is equal to zero, #0M(x;,x;) = 0,
Eq. (10.355) yields what we wanted, Eq. (10.353).
In the above example of M = S? we have M(A,B) = {v1,7},
M(B,C) = {v3} and M(B, D) = {74}. The one-dimensional space M (A, C)
consists of the thin lines as depicted in Fig. 9. It is easy to see that there

are two boundary lines which are the broken lines v #7v3 and ~vyo#7v3. This
indeed shows that OM(A,C) = M(A, B) x M(B,C).

10.5.5. Bott—Morse Function. In the above discussion, we have as-
sumed that h has only non-degenerate and therefore isolated critical points.
It is a natural question to ask what happens if this condition is relaxed.
Here we briefly comment on the case where h admits critical manifolds of
dimension > 0 but h is still non-degenerate in the normal direction. Such a
function is called Bott-Morse. Let M; (i =1,..., N) be the connected com-
ponents of the critical point set of h. By the Bott—Morse assumption, M;
is a smooth submanifold of M, where the Hessian of h has zero eigenvalues
only in the direction tangent to M;. We define the Morse index pu; of M; to
be the number of negative eigenvalues of the Hessian.

The spectrum of a supersymmetric ground state is invariant under the
rescaling h — Ah and we consider, as before, the large A limit. Then the
ground state wave-function is localized at the critical point set U; M;. We
first focus on one component, say M;. Near each point of M7, the analysis
decomposes into two parts — directions normal to M; and directions tangent
to Mj. In the normal directions, a zero energy state is a pi-form, which is
a volume form on the negative eigenspace of the Hessian. If the bundle over
M of the negative eigenspaces is orientable, then these normal p;-forms
glue together to make a globally defined pj-form ¥;. In what follows, we
assume that this is the case although the other case can be treated with a
slight modification. In the tangent directions, the Hamiltonian is essentially
the Laplacian, and the harmonic forms are the zero energy states. Thus, the
perturbative ground states localized at M; are of the form w, A ¥ where
wy, are harmonic forms on Mj. Collecting together the states from all M;’s,

we obtain ), dim H*(M;) perturbative ground states. In the strict A — oo
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limit, these, and only these, are the exact zero energy states. Since the
true zero energy state for finite A remains also the zero energy state in the
A — oo limit, we obtain the inequality dimH gy < >, dim H*(M;). Since
Hoy = H®*(M) this means

(10.357) dim H*(M) < dim H*(M;).

So much for the perturbative analysis. As in the case where h is non-
degenerate, these approximate ground states may be lifted to have nonzero
energy by quantum tunneling or instanton effects. A way to incorporate
tunneling has been found by Austin and Braam, which we describe here.
(The derivation by the physics analysis is left as an exercise for the readers.)
We denote by R, the union of critical submanifolds of Morse index p, and we
assume that there is no ascending gradient flow from R, to R, if p > ¢. Let
M(R,, Ry) be the space of ascending gradient flow lines from R, to R,. For
each gradient flow line ¢ : R — M, we have the initial point ¢(—o0) € R,
and final point ¢(+00) € R,. This defines the initial and final maps

izt M(Ry, Ry) — Ry,
I M(Ry, Rq) — R,.
Now we put

(10.358) cr= P PRy,

ptg=r

and define the operator Q : C" — C"*! by 2520 Qs where

(10.359) Qs : QP(R,) — X (Ryys),

dw s=0,
w
(=1)P( ngs)*(ings)*w otherwise.

Here (id**)* is the pull-back of forms from R, to M(Ry, Ry+s) and (fi°). is
the integration along the fiber of the final point projection M(Ry, Rg+s) —
R,+s. Then (C*, Q) defines a complex. This complex is actually filtered,

0oc---cCrcCcy=cC*

with

Ci =P UR,).

q>k
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The quotient GCp = Cr/Cr 41 1s equal to the de Rham complex of R. We
can apply the method of spectral sequences to compute the cohomology of
the complex (C*, Q). The E; term is then given by E{” = H"*(Ry). This
is the space of approximate zero energy states obtained by the perturbation
theory. The cohomology of the full complex (C*, Q) is isomorphic to the
space of exact zero energy states. This is how the instanton effect is taken

into account.

10.5.6. Moment Map for U(1) Actions. In certain cases, the prob-
lem of finding the supersymmetric ground states simply reduces to the com-
putation of cohomology of the individual critical manifolds M;. Such is the
case where h is the moment map on a U(1)-invariant K&hler manifold.

Let M be a Ké&hler manifold with a U(1) action that preserves both
the metric and the complex structure. Then, the Kahler form w is U(1)-
invariant. A moment map h associated with the U(1) action is a function on
M such that the one-form dh is equal to i,w where v is a vector field on M
that generates the U(1) action. (Note that diyw = Lyw —iydw =0—-0=0
because w is a U(1)-invariant closed form. Thus one can find a function h
such that i,w = dh, at least locally. The assumption here is that h solves
this equation globally.) The critical points of h are the fixed points of the
U(1) action. The Bott-Morse assumption is automatically satisfied for h,
where M; are components of the fixed point manifold.

The reduction of the problem can be shown as follows. One can find
U(1)-invariant tubular neighborhoods U; of M; which do not intersect with
one another. For each i, we choose a U(1)-invariant smooth function h;
supported on U; which is a Morse function when restricted on M; (with

non-degenerate critical points only). Let us then replace the function h by
(10.360) he=h+e€> hi

The standard conjugation argument shows that this replacement does not
affect the spectrum of supersymmetric ground states. For a sufficiently small
€, the function h. has isolated non-degenerate critical points only, and all
of them are U(1)-fixed points, namely, in U;M;. Since the critical points
are all non-degenerate, the supersymmetric ground states are the cohomol-

ogy classes of the standard Morse-Witten complex. We now show that the
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coboundary operator of the complex receives contributions only from gra-
dient flows that lies inside M;’s. We recall that non-trivial contributions
come only from isolated gradient flows ( “isolated” except for the shift of the
domain parameter). Let v be a gradient flow of h, from a critical point p
to a critical point ¢ that lies (partly) outside U;M;. A flow from p € M; to
q € M; with 7 # j must always be of this kind. Then, its U(1)-rotations are
also gradient flows of h. from p to ¢, and they make a non-trivial one param-
eter family. Thus, 7 is not isolated and cannot contribute in the coboundary
operator. This shows that the Morse-Witten complex splits into the indi-
visual ones for M; defined by the Morse functionh;|ss,. In particular, the
cohomology group splits into the sum of the cohomology groups of M;’s.

A Morse function is said to be perfect if the coboundary operator (10.346)
is trivial, namely, if the perturbative ground states W; at the critical points
x; are all exact ground states. This notion of perfectness can be generalized
to Bott—Morse functions in a obvious way. What we have shown above is
that the moment map assicated with a U(1) action on a Ké&hler manifold is

a perfect Bott—Morse function.

10.5.7. Application to Quantum Field Theory. Later, we will ap-
ply this method to quantum field theories in (1 4 1) dimensions, which can
be considered roughly as quantum mechanics with infinitely many degrees
of freedom. In that setting we will need to consider an infinite-dimensional
manifold M. There are two main subtle points associated with the infinite-
dimensionality. One is that the definition of Morse index is not obvious. As
we will see, the spectrum of the Hessian is not bounded from below nor from
above. This problem will be partially solved by some kind of regularization,
but sometimes the Morse index can be defined only up to addition of some
connstant. This is related to an anomaly of fermion number conservation.
Another, and more serious, problem is that the relation Q? = 0 is not au-
tomatic. Sometimes it fails because of the failure of Eq. (10.355), which
would mean that the supersymmetry algebra itself is anomalous, and one
would not be able to consider the “Q-complex”. Such a phenomenon does
not happen, fortunately, for the theory of closed strings, but will happen for

open strings.



CHAPTER 11

Free Quantum Field Theories in 1 4+ 1 Dimensions

As already mentioned, the higher the dimension of the QFT, the more
complicated it will be. We will be interested mainly in the case of QFTs
in two dimensions, the topic to which we now turn. In this chapter we will
be dealing mainly with the simplest two-dimensional QFTs, those that are
“free” in dimension 2. By free, we mean that the action is quadratic in
the field variables. This is the case where everything can be done exactly
and explicitly and serves as a good introduction to more complicated two-
dimensional QFTs which we will deal with later. Moreover, as in quantum
mechanics, they play an important role as the starting point of perturbation
theory or semi-classical approximation in a more general interactive theory.
In supersymmetric theories, some quantities are determined exactly using
quadratic approximation of the theory, and the role of free field theories is
even more important.

There is another reason to single out free theories: the sigma model with
target a circle of radius R provides an example of a free theory. It turns
out that this example is already rich enough to exhibit a duality that is an
equivalence between the sigma model on a circle of radius R and that of
radius 1/R. This is known as T-duality. In the supersymmetric setting, T-
duality is the basic example of mirror symmetry, as will be studied in later
sections. We will see that mirror symmetry is in a sense the refinement of
T-duality.

11.1. Free Bosonic Scalar Field Theory

11.1.1. Classical Theory. We start our study of quantum field theory
in 1 + 1 dimensions with the free theory of a single scalar field z. We
formulate the theory on the cylinder ¥ = R x S' where R is parametrized
by the time ¢ and S! is parametrized by the spatial coordinate s of period

237
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27, s = s 4+ 2m. The action for the scalar field x = z(t, s) is given by

(11.1) S = %/Ldtds = E/((atx) — (0s2)?) dtds.
b b

This theory can also be considered as a sigma model, where x defines a map

of the worldsheet ¥ to the target space R. The Euler-Lagrange equation is

given by

0? 0?
This is solved by
(11.3) x(t,s) = f(t—s)+g(t+s),

where f and g are arbitrary functions. The part f(¢ — s) represents a con-
figuration moving to the right, whereas g(t + s) represents the left-moving
configuration, both at the speed of light. These two motions do not interfere
with each other. This is the decoupling of the right- and left- moving modes,
which is a special property of massless fields in 1 + 1 dimensions.

The action is invariant under the shift in x
(11.4) or = a,

where « is a constant. One can find the corresponding conserved charges by
following the Noether procedure. This time, we let the variation parameter
depend on both temporal and spatial coordinates, & — «(t,s). Then the

action varies as

(11.5) 08 = % /auozj“ dtds,
b
where
(11.6) { )= e,
j* = —0sz.

For a classical configuration that extremizes the action, this current j# obeys

the conservation equation
(11.7) oug" = 0.

In particular, the charge

1
11.8 = itd
(11.8) p %LJ s
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is a constant of motion. Since the shift in z can be considered as the trans-
lation of the target space R, the conserved charge p can be interpreted as
the target space momentum. The action is also invariant under worldsheet

space-time translations
(11.9) dox = a0y

The conserved currents are

(1110) Ttt = % ((875:1:)2 + (asm)Q) ) Tts = 85$6tm,
Ti = —asﬂﬁatx, TSS — _% ((8t$)2 + (8s$)2)

and the conserved charges are
(11.11) H = —/T';s——/ ((0x)? + (05)?) ds,

1
(11.12) P = T ds = —/ Orwdsz ds.
o
Sl
These are respectively the Hamiltonian and momentum of the system.

Let us consider the Fourier expansion of z(t, s) along S*:

(11.13) (t,s) = wo(t) + Y wn(t)e™.
n#0

Since xz(t, s) is real-valued, x(t) is real and x_,(¢) is the complex conjugate

of z,(t), (xn(t))* = x_n(t). The action is then expressed as

(11.14) S = /dt{ ) +Z;xn,2 2,%,2)}_

We see from this expression that this free theory consists of infinitely many
decoupled systems; a single real scalar xy without a potential, and a complex
scalar x,, with the harmonic oscillator potential U = n?|z,|?, where n varies
over {1,2,3,...}. In this way we have reduced the difficulty of dealing with
a theory in 1+1 dimensions, to a theory in 1 dimension, but with infinitely

many degrees of freedom.

11.1.2. Quantization. Let us quantize this system. In principle, we
should obtain as the Hilbert space a suitable space of functions on the loop
space of R. The fact that we have decomposed the system to infinitely many
degrees of freedom already will lead to the appropriate notion of function
space by considering the infinite tensor product of the Hilbert spaces of each

of the decoupled systems. We have already analyzed all the constituent
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theories, so we can borrow the results. We first consider the sector of the
real scalar xg. The conjugate momentum for zg is pg = ¢ and there is a

momentum eigenstate |k)o for each k;
(11.15) polk)o = k|k)o.

This is also the energy k?/2 eigenstate of the Hamiltonian

1
(11.16) Hy = §p(2).

Let us next consider the nth harmonic oscillator, z,. =z, is a complex

variable and decomposes into two real variables z1, and s, defined by

T, = (1, + i22,)/V2. As wusual, one can define the operators
Gin = (Din//n —iv/MZin) /2 and azn = (pin//n+iv/nxin)/V2 for i = 1,2,
where p;, = @;,. These obey the commutation relations [am,a}n] = 4 j,
[@in, Qjn] = [ajn, a}n] = 0. The Hamiltonian is given by
; 1 ; 1

(11.17) H, =n|ay,ain + 3 +n | ay, a2, + 5)-
Now, let us change the variables as «,, = \/n/2(a1, + ia2,), a_, = ozjl =

n/2(a1n—2’a£n), an = v/n/2(a1n—iagy,) and a_, = ay, = n/2(a1n+ia£n)

where we take n > 1 here. These new operators satisfy the relations
(11.18) [, ap] = [, A_pn] =N, [, Qap] = [@—p, asyn] = 0.

Thus, a_, and a_, are the creation operators while «a, and a, are the
annihilation operators. In terms of these variables the Hamiltonian H,, is

expressed as
(11.19) H, =a_,op +a_,a, +n.

We define |0),, as the vector annihilated by «,, and @,,. This is a ground
state for the Hamiltonian H,,, with energy n. A general energy eigenstate is
constructed by multiplying powers of creation operators «_,, and a_,, acting
on |0).

The Hilbert space of the total system is a tensor product of the Hilbert

spaces of these constituent theories. Let us define the state

(11.20) k) = ko @ () 0}
n=1
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Then a general state is constructed by multiplying the powers of a_,, and

0 _y, for various n. The Hamiltonian is the sum

o
H:Ho—i—ZHn

n=1

1 = I
(11.21) :§p3 + ) (O nan + G ndp + 1)
n=1

1 = > 1
:5103 + nz_:l a_pou, + nz_:l A_pOly — 12

where we have used the zeta function regularization to sum up the ground

state oscillation energies of the infinitely many harmonic oscillator systems:

(11.22) S n=((-1) = —%.
n=1

The worldsheet momentum is

1 ..
P =5 . OrxOsxds = Z TNy T,
n+m=0

00 00
= - 5 Q_nOp + § a—nany
n=1 n=1

where we used the relation z,, = (@_,,—ay,)/(v/2in) and &, = (G_p+ay)/V2

which can be derived by tracing the definition of «;, and a,. The target

(11.23)

space momentum is simply

1
11.24 = — rds = g = pg.
(11.24) 5 [ s =0 =
The state
(11.25) [T (o)™ @)™ k)
n=1

has the following worldsheet energy and momentum

TR— _ 1
2 12
n=1
o
(11.27) P=>"n(—mpy + mn),
n=1

and also has the target space momentum

(11.28) p=k.
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The state |0) = |k = 0) is the unique ground state with the ground state

energy
1

11.29 Ey=——

(11.29) 0T 1w

and target space momentum p = 0.

We note that

(1130) [H7 .TQ] = _ip07 [va[)] = 07
(11.31) [H, an] = —nay, [H, &y = —nay,.
Thus, we have

(11.32) 1’0(75) = ethﬂjo e tHt — xo + tpo,
(11.33) an(t) = eflla, et = ¢=intq,
(11.34) an(t) = efla, et = o~inty,

Since x, = (G_p — ay)/(v/2in) we obtain

. . | -
(1135)  a(t,s) = a0 +1po + —= 3 —(an e ™79 4 &, e7m(+)),
\/i n#0 "

Note that this is the most general solution to the equation of motion, Eq.
(11.2), that is compatible with the periodicity z(t,s + 27) = z(t,s). Also,
we now see that «, are the right-moving modes and a,, are the left-moving
modes. Eq. (11.35) is consistent with

(11.36) [P, x0] =0, [P,po] =0,
(11.37) [P, | = nawy,, [P, an] = —nay,.

11.1.3. Vertex Operators. In Egs. (11.21)-(11.23), which express
the Hamiltonian and momentum, the annihilation operators a,, &, (n > 0)
appear to the right of the creation operators a_,, a_,. This is called the
normal ordering. We introduce the symbol :(—): to indicate the normal

ordering. For example, for n > 1,
(11.38) Ot = OO = O_p Oy, 0Oyt = (0 O_pys = iy Ol

Also, we extend it to the zero modes xg, pg so that

(11.39) {ToPo: = :PoLo: = ToPo-
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Then it is straightforward to see that
(11.40)

$(t1, Sl)IL’(tQ, 82) = ::L’(tl, 81)$(t2, 82)2 - itl + % ; % ((22/2'1)" + (32/51)") s

where z; = ¢'(ti=3) and Zj = ¢titsi)  The infinite sum is oscillatory
and ambiguous. From now on, we assume an infinitesimal Wick rotation
t — et with € > 0 (the complete Wick rotation ¢ = 7/2 would lead
to z; = Z;). If t1 > to, we have |z3/21| < 1, |Z2/Z1] < 1, and the sum is
convergent to —3 log(1 — z2/21) — 4 log(1 — Z2/Z1). This convergence shows
that

(11.41) T[az(tl, s1)x(te, s2)| = x(ty, s1)x(ta, s2): — % log[(z1 — 22)(z1 — 22)],

where T[A(t1, s1)B(t2, s2)] is the time ordered product, which is A(1)B(2)
if t1 > t9 and B(Q)A(l) if t9 > 3.

The normal ordered operator for exp(ikx) is expressed as

(11.42) :exp (ikx(t, S)) :

_ eik% D %(a_nz"+&_n5”) oikzo Giktpo eik% > %(anz_"+&n'zv_”)

It acts on the vacuum |0) as
(11'43) :eik:c(t,s):‘0> _ eik% Dot —Tl(ainzn_kaingn) eikzo|0>'

Since ¢™?0 increases the target space momentum p by k, we have

e*20|0) = |k). This can also be seen by noting that |k) is represented

by the wave-function Wy(z) = e** while the operator ¢’**0 is represented

by the multiplication by e®?. This latter representation also shows that
(k1|k2) = 2w (k1 — ko). If we take the limit ¢ — —oo, we have |z| — 0 and

:eR2(1:5):10) converges to
(11.44) retha(ha) o) T2 etho|g) = ),

Thus, this operation increases the momentum by k. The operator shown in

Eq. (11.42) is called the vertex operator of (target space) momentum k.
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It is easy to compute the two-point correlation function of the vertex

operators.

(11.45) <eik1x(t1731) eikzx(t2,82)>
= <0|T[ e’ik‘lI(tl,Sl):: eikgx(tg,sg): |O>

k1ko

=210 (k1 + k2)[(z1 — 22)(Z1 — Z2)] 2

11.1.4. Partition Function. Let us now compute the partition func-
tion of the system. As we have seen in quantum mechanics, the partition

function can be defined as
(11.46) Z(3) = Tre P,

This partition function corresponds to evaluating the path-integral where
the worldsheet is the Euclidean cylinder of length 5 with the two boundaries
identified. Thus the worldsheet in this case is a rectangular torus with sides
27 and (. Actually this is not the most general thing we can do. We can
also try to evaluate the path-integral on a torus which is not rectangular but

is skewed as shown in Fig. 1. This corresponds to shifting one end of the

2nt,

FIGURE 1

cylinder by 277 before identifying it with the other end. (We also rename

the length as 3 — 277,.) In the operator language this operation of rotating

—2miT P

corresponds to inserting the translation operator e in the trace,

(1147) Z(T]_, 7'2) =Tr e_Qﬂ'iTlPe—Qﬂ'TgH.
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Let us define
(11.48) Hp (H P) p0+za nozn——,

(11.49) Hp (H+P pO—I—Za nozn——,

which involve left-moving and right-moving nonzero modes respectively.

Then the partition function can be written as

Z(T, F) —Tr e27’l’lTHR e—27rﬁHL7

(11.50) Ty g Mg
where
(11.51) T =T + 1T,

and ¢ = e?™7. Recall that the Hilbert space is the tensor product of Hilbert
spaces of infinitely many decoupled systems — the free particle system of
zero modes and right-moving and left-moving harmonic oscillator modes of
frequency n. Denoting the respective Hilbert spaces by Ho, HE and HE, we

obtain the factorized form of the partition function

(11.52)  Z(7,7) = (qq)~"/**Try, (qg)?0/* HTrHRqa nOn Ty gm0,

n=1

1/24 —2772(—1/12)

where the prefactor (¢g)~ = e comes from the regularized
zero point oscillation energy of the infinitely many harmonic oscillator sys-

tems, as shown in Eq. (11.22). It is easy to evaluate each factor;

o0
(11.53) Tryrg® " = Zq”k —,
=0

1
1-79

n’

(11.54) Tryrq® o =

d 1
(11.55) Try, (q7)"0/* = Trpy, 727720 = V/ D el = L

2w /T2
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In the last part, V stands for the cut-off volume in order to make the par-

tition function finite. Putting all these factors together we obtain

o0

Vo1
——1/24 V_
(q9) %ﬁg
vV 1

(11.56) = %ﬁ!n(ﬂ\”,

where 7(7) is the Dedekind eta function

2

Z(1,7)

1
1—qgn

o0
(11.57) n(r) = g/ H(l —q").
n=1
Using the modular transformation properties of the eta function

(11.58) n(r+1) = (7). n(=1/7) = (=ir)"*n(7),

one sees that the partition function is invariant under the differomorphisms
on T? acting on 7 as

ar+b

11. .
(11.59) o td

This is as it should be, and can be viewed as another confirmation of the
regularization procedure we used. (Note in particular that the leading power
of ¢ comes from the zeta function regularization, and without the correct
factor the modular invariance would be lost.) Note also that the partition
function does not depend on the area of the worldsheet torus, but only
depends on its complex structure. This is a feature of conformal theories.
As we will discuss in more detail later, sigma models for generic target

manifolds do not lead to conformal theories.

11.2. Sigma Model on Torus and T-duality

11.2.1. Sigma Model on S'. Now consider the case where the target
space is a circle S! of radius R instead of the real line. The theory is

described by a single scalar field  which is periodic with period 27 R:
(11.60) x =z + 27R.

The classical action is still given by Eq. (11.1). As in the case of the real
line, space-time translations and target space translations are symmetries of
the system. The corresponding Noether charges H, P and p are expressed
again by Eqgs. (11.11), (11.12) and (11.8).
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Unlike in case of the real line, since the circle has discrete Fourier modes
(as we have studied in Sec. 10.1.1) the target space momentum is quantized
in units of 1/R:

(11.61) p=1/R, €.

Also, the target space coordinate x is not single-valued but is a periodic
variable of period 27 R. This means that there are topologically non-trivial
field configurations in the theory which are classified by the winding number
m defined by

(11.62) x(s+27) = x(s) + 2rmR.

As we have seen, the conserved current for the momentum is

.t — a
(11.63) { S o

j* = —0sz.
One can find another current

.t — a
(11.64) { Jw = 05T

]3) = _615-7;7

which satisfies the “conservation equation” 8,5/ = 0 (this is not an equation
of motion, but an identity, like the Bianchi identity dF = 0 for electromag-

netism). The corresponding “charge” is

(11.65) w = L/ gt ds = i(w(27r) —z(0)) =mR
2 Jsu 2m
in the sector with winding number m. Thus, w is the topological charge
that counts the winding number.
The Hilbert space H is decomposed into sectors labelled by two integers

— momentum / and winding number m:
(11.66) H= P Him:
(IL,m)eZDZ
The subspace H ) is the space with p = I/R and w = mR and contains a
basic element

(11.67) 11, m),

which is annihilated by a, and &, with n > 0. The space H ,,) is con-
structed by acting on |l, m) with the powers of the creation operators a_,,

and a_,.
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We denote by py and wg the operators counting the momentum and the

winding number
l
(11.68) poll,m) = E|l,m>, wopll, m) = mR|l,m).

The operator e 70 shifts the momentum. There should also be operators
that shift the winding number. We denote them by ef%0 so that

1 . ~
(11.69) R m) = [l +11,m), ™ FR[m) =|l,m+mi).

The operators g, pg, To, wo have the commutation relations

(11.70) [0, po] = i, [Zo,wo] =1,
while other commutators vanish. Let us denote
1 1
11.71 = — — wp), = —(po + wo).
( ) PR ﬂ(po 0), DL ﬂ(po 0)

Then the field z(¢, s) decomposes as the sum zg(t — s) + x(t + s) of right-

moving and left-moving fields that commute with each other;

xo — T 1 i 1 —in(t—s)
11.72) zp(t—8) = ———+ —=(t —s +—E —ape ,
( ) R( ) 2 \/i( )pR \/57#0”

xo + To 1 i 1 —in(t+s)
11.73) xp(t+s) = + —=(t+s —i——g —Qp e .
( ) L( ) 2 \/5( )pL \/57#071

We note that the derivatives

1
(11.74) \/5(8 x—pR+Za emin(t=s),
n#0
(11.75) (O + 0s)z =pr + Y Gn e~ F2),
\/_ n#0

define currents that measure the charges pr and pr, respectively. The world-

sheet Hamiltonian H and momentum P are given by

(11.76) Hp = (H P) —pR+Za nan——,

(11.77) Hp = (H+P ——pL+Za nin = 57

We see that there is a unique ground state |0, 0) and the ground state energy
is again
1

11. Ey=——.
(11.75) b=
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The computation of the partition function is similar to the case of the
sigma model on R except for the summation over the zero modes. Instead of
the divergent factor V/2m,/75 coming from the zero mode integral, we have
the discrete sum over the momentum / and winding number m corresponding

to the decomposition shown in Eq. (11.66). Namely, we have
(11.79) Z(r,7T:R) = 1 ;> quW/RT MR /RemR)?,
|77(7—) ’ (I,m)€ZPZ
The factor |n(7)|~2 comes from the oscillator modes in precisely the same

way as in the case of the sigma model on R.

11.2.2. T-duality. We see that the partition function is invariant un-
der the replacement R — 1/R :

(11.80) Z(1,7;1/R) = Z(7,7T; R).

The full spectrum is also invariant as long as we interchange the quantum
numbers associated with the winding and the momentum as well, [ < m.
Namely, there is an isomorphism of our Hilbert space H to the Hilbert space
H of the sigma model on $* of radius 1 /R, under which

(11.81) Ham) — Him)-
This corresponds to the exchange of operators

(11.82) (pr,pL) = (DR, PL)-

This symmetry of the theory is called R — 1/R duality or T-duality. Since
pr and py, are the conserved charges, it is natural to expect that the corre-
sponding currents given by Eqgs. (11.75)—(11.74) also transform in the same

way. Thus, we expect that T-duality maps the currents as
(11.83) (0p + 0s)x — (0 + 05)7,

or in terms of the Fourier modes

o~

(11.84) Qp — —0p, Qp— Op.

Finally, since Ty generates the shift of m, which is the momentum of the
T-dual theory, it can be identified as the zero mode of the coordinate Z. To

summarize, we have found

(11.85) z(t,s) = —zr(t —s)+zp(t+s).
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Everything we said here, including the point expressed by Eq. (11.84),
can also be derived using the path-integral method.
Path-integral Derivation Let us formulate the theory on a Riemann sur-
face ¥ of genus g. We put a (Euclidean) metric h = hy,do*do” on ¥ where
(o*) = (o', 0?) are local coordinates. We use a variable ¢ = x/R which is

periodic with period 27. The action is then written as

1
(11.86) S, = E/RQhW@Mgoa,,go Vhd?o.
b
This action can also be obtained from the following action for ¢ and a
one-form field B, :
1 1 )
11. "= — | —h"B,B,Vhd*c + — .
(11.87) s 27T/2R2h B,B \/Eda+27r/md¢
by b

Completing the square with respect to By, which is solved by
(11.88) B =iR?x dy,

and integrating it out, we obtain the action for the sigma model, as shown
in Eq. (11.86).

EXERCISE 11.2.1. Verify this claim.

If, changing the order of integration, we first integrate over the scalar

field ¢, we obtain a constraint d5 = 0. This constraint is solved by

2g
(11.89) B=db+» aw'
i=1
where ¢ is a real scalar field, w; (i = 1,...,2g) are closed one-forms that

represent a basis of H!(X,R) 22 R%, and the a;’s are real numbers. One can
choose the 2g one-forms w’ such that there are one-cycles 7; representing a
basis of Ho(X,7Z) = 729 with

(1190) / W5 = (57;7]'.
i

Then fE w' A w! = JY is a non-degenerate matrix with integral entries
whose inverse is also an integral matrix. Integration over ¢ actually yields
constraints on the a;’s as well. Recall that ¢ is a periodic variable of period
27r. This means that ¢ does not have to come back to its original value when
circling along non-trivial one-cycles in ¥, but comes back to itself up to 2w

shifts. If ¢ shifts by 27n; along the cycle ~;, dp has an expansion like Eq.
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(11.89) with the coefficient 27n; for w’. Thus, for a general configuration of

 we have
2g

(11.91) dy = dpo + Z 2mn;w",
i=1

where (g is a single-valued function on Y. Now, integration over ¢ means
integration over the function ¢y and summation over the integers n;’s. Inte-
gration over g yields the constraint dB = 0 which is solved by Eq. (11.89).
What about the summation over the n;’s? To see this we substitute in
J B Adp for B from Eq. (11.89);

(11.92) /B/\dgszWZaiJijnj.
5 0.

Now, noting that J¥ is a non-degenerate integral matrix with an integral
inverse and using the fact that Y, €@ = 27" §(a — 27m), we see that

summation over n; constrains the a;’s to be integer multiples of 27;
(11.93) a; = 2mm;, m; € Z.

Inserting this into Eq. (11.89), we see that B can be written as
(11.94) B = dv,

where now ¥ is a periodic variable of period 27. Now, inserting this into the
original action we obtain
1 1

ar | R2
>

(11.95) Sy = R 9,90,V hd*x

which is an action for a sigma model with target space an S' of radius
1/R. Thus, we have shown that the sigma model with target S' of radius
R is equivalent to the model with radius 1/R. Namely, we have shown the
R — 1/R duality or T-duality using the path-integral method. The above
path-integral manipulation is called a duality transformation and can also
be applied to massless fields (including vector fields or higher-rank anti-
symmetric tensor fields) in arbitrary dimensions.

Comparing Eq. (11.88) with Eq. (11.94), we obtain the relation

1
(11.96) Rdyp = ZE * dv.

Since Rdy and iR+ dp are the conserved currents in the original system that

measure momentum and winding number respectively, Eq. (11.96) means
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that momentum and winding number are exchanged under the R — 1/R
duality. This is exactly what we saw above in the operator formalism. In
particular, Eq. (11.96) is nothing but (the Euclidean version of) Eq. (11.83).
Eq. (11.96) explicitly shows that equations of motion and Bianchi identities
are exchanged. This is a general property of duality transformations.

The vertex operator
(11.97) exp(iv))

that creates a unit momentum in the dual theory must be equivalent to an
operator that creates a unit winding number in the original theory. This can
be confirmed by the following path-integral manipulation. Let us consider

the insertion of

(11.98) exp (—i /pq B)

in the system with the action shown in Eq. (11.87), where the integration is
along a path 7 emanating from p and ending on ¢q. Then using Eq. (11.94)

we see that
q . .
(11.99) exp (-z/ B) — e*m(Q) 6“9(17)_
P

On the other hand, the insertion of e iy B changes the B-linear term in
Eq. (11.87). We note that f; B can be expressed as [y, B A w, where w is
a one-form with delta function support along the path 7. This w can be
written as w = df; where 0, is a multi-valued function on ¥ that jumps by
1 when crossing the path 7. Now, the modification of the action from Eq.
(11.87) can be written as

q
% b p P

Integrating out B, we obtain the action shown in Eq. (11.86) with ¢ re-
placed by ¢’ = ¢ + 276,. Note that ¢’ jumps by 27 when crossing the path
7 which starts and ends on p and ¢. In particular, it has winding number
1 and —1 around p and ¢ respectively. Comparing with Eq. (11.99), we
see that the insertion of e* creates the unit winding number in the original

system.
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11.2.3. Sigma Model on T2%. Now consider the case when the target
space is a rectangular torus 7?2 = 511%1 X S}lz2 where R and Ry are the radii
of the two circles. Since the theory consists of the sigma models on circles
that are decoupled from each other, the Hilbert space is a tensor product
of the constituent theories. One can replace the parameters Ri, Ro of the

theory by the area and the complex structure of the torus
(11.101) A = area/(27)? = Ri Ry, 0 = iR1/Rs.

By T-duality, inverting the radius of one of the circles leaves the theory in-
variant but it changes the area and the complex structure of the torus. This
actually interchanges A and the imaginary part of the complex structure o.

For instance, if we dualize on the second circle we have the transformation
(11.102) (A, Im U) = (RlRQ, Rl/Rg) — (A/, Im U,) = (Rl/RQ, Rle).

In other words, the shape (complex structure) and the size (Ké&hler struc-
ture) of the target torus are exchanged under this duality. In the above
discussion, we considered a rectangular torus where the complex structure
is pure imaginary. More generally, the complex structure is parametrized

by a complex number
(11.103) o =01+ 102

whose real part o; is a periodic parameter of period 1 that corresponds
to deviation from the rectangular torus. On the other hand, the area is a
single real parameter. Thus, it appears that the exchange under T-duality
of the complex structure and the area fails in the general case. But this
is misleading: one can consider deforming the theory by assigning a phase

factor

(11.104) exp (i/zx*B)

in the path-integral. Here x is considered as a map from the worldsheet to

the target space 72 and B is the cohomology class
(11.105) B € H*(T?*R).

For instance, the path-integral representation of the partition function of

the deformed theory is given by

(11.106) Z = /Dx ¢S ety B,
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Since H2(T?,R) is one-dimensional, we can represent the B-field as a num-
ber, which we will denote by B as well. We also note that e’ JezB =
for any x if B = 27n for some integer n. Thus, we should consider B as a

periodic variable of period 2w. We define the complexified area p by
B
11.1 = — +iA.
(11.107) p=q- +1

Then one can show that T-duality on one of the circles exchanges the com-
plexified area p and the complex structure o. It is a good exercise to show

that the partition function is invariant under this exchange.

EXERCISE 11.2.2. Compute the partition function of the theory on T?
with a B-field, and show that it is invariant under the interchange of o

and p.

11.3. Free Dirac Fermion

Another important example of a free QFT is the theory of free Dirac
fermions. A Dirac fermion is an anti-commuting complex spinor field. (we
could also consider the case of real fermions — called Majorana fermions —
which have half as many degrees of freedom as the one we will be studying
here). In (14 1)-dimensional Minkowski space, the generators of the Clifford

algebra (e!)? = —(e%)? = 1, ele® = —e’e!, are represented by 2 x 2 matrices

(11.108) e (VU1 T
' TSt )T T 0 )

The Dirac fermion is represented by a column vector

_ [ ¥
(11.109) P = ( o ) .

The action is given by

1 _
— ; M
S =3 /Ezw'y Outp dtds

L B0+ )+ 4 (0 — D)) dtds,

:271' »

(11.110)

where 1) = ¢yt and ¥y = 1/):[,[. Here ¥ is the worldsheet which we take again
to be R x S'. The equation of motion is the Dirac equation Youp = 0,

namely

(11.111) (9, + D) = 0, (9 — D, )y = 0.
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These equations are solved by
(11.112) o(t,s) = [(t—s), i(t,s) = g(t +5).

Thus, ¥_ is a right-moving field and 14 is a left-moving field.

The action is invariant under the phase rotations of the fermions
(11.113) Ve o e ey,
(11.114) A:ipy — eTPyy.

We call them the vector rotation and the axial rotation respectively. By the

Noether procedure, we find the corresponding conserved currents

(L11s) v =Pt ] = oY vy,
v =Y =iy, 5 ==Y — iy,

and conserved charges
1

1 _ _
11.11 Fy=_— it ds = — RS
e =g b= o [ @) ds
1 y 1 _ _
(11.117) Fa= o 9 ds = o e (—_th— +Ppapy) ds.

We call these the vector and axial fermion numbers. The action is invariant
under the space-time translations. We find the conserved currents
(11.118)

T%~@@¢+@@w,{ﬂ=@&w+@@w,

TS = i _Opp— — iy Oy, TS = —it)_Opp— — ithy Oy,

and the conserved charges

1 _ _

(11119) H = E/Sl (_Z.praswf +2'(7Z)+637p+) dS,
1 _ _

(11.120) P= 5 /S1 (10— + i1 050y ) ds.

Let us now expand the fields in the Fourier modes on S'. We notice
at this stage that we have not specified the boundary condition on S*. We
consider here a periodic boundary condition for both 4 and ¥_. (Other

choices will be considered separately.) Then the fields are expanded as

(11.121) Yo=Y da(t)e™, Do = (1) e,

neZ neZ

(11.122) - Zin(t) e=ins P = Zzn(t) oins.

neZ nez
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Since ¥4 = 1/11, the modes are related by
(11.123) P =10, Uy = .

In terms of these variables, the action is expressed as

(11.124) S :/ [Z (O +in)n + > i (0 + in)ihn | dt,

neZ neL

and we see that the system consists of infinitely many fermionic systems

that are decoupled from each other.

11.3.1. Quantization. Let us quantize the system. From the form of

the action, we find the anti-commutation relations

(11.125) (s B} = Ontm0s {0, O} = im0,

with all other anti-commutators vanishing. For each n, the algebra of
Y, ¥_, is represented in a two-state vector space. As in the case of the
free boson, we construct the total Hilbert space based on the product of the
ground states of the constituent theories. We can read off from the action

given in Eq. (11.124) that the Hamiltonian for the v, _,, sector is given
by

(11.126) Hpy(y = 1t _nthn.

The ground state |0),, is the one with t,|0),, = 0 for n > 0 and ¢_,|0),, = 0
for n < 0. For n = 0, both of the states have the same energy and we
choose one of them, say the one with 10/0)o = 0. On the other hand, the

Hamiltonian for the 1’/;71, Y_,, sector is given by
(11.127) Hy_y = nt)_ .

The ground state @n is the one with ¢,,|0), = 0 for n > 0 and E_nm)n =0
for n < 0. For n = 0 both states have the same energy and we choose one of
them, say the one with 9|0)o = 0. Thus, we define a state |0) of the total

Hilbert space as the tensor product of these states

(11.128) 0) = Q) 0)n @ 0),.

neZt

This state is annihilated by the positive frequency modes

(11.129) Dn]0) = Pn0) = Pn|0) = B, [0) =0, n=1,2,3,...,
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and also (by the choice made above)
(11.130) $0l0) = 10|0) = 0.

Then the Hamiltonian is expressed as

(11.131)
H= Z (na—nwn + nZ—nJ”)

nel

=3 (W nton — oo+ 1) + 1T — DDy 1))
n=1

— Z (n;@_nwn: + n:g_n{bvn:) + é,

nel

where :¢)_,,: is a short hand notation for

(11.132) { Yontn 1 >0,

—%E—n n < 07

and we have used the zeta function regularization to obtain > > | (—2n) = %.

The ground state energy is

1
(11.133) Ey=¢.

Note that the ground states are degenerate; the four states below are all

ground states with energy Eg = é;

otiol0)
(11.134) ol0)  4l0)
0).

The expression for the momentum is easier to obtain:

(11.135) P=Y <—n@_n¢n; + n:Z_nzZn:) .

neZ
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The vector and axial fermion numbers can be expressed as

Fy = Z <E—nwn + Z—MZ?@)

(11.136) e B _
oo + Dot + I (D-nthni + Uy i) — 1
n#0
1?4 :ZEE: <_i5—n¢51*‘;;—ni%)
(11.137) ner
== Bovo + Potho + D (—-ntn: + 0_yPn)
n#0

where the term of —1 in Eq. (11.136) comes from the sum » ° 2 = —1
which is again obtained by zeta function regularization. It is straightforward
to compute these charges for the four ground states in Eq. (11.134). The

result is

(11.138) Fy: -1 1, Fa: 0 0.

Applying these to Egs. (11.121)— (11.122), we find

(11.141) an —in(t—s) Zw o= inlt=s).

nezZ nez
(11142) 1/}+ —_ Z wn t+8 o Z ,lp e ZTL(t+S)
nezZ nez

This shows that 1_ and ¢ _ are indeed right-moving fields and 1/, and

are left-moving fields.

11.3.2. Dirac’s Sea. By construction, the state |0) is a lowest energy
state and is therefore stable. There is a useful and insightful reinterpretation
of this fact. (In this discussion, n stands for a positive integer.) The first
of the commutation relations as shown in Eq. (11.139) can be interpreted
as follows: ¢_, (n > 0) is the creation operator of a fermion e,, of positive
energy n, whereas ¢, is the creation operator of a fermion e_,, of negative

energy, —n. The fact that 1,,|0) = 0 can then be interpreted as saying that
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the state |0) is filled with the negative energy fermions, e_,. By fermion sta-
tistics (or Pauli’s exclusion principle), a fermionic state cannot be occupied
by two or more particles. Acting by ¥_,, = 1/1;2 on |0) can be interpreted as
removing the negative energy fermion e_,, or as creating a hole. This hole
can further be interpreted as a positive energy anti-fermion €, of opposite
charge for Fy and F4. On the other hand, the fact that ¢_,|0) # 0 simply
means that the state |0) is not filled with the positive energy fermion e,.
Similarly for the left-moving modes. Here we interpret the state |0) as occu-
pied by the negative energy fermions, é_,, (with creation operator {/Jvn)_, and
empty for the positive energy fermions, €, (with creation operator 1’/;—71)
Acting by ¥_,, = (in)T removes é_,,, creating a hole or the anti-particle &,
of positive energy and opposite charge.

From this point of view, the state |0) can be interpreted as

(11.143) 10) = <H %%) 10)',
n=1

where |0) is the state that is empty for all negative and positive energy
fermions. The state |0) is filled with all the negative energy particles and is
therefore stable. One can make a hole but that costs positive energy, or it
can be interpreted as creation of a positive energy anti-particle.

This point of view is due to P. A. M. Dirac and has many applications in
various fields. (We will shortly encounter one of them.) The state |0) filled
with negative energy states is called Dirac’s sea, and the point of view that

an anti-particle is considered as a hole is called Dirac’s hole theory.

11.3.3. Twisted Boundary Conditions. As promised, we consider

here the case where the fields are not periodic but obey the twisted boundary

conditions
(11.144) V_(t,s+2m) = 2™p_(t,s),
(11.145) Uy (t, s+ 2m) = e 2™y, (t, s).

The periodicity of ¥4 follows from these condition by complex conjugation.
The redefined fields o' (t,s) = e™"y_(t,s) and ¥/, (t,s) = €@y (t,s)
are periodic, but the action for them (obtained by inserting ¢4 into Eq.
(11.110)) is

(11.146) S = %/ (W0 (9 + 05 + i)y’ + iy’ (0, — D5 +ia)y,) dtds.
P

s
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This is the action for a Dirac fermion coupled to flat U(1) gauge fields

on S!, with holonomies e?™%®

and e~2™@ for the right- and the left-movers
respectively. Thus, twisting the boundary condition is equivalent to coupling
to flat gauge fields (without changing the boundary condition).

The fields obeying the twisted boundary condition are expanded as

(11147) w_: Z wT(t)eiTS’ E_ — Z Er’(t) eir’s7

reZ+ta r'€Z—a
(11.148) vp= > Prt)e ™, Y= > dut)e
reZ+a T el—a
where w:[ = 9_, and 1;; = J_;. In terms of these modes, the action is
written as
(11.149) S = / (O + i)y + Z mb (O —1—2?’)% dt.
T€Z+a TEZ+a

Quantization of the system proceeds as before, starting with

(11.150) {Wr, &} = 600, (G, U} = G400,

The Hamiltonian is given by

(11.151) H=Y ri_apt+ Y 7ot

re€l+a TeZ+a

The state |0),z annihilated by

(11.152) Y (r>0), ¥ (F>0), ¥z (7>0), ¥m (7 >0),

is a ground state. It is the unique ground state if @ # 0 and @ # 0, but
there are other ground state(s) if @ = 0 or @ = 0. (For the case a =a =0
— the periodic boundary condition we studied earlier — the state |0)¢ is

equal to 1y|0) among the four ground states, as shown by Eq. (11.134).)
The ground state energy is given by

(11.153) Eo(a,a)= > r+ Y T

r€l+a TEL+a
r<0 r<0

To evaluate this, we define the zeta function ((s,z) = > 77 ((n + x)~° by

analytic continuation from the region Re(s) > 1. It is known that (see
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Appendix 11.4)

11 1\?
(11.154) ((—-1,2) = CYiaE (x — 5) ,
(11.155) C(0,2) = —x + %

The ground state energy is —((—1,1—a)—((-1,1-a) = -5+ 3(3 —a)*+

%(% —a)?if0<a<1land0<a< 1. More generally it is

(11156)  Eo(a,d) = 5 + 3 <a— la] — %)Z% (a— @] - %)2

In particular we find

1 1 1 1
11.157 En(00) = —— 4 - 22
( ) 0(0,0) Ststs =5
1
1
(11.158) Eo(L, 1) = —,

where the former recovers Eq. (11.133). As in Eq. (11.132), let us define

— E—rwr r >0, - Tﬂ_;’lZ? > 0,
11.159) b = _ W _gby = - =
( ) 1/] w { _wrw—r r <0, w Ajl/} { —%”1/1—? r<0.

It is arranged so that they annihilate |0),;. (We call such an operator

ordering the normal ordering with respect to the ground state |0),5.) Then

the Hamiltonian H and momentum P are given by

2
(11.160) Hp = %(H —P)= > ri e +% (a —[a] - 1) _t

reZ+ta

- 2
(11.161) HLZ%(H+P): S Fps ;:Jr% (5—[&’]—1> 1

The vector and axial fermion numbers are given by

1 — 1
(11.162) Fr=5(Fy — Fa) = > W+ a—[a - 5
r€Z+a
1 = ~ 1
(11.163) Fp = 5(Fy + Fa) :~Z~:¢,;¢;:+a— @] -3
reZ+a
where we have used
1
(11.164) > 1=¢(0,1-(a—[a])) =a—ld - 3.
e

At a =0 or a = 0, the ground state energy and momentum are not smooth

and the ground state fermion numbers are not even continuous. This is not
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because the energy and momentum or the fermion numbers are non-smooth
or discontinuous, but because the family of vacua [0),7 is discontinuous at
a = 0 and @ = 0. To see this, let us move a from small positive values to
small negative values (we ignore @ in the present discussion, say by fixing it
at @ = %). For a > 0, |0), is the unique ground state with (right-moving)
energy Hp = (a—3)?— 2
0 from above, another state 1)_,|0), comes close in energy but is separate in
fermion number — it has Hr = %(a—k%)Q— 2—14 and Fg = a+%. At a =0, the

two have the same energy but different fermion numbers. As a is decreased

and fermion number Fr = a—%. As a approaches

below 0, the latter state becomes the unique ground state, which is newly
denoted as |0),. The flow of the energy and fermion number is depicted in
Fig. 2. This flow is called the spectral flow.

FI1GURE 2. The Spectral Flow

The fermion obeying periodic (resp. anti-periodic) boundary condition
is said to be in the Ramond sector (resp. Neveu—Schwarz sector), often
abbreviated as R-sector or NS-sector. For example, the Dirac fermions with
(a,a) = (0,0),(0,3),(3,0) and (3, 3) are in R-R, R-NS, NS-R, and NS-NS
sectors respectively. These boundary conditions are allowed also for Majo-

rana fermions, i.e., fermions constrained by the reality condition ¢+ =1/.

11.3.4. Partition Functions. We compute here the torus partition

function of the system. We consider the torus of modular parameter
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T = 71 + i12, namely, the space of coordinate ( = (s + it)/2m with the
identification ( = ¢ +1 = ( + 7 (¢ is now the Euclidean time). We assume

that the fields obey the boundary conditions

(11.165) wh_(t,s) = e 2™%)_(t, 5+ 21) = e 2™P4_(t + 277y, 5 4 277)),

(11.166) 4 (t,s) = 2™ (t, s+ 27) = e%ig@m(t + 2779, 8 + 27TY).

Such a system corresponds to the periodic Dirac fermion on the torus, whose

right- and left-movers are coupled to the flat gauge potentials

11.167 A% = 2ri
( ) i 27‘2 27’2

dc.

The partition function is represented as a trace in the space of states. Look-
ing at the periodicity in s — s + 27, we see that we can use the Hilbert
space and operators developed in the previous section. The Euclidean time

2o H

evolution t — t 4+ 2mmo, represented by the operator e , induces the

space translation s — s — 277 represented by e 2™"1F together with the

phase rotation of the fields represented by e 27Fr+2mbFL — Thys we see
that the partition function is represented as
(11168) Z — Tr (6727Ti(b7%)FR+2Tri(f57%)FL ef2Tr’L"l‘1P 6727T7'2H> ,

where the shift of b by 1/2 is the standard one associated with the anti-
commutativity of the fermions. We recall that the eigenvalues of Fr and FJ,
are respectively a — 1/2 and @ — 1/2 modulo integers. Thus, the partition
function is periodic under integer shifts of b,g if we require (6,5) = +(a,b).
Such is the case when A0 = F(A%))! namely, when the system can be
considered as a periodic Dirac fermion 3 with the left- and the right-movers

coupled the same flat connection,

1 _
S =— [ ipy" (0, + iA,) dsdr,
(11.169) 2”,/ o
A=2{b—ra)dC — (b —7a)dc] .

T2

Since 6727”'7'1 P e*27T7'2H

= ¢HrGHL  the partition function has a left-right
factorized form. Let us assume 0 < a < 1 (or replace a by a — [a]) and let us

put @’ :=a—1/2 and b’ := b—1/2. The right-moving part can be computed
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as
(11.170)
Zﬁb] (1) :q—ﬁ%(w)z o 2mib'd/ H TYHTqT:E*W": o= 2mi(b—3) iy
reZ+ta
[o.¢]
:q_i—"%(a/)2 e_2ﬂib/a,H (1 _ qn—1+a e—27rib)(1 B qn_a egm'b)
n=1
/2] _
= qé e—%’ib’aﬂ[l/?] (b—r7a,7)
n(7)
_9[%]©.7)
n(r) -
where
(11.171) ﬁ[g] (v,7) = Z gz () G2mi(tB)(n+a)

ne’
See Appendix 11.4 for some properties of the theta functions. One can show

the property

R R 271 R R
(11.172) Ziap) = Zjas1) =~ Zlap+1] = Lzt

For the case (a,b) = (a,b) or (a,b) = (—a,1 — b) which realizes the system

given by Eq. (11.169), the full partition function is
_ R 2
(11.173) Dy (1,7) = ‘ZW,] (7’)‘ .

From the properties in Eq. (11.172), it is indeed periodic under a — a+1 and
b — b+ 1. The partition function has to be independent of the choice of the
coordinates. Note that the coordinate transformations inducing 7 — 7 + 1
and 7 — —1/7 are accompanied by the transformations of the holonomy
(a,b) — (a,b+ a) and (a,b) — (b, —a) respectively. One can show that the

functions Z[Ij’b] (1) obey the modular transformation properties

(11.174) ZH (1) = e—ﬂ'i(aQ_l/ﬁ)Z[Iib}(T),
(11.175) Z[ﬁia}(—l/T) = e—Qni(—a)/b/Zﬁbl (1).

This shows that the full partition function is indeed invariant under the

transformations (7,a,b) — (7 + 1,a,b+ a) and (7,a,b) — (—=1/7,b, —a).
Let us consider the case a(= a) = 0, which corresponds to the periodic

Dirac fermion on S!. The ordinary partition function is Eq. (11.173) with

b(= b) = 1/2 while the one for b(= b) = 0 corresponds to Tr(—1)F¢!Trgr,
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where (—1)F" = ™4 which is also —e™V if a = @ = 0. (Note that the
eigenvalues of Fy and Fy are integers if a = a = 0.) We find from the
second line of Eq. (11.170) that

(11.176) Trq"rg"t = 4(q)/ [ (1 + ¢+ 7",

n=1

(11.177) Tr (=1)F gt = (1 — 1)2(qq)/*2 ﬁ(l —¢")?(1-9°=0.
n=1

The g-expansion of the partition function starts with 4(q§)1/ 12 reflecting
the fact that there are four ground states given by Eq. (11.134) with energy
Ep = 1/6. The vanishing of Tr(—1)¥¢/’rg"r is because two of them are
(—=1)¥ even and two of them are (—1)f" odd, as shown by Eq. (11.138).

11.3.5. Boson—Fermion Equivalence. The partition functions for

the special values (a,b) = (@,b) = (0,0), (0, 1),(3,0) and (3, 1) are given by

2
1 n 1 n—l 2
(11.178) Z[Oﬁo]:W %(_1) )" =0,
2
(11.179) Z L Zq%(n—%>2
. 17 = ;
021 () 2 | 4
1 2
1.2
11.180 Zi g = —1)"qg2" |,
) 0= [y | Y
1 2
1.2
11.181 Zny=— | 2"
R 23~ T | 2

Since this set of (a,b) = (a,b) is invariant under (a,b) — (a,b + a) and
(a,b) — (b, —a), the sum of the above partition functions is invariant under
the modular transformations 7 — 7+ 1 and 7 — —1/7. This sum can be

considered as the sum over the (left-right correlated) spin structures of the
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Dirac fermion on the torus. One half of the sum can be expressed as

1
(11.182) 5 (Z[o,o] T 2Zp 1+ 2Zgt Z[%,%J>

- LS geedrgiaeir g 1)|_2 3 g
T

2
() 1?52 (M) * Sz
1 Lel_ N2 1L 2
= p 2 ke
(IL,m)eZaZ

Comparing with Eq. (11.79), we find that this is nothing but the partition
function for the sigma model on the torus of radius R = V2 (or R=1/ V2
by R — 1/R duality). Namely

1
(11.183) 5 (Zoo+ 2oy + Zpay+ 2y ) = Z(R=2).

11
272

We note that the first two and the last two terms can be identified as the
following traces over the R-R and NS-NS sectors:

- +1 _

(LY o],
_ (-DF+1\ yo_u

(Z%m_%z%é}>_IHNSNS <__7f__ g g

Here again, (—1)F = e which is the same as — ™V on the R-R sector

. _\F
and €™V on the NS-NS sector. The operator (1)% is a projection op-

(101184) = (Zog+ Z1) ) = Trp g

(11.185)

N = N

erator onto (—1)% even states, which we call a vector-like GSO projection.
Thus, Eq. (11.182) can be considered as the partition function Tr ¢/rgHt
for the system of Dirac fermions where only (—1) even states in the R-R
and NS-NS sectors are kept. We call the latter system the Dirac fermion
with vector-like GSO projection. Then Eq. (11.183) shows that the Dirac
fermion with vector-like GSO projection is equivalent to the sigma model on
the circle of radius R = /2.boson—fermion equivalence This is called boson—
fermion equivalence which is a feature peculiar to 1 + 1 dimensions. In
fact boson—fermion equivalence holds in more general (interacting) theories
[56, 185].

To see the correspondence in more detail, let us compute the partition
function with weight e~2mi(bF. R=bFL) of the system with vector-like GSO
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projection. It is easy to find that

(11.186) Tr (e*%ibFRHmEFL qHRqHL)

_ 1 Z g =mPgE (hrm)? (—2mib(h—m)+2mib(5+m).

[n(T)[?

(I,m)eZSZ

Comparing with the similar weighted partition function of the R = /2
sigma model on S!, we find that the quantum numbers of the two theories
are related as Fr = pr = %l —m and Ff, = pp, = %Z—I—m, where [ and m
are the momentum and the winding number of the target circle. In other

words, we find

Fy =1,

(11.187)
Fjp=2m.

Note that F4 has even eigenvalues because of the GSO projection. Since
(- = —e™V on R-R and (—-1)F = €™ on NS-NS sectors, the
R-R sector (resp. NS-NS sector) corresponds to odd (resp. even) momen-
tum states of the S sigma model with R = v/2;

(11.188) HR—R = @ H(Z,m)7 HNS—NS = @ H(l,m)'
l:odd l:even
MmEL meZL

From Eq. (11.187), we find the correspondence between the conserved cur-

rents to be

(11.189) Yo — %(8,5 — Os)m,
— 1

(11.190) Yy E(at + as)ll,‘

Note that the fields 1+ and 1+ by themselves are (—1)¥ odd and are not
operators of the GSO projected theory, but the products of an even number
of them (and their derivatives) are. The above currents ¢ 111 are examples
of such operators. The operator ¥, 1)_ has (Fy, Fa/2) = (2,0) and thus
creates two units of momentum while preserving the winding number. The
field ¢ 1_ has (Fy/, Fa/2) = (0,1) and creates one unit of winding number

while preserving the momentum. These suggest the correspondence

Ry ,

11.192 Doth. s /R _ . V20T,
(UERU)

)
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where 7 is the field of the T-dual theory (sigma model on S! of radius
1/R = 1/4/2). The vertex operators : e/ B: with | odd exchange R-R
and NS-NS sectors, and cannot be represented as the polynomials in the
(derivatives of) 11, ¥+. Such operators are called spectral flow operators
since the mode expansion of the fields “flows” from the one with r € Z to

the one with r € Z + % and vice versa.

11.4. Appendix

11.4.1. Zeta Functions. Let us define

o0

1
11.193 )=y —
(11.193) o)=Y
n=0
by analytic continuation from the region Re(s) > 1 where the series is
convergent. Riemann’s zeta function is the special case ((s) = ((s,1). For

the special values s = —m = 0,—1, -2, ..., it is given by

;n+2($)
(m+1)(m+2)

(11.194) ((—m,z) = —

where ¢, (z) are Bernoulli polynomials defined by

(11.195) G 3y t—n!(;Sn(x).

For example,

(11.196) g(o,@:-@: +%,
I XCONNNR WS WU AN A §
(11.197) (1) = - = 7 (x ‘“6)— 2<:c 2) .

11.4.2. Theta Functions. Here we collect some properties of the theta

functions. Let us define, for ¢ = ¢?™7 (with Im7 > 0),

(11.198) 03] (v,7) = Z g3 () G2mi(B)(n+a)

neL

They have the periodicity 19[“;1] = e_2”°‘19[ﬁf‘rl] = 19[%] They also have

periodicity in v — v+ 1 and v + T;
(11.199) O[5 (v +1,7) = 79 [G] (v, 7),

(11.200) I3 (w+7,7) = e 2 HY 5] (v, 7).
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Theta functions have the modular transformation property

(11.201) I3 (v, 7 +1) = e‘”<a2+a>z9[ﬁ+g+%} (v,7),
« 1 . \s Tve/TH2mia
(11.202) 0[ﬁ](§,—;):(—w)%e *rvemiafyl 6] (y, 1),

Theta functions have the following product formulae for the values
(avﬂ) = (07 0)7 (07 %)7 (%7 0) and (%7 %)

o

(11.203)  9[](v,7) = [T (1 = a)(1 + 2¢" 2)(1 + 27 1g"2),

n=1

(11204) 0[] (0. 7) = [[(1 =)0 = 2" 5)(1 = =7q"%),
n=1

(11.205)  9[/2)(w.7) = igt e [ (1 = g™ (1 = zg)(1 — =7 g" ),
n=1
(11.206) 9% (0.7) = g5 ™ ] (1 =g (A +2¢ (1 +27"g").

n=1






CHAPTER 12
N = (2,2) Supersymmetry

In our discussion of supersymmetric QFTs in dimensions 0 and 1, we
have presented actions which possess fermionic symmetries. We did not
present any systematic discussion of how one arrives at such actions. We
will remedy this gap in this section and the next. We develop the notion
of superspace which, in addition to the usual bosonic coordinates, contains
fermionic coordinates (as many as the number of supersymmetries). We will
also generalize the notion of fields to superfields. Supersymmetry is realized
on the superspace by translations in the fermionic directions. Writing down
actions which are coordinate invariant in the superspace sense will thus
naturally lead to supersymmetric actions.

Here we will mainly consider supersymmetric field theories in 141 dimen-
sions with four real supercharges (or two complex supercharges), two with
positive chirality and two with negative chirality. This is called N = (2,2)
supersymmetry, and is relevant for mirror symmetry. By reduction to 1 and
0 dimensions, one obtains the actions discussed in the previous sections for
the case with four supercharges. One can also develop superspace techniques

for the case with two supercharges. That will be recorded in Appendix 12.5.

12.1. Superfield Formalism

We start our discussion by providing a systematic way to obtain super-
symmetric Lagrangians. This involves introducing superspace and super-
fields.

12.1.1. Superspace and Superfields. We consider a field theory on

R? with time and space coordinates

(12.1) ¥ =t, 2t =s.
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We take the flat Minkowski metric ngg = —1, 11 = 1 and 191 = 0. Besides

these bosonic coordinates we introduce four fermionic coordinates

(12.2) ot 0. 0.0 .

These are complex fermionic coordinates which are related to each other by
complex conjugation, (§%)* = . The indices + stand for the spin (or chi-

rality) under a Lorentz transformation. Namely, a Lorentz transformation

acts on the bosonic and fermionic coordinates as

(12.3) ZL'(I) . C'OSh’)’ sinh :L'(I) 7
T sinh~vy cosh~ T

(12.4) 0F — /2% 7" - %

The fermionic coordinates anti-commute with each other, 9% = —0892,

7°9° = —gﬁga, and 0°9° = —8°6>. The (2,2) superspace is the space with
—+

the coordinates 2, z!, 6%, ™.
Superfields are functions defined on the superspace. They can be Taylor

expanded in monomials in #* and g
(12.5) +07f- (% 2") + 0" (a0, 2")

+g_f/—(x0’ xl) + (9+9_f+_(330, xl) + e
(Superfields are to supersymmetry what N-vector fields are to SO(N) sym-
metry — a convenient organizational scheme.) Since any of the fermionic
coordinates squares to zero, (§%)? = (?jc)2 = 0, there are at most 2* = 16
nonzero terms in the expansion. A superfield ® is bosonic if [#%, ®] = 0 and

is fermionic if {#%, @} = 0. We introduce some differential operators on the

superspace,

(12.6) Q. = ao% +if g,
(127) % - -~
Here 04 are differentiations by z& := 20 4+ 2!

(12.8) ai:a%:%%i%).

These differential operators satisfy the anti-commutation relations

(12.9) {Q+,Qx} = —2i01,
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with all other anti-commutators vanishing. We define another set of differ-

ential operators

(12.10) Dy = ao%_miai’
(12.11) Dy = —a%ﬂ'eiai,

which anti-commute with Q1 and Qx, i.e., {D+, Q+} = 0, etc. These obey

similar anti-commutation relations
(12.12) {Dy,D+} = 2i0q,
with all other anti-commutators vanishing.
EXERCISE 12.1.1. We have discussed the notion of superspace adapted to
the signature (1,1). Generalize this to the Euclidean signature. In particular

show that the £+ index on % and Gi,§i distinguishes holomorphic versus

anti-holomorphic supercoordinates.

Vector R-rotations and azxial R-rotations of a superfield are defined by
(12.13) elfv . F(m“,&i,gi) e F(gh e 9, eio‘gi),
(12.14) Bl . F(m“,&i,gi) — equ}"(x”, e TGt eiiﬁgi),
where gy and ¢4 are numbers called vector R-charge and axial R-charge of F.
The transformations given by Eqs. (12.13)—(12.14) induce transformations

of the constituent fields of F.
A chiral superfield ® is a superfield that satisfies the equations

(12.15) Di®=0.

If ®; and @, are chiral superfields, the product ®;®- is also a chiral super-
field. A general chiral superfield ® has the form

) = 6(yF) + 0°valy®) + 0107 F(y®),

where y* = 2% — i9%0". The complex conjugate of a chiral superfield ®

(12.16) o(z,0%,0

obeys the condition
(12.17) Di® =0
and is called an anti-chiral superfield.

EXERCISE 12.1.2. Show that a chiral superfield can be expanded as shown
in Eq. (12.16).
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A twisted chiral superfield U is a superfield that satisfies
(12.18) D.U=D_U=0.

If Uy and U, are twisted chiral superfields, the product Uy Us is also a twisted
chiral superfield. A general twisted chiral superfield U has the form

(12.19) U(",6%,6°) = o) + 0%, (75) + 0 x_(F5) + 070 E@F),

where y* = z+ F 0%, The complex conjugate U of a twisted chiral
superfield U obeys the condition

(12.20) D.U=D_U=0
and is called a twisted anti-chiral superfield.

12.1.2. Supersymmetric Actions. We now construct action func-

tionals of superfields that are invariant under the transformation
(12.21) §=€¢Q —€ Q;—¢,Q +e Q..

Let us first consider the functional of the superfields F; of the form
(12.22) / d?z d*0 K (F, / a2z dotdo—do do K (F),

where K (—) is an arbitrary differentiable function of the F;’s. This is invari-
ant under the variation §. For example, let us look at the term proportional

to e4;

oK

(12.23) /d2$d496+(Q Fi) = oF =

d?zd*fe_ (i + i@‘a_> K(F).
00
The integration over d*@ is nonzero only if we have 0+0-0"0 . Therefore
the first term is zero since the integrand does not have 6~ because of the
derivative 0/06~. The second term is a total derivative and vanishes after
integration over d?z. Vanishing of the coefficients of e, and €1 can be seen
in a similar way. The functional of the form shown in Eq. (12.22) is called
a D-term.
We next consider the functional of chiral superfields ®; of the form

(12.24) / d?zd*0 W (®;) = / d?z do=dot W (®;) _
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where W (®;) is a holomorphic function of the ®;’s. This is also invariant

under the variation §. Let us first look at the coefficient of e4:

_ J
(12.25) i/d% do~do ex <ﬁ +29¢8¢> W (®;)

=0

The first term vanishes for the standard reason. The second term vanishes
—+ . - o

because we put 8~ = 0 (or since it is a total derivative). Let us next look at

the coefficient of €1. For this we note that Q4+ = Dy — 2i#T9.. Then the

variation is

(12.26) F / d*xdo~do" ey (D — 200504 ) W(®;)

95=0
The first term in the integrand DW (®;) is zero because ®; are chiral
superfields and W (®;) is a holomorphic function (it does not contain ®;).
The second integral vanishes because it is a total derivative in z*#. The
functional of the form shown in Eq. (12.24) is called an F-term.

We finally consider the functional of twisted chiral superfields U; of the
form
(12.27) / 2o 20T (U;) = / Pedi WO
where W(UZ) is a holomorphic function of the U;’s. By a similar argument
as in the case of the F-term, one can see that this functional is invariant
under 0. The functional of the form shown in Eq. (12.27) is called a twisted

F-term.

12.1.3. Some Superfield Calculus. We present some calculus on su-
perspace, some of which will be used in later sections. However, the reader
can skip these exercises in the first reading and return when they are needed.

The basic element of the superfield calculus is the analogue of Poincaré’s
lemma in the ordinary calculus. Suppose F is a superfield that decays

rapidly at infinity in (2%, 2!)-space. Then

LeEMMA 12.1.1 (Poincaré’s Lemma). D4 F = 0 implies F = D,G for
some superfield G. The same is true for the differential operators D_, D
and D_.

PROOF. D, F = 0 implies D, D, F = 0. Using the anti-commutation
relation from Eq. (12.12), we find 2i0,F = D, D,F. Since F decays
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rapidly at infinity, we can integrate this relation as
$+ $+

(12.28) 2iF = / D, D,Fdx'" =D, / D, Fdx"™".
) —o0

We thus obtain F = D, G where G is the superfield % ff; D, Fdz'T. This

is what we wanted to show. O

The reasoning used in the proof is sufficient to show the following.
1. DyD_F = 0 implies F = G, + G_ for some superfields G+ such that
D,G, =0and D_G_ = 0. Similar results hold for D, D_, D,D_ and
DD
2. A chiral superfield ® can be written as ® = D, D_& for some superfield
E. If U is a twisted chiral superfield it can be written as U = Dy D_V .
3. DyD_F = D,.D_F = 0 implies F = U; + Uy for some twisted chi-
ral superfields U;. For the equation D, D_F = D,D_F = 0, we have
F = ®; 4+ &, for some chiral superfields ;.

EXERCISE 12.1.3. Prove the above statements.

Let us consider the integral
(12.29) / d*z d*0AB

where A and B are arbitrary superfields. It is easy to see that the extremum

of this integral with respect to the variation of A is attained only by B = 0.

EXERCISE 12.1.4. Show that if A is restricted to be a chiral superfield,
then the extrema are attained by B with D, D_B = 0.

12.2. Basic Examples

Here we present basic examples of classical (2,2) supersymmetric field
theories. One is a theory of a single chiral superfield and the other is a

theory of a single twisted chiral superfield.

12.2.1. Theory of a Chiral Superfield. We first consider a super-
symmetric action for a single chiral superfield ®. As noted above, the su-

perfield @ has the following #-expansion
® = yF) +0aly™) + 0707 F(y*)
= —i0T0 0.0 —i070 0_¢p— 0700 0 9.0_0
(12.30) 40ty —i0T070 Oty + 0 —i0 010 04 + 010 F,
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where in the last equality we have further expanded y* = 2% — 00 at
xz*. The f-expansion of the anti-chiral superfield @ is easily obtained by
complex conjugation of Eq. (12.30);

d = +i070 0, 0+i00 0_¢—0T070 0 0,0 ¢
(1231) -0 0, —i0 00 0y —0 v_—i0 670 0,9_+0 0 F.

Note that (1112)* = ¢35} for fermionic variables/coordinates.

Now let us compute the D-term
(12.32) Siin = / d?z d0 Do.

The integration [d'0®® amounts to extracting the coefficient of
0* = 6700 @' in the f-expansion of d®. By a straightforward compu-

tation we have

(12.33) 6@‘04 = —30,0_¢+ 0, 00_¢ + O_$Ds b — 8,0_
+i O Py —i0 P iahy + i Oy — 0y + |F|*.

Here again, the derivatives of fields appear due to the changing of variables
from y to x and doing the Taylor expansion around § = 0. By partial
integration, the action takes the form

(12.34)

Skin = / d*z (|009]* — |010]* + iWh— (9o + O)¥— + i+ (o — O )4 + | F|?) .

Thus, we have obtained the standard kinetic term for the complex scalar
field ¢ and the Dirac fermion fields ¢+, ¢+. Note also that the field F has
no kinetic term. Such a field is often called an auxiliary field (such as in the

path-integral derivation of T-duality). Next let us compute the F-term
(12.35) Sw = / d*x d*O W (®) + c.c.

for a holomorphic function W (®) of ®. This holomorphic function is called
a superpotential. The integral [ d*0W (®) amounts to extracting the coef-
ficient of §2 = §*0~ in the f-expansion of W (®). It is straightforward to

see

(12.36) W(®)| = W()F — W (@)su-.

62
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Thus, the F-term is
(12.37)

Sw = [ @ (WOF - W' (@)psi- + W @F - W' @57
Now let us consider the sum of Sy, and Sy as the total action;
(12.38) S = Skin + Sw.

By completing the square of F', we obtain the following action

§= /d%: (180612 — 01612 — [W/(8)? + ¥ (Do + )
(12.39) +itp4 (0o — O )Yy — W () htp—
W' @+ +|F + W (@) ).

Note that the last term |F + W’@)P can be eliminated by solving the

equation of motion as
(12.40) F=-W($).

Setting F' to this value can also be viewed as a result of integrating out F' in
the path-integral. To summarize, we have obtained the action for the scalar
¢ and the Dirac fermion 1)+, 1+ with a potential [W/(¢)|? for ¢ and the
fermion mass term (or Yukawa interaction) W”(¢)y¢_.

By construction, the action is invariant under the variation § from Eq.
(12.21). This variation on the superfield ® can actually be identified as a
certain variation of the ordinary fields ¢, 1+, ¥4+ and F — the component
fields of ®. This is obvious if the superfield F is unconstrained. Simply
define each coefficient field of the #-expansion of §F as the variation of the
corresponding coefficient field of the #-expansion of F. For example, for the

general superfield given in Eq. (12.5), the d-variation yields
(12.41) SF =erf —e frde f e fl+07(- )+,

Then we define dfg =€ f— —e_fr+e_f'+erf ,0fy =(--+), etc. A chiral
superfield is not an arbitrary superfield but rather satisfies D+ ® = 0. The
last condition means that there are relations between the coefficient fields,
as can be explicitly seen in Eq. (12.30). Thus, it is not obvious whether the
variation ¢ of ® can be represented by a variation of the component fields of

®. However, this is actually the case. The key point is that the differential
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operators Q+, Q4 anti-commute with D1 (and also with D.) and hence

the variation d® is also a chiral superfield
(12.42) D16® =6D1L® = 0.
Indeed, one can explicitly show that the variation in question is given by

0 = exp_ — ey,
(12.43) oy = :|:2i€:|:a:|:¢ + e I,
6F — —2i€+8_¢+ - 22'5_84_1/1_.

One can replace F' by its equation of motion and write a supersymmetry
variation of the ¢ and v fields alone (true after imposing the equations
of motion). One can explicitly check (though it is not necessary) that the
action S (or Sk and Syy) is invariant under this variation of the component
fields. By the anti-commutation relations from Eq. (12.9), the variations

for different parameters €; and ey satisfy the commutation relation
(12.44) [51, 52] = Qi(el_gg_ — 62_51_)84_ + 2i(61+€2+ — 62+El+)8_.

This is a relation in quantum mechanics that generalizes the supersymmetry
relation given by Eq. (10.77). We refer to this situation by saying the
classical field theory with the action given by Eq. (12.39) has N = (2,2)
supersymmetry generated by Eq. (12.43).

Since the classical system has a symmetry, one can find via the Noether
procedure the conserved currents and conserved charges. The conserved

currents are

(12.45) GY = 20:0vs F i)W (),
(12.46) GL = F20:pv: — i W (),
(12.47) GL = 20.0:6+ i W'(9),
(12.48) Gy = F20.0:0+ i W (0),
and the conserved charges (supercharges) are

(12.49) Qs = /dml G, Q. = /dxléi.
These charges transform as spinors

(12.50) Qs — e7%Qq, Qy — T7Q,

under Lorentz transformation as shown by Eq. (12.3).
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EXERCISE 12.2.1. Verify the expressions from Eq. (12.49) for the su-

percharges.

This system has more global symmetries. First, by assigning axial R-
charge 0 for @, the action is invariant under axial R-rotation;
(12.51) O(z%,0%,07) > (2, eFiopE, oFiogh),
This is obvious in the superspace expressions given by Eq. (12.32) and
Eq. (12.35): the products #* and 62 are both invariant under the axial
rotation. Thus, the system has an axial R-symmetry. The axial rotation of
the superfields can be realized as a transformation of the component fields
(this can also be understood by looking at the commutation relation of D4

and the axial rotation). The transformation is given by
(12.52) A

The corresponding current is given by

(12.53) JY = Pty — Pt
(12.54) Th ==y — 1o,

and the conserved charge is

(12.55) Fa= /Jg dat.

We note that the axial R-rotation rotates the supercharges as
(12.56) Qx — TQy, Qy — QL.

Second, depending on the form of the superpotential W (®), the system
is also invariant under the vector R-rotation. Since §* is invariant under the
vector R-rotation and ®® is invariant under the phase rotation of ®, the
D-term is invariant under an arbitrary choice of vector R-charge. However,
62 has vector R-charge —2 (namely it transforms as 62 — 62 e~2®). Thus,
the F-term is invariant under vector R-rotation if and only if one can assign
the vector R-charge of ® so that W (®) has vector R-charge 2. This is the

case when W(®) is a monomial. If
(12.57) W(®) = cdF,

then, by assigning vector R-charge 2/k to ®, the F-term is made invariant

under vector R-rotation. Namely, the system has a vector R-symmetry. In
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such a case, the vector R-rotation of the superfield is realized as a transfor-

mation of the component field as
The conserved current is

(12.59)  JO = (2i/k)(Bodd — pod) — (2/k — 1) (dtps + p_t_),
(12.60)  Jp = (2i/k)(—016p + ¢019) + (2/k — 1) (Y41py — P_1p_),

and the conserved charge is
(12.61) Fy = /J8 da®.
The vector R-rotation transforms the supercharges as

(12.62) Qs e Qx, Qu— Q.
Also, the axial and vector R-rotations commute with each other.

12.2.2. Theory of a Twisted Chiral Superfield. One can also find
a similar supersymmetric action for a twisted chiral superfield U. This time

the action is expressed in the superspace as
(12.63) S = —/d% do*TU + (/ Pad*d W(U) + c.c.) :

Note the minus sign in front of the D-term. This is required for the compo-
nent fields to have the standard sign for the kinetic term. Chiral and twisted
chiral superfields are related by the exchange of #~ and —f which flips the
sign for the D-term: df~df = —df df~ (the minus sign in = « —@ is for
Q_ < Q_). This last point enables us to borrow the formulae for a chiral
superfield in finding the expression for the supersymmetry transformations,
supercurrents, and R-symmetry generators in terms of the component fields.
All we need to do is to make the replacements ¢ — v, ¥ — X4, V- — —x_,
F——-E e ——¢,Q.—-Q_ (orG* -G"), Fy — Fy and Fy — Fy
with the others kept intact. For completeness we record here the relevant

expressions. The supersymmetry transformation is
0U = €4 X— — €-X+;
OX+ = 2i€_04v + e E,
Ox— = —2ie;0_v+e_E,
0F = —2ie;0_X4 — 20€_04+x—.
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The supercharges are
Q+ —/ da! { LUX+ + Z‘Y—W/(U)},
Q. = [ do! {200 - i W)},
:/ —2X_0_v —ix+ W'(v )}

Q_ :/dacl {—28_@(_ +z'X+W’(6)}.

The action is always invariant under the U (1) vector R-rotation by assigning
the vector R-charge of U to be zero, but it is not always invariant under
the U(1) axial R-rotation. It has an axial U(1) R-symmetry only if the
twisted superpotential W(U ) is a monomial, say, U*. The vector and axial

R-symmetry generators are then expressed as
(12.64)

By = /dl’l {=X+Xx+ = X-x-},

Fa = [ da {(26/k)(@000 — 00v) ~ (2/k = (T +X-x-)}-

12.3. N =(2,2) Supersymmetric Quantum Field Theories

Suppose we have a classical supersymmetric field theory — an
N = (2,2) supersymmetric action for a number of fields. Then we obtain

four supercharges

(1265) Q-‘m Q—7 Q-}—: @—'

As in any Poincaré invariant quantum field theory, we will also have Hamil-

tonian, momentum, and angular momentum
(12.66) H, P, M,

which are the Noether charges for the time translations 9/9z", spatial trans-
lations 0/0x!, and Lorentz rotations x°0/0x! + 2'0/0x°. If the action is
invariant under both vector and axial R-rotations, there are also correspond-

ing Noether charges

(12.67) Fy, Fa.
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If these symmetries in the classical system are not lost in the quantum
theory,! then the conserved charges correspond, in the quantum theory, to
the generators of the corresponding symmetry transformations. In particu-
lar, the conserved charges Q+, QL generate the supersymmetry transforma-
tion & by

(12.68) 50 =5,0),

where

(12.69) 6 =i Q_ —ie Qy —ie Q_+ie Q..

Note that 61 = —4 as a consequence of Q. = Ql, which is consistent with

(60)t = 60OF. The (anti-)commutation relations of the symmetry transfor-

mations imply the following (anti-)commutation relation of the generators;
(12.70) R2=Q2=0Q=Q" =0,
(12.71) {Q+,Qi}=H*P,

(12.72) {Q4,Q_} ={Q+,Q-} =0,
(12.73) {Q-,Q.}={Q+,Q_} =0,
(12.74) [iM, Q+] = FQx, [iM,Q.] = FQy4,
(12.75) [iFy,Q+] = —iQx, [iFy,Qy] =iQ4,
(12.76) [iFa, Q] = FiQx, [iFa, Q4] = +iQ.

The Hermiticity property of the generators follows that of the classical one.

In particular, we have

(12.77) QL =0q.,

and other generators are Hermitian. The relations (12.72) and those in Eq.
(12.73) can actually be relaxed to

(12.78) (04,0} =7, {Q+,Q-} = Z~,
(12.79) {Q-,0,} =2, {Q+,Q_} = 7,
as long as Z and 7 commute with all operators in the theory. In particular,

Z and Z must commute with other symmetry generators and are called
central charges. Thus, Z must be zero if Fy is conserved while Z is zero if
IWe will see later some examples in which that is not the case due to the fact that

the measure of the path-integral does not respect that symmetry; such a loss of symmetry

in the quantum theory is called an anomaly.
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F'4 is conserved. The central charge Z will appear later in our discussion of
soliton sectors of Landau—Ginzburg models. The (graded) algebra defined
by the above (anti-)commutation relations of symmetry generators is called
an N = (2,2) supersymmetry algebra.

The component fields of a superfield constitute a representation of the
N = 2 supersymmetry algebra. For example, the component fields ¢, 1+, F’
of a chiral superfield determines a representation called a chiral multiplet via
Eq. (12.43), where we replace the transformation ¢ by commutation with
§ in Eq. (12.69). Similarly, the component fields v, X, x—, F of a twisted
chiral superfield determine a representation called a twisted chiral multiplet.

The lowest component ¢ of a chiral multiplet satisfies

(12.80) (@, d] = 0.

This can be seen as follows:

(12.81) Qu, ¢ = O F i gt o= (D4 + 2i6*04)F =0.

gt=0T=0
Conversely, if we have an operator ¢ such that [Q, ¢] = 0, we can construct
a chiral multiplet (¢,v4,v%_, F) by

(12.82) Yt = [IQ4, ),

F = {Q+7 [Q—v ¢]}
Similarly, the lowest component v of a twisted chiral multiplet obeys
(12.83) Q.. v] =[Q_,v] =0.

Conversely, if we have such a field, we can construct a twisted chiral multiplet
(Uaerv X—> E) by

X+ = [iQ-l—?U]? X- = —[iQ_,U],

(12.84) E:=—{Q4,[Q_,v]}.

12.4. The Statement of Mirror Symmetry

We note here an unusual symmetry of the N' = (2,2) supersymmetry
algebra. The algebra is invariant under a Zy outer automorphism given by

the exchange of the generators
Q- —Q_,
(12.85) Fy «—— Fy,
Z —— Z,
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with all other generators kept intact. Two N = (2,2) supersymmetic quan-
tum field theories are said to be mirror to each other if they are equivalent
as quantum field theories where the isomorphism of the Hilbert spaces trans-
forms the generators of the N' = (2,2) supersymmetry algebra according to
Eq. (12.85).

Thus, if there is a pair of mirror symmetric theories, a chiral multiplet of
one theory is mapped to a twisted chiral multiplet of the mirror. If the axial
R-symmetry is unbroken (broken) in one theory, the vector R-symmetry is
unbroken (broken) in the mirror.

It is actually a matter of convention which to call Q_ or Q_. Here
we are assuming a certain convention that applies to a class of theories,
called non-linear sigma models and Landau—-Ginzburg models, that gener-
alizes the basic examples considered in this section and will be studied in
the following sections in more detail. The convention is that holomorphic
coordinates of the non-linear sigma models or holomorphic variables of the
Landau-Ginzburg models are represented by the lowest components of chi-
ral superfields (as in the first of the basic examples). One could switch the
convention so that the holomorphic coordinates/variables are represented
by the lowest components of twisted chiral superfields (as in the second of
the basic examples). Therefore, if we flip the convention of one of a mirror
symmetric pair, then the two theories are equivalent without the exchange
as shown by Eq. (12.85). We will sometimes encounter mirror symmetric

pairs realized in this way.

12.5. Appendix

We obtain supersymmetries with half as many supercharges — (1, 1) and

(0,2) supersymmetries — by restriction of (2, 2) superspace to its subspaces.

12.5.1. (1,1) Supersymmetry. We can obtain supersymmetries with
fewer supercharges by restriction to a subspace of the ' = (2, 2) superspace.
Here we consider (1,1) supersymmetries which has two real supercharges,
one with positive chirality and one with negative chirality. The relevant
sub-superspace is the one where 6 and 6~ are real up to phases. Namely,

the subspace such that
(12.86) 0" =ie™ 0], 0] real,
(12.87) 0~ =ie™07, 0] real,
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for arbitrary (but fixed) phases e*, where “0% real” means (6§)" = 6.

The subspace can also be defined by the equations

(12.88) e Mot 4+ et =0,
(12.89) e”"=0" + "0 =0.
0F are the fermionic coordinates of this subspace, which we call (1,1) super-
space. The following combinations of differential operators preserves Eqgs.
(12.88)—(12.89), and can be written as differential operators on the (1,1)

superspace:

. L b

(12.90) QL = e Qs+ e ™0y = —imox+ 20504,
1

(12.91) D} = e Dy + e "Dy = —z’a% — 20F 0.

1

These operators obey the anti-commutation relations

(12.92) {Q},0Q4} = —4iox, {Q1,Q1} =0,
(12.93) {DL,Di} =4id+, {D},DL} =0,
(12.94) {Qh: D}y = 0.

A superfield on the (1, 1) superspace (or a (1, 1) superfield) can be expanded

as
(12.95) D = ¢ +ib Yy +ib; v +i6; 07 f.

It can be complex or real, bosonic or fermionic. It is bosonic and real if
[Hf, ®| = 0 and all the component fields (¢, 1+, f) are real. Let us define

the integral on the (1,1) superspace as
(12.96) /d% d*0, F := /d% dofdo; F,

for any function F = F(®;, DL ®;,...) of superfields ®; and their D1 deriva-
tives. Then the integral is invariant under the (1, 1) supersymmetry trans-
formations 61 = el Q}F — z'e}1r Q! . For instance, the following functional of a

real bosonic superfield ® is invariant under the (1,1) supersymmetry,

(12.97) S = /d% d*6, { %DE@D}@ + ih(®) }
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where h(®) is an arbitrary differentiable function of ®. This functional can

be written in terms of the component fields as
2 1 2 1 2, 1. /
(1298) S= [zl S(060)° = 5@ + 51+ W (9)f

5 (Do + D) + 50 (90 — Db — i (D)0 }

By eliminating the auxiliary field f (or completing the square), we obtain
the term —3(R’(¢))%. Thus, this is the action for a supersymmetric potential

theory with the potential

(12.99) v6) =5 (W)

When a (1, 1) supersymmetric field theory is quantized appropriately, we ob-
tain Noether charges Q. that generate the supersymmetry transformations.

These will obey the anti-commutation relations

(12.100) {QL, QL) =2(H+P), {Q},QL}=0.

A (2,2) supersymmetric field theory can be regarded as a (1,1) super-
symmetric field theory. In particular, an invariant action on the (2, 2) super-
space can be written as an expression on the (1, 1) subspace as shown by Egs.
(12.88)—(12.89). For D-terms, where one integrates over all four fermionic
coordinates, one simply integrates over the two coordinates orthogonal to
the subspace from Eqs. (12.88)—(12.89). This leads to the identity

4 _1/2 e O iy O
/d@]—“_4 Cor | ggr+ e =

X (ei”—i_ + e - i_) f}
o8 00 (1,1)

1 . A
:Z /d201 [( e“’*D+ — e_“”fD+)

x (e"-D_ — e_il’*ﬁ_)]—'](l’l) + -

where [---](1) stands for restriction to the (1,1) subspace Eqs. (12.88)-
(12.89), and +--- are total derivatives in the bosonic coordinates. As for

F-terms, we have the identity

(12.101) / P2OW (D) = ¢ istv-) / 026, (W (2)] 1.1,
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Using these identities, it is easy to see that

— 1
(12.102) /d%d‘*@ P + 3 (/ d?x d*0 W (®) + c.c.)
1 A
— 2, 32 - 1 &Nl ! : —i(vy+v_)
/da:d 615> De'Dle —l—zlm[e W(cp)]m) :
1=1,2
where ®7 are defined by [®](; 1) = (8! +i®?)/V2.

12.5.2. (0,2) Supersymmetry. We next consider (0,2) supersymme-
try, which has two supercharges of positive chirality. The relevant subspace

of the (2,2) superspace is the (0,2) superspace defined by
(12.103) 6~ =60 =0.

This subspace is preserved by the differential operators

0 —+ — 0 .
12.104 Q=——+1i0 04, Oy = ——— —i0T 04,
( ) + 7 90+ +s 2t 55 +
(12.105) D —i—@*a D ——i+z’9+8
. —+ 90+ +> + ang =+

R-rotation of the superfield is defined by

(12.106) F(zH, 9+,§+) — F(zt, e 9T, eio‘§+).
A (0,2) superfield @ is called chiral when it satisfies
(12.107) D.i®=0.

A bosonic scalar chiral superfield ¢ has an expansion
(12.108) B=¢+ 0Ty, —i0T0 0y

We often call a fermionic chiral superfield a Fermi superfield. A negative

chirality Fermi superfield ¥_ has an expansion
(12.109) U=y +0TG —i0t0 9.

One can find functionals of the superfields that are invariant under the (0, 2)

supersymmetry transformations § = €_Q_ —e_@+. One is the (0, 2) D-term
(12.110) /d9+d§+}"
for any (0,2) superfield F and the other is the (0,2) F-term

(12.111) /d9+g

=0
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for any (0,2) Fermi superfield G. Examples are the following actions for a

chiral superfield @ and a Fermi superfield ¥_;

Sp = / d*xdotdo " iB(9y — 01)P
(12.112)
= /d2=”3 (1009]* — [018]* + iYh4 (Do — D)+ )

(12.113) Sy_ = /dQ:nd0+d5+ U_W_ = /d% (iY—(3o + O)Y— + |GI*) .

Also, for a holomorphic function V(&) we have
(12.114)

Sy = / d*xdft w_V(P)

o +cec = /de(V(gi))G + V(@) rp— ) + c.c.
where V(@) is an arbitrary holomorphic function of ¢. When a (0,2) su-
persymmetric field theory is quantized appropriately, we will obtain the

supercharges @, and Q . that obey the anti-commutation relation

(12.115) (Q+.Q,)=H+P, Q2 =0Q, =0

A (2,2) supersymmetric theory can be considered as a (0, 2) supersymmetric
theory. To obtain the (0, 2) expression of a (2, 2) invariant action, it is useful
to note that

(12.116)

/ A F = / d9+d5+i_g_}": - / d0td0 " D_D_F
09~ 99

Let us consider the (2,2) supersymmetric field theory of a single chiral su-
perfield ® considered in Sec. 12.2. The (2,2) chiral multiplet splits into
(0,2) chiral and Fermi multiplets (@, ¥_) as follows;

0-=6 =0

(12.117) b = @( U= D_<I>(

0-=0 =0 0= =0
Then the (2, 2) invariant action S = Sy, +Sw can be written as Sg+Sy_+Sy
where the holomorphic function V(@) is given by

(12.118) V(@) = —W'(P).






CHAPTER 13

Non-linear Sigma Models and Landau—Ginzburg
Models

13.1. The Models

Let us generalize our basic example of a single chiral multiplet ® to the
case with many chiral multiplets ®!, ..., ®" and replace ®® by a general
real function K (®¢ @) of the ®;’s and ®;’s. For the kinetic term of the
component fields to be non-degenerate with a correct sign, we assume that

the matrix
(13.1) gi7 = 0;0;K (9", D)

is positive definite. Then one can consider this matrix as determining a
Kihler metric on C* = {(z!,...,2")}

13.2 ds? = gizdz" dZ,
7

which further defines the Levi-Civita connection F;k = gijaj Jk; on the tan-
gent bundle T'C™. Under this assumption, we consider the Lagrangian den-

sity
(13.3) Lin = /d49 K(®',®).
In terms of component fields ¢, 1., F* of ®, Ly, can be expressed as
Liin = — 970" $'0,¢7 + igijW_ (Do + D1)y"
(13.4) +igig (Do — D)oy + Ryl 0,
+ g7 (F' — Fé’k@biﬂlﬁxfj - Fj,;;@]i@i),
up to total derivatives in 2#. The kinetic terms are non-singular under the

assumption that g;; is positive definite. In the above expression, Rijkl- is the

Riemannian curvature of the metric in Eq. (13.2) and D,, is defined by

(13.5) Dyl := 0utply + 0, Tl
291
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We note here that the expression shown in Eq. (13.4) is covariant under
holomorphic coordinate changes of z!,. .., 2" except for the last term, which
can be eliminated by the equation of motion. If we change the coordinates,
the action is invariant under an appropriate change of variables. Also, the

action is invariant under the “Ké&hler transformation”
(13.6) K(®", @) — K(®', ") + f(®') + f(®"); f(®") holomorphic,

which leaves the metric from Eq. (13.2) invariant. This is manifest in the
component expression as shown by Eq. (13.4) but can also be understood
by the fact that [d*f(®) is a total derivative if f(®%) is holomorphic.
Thus, we can apply this construction for each coordinate patch of a Kéahler
manifold M (possibly with more complicated topology than C™), and then
glue the patches together by the invariance of the action under coordinate
change and Kahler transformation. This will lead us to define an action for

a map of the worldsheet to any Kéhler manifold:
(13.7) ¢ — M.

Then the fermions are the spinors with values in the pull-back of the tangent
bundle, ¢*T' M,

(13.8) Vi € TS, " TMI0 @ Sy ),
(13.9) Py €T(S, ¢ TMOY @ 5.

The derivative in Eq. (13.5) is the covariant derivative with respect to
the Levi—Civita connection pulled back to the worldsheet 3 by the map ¢.
This system is called a supersymmetric non-linear sigma model on a Kéhler
manifold M with metric g. Note that this formulation is not global, and
the supersymmetry must be checked patch-by-patch. This is a limitation
of this formulation and it indeed has some drawbacks (e.g., one cannot
see the separation of parameters into the cc and ac parts that we will later
introduce). Later in this section, we will find a global formulation of another
model that falls into the same “universality class” as the non-linear sigma
model.

Let us next consider an F-term

(13.10) Ly = % (/ 2OW(dY) + c.c. > .
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Here W (®') is the superpotential, which is a holomorphic function of
ol ..., ®", or in the case of a sigma model on M, W is a holomorphic func-
tion on M (which is non-trivial only when M is non-compact). In terms of

the component fields, the F-term is expressed as

(13.11) Ly = %FZ&-W — %aiajwiwi + %Ffa;_ — OO WA,

The total Lagrangian is the sum of Ly;, and Ly

(13.12) L= /d49 K(®', ") +% (/ d2OW(d") + cc. ) :

The fields F? and F' are again auxiliary fields and can be eliminated by
their equations of motion,
. o 1 7 —
(13.13) F' =T gk — §g”@l—W,
=7 71—k 1
(13.14) F =Tl 9] — 59 OW.

Then the total Lagrangian can be expressed in terms of the component fields

as
L= = gy0"6'0, & + igizt” (Do + Di)v'
(13.15) + g0 (Do — D), + Ry b o7 ol
- % GIOW W — %Diajvwwi - %D@W—wiﬁ
By construction, the above Lagrangian is invariant under N' = (2,2)

supersymmetry. The supersymmetry variations of the component fields are

expressed as

0" = eyl — e 1l 09" = €L +EYl,
(13.16) Sl =2 049" + e FY) 0P = —2ie_ 04 + &4 F

St = —2ie, 0_¢' +e_F', 5P =2ie 0_¢ +e_F,
where F and F* are as given in Eqgs. (13.13)—(13.14). Following the Noether
procedure, we find the four conserved currents G/} and G'., which are defined
by

(13.17) & / Ld*z = / *x{0uer G* — Ope_ GY + 9,2 Gy — 9,8, G }.
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These currents — supercurrents — are expressed as

e P
(13.18) GL = 2050:¢ V4 F JU50W,
e P
(13.19) GL = F2950:60% — JUzOW,
(13.20) Gy = 2004050’ £ SULOW,
(13.21) G. = F203 040507 + UL AW
The conserved charges — supercharges — are given by
(13.22) Qs = /da:lao,
(13.23) Q. = / dz' G

Inclusion of B-field. As in the bosonic sigma model with the target space
T2, if there is a non-trivial cohomology class B € H?(M,R) one can modify
the theory by putting the phase factor

(13.24) exp (z / ¢*B>

in the path-integral. This factor is invariant under a continuous deformation
of the map ¢. In particular, it is invariant under the supersymmetry vari-
ation and this modification does not break the supersymmetry. Also, the

forms of the supercurrent and the supercharges remain the same as above.

13.2. R-Symmetries
We recall that the vector and axial R-rotations act on the superfields as
(13.25) VB2, 05,0) > 0 Pi(z, e 0E, o),
(13.26) A: @i(x,ﬁi,gi) — el §i(z, eFIPHE, eiiﬁgi).
These can be considered as the action of group U(1)y xU(1) 4 of R-rotations.

We would like to ask under what conditions these R-rotations are symmetries

of the system.

13.2.1. Classical Level. At the classical level, these are symmetries
under which the action is invariant. Since the D-term Sy, = [ d*xLyn and
the F-term Sy = [ d?x Ly are not mixed under R-rotations, these must be
independently invariant. Let us first consider the D-term Syj,. As remarked

in the single-variable case, #* is invariant under both R-rotations. Thus,
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Skin 18 invariant under U(1)y (U(1)4) if one can assign vector (axial) R-
charges for ®' such that K(®‘, ®7) has vector (axial) charge zero. This is
usually possible by assigning trivial R-charges to the fields ®'. However, if
K(®%, @) is a function of |®|? = ®'®’, the D-term is R-invariant under any
assignment of R-charges to ®*’s. Next let us consider the F-term Sy . Since
6? has vector R-charge —2 and axial R-charge 0, the F-term is invariant
under U(1)y (U(1)4) if one can assign R-charges to the ®%’s so that W (®?)
has vector R-charge 2 (axial R-charge 0). For U(1)4, this can be done by
assigning trivial R-charges to ®'. For U(1)y, this depends on the form of the
superpotential. We call a holomorphic function W such that this is possible

a quasi-homogeneous function. Namely, it is quasi-homogeneous when
(13.27) WAT &) = \2W (&),

for some ¢' which is identified as the right vector R-charge to make the F-
term vector R-invariant. Let us summarize what we have seen at the classical
level: U(1)4 is always a symmetry by assigning azial R-charge zero to all
fields. However, U(1)y is a symmetry only if the superpotential is quasi-
homogeneous. The Kahler potential must also be invariant (up to Kéahler
transformations) by the assignment of the vector R-charge determined by
the quasi-homogeneity. The non-linear sigma model without superpotential
has both U(1)y and U(1)4 symmetries.

What we have said above concerns the full U(1) groups of R-rotations.
However, even if the full U(1) is not a symmetry it is possible that some sub-
group is still a symmetry. For example, such is the case if Eq. (13.27) holds
under some non-trivial phase . For instance it always holds for A = —1
by assigning ¢; = 0. Thus, the Zo subgroup of the vector R-rotation group
U(1l)y is always a symmetry. Actually this has to be the case since this
Zs action is the same as the action of the Zy subgroup of U(1)4. The gen-
erator of this Zy group is denoted by (—1) and is an important operator
in a supersymmetric theory, as noted before. In some cases, a Zg, sub-
group can be a symmetry. (An example is the theory with superpotential
W = &Pl + &, with suitable D-term.)

13.2.2. Anomaly. The invariance of the action does not necessarily

mean the symmetry of the quantum theory. It is symmetric if the correlation
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functions are invariant:
(13.28) (60) = /DX S0 =0.

This is the case when the path-integral measure is also invariant, §(DX) = 0,

or more generally
(13.29) 5(DX &) =0.

When the classical symmetry 65 = 0 is lost in the quantum theory by
0DX # 0, we say that the symmetry is anomalous. Now, let us examine
whether the U(1)y and U(1) 4 R-symmetries of the non-linear sigma model
without superpotential, W = 0, are really symmetries of the quantum the-

ory. We recall that these R-rotations act only on the fermions:
(13.30) Vol — el
(13.31) Al — TPyl

Thus, the question is whether the path-integral measure for fermions is
invariant under these phase rotations.

A Toy Model. To see this, let us consider the simpler system of a Dirac
fermion coupled to a background (Hermitian) gauge field A on the world-
sheet ¥. We take ¥ to be a Euclidean torus ¥ = T2 with a flat coordinate
z = z+1 = z+7. The gauge field A is considered as a Hermitian connection
of a complex vector bundle F with a Hermitian metric, and the fermions

are spinors with values in E:
(13.32) pr € T(T* E®S:),
(13.33) P, € I(T%E*®SL).

Here Syt are the positive and negative spinor bundles and E* is the dual

bundle of E. The action is given by

(13.34) S :/ d*z(ih, Dypy + i _Dstp_)
T2

where

(13.35) D,=0,+ A, Ds=0;+ As.

This action is invariant under the phase rotations of the fermions — the
vector and axial rotations as in Eqgs. (13.30)-(13.31). We denote the corre-
sponding groups by U(1)y and U(1) 4.
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Suppose the first Chern class of E is nonzero, say positive:

(13.36) k ::/ c(E)=— [ TrF4>0.
T2

2 T2

Then by the index theorem

(13.37) dim KerDs — dim KerD, = / c(E) =k,
T2

the number of ¢)_ zero modes (= the number of ¢, zero modes) is larger
by k than the number of 1) zero modes (= the number of ¢, zero modes).

Thus, the partition function vanishes due to integration over the zero modes.

(13.38) Dy Dy e SW¥ =,

To obtain a nonzero correlation function we need a certain kind of operator
to absorb the zero modes. Let us consider the generic case where there
are exactly k Dz-zero modes and no D, zero modes. Then the following

correlator is non-vanishing:

(13.39) (¥—(21) - (21) Py (w1) - g (wi)) # 0.

Under the vector and axial rotations of the inserted operators, this correla-

tion function transforms as

(13.40)  (_(21) -+ —(2) Yy (wr) - - Py (wp))
V(e (1) - e (z) € (wn) -+ € (wy))
— (- (21) -~ (2) P (wr1) - - P ()

(13.41)  ($_(21) -9 (z) P (w1) - - P (wy)
L (e (z1) - PP (z) PP (wr) - PP (wy)
= ¥ By (21) - (2k) Yo (wr) - Py (wi)).

Thus, we see an anomaly of the U(1) 4 symmetry since a U(1) 4 non-invariant
field can acquire an expectation value, while the U(1)y symmetry is never
anomalous. One can also see explicitly that the measure is not U(1)4 in-

variant (but is U(1)y invariant). Let us expand the fermions 4, ¥+ in the
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eigenfunctions of the operators Dng and DZDZ etc:

[e%S) k )
(13.42) o= b, =Y o™ + Y gl

n=1 a=1 n=1

o . k 00
(1343) w—‘,— = Z bn@i, r‘/’—f— = 2500@9? + Zgn¢17

where ¢} and @'} are the nonzero modes with eigenvalues \,, while ¢©°* and
GS)FO‘ are the zero modes. The path-integral measure is given by
(13.44)

k 0 ~
DYDY e = [ devadion [ [ dbndendbnde, e Ln= An(brentenba),
a=1 n=1

The measure dbndcndgndgn is invariant under both U(1)y and U(1)4 but
dcoadCon has vector charge zero but axial charge 2. This is a direct way to
see that the measure is U(1)y-invariant but not U(1)4-invariant, showing
that U(1)y symmetry is not anomalous but U(1)4 symmetry is anomalous.
This argument also applies to non-generic cases where D, has some zero
modes and Dz has k more zero modes.

Although the full U(1) 4 symmetry is broken, its Zsy, subgroup { e2#/2k},
0 <1 <2k -1, remains a symmetry of the quantum theory, as can be seen
from Eq. (13.41) or Eq. (13.44). If, over the different components of the
space of maps, k assumes every integer value, then only a Zs subgroup is
anomaly-free. If k£ is allowed to take only integer multiples of some integer
p, then a larger subgroup Zs, is anomaly-free.
Back to the Sigma Model. Now let us come back to the R-symmetry
of the non-linear sigma models. On the Euclidean torus 72 the fermionic

kinetic terms are expressed as

(13.45) —2ig0? Dz’ + 2igipl’, DAt

which is of the form shown in Eq. (13.34) with E = ¢*T M%), The action
also includes the four-fermi terms Rijklﬂbiwﬁ Ej_@ﬂr In the large radius
expansion of the sigma model (which will be explained systematically in
later chapters), the four-fermi terms are treated as a perturbation and the
path-integral measure is constructed using the spectral decomposition of the
Dirac operator that appears in the kinetic term from Eq. (13.45). Thus, as

far as the R-symmetry is concerned, the situation for a fixed ¢ : ¥ — M is
identical to the one in the above toy model with E = ¢*TM10),
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One consequence is that the vector R-symmetry U(1)y is not anomalous
and is a symmetry of the quantum theory. Also, for a given map ¢, the U(1) 4

R-symmetry is broken to Zo, where k is
(13.46) k= / e (" TM0)) = / ¢*er (TH)) = (e (M), ¢.[2]).
by by

This depends only on the homology class ¢.[X]. If k can take all integer
values by varying the homology class ¢.[X], then U(1)4 is broken to Zs.
If k is divisible by p for any map ¢ : ¥ — M, then U(1)4 is broken to
Zgp. Such is the case when ¢ (M) is p times some integral cohomology class
(e.g., for M = CPN=1 ¢;(M) is N times the generator of H?*(M,Z) = Z;
thus U(1)4 is broken to Zgy in the CPY~! sigma model). Finally, if & = 0
for any map ¢, U(1) 4 is not anomalous and is a symmetry of the quantum
theory. Such is the case when ¢; (M) = 0, namely when M is a Calabi—Yau
manifold. Another way to state the axial anomaly is in terms of the B-field.

Since in the path-integral h has the phase factor

(13.47) exp(i/ng*B),

the phase rotation of the measure by e?*# with k given by Eq. (13.46) is
equivalent to the shift in the cohomology class of the B-field

(13.48) [B] — [B] — 2B8c1(M).

Summary:

Uy |U@)a

CY sigma model O O
sigma model on M with ¢1 (M) # 0 O X
LG model on CY with generic W X O
LG model on CY with quasi-homogeneous W O O

The x’s in the table denote lack of the corresponding U (1) R-symmetries.
Depending on the manifold or superpotential, some discrete subgroup of even

order is unbroken.

13.3. Supersymmetric Ground States

Let us study the supersymmetric ground states and Witten index of the

system. We first compactify the spatial direction on the circle S! and put
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periodic boundary conditions on S' for all the fields. Let Q and QT be either

{ Qu=0Qy+Q-, { Qr=0Q,+Q.,

(13.49) : d :
RQy=Q++0Q_, Qp =0+ +Q-.

Then by the supersymmetry algebra (with Z = Z = 0) we see

(13.50) {Q,Q"} = 2H,
(13.51) Q> =Q" =0.

We notice that this is the relation defining a supersymmetric quantum me-
chanics (SQM). In fact, we can consider the system as a quantum mechanics
with infinitely many degrees of freedom. The supersymmetric ground state
we are after is the supersymmetric ground states of this SQM. As explained
in the lectures on SQM, we can characterize the supersymmetric ground
states as the cohomology classes of the ()-complex, and the Witten index is
the Euler characteristic of the Q-complex. We also note that if F4 and Fy

are conserved, we have

(13.52) [Fa,Qa]l = Q4 and [Fy,QB] = Qp.

Thus, the Q-complex and cohomology groups are graded by the axial charge
for @ = Q4 and by the vector charge for Q = Qp. Even if F)q or Fy is not
conserved, if some subgroup Zs, of U(1)4 or U(1)y is a symmetry of the
theory, the Q-complex/cohomology is graded by the Zg, charges.

Let us take a closer look at the operator Q) = Q4 = @, + Q_. Using
Egs. (13.18)—(13.21) we find the expression

(13.53) Q= —i / { igi " 009" + gL 9o d — igigpl 017

g1
SN 7 1 7 ]--z _ 57 1
+ Zgij¢+al¢ - iw,c‘)zW — §¢+85W dx-.

If there is a functional h of ¢(z!) such that

oh , -5 1
(13.54) i —igi0h e’ — §3¢W,

oh . ;1. —
(13.55) ;zj =1igiz01¢" — 565W7
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then the operator () can be written in the form

_ oh
_ Ty | s 1 J 1 1
(13.56) Q= /1/1 (z) (ZQIJ(m )00¢” () + W) dx,
Sl
where we have set ¢ = —i)’ and 7 = —z@i This is exactly the same

form as the supercharge as shown by Eq. (10.241) for the SQM deformed by
a function h. In the present case, the target space is an infinite-dimensional

space of ¢(x!), namely the space of loops in M,
(13.57) LM:{¢:51—>M}.

Now, the question is whether there is a function h on LM such that the
infinitesimal variations are given by Eqgs. (13.54)-(13.55).
The function ho that yields the second terms is easy to find; it is simply

(13.58) hy = — /51 Re [W(¢')] da’.

The function h; that yields the first terms can be constructed as follows.
The connected components of the loop space LM are classified by the fun-
damental group 71 (M). We choose and fix a loop, a base loop, in each
connected component. Let us pick a component and denote the base loop
there by ¢g. For a loop ¢ in that component we choose a homotopy ngS that
connects ¢g to ¢. Namely, $ = gg(xl, 7) is a map from S* x [0, 1] to M such
that QAﬁ(:cl, 0) = ¢o(z!) and QAﬁ(xl, 1) = ¢(z'). Now, let us consider the area

(13.59) hy = / o w
S1x10,1]

where w is the Kéhler form of M;

(13.60) w = igidz' A dZ.
For a variation of qg, the pull-back qg*w changes by a total derivative
(13.61) 56w =d (z'g,-j&?si o7 — z’g,-jdaiﬁ) .
and therefore the area changes by the boundary terms
5[ e = [ {iessdad + iggds'sa}|
51x[0,1] 51 T=
(13.62) - /S {~igsd6'dF + igdd 57}

where we have used the constraint that 5\710 is fixed to be ¢y and thus
5$|T:0 = 0. In particular, for a fixed loop ¢ the functional h; = f gg*w does
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not change for a deformation of the homotopy $ Namely, h; is a locally
well-defined function on the loop space LM . Now, if we look at Eq. (13.62),
we see that h; yields exactly the first terms of the required variation in Eq.
(13.54) and Eq. (13.55). Thus, we can take as the function h the sum of h;
and hs;

(13.63) h:Lle%w—yRQWWﬂdﬁ.

To be precise, this function can change if we change the homotopy class of ngS
Let us see how it changes by taking another homotopy qg’ : St % [0,1] — M.

The difference in h is

Ah:/ '“w—/ ¢ w
S1x10,1] Stx[0,1]

Slx st

where 5 is a map S' x S! — M obtained by gluing $ to gg’ with the ori-

entation of gg being reversed.! Thus, the function A is not a single-valued

(13.64)

function on LM if there is a 2-cycle in M on which the Ké&hler class [w] has
a nonzero period. One can, however, make it single-valued on a certain cov-
ering space of LM. The relevant covering space can be identified with the
set of maps ¢ : ST x [0,1] — M with g/b\(xl, 0) = ¢o(z') modulo the following
equivalence relation: ¢ = ¢’ if and only if ¢ = ¢ at 7 = 1 and ¢ can be
continuously deformed to &5’ . We denote this covering space by LM. In such
a situation, we first quantize the covering space LM and then project to the
wave-functions invariant under the action of the covering group. Over the
component of contractible loops where the base loop ¢q is chosen to be a
constant map to a point, ¢o(z!') = * € M, the covering group is canonically

isomorphic to the second homotopy group ma (M, *).

13.3.1. Non-Linear Sigma Models. Let us first consider the non-
linear sigma model on a compact connected Kéhler manifold M, with the
superpotential set equal to zero, W = 0. We wish to find the number of
supersymmetric ground states of this theory.

Due to the cohomological characterization, the spectrum of ground states

does not change under the deformation of the function h = |, S1x[0,1] gg*w. As

1f we parametrize the second S* by 7 € [0,2] with an identification 7 = 0 = 2, the
glued map is given by ¢(z',7) = ¢ («',7) for 7 € [0,1] and ¢(z",2 — 7) for T € [1,2].
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we have done in SQM, we rescale h by a large number, or equivalently, we
consider the case where the Kéhler form w is taken to be large — the large
volume limit. Then the ground state wave-functions are localized near the
critical points of h.
The critical points of A are found by solving the equations
oh oh

(13.65) 5o = —igiz017 =0, o igjz01¢’ = 0.

The solutions are obviously the constant maps ¢ : S* — a point € M (which
belong to the trivial component of LM). Thus, the critical point set is the
space of constant maps, which is isomorphic to the target space manifold M
itself. In the covering space LM the critical point set is the union of copies
of M that are permuted by the covering group ma(M, *). The function h is
not non-degenerate. To see if it is non-degenerate in the normal directions
(i.e., Bott—-Morse in the sense of Sec. 10.5.5), let us examine the Hessian of

h. The Hessian at a constant loop is given by the second derivative

(13.66) 51(52}1 = l/ (gijélﬁdéggﬁi — gijélcbidégW) .
Sl
Thus, it is zero only if dé¢! = 0, namely only if the variation is tangent
to the constant map locus. The function h is indeed Bott—Morse and the
argument of Sec. 10.5.5 applies.
If we coordinatize the loop as
(13.67) ¢ = ahen G =N "7 emine
nezZ nez
the directions where the Hessian is negative definite are spanned by (z¢,,%%,)

with m > 0. Thus, the perturbative ground state at a constant loop is given
by Eq. (10.304)

(13.68) w) = e Zmzo™llzmlP A @210 A @2z A -

where w is a harmonic form of (2, z) and d2"z,, is dz}, AdZ}L, A- - -Adz AZT,.
The question is whether this differential form glues together to define a differ-
ential form on LM around M. For this we need the negative normal bundle
(the bundle of tangent vectors on which the Hessian is negative definite) to
be orientable. In the present case it is indeed orientable since multiplication
by ¢ on the holomorphic coordinate induces a canonical orientation. Thus,

we expect that we can find |w) as a well-defined differential form on LM
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around M, which is a perturbative supersymmetric ground state if w is a
harmonic form of M.

We recall that the critical point set of h in LM consists of many con-
nected components, each of which is a copy of M. If we require the invariance
under the covering group action, we may focus on only one copy of M and
we expect that the ground states can be identified as the harmonic forms
on M. However, as we saw in SQM, it is in general possible that instanton
effects lift the ground state degeneracy. To see whether there is such an
instanton effect, let us compute the relative Morse index between different

copies of M in LM. Thus, we choose a path in the loop space LM that

LM

L x
M

constant maps

FiGURE 1. The path in the loop space LM connecting two
trivial loops. It corresponds to a two-sphere mapped to M.
If the map is homotopically non-trivial the lift of the path in

the covering space LM connects different copies of M

starts at a constant loop x € M and end on another constant loop y € M.
(See Fig. 1.) This yields a trajectory of S'’s that shrinks at the two ends:
namely, a map gg of the two -sphere S? to M which maps the two tips (say
the north and south poles) to z and y. If the map 5 : 82 — M defines a
non-trivial homotopy class in mo(M), this path lifts to a path in LM that
connects different copies of M. Now what is the relative Morse index? We
can use here the relation of the relative Morse index and the index of the
Dirac operator for fermions, which was noted in Sec. 10.5.2. The relevant
Dirac operator here is the one acting on v and @ The index of this

operator is given by

(13.69) index = 2/52 ch(¢*TMBOYA(5?) = 2/52 ¢ c1(M).
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If M is a Calabi-Yau manifold, ¢;(M) = 0, then the relative Morse index
vanishes. This means that all the critical submanifolds have the same Morse
index. Then applying the procedure described in Sec. 10.5.5, we find that
there is no non-trivial instanton effect. Thus, the perturbative ground states
remain as the exact ground states. In fact, this is true even if M is not
Calabi-Yau.? The reason is that our function h = h; is the moment map
associated with a U(1) action on the loop space LM. Note that the loop
space is an infinite dimensional Kéhler manifold whose Kéahler form is given
by

(13.70) L/J((hqb, 52d)) = /51 igij(cﬁd)i(sg@ — 52¢151$)d$1

The shift of the domain parameter x!, ¢(z') — ¢(x! + A), preserves the
metric of LM as well as the above Kéahler form. The tangent vector field

generating this action is v/ = 9,¢!, and we find
(13.71) ww(60) = / i9i5(016'6¢" — 6¢'01 ¢ )da' = Sh,
S1

where (13.54) and (13.54) with W = 0 are used in the last step. Thus, h
is indeed the moment map associated with the U(1) action. Applying the
result of Ch 10.5.6, we find that there is no non-trivial instanton effect that
lifts the perturbative ground states.

Thus, we conclude that the supersymmetric ground states are in one-to-
one correspondence with the harmonic forms on M. What are the quantum
numbers (i.e., charges) of a ground state? The Q-complex is graded by the
Morse index. However, as we have seen above, the relative Morse index
can be nonzero (if ¢;(M) # 0) even between the same point of M. This
shows that the Morse index is well defined only modulo some integer. In the
case where |, g2 g*cl(M ) can take arbitrary integer values, the Morse index
is well-defined mod 2; if it can take only integer multiples of p € Z, then
the Morse index is well-defined mod 2p. Since the @)-complex is graded by
the axial R-symmetry, this of course reflects the axial R-anomaly. On the
other hand, the vector R-symmetry is not anomalous and the corresponding

quantum number must be well defined. For the ground state corresponding

2We will find an alternative derivation of this fact in Ch. 16.
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to a harmonic (p, q)-form, the vector R-charge is given by Egs. (13.30)—
(13.31).

(13.72) qv =-p+gq.

In the case ¢1(M) = 0, where the target space M is a Calabi—Yau manifold,
the relative Morse index is well defined (in Z). This corresponds to the
existence of U(1)4 axial R-symmetry or the conservation of the axial R-
charge F'4. We fix the zero of the Morse index by requiring the invariance of
the spectrum under the “CPT conjugation” (which requires that for every
state in the Hilbert space there should be a conjugate state with opposite
charge) that acts on Fq as F4 — —F4. Then the axial R-charge of the

ground state corresponding to the harmonic (p, ¢)-form is
(13.73) qa = p+ q — dimge M.

13.3.2. Ground States of the LG Model. Let us consider an LG
model with a non-trivial superpotential W (®?). We assume that W (®*) has
isolated and non-degenerate critical points only. Here we will show that the
number of ground states is in one-to-one correspondence with the number

of critical points, just as we found for the corresponding one-dimensional

QFT.
The equation for a critical point of h is
d¢' [Rpe—
13.74 2 U9,
The above equations imply
dW d¢' i — i 9
13.75 — = OW — = ——gYo,Wo,IW = ——|0W|~.
( ) dxl dzt 29 J 2’ |

Integrating over the circle S*, we obtain

(13.76) —1/ dxl\aWP:/ AW 12t — o,

2 Js1 g1 dat
where we have used the periodic boundary condition along S'. This shows
that ;W = 0 everywhere on the circle S!, which implies that ¢ is the
constant map to a critical point of W. Since the (mod 2) Morse index
is constant as in SQM, there is no room for instanton effects that lift the
ground state degeneracy. Therefore, the ground states are in one-to-one

correspondence with the critical points of the superpotential.
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13.4. Supersymmetric Sigma Model on 72 and Mirror Symmetry

In this section we show how the T-duality discussed in the context of
bosonic sigma models, can be extended to the supersymmetric case. This

leads to the first (and most basic) example of mirror symmetry.

13.4.1. The Spectrum and Supersymmetric Ground States. Let
us consider the supersymmetric sigma model on 72. For simplicity, we
consider the rectangular metric on 7?2 with radius R; and Ry and we set
B = 0, but this assumption is not essential for what we will show here. The
model is described by a chiral superfield ® representing flat coordinates of

T2. In particular the lowest component ¢ has periodicity
(13.77) d=¢+2rRy = ¢+ 2w Roi.

The action is given by
1 —
(13.78) S = —/d2:v/d49 DD,
4

In terms of the component fields ¢, ¥+ and 1+ the action is expressed as
(13.79)

S = i / {1006]” = (0101 + i— (9o + 1) + i+ (8o — D)+ } dPx.

Now we see that the system consists of the free bosonic sigma model on T2
plus the free theory of a Dirac fermion — which are decoupled from each
other. The bosonic sigma model is identical to the one considered in Sec.
11.1. The fermion does not know about the periodicity of the coordinates
¢ and is nothing but the free system analyzed in detail in Sec. 11.3 (up
to a field normalization ¥+ — v/2¢+ that has no effect). Accordingly, the
Hilbert space is the tensor product of the Hilbert spaces of the bosonic and

fermionic systems

(13.80) H="Hp®HF.

The Hamiltonian and momentum are the sums of those for the corresponding
Systems

(13.81) H=Hp+ Hp,

(13.82) P = Pp + Pr.

Since ¢1(T?) = 0, the U(1) 4 R-symmetry is preserved, as well as the U(1)y

R-symmetry. They act trivially on the bosonic component ¢, and therefore
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the R-charges Fy and F4 are the same as those for the fermionic system:

1

(13.83) Fo =g [ G ) o
1

(13.84) Fa= g [ (S0t ) da

These can be expressed in terms of the oscillator modes as in Eqs. (11.136)—
(11.137). The states in H are constructed by acting with the oscillator
modes o, & (i =1,2) and 1, Un, ¥, and ¥, on the states

(13.85) 1m) = Iy, lo,m", m?*) 5 @ |0)p.

Here |I1,ly,m*, m?) g is the state with momentum [ = (I1,l5) and winding
number 7m = (m!, m?) which is annihilated by the positive frequency modes
(o, ai withn > 1), while |0) ¢ is the state given by Eq. (11.128) annihilated
by the positive frequency modes of ¥+ and v, and by half of the zero modes

1o and 1;0. There are four lowest-energy states

oty |0, 0)
(13.86) Y00, 0) |0, 0)
0,0),
with R-charges
0 1
(13.87) gy = —1 1 ga= 0 0
0 -1
and energy
(13.88) Ey = L ><2—|—1—()
‘ "7\ 12 6

Since these are the zero energy states, they are the supersymmetric ground
states. We note here that these supersymmetric states take the form shown
in Eq. (13.68) that is obtained by the semi-classical method. Indeed, 77 = 0
shows that the states are in the component of the contractible loops. The

bosonic piece |0,0,0,0)p is identified as the wave-function

(13.89) 10,0,0,0) < ¥(zn,Zn) = exp | — Y _ |2m|’
m##0
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The fermionic piece |0)r interpreted as Dirac’s sea in Eq. (11.143) can be

identified as the <-form

(13.90) 0)F < d?2; Ad?zg AdP2zz A -

under the identification v, < dz,, ;Nn < dz,. The four states from Eq.
(13.86) are then identified as the state |w) in Eq. (13.68) with

dz Ndz
(13.91) w= dz dz
1.

Notice that the R-charges in Eq. (13.87) obtained by the exact quantization
agree with the result in Egs. (13.72)—(13.73) obtained by the semi-classical

method plus CPT invariance.

13.4.2. T-duality. Let us perform T-duality on the second circle of
T?. This inverts the radius Rs to Ry = 1/Ry and therefore the dual field ¢’
has periodicity
(13.92) ¢p=¢ +21R = ¢ + (2n/Ra)i.

It is related to the original field ¢ by Re¢ = Re ¢’ and

(13.93) O:Im¢ = 0,Im ¢/,

(13.94) O_Im¢ = —0_Im¢'.

In terms of the complex variables, the relation is

(13.95) 040 =019,

(13.96) 0_¢p=0_¢.

On the other hand, we do not touch the fermions. Since T-duality is an
equivalence of theories, the dual theory also has (2,2) supersymmetry. The
supercharges are expressed as

(13.97)

Qi =5 [i010 =5 [ 01d, Qp =5 [14010 =5 [V 04,
Q-=gx [$-0-0=g- [U0-¢, Q=5 [0-0-¢=5[0-0-F.
We notice that they take the standard form of the supercharges if we denote
Yy =W, b =L, Gy = ¢, and P = ¢/ and also

— —
(13.98) Qr =04, Q.=0Q,
(13.99) Q-=Q., Q.=qQ..
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Also, the R-symmetry generators are
1

(13.100) Fy = | (=019 + 9 ¢)) dat = F),
™. Js1
(13.101) Fa= 2177 (Lol + YLy ) dat = FY).

These mean that under T-duality, the supercharges Q_ and Q_ as well as
U(1l)y and U(1)4 R-symmetries are exchanged with each other. Thus, we

have shown that T-duality is a mirror symmetry.

N
ns

U = P, wn = wn and wn = w for the oscillator modes. In particular, the

state |l ,m)" is annihilated by all the positive frequency modes and two zero

The above change of notatlon yields the change of notation ,, =

modes g = 1, o = 1% Thus, it is appropriate to write it in the dual

theory as

(13.102) 1377) = o |, m')',

where the momentum and winding number for the second circle are ex-
changed

(13.103) U= (l1,m?), m' = (m",1y).

The four ground states shown in Eq. (13.86) are then written as

= = /
_w0|0’0>
N N/ /TJ N N\’
(13.104) 10,0)" = 15¢/0,0)
¥6/0,0)’
The R-charges of these states are
1 0
(13.105) gy = 0 0 ¢y = —1 1
-1 0.

Indeed, the axial and vector R-charges are exchanged, qv = ¢/, and g4 = qi,.
Path-integral Derivation. One can repeat the path-integral derivation of
T-duality shown in Sec. 11.2 for the superfields. For the superspace calculus
used here, see Sec. 12.1.3. We start with the following Lagrangian for a real
superfield B and the chiral superfield ®,

(13.106) L' = /d40 (—332 + %(@ +6)B> :
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We first integrate out the real superfield B. Then B is solved by
(13.107) B=®+9.
Inserting this into L' we obtain

1—
(13.108) L= /d49 522,

which is the Lagrangian for the supersymmetric sigma model on T2 with
radius (R1, R2). Now, reversing the order of integration, we consider inte-

grating out ® and @ first. This yields the following constraint on B,
(13.109) D.D_B=D,D_B=0,

which is solved by

(13.110) B=0©+0,

where © is a twisted chiral superfield of periodicity

(13.111) © =0+ 2rR; = O + (21/Ry)i.

Inserting this into the original Lagrangian we obtain

(13.112) L= /d49 (—%@@),

which is the Lagrangian for the supersymmetric sigma model on a torus of
radius (Ri1,1/R2). This time, however, the complex coordinate is described
by the twisted chiral superfield ©. This is another manifestation of mirror
symmetry. The two theories are equivalent without the exchange of the
supercharges @_ and @_ (see the remark at the end of Sec. 12.4). The
supercharges given by Eq. (13.97) have the right expression in terms of the
twisted chiral superfield © = ¢/ + 674/ +60 ¢ +---, where the fermions
P, 9, are related to vy, ¥y simply by the renaming ¢/, = +¢1 and
Y. = +1p1. This renaming is dictated by the relation

(13.113) d+d=0+6,
which follows from Eqs. (13.107)—(13.110).






CHAPTER 14

Renormalization Group Flow

We are now in a position to study one of the most important aspects of
quantum field theory. This is the fact that the behavior of a theory depends
on the scale. What one means by this is how the expectation values of
fields vary as a function of the distance between fields, or equivalently under
rescaling of the metric on the manifold over which the quantum field theory
is defined. Quite often, their behavior at long distances is very different
from their behavior at short distances and often one introduces a new set of
fields at long distances which give a more useful description of the theory.
In this section, we will see such a change of behavior and description in the
non-linear sigma models and the Landau—Ginzburg models. In particular,
we will see that the target space metric changes as a function of the scale. In
supersymmetric field theories, however, there are certain quantities that do
not depend on the scale. The superpotential in a Landau—Ginzburg model
is one such object. This is the famous non-renormalization theorem of the

superpotential. We present the proof of this theorem and its generalizations.

14.1. Scales

Let us consider the correlation function of operators
(14.1) (O1(z1) -+~ Os(s))

of a quantum field theory formulated on a Euclidean plane. We are interested
in how this function behaves at various scales, or how the behavior changes
as we change the scale. Here what we mean by “scale” is the average distance
between the insertion points, |z; — z;]|.

A change of scale can be implemented by a scale transformation

(14.2) ol — Al

i
where A is a nongzero constant. If we take A > 1, we change the scale to

longer distances while A < 1 corresponds to shorter distances. There is

an equivalent way to perform a scale transformation that is applicable to

313
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a more general setting. Let us consider a worldsheet ¥ with a metric A,
Then the notion of distance is defined with respect to h,,. The correlation
function depends on the metric and we denote the dependence as a subscript

(O1(z1) -+ Os(ws))n- Then the scale transformation is implemented by
(14.3) Py — MR

On the Euclidean plane, it is easy to see that the two transformations, Egs.
(14.2)-(14.3), are equivalent: (01 (Az1) - - - Os(Azs)) = (O1(x1) - - - Os(x5)) a2

As a convention, we will refer to extremely short distances as ultraviolet
while extremely long distances will be called infrared. This terminology has

ik(t=2) where

ik(t—x)

its origin in the electromagnetic waves which behave as Ree
t is the time coordinate and x is a spatial coordinate. The phase e

rotates once in the distance
(14.4) Ao = 27 /k

in the = or t direction. This length is called the wavelength of the wave
Ree*(=2)  The electromagnetic wave with its wavelength in a certain range
is a visible light. It is violet near the shorter and red near the longer wave-
lengths of the range. This is the origin of the terminology. k is called
frequency since it counts how frequently the phase rotates over a given dis-
tance or time. Thus, a long wavelength corresponds to low frequency (red)
and a short wavelength corresponds to high frequency (violet).

In quantum field theory, scattering amplitudes of particles are interesting
objects to study (although we do not treat them here). They are obtained
from the correlation functions, such as Eq. (14.1), essentially by performing

the Fourier transform of the coordinates x1, ..., zs:

(145) S .ps) = /[~-]<(91(x1) Oy ) [ e,

i=1
where |- - -] may contain differential operators in the x;. This represents the
scattering amplitude of s particles, and the frequencies p, ..., ps represent

the energy-momenta of the particles. As usual in a Fourier transform or
as Eq. (14.4) suggests, high (resp. low) energy behavior of the scattering
amplitude corresponds to short (resp. long) distance behavior of the cor-
relation functions. In the terminology introduced above, very high energy

corresponds to ultraviolet and very low energy corresponds to infrared.
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14.2. Renormalization of the Kahler Metric

Let us consider the supersymmetric non-linear sigma model on a Kahler
manifold M with metric g. In the previous sections, we have been working
on the worldsheet with a flat normalized metric, say J,, in the case of
Euclidean signature. Now consider a general worldsheet metric, h,,. The
classical action can be written as

(14.6)
S = [ {aa# 0,60, + iggir" Dy + Ry, 0 0L, } Vi,
P

Consider rescaling the worldsheet metric
(14.7) B — N hy.
The gamma matrices transform as

(14.8) AH s ATLyH

since they obey the relations {y*,~y"} = —2h*”. Then the action is invariant

under this rescaling provided the fermionic fields are transformed as
—1 — —1—
(14.9) Vi = VA Ux, r = VA Uy,

while the bosons ¢’ are kept intact. Thus the scale transformation from Eq.
(14.7), or “dilatation,” is a classical symmetry of the theory. The question
is: Is it a symmetry of the quantum theory? In other words, is it a symmetry

of the correlation functions of quantum field theory?

14.2.1. The Kahler Class. To examine this question let us see whether
the correlation functions on a torus T2 are scale invariant. Consider the cor-

relation function of some combination of ¥ ’s and Ei’&

(14.10) F(h,g) = (=) ()"

Here h and ¢ stand for the metrics of the worldsheet torus 72 and the
target space M respectively. This correlation function may also depend
on the insertion points of 9" ’s and Ei’s, as in Sec. 13.2.2, but we omit
dependence in the notation f(h,g) as it is irrelevant in our discussion. We
saw in Egs. (13.39) and (13.41), in the context of the axial anomaly, that

this correlation function is generically non-vanishing when

(14.11) k= /T2 ¢ er(M),
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for some ¢ : T? — M. Now assume that hyu is a flat metric and the inserted

operator commutes with the supercharge Q = Q L+ Qo

(14.12) @, () (@) = 0.

The correlation function has some very special properties that we will sys-
tematically explore when we discuss topological field theory in Ch. 16 (for
the moment we take them as facts). One special property is dependence
on the worldsheet metric: the correlation function ((v_)¥ (3, )*);, is invari-
ant under the scaling h — A2h. Since the scale transformation acts on the
fermionic fields as ¥+ — \/X_lwi and Y4 — \/X_lﬂi as shown by Eq.
(14.9), this means that

(14.13) f(h,g) = F(N°h,g) - A".

Another property is that it receives contributions only from holomorphic

maps ¢ : T? — M, and the correlation function can be written as
(14.14) f(h,g) =npe 9.

Here ny, is a number depending only on h, and A, is the area of the im-
age ¢(T?) measured by the metric g. Combining the two properties Egs.
(14.13)—(14.14), we find the relation

f(h7g) - f()\2h,g))\k = ny2y e_(Ag—klog)\)‘
This means that
(14.15) F(h,g) = F(\2h, '),

for a metric ¢’ such that Ay = Ay, — klogX. Thus, under the scaling
hyw — )\Qh,w, the metric must be changed as ¢ — ¢’ in order for the cor-
relation function to remain the same. Namely, the scale transformation

effectively changes the metric on M so that the area changes as
(14.16) Ay — Ay —Eklog\.
The area is expressed as
A :/ gijh“l’ﬁugbi&,y\/ﬁd%
T2
(14.17) = / 9i7(0:0'0:¢" + 0:¢' 0,7 )idz A dZ
T2

= / 29i;0:0'0,¢idz A dZ + d*w
T2 T2
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where w is the Kéhler form of M,
(14.18) w = igydz" A dZ.

For a holomorphic map 9s¢" = 0, this area is given by
(14.19) Ay = /gf)*w.
T2

We note that the integer k also has a similar integral expression shown
in Eq. (14.11). Therefore the effect shown in Eq. (14.16) of the scale

transformation h,,, — A%h,,, is nothing but to change the Kéhler class, [w] :
(14.20) [w] = [w] — (log A)e1 (M).

From these considerations, we see that the scale invariance of the clas-
sical system is broken in the quantum theory if the first Chern class ¢1(M)
of M is non-vanishing. If the first Chern class is positive definite, the above
result shows that the Kihler class becomes large as h — A?h with A < 1,
namely at short distances on the worldsheet. In other words, the Kéahler
class becomes smaller at longer distances of the worldsheet. If the first
Chern class vanishes ¢1 (M) = 0 (i.e., for Calabi—Yau manifolds), the Kéhler
class is not modified according to the change in the scale. Thus, the classical
scale invariance is not broken only for Calabi—Yau sigma models.

Since the first Chern class ¢; (M) is represented by the Ricci form
(14.21) c1(M) = %Rijdzi AdZ,
™
Eq. (14.20) may suggest that the metric effectively changes under the world-

sheet rescaling h — A?h as

log A
27

One can see how the metric changes under the change of scale in an approx-

(14.22) 9i7 = 9ij — Ri.

imation scheme called sigma model perturbation theory. This is the topic
of the next discussion. We will indeed see that the metric changes as Eq.

(14.22) to first non-trivial order in this approximation.

14.2.2. Sigma Model Perturbation Theory. Let us consider the
bosonic non-linear sigma model on a Riemannian manifold M with metric
g. The model is described by bosonic scalar fields ¢! (I = 1,...,n = dim M)
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that represent a map of the worldsheet to M. The classical action is given
by
1

(14.23) S=3 / gr.($)0,0" 0" ¢’ d*a,

where we have chosen a (conformally) Euclidean metric on the worldsheet.
We expand the fields around a point ¢f € M,

(14.24) of = b + €.

If the coordinate is chosen appropriately, the metric is expanded as

(14.25) gry(¢) =015 — %RIKJL(%)@K&L +0(&%).

The &-linear term is eliminated here by our choice of good coordinates (Rie-
mann normal coordinates), but the &-bilinear term is proportional to the
curvature at ¢g and cannot be eliminated by a further change of coordi-
nates. Thus, if M is not flat, the action

(14.26) S = %/ (8“518;35[ —~ %RIKJL(d)O)ngLaMglaugJ + 0(55)> d*x

is not purely quadratic in any choice of variables. Namely, the system is
interacting, where the non-quadratic terms are regarded as providing the
interactions between ¢! for different I’s. To organize the interaction terms,

let us consider rescaling the target space metric as

(14.27) 917 — t°917.

If we change the variables &/ as Ef = t&! the metric is expressed by
1

a2 Rirp(d0)EX€X + O(E3/1).

(14.28) Gr5(0) =dr5 —

The interaction terms are small for large ¢ and higher-order terms are smaller
by powers of 1/t. Thus, we can consider a systematic perturbation theory
in powers of 1/¢. This is the large volume expansion of the non-linear sigma
model.

In Ch. 9, we studied zero-dimensional QFTs as toy models, where we

encountered integrals such as

n
1
(1429) Z(M, C) = /HdXz exp (_§X”LMUXJ + kaleX]Xle>
=1
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and also the correlation function

1

(14.30) (0O) = m

= 1

X /HdXi exp (—EXZ-MZ-]-XJ- + CijleinXle> O(Xi, X, ..),

i=1
where O(X;, Xj,...) is some expression of X;, X;,.... The perturbative
expansion of the partition function Z(M, C') and the correlation function (O)
is obtained by first expanding eCumXiXiXiXt a5 5700 %(C’ijleinXle)T
and computing the integral for each term. This leads to a diagrammatic
evaluation of the integral based on the propagator (two-point functions at

Cijr = 0)

1 n -
(1431) <XZX]>(O) = m /HdXZ e_%XkMlel XZX] = (M_l)Z]’
’ i=1
which solves the equation
(14.32) M;j (X5 Xk)0) = ik-

The diagrammatic computation is carried out by using this propagator and
the interaction vertex Cj;X;X; X3 X;. These are represented by the dia-
grams (1) and (2) in Fig. 1 respectively. The two point-function (X;X})

i J

ey ()
FIGURE 1. (1) Propagator and (2) Vertex

and the four-point function (X;X; X} X;) can be computed by the diagrams
of the form given in Fig. 2. The holes in each diagram are called the loops
of the diagram. A diagram is called an L-loop diagram if it has L loops. For
example, the first one of each series in Fig. 2 is the zero-loop diagram. The
second of (A) and the second and third of (B) are the one-loop diagrams.
(The third of (A) is one of the two-loop diagrams.) One can organize the sum

over the diagrams by the number of loops. We denote the sum over s-loop
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(A) +©+m
NI

(B) + + +

FIGURE 2. Feynman diagrams: (A) for two-point function
(X:X;), (B) for four-point function (X;X;X;X;)

diagrams with s = 0, 1, .. .,L in Flg 2 by <X2X]>(L) and <XZX]Xle>(L)
respectively and call them the two- and four-point functions at the L-loop
level. In the present example, the number of loops is the same as the number

of Cyjxi’s up to a constant.

EXERCISE 14.2.1. Compute <X1XJ>(1) and <XinXle>(1), the two- and

the four-point functions at the one-loop level.

As in the above example, we can also consider the diagrammatic evalu-
ation of path-integrals based on the propagator and the interaction vertex.
The analogue of the matrix M in the present case is the Laplace opera-
tor M = —0"0,. Thus the propagator obeys the analogue of Eq. (14.32),

namely

(14.33) —01 0, (€N ()€ (y)) (o) = 8(x — )o"”
which is solved by

A2k oik(z—y)

(14.34 @ o = [ G

(We notice that the integral is logarithmically divergent at k¥ = 0. This is
the long-distance singularity which is special two dimensions. Here we leave
it as it is. We will shortly make it finite by introducing a cut-off and later
interpret what the manipulation means.) The leading term (in powers of

the curvature) in the interaction vertex is given by

1
(14.35) G / d*z Ryrenp e eboreMo, e
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Thus, this system including only this interaction vertex is almost identical
to the toy model considered above. (The only difference is that the indices
i,7,k, ... in the present case run over infinitely many values.) Therefore, we
can try to repeat what we have done there to obtain the correlation functions
as power series in the Riemannian curvature, Ryjxr,.

The two-point function at the one-loop level is obtained by summing the
first and the second diagrams in Fig. 2 (A). It is straightforward to find

2 eip(x—y) 2
(1436) (€@ W = [ o {7+ 3 [ et}

The momentum integral in the second term is logarithmically divergent at
large k, in addition to the divergence at small k.! The origin of the diver-
gence at large k is clear if we look at the second diagram of Fig. 2 (A); it
comes from setting x equal to y in the propagator given by Eq. (14.34). It
is a short-distance divergence coming from the singularity of the propagator
(@€ (y) o) at z = y.

For now, we avoid the divergences at short-distance as well as long-

distance by simply cutting off the high and low momenta. In other words,

k>

FIGURE 3. Cut-off
we perform the momentum integral in the region
(14.37) P2 <k < Ay

IThere are actually quadratically divergent terms as well. In the present discussion

we simply omit them, in order to avoid too many complications in our presentation.
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where p and Ayy are the lower and higher momentum cut-off (see Fig. 3).
This manipulation is called regularization, and we will later interpret what

it means. The momentum integral restricted to this region is given by

2k 11 Auvy
14. — = —log (=),
(14.38) / (2m)* k> 2m Og< f )

p<l|k|<Auv

We find similar divergences in the four-point functions of the ¢/’s as well.
The four-point function at the one-loop level is obtained by summing the

first three diagrams in Fig. 2 (B). It is given by
(14.39) (" (21)€"2 (w2) €™ (w3)€™ (24)) (1)
d? ipiTi
/H ( bz : ) (27)%6(p1 + p2 + p3 + pa)

A
X [@3 -m){ <R<4> +5. 108 < EV> Ry - R<2>>

+(Il — IQ)} +

112131y

+ third diagram,

where R(4) is the Riemannian curvature and Ry - R(y) is defined by

(14.40) (R(4) : R(z))IJKL
= RnykrL RN 1+ Ringr RN+ Ry RN i + RryenRY 1,

and +--- are permutations in (1234). Here again, there is a logarithmic
divergence that is regularized by restricting the momentum integral to the
region shown in Eq. (14.37). The last line of Eq. (14.39) is the term coming
from the third diagram of Fig. 2 (B) and also has a divergence of the same
order; it is simply obtained by replacing one of the four propagators by
(' (2)€7(y)) 1) in Eq. (14.36) and summing over permutations.

These regularlzed correlation functions are divergent if we remove the
cut-off as Ayy/u — oo. These divergences can actually be tamed by a
manipulation called renormalization. Let us modify the fields ¢! and the

target space metric gr; at ¢g as

g1y =961y — gorg =015 +ary,
¢ = G=guel
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Namely, we replace &/ and gr; (and all quantities that depend on g1, e.g.,
R;jkr) in the classical action by {é and gor; and consider it as the action

for ¢I. The action is then expressed as

So = % / ((1 +a+2b) 0.8 o)

1
— 5By + Reay - 0) 11661 0,81 0m7 + - ) iz,

where we set bry := bl j- Let us consider the two- and four-point functions
at the one-loop level, (¢/(2)¢7(y)) 1y and (€71 (21)€% (22)&"3 (3)6% (24)) (1)
We regard the ay; and bl 7 to be already of one-loop order in the loop expan-
sion. Now, let us choose ar; and b’; to be proportional to log(Ayv/u) and
try to find the coefficients so that the divergences they produce cancel the
divergences in Egs. (14.36) and (14.39) which are regularized by the cut-off
in Eq. (14.37). We can actually find such a and b. The solutions are

1 A
(14.41) go17 =917+ 5 log (ﬂ> Ryy,
m u

(14.42) &= (5{, - 6% log <A%> R{,> ¢’

Then the two- and four-point functions are finite at the one-loop level even
as we remove the cut-off Ayy/p — oo. Namely, if we change the target
space metric and coordinate variables in a way depending on the cut-off,
the correlation functions become finite when the cut-off is removed. This

change of variables and the metric is what we call renormalization/.

14.2.3. Renormalization Group. What we have done above — regu-
larization of the divergences and renormalization — has important physical
significance beyond being a technical manipulation to make the correlation
functions finite. It makes manifest an important aspect of quantum field
theory, i.e., how its description changes as we change the energy scale. We
give a short account of this important idea, called the renormalization group,
which was introduced by Ken Wilson. We consider a theory of scalar fields
with several coupling constants. The collection of fields and the coupling
constants are denoted by ¢(z) and g respectively. We denote the action
by S(¢,¢g). In the non-linear sigma model under consideration, ¢(x) corre-
sponds to the fields ¢/(x) and the metric g;; is considered as a collection of

infinitely many coupling constants.
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Let us consider the Fourier mode expansion of ¢(z);

2 o~
(14.43) é(z) = / (%2 ek (k).

Usually the integral is over all frequencies 0 < |k| < oo. Setting an ultravi-

olet cut-off Ayy means that we restrict the integral to the disc
(14.44) k| < Auv,

and remove the higher frequency modes from ¢(x). We denote such a field
by ¢o(x) and call it a field at the cut-off scale Ayy. Thus,

(14.45) o= [ e
. 0 = (27‘1’)2 .
0<|k|<Auv
We also denote the coupling constant by gg. The path-integral is over this
field ¢o;

(14.46) Z = / Depy e 5(90:90)

Then the momentum integral is cut off at Ayy and the ultraviolet diver-
gences as in Eq. (14.36) are avoided. Since some of the Fourier modes are
missing, the field ¢o(x) is not the most general one. In particular it is almost
a constant within a distance Az ~ 1/Ayy. Thus, setting a UV cut-off is
essentially the same as setting a short-distance cut-off. Introduction of a
cut-off breaks the Poincaré invariance of the theory. Eventually, we would
like to take the continuum limit, 1/Ayy — 0, where Poincaré invariance
is recovered. The question is whether one can achieve this by making the
physics at a finite energy M regular.

Let us decompose the integration region of Eq. (14.45) into two parts:
(14.47) 0<|k| <pand p <[kl < Avyv.

We denote the corresponding mode expansions as

2 . o~
(14.48) br(z) = / %el’%(k),
0<|k|<u
2k~
(14.49) ou@) = [ e
p<|k|<Auv

where “L” and “H” stand for Low and High energies. We would like to

study the behavior of the system at energies of order p or less, e.g., scattering
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amplitudes of particles of momentum < p. Then it is convenient if there is
an action in terms of ¢r(x) only that reproduces the low energy behavior.
This can be obtained by integrating over ¢y in the path-integral but keeping

¢r(x) as a variable:
(14.50) o Set(¢1,90) — /D¢H o S(@L+bm.90)

This is called the effective action at energy u. The regularization we have
done in the non-linear sigma model — keeping only momenta in the range
w < |k| < Ayy — is precisely this integration over the “high energy field”
¢ (). In that example, we have also observed that some correlation func-
tions diverge when we take the limit Ayy/u — oo. Such a divergence means
that the resulting effective action Seg(¢r,g) is ill defined or irregular as
we take the limit Ayy/u — oo. Such an irregularity can be regarded as
a mandate to change the description of the theory at the low energy scale
1 << Ayy. If one can find another set of variables and parameters such that
the effective action is regular, that is a good description of the theory at the

scale . In many cases, the change of variables and parameters takes the

form
(14.51) 90 = go(g, 2,
(14.52) bo(w) = Z(g, 20)6(a) + dps ().

Here ¢(x) and g are new fields and the coupling constants in terms of which

the effective action

(14.53) o~ Seti ($:931) /D¢H e—S(¢0,90)

is regular in the continuum limit Ayy/p — oo. The fields ¢o(x) and the
couplings go at the cut-off scale Ayy are called the bare fields and the bare
couplings.

One can look at this change of fields and couplings in two ways. One
viewpoint is to fix g and move Ayy. We fix the fields ¢(x) and couplings
g at the scale p but change the bare fields ¢o(z) and the bare couplings go
according to Egs. (14.52)—(14.51). If we can move Ayy to infinity without
changing the behavior of the system at a finite energy p (described in terms
of ¢(x) and g), the continuum limit is well defined and we obtain a contin-

uous field theory with Poincaré invariance. Another viewpoint is to move
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u, fixing the cut-off scale Ayy along with the bare fields and couplings.?
Then the renormalized fields ¢(z) and couplings g change according to Egs.
(14.52)—(14.51). In particular, if we change the scale from p; to po, the cou-

plings change from g1 = g(go, =) to g2 = g(go, £=), where g(go, u/Auv)

Auv
is the inverse function of Eq. (14.51). Alternatively, one can also obtain the

effective action at the scale s from the one at a higher energy scale 1 by
performing the integration over the modes of ¢(z) with frequencies in the
range p2 < |k| < p1. Then a similar action that occured when integrating
over modes in p; < |k| < Ayy will occur again. In particular, the couplings
g2 can also be written in terms of the coupling g1 as g2 = g(g1, %) Thus,

as we change the energy scale, the coupling flows along the vector field

d
(14.54) Blo) = ng oo, i)
g1=g,p1=p

in the space of coupling constants. The vector field §(g) is called the beta
function for the coupling constants g.
The Massive Fields. In the above discussion, we kept all the fields ¢(x)
when we described the low energy effective action. However, there are in-
stances where it is more appropriate to integrate out all the modes of some
field so that it does not appear in the effective theory. This is the case where
there are massive fields with mass larger than the scale we are interested
in. Such massive fields do not appear in non-linear sigma models but can
appear in Landau-Ginzburg models.

The simplest example of massive fields is the free scalar field ¢(z), which

has the action

(14.55) S = / (0" 0up + m?p* ) d*a.
by

The parameter m is the mass of the field . The second term, the mass
term, explicitly breaks the classical scale invariance. In Minkowski space,
the equation of motion is given by (88 — 0% + m2) ¢ = 0. The solution has a

Fourier expansion where the frequencies are restricted to those which satisfy
(14.56) (ko)® = (k1) +m?.

This is indeed the relation of the energy and momentum of a particle of mass

m. We note from this that the energy is bounded from below by m. Thus,

20r more precisely we fix the family of ¢o(z) and go parametrized by Ayy that defines

a single continuum theory.
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any mode is highly fluctuating or rapidly varying in a distance much larger
than the length 1/m. (This length is called the Compton wavelength.) In

Euclidean space, its two-point function behaves for |z| > 1/m as

a2k otk e—m|:c\

2m)2 k2 +m? ~ \Rrm|z]

Thus it rapidly decays at distances larger than the Compton wavelength
1/m.

Suppose a theory contains a field ¢ with a mass term of mass m. At

(14.57) (p(@)p(0)) = /

energy i > m, the Compton wavelength is much larger than the scale 1/pu.
Therefore we should keep this field in the effective theory at that energy.
The mass parameter m can be renormalized as any other parameter of the
theory. Suppose we take p very small, much smaller than the renormalized
mass. In the effective theory at energy pu we should not see fields fluctuating
rapidly compared to the distance 1/u. In particular, the massive fields are
rapidly fluctuating within the distance 1/u, which is much larger than the
Compton wavelength. Thus, it is appropriate to integrate out all modes of

¢, the modes of the frequencies in the whole range 0 < |k| < Ayy.

14.2.4. Back to the Sigma Model. Now let us come back to the
bosonic non-linear sigma model. The relations Eqs. (14.52)—(14.51) between
high- and low-energy couplings/fields are given in this case by Eqs. (14.42)—
(14.41). Thus, the beta function (or beta functional as there are infinitely
many couplings) can be found by 0 = u%gou = fBrj — %R[J. Namely,

1
14. = — .
(14.58) Br.g o Rry

This is the beta function determined at the one-loop level.

The behavior of the theory thus depends crucially on the Ricci tensor
R;j;. We separate the discussion into three different cases; the cases where
Rypj is positive definite, Ryy = 0, and Ry is negative definite.

e Rr; > 0 — Asymptotic Freedom.

When the Ricci tensor is positive definite. R;y > 0, the bare metric

1 A
(14.59) gorJ = g1J + 7 log <ﬂ> Rpy
m 1
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grows large as we increase the UV cut-off Ayy (fixing the scale p and the
renormalized metric gry). This means that the sigma model is weakly cou-
pled at higher and higher energies, since the sigma model coupling is in-
versely proportional to the size of the target space. Thus, the perturbation
theory becomes better and better as we take Ayy — oo. This is a good
sign for the existence of the continuum limit. This property is called asymp-
totic freedom, and the sigma model on a Ricci positive Riemannian mani-
fold is said to be asymptotically free. This is a property shared with four-
dimensional Yang-Mills theory or quantum chromodynamics with a small
number of flavors. On the other hand, the above equation also shows that
917 becomes smaller as we lower the energy M (fixing the UV cut-off Ayy
and the bare metric). This means that the sigma model is strongly coupled
at lower energies or at longer distances. Thus the sigma model perturbation
theory becomes worse at lower energies and will break down at some point.
The description in terms of the coordinate variables ¢/(z) will no longer
be valid at low enough energies. Finding the low-energy description and
behavior of the sigma model on a manifold with Ry; > 0 is thus a difficult
problem. This is one point where an analogue of R — 1/R duality (if it
exists) is possibly useful; that may make it easier to study long distance
behavior.

e R;y; =0 — Scale Invariance.

When the Ricci tensor is vanishing, Ry; = 0, the one-loop beta function
vanishes. Thus the theory is scale invariant at the one-loop level. Of course
the beta function may receive nonzero contributions from higher loops, and
the behavior of the theory depends on them. The sigma model on the torus
we considered earlier is an example where the scale invariance holds exactly.

e R;; < 0 — Ultraviolet Singularity.

When the Ricci tensor is negative definite, R;; < 0, the bare metric
decreases as we increase the cut-off Ayy. Thus the sigma model perturbation
theory becomes worse at higher energies. In particular, there is a problem
in taking the continuum limit Ayy — oo. Thus the sigma model on a
Riemannian manifold with negative Ricci tensor is not a well-defined theory
by itself. However, it may happen that such a theory appears as a low energy
effective theory of some other (possibly well-defined) theory. In such a case,

the low energy behavior is easy to study; the metric increases as we lower the
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scale M and thus the sigma model is weakly coupled at lower energies. We
can use sigma model perturbation theory to study the low energy physics.

RG Flow for Supersymmetric Sigma Models. So far, we have been
considering the bosonic non-linear sigma models. What about supersym-
metric sigma models? One can carry out a similar computation of the two-
and four-point functions taking into account the fermion loops. It turns out
that having fermions does not modify the one-loop beta function of the met-
ric as shown in Egs. (14.58) or (14.59). Thus, what we have said above for
the three cases applies equally well to the supersymmetric sigma models as
well. The sigma model perturbation theory is well defined only for R;y > 0.
The sigma model on a Ricci-flat Kéhler manifold is scale invariant at the
one-loop level. The sigma model on a Ricci-positive Kahler manifold is
asymptotically free. It is known, however, that the beta functions at higher
loops are modified. For example, the two-loop beta function can be written
in terms of the covariant derivatives of Ricci tensor. Thus, the two-loop beta
function vanishes again for Ricci-flat manifolds. It also vanishes for sym-
metric spaces. Thus, it had originally been expected that the beta function
vanishes to all orders in perturbation theory for Calabi—Yau manifolds — for
which R;; = 0 — and receives contribution only at one loop for symmetric
spaces. Further study showed, however, that the beta function is actually
non-vanishing at the four-loop level for the Calabi—Yau sigma model. For

Hermitian symmetric spaces such as CPY !

and Grassmannians, there is an
argument that the beta function receives contributions only at one loop.
One important remark is now in order. We have actually seen, in the
supersymmetric sigma model, how the Kéhler class changes according to the
change of the scale; see Eq. (14.20). This suggested a change of the metric
Eq. (14.22) under the scale transformation. This is actually nothing but
what we have found in Eq. (14.58) at the one-loop level in the sigma model
perturbation theory. However, as we have stated, this one-loop answer is
not always the exact result for the renormalization of the metric; there can
be higher-loop corrections. Is it consistent with the result from Eq. (14.20)7
In the argument to derive Eq. (14.20) we made no approximation, and Eq.
(14.20) is indeed an exact result. The solution of this apparent puzzle is that
the possible higher-loop corrections to the Kéhler metric or the Kéhler form

w are of a form such that Aw = da for some one-form «. Then the Kahler
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class [w] receives no higher-loop correction. Without computing the higher-
loop amplitudes to determine the exact renormalization group flow, we know
at least some information exactly by a very elementary consideration. This
is the power of supersymmetry. The essential point in the argument for Eq.
(14.20) was that the correlation function scales simply as Eq. (14.13), as
long as the inserted operator is invariant under some supercharge. We also
notice the similarity of the argument to the one for the axial anomaly: both
reduce to counting the index of the fermion Dirac operator. This is actually
not a coincidence. The axial R-rotation and the scale transformation are in
fact related by supersymmetry. Likewise, the Kéhler class and the class of
the B-field are superpartners of each other. (This last point will be made
more explicit and precise in the next chapter where we provide a global
definition of the supersymmetric non-linear sigma models for a certain class
of target spaces.)

Another lesson we learn from these considerations is that the Ké&hler
metric itself is not necessarily a good quantity to parametrize the theory; it
can be corrected by infinitely many loops, which are practically impossible
to compute (usually). Rather, the K&hler class is the one whose renor-
malization property is controlled as in Eq. (14.20), and can be a good
parameter of the theory. The coordinates of H?(M,R) are the natural pa-
rameters for the Kahler class and are called the Kahler parameters. Thus,
if dim H2(M,R) = k there are k Kihler parameters. There is actually one
other real (periodic) parameter corresponding to each Kéhler parameter.
This is the parameter for the class [B] of the B-field and takes values in the
torus H2(M,R)/H?*(M,Z).? As we will see in the next section, the Kéhler
parameter and the corresponding parameter for the class [B] naturally com-
bine into one complex parameter. In total there are & complex parameters.
To be more precise, for the case ¢1(M) # 0, where the Kéhler class is indeed
renormalized, it is more appropriate to introduce a scale parameter A so

that the Kahler class at the energy p is given by
(14.60) [w](p) = [@] + log(pe/A)er (M).

Here [@] is a class in H?(M,R) transverse to the line spanned by c1(M).

The scale parameter A replaces one of the Kéhler parameters. This is a

3There are more sophisticated proposals for where the cohomology class of the B-field

lies; we content ourselves here with the simplest interpretation.
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phenomenon called dimensional transmutation. In such a case, there is also
an axial anomaly. This means that the shift of the class of the B field in
the direction of ¢; (M) can be undone by a field redefinition (axial rotation).
See Eq. (13.48). Thus one of the B-class parameters is unphysical and can
be removed. Then if ¢1(M) # 0, there are k — 1 complex parameters and

one scale parameter A.

14.3. Superspace Decouplings and Non-Renormalization of

Superpotential

In the context of (2,2) supersymmetric quantum field theories in two
dimensions, we have seen that we can vary the action in five different ways:
by deforming the chiral or twisted chiral superpotential and their conjugates,
and also by deforming the D-terms. Here we wish to prove certain decoupling
and non-renormalization theorems involving these terms. In particular we
will show that varying the D-terms does not induce any corrections to the
superpotential terms. Secondly we will show that the superpotential terms
(chiral and twisted anti-chiral) are decoupled from each other, and neither

gets renormalized. However, the D-terms do get renormalized.

14.3.1. Decoupling of D-term, F-term and Twisted F-term.
The basic idea to prove decoupling is to consider an enlarged QFT where
certain parameters in the action are promoted to fields. Morever, one con-
siders a one-parameter family of such theories given by an action S, where
in the limit as € — 0 one recovers the original theory. For the theory with
action S, one proves a certain decoupling theorem which therefore leads to
the decoupling result also in the limit € — 0. In particular we will see that
in the effective action, F-terms and twisted F-terms cannot mix. Moreover
the D-terms cannot enter into the effective action for the F-terms or twisted
F-terms. But the reverse can happen: the effective theory of D-terms does

in general include F-term and twisted F-term couplings.
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Let us consider a theory of chiral superfields ®; and twisted chiral su-

perfields ®; with the Lagrangian,

(14.61) / d10 K (@;, ;, B, Bz, )
(14.62) + </ d2OW (®;, Ny + C.c.)
(14.63) + </ d20 W (®;, \z) + c.c.) .

Here A\, and X& are parameters in the superpotential W and the twisted
superpotential W respectively and 7, are parameters in the D-term. We
want to see whether the parameters 73, A\, can enter into the effective twisted
superpotential Weg at a lower energy and whether -, Xa can enter into Weg.
Let us now promote the parameters A\, and X@ to chiral superfields A, and
twisted chiral superfields Az. For the ~p we consider two cases. We promote
~p to a field I'y, which is chiral for the proof of the first decoupling and twisted
chiral in the second case.

We introduce the kinetic terms

(14.64) % /d40 (Z H|T7+ ) [Aa* =) \7\@\2>
b a

a
where the 4 sign in front of the I'y term depends on whether we are con-
sidering it to be a chiral or a twisted chiral field. We thus have an enlarged
theory with an action we denote as S.. Since A, is a chiral superfield it
cannot enter into Weg. Also, 7\@ cannot enter into Weg. Similarly, if we
choose I'y to be a chiral superfield it cannot enter into Weﬁ, and if we choose
it to be a twisted chiral superfield it cannot enter into Weg. Otherwise,
supersymmetry would be violated. This statement is valid for any e. Now
let us consider the limit ¢ — 0. In this limit the kinetic term of the fields
Aa,Ka,Fb becomes very large. Thus any variation of the corresponding
fields over the two-dimensional space-time manifold gives a very large ac-
tion. Thus in this limit the fields are frozen to constant values. In other
words the scalar components of these new superfields become constants, and
all other components “vanish.” We have thus recovered the effective action
for the original system in this limit. We thus see that there is no mixing
of the parameters between the superpotential and twisted superpotential.
Nor do parameters in the D-term enter the superpotential terms. However,

this argument does not preclude the possibility that in the effective D-term
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the couplings in the superpotential terms appear. And in fact the effective

D-terms do receive corrections involving the superpotential couplings.

14.3.2. The Non-renormalization Theorem. Here we will argue
that the terms in the superpotential do not change in the effective theory.
This was not precluded by the decoupling argument above, as in principle
the superpotential terms may have changed depending only on the super-
potential coupling constants.

The argument is rather simple: We can demote fields to parameters by
changing D-terms. In other words, if we change the D-terms for the chiral

and twisted chiral fields by the e deformation,

(14.65) AS = %/d“& SIS
i i
so that the D-terms will give rise to large kinetic terms, we see that in this
limit ®; and <T>; become parameters and all the quantum fluctuations are
suppressed by the action. Thus in the limit as € — 0 there cannot be any
renormalization of the superpotential. However in the previous section we
had shown that the D-term parameters do not affect the chiral and twisted
chiral superpotentials. Thus the statement is that for any € the superpoten-
tial does not get renormalized, including the ¢ — 0 limit. This proves the
important result that all the chiral and twisted-chiral superpotential terms

are not renormalized.

14.3.3. Another Derivation of the F-term Non-renormalization
Theorem. The non-renormalization theorem for chiral and twisted chiral
superpotential terms is so important that we will present another proof for it
here, based on symmetry arguments. As a simplest example, let us consider

a single-variable Landau—Ginzburg theory with the superpotential
(14.66) W(®,m, \) = m®% + \®3.

We would like to study the low energy effective action of this system at some
scale p, integrating out modes with frequencies in the range p < |k| < Ayy.
This leads to an effective superpotential Weg(®). In this model, since the
superpotential is not homogeneous, the vector R-symmetry is explicitly bro-
ken. Also, there is no other global symmetry except the axial R-symmetry

that acts on the lowest scalar component ¢ of ® trivially. Thus, it appears
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that we cannot constrain the form of Weg(®) using the symmetry. Is it
possible that all kinds of new terms are generated in Weg(®)?

The answer is no. The effective superpotential is exactly the same as the
superpotential in Eq. (14.66) at the cut-off scale. One way to see this is to
explicitly compute the effective action using Feynman diagrams. There is a
supergraph formalism developed by Grisaru, Siegel and Roc¢ek which makes
it easier to see. Another is the argument by Seiberg which makes use of
holomorphy and other physical conditions as the basic constraints. Having
in mind applications in other contexts, we describe the latter argument here.

The first step again is to promote the parameters that enter into the
superpotential to chiral superfields. In the above example we promote the
parameters m and A to chiral superfields M and A. Take the Kéhler potential

for these new variables as
1— 1
(14.67) Ky + Ky =-MM + =AA,
€ €

and consider the limit € — 0. This will freeze the fluctuations of M and A
around some background value and give us a starting system where m and
A are simply parameters.

Before the limit ¢ — 0, the superpotential is
(14.68) W(®, M,A) = M®% + AD3,

Now this sys