take the form

$$\pm \frac{1}{2\pi i} \frac{1}{\log x} \int_{a-\infty i}^{a+\infty i} \frac{d\left(\frac{1}{s}\log\left(1-\frac{s}{\beta}\right)\right)}{ds} x^s \, ds.$$

But now

$$\frac{d\left(\frac{1}{s}\log\left(1-\frac{s}{\beta}\right)\right)}{d\beta} = \frac{1}{(\beta-s)\beta},$$

and, if the real part of s is larger than the real part of β ,

$$-\frac{1}{2\pi i} \int_{a-\infty i}^{a+\infty i} \frac{x^s \, ds}{(\beta-s)\beta} = \frac{x^\beta}{\beta} = \int_{\infty}^x x^{\beta-1} \, dx,$$

or

$$=\int\limits_{0}^{x}x^{\beta-1}\,dx,$$

depending on whether the real part of β is negative or positive. One has as a result

$$\frac{1}{2\pi i} \frac{1}{\log x} \int_{a-\infty i}^{a+\infty i} \frac{d\left(\frac{1}{s}\log\left(1-\frac{s}{\beta}\right)\right)}{ds} x^s \, ds$$
$$= -\frac{1}{2\pi i} \int_{a-\infty i}^{a+\infty i} \frac{1}{s}\log\left(1-\frac{s}{\beta}\right) x^s \, ds$$
$$= \int_{\infty}^{x} \frac{x^{\beta-1}}{\log x} \, dx + \text{ const.}$$

in the first, and

$$= \int_{0}^{x} \frac{x^{\beta-1}}{\log x} \, dx + \text{ const.}$$

in the second case.

In the first case the constant of integration is determined if one lets the real part of β become infinitely negative; in the second case the integral from 0 to x takes on values separated by $2\pi i$, depending on whether the integration is taken through complex values with positive or negative argument, and becomes infinitely small, for the former path, when the coefficient of i in the

value of β becomes infinitely positive, but for the latter, when this coefficient becomes infinitely negative. From this it is seen how on the left hand side $\log\left(1-\frac{s}{\beta}\right)$ is to be determined in order that the constants of integration disappear.

Through the insertion of these values in the expression for f(x) one obtains

$$f(x) = Li(x) - \sum^{\alpha} \left(Li\left(x^{\frac{1}{2} + \alpha i}\right) + Li\left(x^{\frac{1}{2} - \alpha i}\right) \right) + \int_{x}^{\infty} \frac{1}{x^{2} - 1} \frac{dx}{x \log x} + \log \xi(0),$$

if in \sum^{α} one substitutes for α all positive roots (or roots having a positive real part) of the equation $\xi(\alpha) = 0$, ordered by their magnitude. It may easily be shown, by means of a more thorough discussion of the function ξ , that with this ordering of terms the value of the series

$$\sum \left(Li\left(x^{\frac{1}{2}+\alpha i}\right) + Li\left(x^{\frac{1}{2}-\alpha i}\right) \right) \log x$$

agrees with the limiting value to which

$$\frac{1}{2\pi i} \int_{a-bi}^{a+bi} \frac{d\frac{1}{s} \sum \log\left(1 + \frac{(s-\frac{1}{2})^2}{\alpha \alpha}\right)}{ds} x^s \, ds$$

converges as the quantity b increases without bound; however when reordered it can take on any arbitrary real value.

From f(x) one obtains F(x) by inversion of the relation

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} F\left(x^{\frac{1}{n}}\right),$$

to obtain the equation

$$F(x) = \sum (-1)^{\mu} \frac{1}{m} f\left(x^{\frac{1}{m}}\right),$$

in which one substitutes for m the series consisting of those natural numbers that are not divisible by any square other than 1, and in which μ denotes the number of prime factors of m.

If one restricts \sum^{α} to