Similar plane numbers have to one another the ratio which a square number has to a square number.

Οἱ ὅμοιοι ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. Ἔστωσαν ὅμοιοι ἐπίπεδοι ἀριθμοὶ οἱ Α, Β: λέγω, ὅτι ὁ Α πρὸς τὸν Β λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. Ἐπεὶ γὰρ οἱ Α, Β ὅμοιοι ἐπίπεδοί εἰσιν, τῶν Α, Β ἄρα εἷς μέσος ἀνάλογον ἐμπίπτει ἀριθμός. ἐμπιπτέτω καὶ ἔστω ὁ Γ, καὶ εἰλήφθωσαν ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Γ, Β οἱ Δ, Ε, Ζ: οἱ ἄρα ἄκροι αὐτῶν οἱ Δ, Ζ τετράγωνοί εἰσιν. καὶ ἐπεί ἐστιν ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Α πρὸς τὸν Β, καί εἰσιν οἱ Δ, Ζ τετράγωνοι, ὁ Α ἄρα πρὸς τὸν Β λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: ὅπερ ἔδει δεῖξαι. | Similar plane numbers have to one another the ratio which a square number has to a square number. Let A, B be similar plane numbers; I say that A has to B the ratio which a square number has to a square number. For, since A, B are similar plane numbers, therefore one mean proportional number falls between A, B. [VIII. 18] Let it so fall, and let it be C; and let D, E, F, the least numbers of those which have the same ratio with A, C, B, be taken; [VII. 33 or VIII. 2] therefore the extremes of them D, F are square. [VIII. 2, Por.] |