In equal triangles which have one angle equal to one angle the sides about the equal angles are reciprocally proportional; and those triangles which have one angle equal to one angle, and in which the sides about the equal angles are reciprocally proportional, are equal.

Τῶν ἴσων καὶ μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: καὶ ὧν μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἴσα ἐστὶν ἐκεῖνα. Ἔστω ἴσα τρίγωνα τὰ ΑΒΓ, ΑΔΕ μίαν μιᾷ ἴσην ἔχοντα γωνίαν τὴν ὑπὸ ΒΑΓ τῇ ὑπὸ ΔΑΕ: λέγω, ὅτι τῶν ΑΒΓ, ΑΔΕ τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, τουτέστιν, ὅτι ἐστὶν ὡς ἡ ΓΑ πρὸς τὴν ΑΔ, οὕτως ἡ ΕΑ πρὸς τὴν ΑΒ. Κείσθω γὰρ ὥστε ἐπ' εὐθείας εἶναι τὴν ΓΑ τῇ ΑΔ: ἐπ' εὐθείας ἄρα ἐστὶ καὶ ἡ ΕΑ τῇ ΑΒ. καὶ ἐπεζεύχθω ἡ ΒΔ. Ἐπεὶ οὖν ἴσον ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΑΔΕ τριγώνῳ, ἄλλο δέ τι τὸ ΒΑΔ, ἔστιν ἄρα ὡς τὸ ΓΑΒ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον. ἀλλ' ὡς μὲν τὸ ΓΑΒ πρὸς τὸ ΒΑΔ, οὕτως ἡ ΓΑ πρὸς τὴν ΑΔ, ὡς δὲ τὸ ΕΑΔ πρὸς τὸ ΒΑΔ, οὕτως ἡ ΕΑ πρὸς τὴν ΑΒ. καὶ ὡς ἄρα ἡ ΓΑ πρὸς τὴν ΑΔ, οὕτως ἡ ΕΑ πρὸς τὴν ΑΒ. τῶν ΑΒΓ, ΑΔΕ ἄρα τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας. Ἀλλὰ δὴ ἀντιπεπονθέτωσαν αἱ πλευραὶ τῶν ΑΒΓ, ΑΔΕ τριγώνων, καὶ ἔστω ὡς ἡ ΓΑ πρὸς τὴν ΑΔ, οὕτως ἡ ΕΑ πρὸς τὴν ΑΒ: λέγω, ὅτι ἴσον ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΑΔΕ τριγώνῳ. Ἐπιζευχθείσης γὰρ πάλιν τῆς ΒΔ, ἐπεί ἐστιν ὡς ἡ ΓΑ πρὸς τὴν ΑΔ, οὕτως ἡ ΕΑ πρὸς τὴν ΑΒ, ἀλλ' ὡς μὲν ἡ ΓΑ πρὸς τὴν ΑΔ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, ὡς δὲ ἡ ΕΑ πρὸς τὴν ΑΒ, οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, ὡς ἄρα τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον. ἑκάτερον ἄρα τῶν ΑΒΓ, ΕΑΔ πρὸς τὸ ΒΑΔ τὸν αὐτὸν ἔχει λόγον. ἴσον ἄρα ἐστὶ τὸ ΑΒΓ [ τρίγωνον ] τῷ ΕΑΔ τριγώνῳ. Τῶν ἄρα ἴσων καὶ μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: καὶ ὧν μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἐκεῖνα ἴσα ἐστίν: ὅπερ ἔδει δεῖξαι. | In equal triangles which have one angle equal to one angle the sides about the equal angles are reciprocally proportional; and those triangles which have one angle equal to one angle, and in which the sides about the equal angles are reciprocally proportional, are equal. Let ABC, ADE be equal triangles having one angle equal to one angle, namely the angle BAC to the angle DAE; I say that in the triangles ABC, ADE the sides about the equal angles are reciprocally proportional, that is to say, that, as CA is to AD, so is EA to AB. For let them be placed so that CA is in a straight line with AD; therefore EA is also in a straight line with AB. [I. 14] Let BD be joined. Since then the triangle ABC is equal to the triangle ADE, and BAD is another area, therefore, as the triangle CAB is to the triangle BAD, so is the triangle EAD to the triangle BAD. [V. 7] But, as CAB is to BAD, so is CA to AD, [VI. 1] and, as EAD is to BAD, so is EA to AB. [id.] Therefore also, as CA is to AD, so is EA to AB. [V. 11] Therefore in the triangles ABC, ADE the sides about the equal angles are reciprocally proportional. Next, let the sides of the triangles ABC, ADE be reciprocally proportional, that is to say, let EA be to AB as CA to AD; I say that the triangle ABC is equal to the triangle ADE. For, if BD be again joined, since, as CA is to AD, so is EA to AB, while, as CA is to AD, so is the triangle ABC to the triangle BAD, and, as EA is to AB, so is the triangle EAD to the triangle BAD, [VI. 1] therefore, as the triangle ABC is to the triangle BAD, so is the triangle EAD to the triangle BAD. [V. 11] Therefore each of the triangles ABC, EAD has the same ratio to BAD. Therefore the triangle ABC is equal to the triangle EAD. [V. 9] |