## Book V, Proposition 1

If there be any number of magnitudes whatever which are, respectively, equimultiples of any magnitudes equal in multitude, then, whatever multiple one of the magnitudes is of one, that multiple also will all be of all.

 Ἐὰν ᾖ ὁποσαοῦν μεγέθη ὁποσωνοῦν μεγεθῶν ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον, ὁσαπλάσιόν ἐστιν ἓν τῶν μεγεθῶν ἑνός, τοσαυταπλάσια ἔσται καὶ τὰ πάντα τῶν πάντων. Ἔστω ὁποσαοῦν μεγέθη τὰ ΑΒ, ΓΔ ὁποσωνοῦν μεγεθῶν τῶν Ε, Ζ ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον: λέγω, ὅτι ὁσαπλάσιόν ἐστι τὸ ΑΒ τοῦ Ε, τοσαυταπλάσια ἔσται καὶ τὰ ΑΒ, ΓΔ τῶν Ε, Ζ. Ἐπεὶ γὰρ ἰσάκις ἐστὶ πολλαπλάσιον τὸ ΑΒ τοῦ Ε καὶ τὸ ΓΔ τοῦ Ζ, ὅσα ἄρα ἐστὶν ἐν τῷ ΑΒ μεγέθη ἴσα τῷ Ε, τοσαῦτα καὶ ἐν τῷ ΓΔ ἴσα τῷ Ζ. διῃρήσθω τὸ μὲν ΑΒ εἰς τὰ τῷ Ε μεγέθη ἴσα τὰ ΑΗ, ΗΒ, τὸ δὲ ΓΔ εἰς τὰ τῷ Ζ ἴσα τὰ ΓΘ, ΘΔ: ἔσται δὴ ἴσον τὸ πλῆθος τῶν ΑΗ, ΗΒ τῷ πλήθει τῶν ΓΘ, ΘΔ. καὶ ἐπεὶ ἴσον ἐστὶ τὸ μὲν ΑΗ τῷ Ε, τὸ δὲ ΓΘ τῷ Ζ, ἴσον ἄρα τὸ ΑΗ τῷ Ε, καὶ τὰ ΑΗ, ΓΘ τοῖς Ε, Ζ. διὰ τὰ αὐτὰ δὴ ἴσον ἐστὶ τὸ ΗΒ τῷ Ε, καὶ τὰ ΗΒ, ΘΔ τοῖς Ε, Ζ: ὅσα ἄρα ἐστὶν ἐν τῷ ΑΒ ἴσα τῷ Ε, τοσαῦτα καὶ ἐν τοῖς ΑΒ, ΓΔ ἴσα τοῖς Ε, Ζ: ὁσαπλάσιον ἄρα ἐστὶ τὸ ΑΒ τοῦ Ε, τοσαυταπλάσια ἔσται καὶ τὰ ΑΒ, ΓΔ τῶν Ε, Ζ. Ἐὰν ἄρα ᾖ ὁποσαοῦν μεγέθη ὁποσωνοῦν μεγεθῶν ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον, ὁσαπλάσιόν ἐστιν ἓν τῶν μεγεθῶν ἑνός, τοσαυταπλάσια ἔσται καὶ τὰ πάντα τῶν πάντων: ὅπερ ἔδει δεῖξαι. If there be any number of magnitudes whatever which are, respectively, equimultiples of any magnitudes equal in multitude, then, whatever multiple one of the magnitudes is of one, that multiple also will all be of all. Let any number of magnitudes whatever AB, CD be respectively equimultiples of any magnitudes E, F equal in multitude; I say that, whatever multiple AB is of E, that multiple will AB, CD also be of E, F. For, since AB is the same multiple of E that CD is of F, as many magnitudes as there are in AB equal to E, so many also are there in CD equal to F. Let AB be divided into the magnitudes AG, GB equal to E, and CD into CH, HD equal to F; then the multitude of the magnitudes AG, GB will be equal to the multitude of the magnitudes CH, HD. Now, since AG is equal to E, and CH to F, therefore AG is equal to E, and AG, CH to E, F. For the same reason GB is equal to E, and GB, HD to E, F; therefore, as many magnitudes as there are in AB equal to E, so many also are there in AB, CD equal to E, F; therefore, whatever multiple AB is of E, that multiple will AB, CD also be of E, F.