Book III, Proposition 37

If a point be taken outside a circle and from the point there fall on the circle two straight lines, if one of them cut the circle, and the other fall on it, and if further the rectangle contained by the whole of the straight line which cuts the circle and the straight line intercepted on it outside between the point and the convex circumference be equal to the square on the straight line which falls on the circle, the straight line which falls on it will touch the circle.

Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ προσπίπτῃ, ᾖ δὲ τὸ ὑπὸ [ τῆς ] ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς προσπιπτούσης, ἡ προσπίπτουσα ἐφάψεται τοῦ κύκλου. κύκλου γὰρ τοῦ ΑΒΓ εἰλήφθω τι σημεῖον ἐκτὸς τὸ Δ, καὶ ἀπὸ τοῦ Δ πρὸς τὸν ΑΒΓ κύκλον προσπιπτέτωσαν δύο εὐθεῖαι αἱ ΔΓΑ, ΔΒ, καὶ ἡ μὲν ΔΓΑ τεμνέτω τὸν κύκλον, ἡ δὲ ΔΒ προσπιπτέτω, ἔστω δὲ τὸ ὑπὸ τῶν ΑΔ, ΔΓ ἴσον τῷ ἀπὸ τῆς ΔΒ. λέγω, ὅτι ἡ ΔΒ ἐφάπτεται τοῦ ΑΒΓ κύκλου. Ἤχθω γὰρ τοῦ ΑΒΓ ἐφαπτομένη ἡ ΔΕ, καὶ εἰλήφθω τὸ κέντρον τοῦ ΑΒΓ κύκλου, καὶ ἔστω τὸ Ζ, καὶ ἐπεζεύχθωσαν αἱ ΖΕ, ΖΒ, ΖΔ. ἡ ἄρα ὑπὸ ΖΕΔ ὀρθή ἐστιν. καὶ ἐπεὶ ἡ ΔΕ ἐφάπτεται τοῦ ΑΒΓ κύκλου, τέμνει δὲ ἡ ΔΓΑ, τὸ ἄρα ὑπὸ τῶν ΑΔ, ΔΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΕ. ἦν δὲ καὶ τὸ ὑπὸ τῶν ΑΔ, ΔΓ ἴσον τῷ ἀπὸ τῆς ΔΒ: τὸ ἄρα ἀπὸ τῆς ΔΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΒ: ἴση ἄρα ἡ ΔΕ τῇ ΔΒ. ἐστὶ δὲ καὶ ἡ ΖΕ τῇ ΖΒ ἴση: δύο δὴ αἱ ΔΕ, ΕΖ δύο ταῖς ΔΒ, ΒΖ ἴσαι εἰσίν: καὶ βάσις αὐτῶν κοινὴ ἡ ΖΔ: γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίᾳ τῇ ὑπὸ ΔΒΖ ἐστιν ἴση. ὀρθὴ δὲ ἡ ὑπὸ ΔΕΖ: ὀρθὴ ἄρα καὶ ἡ ὑπὸ ΔΒΖ. καί ἐστιν ἡ ΖΒ ἐκβαλλομένη διάμετρος: ἡ δὲ τῇ διαμέτρῳ τοῦ κύκλου πρὸς ὀρθὰς ἀπ' ἄκρας ἀγομένη ἐφάπτεται τοῦ κύκλου: ἡ ΔΒ ἄρα ἐφάπτεται τοῦ ΑΒΓ κύκλου. ὁμοίως δὴ δειχθήσεται, κἂν τὸ κέντρον ἐπὶ τῆς ΑΓ τυγχάνῃ. Ἐὰν ἄρα κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ προσπίπτῃ, ᾖ δὲ τὸ ὑπὸ ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς προσπιπτούσης, ἡ προσπίπτουσα ἐφάψεται τοῦ κύκλου: ὅπερ ἔδει δεῖξαι. If a point be taken outside a circle and from the point there fall on the circle two straight lines, if one of them cut the circle, and the other fall on it, and if further the rectangle contained by the whole of the straight line which cuts the circle and the straight line intercepted on it outside between the point and the convex circumference be equal to the square on the straight line which falls on the circle, the straight line which falls on it will touch the circle. For let a point D be taken outside the circle ABC; from D let the two straight lines DCA, DB fall on the circle ACB; let DCA cut the circle and DB fall on it; and let the rectangle AD, DC be equal to the square on DB. I say that DB touches the circle ABC. For let DE be drawn touching ABC; let the centre of the circle ABC be taken, and let it be F; let FE, FB, FD be joined. Thus the angle FED is right. [III. 18] Now, since DE touches the circle ABC, and DCA cuts it, the rectangle AD, DC is equal to the square on DE. [III. 36] But the rectangle AD, DC was also equal to the square on DB; therefore the square on DE is equal to the square on DB; therefore DE is equal to DB. And FE is equal to FB; therefore the two sides DE, EF are equal to the two sides DB, BF; and FD is the common base of the triangles; therefore the angle DEF is equal to the angle DBF. [I. 8] But the angle DEF is right; therefore the angle DBF is also right. And FB produced is a diameter; and the straight line drawn at right angles to the diameter of a circle, from its extremity, touches the circle; [III. 16, Por.] therefore DB touches the circle. Similarly this can be proved to be the case even if the centre be on AC.

index prev | digilib folio 69