Book III, Proposition 30

To bisect a given circumference.

 Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν. Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ: δεῖ δὴ τὴν ΑΔΒ περιφέρειαν δίχα τεμεῖν. Ἐπεζεύχθω ἡ ΑΒ, καὶ τετμήσθω δίχα κατὰ τὸ Γ, καὶ ἀπὸ τοῦ Γ σημείου τῇ ΑΒ εὐθείᾳ πρὸς ὀρθὰς ἤχθω ἡ ΓΔ, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΔΒ. Καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΓ τῇ ΓΒ, κοινὴ δὲ ἡ ΓΔ, δύο δὴ αἱ ΑΓ, ΓΔ δυσὶ ταῖς ΒΓ, ΓΔ ἴσαι εἰσίν: καὶ γωνία ἡ ὑπὸ ΑΓΔ γωνίᾳ τῇ ὑπὸ ΒΓΔ ἴση: ὀρθὴ γὰρ ἑκατέρα: βάσις ἄρα ἡ ΑΔ βάσει τῇ ΔΒ ἴση ἐστίν. αἱ δὲ ἴσαι εὐθεῖαι ἴσας περιφερείας ἀφαιροῦσι τὴν μὲν μείζονα τῇ μείζονι τὴν δὲ ἐλάττονα τῇ ἐλάττονι: καί ἐστιν ἑκατέρα τῶν ΑΔ, ΔΒ περιφερειῶν ἐλάττων ἡμικυκλίου: ἴση ἄρα ἡ ΑΔ περιφέρεια τῇ ΔΒ περιφερείᾳ. Ἡ ἄρα δοθεῖσα περιφέρεια δίχα τέτμηται κατὰ τὸ Δ σημεῖον: ὅπερ ἔδει ποιῆσαι. To bisect a given circumference. Let ADB be the given circumference; thus it is required to bisect the circumference ADB. Let AB be joined and bisected at C; from the point C let CD be drawn at right angles to the straight line AB, and let AD, DB be joined. Then, since AC is equal to CB, and CD is common, the two sides AC, CD are equal to the two sides BC, CD; and the angle ACD is equal to the angle BCD, for each is right; therefore the base AD is equal to the base DB. [I. 4] But equal straight lines cut off equal circumferences, the greater equal to the greater, and the less to the less; [III. 28] and each of the circumferences AD, DB is less than a semicircle; therefore the circumference AD is equal to the circumference DB.