## Book III, Proposition 21

In a circle the angles in the same segment are equal to one another.

Ἐν κύκλῳ αἱ ἐν τῷ αὐτῷ τμήματι γωνίαι ἴσαι ἀλλήλαις εἰσίν. Ἔστω κύκλος ὁ ΑΒΓΔ, καὶ ἐν τῷ αὐτῷ τμήματι τῷ ΒΑΕΔ γωνίαι ἔστωσαν αἱ ὑπὸ ΒΑΔ, ΒΕΔ: λέγω, ὅτι αἱ ὑπὸ ΒΑΔ, ΒΕΔ γωνίαι ἴσαι ἀλλήλαις εἰσίν. Εἰλήφθω γὰρ τοῦ ΑΒΓΔ κύκλου τὸ κέντρον, καὶ ἔστω τὸ Ζ, καὶ ἐπεζεύχθωσαν αἱ ΒΖ, ΖΔ. Καὶ ἐπεὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία πρὸς τῷ κέντρῳ ἐστίν, ἡ δὲ ὑπὸ ΒΑΔ πρὸς τῇ περιφερείᾳ, καὶ ἔχουσι τὴν αὐτὴν περιφέρειαν βάσιν τὴν ΒΓΔ, ἡ ἄρα ὑπὸ ΒΖΔ γωνία διπλασίων ἐστὶ τῆς ὑπὸ ΒΑΔ. διὰ τὰ αὐτὰ δὴ ἡ ὑπὸ ΒΖΔ καὶ τῆς ὑπὸ ΒΕΔ ἐστι διπλασίων: ἴση ἄρα ἡ ὑπὸ ΒΑΔ τῇ ὑπὸ ΒΕΔ. Ἐν κύκλῳ ἄρα αἱ ἐν τῷ αὐτῷ τμήματι γωνίαι ἴσαι ἀλλήλαις εἰσίν: ὅπερ ἔδει δεῖξαι. | In a circle the angles in the same segment are equal to one another. Let ABCD be a circle, and let the angles BAD, BED be angles in the same segment BAED; I say that the angles BAD, BED are equal to one another. For let the centre of the circle ABCD be taken, and let it be F; let BF, FD be joined. Now, since the angle BFD is at the centre, and the angle BAD at the circumference, and they have the same circumference BCD as base, therefore the angle BFD is double of the angle BAD. [III. 20] For the same reason the angle BFD is also double of the angle BED; therefore the angle BAD is equal to the angle BED. |