From a given point to draw a straight line touching a given circle.

Ἀπὸ τοῦ δοθέντος σημείου τοῦ δοθέντος κύκλου ἐφαπτομένην εὐθεῖαν γραμμὴν ἀγαγεῖν. Ἔστω τὸ μὲν δοθὲν σημεῖον τὸ Α, ὁ δὲ δοθεὶς κύκλος ὁ ΒΓΔ: δεῖ δὴ ἀπὸ τοῦ Α σημείου τοῦ ΒΓΔ κύκλου ἐφαπτομένην εὐθεῖαν γραμμὴν ἀγαγεῖν. Εἰλήφθω γὰρ τὸ κέντρον τοῦ κύκλου τὸ Ε, καὶ ἐπεζεύχθω ἡ ΑΕ, καὶ κέντρῳ μὲν τῷ Ε διαστήματι δὲ τῷ ΕΑ κύκλος γεγράφθω ὁ ΑΖΗ, καὶ ἀπὸ τοῦ Δ τῇ ΕΑ πρὸς ὀρθὰς ἤχθω ἡ ΔΖ, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΑΒ: λέγω, ὅτι ἀπὸ τοῦ Α σημείου τοῦ ΒΓΔ κύκλου ἐφαπτομένη ἦκται ἡ ΑΒ. Ἐπεὶ γὰρ τὸ Ε κέντρον ἐστὶ τῶν ΒΓΔ, ΑΖΗ κύκλων, ἴση ἄρα ἐστὶν ἡ μὲν ΕΑ τῇ ΕΖ, ἡ δὲ ΕΔ τῇ ΕΒ: δύο δὴ αἱ ΑΕ, ΕΒ δύο ταῖς ΖΕ, ΕΔ ἴσαι εἰσίν: καὶ γωνίαν κοινὴν περιέχουσι τὴν πρὸς τῷ Ε: βάσις ἄρα ἡ ΔΖ βάσει τῇ ΑΒ ἴση ἐστίν, καὶ τὸ ΔΕΖ τρίγωνον τῷ ΕΒΑ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις: ἴση ἄρα ἡ ὑπὸ ΕΔΖ τῇ ὑπὸ ΕΒΑ. ὀρθὴ δὲ ἡ ὑπὸ ΕΔΖ: ὀρθὴ ἄρα καὶ ἡ ὑπὸ ΕΒΑ. καί ἐστιν ἡ ΕΒ ἐκ τοῦ κέντρου: ἡ δὲ τῇ διαμέτρῳ τοῦ κύκλου πρὸς ὀρθὰς ἀπ' ἄκρας ἀγομένη ἐφάπτεται τοῦ κύκλου: ἡ ΑΒ ἄρα ἐφάπτεται τοῦ ΒΓΔ κύκλου. Ἀπὸ τοῦ ἄρα δοθέντος σημείου τοῦ Α τοῦ δοθέντος κύκλου τοῦ ΒΓΔ ἐφαπτομένη εὐθεῖα γραμμὴ ἦκται ἡ ΑΒ: ὅπερ ἔδει ποιῆσαι. | From a given point to draw a straight line touching a given circle. Let A be the given point, and BCD the given circle; thus it is required to draw from the point A a straight line touching the circle BCD. For let the centre E of the circle be taken; [III. 1] let AE be joined, and with centre E and distance EA let the circle AFG be described; from D let DF be drawn at right angles to EA, and let EF, AB be joined; I say that AB has been drawn from the point A touching the circle BCD. For, since E is the centre of the circles BCD, AFG, EA is equal to EF, and ED to EB; therefore the two sides AE, EB are equal to the two sides FE, ED: and they contain a common angle, the angle at E; therefore the base DF is equal to the base AB, and the triangle DEF is equal to the triangle BEA, and the remaining angles to the remaining angles; [I. 4] therefore the angle EDF is equal to the angle EBA. But the angle EDF is right; therefore the angle EBA is also right. Now EB is a radius; and the straight line drawn at right angles to the diameter of a circle, from its extremity, touches the circle; [III. 16, Por.] therefore AB touches the circle BCD. |