Any cone is a third part of the cylinder which has the same base with it and equal height.

Πᾶς κῶνος κυλίνδρου τρίτον μέρος ἐστὶ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον. Ἐχέτω γὰρ κῶνος κυλίνδρῳ βάσιν τε τὴν αὐτὴν τὸν ΑΒΓΔ κύκλον καὶ ὕψος ἴσον: λέγω, ὅτι ὁ κῶνος τοῦ κυλίνδρου τρίτον ἐστὶ μέρος, τουτέστιν ὅτι ὁ κύλινδρος τοῦ κώνου τριπλασίων ἐστίν. Εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλασίων, ἔσται ὁ κύλινδρος τοῦ κώνου ἤτοι μείζων ἢ τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων. ἔστω πρότερον μείζων ἢ τριπλασίων, καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ ΑΒΓΔ: τὸ δὴ ΑΒΓΔ τετράγωνον μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ ΑΒΓΔ κύκλου. καὶ ἀνεστάτω ἀπὸ τοῦ ΑΒΓΔ τετραγώνου πρίσμα ἰσουψὲς τῷ κυλίνδρῳ. τὸ δὴ ἀνιστάμενον πρίσμα μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ κυλίνδρου, ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν, τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ ἐστι τοῦ περιγεγραμμένου: καί ἐστι τὰ ἀπ' αὐτῶν ἀνιστάμενα στερεὰ παραλληλεπίπεδα πρίσματα ἰσοϋψῆ: τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ παραλληλεπίπεδα πρὸς ἄλληλά ἐστιν ὡς αἱ βάσεις: καὶ τὸ ἐπὶ τοῦ ΑΒΓΔ ἄρα τετραγώνου ἀνασταθὲν πρίσμα ἥμισύ ἐστι τοῦ ἀνασταθέντος πρίσματος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου: καί ἐστιν ὁ κύλινδρος ἐλάττων τοῦ πρίσματος τοῦ ἀνασταθέντος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου: τὸ ἄρα πρίσμα τὸ ἀνασταθὲν ἀπὸ τοῦ ΑΒΓΔ τετραγώνου ἰσοϋψὲς τῷ κυλίνδρῳ μεῖζόν ἐστι τοῦ ἡμίσεως τοῦ κυλίνδρου. τετμήσθωσαν αἱ ΑΒ, ΒΓ, ΓΔ, ΔΑ περιφέρειαι δίχα κατὰ τὰ Ε, Ζ, Η, Θ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΕ, ΕΒ, ΒΖ, ΖΓ, ΓΗ, ΗΔ, ΔΘ, ΘΑ: καὶ ἕκαστον ἄρα τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ καθ' ἑαυτὸ τμήματος τοῦ ΑΒΓΔ κύκλου, ὡς ἔμπροσθεν ἐδείκνυμεν. ἀνεστάτω ἐφ' ἑκάστου τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων πρίσματα ἰσουψῆ τῷ κυλίνδρῳ: καὶ ἕκαστον ἄρα τῶν ἀνασταθέντων πρισμάτων μεῖζόν ἐστιν ἢ τὸ ἥμισυ μέρος τοῦ καθ' ἑαυτὸ τμήματος τοῦ κυλίνδρου, ἐπειδήπερ ἐὰν διὰ τῶν Ε, Ζ, Η, Θ σημείων παραλλήλους ταῖς ΑΒ, ΒΓ, ΓΔ, ΔΑ ἀγάγωμεν, καὶ συμπληρώσωμεν τὰ ἐπὶ τῶν ΑΒ, ΒΓ, ΓΔ, ΔΑ παραλληλόγραμμα, καὶ ἀπ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ, ἑκάστου τῶν ἀνασταθέντων ἡμίση ἐστὶ τὰ πρίσματα τὰ ἐπὶ τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων: καί ἐστι τὰ τοῦ κυλίνδρου τμήματα ἐλάττονα τῶν ἀνασταθέντων στερεῶν παραλληλεπιπέδων: ὥστε καὶ τὰ ἐπὶ τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων πρίσματα μείζονά ἐστιν ἢ τὸ ἥμισυ τῶν καθ' ἑαυτὰ τοῦ κυλίνδρου τμημάτων. τέμνοντες δὴ τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐφ' ἑκάστου τῶν τριγώνων πρίσματα ἰσοϋψῆ τῷ κυλίνδρῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κυλίνδρου, ἃ ἔσται ἐλάττονα τῆς ὑπεροχῆς, ᾗ ὑπερέχει ὁ κύλινδρος τοῦ τριπλασίου τοῦ κώνου. λελείφθω, καὶ ἔστω τὰ ΑΕ, ΕΒ, ΒΖ, ΖΓ, ΓΗ, ΗΔ, ΔΘ, ΘΑ: λοιπὸν ἄρα τὸ πρίσμα, οὗ βάσις μὲν τὸ ΑΕΒΖ ΓΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, μεῖζόν ἐστιν ἢ τριπλάσιον τοῦ κώνου. ἀλλὰ τὸ πρίσμα, οὗ βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, τριπλάσιόν ἐστι τῆς πυραμίδος, ἧς βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, κορυφὴ δὲ ἡ αὐτὴ τῷ κώνῳ: καὶ ἡ πυραμὶς ἄρα, ἧς βάσις μὲν [ ἐστι ] τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, κορυφὴ δὲ ἡ αὐτὴ τῷ κώνῳ, μείζων ἐστὶ τοῦ κώνου τοῦ βάσιν ἔχοντος τὸν ΑΒ ΓΔ κύκλον. ἀλλὰ καὶ ἐλάττων: ἐμπεριέχεται γὰρ ὑπ' αὐτοῦ: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ἐστὶν ὁ κύλινδρος τοῦ κώνου μείζων ἢ τριπλάσιος. Λέγω δή, ὅτι οὐδὲ ἐλάττων ἐστὶν ἢ τριπλάσιος ὁ κύλινδρος τοῦ κώνου. Εἰ γὰρ δυνατόν, ἔστω ἐλάττων ἢ τριπλάσιος ὁ κύλινδρος τοῦ κώνου: ἀνάπαλιν ἄρα ὁ κῶνος τοῦ κυλίνδρου μείζων ἐστὶν ἢ τρίτον μέρος. ἐγγεγράφθω δὴ εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ ΑΒΓΔ: τὸ ΑΒΓΔ ἄρα τετράγωνον μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ ΑΒΓΔ κύκλου. καὶ ἀνεστάτω ἀπὸ τοῦ ΑΒΓΔ τετραγώνου πυραμὶς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ: ἡ ἄρα ἀνασταθεῖσα πυραμὶς μείζων ἐστὶν ἢ τὸ ἥμισυ μέρος τοῦ κώνου, ἐπειδήπερ, ὡς ἔμπροσθεν ἐδείκνυμεν, ὅτι ἐὰν περὶ τὸν κύκλον τετράγωνον περιγράψωμεν, ἔσται τὸ ΑΒΓΔ τετράγωνον ἥμισυ τοῦ περὶ τὸν κύκλον περιγεγραμμένου τετραγώνου: καὶ ἐὰν ἀπὸ τῶν τετραγώνων στερεὰ παραλληλεπίπεδα ἀναστήσωμεν ἰσοϋψῆ τῷ κώνῳ, ἃ καὶ καλεῖται πρίσματα, ἔσται τὸ ἀνασταθὲν ἀπὸ τοῦ ΑΒΓΔ τετραγώνου ἥμισυ τοῦ ἀνασταθέντος ἀπὸ τοῦ περὶ τὸν κύκλον περιγραφέντος τετραγώνου: πρὸς ἄλληλα γάρ εἰσιν ὡς αἱ βάσεις. ὥστε καὶ τὰ τρίτα: καὶ πυραμὶς ἄρα, ἧς βάσις τὸ ΑΒΓΔ τετράγωνον, ἥμισύ ἐστι τῆς πυραμίδος τῆς ἀνασταθείσης ἀπὸ τοῦ περὶ τὸν κύκλον περιγραφέντος τετραγώνου. καί ἐστι μείζων ἡ πυραμὶς ἡ ἀνασταθεῖσα ἀπὸ τοῦ περὶ τὸν κύκλον τετραγώνου τοῦ κώνου: ἐμπεριέχει γὰρ αὐτόν. ἡ ἄρα πυραμὶς, ἧς βάσις τὸ ΑΒΓΔ τετράγωνον, κορυφὴ δὲ ἡ αὐτὴ τῷ κώνῳ, μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου. τετμήσθωσαν αἱ ΑΒ, ΒΓ, ΓΔ, ΔΑ περιφέρειαι δίχα κατὰ τὰ Ε, Ζ, Η, Θ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΕ, ΕΒ, ΒΖ, ΖΓ, ΓΗ, ΗΔ, ΔΘ, ΘΑ: καὶ ἕκαστον ἄρα τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων μεῖζόν ἐστιν ἢ τὸ ἥμισυ μέρος τοῦ καθ' ἑαυτὸ τμήματος τοῦ ΑΒΓΔ κύκλου. καὶ ἀνεστάτωσαν ἐφ' ἑκάστου τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων πυραμίδες τὴν αὐτὴν κορυφὴν ἔχουσαι τῷ κώνῳ: καὶ ἑκάστη ἄρα τῶν ἀνασταθεισῶν πυραμίδων κατὰ τὸν αὐτὸν τρόπον μείζων ἐστὶν ἢ τὸ ἥμισυ μέρος τοῦ καθ' ἑαυτὴν τμήματος τοῦ κώνου. τέμνοντες δὴ τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐφ' ἑκάστου τῶν τριγώνων πυραμίδα τὴν αὐτὴν κορυφὴν ἔχουσαν τῷ κώνῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κώνου, ἃ ἔσται ἐλάττονα τῆς ὑπεροχῆς, ᾗ ὑπερέχει ὁ κῶνος τοῦ τρίτου μέρους τοῦ κυλίνδρου. λελείφθω, καὶ ἔστω τὰ ἐπὶ τῶν ΑΕ, ΕΒ, ΒΖ, ΖΓ, ΓΗ, ΗΔ, ΔΘ, ΘΑ: λοιπὴ ἄρα ἡ πυραμίς, ἧς βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, κορυφὴ δὲ ἡ αὐτὴ τῷ κώνῳ, μείζων ἐστὶν ἢ τρίτον μέρος τοῦ κυλίνδρου. ἀλλ' ἡ πυραμίς, ἧς βάσις μέν ἐστι τὸ ΑΕΒΖΓ ΗΔΘ πολύγωνον, κορυφὴ δὲ ἡ αὐτὴ τῷ κώνῳ, τρίτον ἐστὶ μέρος τοῦ πρίσματος, οὗ βάσις μέν ἐστι τὸ ΑΕΒΖΓ ΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ: τὸ ἄρα πρίσμα, οὗ βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, μεῖζόν ἐστι τοῦ κυλίνδρου, οὗ βάσις ἐστὶν ὁ ΑΒΓΔ κύκλος. ἀλλὰ καὶ ἔλαττον: ἐμπεριέχεται γὰρ ὑπ' αὐτοῦ: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ὁ κύλινδρος τοῦ κώνου ἐλάττων ἐστὶν ἢ τριπλάσιος. ἐδείχθη δέ, ὅτι οὐδὲ μείζων ἢ τριπλάσιος: τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου: ὥστε ὁ κῶνος τρίτον ἐστὶ μέρος τοῦ κυλίνδρου. Πᾶς ἄρα κῶνος κυλίνδρου τρίτον μέρος ἐστὶ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον: ὅπερ ἔδει δεῖξαι. | Any cone is a third part of the cylinder which has the same base with it and equal height. For let a cone have the same base, namely the circle ABCD, with a cylinder and equal height; I say that the cone is a third part of the cylinder, that is, that the cylinder is triple of the cone. For if the cylinder is not triple of the cone, the cylinder will be either greater than triple or less than triple of the cone. First let it be greater than triple, and let the square ABCD be inscribed in the circle ABCD; [IV. 6] then the square ABCD is greater than the half of the circle ABCD. From the square ABCD let there be set up a prism of equal height with the cylinder. Then the prism so set up is greater than the half of the cylinder, inasmuch as, if we also circumscribe a square about the circle ABCD [IV. 7], the square inscribed in the circle ABCD is half of that circumscribed about it, and the solids set up from them are parallelepipedal prisms of equal height, while parallelepipedal solids which are of the same height are to one another as their bases; [XI. 32] therefore also the prism set up on the square ABCD is half of the prism set up from the square circumscribed about the circle ABCD; [cf. XI. 28, or XII. 6 and 7, Por.] and the cylinder is less than the prism set up from the square circumscribed about the circle ABCD; therefore the prism set up from the square ABCD and of equal height with the cylinder is greater than the half of the cylinder. Let the circumferences AB, BC, CD, DA be bisected at the points E, F, G, H, and let AE, EB, BF, FC, CG, GD, DH, HA be joined; then each of the triangles AEB, BFC, CGD, DHA is greater than the half of that segment of the circle ABCD which is about it, as we proved before. [XII. 2] On each of the triangles AEB, BFC, CGD, DHA let prisms be set up of equal height with the cylinder; then each of the prisms so set up is greater than the half part of that segment of the cylinder which is about it, inasmuch as, if we draw through the points E, F, G, H parallels to AB, BC, CD, DA, complete the parallelograms on AB, BC, CD, DA, and set up from them parallelepipedal solids of equal height with the cylinder, the prisms on the triangles AEB, BFC, CGD, DHA are halves of the several solids set up; and the segments of the cylinder are less than the parallelepipedal solids set up; hence also the prisms on the triangles AEB, BFC, CGD, DHA are greater than the half of the segments of the cylinder about them. Thus, bisecting the circumferences that are left, joining straight lines, setting up on each of the triangles prisms of equal height with the cylinder, and doing this continually, we shall leave some segments of the cylinder which will be less than the excess by which the cylinder exceeds the triple of the cone. [X. 1] Let such segments be left, and let them be AE, EB, BF, FC, CG, GD, DH, HA; therefore the remainder, the prism of which the polygon AEBFCGDH is the base and the height is the same as that of the cylinder, is greater than triple of the cone. But the prism of which the polygon AEBFCGDH is the base and the height the same as that of the cylinder is triple of the pyramid of which the polygon AEBFCGDH is the base and the vertex is the same as that of the cone; [XII. 7, Por.] therefore also the pyramid of which the polygon AEBFCGDH is the base and the vertex is the same as that of the cone is greater than the cone which has the circle ABCD as base. But it is also less, for it is enclosed by it: which is impossible. Therefore the cylinder is not greater than triple of the cone. I say next that neither is the cylinder less than triple of the cone, For, if possible, let the cylinder be less than triple of the cone, therefore, inversely, the cone is greater than a third part of the cylinder. Let the square ABCD be inscribed in the circle ABCD; therefore the square ABCD is greater than the half of the circle ABCD. Now let there be set up from the square ABCD a pyramid having the same vertex with the cone; therefore the pyramid so set up is greater than the half part of the cone, seeing that, as we proved before, if we circumscribe a square about the circle, the square ABCD will be half of the square circumscribed about the circle, and if we set up from the squares parallelepipedal solids of equal height with the cone, which are also called prisms, the solid set up from the square ABCD will be half of that set up from the square circumscribed about the circle; for they are to one another as their bases. [XI. 32] Hence also the thirds of them are in that ratio; therefore also the pyramid of which the square ABCD is the base is half of the pyramid set up from the square circumscribed about the circle. And the pyramid set up from the square about the circle is greater than the cone, for it encloses it. Therefore the pyramid of which the square ABCD is the base and the vertex is the same with that of the cone is greater than the half of the cone. Let the circumferences AB, BC, CD, DA be bisected at the points E, F, G, H, and let AE, EB, BF, FC, CG, GD, DH, HA be joined; therefore also each of the triangles AEB, BFC, CGD, DHA is greater than the half part of that segment of the circle ABCD which is about it. Now, on each of the triangles AEB, BFC, CGD, DHA let pyramids be set up which have the same vertex as the cone; therefore also each of the pyramids so set up is, in the same manner, greater than the half part of that segment of the cone which is about it. Thus, by bisecting the circumferences that are left, joining straight lines, setting up on each of the triangles a pyramid which has the same vertex as the cone, and doing this continually, we shall leave some segments of the cone which will be less than the excess by which the cone exceeds the third part of the cylinder. [X. 1] Let such be left, and let them be the segments on AE, EB, BF, FC, CG, GD, DH, HA; therefore the remainder, the pyramid of which the polygon AEBFCGDH is the base and the vertex the same with that of the cone, is greater than a third part of the cylinder. But the pyramid of which the polygon AEBFCGDH is the base and the vertex the same with that of the cone is a third part of the prism of which the polygon AEBFCGDH is the base and the height is the same with that of the cylinder; therefore the prism of which the polygon AEBFCGDH is the base and the height is the same with that of the cylinder is greater than the cylinder of which the circle ABCD is the base. But it is also less, for it is enclosed by it: which is impossible. Therefore the cylinder is not less than triple of the cone. But it was proved that neither is it greater than triple; therefore the cylinder is triple of the cone; hence the cone is a third part of the cylinder. |