To a minor straight line only one straight line can be annexed which is incommensurable in square with the whole and which makes, with the whole, the sum of the squares on them rational but twice the rectangle contained by them medial.

Τῇ ἐλάσσονι μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ ποιοῦσα μετὰ τῆς ὅλης τὸ μὲν ἐκ τῶν ἀπ' αὐτῶν τετραγώνων ῥητόν, τὸ δὲ δὶς ὑπ' αὐτῶν μέσον. Ἔστω ἡ ἐλάσσων ἡ ΑΒ, καὶ τῇ ΑΒ προσαρμόζουσα ἔστω ἡ ΒΓ: αἱ ἄρα ΑΓ, ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων ῥητόν, τὸ δὲ δὶς ὑπ' αὐτῶν μέσον: λέγω, ὅτι τῇ ΑΒ ἑτέρα εὐθεῖα οὐ προσαρμόσει τὰ αὐτὰ ποιοῦσα. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ: καὶ αἱ ΑΔ, ΔΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προειρημένα. καὶ ἐπεί, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, τούτῳ ὑπερέχει καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, τὰ δὲ ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα τῶν ἀπὸ τῶν ΑΓ, ΓΒ τετραγώνων ὑπερέχει ῥητῷ: ῥητὰ γάρ ἐστιν ἀμφότερα: καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ ἄρα τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ὅπερ ἐστὶν ἀδύνατον: μέσα γάρ ἐστιν ἀμφότερα. Τῇ ἄρα ἐλάσσονι μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ καὶ ποιοῦσα τὰ μὲν ἀπ' αὐτῶν τετράγωνα ἅμα ῥητόν, τὸ δὲ δὶς ὑπ' αὐτῶν μέσον: ὅπερ ἔδει δεῖξαι. | To a minor straight line only one straight line can be annexed which is incommensurable in square with the whole and which makes, with the whole, the sum of the squares on them rational but twice the rectangle contained by them medial. Let AB be the minor straight line, and let BC be an annex to AB; therefore AC, CB are straight lines incommensurable in square which make the sum of the squares on them rational, but twice the rectangle contained by them medial. [X. 76] I say that no other straight line can be annexed to AB fulfilling the same conditions. For, if possible, let BD be so annexed; therefore AD, DB are also straight lines incommensurable in square which fulfil the aforesaid conditions. [X. 76] Now, since the excess of the squares on AD, DB over the squares on AC, CB is also the excess of twice the rectangle AD, DB over twice the rectangle AC, CB, while the squares on AD, DB exceed the squares on AC, CB by a rational area, for both are rational, therefore twice the rectangle AD, DB also exceeds twice the rectangle AC, CB by a rational area: which is impossible, for both are medial. [X. 26] |