Book X, Proposition 57

If an area be contained by a rational straight line and the fourth binomial, the “side” of the area is the irrational straight line called major.

Ἐὰν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων τετάρτης, ἡ τὸ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη μείζων. Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων τετάρτης τῆς ΑΔ διῃρημένης εἰς τὰ ὀνόματα κατὰ τὸ Ε, ὧν μεῖζον ἔστω τὸ ΑΕ: λέγω, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἄλογός ἐστιν ἡ καλουμένη μείζων. Ἐπεὶ γὰρ ἡ ΑΔ ἐκ δύο ὀνομάτων ἐστὶ τετάρτη, αἱ ΑΕ, ΕΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ ΑΕ τῆς ΕΔ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ ἡ ΑΕ τῇ ΑΒ σύμμετρός [ ἐστι ] μήκει. τετμήσθω ἡ ΔΕ δίχα κατὰ τὸ Ζ, καὶ τῷ ἀπὸ τῆς ΕΖ ἴσον παρὰ τὴν ΑΕ παραβεβλήσθω παραλληλόγραμμον τὸ ὑπὸ ΑΗ, ΗΕ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΗ τῇ ΗΕ μήκει. ἤχθωσαν παράλληλοι τῇ ΑΒ αἱ ΗΘ, ΕΚ, ΖΛ, καὶ τὰ λοιπὰ τὰ αὐτὰ τοῖς πρὸ τούτου γεγονέτω: φανερὸν δή, ὅτι ἡ τὸ ΑΓ χωρίον δυναμένη ἐστὶν ἡ ΜΞ. δεικτέον δή, ὅτι ἡ ΜΞ ἄλογός ἐστιν ἡ καλουμένη μείζων. ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΕΗ μήκει, ἀσύμμετρόν ἐστι καὶ τὸ ΑΘ τῷ ΗΚ, τουτέστι τὸ ΣΝ τῷ ΝΠ: αἱ ΜΝ, ΝΞ ἄρα δυνάμει εἰσὶν ἀσύμμετροι. καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΑΕ τῇ ΑΒ μήκει, ῥητόν ἐστι τὸ ΑΚ: καί ἐστιν ἴσον τοῖς ἀπὸ τῶν ΜΝ, ΝΞ: ῥητὸν ἄρα [ ἐστὶ ] καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ. καὶ ἐπεὶ ἀσύμμετρός [ ἐστιν ] ἡ ΔΕ τῇ ΑΒ μήκει, τουτέστι τῇ ΕΚ, ἀλλὰ ἡ ΔΕ σύμμετρός ἐστι τῇ ΕΖ, ἀσύμμετρος ἄρα ἡ ΕΖ τῇ ΕΚ μήκει. αἱ ΕΚ, ΕΖ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: μέσον ἄρα τὸ ΛΕ, τουτέστι τὸ ΜΡ. καὶ περιέχεται ὑπὸ τῶν ΜΝ, ΝΞ: μέσον ἄρα ἐστὶ τὸ ὑπὸ τῶν ΜΝ, ΝΞ. καὶ ῥητὸν τὸ [ συγκείμενον ] ἐκ τῶν ἀπὸ τῶν ΜΝ, ΝΞ, καί εἰσιν ἀσύμμετροι αἱ ΜΝ, ΝΞ δυνάμει. ἐὰν δὲ δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων ῥητόν, τὸ δ' ὑπ' αὐτῶν μέσον, ἡ ὅλη ἄλογός ἐστιν, καλεῖται δὲ μείζων. Ἡ ΜΞ ἄρα ἄλογός ἐστιν ἡ καλουμένη μείζων, καὶ δύναται τὸ ΑΓ χωρίον: ὅπερ ἔδει δεῖξαι. If an area be contained by a rational straight line and the fourth binomial, the “side” of the area is the irrational straight line called major. For let the area AC be contained by the rational straight line AB and the fourth binomial AD divided into its terms at E, of which terms let AE be the greater; I say that the “side” of the area AC is the irrational straight line called major. For, since AD is a fourth binomial straight line, therefore AE, ED are rational straight lines commensurable in square only, the square on AE is greater than the square on ED by the square on a straight line incommensurable with AE, and AE is commensurable in length with AB. [X. Deff. II. 4] Let DE be bisected at F, and let there be applied to AE a parallelogram, the rectangle AG, GE, equal to the square on EF; therefore AG is incommensurable in length with GE. [X. 18] Let GH, EK, FL be drawn parallel to AB, and let the rest of the construction be as before; it is then manifest that MO is the “side” of the area AC. It is next to be proved that MO is the irrational straight line called major. Since AG is incommensurable with EG, AH is also incommensurable with GK, that is, SN with NQ; [VI. 1, X. 11] therefore MN, NO are incommensurable in square. And, since AE is commensurable with AB, AK is rational; [X. 19] and it is equal to the squares on MN, NO; therefore the sum of the squares on MN, NO is also rational. And, since DE is incommensurable in length with AB, that is, with EK, while DE is commensurable with EF, therefore EF is incommensurable in length with EK. [X. 13] Therefore EK, EF are rational straight lines commensurable in square only; therefore LE, that is, MR, is medial. [X. 21] And it is contained by MN, NO; therefore the rectangle MN, NO is medial. And the [sum] of the squares on MN, NO is rational, and MN, NO are incommensurable in square. But, if two straight lines incommensurable in square and making the sum of the squares on them rational, but the rectangle contained by them medial, be added together, the whole is irrational and is called major. [X. 39]

index prev next | digilib folio 224