If two medial straight lines commensurable in square only and containing a rational rectangle be added together, the whole is irrational; and let it be called a first bimedial straight line.

Ἐὰν δύο μέσαι δυνάμει μόνον σύμμετροι συντεθῶσι ῥητὸν περιέχουσαι, ἡ ὅλη ἄλογός ἐστιν, καλείσθω δὲ ἐκ δύο μέσων πρώτη. Συγκείσθωσαν γὰρ δύο μέσαι δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ ῥητὸν περιέχουσαι: λέγω, ὅτι ὅλη ἡ ΑΓ ἄλογός ἐστιν. Ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, καὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ ἄρα ἀσύμμετρά ἐστι τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: καὶ συνθέντι τὰ ἀπὸ τῶν ΑΒ, ΒΓ μετὰ τοῦ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, ὅπερ ἐστὶ τὸ ἀπὸ τῆς ΑΓ, ἀσύμμετρόν ἐστι τῷ ὑπὸ τῶν ΑΒ, ΒΓ. ῥητὸν δὲ τὸ ὑπὸ τῶν ΑΒ, ΒΓ: ὑπόκεινται γὰρ αἱ ΑΒ, ΒΓ ῥητὸν περιέχουσαι: ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ: ἄλογος ἄρα ἡ ΑΓ, καλείσθω δὲ ἐκ δύο μέσων πρώτη: ὅπερ ἔδει δεῖξαι. | If two medial straight lines commensurable in square only and containing a rational rectangle be added together, the whole is irrational; and let it be called a first bimedial straight line. For let two medial straight lines AB, BC commensurable in square only and containing a rational rectangle be added together; I say that the whole AC is irrational. For, since AB is incommensurable in length with BC, therefore the squares on AB, BC are also incommensurable with twice the rectangle AB, BC; [cf. X. 36, ll. 9-20] and, componendo, the squares on AB, BC together with twice the rectangle AB, BC, that is, the square on AC [II. 4], is incommensurable with the rectangle AB, BC. [X. 16 ] But the rectangle AB, BC is rational, for, by hypothesis, AB, BC are straight lines containing a rational rectangle; therefore the square on AC is irrational; therefore AC is irrational. [X. Def. 4 ] |