## Book I, Proposition 43

In any parallelogram the complements of the parallelograms about the diameter are equal to one another.

 Παντὸς παραλληλογράμμου τῶν περὶ τὴν διάμετρον παραλληλογράμμων τὰ παραπληρώματα ἴσα ἀλλήλοις ἐστίν. Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ, διάμετρος δὲ αὐτοῦ ἡ ΑΓ, περὶ δὲ τὴν ΑΓ παραλληλόγραμμα μὲν ἔστω τὰ ΖΘ, ΖΗ, τὰ δὲ λεγόμενα παραπληρώματα τὰ ΒΚ, ΚΔ: λέγω, ὅτι ἴσον ἐστὶ τὸ ΒΚ παραπλήρωμα τῷ ΚΔ παραπληρώματι. Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ, διάμετρος δὲ αὐτοῦ ἡ ΑΓ, ἴσον ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΑΓΔ τριγώνῳ. πάλιν, ἐπεὶ παραλληλόγραμμόν ἐστι τὸ ΕΘ, διάμετρος δὲ αὐτοῦ ἐστιν ἡ ΑΚ, ἴσον ἐστὶ τὸ ΑΕΚ τρίγωνον τῷ ΑΘΚ τριγώνῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ ΚΖΓ τρίγωνον τῷ ΚΗΓ ἐστιν ἴσον. ἐπεὶ οὖν τὸ μὲν ΑΕΚ τρίγωνον τῷ ΑΘΚ τριγώνῳ ἐστὶν ἴσον, τὸ δὲ ΚΖΓ τῷ ΚΗΓ, τὸ ΑΕΚ τρίγωνον μετὰ τοῦ ΚΗΓ ἴσον ἐστὶ τῷ ΑΘΚ τριγώνῳ μετὰ τοῦ ΚΖΓ: ἔστι δὲ καὶ ὅλον τὸ ΑΒΓ τρίγωνον ὅλῳ τῷ ΑΔΓ ἴσον: λοιπὸν ἄρα τὸ ΒΚ παραπλήρωμα λοιπῷ τῷ ΚΔ παραπληρώματί ἐστιν ἴσον. Παντὸς ἄρα παραλληλογράμμου χωρίου τῶν περὶ τὴν διάμετρον παραλληλογράμμων τὰ παραπληρώματα ἴσα ἀλλήλοις ἐστίν: ὅπερ ἔδει δεῖξαι. In any parallelogram the complements of the parallelograms about the diameter are equal to one another. Let ABCD be a parallelogram, and AC its diameter; and about AC let EH, FG be parallelograms, and BK, KD the so-called complements; I say that the complement BK is equal to the complement KD. For, since ABCD is a parallelogram, and AC its diameter, the triangle ABC is equal to the triangle ACD. [I. 34] Again, since EH is a parallelogram, and AK is its diameter, the triangle AEK is equal to the triangle AHK. For the same reason the triangle KFC is also equal to KGC. Now, since the triangle AEK is equal to the triangle AHK, and KFC to KGC, the triangle AEK together with KGC is equal to the triangle AHK together with KFC. [C.N. 2] And the whole triangle ABC is also equal to the whole ADC; therefore the complement BK which remains is equal to the complement KD which remains. [C.N. 3] Therefore etc.