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Abstract. We report briefly on the present state of the trace formula and
some of its applications.

This article is a summary of the two hour presentation/discussion on the trace
formula. The proposed topic was very broad. It included a recapitulation of the
trace formula, past and present, as well as an outlook for its future. The article
will treat these matters in only the most concise terms.

I include just two references,

J. Arthur, An introduction to the trace formula, in Harmonic Analysis, the Trace
Formula and Shimura Varieties, Clay Mathematics Proceedings, Volume 4, 2005,
American Mathematical Society, p. 1–263.

and

R. Langlands, Un nouveau point de repère dans la théorie des formes automorphes,
to appear in Canad. Math. Bull.

The first of these is a general (and detailed) introduction to the trace formula and
related topics. It contains references to just about everything discussed in this
article. The second is a review by Langlands of his ideas for possible application
of the trace formula to the general principle of functoriality. We shall discuss this
topic at the end of the article.

1. Invariant trace formula

Let G be a connected reductive algebraic group over a global field F of charac-
teristic 0. Then G(F ) embeds as a discrete subgroup of the locally compact adelic
group G(A). We write R for the unitary representation of G(A) on L2

(
G(F )\G(A)

)
by right translation. For any function f in the global Hecke algebra H(G) (with
respect to a suitable maximal compact subgroup K ⊂ G(A)), the average

R(f) =
∫

G(A)

f(y)R(y)dy
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is an integral operator on G(F )\G(A), with kernel

K(x, y) =
∑

γ∈G(F )

f(x−1γy).

Suppose for a moment that G(F )\G(A) is compact. Then R decomposes dis-
cretely into a direct sum of irreducible representations, each occuring with finite
multiplicity. The operator R(f) in this case is of trace class, and

tr
(
R(f)

)
=

∫
G(F )\G(A)

K(x, x)dx.

In addition, any element γ ∈ G(F ) is semisimple. Let Gγ denote the identity
component of its centralizer in G. Then the quotient of Gγ(A) by Gγ(F ) is compact,
and f(x−1γx) is integrable as a function of x in Gγ(A)\G(A). These facts are all
closely related. Taken together, they lead to an identity

(1.1)
∑

γ∈Γ(G)

aG(γ)fG(γ) =
∑

π∈Π(G)

aG(π)fG(π),

where Γ(G) denotes the set of conjugacy classes G(F ), and Π(G) is a set of equiv-
alence classes of irreducible unitary representations of G(A). For any γ and π,

aG(γ) = vol
(
Gγ(F )\Gγ(A)

)
and

aG(π) = mult(π,R),

while

fG(γ) =
∫

Gγ(A)\G(A)

f(x−1γx)dx

is the invariant orbital integral of f at γ, and

fG(π) = tr
(
π(f)

)
is the irreducible character of f at π. This identity is known as the Selberg trace
formula for compact quotient. It was apparently introduced by Selberg only after he
had established his considerably more sophisticated trace formula for noncompact
arithmetic quotients of SL(2, R).

In general, G(F )\G(A) is not compact. Then the properties on which the
proof of (1.1) rests break down. In particular, R has a continuous spectrum, and
R(f) is not of trace class. Moreover, elements γ ∈ G(F ) may not be semisimple,
Gγ(F )\Gγ(A) need not be compact or even have finite volume, and f(x−1γx) need
not be integrable over x in Gγ(A)\G(A). It thus becomes much more difficult to
establish a trace formula in general. The failure of the various properties leads to
several kinds of divergence, in integrals of terms in both the geometric and spectral
expansions of K(x, x). However, it turns out that the geometric and spectral sources
of divergence are parallel. To make a long story short, one finds that they cancel
each other, in some natural sense. The final result is an explicit trace formula,
whose terms are parametrized by Levi subgroups M of G (taken up to conjugacy).
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Theorem (Invariant trace formula). There is an identity∑
M

|W (M)|−1
∑

γ∈Γ(M)

aM (γ)IM (γ, f)(1.2)

=
∑
M

|W (M)|−1

∫
Π(M)

aM (π)IM (π, f)dπ,

for invariant linear forms IM (γ, f) and IM (π, f) in f ∈ H(G), and coefficients
aM (γ) and aM (π).

The set W (M) here is the Weyl group of G with respect to the split part
AM of the center of M , while dπ is a natural (but rather complicated) measure
on Π(M), which has both a continuous and a discrete part. If M = G, IM (∗, f)
equals the linear form fG(∗), which we recall is either an invariant orbital integral
or an irreducible (invariant) character. If M 6= G, however, IM (∗, f) is a more
complicated invariant linear form, built out of a combination of weighted orbital
integrals and weighted characters. (We recall that a linear form I on H(G) is
invariant if I(f1 ∗ f2) equals I(f2 ∗ f1) for every f1 and f2.) The coefficients aM (γ)
and aM (π) depend only on M . They are essentially as before (in case M = G) if γ
is an elliptic semisimple class in G(F ) or π is an irreducible representation of G(A)
that occurs in the discrete spectrum. However, they are more elaborate for general
γ and π.

In the interest of simplicity, we have suppressed two technical matters from the
notation (1.2). The left hand side really depends implicitly on a large finite set
V of valuations of F . This reflects the lack of a theory for (invariant) unipotent
orbital integrals over G(A). In addition, the convergence of the sum-integral on the
right hand side is conditional, at least insofar as matters are presently understood.
These difficulties are in some sense parallel to each other. It would be interesting
to resolve then, but they are not an impediment to present day applications of the
trace formula.

There is one part of the invariant trace formula (1.2) that is particularly relevant
to applications. It is the discrete part, defined as the contribution of the discrete
part of the measure dπ to the term with M = G on the spectral side. It satisfies
the explicit formula

(1.3)
∑
M

|W (M)|−1
∑

w∈W (M)reg

|det(1− w)aM /aG
|−1tr

(
MP (w)IP (f)

)
,

expressed in standard notation. In particular, IP is the representation of G(A)
induced parabolically from the discrete spectrum of L2

(
M(F )A+

M,∞\M(A)
)
, while

MP (w) is the global intertwining operator attached to the Weyl element w. The
sum over M in (1.3) is of course different from that of (1.2), since it represents only
a piece of the term with M = G in (1.2). The term with M = G in (1.3) gives
the discrete spectrum for G, which is of course where the applications are aimed.
However, in the comparison of trace formulas, one cannot separate this term from
the larger sum over M .

2. Stable trace formula

For the comparison of trace formulas on different groups, one needs a refinement
of the invariant trace formula, known as the stable trace formula. Stability is a local
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concept, which was introduced by Langlands. It is based on the three basic notions
of stable conjugacy class, stable orbital integral, and stable linear form.

Suppose that v is a valuation of F . We consider elements γv ∈ G(Fv) that
are strongly G-regular, in the sense that their centralizers in G are tori. Recall
two such elements are said to be stably conjugate if they are conjugate over G(F v).
Any strongly G-regular stable conjugacy class δv ∈ ∆G-reg(Gv) is a finite union of
G(Fv)-conjugacy classes {γv}. The stable orbital integral of a function fv ∈ H(Gv)
at δv is the corresponding sum

fG
v (δv) =

∑
γv

fv,G(γv)

of invariant orbital integrals. Lastly, a linear form Sv on the local Hecke algebra
H(Gv) of Gv = G/Fv is said to be stable if Sv(fv) depends only on the function

fG
v : ∆G-reg(Gv) −→ C

defined by the stable orbital integrals of fv. In other words,

Sv(fv) = Ŝv(fG
v ), fv ∈ H(Gv),

for a linear form Ŝv on the space

S(Gv) =
{
fG

v : fv ∈ H(Gv)
}
.

Suppose that G′
v is an endoscopic datum for G over Fv, a notion we shall recall

presently (but only in the briefest of terms). We assume for simplicity that G′
v

comes with an L-embedding LG′
v ⊂ LGv of its L-group into that at Gv. This is

something that can always be arranged if, for example, the derived group of G is
simply connected.

Given G′
v, Langlands and Shelstad have introduced a transfer mapping fv → f ′v

from functions fv ∈ H(Gv) to functions f ′v on ∆G-reg(G′
v). It is defined by a sum

f ′v(δ′v) =
∑
γv

∆(δ′v, γv)fv,G(γv), δ′v ∈ ∆G-reg(G′
v),

where γv ranges over the set ΓG-reg(Gv) of strongly G-regular conjugacy classes,
and

∆ : ∆G-reg(G′
v)× ΓG-reg(Gv) −→ C

is a Langlands-Shelstad transfer factor. We recall that ∆(δ′v, γv) is a complicated
but ultimately quite explicit function, which for any δ′v vanishes for all but finitely
many γv.

Conjecture (Langlands, Shelstad). For any fv ∈ H(Gv), the function f ′v = f
G′

v
v

lies in the space S(G′
v).

There is a famous (even notorious) variant of the Langlands-Shelstad conjec-
ture, known as the fundamental lemma. It applies to the case that Gv is unramified,
which is to say that v is p-adic, and that the group Gv = G/Fv is quasisplit and
split over an unramified extension of Fv.

Variant (Fundamental lemma). Assume that Gv is unramified, and that fv is the
characteristic function of a hyperspecial maximal compact subgroup Kv ⊂ G(Fv).
Then f ′v equals h

G′
v

v , where hv is the characteristic function of a hyperspecial max-
imal compact subgroup K ′

v ⊂ G′(Fv).
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Theorem (Shelstad). The Langlands-Shelstad transfer conjecture holds if v is
archimedean.

Theorem (Waldspurger). The fundamental lemma implies the Langlands-Shelstad
transfer conjecture for any p-adic v.

Assume that the fundamental lemma is valid, and that G′ is an endoscopic
datum for G over F . Then the correspondence

f =
∏
v

fv −→ f ′ =
∏
v

f ′v

extends to a global transfer mapping from H
(
G(A)

)
to the global stable Hecke

space S
(
G′(A)

)
. Notice that the fundamental lemma has a dual role here. It is

the required hypothesis for Waldspurger’s theorem. But it also tells us that f ′ is
globally smooth, in the sense that at almost all places v, it is the image of the
characteristic function of a hyperspecial maximal compact subgroup of G′(Fv).

As promised, we include a few remarks on the notion of endoscopic datum. We
confine these comments to the global case, in which we regard G as a group over
the global field F . Recall first that the L-group LG of G is a semidirect product
Ĝ o Γ of the complex dual group Ĝ of G with the Galois group Γ = ΓF of F/F .
An endoscopic datum for G over F is a quasisplit group G′ over F , together with
a semisimple element s′ ∈ Ĝ such that

(i) Ĝ′ = Cent(s′, Ĝ)0

and
(ii) LG′ ⊂ Cent(s′, LG).

We retain here our simplifying convention that G′ comes with an L-embedding of
LG′ into LG. This embedding has to satisfy (ii), a constraint that still leaves room
for a choice beyond that of the semisimple element s′. Recall also that G′ is elliptic
if the image of LG′ is not contained in any proper Levi subgroup LM of LG. There
is a natural notion of isomorphism of endoscopic data, and we write Eell(G) for the
set of isomorphism classes of elliptic endoscopic data for G.

Examples (Quasi-split orthogonal and symplectic groups).

G = SO(2n + 1), Ĝ = Sp(2n, C),(i)

Ĝ′ = Sp(2m, C)× Sp(2n− 2m, C),

G′ = SO(2m + 1)× SO(2n− 2m + 1).

G = Sp(2n), Ĝ = SO(2n + 1, C),(ii)

Ĝ′ = SO(2m + 1, C)× SO(2n− 2m, C),

G′ = Sp(2m)× SO(2n− 2m).

G = SO(2n), Ĝ = SO(2n, C),(iii)

Ĝ′ = SO(2m, C)× SO(2n− 2m, C),

G′ = SO(2m)× SO(2n− 2m).
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In each case, s′ is an element in Ĝ with (s′)2 = 1. In (i), its centralizer in Ĝ is
connected, and both G and G′ are split. In (ii) and (iii), however, the centralizer of
s′ has two connected components (except when s′ is central). There is consequently
a further choice to be made in that of the group LG′. This amounts to a choice of
an automorphic character η′ for F with (η′)2 = 1, which specifies G′ as a quasisplit
group over F . In cases that Ĝ′ has a factor SO(2, C), one must in fact take a
nontrivial outer twist in order for G′ to be elliptic. With this proviso, the list of G′

in each case gives a complete set of representatives of Eell(G).
There is a generalization of the fundamental lemma, which applies to weighted

orbital integrals of the characteristic function of a hyperspecial maximal compact
subgroup. We assume it, without giving the precise statement, in what follows.

Theorem 2.1 (Stable trace formula). (a) There is a decomposition

(2.1) Idisc(f) =
∑

G′∈Eell(G)

ι(G, G′)Ŝ′disc(f
′)

of Idisc(f), for stable linear forms S′disc = SG′

disc on H(G′), and explicit coefficients
ι(G, G′).

(b) If G is quasisplit (which is to say that G itself represents an element in
Eell(G)), SG

disc(f) is the discrete part of a stable trace formula∑
M

|W (M)|−1
∑

δ∈∆(M)

bM (δ)SM (δ, f)(2.2)

=
∑
M

|W (M)|−1

∫
Φ(M)

bM (φ)SM (φ, f)dφ,

an identity that is parallel to the invariant trace formula, and whose terms are stable
linear forms.

The proof of (b) comes first. It is very elaborate. All of the terms in (2.2) are
defined inductively by setting up analogues of (2.1) for the corresponding terms in
the invariant trace formula (1.2). The identity (2.1) in (a) comes at the very end
of the process, as a consequence of the corresponding identities for all of the other
terms, and the invariant trace formula.

The identity (2.1) is what one brings to applications. How useful is it? Well,
taken on its own, it has definite limitations. Suppose for example that G is quasisplit
(such as one of the groups SO(2n + 1), Sp(2n) and SO(2n) whose endoscopic data
we described above). Then (2.1) represents only an inductive definition of the
summands on the right hand side, in terms of the explicit formula (1.3) for the left
hand side. All it says is that the term SG

disc(f) with G′ = G in (2.1), expressed
by means of Idisc(f) and the other terms on the right hand side, is stable. An
interesting result, no doubt, but certainly not enough to classify the representations
that make up the terms in Idisc(f).

The solution, at least for many classical groups, is to combine (2.1) with a
similar identity that applies to twisted groups. By a twisted group, we shall mean a
pair G = (G0, θ), where θ is an automorphism of G0 over F . In this case, we take
f to be an element in the Hecke space H(G) of functions on G(A) = G0(A) o θ.

Much of the discussion above carries over to twisted groups. For example, the
twisted version of the invariant trace formula (1.2) has been established. Its discrete
part Idisc(f) takes the form (1.3), with the terms interpreted as twisted induced
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representations and twisted intertwining operators. Twisted versions of endoscopic
data also make sense. Given the twisted analogue of our earlier simplifying con-
vention, a twisted endoscopic datum for G over F is a quasisplit group G′ over F ,
together with a semisimple element s′ in the set Ĝ = Ĝ0 o θ̂, such that

(i) Ĝ′ = Cent(s′, Ĝ0)0

and
(ii) LG′ ⊂ Cent(s′, LG0).

Kottwitz and Shelstad have constructed twisted transfer factors, which they use to
define a local correspondence fv → f ′v from H(Gv) to functions on ∆G-reg(G′

v).
It is expected that the identity (2.1) will remain valid as stated for a general

twisted group G = (G0, θ). The proof will require a twisted fundamental lemma,
and its generalization to twisted weighted orbital integrals. It also calls for twisted
versions of the theorems of Shelstad and Waldspurger stated above. Finally, it
will require a stabilization of the twisted trace formula for G. This has not been
done, although many of the techniques that lead to the stabilization of the standard
invariant trace formula should carry over in some form.

We note that there has been much recent progress on the fundamental lemma.
Laumon and Ngo are now working from a very broad perspective, following geo-
metric ideas introduced by Goresky, Kottwitz and MacPherson. This has lead to a
proof of the standard fundamental lemma for the group G = U(n), and will proba-
bly go considerably further. D. Whitehouse has used special methods to establish
all forms of the fundamental lemma for endoscopic data of the twisted form of
GL(4).

3. Classical groups

We describe work in progress on the automorphic representations of quasisplit
orthogonal and symplectic groups. These are the groups whose endoscopic data we
described in the three examples above. We first look at a fourth example, that of
twisted endoscopic data G for general linear groups G̃.

Example. G̃ = (G̃0, θ), G̃0 = GL(N), θ(x) = tx−1,̂̃
G = ̂̃

G0 o θ̂ = GL(N, C) o θ̂,

Ĝ = SO(N+, C)× Sp(N−, C), N = N+N−

G =

{
SO(N+)× SO(N− + 1), if N+ is even,
Sp(N+ − 1)× SO(N− + 1), if N+ is odd.

We take

θ̂(x) = J̃−1 tx−1J̃ , J̃ =


0 1

−1
. . .

(−1)N 0

 ,

for the dual automorphism, since it stabilizes the standard splitting of GL(N). The
semisimple element attached to G is of the form

s =

±1 0
. . .

0 ±1

 o θ̂.
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The centralizer of s in ̂̃
G0 has two connected components (unless N+ = 0), so there

is a further choice to be made in that of the subgroup LG of LG̃0. If N+ is even,
this serves to define the factor SO(N+) of G as quasisplit group over F . If N+ is
odd, it serves only to define the embedding of LG into LG̃0, since G must be split.
In either case, the supplementary choice is tantamount to that an automorphic
character η for F with η2 = 1. Like in the earlier examples, η must be nontrivial
if N+ = 2 if G is to be elliptic. With this proviso, our list of G gives a complete
set of representatives of the set Eell(G̃) of isomorphism classes of elliptic (twisted)
endoscopic data for G̃. We shall say that G ∈ Eell(G̃) is simple if it has only one
factor, which is to say that N equals either N+ or N−, in the notation above. In
the first case, Ĝ equals SO(N, C) and G equals SO(N) or Sp(N − 1), according
to whether N is even or odd. In the second case, Ĝ equals Sp(N, C) and G equals
SO(N + 1). Simple endoscopic data play a special role, since one would expect to
apply induction arguments to the factors of any G ∈ Eell(G̃) that is not simple.

The problem, then, is to try to classify the automorphic representations of a
group G that represents a simple endoscopic datum for G̃ = GL(N) o θ. We have
at our disposal the identity

(i) Idisc(f) =
∑

G′∈Eell(G)

ι(G, G′)ŜG
disc(f

′), f ∈ H(G),

for any G ∈ Eell(G), and its twisted analogue

(ii) Idisc(f̃) =
∑

G∈Eell(G̃)

ι(G̃, G)ŜG
disc(f̃

G), f̃ ∈ H(G̃),

for G̃. This is the raw material we have to work with. It consists of the original
explicit formulas for the left hand sides of (i) and (ii), the inductive definition of
SG

disc(f) provided by the right hand side of (i), and the explicit identity among these
distributions provided by the right hand side of (ii).

The goal is to describe representations of G in terms of the self dual represen-
tations of G̃0 = GL(N). Since the argument is based on the trace formula, it is
focused on all of the automorphic representations in the spectral decomposition.
This means that generic representations will have no special role in the proof. In
general, both the trace formula and the endoscopic transfer of functions are theories
that are founded on characters. Any classification to which they might lead has
also to be characer theoretic. This is probably a necessary condition for a proper
understanding of the zeta functions and cohomology of Shimura varieties.

The argument is long. However, it also seems to be very natural. Here are
some fundamental properties of representations that must be brought to bear on
the identities (i) and (ii).

(1) The classification of isobaric representations of GL(N) (Jacquet-Shalika),
which generalizes the theorem of strong multiplicity one.

(2) The classification of automorphic representations that occur in the spectral
decomposition of GL(N) (Moeglin-Waldspurger).

(3) The local Langlands classification for GL(N) (Harris-Taylor, Henniart).
(4) Trace identities for normalized intertwining operators (beginning with work

of Shahidi).
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(5) Twisted orthogonality relations, which follow from the twisted form of the
local trace formula.

(6) Duality for representations of p-adic groups.

To this mix, we must also add the indisputable (but critical) fact that an irreducible
representation in the automorphic discrete spectrum occurs with positive, integral
multiplicty!

I will not state the theorems that are likely to follow from this analysis. Let
me just say that for a quasisplit orthogonal or symplectic group G, they include
the following results.

(1) A description of local and global representations of G in terms of packets
(L-packets, A-packets).

(2) A classification of the expected counterexamples of the analogue of Ra-
manujan’s conjecture for G.

(3) A formula for the multiplicity of an irreducible representation in the au-
tomorphic discrete spectrum of G.

(4) The local Langlands correspondence for G (up to automorphisms in the
case G = SO(2n)).

(5) Proof of functoriality for the L-embeddings LG′ ⊂ LG and LG ⊂ LG̃0.
This in turn implies basic properties of Rankin-Selberg L-functions for
representations of G.

(6) Proof of conjectural properties of symmetric square L-functions L(s, π, S2)
(and skew-symmetric square L-functions L(s, π, Λ2)), and of orthogonal
root numbers ε( 1

2 , π1 × π2).

Finally, let me add the likelihood of establishing the conjectured existence of Whitaker
models for certain representations of G. That this should then follow from the
work of Cogdell, Kim, Piatetskii-Shapiro and Shahidi, and of Ginzburg, Rallis and
Soudry, has been pointed out by Rallis and Shahidi. It thus appears that the two
general approaches to the study of automorphic forms, L-functions and the trace
formula, might in fact be complementary.

4. Beyond endoscopy

I was asked to include some discussion of Langlands’ recent ideas for a gen-
eral study of the principle of functoriality. The conjectural theory of endoscopy,
represented in small part by our discussion above, is really aimed at the internal
structure of representations of a given group. Its application to the principle of
functoriality is incidental, and quite limited. In it most general form, the theory
applies only to an endoscopic embedding

ξ′ : LG′ −→ LG

of L-groups, where G′ represents a (twisted) endoscopic datum for G (relative to an
outer automorphism θ). One would hope to compare the (twisted) trace formula for
G with stable trace formulas for groups G′, using the Langlands-Shelstad-Kottwitz
transfer f → f ′ of functions.

Suppose now that G and G′ are arbitrary reductive groups over F , and that

ρ : LG′ −→ LG
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is an arbitrary embedding of their L-groups. Are there trace formulas for G and
G′ that one can compare? How might one transfer a function f ∈ H(G) from G to
G′?

What is needed is some sort of trace formula for G that applies only to a part
of the discrete spectrum. One would like a trace formula that counts only those
automorphic representations π of G that are tempered and cuspidal, and more to
the point, are functorial transfers from G′. Now, the question of whether π is as a
functorial transfer should be reflected in the analytic behaviour of its automorphic
L-functions L(s, π, r), for finite dimensional representations

r : LG −→ GL(N, C).

Specifically, one should be able to characterize those π that come from G′, perhaps
up to some measurable obstruction, in terms of the orders of poles of L-functions
L(s, π, r) at s = 1. One can thus pose an alternate problem as follows. For a given
r, find a trace formula in which the contribution of π is weighted by the order of the
pole of L(s, π, r) at s = 1. This is still a very tall order. For among other things,
we are far from knowing even that L(s, π, r) has meromorphic continuation.

In any case, suppose that r is fixed, and that π is a tempered, cuspidal auto-
morphic representation of G. The partial Euler product

LV (s, π, r) =
∏
v 6∈V

det
(
1− r

(
c(πv)

)
q−s
v

)−1
,

defined for any finite set V of valuations of F that contains the set Sram(π, r) at
which either π or r ramify, converges if Re(s) > 1. Suppose that this function also
has meromorphic continuation to the line Re(s) = 1. Then the nonnegative integer

n(π, r) = res
s=1

(
− d

ds
log LV (s, π, r)

)
is defined, and is equal to the order of the pole at s = 1 of LV (s, π, r). If Re(s) > 1,
we have

− d
ds

log LV (s, π, r)

=
∑
v 6∈V

d
ds

log
(
det

(
1− r

(
c(πv)

)
q−s
v

))
=

∑
v 6∈V

∞∑
k=1

log(qv)tr
(
r
(
c(πv)

)k)
q−ks
v .

It then follows from the Wiener-Ikehara tauberian theorem that

n(π, r) = lim
N→∞

( 1
N

∑
{v 6∈V :qv≤N}

log(qv)tr
(
r
(
c(πv)

))
.

Suppose that f ∈ H(G) is fixed, and is unramified outside of V . For any N ,
define a function hV

N in the unramified Hecke algebra H(GV ,KV ) for G(AV ) by
setting

tr
(
hV

N (πV )
)

=
∑

{v 6∈V :qv≤N}

log(qv)tr
(
r
(
c(πv)

))
,
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for any unramified representation

πV =
⊗
v 6∈V

πv

of G(AV ). We use this to form a new function fr
N in H(G) by setting

fr
N (x) = f(x)hV

N (xV ), x ∈ G(A).

Here xV is the projection of x onto G(AV ). We then have a limit formula

(4.1)
∑

π

n(π, r)mtemp,cusp(π)fG(π) = lim
N→∞

( 1
N

tr
(
Rtemp,cusp(fr

N )
))

,

where Rtemp,cusp is the regular representation of G(A) on the tempered, cuspidal
part of the discrete spectrum of L2

(
G(F )A+

G,∞\G(A)
)
, and mtemp,cusp(π) is the

multiplicity of π in Rtemp,cusp.
The formula (4.1) holds under the assumption that for each π with mtemp,cusp(π)

positive, LV (s, π, r) has meromorphic continuation to the line Re(s) = 1. Lang-
lands’ proposal, which he has called a “pipe dream”, is to try to show that the limit
exists without this assumption. The linear form

Itemp,cusp(fr
N ) = tr

(
Rtemp,cusp(fr

N )
)

can be regarded as a piece of Idisc(fr
N ), and hence as a part of the invariant trace

formula. The idea would be to prove that the limit

Ir
temp,cusp(f) = lim

N→∞

( 1
N

Itemp,cusp(fr
N )

)
exists, by establishing corresponding limits for all of the other terms in the invariant
trace formula. The resulting formula Ir

temp,cusp(f) would then be a trace formula
for those π with n(π, r) > 0.

It is better to think of these ideas in the context of the stable trace formula. Let
Stemp,cusp(fr

N ) be the tempered, cuspidal part of the stable trace formula (evaluated
at fr

N ). By this, I mean the contribution to Sdisc(fr
N ) from global L-packets of

tempered cuspidal representations.
I take the liberty of dividing the implications of Langlands’ proposal, as they

apply here, into three parts.

Pipe Dream (a). Prove that the limit

Sr
temp,cusp(f) = lim

N→∞

( 1
N

Stemp,cusp(fr
N )

)
exists, by establishing corresponding limits for all of the other terms in the stable
trace formula.

A solution of (a) would give a stable trace formula for Sr
temp,cusp(f), though it

would undoubtedly be very complicated. Whatever its nature, such a formula is
unlikely to be of much use in isolation. One would also need something with which
to compare it.

Assume that the local Langlands classification holds for G. This means (among
other things) that for any v, the stable Hecke algebra S(Gv) may be regarded as
a Paley-Wiener space on the set Φtemp(Gv) of tempered Langlands parameters φv

for Gv. Given an L-embedding ρ, whose domain G′ also satisfies this assumption,
we define local mappings

fv −→ fρ
v
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from H(Gv) to S(G′
v) by setting

fρ
v (φ′v) = fG

v (ρ ◦ φ′v), φ′v ∈ Φtemp(G′
v).

We can then form the global mapping

f =
∏
v

fv −→ fρ =
∏
v

fρ
v

from H(G)v to S(G′). It is appropriate to call this mapping functorial transfer of
functions, since it is quite different from endoscopic transfer f → f ′, even when ρ
happens to be an endoscopic embedding.

Pipe dream (b). Given r, prove that

Sr
temp,cusp(f) =

∑
ρ

σ(r, ρ)Ŝtemp,cusp(fρ),

for Ĝ-conjugacy classes of elliptic embeddings ρ, with coefficients σ(r, ρ).

The focus is here slightly at odds with that of Langlands, insofar as r is fixed.
It has the attraction of showing off some formal similarities with the theory of
endoscopy, even if they may not be entirely appropriate. In the end, however, one
will have to try to invert the identity of (b).

Pipe dream (c). Establish the principle of functoriality from (b) by allowing r to
vary.
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