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The Embedded Eigenvalue Problem for Classical Groups

James Arthur

This paper is dedicated to Freydoon Shahidi on the occasion of his sixtieth birthday.

Abstract. We report briefly on an endoscopic classification of representations
by focusing on one aspect of the problem, the question of embedded Hecke
eigenvalues.

1. The problem for G

By “eigenvalue”, we mean the family of unramified Hecke eigenvalues of an
automorphic representation. The question is whether there are any eigenvalues
for the discrete spectrum that are also eigenvalues for the continuous spectrum.
The answer for classical groups has to be part of any general classification of their
automorphic representations.

The continuous spectrum is to be understood narrowly in the sense of the spec-
tral theorem. It corresponds to representations in which the continuous induction
parameter is unitary. For example, the trivial one-dimensional automorphic repre-
sentation of the group SL(2) does not represent an embedded eigenvalue. This is
because it corresponds to a value of the one-dimensional induction parameter at a
nonunitary point in the complex domain. For general linear groups, the absence of
embedded eigenvalues has been known for some time. It is a consequence of the
classification of Jacquet-Shalika [JS] and Moeglin-Waldspurger [MW]. For other
classical groups, the problem leads to interesting combinatorial questions related
to the endoscopic comparison of trace formulas.

We shall consider the case that G is a (simple) quasisplit symplectic or special
orthogonal group over a number field F . Suppose for example that G is split and
of rank n. The continuous spectrum of maximal dimension is then parametrized by
n-tuples of (unitary) idele class characters. Is there any n-tuple whose unramified
Hecke eigenvalue family matches that of an automorphic representation π in the
discrete spectrum of G? The answer is no if π is required to have a global Whittaker
model. This follows from the work of Cogdell, Kim, Piatetskii-Shapiro and Shahidi
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[CKPS]. Any such π will automatically have a local Whittaker model at each
place. However, it is by no means clear that π must also have a global Whittaker
model. In fact, the general existence of global Whittaker models appears to be
dependent on some a priori classification of the full discrete spectrum of G.

Our discussion of the embedded eigenvalue problem can therefore be regarded
as a short introduction to the larger question of the endoscopic classification of
representations. It represents an attempt to isolate a manageable part of a broader
topic, which at the same time illustrates some of the basic techniques. These
techniques rest on a comparison of trace formulas on different groups.

2. A distribution and its stabilization

It is the discrete part of the trace formula that carries the information about
automorphic representations. This is by definition the linear form

(1) IGdisc(f) =
∑

M

|W (M)|−1
∑

w∈W (M)reg

| det(w − 1)|−1tr
(
MP (w)IP (f)

)
,

for a test function f ∈ C∞
c

(
G(A)

)
on G(A). We recall thatM ranges over the finite

set of conjugacy classes of Levi subgroups of G, that

W (M) = NormG(AM )/M

is the Weyl group ofM over F , and thatW (M)reg is the set of elements w ∈W (M)
such that the determinant of the associated linear operator

(w − 1) = (w − 1)
a
G
M

is nonzero. As usual,
IP (f) = IP (0, f), P ∈ P(M),

is the representation of G(A) on the Hilbert space

HP = L2
disc

(
NP (A)M(Q)A+

M,∞\G(A)
)

induced parabolically from the discrete spectrum of M , while

MP (w) : HP−→HP

is the global intertwining operator attached to w. Recall that

A+
M,∞ = (RF/QAM )(R)0

is a central subgroup of M(A) such that the quotient

M(F )A+
M,∞\M(A)

has finite invariant volume.
This is the core of the trace formula. It includes what one hopes ultimately to

understand, the automorphic discrete spectrum

HG = L2
disc

(
G(Q)\G(A)

)

of G. Indeed, the term with M = G is simply the trace of the right convolution
operator of f on this space. The summands for smallerM represent contributions of
Eisenstein series to the trace formula. They are boundary terms, which arise from
the truncation methods required to deal with the noncompactness of the quotient
G(Q)\G(A). The operatorsMP (w) are of special interest, being at the heart of the
theory of Eisenstein series. It was their study that led to the Langlands-Shahidi
method, and much recent progress in the theory of automorphic L-functions.
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With its classical ingredients, the expression for IGdisc(f) is remarkably simple.
There are of course other terms in the trace formula, some of which are quite
complex. We shall not discuss them here. Our purpose will be rather to see
what can be established for the spectral information in IGdisc(f), knowing that the
complementary terms have already been taken care of.

To have a chance of understanding the terms in the formula for IGdisc(f), we
really need something to compare them with. A solution of sorts is provided by the
stabilization of IGdisc(f). This is an innocuous looking expansion

(2) IGdisc(f) =
∑

G′

ι(G,G′)ŜG
′

disc(f
G′

)

of IGdisc(f) into stable distributions SG
′

disc on endoscopic groups G′, with coefficients
ι(G,G′) that are defined by simple formulas. The sum is actually over the isomor-
phism classes of elliptic endoscopic data G′ of G. For example, if G is the split

adjoint group SO(2n+ 1), the dual group Ĝ equals Sp(2n,C). We then have

Ĝ′ = Sp(2m,C)× Sp(2n− 2m,C)

and

G′ = SO(2m+ 1)× SO(2n− 2m+ 1).

In particular, the sum in (2) is parametrized in this case by integers that range
from 0 to the greatest integer in 1

2n.
The mapping

f −→ fG
′

, f ∈ C∞
c

(
G(A)

)
,

in (2) is the Langlands-Shelstad transfer of functions. With Ngo’s recent proof of the
fundamental lemma [N], it is now known that this correspondence takes C∞

c

(
G(A)

)

to the space C∞
c

(
G′(A)

)
of test functions on G′(A), as originally conjectured by

Langlands. The general resolution of the problem is a culmination of work by many
people, including Langlands [L], Shelstad [S], Langlands-Shelstad [LS], Goresky-
Kottwitz-MacPherson [GKM], Waldspurger [W1], [W3], and Lauman-Ngo [LN],
as well as Ngo. We recall that it is a local question, which has to be formulated for
each completion Fv of F . It was first treated for archimedean v, in [S]. The fun-
damental lemma is required explicitly for the places v that are unramified (relative
to f), and implicitly as a hypothesis in the solution [W1] for general p-adic v.

The formula (2) was established in [A3], following partial results [L] and [K]
obtained earlier. It was predicated on a generalization of the fundamental lemma
that applies to unramified weighted orbital integrals. This has now been estab-
lished by Chaudouard and Laumon [CL], building on the techniques of Ngo. The
stabilization formula (2) is therefore unconditionally valid.

We note that the proof of (2) is indirect. It is a consequence of a stabilization
that must be established directly for all of the other terms in the trace formula. For
example, the papers [L] and [K] can be regarded as stabilizations of, respectively,
the regular elliptic and the singular elliptic terms. In general, the terms that are
complementary to those in IGdisc(f) each come with their own individual set of
problems, all of which must be taken care of. This accounts for the difficulty of the
proof of (2).

As we have said, the linear forms SG
′

disc in (2) are stable distributions on the

groups G′(A). (The symbol Ŝ′ is understood to be the pullback of S′ to the space
of stable orbital integrals on C∞

c

(
G′(A)

)
, a space in which the correspondence
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f → fG
′

takes values.) However, there is nothing in the formula (2) that tells us
anything concrete about these objects. We can regard (2) as simply an inductive
definition

SGdisc(f) = IGdisc(f)−
∑

G′ 6=G

ι(G,G′)ŜG
′

disc(f
G′

)

of a stable distribution on G(A) in terms of its analogues for groups G′ of smaller
dimension. It does tell us that the right hand side, defined inductively on the di-
mension of G in terms of the right side of (1), is stable in f . This is an interesting
fact, to be sure. But it is not something that by itself will give us concrete infor-
mation about the automorphic discrete spectrum of G. To use (2) effectively, we
must combine it with something further.

3. Its twisted analogue for GL(N)

The extra ingredient is the twisted trace formula for GL(N), and its corre-
sponding stablization. To describe what we need, we write

G̃ = GL(N)⋊ θ,

for the standard outer automorphism

θ(x) = tx−1, x ∈ GL(N),

of GL(N). Then G̃ is the nonidentity component of the semidirect product

G̃+ = G̃0 ⋊ 〈θ〉 = GL(N)⋊ (Z/2Z).

With this understanding, the twisted trace formula requires little change in
notation. Its discrete part can be written in a form

(1̃) IG̃disc(f̃) =
∑

M

|W̃ (M)|−1
∑

w∈W̃ (M)reg

| det(w − 1)|−1tr
(
MP (w)IP (f̃)

)

that matches (1). In particular, M ranges over the set of conjugacy classes of

Levi subgroups in the connected group G̃0 = GL(N), and P represents a parabolic

subgroup of G̃0 with Levi component M . The only changes from (1) are that the

test function f̃ ∈ C∞
c

(
G̃(A)

)
and the Weyl set

W̃ (M) = NormG̃(M)/M

are taken relative to the component G̃, and that IP stands for a representation

induced from P to G̃+. As before, MP (w) is the global intertwining operator
attached to w. (See [CLL] and [A1].) The last step in the proof of the general
(invariant) twisted trace formula has been the archimedean twisted trace Paley-
Wiener theorem, established recently by Delorme and Mezo [DM].

The stabilization of IG̃disc(f̃) takes the form

(2̃) IG̃disc(f̃) =
∑

G

ι(G̃, G)S̃Gdisc(f̃
G),

where the symbols SGdisc represent stable distributions defined inductively by (2),

and ι(G̃, G) are again explicit coefficients. The sum is over isomorphism classes of

elliptic twisted endoscopic data G for G̃. For example, if N = 2n + 1 is odd, the
component

G̃ = GL(2n+ 1)⋊ θ
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has a “dual set”

Ĝ = GL(2n+ 1,C)⋊ θ̂.

We then have

Ĝ = Sp(2m,C)× SO(2n− 2m+ 1,C)

and

G = SO(2m+ 1)× Sp(2n− 2m).

In general, a twisted endoscopic datum G entails a further choice, that of a suitable
L-embedding

ξG : LG −→ GL(N,C)

of the appropriate form of the L-group of G into GL(N,C). However, if we forget
this extra structure, we see in this case that G is just a group parametrized by an
integer that ranges from 0 to n.

The mapping

f̃ −→ f̃G, f̃ ∈ C∞
c

(
G̃(A)

)
,

in (2̃) is the Kottwitz-Langlands-Shelstad correspondence of functions. The long-

standing conjecture has been that it takes C∞
c

(
G̃(A)

)
to C∞

c

(
G(A)

)
. With the

recent work of Ngo [N] and Waldspurger [W1]–[W3], this conjecture has now been
resolved. The resulting transfer of functions becomes the fundamental starting
point for a general stabilization of the twisted trace formula.

The actual identity (2̃) is less firmly in place. The twisted generalization of
the weighted fundamental lemma does follow from the work of Chaudouard and
Laumon, and of Waldspurger. However, the techniques of [A3] have not been
established in the twisted case. Some of these techniques will no doubt carry over
without much change. However, there will be others that call for serious refinement,
and perhaps also new ideas. Still, there is again reason to be hopeful that a general
version of (2̃) can be established in the not too distant future. We shall assume its
stated version for GL(N) in what follows.

Taken together, the stabilizations (2) and (2̃) offer us the possibility of relating
automorphic representations of a classical group G with those of a twisted general

linear group G̃. As we have noted, the identity (2) represents an inductive definition
of a stable distribution on G(A) in terms of unknown spectral automorphic data
(1) for G. The identity (2̃) provides a relation among the distributions in terms of
known spectral automorphic data (1̃) for GL(N).

This is not to say that the subsequent analysis is without further difficulty.
It in fact contains many subtleties. For example, there is often more than one
unknown stable distribution SGdisc on the right hand side of the identity (2̃). The
problem is more serious in case N = 2n is even, where there are data G with dual
groups Sp(2n,C) and SO(2n,C) that are both distinct and simple. This particular
difficulty arises again and again in the analysis. Its constant presence requires a
sustained effort finally to overcome.

4. Makeshift parameters

The comparison of (2) and (2̃) requires a suitable description of the automorphic

discrete spectrum of the group G̃0 = GL(N). Let Ψ2(N) be the set of formal tensor
products

ψ = µ⊠ ν, N = mn,
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where µ is a unitary cuspidal automorphic representation of GL(m) and ν is the
irreducible representation of the group SL(2,C) of dimension n. The cuspidal
representation µ comes with what we are calling an “eigenvalue”. This, we recall,
is the Hecke family

c(µ) =
{
cv(µ) = c(µv) : v 6∈ S

}

of semisimple conjugacy classes inGL(m,C) attached to the unramified constituents
µv of v. To the tensor product ψ, we attach the “eigenvalue”

c(ψ) = c(µ)⊗ c(ν).

This is the family of semisimple conjugacy classes

cv(µ)⊗ ν

(
q

1
2
v 0

0 q
− 1

2
v

)
= cv(µ)q

n−1
2

v ⊕ · · · ⊕ cv(µ)q
− n−1

2
v , v 6∈ S,

in GL(N,C). It follows from [JS] and [MW] that there is a bijection ψ → πψ
from Ψ2(N) onto the set of unitary automorphic representations πψ in the discrete
spectrum of GL(N) (taken modulo the center) such that

c(ψ) = c(πψ).

More generally, one can index representations in the broader automorphic spec-
trum by sums of elements in Ψ2(Ni). Let Ψ(N) be the set of formal direct sums

(3) ψ = ℓ1ψ1 ⊞ · · ·⊞ ℓrψr,

for positive integers ℓi and distinct elements ψi = µi ⊠ νi in Ψ2(Ni), whose ranks
Ni = mini satisfy

N = ℓ1N1 + · · ·+ ℓrNr = ℓ1m1n1 + · · · ℓrmrnr.

For any ψ, we attach the “eigenvalue”

c(ψ) = ℓ1c(ψ1)⊕ · · · ⊕ ℓrc(ψr),

of semisimple conjugacy classes

cv(ψ) = cv(ψ1)⊕ · · · ⊕ cv(ψ1)︸ ︷︷ ︸
ℓ1

⊕ · · · ⊕ cv(ψr)⊕ · · · ⊕ cv(ψr)︸ ︷︷ ︸
ℓr

in GL(N,C). It then follows from Langlands’ theory of Eisenstein series that there
is a bijection ψ → πψ from Ψ(N) to the set of unitary representations πψ in the
full automorphic spectrum of GL(N) such that

c(ψ) = c(πψ).

The elements in Ψ(N) are to be regarded as makeshift parameters. They are
basically forced on us in the absence of the hypothetical automorphic Langlands
group LF . Recall that LF is supposed to be a locally compact group whose irre-
ducible, unitary, N -dimensional representations parametrize the unitary, cuspidal
automorphic representation of GL(N).

If we had the group LF at our disposal, we could identify elements in our set
Ψ(N) with (equivalence classes of) N -dimensional representations

ψ : LF × SL(2,C) −→ GL(N,C)

whose restrictions to LF are unitary. This interpretation plays a conjectural role
in the representation theory of the quasisplit group G. Regarding G as an elliptic
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twisted endoscopic datum for GL(N), and Ψ(N) as the set of N -dimensional repre-
sentations of LF ×SL(2,C), we would be able to introduce the subset of mappings
ψ in Ψ(N) that factor through the embedded L-group

ξG : LG −→ GL(N,C).

Any such ψ would then give rise to a complex reductive group, namely the central-
izer

Sψ = SGψ = Cent
(
Im(ψ), Ĝ

)

in Ĝ ⊂ LG of its image in LG. The finite quotient

(4) Sψ = Sψ/S
0
ψZ(Ĝ)

ΓF , ΓF = Gal(F/F ),

of Sψ is expected to play a critical role in the automorphic representation theory
of G.

5. The groups Lψ

The first challenge is to define the centralizers Sψ and their quotients Sψ with-
out having the group LF . For any makeshift parameter ψ as in (3), we can certainly
form the contragredient parameter

ψ∨ = ℓ1ψ
∨
1 ⊞ · · ·⊞ ℓrψ

∨
r

= ℓ1(µ
∨
1 ⊠ ν1)⊞ · · ·⊞ ℓr(µ

∨
r ⊠ νr).

The subset

Ψ̃(N) =
{
ψ ∈ Ψ(N) : ψ∨ = ψ

}
.

of self-dual parameters in Ψ(N) consists of those ψ for which the corresponding
automorphic representation πψ is θ-stable. The idea is to attach a makeshift group
Lψ to any ψ. The group Lψ will then be our substitute for LF . We shall formulate
it as an extension of the Galois group ΓF by a complex connected reductive group.

The main problem in the construction of Lψ is to deal with the basic case that

ψ = µ is cuspidal. Since ψ is assumed to lie in Ψ̃(N), µ equals µ∨. It therefore
represents a self dual cuspidal automorphic representation of GL(N). At this point
we have to rely on the following theorem.

Theorem 1. Suppose that µ is a self-dual, unitary, cuspidal automorphic rep-

resentation of GL(N). Then there is a unique elliptic, twisted endoscopic datum

G = Gµ for GL(N) that is simple, and such that

c(µ) = ξGµ

(
c(π)

)
,

for a cuspidal automorphic representation π of G(A).

The theorem asserts that there is exactly one G for which there is a cuspidal
“eigenvalue” that maps to the “eigenvalue” of µ in GL(N). Its proof is deep. In
working on the general classification, one assumes inductively that the theorem
holds for the proper self-dual components µi of a general parameter ψ. The reso-
lution of this (and other) induction hypotheses then comes only at the end of the
entire argument. However, we shall assume for the discussion here that the theorem
is valid without restriction. In the case that ψ = µ, this allows us to define

Lψ = LGµ.
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We then write ψ̃ for the L-homomorphism ξµ = ξGµ
of this group into GL(N,C).

Consider now an arbitrary parameter ψ ∈ Ψ̃(N) of the general form (3). Since ψ
is self-dual, the operation µ → µ∨ acts as an involution on the cuspidal components
µi of ψ. If i is an index with µ∨

i = µi, we introduce the group Gi = Gµi
provided

by the theorem, as well as the L-homomorphism

ξi = ξµi
: LGi −→ GL(mi,C).

If j parametrizes an orbit {µj , µ
∨
j } of order two, we set Gj = GL(mj), and we take

ξj :
L
(
GL(mj)

)
−→ GL(2mj ,C)

to be the homomorphism that is trivial on ΓF , and that restricts to the embedding

g −→

(
g 0
0 tg−1

)

of GL(mj ,C) into GL(2mj,C). We define our general makeshift group Lψ to be
the fibre product

Lψ =
∏

k∈{i,j}

(
LGk−→ΓF

)

of these L-groups over ΓF . The various homomorphisms ξk can then be combined
in the natural way with the corresponding representations

νk : SL(2,C) −→ GL(nk,C)

to give a homomorphism

ψ̃ : Lψ × SL(2,C) −→ GL(N,C).

We regard ψ̃ as an equivalence class of N -dimensional representations of the group
Lψ × SL(2,C).

Suppose that G represents a simple twisted endoscopic datum for GL(N). We

define Ψ̃(G) to be the subset of parameters ψ ∈ Ψ̃(N) such that ψ̃ factors through

the image of LG in GL(N,C). For any ψ ∈ Ψ̃(G), we then have an L-embedding

ψ̃G : Lψ × SL(2,C) −→ LG

such that

ξG ◦ ψ̃G = ψ̃.

We are treating ψ̃ as an equivalence class of N -dimensional representations. This

means that ψ̃G is determined only up to the group AutG̃(G) of L-automorphisms
of LG induced by the stabilizer in GL(N,C) of its image. Nevertheless, we can still
write

Sψ = SGψ = Cent
(
Im(ψ̃G), Ĝ

)

and

Sψ = Sψ/S
0
ψZ(Ĝ)ΓF ,

where ψ̃G stands for some L-homomorphism in the associated AutG̃(G)-orbit. Since
Sψ is a finite abelian group (a 2-group actually), it is uniquely determined by ψ up
a unique isomorphism.

The parameters ψ ∈ Ψ̃(G), along with the groups Lψ and the associated cen-
tralizer groups Sψ and Sψ, were described in §30 of [A4]. They will be discussed
in greater detail in Chapter 1 of [A5]. The deeper properties of the hypothetical
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Langlands group LF probably mean that its existence will be one of the last theo-
rems to be proved in the subject. However, if LF does exist, its expected properties
imply that the family of AutG̃(G)-orbits of homomorphisms

LF × SL(2,C) −→ LG

is in natural bijection with the set Ψ̃(G) we have just defined. Moreover, this
bijection identifies the corresponding centralizers Sψ and their quotients Sψ . It is
also compatible with the localization

ψ −→ ψv

of parameters, something we will not discuss here.
This all means that our makeshift groups Lψ capture the information from LF

that is relevant to the endoscopic classification of representations of G. In other
words, the groups Lψ are as good as the Langlands group for the purposes at hand,
even though they vary with ψ. They are used in [A5] to formulate the classification
of automorphic representations of G.

6. The ψ-components of distributions

The next step is to isolate the ψ-components of the terms in the expansions (1),

(2), (1̃) and (2̃). Recall that a parameter ψ ∈ Ψ̃(N) comes with an “eigenvalue”
c(ψ). If D is a distribution that occurs in one of these expansions, its ψ-component
Dψ is a “ψ-eigendistribution”, relative to the convolution action of the unramified

Hecke algebra on the test function f (or f̃). We thus obtain two expansions

(1)ψ IGdisc,ψ(f) =
∑

M

|W (M)|−1
∑

w∈W (M)reg

| det(w − 1)|tr
(
MP,ψ(w)IP,ψ(f)

)

and

(2)ψ IGdisc,ψ(f) =
∑

G′

ι(G,G′)ŜG
′

disc,ψ(f
G′

)

of the ψ-component IGdisc,ψ(f). Similarly, we obtain two expansions (1̃)ψ and (2̃)ψ

for the ψ-component IG̃disc,ψ(f̃) of IG̃disc(f̃). The problem is to compare explicitly
the terms in these two identities.

We are trying to describe these matters in the context of the embedded eigen-

value problem. According to general conjecture, a parameter ψ ∈ Ψ̃(G) would be
expected to contribute to the discrete spectrum of G if and only if the group

S̄ψ = Sψ/Z(Ĝ)ΓF

is finite. In other words, the component group

Sψ = π0(S̄ψ)

that is supposed to govern spectral multiplicities is actually equal to S̄ψ. If we apply
this inductively to a Levi subgroup M of G, we see that ψ contributes Eisenstein
series of rank k to the spectrum of G if and only if the rank of S̄ψ equals k. The
problem then is to show that if S̄ψ is not finite, it does not contribute to the
discrete spectrum of G. That is, there is no automorphic representation π of G in
the discrete spectrum with c(ψ) = c(π).

One has thus to show that if S̄ψ is infinite, the term in (1)ψ with M = G
vanishes. However, we know nothing about this term. We can say (by induction)
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that ψ contributes to the term corresponding to a unique properM . We would first
try to express this term as concretely as possible. We would then want to express
the terms on the right hand side of (2)ψ in such a way that their sum could be
seen to cancel the term of M in (1)ψ. This would tell us that the term of G in
(1)ψ vanishes, as desired. But the distributions in (2)ψ are by no means explicit.
They consist of the stable linear form SGdisc,ψ(f), about which we know very little,

and its analogues for proper endoscopic groups G′, which are at least amenable to
induction. To deal with SGdisc,ψ(f), we have to compare the right hand side of (2)ψ

(as G varies) with the right hand side of (2̃)ψ . We would then have to compare

(2̃)ψ with the expression on the right hand side of (1̃)ψ, about which we do know
something (because it pertains to GL(N)).

7. Statement of theorems

It is a rather elaborate process. We shall describe the theorems that lead
to a resolution of the problem. Our statements of these theorems will have to
be somewhat impressionistic, since we will not take the time to describe all their
ingredients precisely. We refer the reader to the forthcoming volume [A5] for a full
account.

Theorem 2 (Stable Multiplicity Formula). Suppose that ψ ∈ Ψ̃(G). Then the

term in (2)ψ corresponding to G′ = G satisfies an explicit formula

SGdisc,ψ(f) = mψ|Sψ|
−1σ(S̄0

ψ)εψ(sψ)f
G(ψ),

where mψ ∈ {1, 2} equals the number of Ĝ-orbits in the AutG̃(G)-orbit of embed-

dings ψ̃G, ε(sψ) = ±1 is a sign defined in terms of values at s = 1
2 of global ε-factors

attached to ψ, and σ(S̄0
ψ) is the number attached to the complex connected group

S̄0
ψ in Theorem 4 below.

The last term fG(ψ) in the formula is harder to construct. It represents the
pullback to G(A) of the twisted character

tr
(
πψ(f̃)

)
, f̃ ∈ C∞

c

(
G̃(A)

)
,

on GL(N,A). (We use the theory of Whittaker models for GL(N) to extend the
θ-stable representation πψ to the component

G̃(A) = GL(N,A)⋊ θ

on which f̃ is defined.) The construction is essentially local. Since the criterion

of Theorem 1 that determines the subset Ψ̃(G) of Ψ̃(N) to which ψ belongs is
global, the definition of fG(ψ) requires effort. It is an important part of the proof
of Theorem 2.

The formula of Theorem 2 is easily specialized to the other summands in (2)ψ.

For any G′, it gives rise to a sum over the subset Ψ̃(G′, ψ) of parameters ψ′ ∈ Ψ̃(G′)
that map to ψ. The formulas so obtained can then be combined in the sum over
G′. The end result is an explicit expression for the right hand side of (2)ψ in terms
of the distributions

fG
′

(ψ′), f ∈ C∞
c

(
G(A)

)
, ψ′ ∈ Ψ̃(G′, ψ),

and combinatorial data attached to the (nonconnected) complex reductive group
Sψ.
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Theorem 3. Suppose that ψ ∈ Ψ̃(G) contributes to the induced discrete spec-

trum of a proper Levi subgroup M of G, and that w lies in W (M)reg. Then there

is a natural formula for the corresponding distribution

tr
(
MP,ψ(w)IP,ψ(f)

)

in (1)ψ in terms of

(i) the distributions

fG
′

(ψ′), ψ′ ∈ Ψ̃(G′, ψ),

(ii) the order of poles of global L-functions at s = 1, and
(iii) the values of global ε-factors at s = 1

2 .

In this case, we have not tried to state even a semblance of a formula. How-
ever, the resulting expression for the sum in (1)ψ will evidently have ingredients in
common with its counterpart for (2)ψ discussed above. It will also have two points
of distinction. In (1)ψ there will be only one vanishing summand (other than the
summand of G we are trying to show also vanishes). Furthermore, the summand
of M contains something interesting beyond the distribution above, the coefficient

| det(1− w)|−1.

One sees easily that the distribution of Theorem 3 vanishes unless w has a represen-

tative in the subgroup Sψ of Ĝ/Z(Ĝ)ΓF . We can therefore analyze the combinatorial
properties of the coefficients in the context of this group.

Suppose for a moment that S is any connected component of a general (non-
connected) complex, reductive algebraic group S+. Let T be a maximal torus in
the identity component S0 = (S+)0 of this group. We can then form the Weyl set

W =W (S) = NormS(T )/T,

induced by the conjugation action of elements in S on T . Let Wreg be the set of
elements w in W that are regular, in the sense that as a linear operator on the real
vector space

aT = Hom(X(T ),R),

the difference (1−w) is nonsingular. We define the sign ε0(w) = ±1 of an element
w ∈ W to be the parity of the number of positive roots of (S0, T ) mapped by w to
negative roots. Given these objects, we attach a real number

i(S) = |W |−1
∑

w∈Wreg

ε0(w)| det(w − 1)|−1

to S.
As is often customary, we write Ss for the centralizer in S

0 of a semisimple ele-
ment s ∈ S. This is of course a complex reductive group, whose identity component
we denote by S0

s . We then introduce the subset

Sell =
{
s : |Z(S0

s )| <∞
}
,

where Z(S1) denotes the center of any given complex connected group S1. The set
Orb(Sfin, S

0) of orbits in Sell under conjugation by S0 is finite.

Theorem 4. There are unique constants σ(S1), defined whenever S1 is a com-

plex connected reductive group, such that for any S the number

e(S) =
∑

s∈Orb(Sell,S0)

|π0(Ss)|
−1σ(S0

s )
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equals i(S), and such that

σ(S1) = σ(S1/Z1)|Z1|
−1,

for any central subgroup Z1 ⊂ Z(S1) of S1.

The numbers i(S) and e(S) of the theorem are elementary. However, they bear
an interesting formal resemblance to the deeper expansions on the right hand sides
of (1)ψ and (2)ψ respectively. In particular, the data in (2)ψ are vaguely endoscopic.
I have sometimes wondered whether Theorem 4 represents some kind of broader
theory of endoscopy for Weyl groups.

The proof of the theorem is also elementary. It was established in §8 of [A2]. We
have displayed the result prominently here because of the link it provides between
Theorems 2 and 3, or rather between the expressions for the right hand sides of (1)ψ
and (2)ψ that these theorems ultimately yield. We have discussed these expressions
in only the most fragmentary of terms. We add here only the following one-line
summary. If the summand of G in (1)ψ is put aside, the two expressions are seen
to match, up to coefficients that reduce respectively to the numbers i(S) and e(S)
attached to the components S of the group S̄ψ. Theorem 4 then tells us that the
right hand of (2)ψ equals the difference between the right side of (1)ψ and the
summand of G in (1)ψ. Since the left hand sides of (1)ψ and (2)ψ are equal, the

summand of G does vanish for any ψ ∈ Ψ̃(G) with S̄ψ infinite, as required. We
thus obtain the following theorem.

Theorem 5. The automorphic discrete spectrum of G has no embedded eigen-

values.

This is the result we set out to describe. As we have said, it is part of a general
classification of the automorphic representations of G. The reader will have to refer
to [A4, §30] and [A5] for a description of the classification. However, the theorems
discussed here are at the heart of its proof.
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