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Introduction

This paper, as promised in the introduction to [1(c)], contains an
identity which is valid for any reductive group G over Q, and which
generalizes the Selberg trace formula for anisotropic G. We have
already shown that a certain sum of distributions on G(A)', indexed
by equivalence classes in G(Q), equals the integral of the function

22, kI, f),  x€G@\G(A).
X€E

The main task of this paper is to show that the integral may be taken
inside the sum over x. There does not seem to be any easy way to do
this. We are forced to proceed indirectly by first defining and studying
a truncation operator AT on functions on G(Q)\G(A)'.

Recall that kI(x,f) was obtained by modifying the function
K, (x, x). We shall apply the results of §1 to the function

ATATK,(x,x), x E€G@Q\G(A),
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88 J. Arthur [2]

obtained from K, (x, y) by truncating in each variable separately, and
setting x = y. It will turn out that the function

2 [ATATK (x, x)|
XEX

is integrable. Then in §2, our main chapter, we shall show that for T
sufficiently regular,

[ ATAIK, 0 K ) de
YEZ JG(Q)\G(A)

converges absolutely. We shall also show that for each yx, the integral
over G(Q)\G(A)' equals 0. If we set J [ (f) equal to

f ATATK, (x, x) dx =I kI(x,f)dx,
GO\G(A)!

GA\G(A)

the identity associated to G is then

> Jf(f)=X§IJI(f).

0EC

We should note that the distributions J{ and J! are not in general
invariant. Moreover, they depend on a choice of maximal compact
subgroup and minimal parabolic subgroup. However, it should be
possible to modify each of the distributions so that they are invariant
and independent of these choices, and so that the identity still holds.
We hope to do this in a future paper.

Both formulas for J](f) are likely to be useful. The integral on the
right is particularly suited to evaluating J on the function obtained
by subtracting f from a conjugate of itself by a given element in
G(A)'. It can also be used to show that J(f) is a polynomial function
in T. We shall not discuss these questions here. On the other hand,
the integral on the left can be calculated explicitly if the class y is
unramified. We do this in §4. The result follows from a formula,
announced by Langlands in [4(a)], for the inner product of two
truncated Eisenstein series. It was by examining Langlands’ method
for truncating Eisenstein series that I was led to the definition of the
operator A”.
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1. A truncation operator

Let G be a reductive algebraic group defined over Q. We adopt the
definitions and notation of [1(c)]. In particular, K is a maximal
compact subgroup of G(A) and P, is a fixed minimal parabolic
subgroup of G defined over Q. Again we shall use the term ‘parabolic
subgroup’ for a parabolic subgroup P of G, defined over Q, which
contains P,. We would like to prove that the terms on the right hand
side of the identity given in Proposition 5.3 of [1(c)] are integrable
functions of x. To this end, we shall introduce a truncation operator
for functions on G(Q)\G(A)".

Recall that T is a fixed, suitably regular point in ag. If ¢ is a
continuous function on G(Q)\G(A)', define (A"¢)(x) to be the func-
tion

&(néx) - Fp(H(x)—T).

__1\dim(A/Z)
; (-1) >

SEP(Q\G(Q) fN(Q)\N(A)

(the sum over P is of course over all parabolic subgroups.) Note the
similarity with our definitions of the functions k { (x, f) and k(x, f) in
[1(©)]. If ¢ is a cusp form, AT = . It is a consequence of [1(c),
Corollary 5.2] that if ¢(x) is slowly increasing, in the sense that

[¢(x)] = Cllx]|I",
for some C and N, then so is AT¢(x).

LeMMA 1.1: Fix P,. Then for ¢ € C(G(Q)\G(A)"),

j AT¢p(nix)dn; =0
N1@W1(A)

unless w(Hy(x)— T) <0 for each wE A,

ProOF: For any P, let Q(ao; P) be the set of s €2 such that
sla >0 for each a« € Af. Applying the Bruhat decomposition to
P(@)\G(Q), we find that [n,yw,» A @(n1x) dn; equals the sum over
P and s € 2(ap; P) of the integral over n in N(Q)\N(A) of the
product of (—1)4™A4/2 with

f d(nwonx) - #p(H(weonix)— T) dn,.
N(Q)\N(A) vEw N(Q)w; NNy(Q)\No(Q)
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Since N{(Q)\N(A) = No(Q)\N Q)N (A), this last expression equals

f 1 d(nwnx)7p(H(wsnix) — T)dn,.
w3 INg(Q)w; "NGQ)\N g(Q)N {(A)

Decompose w;'No(Q@)w, N N(Q)\NQ)N(A) as

(W 'No(@)w, N No(Q@)\w; ' No(A)ws N Ny(Q)N(A))
X (w5 'No(A)w; N NHQ)N(A\N Q)N (A))

= (w;'No(@)w, N N(Q)\w;'No(A)ws N Ny(A))
X (wi'No(A)w; N NHQ)N (AN KQ)N,(A)).

This induces a decomposition of the measure dn, as dn, dn*. Then
write

winen* = wanewlwan* = A wn*,

and finally, combine the integral dver i, with the integral over n in
N(Q)\N(A). Because s lies in 2(ag; P), NoNw,Nyw;'NM is the
unipotent radical of a standard parabolic subgroup of M. It follows
that

(NoNw,Niw;'NM)N = N,

is the unipotent radical of a uniquely determined parabolic subgroup
P, of G, which is contained in P. We have shown that

Iy @ (mix) dny equals

2 (- l)dim(A/Z) 2 j dn*
P s€Q(ag; P) Jw3 No(A)w, NN HQ)N (AN KQ)N (A)

. j d(nwn*x)7p (H(wsn*x)— T)dn.
N(Q)\Ng(A)

We shall change the order of summation, and consider the set of P
which give rise to a fixed P,. Fix s € Q. Define S' (resp. S)) to be the
set of a € A, such that s~'a is a positive root which is orthogonal
(resp. not orthogonal) to a,. If P, is one of the groups that appear in
the above formula, 4§ will be a subset of S'. Those P which give rise
to a fixed P, are exactly the groups for which Af is the union of 4]
and a subset S of S,. Thus, for fixed s with 4§ C S', we will obtain an
alternating sum over S C S; of the corresponding functions 7p. We



[s] A trace formula for reductive groups II 91

apply Proposition 1.1 of [1(c)]. Let x, be the characteristic function of
the set of H €qa, such that for a € Ag— 4§ U S|, w.(H) >0, while
w,(H) =<0 for  in S;. Here w, is the element in 4, corresponding to
a. Then [ NAONNAA) ¢(n;x)dn; is sum over s € 2 and over all subsets 4}
of S! of the integral over n* in w;'Ny(A)w, N N(Q)N(A)\
NYQ)N(A) and n in N;(Q)\N,(A) of the product of

d(nwn*x)x,(Ho(w,n*x)—T)

with —1 raised to a power equal to the number of roots in 40— S' U S;.
Suppose that for some s, y,(Ho(wsn*v)— T) does not vanish. Then
if

He(wn*x)—T) = Z t., t,ER,

a€4y

t, is positive for @ in 40— 4§ U S), and is not positive for a € S;. If
weE Al,

w(s ' (Hy(wn*x)—T))

=Y tow(s'a”)

a€ly

= > tuw(s'a"),

a€A4p\S!

where s~'a is orthogonal to a' if « € S'. This last number is clearly
less than or equal to 0. Now

s (Hy(w,n*x)— T)= Hy(x)— T + s 'Hy(wow; )+ (T —s7'T),

for some element v € No(A). If weEA,, it is well known that

w (s 'Ho(w,ow;') is nonnegative and w(T — s~ 'T) is strictly positive.

Therefore @ (Hy(x) — T) is negative for any w € A,. O
From the definition of AT we obtain

COROLLARY 1.2: ATAT = AT, a

LEMMA 1.3: Suppose that ¢, and ¢, are continuous functions on
G(Q)\G(A)'. Assume that ¢, is slowly increasing, and that ¢, is
rapidly decreasing, in the sense that for any N, the function
x|V - |p2(x)| is bounded on any Siegel set. Then

(A T¢l’ ¢2) = (¢ls AT¢2)'
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Proor: The inner product (A7¢y, ¢,) is defined by an absolutely
convergent integral. It equals

f _ l)dim(A/Z)
GQ)\G(A)' P SEP(Q\G(Q)

X f &1(ndx)7p (H (8x) — T)2A(x) dn dx
N(@)\N(A)

=3 (- 1yt fN $1(nx)$X) e (H (x) — T) dx dn

(@\N(A) L(O)\G(A)‘

= }P; (= 1)tim(ai2) L $1(x)2(nx)7p(H(x) — T) dx dn.

(@\W®) -L(O)\G(A)‘
This last expression reduces to (¢, A ¢,). a

REMARK: It can be shown that AT extends to an orthogonal
projection on LA(G(Q)\G(A)Y).

We would like to show that under suitable conditions, AT¢(x) is
rapidly decreasing at infinity. The argument begins the same way as
the proofs of Theorems 7.1 and 8.1 of [1(c)]. Suppose ¢ is a con-
tinuous function on G(Q)\G(A)'. Apply Lemma 6.4 as in the begin-
ning of the proof of Theorem 7.1 of [1(c)]. We find that A7¢(x) is the
sum over {P,, P,: P,C P, C P,} and & € P,(Q)\G(Q), of

F'(8x, T)o{(Ho(8x) = T)p,p(8%),

where

brpN= S (~1)imaD f S(ny) dn,

{P: PICPCPy) N@\N(1)

For the moment, fix 8 and x. We regard § as an element in G(Q)
which we are free to left multiply by an element in P,(Q). We can
therefore assume, as in [1(c), §7] that

8x = n*n.mak,

where k € K, n*, ny, and m belong to fixed compact subsets of
Ni(A), N¥(A) and My(A)' respectively, and a is an element in A;(R)°
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with o3(Hy(a) — T) # 0. Therefore

¢ p,.p,(8x) = ¢Pp, p(n*nymak)
= ¢p,p(nyxmak)
= ¢p, paa"'nymak)

= ¢p,p,(ac),

where ¢ belongs to a fixed compact subset of G(A)' which depends
only on G.

The function ¢p,p, resembles the function estimated in the corol-
lary of [3, Lemma 10]. We want a slightly different statement of the
estimate, however, so we had best re-examine the proof. If a € A2, let
P,, P,C P, C P, be the parabolic subgroup such that Af = A% is the
complement of a in Af. For each a, let {Y,,..., Y., } be a basis of
n%(Q), the Lie algebra of N2(Q). We shall assume that the basis is
compatible with the action of A, so that each Y,; is a root vector
corresponding to the root B,; of (M, N P,, A;). We shall also assume
that if i =}, the height of B,; is not less than the height of B,;. Define
N.;, 0=j=n, to be the direct sum of {Y,,..., Y,;} with the Lie
algebra of N,, and let N,; =expn,; Then N,; is a normal subgroup
of N, which is defined over Q. If V is any subgroup of N, defined
over Q, let m(V) be the operator which sends ¢ to

f o(ny)dn, y€G(A).
V(Q)\V(A)

Then ¢p,p, is the transform of ¢ by the product over a € A? of the
operators

#(N2)— w(N) = 2 A (Nast) — 7(Nas).

If K, is an open compact subgroup of G(A;), G(Q\G(A)'/K, is
differentiable manifold. We assume from now on that ¢ is a function
on this space which is differentiable of sufficiently high order. Sup-
pose that I is a collection of indices

{i.;a€Ad}L1=i,=<n,)}.
Then

Ni= H Nei -1
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and

are normal subgroups of N;. Let n' be the span of {Y,;} and let
n’(Q)' be the set of elements

&= E r.Yei, r.€Q*
Then if n is any positive integer,
e=Ilen

is a nonzero real number. By the Fourier inversion formula for the
group A/Q, ¢p,p,(y) is the sum over all I of

du - d(ue(X)y)P(X, £)).

|
cenl(ay J;’(Q)\n' (A) NTQ\NT(A)

Here e and ¢ are as in [1(c), §7] and (, ) is the inner product defined
by our basis on n’. If n is a positive integer,

Yi=[l(-V=1Y.,)"

can be regarded as an element in %(3(R)' ® C). Then ¢p, p,(v) equals
the sum over I and over ¢ € n/(Q)’ of

1.1 (g")"f dX - du
nf@@)nl(A) NTQ\NT(A)
Ry (Ad(y )Y D (ue(X )y (X, £)).

Now, we set
y = 6x = ac,
as above. Since oi(Hy(a)— T)#0, a belongs to a fixed Siegel set in

My(A). It follows that the integrand in (1.1), as a function of X, is
invariant by an open compact subgroup of n'(A;) which is in-
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dependent of a and c. Consequently, (1.1) vanishes unless & belongs
to a fixed lattice, L' (K), in n’(R). But for n sufficiently large

n|-1

¢en!(QYNLI(Kg)

is finite for all I. Let c,(Ko) be the supremum over all I of these
numbers. Then |¢p, p,(ac)| is bounded by

c(Ko) 2 |(R(Ad(c)™ Ad(a)™'Y P)p)(uac)| du.

I IN(Q\Np(A)
Let B; =2, B..,- Then B; is a positive sum of roots in Aj. For any n,
Ad(a™ )Y} =e "rHl Y} = g iHoG) yn

We can choose a finite set of elements {X;} in %(§(R)' ® C), depend-
ing only on n and K,, such that for any P,, P,, I and c,

ca(Ko) Ad(c)'Y'?

is a linear combination of {X;}. Since c lies in a compact set, we may
assume that each of the coefficients has absolute value less than 1.
We have thus far shown that |A7¢(x)| is bounded by the sum over all
P,, P, and & € P,(Q)\G(Q) of the product of

F'(8x, T)o(Ho(8x) — T)

with

1.2) |R(X;)$(udx)| du - e "rHe@),

T 1 [ N{Q\N{(A)

LEMMA 1.4: Let 8 be a Siegel set in G(A)'. For any pair of positive
integers N' and N, and any open compact subgroup K, of G(Ay), we
can choose a finite subset {X;} of U(B(R)'® C) and a positive integer
r which satisfy the following property: Suppose that (S,do) is a
measure space and that ¢(o, x) is a measurable function from S to
C'(G(Q)\G(A)!/Ky). Then for any x € 8,

L [ATé(a, x)| do
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is bounded by
S sup ([ IROO®(o, nldor Iy ) -l

T YEG(A)!

ProoF: Substitute ¢(o) for ¢ in (1.2) and integrate over o. The
result is

(13 2 E IN (Q)N(A)I [R(X))¢(a, udx)| do- du - ¢ "#11Hi®),

I
If x = ac, with a and ¢ as above,
8x]| <lall - llell-

We are assuming that o}(Hy(a)— T) # 0. Since B; is a positive sum of
roots in A2 we conclude from [1(c), Corollary 6.2] that ||a| is bounded

by a fixed power of
e B Ho@) — o By(Hyl8x)

It follows that for any positive integers N and N, we may choose n
so that (1.3) is bounded by a constant multiple of

sup ([ IRCGS(, )] do X7 sl .

l YEG(A)!

It is well known (see [2]) that there is a constant ¢, such that for any
v € G(Q) and x € 8,
flyxl| ™™ = eflxf| ™.

The only thing left to estimate is

F'(8x, T)o}(He(8x) — T).

SEPI(QN\G(Q)

The summand is the characteristic function, evaluated at éx, of a
certain subset of

{y EG(A): w(Hy(y)— T)>0,wE 4,}.

The sum is bounded by

T1(Ho(8x) — T).

SEP|(QNG(Q)
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It follows from [1(c), Lemma 5.1] that we can find constants C, and
N, such that for all P, this last expression is bounded by Cyx||*>. Set
N;= N'+ N,. N, dictates our choice of n, from which we obtain the
differential operators {X;}. The theorem follows with any r greater
than all the degrees of the operators X O

In the next section we will need to have analogues of the operators
AT for different parabolic subgroups of G. If P, is a parabolic
subgroup, and ¢ is a continuous function on P,(Q)\G(A)', define

A”"d)(x) — 2 (_ 1)dim(ARIA|)

{R:PyCRCP} SER(Q)\P(Q)

« f $(ndx) dn - #R(Hy(6x) = T).
NR(Q)\Ng(A)

LEMMA 1.5: Suppose that P is a parabolic subgroup and ¢ is a
continuous function on P(Q)\G(A)'. Then

ATPIg(8x) 7] (Ho(8x) — T)

{P): PaC P CP} 5€P,(Q)\P(Q)

equals

(1.4) f $(nx) dx.
N@\N(A)

PrOOF: We need to prove that (1.4) is the sum over {R: P,C R C P}
and & € R(Q)\P(Q) of the product of

f d(néx)dn
NR(Q\NR(A)

with

(1.5) > (~1)imAAEL(H(8x) ~ T) - 77 (Ho(8x) = T).

{P;: RCP\CP}

Consider Lemma 6.3 of [1(c)], with A a point in —(a¥)*. The sum
given in that lemma then reduces to (1.5). It follows from [1(c), Prop.
1.1] that (1.5) vanishes if R# P and equals 1 if R = P. This establishes
Lemma 1.5. O
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2. Integrability of k(x, f)

We take r to be a sufficiently large integer, and continue to let T be
a suitably regular point in ag. In [1(c)] we associated to every
f € CUG(A)") a function, k[ (x, f), on GQ\G(A)".

THEOREM 2.1: For sufficiently regular T,

|kI(x, f)] dx

YEX fG(Q)\G(M‘
is finite.

We will not prove the theorem directly. Rather, we shall relate
kI(x, f) to the truncation operators whose asymptotic properties we
have just studied. We shall operate on Kp,(x, y), which of course is a
function of two variables. If P, C P,, we shall write A1 (resp. A 1) for
the operator AT, acting on the first (resp. second) variable.

LEMMA 2.2: For any x € Z, kl(x, f) equals

oi(Hy(6x) = T)

{P).Py: PaC P\C Py} 5€P,{O)\G(Q)

X { (~1)ImADATPK, (5%, ax)}.
{P: PICPCPy

Proor: The given expression is the sum over all chains P,C P C
P, C P; and over 6 € P,(Q)\G(Q), of

(= 1)AmASAI 2 (Hy(8x) — T) - 7i(Hy (8x) — TN~ 1™ 4D ATPK, (8, 8x).

As we have done many times, we appeal to [1(c), Prop. 1.1]. We see
that the sum over P, equals 0 unless P = P;. Therefore the given
expression equals

(~D)EmaD N (Hy(dx)— T)

{P\.P: PhCP,CP} SEP(QONG(Q)

- 1h(Ho(8x) — T) - ATP1Kp, (8x, 8x).
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Apply Lemma 1.5 to the sum over P;. We obtain

> (=Dim@n X Fp(Ho(8x)—T)

{P: PyCP} SEP(Q)\G(Q)
. f Kp,(8x, néx) dn.
N@\N®)
Since
Kp,(8x, ndx) = Kp,(8x, 8x), n € N(A),
this last expression equals kI (x, f), as required. O

Fix P,C P,. Motivated by the last lemma, we shall examine the
expression

08w [ Ko ny)dn.
{P: PICPCPy}, NI(Q)\N{(A)
It equals
(—1ydimciar f f&x"'y 'nmy) dn
{P: P\CPCPy} yEP)(Q)\P(Q) / Ni(A) nEM(Q)
=2 (i S Kn(yx ).
P yEPI(Q\P(Q)

Let F(P,, P,) be the set of elements in P;(Q)\PyQ) which do not
belong to P,(Q)\P(Q) for any P, with P,C P ng. By [1(c), Prop. 1.1]
the above expression equals

> Kp(yx,y).
yEF(Py, Py

In this last formula we have affected the cancellation implicit in the
alternating sum over P. In order to exploit the equation we have just
derived, we interrupt with a lemma.

LEMMA 2.3: Suppose that for each i, 1<i=<n, we are given a
parabolic subgroup Q, D P,, points x;, y; € G(A) and a number c; such
that

n

ZC.‘

f Ko,(xi, nmy;) dn
i=1 Ni(Q\N(A)
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vanishes for all m € M,(Q)\M,(A)". Then for any y € Z,

n

h,(m)= z i f Ko.x(x;, nmy;)dn
N(Q\N(»)

=1
also vanishes for all m € M,(Q)\M,(A)".

PrOOF: Suppose that for a given x' € &, there is a group R in P,
which is contained in P,. We would like to prove that for any function
¢, € LA(Mg(Q)\Mg(A)Y),, the integral

(21) J’N,'((Q)\N h,(nm)¢,(’(m)dn dm

f MR(O\MR(A)!

vanishes for xy# x'. Suppose that y# x’, and that ¢ € ¥y(w), for
some QC Q, and some = € II(Mp). The construction of Eisenstein
series is such that if the function

m —>f Eg(nmy, ¢)dn, m € Mi(Q)\M(A)',
NONI(A)

is substituted for h, in (2.1), the result is 0. It follows from the
estimates of [1(c), §4] that (2.1) itself is 0. The same estimates yield
constants ¢ and N such that

> | (m)=clm|[¥,  me M(Q\M(A).

YXEX

By assumption, =, h,(m) equals 0. Consequently (2.1) is zero even
when y = x'. The function h, is continuous. Because (2.1) vanishes
for all ¢,, h, satisfies the hypotheses of (4(b), Lemma 3.7]. h, is
therefore zero. O

To return to the proof of the theorem, we look for conditions
imposed on x, y and y by the nonvanishing of

(2.2) Kp(yx,my),  m € M(Q)\Mi(A)".

Set
y = yik, nwEP(A)NGA), kEK.

There is a compact subset of G(A)', depending only on the support of
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f, which contains some point
x"'y'ngmy,, n € Ni(A), n € M|(Q),

whenever (2.2) does not vanish. Fix w€ A, and let A be a rational
representation of G with highest weight dw, d > 0. Choose a height
function || || as in [1(c), §1]. If v is a highest weight vector, we can
choose a constant ¢, such that

[A(x~ ynmmy)o|| < ¢,

whenever x !ynnmy, lies in the given compact subset of G(A)'. The
left side of this inequality equals

4= MDA (x-1y ol = 4 A Gty ol

which is no less than a constant multiple of

edﬂ’(Ho(y)) e —dW(HQ(‘YX)).

In other words, w (Ho(yx) — Hy(y)) is no less than a fixed constant. It
follows from this observation that we may choose a point T, € a,,
depending only on the support of f, such that

2.3) F1(Ho(yx) — Ho(y) — To) = 1

whenever (2.2) does not vanish identically in m. We conclude from
Lemma 2.3 that if (2.3) fails to hold for a given x, y and v, then

(2.4) Kp, (yx, my), m € Mi(Q)\M\(A)',
vanishes for all y and m.

Combining [1(c), Lemma 5.1] with what we have just shown, we
conclude that for fixed x and y,

KP],X(Yxs y)9 Y € F(Pla PZ)’

vanishes unless y belongs to a finite subset of F(P,, P,), independent
of x. Therefore the sums in

(— 1)dim(a/A7) f Kp(x,nmy)dn — > . Kp,(yx, my)

{P: P\CPCPy} Ni(Q\N(A) YEF(Py,.
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are finite. Since the expression vanishes for all m in M;(Q)\M;(A)",
we can apply Lemma 2.3. We obtain an equality of functions of y for
each y. We are certainly at liberty to apply our truncation operator to
those functions. It follows that for any y € %,

(_ l)dim(AlZ)A {'P]KPX(X» y)
{P: P/CPCPy} '

equals

(= dmadD N ATPK,  (yx, y).

YEF(Py,Py)

We have thus far shown that

[ il
x JGA\G(A)!

is bounded by the sum over {P,, P,: P,C P, C P,} of

j ai(Ho(x) = T)ATPKp, (vx, x)| dx.
P{Q\G(M)! "X yEF(PL.P)

Let 8 be a fixed Siegel set in Mi(A)' with M;(Q)8 = My(A)', and let I’
be a compact subset of N,(A) with N{(Q)I' = N;(A). Then the last
integral is bounded by the integral over n €I, m €8N Py(A), a €
AR N G(A), and k € K, of

e~ (B Do Hya)— T) >, Y |AFPKp, (ynmak, mak)|.
X Y

Suppose that for n, m, a and k as above, and for some rit € My(A)',
yE F(P,,P)) and y € %,

Kp, (ynmak, mak) # 0.
Write y = vw,r, for v € N¥Q), m € P(Q) and s € 2™, the Weyl
group of (M,, Ay). It follows from Lemma 2.3 that there is a fixed
compact subset of G(A)! which contains

a'm'nywpia,

for points n; € N(A) and p; € My(A)'Ny(A). Fix w € A, and let A and
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v be as above. A(w;)v is a weight vector, with weight sw. The vector

A(a—lm—lnlwsp]a)v _ ed(w-sw)(Ho(a)) e—dsw(Ho(m))v

can be written as a sum of weight vectors, with weights higher than
sw. By the construction of our height function,

e rmXHAD) g ~bm @) |p]| <[ A(a™ m ™ mywpra)o].

It follows that there are constants ¢’ and ¢, depending only on the
support of f, such that

[(w — sw)Hy(a))| = ¢'|sw (Hy(m))| =< c(1 +log|m]).
Since s fixes a, pointwise, the inequality
[(w — sw)(Ho(a))| =< c(1+log|m|)

holds for the projection of @ onto a?. In other words, we may take w
to be an element in A?. For each such w, w— sw is a nonnegative
integral sum of roots in A}. We claim that the coefficient of the
element a in A%, such that w = 1w, is not zero. Otherwise we would
have (w — sw )}(w “) = 0, orequivalently, sw = & . This would force s to
belong to 2™, for some parabolic subgroup P, P,C P ng. This
contradicts the assumption that y = yw,mr belongs to F(P;, P,), so the
coefficient of « is indeed positive. We can assume that a has the
additional property that

ai(Hya)— T) #0.

It follows from Corollary 6.2 of [1(c)] that for any Euclidean norm
| || on a, there is a constant ¢ such that

(2.5) [(Ho(a)|| < c(1 + log|im]).

We have shown that if a € A|(R)°N G(A)' is such that for some y;, ¥,
n, m, m and k,

(2.6) loi(Ho(a) — T)Kp, (ynma, riak)|

does not vanish, then the inequality (2.5) holds.
Suppose that f is right invariant under an open compact subgroup
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K, of G(Ay). Then if Ip(m, f)¢#0 for some 7 and ¢ € Bp,(7),, the
function E(y, ¢) is right K¢-invariant in y. Therefore for any x, y and
x> Kp,,(yx,y) is right Ke-invariant in y. It follows that (2.6) is right
invariant in /1 under the open compact subgroup

M (kikoki") N My(A)!
keK

of Mi(A;)'. We apply Lemma 1.4 with the group G replaced by M,.
For any positive integers N; and N| we can choose a finite set {X;} of
elements in %(m(R)' ® C), the universal enveloping algebra of the
complexification of the Lie algebra of M;(R)', such that for all n €T,
mEBSN PyA), mES, a€ A(R’NG(A) and k €K,

2.7 > X |ATPK,, (ynmak, mak)|

YEF(P1.Py) x

is bounded by

@8 3 sup (33 IR(X)Kr,(ynmak, uak)| - [ul™) - ] i

i uEMI(A) Ny

We can choose elements {Y;} in %(¢(R)' ® C) such that

Ad(ak)' X = Ad(k)'X; = Y ci(k)Y;,

i

where c;(k) are continuous functions on K. Recall that Kp, ,(x, y) is
ultimately defined in terms of f. The function R,(Y)K,, ,(x,y) is
defined the same way, but with f replaced by f* Y*. The support of
f* Y* is contained in the support of f, so we can assume that (2.3) is
valid whenever R,(Y;)Kp,,(yx, y) does not vanish. By Corollary 4.6 of
[1(0)],

S IR(Y)Kp, (x, v)|
X

is bounded by a constant multiple of a power of |x|| - ly|. It follows
from Corollary 5.2 of [1(c)] that the expression

> S IR(Y)Kp (%, y)

YEF(P,P) x

> IR(Y)Kp, (X, ¥)| - #1(Ho(yx) — Ho(y) — To)

YEF(P1.Py) x
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is also bounded by a constant multiple of a power of |x| - |y|. By
taking N, to be large enough we obtain constants C, and N, such
(2.8), and therefore (2.7), is bounded by

Collm|[ ™| al™{m ™.

Set i = m in (2.7). Integrate the resulting expression over n €I,
mESNPyA), k€K and a in the subset of elements in A;(R)°N
G(A)! which satisfy (2.5). There are constants C; and N; such that the
result is bounded by

c, [ m|[MNi dm,

If we set N{= N, this is finite. The proof of Theorem 2.1 is complete.
O
LEMMA 2.4: For T sufficiently regular, and r sufficiently large,

f kI(x, f)dx = f ATK, (x, x) dx,
G\G(A)! G\GA)!

forall fE CAG(A)) and xEZ.

Proor: It follows from the proof of Theorem 2.1 that the integral
of kI(x, f) is the sum over all P,C P, of the product of (—1)dm“4/?
with
of(Ho(x) = T) - A7 Kp,,(yx, x) dx.

fPl(O)\G(A)‘ yEF(P1.Py)

As a double integral over x and vy this converges absolutely. If
P, = P, # G, the integrand is zero. If P,= P,= G, the result is the
integral of A7 K, (x, x). We have only to show that if P, CP;, the
result is zero. Let Q2(P,, P,) be the set of elements s in 2™ such that
sa and s”'a are positive roots for each a € A} and such that s does
not belong to any 0%, with P,CP ng. Then the above integral

equals the sum over all s € Q(P,, P,) of
[ ) o3Hx)— T) AFPKp, (wiyx, x) dx.
PiQN\G(A)! yEP(Q)NW TP (Q)w,\P1(Q)
Since

of(Ho(x) = T) - ATP1Kp, (wsyx, x)
= 0%(Ho(‘YX) -T)- A{’P‘KPl.x(Ws‘yx, x)
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for any y € P\(Q), this equals

(2.9) ai(Ho(x) — T) - AT Kp, (wsx, x) dx.

f(P,(Q)ﬂw}’PI(O)wS)\G(A)‘

If s€Q(Py, Py, w;'Pow, N\ M, is the standard minimal parabolic
subgroup of M, since s 'a >0 for a € A}. Therefore M, N w;'P,w,
equals M;N P, for a unique parabolic subgroup P, of G, with
P,C P,C P,. Write the integral in (2.9) as a double integral over
M, (Q)N,(A\G(A)' X (P{(Q) N w'Pi(Q)w,)\M(Q)N,(A). Py N w;'Pw,
is the semi-direct product of M,Nw;'Piw, and N,Nw;'Pw,
and M,Nw;'Pyw, decomposes further as the semidirect product
of M,(Q) and N Q). Therefore, (2.9) equals the integral over x in
M,(Q)N,(A)\G(A)" of the product of o}(Hyx)— T) and

dn; - A7P1Kp, (wsninx, nynx).

(2.10)

NianNka) Ni(A)NwT PIAIW AN (A)

This last expression equals

ffA{'Ple]'x(wsnlnx, nx)dn,dn

=IIA{'P‘KP.,X(WMIX, nx)dn, dn.

We apply Lemma 1.1 to the parabolic subgroup M; N P, of M,. Then
this expression vanishes unless w (Ho(x) — T) is negative for each
wE A!. On the other hand, we can assume that (2.3) holds, with v, x,
and y replaced by w,, n;x, and nx respectively. In other words,
w (Hy(w;n1x)) = @ (Hy(x)) + @ (Tp)
for each w e A,. But it is well known that
w (Ho(wsn x)) =@ (sHo(x)),
so there is a constant C, depending only on the support of f, such that

w(Hyx)—sHyx)=C

for every w in A,. These two conditions on Hy(x), we repeat, are
based on the assumption that (2.10) does not vanish. We obtain a third
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condition by demanding that o#(Hy(x) — T) not vanish. We shall show
that these three conditions are incompatible if T is sufficiently
regular.

We write the projection of Ho(x)— T on a2 as

- Zlcaa'+ 2 Co®™ .

a€4g wEA?

The first and third conditions on Hy(x) translate to the positivity of each
€. and ¢y Now the Levi component of P, equals M;Nw;'M,w,.
Therefore sa§ is orthogonal to a,. Then for w, € 4,,

@ o( Ho(x) — sHo(x))

equals

w(T —sT)+ 2 Cowmo(sa™)+ 2 Co@o(m ™ —sw’).
al

a€ weAA%

Now w * — sw ~ is a nonnegative sum of co-roots, so the sum over w is
nonnegative. Moreover we can replace each «a in the sum over A! by
the corresponding root in 4{\4§. Since s maps the roots in this latter
set to positive roots, the sum over a is also nonnegative. Finally, for
any @y, wo(T —sT) can be made arbitrarily large for T sufficiently
regular. We thus contradict the second condition on Hy(x). Therefore
(2.10) is always zero so the integral of kI(x,f) equals that of
ATK, (x, x). O

3. The operator M }(m)

For any x € Z, set

J ()= ki(x, f)dx.

GQ)\G(A)!

In this section we shall give another formula, which reveals a
different set of properties of the distributions J!. We shall build on
Lemma 2.4, which is a partial step in this direction.

Fix P, w € II(M) and x € Z. Suppose that A is a linear operator on
#p(m) under which one of the spaces Xp(w),, Hp(m)yk, Or
#p(m)yk,w is invariant. Here K, is an open compact subgroup of



108 J. Arthur [22]

G(A;) and W is an equivalence class of irreducible representations of
Kr. We shall write A,, Ak, or A, k,w for the restriction of A to the
subspace in question.

Suppose that 8 is a Siegel set in G(A)'. It is a consequence of
Lemma 1.4 and [1(c), (3.1)] that given any integer N' and a vector
¢ € #%(m),, we can choose a locally bounded function ¢({) on the set
of ¢ € a%¢ at which E(x, ¢;) is regular, such that

IATE(x, ¢l = () - x|

for all x € 6. It follows that for ¢, ¥ € #%(w),, the integrals
f ATE(x, ¢, )ATE(x, ) dx
GG

and

f E(x¢ ¢£)A TE(x7 d’n) dx
GQ\G(A)!

converge absolutely, and define meromorphic functions in (¢, 7)
which are regular whenever the integrands are. By Corollary 1.2 and
Lemma 1.3 these meromorphic functions are equal. Thus we obtain a
linear operator M () on ¥%(sr) by defining

(M) b1, b2) = f ATE(x, 1) - ATE(x, &) dx

GQ\G(A)!

[ B¢ ATEG 4 dx.
GG

for every pair ¢, and ¢, in #%(w). M} () depends only on the orbit
of 7 in II°(M). It is clear that M }(m), is self-adjoint and positive
definite. Notice also that

Ip(m, k) - Mp(m), = ME(m), - Ip(m, k)

for all k € K. It follows that for any K, and W, M (), leaves the
finite dimensional space #p(m),k,w invariant.

Recall that in the proof of Lemma 4.1 of [1(c)], we fixed an elliptic
element 4 in UBR)' @ C)%r. For any K, and W, #p(1),k,w IS an
invariant subspace for the operator Ip(w, 4). Choose A so that for any
x. m W and K,, such that Hp(m),k,w # {0}, Ip(m, A)k.w is the
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product of the identity operator with a real number which is larger
than 1. For example, we could take A to equal 1+ A%A,, where A, is a
suitable linear combination of the Casimir elements for G(R)' and K.

If A is any operator on a Hilbert space, ||A[; denotes the trace class
norm of A.

THEOREM 3.1: There is a positive integer n such that for any open
compact subgroup K, of G(Ay),

33y [ MBI (m, Ak dm
x P nv)

is finite.
Assume the proof of the theorem for the moment and take r, =

deg A". Suppose that f is a function in C}(G(A)"), which is bi-
invariant under K,. Then

IME(m) - Ip (m, H)xll

=|M E(m) .k, Ip (7, )l

= |IME(m)xk, - Ip(m, A") Ip (m, A" % )
=My, - Ie(m, A™) gl Te (7, A™ % ).

For any 7 the norm of the operator Ip(m, A" * f) is bounded by
f | [(A"™ * f)(x)| dx.
G(»)
Thus, Theorem 3.1 implies that for every f € C{(G(A)Y,

3.0 SSn@t | MHm, Lm pldn
x P n“

is finite, and in fact defines a continuous seminorm on C?(G(A)Y). In
particular, the operator MJ(w), - Ip(, f), is of trace class for almost
all .

THEOREM 3.2: There is an r=r, such that for any x and any
fECUGA)Y,

T =3 n4y” fna(m (M), - I (o, f),) do.
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We shall prove the two theorems together, Let N and ry, be the
positive integers of Lemma 4.4 in [I1(c)]. Choose an open compact
subgroup, K,, of G(A;) and a Siegel set 6 in G(A)'. According to
Lemma 1.4 and the lemma just quoted from [1(c)], we may choose a
finite set {Y;} of elements in U(4(R)'® C) such that for x € G(A)'.
vV ES,

r=r+2 degy,
and f a K-finite function in C%(G(A)'/K),

E n(A)” fnﬁ(m

P

2 E(x IL(m ¢)f)  ATE(y, ¢)|dm

(beap(ﬂ)x

is bounded by

2 NF Yilly - Il -yl

When we set x=y and integrate the above expression over
GQ)\G(A)!, the result is bounded by

vol(G@\G(A)) - X [If * Vil

Suppose w = (W,, W,) is a pair of equivalence classes of irreducible
representations of Kz. We defined the function

fo(x)=deg W, - deg W, - f

KrxK

] chw,(ky) f(k7'xk3")chw,(k,) dk, dk,
in §4 of [1(c)]. We also defined the positive integer #,. Let

rn=ry+ €o+§i:deg Y.
As we saw in §4 of [1(c)],

I£ll., = voG@\G(A)) 3 5; Ifo * Yily fE CHG(A)Y,
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is a continuous seminorm on C2(G(A)"). We have shown that

S E(x Ip(m, f,)¢)

SERBp(m)

6 3 SZnarf

© JGO\GAN x P

- ATE(x, ) . dmdx

is bounded by ||f||.,, for every f € C2G(A)Y.
Let r by any integer larger than r, for which Lemma 2.4 is valid.

Then if f € CX(G(A)"), and y is fixed,
S [ S M), Tplm £ dm
P M) o

=Saa [ S (S Eebnfe)
P oM o JGONG(A)' \PEBp(m),
- ATE(x, ¢)) dx -dw

SZaar[ (3 Ex ki)

fa((:s)\o(/\)l w P

- ATE(x, ¢)) d= - dx,

by Tonelli’s theorem. The operator AT is defined in terms of sums
and integrals over compact sets. If we combine Tonelli’s theorem
with the estimates of [1(c), §4] we find that we can take AT outside
the sums over ¢, P and w, and the integral over . The result is

f ATK (x, x) dx,
G@\GA! X

which by Lemma 2.4 equals J(f). The proof of Theorem 3.2 will now
follow from Theorem 3.1 if we take r to be larger than r,.

The only remaining thing to prove is Theorem 3.1. We shall use
Lemma 4.1 of [1(c)]. We can choose n, and functions gk € CA(G(A)")Kr
and g& € C2(G(A)) = such that A" * gk + g is the Dirac distribution at 1
in GR)'.If i=1,2, set

8i(xr - x) = vol(Ko) ™' - gh(xr) * Chi,(xy),
xr € GR)', x; € G(A)',
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where chy, is the characteristic function of K. Then
Ip(m, A");.IK,, = Ip(m, 8y + Ip(m, A") ' Ip(m, 8),-

Suppose that W is an irreducible Kg-type and that w = (W, W). Then
the trace of the restriction of MJ(m), - Ip(m, A")' to Hp(m), k,w 1S

tr(M}’-(‘”)x : IP(TT, gl.w)x + M}’-(ﬂ')x . Ip(ﬂ', A")_]IP("T, gz,w)x)-

Since the eigenvalues of Ip(m, A") are all larger than 1, this last
expression is bounded by

2
2. [tr(ME(m), - To(m, gia))l.

Now the trace class norm of the operator
ME(m)y k" Ip(m, A™) K,

is the sum of the traces of its restriction to each of the subspaces
#p () yk,w- Therefore

S S nar [ IMEm,, Il A7)l d
x P M)

is bounded by the sum over i = 1,2 of

E(x’ IP(T‘" glw)¢)

SSnarf 3

M) w ¢EQ}7(H)X f GONG(A)

ATE(x, ¢) dx| dm

This in turn is bounded by

-1
; IG(o)\G(A)‘ Zx: ; n(4) fn@(m

ATE(x, ¢) dx

2 E(x9 IP(‘”! gi.w)‘b)

SEBp(m),

dm,

which is just (3.2) with f replaced by g. Theorem 3.1, as well as
Theorem 3.2, is now proved. O
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4. Evaluation in a special case

In this section we shall give an explicit formula for JI(f) for a
particular kind of class y € Z. These special y we will call unramified;
they are analogues of the unramified classes 0 € ¢ for which we were
able to calculate JT(f) in [1(c), §8]. The formula for J T(f) is a
consequence of an inner product formula of Langlands which was
announced in [4(a), §9]. Most of this section will be taken up with the
proof, essentially that of Langlands, for the formula. First, however,
we must demonstrate a connection between the truncation operator
AT and the modified Eisenstein series defined by Langlands in [4(a)].

Fix a parabolic subgroup P, and a representation 7 € II(M)). If
¢ € #%,(m) and { € a¥, write

Ep(x, ¢, ) = Ep(x,¢;), PDP,.

If s € Q(ay, ay), define M(s, m, £) = M(s, {) by
M(s, )b = M(s, m) ;).

M(s, {) maps ¥} (m) to ¥%(sw). Suppose that y €Z is such that
P, € P,. Then for all y € G(A)',

d(mx), me M(Q)\M,(A)!,

is a cusp form in m. If P, is a second group in %?,, we have the
following basic formula from the theory of Eisenstein series:

E(nx, ¢, )dn= D )(M(s, O)b)(x)- e(s5+ep XHE),

] NAQ)\N(A) seN@ra

A formula like this exists if P, is replaced by an arbitrary (standard)
parabolic subgroup, P. Recall that £2(a,; P) is defined to be the union
over all a, of those elements s € 2(a;, a,) such that sa; = a, contains
a, and s”'a is positive for each a € A?. Then we have

4.1) E(nx,¢,dn= (Er(x, M(s, 9, 50).

L(Q)\N(A) sefd@y; P

The verification of this formula is a simple exercise which we can
leave to the reader. It can be proved directly from the series definition
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of E(x, ¢, ). Alternatively, one can prove it by induction on dim A,
applying [4(b), Lemma 3.7] to the group M.

LeEMMa 4.1: Suppose that P, € P, as above, that ¢ € ¥p(7), and
that ¢ is a point in a¥c whose real part [y lies in p,+(aT)". Then
ATE(x, ¢, {) equals

(4.2) > > > elslR)dxstr, Ho(8x)— T))

P, 5€PJQ)\G(Q) s€a).a2)

- L P XHUBN M (5. £)p)(8x),

with the sum over 8 converging absolutely. (The functions €, and ¢,
are as [1(c), §8].)

Proor: Suppose that P, and s € (2(a,, a,) are given. In the process
of verifying the equality of (8.5) and (8.6) in [1(c)], we ended up
proving that for all H € a,,

€x(sfr)d2Asér, H)
was equal to

(—DmAD 7, (H).

{P: PDPys€ay: P)}
Apply this to (4.2). Then decompose the sum over P,(Q)\G(Q) into a
sum over P,(Q)\P(Q) and P(Q)\G(Q). The sum over P(Q)\G(Q) will

be finite by [1(c), Lemma 5.1]. If « € A%, s™'a” is a nonnegative sum
of elements of the form B~, for B € A,. It follows that

(sér—p)a’)=(G—p)(s ') +pi(s'a™) = pala’)

is positive. Therefore the sum

e(e+PXHAE) . (M(s, £)p)(£8x)

£EPQ)\P(Q)

is absolutely convergent, and in fact equal to Ep(8x, M(s, {)¢, s{). In
particular, the original sum over § in (4.2) is absolutely convergent.

We find that (4.2) equals



[29] A trace formula for reductive groups Il 115

3 (- s Er(5x, M(s, 06, s} #(H(5x) = T).

SEP(Q\G(Q) {sen(a 1:P)

If the left hand side of (4.1) is substituted into the brackets, the result
is ATE(x, ¢, {). O

To simplify the notation, we shall assume that mw(a) is the identity
operator for all a € A|(R). This entails no loss of generality, since
any m, € II(M,) equals 7,, for some such 7 and some 7 € ia}. Given
P,, define

(x)= X elstr)dxsir, Hi(x)—T)

sEN(ay.a7)

- UMM (s, £))(x).

If A €ia%, define

Vy(A, x) = (e~UreXHlaNy(ax)) da,
’ ARPING(A)!

for x € G(A)'. This function is not hard to compute. We have only to
evaluate

f el MM ey(500) ol sLn, Holax) — T) da
ANRPNG(A)!

Since a—» Hy(ax) is a measure preserving diffeomorphism from
AR’ N G(A) onto a¥, this last expression equals

[ e esnste, H - T) B
a-
Make a further change of variables

H=Y ta’, t,ER.

a€4,

Of course, we will have to multiply by the Jacobian of this change of
measure. It is the volume of a§f modulo the lattice, L,, spanned by
{a”: a € 4,}. The integral becomes a product of integrals of decreas-
ing functions over half lines; it is easy to evaluate (see [1(b), Lemma
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3.4]). We find that ¥y(A, x) equals

e(S{*M(T)
vol(a§/Ly) - Y ——————— (M(s,D)d)x).
sef@a)a) I‘[ (s{—A)a™)

a€4,

We have been assuming that {g is a point in p, + (a})". Let us suppose
from now on that it is suitably regular. Then ¥,(A, x) can be analy-
tically continued as a holomorphic function, for A in a tube in a¥,
over a ball Bp, in a%, centered at the origin, of arbitrarily large radius.
The functions

lpz(A): X = lpg(A, X),

indexed by A, span a finite dimensional subspace of
L(My(Q)\MyA)' x K). For fixed Ay in Bp, ¥i(A) is a square in-
tegrable function from A, + i(a$)* to this finite dimensional space.

Suppose that Pj is another group in %,. Pick a class #' € [I(M'), a
vector ¢’ € ¥%,(m') and a point {'€a} ¢ to satisfy the same con-
ditions as above, and define the functions 5 and ¥; associated to any
other group P; in ?,. Then

4.3) f ATE(x, ¢, ) - ATE(x, ¢, {) dx
G@)\GA)!

is the sum over P, and P; in ?, of

f ( > ¢2(8x)>< D (pg(ax)) dx.
GQ\G(A)! \seP,(Q\G(Q) SEPQ)\G(Q)

This last inner product is given by a basic formula in the theory of
Eisenstein series ([4(a), Lemma 4.6]). It equals

f . (M(t, ) ¥AA), ¥i(—tA) dA,
Agti(a3)* tE£(az.03)

where A, is any point in Bp, N (p, + (a%)*), and dA is the Haar measure
on i(a§)* which is dual to our Haar measure on a$. Therefore, (4.3)
equals the sum over P, and s € (2(a,, a,), of the integral over A, of the

product of
e (s{—AXT)

[ (s¢—AXa™)

a€4y

4.4) vol(a§/L,)?
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and

e(s'{'+tA)(T)

P5 t€Q(ay,05) s'ENaj.ab) l"l (S,Z; + tA)((I V)
a€A)

X (M(t, AYM(s, Db, M(s',{) ).

4.5)

We shall show that (4.5) is a regular function of A on the tube over
p2+(a%)*. The functions M(t, A) are regular on this tube, so the only
signularities are along hyperplanes

{A: (s'T + tA)a") =0},

for fixed s', t, ¢’ and a € A;. Let s, € 2(a3, a3) be the simple reflection
belonging to a (see [4(b), Pg. 35]). Then B = —s,a is a root in Aps, and

{A: (5u8'C + stA)B) =0}

is the same hyperplane as above. Thus, the summands in (4.5) which
are singular along a given hyperplane occur naturally in pairs. We
shall show that the two residues around the hyperplane add up to 0.
Assume that (s'd’ + tA)(a”) =0. Then (sa8'L + satAXB)=0. The in-
ner product from the summand of (4.5) corresponding to P3, s,s’, st
equals

(4.6) (M(s.t, AYM(s, )b, M(sas', {) ")
= (M(sq4, $'0)*M(sa, tA) - M(2, AYM(s, )b, M(s', {') ")

by the functional equations. But
M50, $'0)* = M(50,— 5'0) "= M(s,, tA)™,

since M(s,, tA) depends only on the projection of tA onto a. There-
fore (4.6) equals

(M(t, A)M(s, D)é, M(s', {d"),

which is the inner product from the summand of (4.5) corresponding
to Py, s’, t. It follows that the residues of the two summands do add
up to zero. Therefore (4.5) is regular at the hyperplane under con-
sideration, and so is regular on the tube over p, + (a%)*.
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Next we shall show that if s# 1, the integral in A of the product of
(4.4) and (4.5) equals 0. Given such an s, choose a root a € 4, such
that (s{r)(a”) <0. Change the path of integration from Re A = A, to
Re A = Ay+ Nw,, where N is a positive integer which we let ap-
proach . We can do this by virtue of the regularity of (4.5) and the
fact that the numbers

{IM(t, A)|: Re A = A + Nw,}

are bounded independently of N. Notice that

!e—A(T) e(m(r)' = Ao~ Ao+ Nltw, ~wXT)

is no greater than 1. Therefore, the integral over Re A = Ag+ Nw,,
approaches 0 as N approaches «. It follows that the original integral
equals zero.

We have only to set s = 1 in (4.4), multiply the result by (4.5), and
then integrate over A. Make a change of variables in the integral over
A, setting

A= z,m, 2 €EC.

a4,

With this change of measures, we must multiply the result by the
volume of i(a$)* modulo the lattice spanned by {w,: a € 4,}. Since
dA represents the measure on i(a§)* dual to that on af, and since
{w,.} and {a "} are dual bases, this factor equals

1 dim(A,/2)
(Z—T_l) vol(a ZG / Lz)_l.

The product of this factor with (4.4) then equals

el cw o (T)

1 dim(Ay/Z)
(Zr_) vol(a§/Ly) e*™ []

a€4ly :(a v) - Za.

Each z, is to be integrated over the line Ao(a ") + iR). We replace this
contour with the line Ag(a”)+ N +iR, and let N approach . Ac-
cording to our assumptions on ¢, {r(e”) > Ag(a ), so we will pick up a
residue at z, = {(a ). By the arguments of the previous paragraph,
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the integral of z, over the line Ao(a™)+ N +iR approaches 0 as N
approaches . Therefore the integral of z, over A¢a”)+ iR equals
the residue of the integrand at z, = {(a~). It follows that (4.3) is the
product of vol(a$/L,) with the value of (4.5) at s=1and A =¢{. We
have proved

LeEMMA 4.2: (Langlands) Supposethat Py, P| € P, that ¢ € K3 (),,
@' € ¥%(n"), and that { and {' are vectors in 0}, ¢ and a %, c whose real
parts are suitably regular points in (a3,)* and (a$;)* respectively. Then

[ ATEG e, 0BG & D) dx
GO\G(A)!

equals the sum over P,E P,, s € ()(a,, a,), and s' € (4], a,) of

elsE+sIXT)
vol(a§/L,) - - (M(s, O, M(s', o). O
[T (s¢+s'0)@)

a€4y

Both sides of the identity of the lemma are meromorphic functions
in (¢, ). Therefore the identity is valid for all regular points ¢ and ¢'.

Recall that the elements of Z are equivalence classes of pairs
(M,, p1). We shall say that y is unramified if for any pair (M, p) in ,
the only element s € £2(a;, a,) for which sp = p is the identity. For the
remainder of this section, assume that y is unramified. Suppose that
P,=P{=P and that # =#'. Then if ¢, ¢’, s and s’ are as in the
lemma,

(M(s, D), M(s', {)¢") =0

unless s = s'. It follows that for n € ia*, (M}(m,),,, ¢2) equals

. e(![)(T)
im S 3 vol@§/Ly) - —S—— (M(s, 1+ D), M(s', 1)),
-0 PEP, s€EN(a,0) H (s{)(a V)
a€ly

We can now take 7 to be any class in II(M). We have shown that for
P P, and = € [I(M),

ME(m), = vol(aZ/Lp) - lim

S 3 xe""‘T’M(s,r)"M(s,‘rr,{).

PEP, sENa.0)) v
S a
agz( (@)

On the other hand, if P does not belong to #, and = € II(M), then
#p (1), = {0}. This fact can be extracted from the results of [4(b), §7].
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We can therefore write

JIih=> n(A)"f tr(M p(m), - Ip(m, f),) dm,
n%m)

PED,

with M }(m), given explicitly above in terms of the global intertwining
operators. If we wanted to pursue the analogy with §8 of [1(c)], we
might regard this formula as a linear combination of ‘weighted
characters’ of f.

5. Conclusion

The results of this paper, and of [1(c)] can be summarized as an
identity for the reductive group G. Namely, there is an integer r >0
such that for any f € CL(G(A)") and any suitably regular point T € ag,

2 I =3 T,
tec XEX
where

JI(f) = ki(x, f)dx

GA\G(A)!

= f ji(x, f) dx,
G\GA)!

and

Jx()= ky(x, f) dx

GO\G(A)!

=3 n(A)-'fG tt(MH(m), - Ip(m, f),) dm.
P 1% (M)

Let R., be the restriction of the representation R to
L3 (G(@)\G(A)). Let Z(G) be the set of classes y € Z such that
®?, ={G). Then R, is the direct sum over all x in Z(G) of the
representations R,. If x € Z(G) and = € II(G), M&(), is the identity
operator. It follows from the finiteness of (3.1) that if f is in
CH(G(A)"), Rus(f) is of trace class. (This fact also follows from (3,
Pg. 14] and [1(c), Corollary 4.2].) Moreover if f € CH(GA)Y, for r as
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in Theorem 3.2,

tr Rcusp(f)
= > trR(f)

XEZ(G)

[ .ttt iy dm
XEZ(G) /T19(G)

= > Jih.

XEZ(G)

Thus

tr Rcusp(f) = 2 Jl"r(f) - 2 J;'(f)
€0 XENX(G)
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