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Introduction

This paper, as promised in the introduction to [l(c)], contains an
identity which is valid for any reductive group G over 0, and which
generalizes the Selberg trace formula for anisotropic G. We have
already shown that a certain sum of distributions on G(A)', indexed
by equivalence classes in G(Q), equals the integral of the function

E kT(X, f), x E G(Q)\G(A)1.
xEt

The main task of this paper is to show that the integral may be taken
inside the sum over X. There does not seem to be any easy way to do
this. We are forced to proceed indirectly by first defining and studying
a truncation operator A on functions on G(O)\G(A)'.

Recall that kT(x,f) was obtained by modifying the function
Kx(x, x). We shall apply the results of § 1 to the function

ATA TK (x, x), x E G(Q)\G(A)1,
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obtained from K,(x, y) by truncating in each variable separately, and
setting x = y. It will turn out that the function

Aj Af2 K.(x, x)|
xE

is integrable. Then in §2, our main chapter, we shall show that for T
sufficiently regular,

E (A TA 2Kx(x, x) - kT(x, f)) dx
XET (O)tG(A)1

converges absolutely. We shall also show that for each X, the integral
over G(Q)\G(A)' equals 0. If we set JT(f) equal to

A ITA TK(x, x) dx = kT(x f) dx,
JG (O)\G( A)1 G (Q)\G( A)1

the identity associated to G is then

EJATE)=ZJECH= XE f).

We should note that the distributions JT and J are not in general
invariant. Moreover, they depend on a choice of maximal compact
subgroup and minimal parabolic subgroup. However, it should be
possible to modify each of the distributions so that they are invariant
and independent of these choices, and so that the identity still holds.
We hope to do this in a future paper.
Both formulas for JT (f) are likely to be useful. The integral on the

right is particularly suited to evaluating JT on the function obtained
by subtracting f from a conjugate of itself by a given element in
G(A)'. It can also be used to show that JT(f) is a polynomial function
in T. We shall not discuss these questions here. On the other hand,
the integral on the left can be calculated explicitly if the class X is
unramified. We do this in §4. The result follows from a formula,
announced by Langlands in [4(a)], for the inner product of two
truncated Eisenstein series. It was by examining Langlands' method
for truncating Eisenstein series that I was led to the definition of the
operator A T
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1. A truncation operator

Let G be a reductive algebraic group defined over Q. We adopt the
definitions and notation of [l(c)]. In particular, K is a maximal
compact subgroup of G(A) and Po is a fixed minimal parabolic
subgroup of G defined over Q. Again we shall use the term 'parabolic
subgroup' for a parabolic subgroup P of G, defined over 0, which
contains Po. We would like to prove that the terms on the right hand
side of the identity given in Proposition 5.3 of [l(c)] are integrable
functions of x. To this end, we shall introduce a truncation operator
for functions on G(Q)\G(A)1.

Recall that T is a fixed, suitably regular point in a . If 4 is a
continuous function on G(Q)\G(A)1, define (AT)(x) to be the func-
tion

i(- 1)dim(A/Z) 8 G IN()\(A p4(nSx) rp(H(8x) - T).
P8E5P(Q)\G(Q) N(Q)\N(A)

(the sum over P is of course over all parabolic subgroups.) Note the
similarity with our definitions of the functions k (x, f) and kT(x, f) in
[l(c)]. If 4 is a cusp form, AT = 0. It is a consequence of [l(c),
Corollary 5.2] that if +(x) is slowly increasing, in the sense that

|+(X)| ' CllxlN",

for some C and N, then so is ATO(x).

LEMMA 1.1: Fix P1. Then for fE C(G(Q)\G(A)'),

|fv ATnT(nlx) dn1 =0
N(Q)\Ni(A)

unless r(Ho(x) - T) < 0 for each E A1.

PROOF: For any P, let D2(ao;P) be the set of s E such that
s-la >0 for each a E AP. Applying the Bruhat decomposition to

P(Q)\G(O), we find that fN,(o)\N,(^) AT (nlx) dn1 equals the sum over
P and s E f(ao;P) of the integral over n in N(Q)\N(A) of the
product of (-l)dim(A/Z) with

f|l()\Av'N0 f2lN(0, C(nwsvnlx). rp(H(wsvn x) - T) dnl.
Ni(Q)\Ni(A) vEws No(OQ)wsnNoQ)\NO)
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Since Ni(Q)\Ni(A)= No(Q)\No(Q)Nl(A), this last expression equals

;N0o,nN (^(nwsnx)fp(H(wsnx)- T)dnl.
Jw' NO(Q)w, nNO()\NiQ)N,(A)

Decompose w -No(Q)w, n No(Q)\No(G)Ni(A) as

(w-'No(O)ws n No(Q)\w-'No(A)ws nNN(Q)N,(A))
x (wNo(A)ws n N(QO)Nl(A)\No(Q)Ni(A))

= (w-'No(Q)ws n N1(Q)\w-'No(A)w~ n Nl(A))
x(w -No(A)ws n No(Q)Ni(A)\No(Q)N (A)).

This induces a decomposition of the measure dn1 as dn, dn*. Then
write

wsnn* = wsnW n*= ns ni*,

and finally, combine the integral over hn with the integral over n in
N(Q)\N(A). Because s lies in 2(a0; P), Non wsNlw nM is the
unipotent radical of a standard parabolic subgroup of M. It follows
that

(No n wsN,w'n M)N = Ns

is the unipotent radical of a uniquely determined parabolic subgroup
Ps of G, which is contained in P. We have shown that

fN(O\NI(A) ¢ (n1x) dn 1 equals

(_- 1)dim(A/Z) dn(dAP sEDR(ao; P) wsNo(A)wsnN&O)NI(A)\N(O)Ni(A)

| 4 (nwsn*x)p(H(wsn*x)- T)dn.
sN(Q)\Ns(A)

We shall change the order of summation, and consider the set of P
which give rise to a fixed Ps. Fix s E Q. Define S' (resp. S1) to be the
set of a Eo such that s-'a is a positive root which is orthogonal
(resp. not orthogonal) to a1. If P, is one of the groups that appear in
the above formula, A' will be a subset of S'. Those P which give rise
to a fixed P, are exactly the groups for which AoP is the union of Ao
and a subset S of S1. Thus, for fixed s with ,A C S', we will obtain an
alternating sum over S C SI of the corresponding functions ip. We
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apply Proposition 1.1 of [l(c)]. Let Xs be the characteristic function of
the set of H E oa such that for a E AO- A U Si, wa(H) >0, while
mja(H) < 0 for a in SI. Here ma is the element in Ao corresponding to
a. Then fN,(O)N,(A) 4(nlx) dnl is sum over s E f1 and over all subsets A4
of S, of the integral over n* in w'sNo(A)ws n NN(O)N,(A)\
NI(O)N,(A) and n in Ns(O)\Ns(A) of the product of

1(nwsn*x)Xs(Ho(wsn*x) - T)

with -1 raised to a power equal to the number of roots in Ao- S' U Sl.
Suppose that for some s, Xs(Ho(wsn*v)- T) does not vanish. Then

if

Hc(wsn*x)-T)= 2 t, t E R,
a EA0

ta is positive for a in A0- A U S, and is not positive for a E Sl. If
_w E=l,

(s-'(Ho(wsn*x) - T))

= > ta(S(s-la1)a EAO

E t.m(s-la),
a EAo\S1

where s-la is orthogonal to a' if a E S'. This last number is clearly
less than or equal to 0. Now

s-l(Ho(wn*x) - T) = Ho(x) - T + s-Ho(wsvwsl) + (T- s-IT),

for some element v E No(A). If E Ao, it is well known that
m(s-'Ho(wsvw-1) is nonnegative and w (T - s-i) is strictly positive.
Therefore m (Ho(x) - T) is negative for any w E al. D
From the definition of AT we obtain

COROLLARY 1.2: ATAT =AT.

LEMMA 1.3: Suppose that 41 and 42 are continuous functions on
G(O)\G(A)'. Assume that 41 is slowly increasing, and that 42 is
rapidly decreasing, in the sense that for any N, the function
IlxIN ' I42(x)l is bounded on any Siegel set. Then

(A Ti, 42) = (41, AT2).



92 J. Arthur [61

PROOF: The inner product (ATb1,)2) is defined by an absolutely
convergent integral. It equals

|fG(O)\()I (-l)dim(A/Z) 2
(Q)\G(A)1 P 8EP(Q)\G(Q)

x f1NNA l(nxx)'rp(H(Sx)- T)b2(x) dn dx
N(Q)\N(A)

= 2 (- 1)dim(A/Z) f fP l(nx)4)2(x)ip(H(x)- T) dx dn

= 2 (_ 1)dim() f f ^) l(x)2(nx)fp(H(x) - T) dx dn.
P N(Q)\N(A) JP(Q)\G(A)1

This last expression reduces to (l1, A T02). [

REMARK: It can be shown that AT extends to an orthogonal
projection on L2(G(Q)\G(A)').
We would like to show that under suitable conditions, AT+P(x) is

rapidly decreasing at infinity. The argument begins the same way as
the proofs of Theorems 7.1 and 8.1 of [l(c)]. Suppose <4 is a con-
tinuous function on G(Q)\G(A)1. Apply Lemma 6.4 as in the begin-
ning of the proof of Theorem 7.1 of [l(c)]. We find that AT4(x) is the
sum over {P1, P2: Po C P1 C P2} and 8 E Pi(Q)\G(Q), of

F'(Sx, T)2l(Ho(Sx)- T)0pp2(Sx),

where

pP2(y)= 2 (-1)dim(AZ) (ny) dn.
{P: PICPCPI N(Q)\N(I)

For the moment, fix 8 and x. We regard 8 as an element in G(Q)
which we are free to left multiply by an element in Pi(O). We can
therefore assume, as in [l(c), §7] that

8x = n*n*mak,

where k EK, n*, n*, and m belong to fixed compact subsets of
N2(A), N2(A) and MI(A)' respectively, and a is an element in Ai(R)°
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with oa(Ho(a)- T) O. Therefore

PIP2(8X) = 4p,p,2(n*n*mak)
= P ,P2(n*mak)
= ppp2(aa-ln*mak)
= (>pP2(ac),

where c belongs to a fixed compact subset of G(A)1 which depends
only on G.
The function 4P,,p2 resembles the function estimated in the corol-

lary of [3, Lemma 10]. We want a slightly different statement of the
estimate, however, so we had best re-examine the proof. If a E A2, let
Pa, Pi C Pa C P2, be the parabolic subgroup such that A ? = A4 is the
complement of a in A4. For each a, let {Yai,... Y,n} be a basis of
n2(Q), the Lie algebra of N2(Q). We shall assume that the basis is
compatible with the action of Al, so that each Ya,i is a root vector
corresponding to the root Pa,i of (M2 n P1, Al). We shall also assume
that if i - j, the height of Pa,i is not less than the height of 3,j. Define
naj, 0 j < n,, to be the direct sum of {Yai,..., Y,,j} with the Lie
algebra of N2, and let Na,j = exp na,j. Then Naij is a normal subgroup
of Ni which is defined over 0. If V is any subgroup of N1, defined
over 0, let 7r(V) be the operator which sends b to

tf 4b(ny) dn, y E G(A).
V(o)\V(A)

Then pp,2 is the transform of 4 by the product over a E A2 of the
operators

nta
7T(N2) -1T(Na) = 2 T(N.,i-) - T(Nai).

i=1

If Ko is an open compact subgroup of G(Af), G(Q)\G(A)l/Ko is
differentiable manifold. We assume from now on that 4 is a function
on this space which is differentiable of sufficiently high order. Sup-
pose that I is a collection of indices

{i: aa Al, l ia na}.
Then

NI = Na,i-i
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and

N. = H NCi,
ot

are normal subgroups of N1. Let n' be the span of {Y,,i} and let
n'(O)' be the set of elements

= raYai,, raeC*

Then if n is any positive integer,

n _ (r )

is a nonzero real number. By the Fourier inversion formula for the
group A/Q, p,,p,(y) is the sum over all I of

?E f dx du (ue(X)y)4((X, 4)).
4 tnlO)\l(Q A) JN ~~(Q)\N~I(^)

Here e and $i are as in [l(c), §7] and (,) is the inner product defined
by our basis on n'. If n is a positive integer,

n = H (_- Yai)l

can be regarded as an element in I(q(R)' ® C). Then Op,,,(y) equals
the sum over I and over E n'(Q)' of

~~~(1.1) (f~ | dX| du
l(O(1.1)A) f N(Q)\N7(A)

Ry(Ad(y-l)Yn)4(ue(X)y)((X, )).

Now, we set

y = 8x = ac,

as above. Since o2(Ho(a)- T) 0, a belongs to a fixed Siegel set in
M2(A). It follows that the integrand in (1.1), as a function of X, is
invariant by an open compact subgroup of n'(Af) which is in-
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dependent of a and c. Consequently, (1.1) vanishes unless ~ belongs
to a fixed lattice, L'(Ko), in n'(R). But for n sufficiently large

fEn (o)'nL (Ko)

is finite for all I. Let c,(Ko) be the supremum over all I of these
numbers. Then IP4,,p2(ac)l is bounded by

Cn(Ko) 2 f \ (R(Ad(c)- Ad(a)-' Y?)4)(uac)\ du.
I N(Q)\Nj(A)

Let pB = Za13a,i. Then PB is a positive sum of roots in A . For any n,

Ad(a -l)YY= e-"n(Ho(a))Y? = e-nI(Ho(Sx))y.

We can choose a finite set of elements {Xi} in t(q(R)' QC), depend-
ing only on n and Ko, such that for any PI, P2, I and c,

Cn(Ko) Ad(c)-l Y

is a linear combination of {X,}. Since c lies in a compact set, we may
assume that each of the coefficients has absolute value less than 1.
We have thus far shown that IA TO(x) is bounded by the sum over all
Pi, P2 and 8 E Pi(Q)\G(Q) of the product of

F'(Sx, T)ro-(Ho(Sx)- T)

with

(1.2) 2 , jR(Xj)(u8x)I du* e-""nI(O))
I i Ni(Q)\N()

LEMMA 1.4: Let 6 be a Siegel set in G(A)'. For any pair of positive
integers N' and N, and any open compact subgroup Ko of G(Af), we
can choose a finite subset {X5} of tI(g(R)l (0 C) and a positive integer
r which satisfy the following property: Suppose that (S, do) is a
measure space and that f(oa, x) is a measurable function from S to
Cr(G(Q)\G(A)I/Ko). Then for any x E 6,

1A T(crO,x)l do-



96 J. Arthur [10]

is bounded by
E sup (f R(Xi)(o, y) da * Iyll-N) * Ix.
·yGc(A)1 S

PROOF: Substitute o(a) for b in (1.2) and integrate over o. The
result is

(1.3) 2 I iR(Xi)4(o, u8x)l do du e-n"(Ho(x".
I i ( N(0)\N(A) S

If 5x = ac, with a and c as above,

118xll-< 11all -11 l.

We are assuming that a2(Ho(a) - T) $ 0. Since fi3 is a positive sum of
roots in A2 we conclude from [l(c), Corollary 6.2] that I|all is bounded
by a fixed power of

eI(Ho(a)) = e I(Ho0(x))

It follows that for any positive integers N and N1 we may choose n

so that (1.3) is bounded by a constant multiple of

E sup IR(Xi)(o-, )ly da- ix K) IXI-NI.i yeG(A)lY '

It is well known (see [2]) that there is a constant cl such that for any
y E G(Q) and x E ,

|iiYXi-N .< C111XII-N,

The only thing left to estimate is

C F x(Sx, T)oa(He(Sx)- T).
5EP1(0)\G(Q)

The summand is the characteristic function, evaluated at 8x, of a
certain subset of

{y E G(A)': w(Ho(y) - T) > 0, r E al.

The sum is bounded by

Y
P

,(Ho(Sx)- T).
6EPl(O)\G(O)
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It follows from [l(c), Lemma 5.1] that we can find constants C2 and
N2 such that for all P1 this last expression is bounded by C2xllIN2. Set
N1 = N' + N2. N1 dictates our choice of n, from which we obtain the
differential operators {Xi}. The theorem follows with any r greater
than all the degrees of the operators Xi. o

In the next section we will need to have analogues of the operators
AT for different parabolic subgroups of G. If PI is a parabolic
subgroup, and 4 is a continuous function on Pl(Q)\G(A)', define

ATPI(x)= (_ l)dim(AR/IA) Z
{R:P0CRCP1} 5ER(O)\PI(O)

x 1I N 4(nSx) dn TR(Ho(x) - T).
NR(O)\NR(A^)

LEMMA 1.5: Suppose that P is a parabolic subgroup and c is a
continuous function on P(Q)\G(A)'. Then

E E A 0(Sx)rv (Ho(Sx)- T){Pj: PoCPiCP} 5EPi(Q)\P(O)

equals

(1.4) |f (nx) dx.
N(Q)\N(A)

PROOF: We need to prove that (1.4) is the sum over {R: Po C R C P}
and 8 E R(Q)\P(Q) of the product of

N) .$)(nSx) dnNR(Q)\NR(A)

with

(1.5) 2 (- 1)dim(ARIA1) I(Ho(Sx) T) *(Ho(SX)-T(o( .

{PI: RCPICP}

Consider Lemma 6.3 of [l(c)], with A a point in -(a*)+. The sum
given in that lemma then reduces to (1.5). It follows from [l(c), Prop.
1.1] that (1.5) vanishes if R. P and equals 1 if R = P. This establishes
Lemma 1.5. 0
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2. Integrability of kT(x, f)

We take r to be a sufficiently large integer, and continue to let T be
a suitably regular point in ao. In [l(c)] we associated to every
f E C'(G(A)') a function, k(x, f), on G(Q)\G(A)1.

THEOREM 2.1: For sufficiently regular T,

E|Yl Ik T(x, f)l dx
ve^ G(O)\G(A)1

is finite.

We will not prove the theorem directly. Rather, we shall relate
kT(x,f) to the truncation operators whose asymptotic properties we
have just studied. We shall operate on Kp,(x, y), which of course is a
function of two variables. If PI C P2, we shall write A T'Pl (resp. A r.PI) for
the operator A TP,, acting on the first (resp. second) variable.

LEMMA 2.2: For any X E X, k T(x, f) equals

E E acr(Ho(x) - T)
{PI,P2: PoCP1CPZ) 5EPi(O)\G(Q)

X l , (-1)dim(AZ)A TP Kp,x(SX, SX)}.{P: PCPCP2}

PROOF: The given expression is the sum over all chains P1 C P C
P2 C P3 and over 8 E Pi(QC)\G(Q), of

(-1)dA3A2)3(HO() - T)3 (Ho (Sx) - T)(-1)dim('AZ)A P'Kp.X(x, 8x).

As we have done many times, we appeal to [l(c), Prop. 1.1]. We see
that the sum over P2 equals 0 unless P = P3. Therefore the given
expression equals

2 (- l)dim(A/z) ] pp(Ho(Sx)- T)
{Pi,P: PoCP1CP} 5EPi(O)\G(O)

*rp(Ho(Sx)- T) A'TPKp, (x, Sx).P 2·1K.(X,~)
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Apply Lemma 1.5 to the sum over Pi. We obtain

(_ I)dim(A/Z) 2 rp(Ho(SX)- T)
{P: PoCP} 8EP(O)\G(O)

·* |fNoN) Kp,(Sx, nSx) dn.
N(0)\N(A)

Since

Kp,(8x, n8x) = Kpx(Sx, 8x), n E N(A),

this last expression equals kx(x, f), as required.

Fix Pi C P2. Motivated by the last lemma, we shall examine the
expression

2(_(-1)dim(A/A:2) Kp(x, ny) dn.
{P: PiCPCP2}, N(Q)\NI(A)

It equals

2 (- l)dim(A/A2) 2 2 f(x-'y- y) dn
{P: PiCPCP2} 7EPi(O)\P(O) iN(A) TEMi(O)

= (_ l)dim(A/A2) Kp,(yX, y).
P yEPl(Q)\P(O)

Let F(Pi, P2) be the set of elements in P1(O)\P2(Q) which do not
belong to Pi(Q)\P(Q) for any P, with P1 C P CP2. By [1(c), Prop. 1.1]
the above expression equals

E Kp,(yx, y).
yEF(PI, P2)

In this last formula we have affected the cancellation implicit in the
alternating sum over P. In order to exploit the equation we have just
derived, we interrupt with a lemma.

LEMMA 2.3: Suppose that for each i, 1_ i < n, we are given a
parabolic subgroup Qi D P1, points xi, y, E G(A) and a number ci such
that

n r

2 ci KQ.(Xi, nmyi) dn
i = 1 Nl(O)\Ni(A)
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vanishes for all m E Mi(Q)\M,(A)'. Then for any X E f,

n r

hX(m) Ci=z C) KQ,.X(xi, nmyv) dni=1 Nl(O)\Nl(A)

also vanishes for all m E M1(Q)\M,(A)'.

PROOF: Suppose that for a given X' E A, there is a group R in P~
which is contained in P1. We would like to prove that for any function
x, E L2(MR(Q)\MR(A)1)X,, the integral

(2.1) I fNOM)\N hx(nm)+,'(m) dn dm
MR(O)\MR(A)

vanishes for X. X'. Suppose that X. X', and that E QO(7r)v for
some Q C Qj, and some ir E H(MQ). The construction of Eisenstein
series is such that if the function

m - EQ,(nmy, <) dn, m E Mi(Q)\Mi(A)',
Nl(O)\Nl(A)

is substituted for h. in (2.1), the result is 0. It follows from the
estimates of [l(c), §4] that (2.1) itself is 0. The same estimates yield
constants c and N such that

2 h,x(m)l < c||m|rN, m E M,(Q)\M,(A)'.

By assumption, Exh(m) equals 0. Consequently (2.1) is zero even
when = X'. The function hx is continuous. Because (2.1) vanishes
for all X, hX satisfies the hypotheses of [4(b), Lemma 3.7]. h, is
therefore zero. O

To return to the proof of the theorem, we look for conditions
imposed on x, y and y by the nonvanishing of

(2.2) Kp,(yx, my), m E Mi(Q)\Mi(A)'.
Set

y = y1k, yi E Pi(A) n G(A),' k E K.

There is a compact subset of G(A)', depending only on the support of
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f, which contains some point

x-'^y-lnrmyx, n E N(A), rl E Mi(Q),

whenever (2.2) does not vanish. Fix CE l1 and let A be a rational
representation of G with highest weight de, d > 0. Choose a height
function 11 11 as in [l(c), §1]. If v is a highest weight vector, we can
choose a constant c, such that

IlA(x-'yn-rmy,)vll < cl

whenever x-'ynrlmyl lies in the given compact subset of G(A)1. The
left side of this inequality equals

edw(HoYAl))JA(x-'l-')vUJ = edw(Hoy))'IA(x- y-')vll,

which is no less than a constant multiple of

edm(HO(y)) e -d(Ho(yx))

In other words, w (Ho(yx) - Ho(y)) is no less than a fixed constant. It
follows from this observation that we may choose a point ToE ao,
depending only on the support of f, such that

(2.3) Ti(Ho(yx)- Ho(y)- To) = 1

whenever (2.2) does not vanish identically in m. We conclude from
Lemma 2.3 that if (2.3) fails to hold for a given x, y and y, then

(2.4) Kp,,x(yx, my), m E Mi(Q)\Mi(A)',

vanishes for all X and m.
Combining [l(c), Lemma 5.1] with what we have just shown, we

conclude that for fixed x and y,

Kp,,x(yx, y), y E F(Pi, P2),

vanishes unless y belongs to a finite subset of F(Pi, P2), independent
of X. Therefore the sums in

(- 1)dim(A/A2) Kp(x, nmy) dn - ~ Kp((yx, my)
{P: PiCPCP2} N(Q)\NI(A) yEF(Pi,P2)
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are finite. Since the expression vanishes for all m in Mi(Q)\Mi(A)',
we can apply Lemma 2.3. We obtain an equality of functions of y for
each X. We are certainly at liberty to apply our truncation operator to
those functions. It follows that for any X E S,

2 (-l)dim(A/Z) TPKpoX(X, y)
{P: PICPCP2

equals

(_l)dim(Az) AA?' IKp,,X(yX , y).
yEF(PI,P»)

We have thus far shown that

2f| IkT(x, f)l dxX (Q)\G(^A)

is bounded by the sum over {P1, P2: Po C Pi C P2} of

f 2 2 cr(Ho(x) - T)A PV'Kp,x(yx, x)l dx.JPl(Q)\G(A)1 X yEF(PI,P2)

Let 6 be a fixed Siegel set in Mi(A)' with Mi(Q)6 = Mi(A)', and let F
be a compact subset of NI(A) with NI(O)F = N1(A). Then the last
integral is bounded by the integral over n E F, m E t nlPo(A), a E
A,(R)°n G(A)1, and k E K, of

e-2pp i(a))o2(HO(a) - T) 2 IA'2PKp,,(ynmak, mak)I.
x Y

Suppose that for n, m, a and k as above, and for some rh E Ml(A)l'
y EF(Pi, P2) and X E

Kp,,,(ynmak, rhak) # 0.

Write y = vwrr, for v E N0(Q), ir E PO(Q) and s E QM2, the Weyl
group of (M2, Ao). It follows from Lemma 2.3 that there is a fixed
compact subset of G(A)' which contains

a- m-lnl wspla,

for points nl E No(A) and pi E M1(A)'NI(A). Fix w E d, and let A and
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v be as above. A(ws)v is a weight vector, with weight si. The vector

A(a-lm-lnlwspla)v - ed('-s"XHo(a)) e-dsw(Ho(m))v

can be written as a sum of weight vectors, with weights higher than
sw. By the construction of our height function,

ed(w-swxHo(a)) e-ds(Hi(m)) vIIll IIA(a-lm-'n1 wspla)vl.
It follows that there are constants c' and c, depending only on the
support of f, such that

K(w - sm)Ho(a))l < c'Ism(Ho(m))| < c(l + log|lmll).

Since s fixes a2 pointwise, the inequality

I(w -s-)(Ho(a))| c c(l + logllmll)

holds for the projection of w onto a2. In other words, we may take X
to be an element in A2. For each such A, w -sm is a nonnegative
integral sum of roots in A2. We claim that the coefficient of the
element a in A2, such that w = wa, is not zero. Otherwise we would
have (a - s )(m ') = 0, or equivalently, sx = . This would force s to
belong to QM, for some parabolic subgroup P, P C P CP2. This
contradicts the assumption that y = vwsr belongs to F(P1, P2), so the
coefficient of a is indeed positive. We can assume that a has the
additional property that

I2(Ho(a) - T) $ 0.

It follows from Corollary 6.2 of [l(c)] that for any Euclidean norm
| I on a0 there is a constant c such that

(2.5) Il(Ho(a)Il < c(1 + logirlII).
We have shown that if a E A1(R)° n G(A)1 is such that for some X, y,
n, m, mi and k,

(2.6) fol2(Ho(a)- T)Kp,,x(ynma, rhak)l
does not vanish, then the inequality (2.5) holds.
Suppose that f is right invariant under an open compact subgroup
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Ko of G(Af). Then if Ip,(r,f)4o 0 for some rT and f E Ap,(7r)X, the
function E(y, d) is right Ko-invariant in y. Therefore for any x, y and
X, Kp,,(yx, y) is right Ko-invariant in y. It follows that (2.6) is right
invariant in mi under the open compact subgroup

n (kIkok-1) n M,(Af)l
kCK

of Mi(Af)1. We apply Lemma 1.4 with the group G replaced by M1.
For any positive integers N1 and N' we can choose a finite set {Xi} of
elements in l1(mI(R)'lC), the universal enveloping algebra of the
complexification of the Lie algebra of Mi(R)', such that for all n E F,
m E in Po(A), r E 6, a E Ai(R)° n G(A)1 and k E K,

(2.7) lA P'KP, ,(ynmak, mak)l
yEF(PiP2) X

is bounded by

(2.8) C sup E)( (Xi)Kp1(ynmak, uak)|l \IuL-N) I,mh-.
i ueMl()

We can choose elements {YJ} in qU(q(R)' C) such that

Ad(ak)-Xi = Ad(k)-'X, = c,(k) Yj,

where cij(k) are continuous functions on K. Recall that Kp,,x(x, y) is
ultimately defined in terms of f. The function Ry(Yj)Kp,,(x, y) is
defined the same way, but with f replaced by f* Y*. The support of
f* Y* is contained in the support of f, so we can assume that (2.3) is
valid whenever Ry( Y)Kp,,(yx, y) does not vanish. By Corollary 4.6 of
[l(c)],

E|Ry(Yj)Kp,,,(x, y)J
x

is bounded by a constant multiple of a power of |xll| Ilyll. It follows
from Corollary 5.2 of [l(c)] that the expression

IRRy( Yj)Kp,.x(yx, y)l
yEF(PI,P2) X

= CIR2y(Yi)Kp,x((yx, y)i * i(H(Ho(y(x)-Hoy)- To)
yEF(PI,P2) x
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is also bounded by a constant multiple of a power of l||xl IlyIl. By
taking N1 to be large enough we obtain constants C2 and N2 such
(2.8), and therefore (2.7), is bounded by

C2Imm IINjIaN21211r-N .

Set mh = m in (2.7). Integrate the resulting expression over n E F,
m E nP(A), k EK and a in the subset of elements in Al(R)°n
G(A)' which satisfy (2.5). There are constants C3 and N3 such that the
result is bounded by

C3 lmllN3-N dm.

If we set N; = N3, this is finite. The proof of Theorem 2.1 is complete.

LEMMA 2.4: For T sufficiently regular, and r sufficiently large,

kfCT(X, ) dx = A K (x, x) dx,
G(O)\G(A)1 G(O)\G(A)

for all f E Cc(G(A)1) and X E .

PROOF: It follows from the proof of Theorem 2.1 that the integral
of kT(x,f) is the sum over all P C P2 of the product of (-1)dim(A2/Z)
with

I(o)tG(Ab)1 2 o2(Ho(x) T) A T'P1Kp1,x(yx, x) dx.
Pl(Q)\G(A) yEF(PI,P2)

As a double integral over x and y this converges absolutely. If
P1 = P2 # G, the integrand is zero. If Pi = P2 = G, the result is the
integral of A2Kx(x,x). We have only to show that if PI CP2, the
result is zero. Let f2(P1, P2) be the set of elements s in QM2 such that
sa and s-'a are positive roots for each a E A' and such that s does
not belong to any f2M, with PIC P CP2. Then the above integral
equals the sum over all s E f2(P1, P2) of

fL\GA)' yEP
X(O)fw?(O)ws\Pi(O)O'(Ho(x) - T) A TP'Kp1,x(wsyx, x) dx.

Pl(O)\G(A)1 yePi(o)nwf P,(o)wH\Pi)

Since

oa(Ho(x) - T) * A2P'Kp1,X(WyX, x)
= a2(Ho(yx) - T) * A PKp,x(wsyx, x)
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for any y E PI(Q), this equals

(2.9) f( a2(Ho(x) - T) A TP'Kp,,X(Wsx, x) dx.
(Pi(O)nws IPl(O)ws)\G(A)1

If s E f(P, P2), ws-Pows nM, is the standard minimal parabolic
subgroup of M1, since s-'a >0 for a E A'. Therefore MI n w -'P w,
equals M1i P,, for a unique parabolic subgroup P, of G, with
PoC Ps C P. Write the integral in (2.9) as a double integral over
Ms(Q)Ns(A)\G(A)1 x (Pi(Q) n wS-'PI(O)ws)\Ms,()Ns(A). Pi n w-P,1w
is the semi-direct product of Mln wT'Piws and N n w;'Pw,,
and Mi nwT1plw decomposes further as the semidirect product
of M,(Q) and N'(Q). Therefore, (2.9) equals the integral over x in
M,(Q)N,(A)\G(A)l of the product of a2(Ho(x)- T) and

(2.10) dn dnl ArTPKpx(wsnlnx, nlnx).
JN(Q)\N[(A) N(A)nw- IPi(A)ws \N(A)

This last expression equals

f J A2P'Kp,x(Wsninx, nx) dnl dn
= fi A'PKp,,x(wsnlx, nx) dn, dn.

We apply Lemma 1.1 to the parabolic subgroup Min P, of Ml. Then
this expression vanishes unless w (Ho(x)- T) is negative for each
CE SA. On the other hand, we can assume that (2.3) holds, with y, x,

and y replaced by Ws, nix, and nx respectively. In other words,

w (Ho(wnlx)) -> (Ho(x)) + w (To)

for each AE Ai. But it is well known that

s (Ho(w,snlx)) < (sHo(x)),

so there is a constant C, depending only on the support of f, such that

((x)-sHo(xx)s)) < C

for every w in Al. These two conditions on Ho(x), we repeat, are
based on the assumption that (2.10) does not vanish. We obtain a third
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condition by demanding thatoL(Ho(x) - T) not vanish. We shall show
that these three conditions are incompatible if T is sufficiently
regular.
We write the projection of Ho(x)- T on a, as

- CIC,ca + E c,,w- E>

The first and third conditions on Ho(x) translate to the positivity of each
c, and c,. Now the Levi component of Ps equals Mi ws'Mlws.
Therefore sao is orthogonal to al. Then for wo E 1,

0 o(Ho(x) - sHo(x))

equals

weo(T-sT)+ Y caro0(sa')+ E cmo(w --stw).

Now w -s- v is a nonnegative sum of co-roots, so the sum over w is
nonnegative. Moreover we can replace each a in the sum over A by
the corresponding root in AO\As. Since s maps the roots in this latter
set to positive roots, the sum over a is also nonnegative. Finally, for
any wo, wo(T - sT) can be made arbitrarily large for T sufficiently
regular. We thus contradict the second condition on Ho(x). Therefore
(2.10) is always zero so the integral of k(x, f) equals that of
A2K,(x, x).

3. The operator MP(tr)

For any x E Y, set

JTf) = I k (x, f) dx.
G(0)\G(A)1

In this section we shall give another formula, which reveals a
different set of properties of the distributions JT. We shall build on
Lemma 2.4, which is a partial step in this direction.

Fix P, r E II(M) and X E 3. Suppose that A is a linear operator on
ep(ir) under which one of the spaces 'P(w)x, Xp(Wr)x,K0 or

Xp(1r)x,Ko,w is invariant. Here Ko is an open compact subgroup of
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G(Af) and W is an equivalence class of irreducible representations of
KR. We shall write AX, AXKO or AX.KOW for the restriction of A to the
subspace in question.
Suppose that t is a Siegel set in G(A)'. It is a consequence of

Lemma 1.4 and [l(c), (3.1)] that given any integer N' and a vector
b E 9p(rr)x, we can choose a locally bounded function c(g) on the set
of Eap,c at which E(x, 4b) is regular, such that

IA TE(x, 0)I -Cc(4) - Ilx l-",

for all x E . It follows that for 4, tf E p(wT)x, the integrals

:
A TrE(x, O)A TE(x, ¢,) dxIG(O)\G(A),

and

|~Go)( E(x, O)A TE(x, tp1) dx

converge absolutely, and define meromorphic functions in (t, j)
which are regular whenever the integrands are. By Corollary 1.2 and
Lemma 1.3 these meromorphic functions are equal. Thus we obtain a
linear operator MT(7r) on °p(ir) by defining

(Mp(rr)Xl, 4)2)= A TE(x, 4)1) A rE(x, 2) dx
JG(Q)\G(A)1

= |fxi E(x, )i) A TE(x, 42) dx,G(Q)\G(A)'

for every pair A(l and ()2 in %1p(r). MT(r) depends only on the orbit
of ir in HG(M). It is clear that Mp(7r)x is self-adjoint and positive
definite. Notice also that

Ip(1T, k) M (iTr) = MT(rr)X Ip (r, k)

for all k E K. It follows that for any Ko and W, M (7r)X leaves the
finite dimensional space rp(7r)XKo,W invariant.

Recall that in the proof of Lemma 4.1 of [1(c)], we fixed an elliptic
element A in t(((R)'(C)KR. For any Ko and W, p(lr),KOW is an
invariant subspace for the operator Ip(ir, A). Choose A so that for any
X, ir, W and Ko, such that pp(Tr)XK0,w {0}, Ip(r, A)x,Ko,w is the
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product of the identity operator with a real number which is larger
than 1. For example, we could take A to equal 1 + AA1l, where Al is a
suitable linear combination of the Casimir elements for G(R)' and KR.

If A is any operator on a Hilbert space, IlAll1 denotes the trace class
norm of A.

THEOREM 3.1: There is a positive integer n such that for any open
compact subgroup Ko of G(Af),

2 n(A)1 f ||Mp(r)xK0 *I p(ir, An)XoIi d7r
x P fG(M)

is finite.

Assume the proof of the theoremorm r the moment and take r =
deg An. Suppose that f is a function in C1(G(A)l), which is bi-
invariant under Ko. Then

IIMp(7r)· Ip(rT,f)XII
= |Mp(Tr)x,K'*Ip (r,)|lli
= ||Mp(7),Ko * Ip(TA )-lIp(1T, *f)Ill
< |IMT(I),,KoIp(,Tr, An)JlP1 " *)||.·

isfinite, and in fact defines a continuous seminorm onC*(G(A)'). Inf).

For anyar the norm of the operatorIp(7r,Af *f)is bounded by

| |(A" * f)(x)| dx.
cG(A)1

Thus, Theorem 3.1 implies that for every f E C?(G(A)a),

J(3.1) 2 n(A)- 'f IMT(M(r), Ip(r, f))Ji1dr7
x P G(M)

is finite, and in fact defines a continuous seminorm on Cr(G(A)I). In
particular, the operator Mp(r)X * Ip(Tr, f)x is of trace class for almost
all v.

THEOREM 3.2: There is an r> rl such that for any X and any
/ E C[(G(A)'),

jT(f) = n(A)-'' tr(MpT(7r), * Ip(Ir, f) dTr.
P n(M)
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We shall prove the two theorems together, Let N and ro be the
positive integers of Lemma 4.4 in [l(c)]. Choose an open compact
subgroup, Ko, of G(Af) and a Siegel set 0 in G(A)'. According to
Lemma 1.4 and the lemma just quoted from [l(c)], we may choose a
finite set {Yi} of elements in V(t(R)'IC) such that for xEG(A)',
vE t',

r-ro+ deg Yi,

and f a K-finite function in Cr(G(A)'IKo),

Z n(A)-'G(M) E(x, p(r, )f) ATE(y, ) d7r
P J E(M)dE p(rr)

is bounded by

E,If* Yij· XIIIIN IlYIl-N

When we set x = y and integrate the above expression over
GQ)\G(A)1, the result is bounded by

vol(G(O)\G(A)') · lf * Yll,0.

Suppose w = (WI, W2) is a pair of equivalence classes of irreducible
representations of KR. We defined the function

f,(x) = deg W -deg W2 * Rt chw(k) f(k lxk21)chw,(k2) dk dk2

in §4 of [l(c)]. We also defined the positive integer to. Let

r2 = r0+ eo+ deg Yi.

As we saw in §4 of [l(c)],

fl/l, = vol(G(Q)\G(A)') X I f * Yillro, f E C?2(G(A)'),
ID
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is a continuous seminorm on C?(G(A)'). We have shown that

(3.2) z)' E n(A)- ftf E(x, Ip(7r, f,)4)
G(o)\G(A)1 X P JG(M4) .Ep(r)

* A E(x, c) drdx

is bounded by Ilfll , for every f E C2(G(A)').
Let r by any integer larger than r2 for which Lemma 2.4 is valid.

Then if f E Cr(G(A)1), and X is fixed,

n(A)-1f GM) tr(M(r)x * Ip(7r, f)x) d7r
JG(M) c

=C£n(A)-' 2 ,(2 E(x, Ip( fe))
P nG(M) < G(Q)\G(A)1 \E.ap(r)X

* AE(x, 4)) dx * dr

= f| G X22 n(A)-' f| (2 E(x, Ip(r, f))G(0)\G(A)1 P g(M)

* ATE(x, 4)) dr * dx,

by Tonelli's theorem. The operator AT is defined in terms of sums
and integrals over compact sets. If we combine Tonelli's theorem
with the estimates of [l(c), §4] we find that we can take AT outside
the sums over 4b, P and o, and the integral over 7r. The result is

f(0)()' A Kx(x, x) dx,

which by Lemma 2.4 equals JT(f). The proof of Theorem 3.2 will now
follow from Theorem 3.1 if we take r to be larger than rl.
The only remaining thing to prove is Theorem 3.1. We shall use

Lemma 4.1 of [l(c)]. We can choose n, and functions g' E C(G(A))KR
and g2 E- CT(G(A)')KR such that An * ga + g2 is the Dirac distribution at 1
in G(R)'. If i 1, 2, set

gi(xR Xf) = vol(Ko)-' gR(xR) ch4(xf),
XR E G(R)', Xf EG(A)l,



112 J. Arthur [26]

where chKo is the characteristic function of Ko. Then

Ip(V7, A")XK = Ip(7, gl)x + Ip(V7, A ) p(, g2),.

Suppose that W is an irreducible KR-type and that w = (W, W). Then
the trace of the restriction of MpT(Tr)X Ip(7r, An) to WP(1r)x.Ko.W is

tr(Mp(7r)x Ip(7r, gl.a), + MP(7r)X Ip(, )-p(7r, g2.w)x).

Since the eigenvalues of Ip(7r, A) are all larger than 1, this last
expression is bounded by

2 Itr(Mp(7r)x, - Ip(7T, gi,)x).
i=l

Now the trace class norm of the operator

M~(Tr)~Ko IP(, An)-IMpr),,K, .' X.K

is the sum of the traces of its restriction to each of the subspaces
pSp(7r)XKow. Therefore

, n(A)-' |IMP(7)XK0IP(7T,,, A)X.I dr7
x P HG(M)

is bounded by the sum over i = 1, 2 of

Z ' n(A)--1 E(x, Ip(r, gi,)Q)
x P (M) W ep(,)X G(o)\G(^'

.A TE(X, ) dx d7r.

This in turn is bounded by

Co ,,| Y, n(A)-f I Sz E(x, Ip(7T, gi,))
G(O)\G(A)1 x P JIG(A) eXP(ff)k

*ATE(x, ) dx dr,

which is just (3.2) with f replaced by g,. Theorem 3.1, as well as
Theorem 3.2, is now proved. [1
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4. Evaluation in a special case

In this section we shall give an explicit formula for Jr(f) for a

particular kind of class X E X. These special X we will call unramified;
they are analogues of the unramified classes o E C for which we were
able to calculate J'(f) in [l(c), §8]. The formula for JT(f) is a

consequence of an inner product formula of Langlands which was
announced in [4(a), §9]. Most of this section will be taken up with the
proof, essentially that of Langlands, for the formula. First, however,
we must demonstrate a connection between the truncation operator
AT and the modified Eisenstein series defined by Langlands in [4(a)].

Fix a parabolic subgroup PI and a representation E1I(Mi). If
E 0p,(ir) and iE a c, write

Ep(x, ,O)=Ep(x, 4c), P D P.

If s E Q(a1, a2), define M(s, ir, ) = M(s, O) by

M(s, 0)4 = M(s, rt),t)-_.

M(s, ) maps W1,(r) to ,p2(s7r). Suppose that X E X is such that
P1 E Px. Then for all X E G(A)1,

O(mx), m E Mi(Q)\M,(A)',

is a cusp form in m. If P2 is a second group in P, we have the
following basic formula from the theory of Eisenstein series:

|J2 E(nx,4,, ) dn = E (M(s, 0)W)(x) e(s+PP2XH(x)).
N2(o)\N2(A) sEA(a1,a2)

A formula like this exists if P2 is replaced by an arbitrary (standard)
parabolic subgroup, P. Recall that 2N(a; P) is defined to be the union
over all a2 of those elements s E Q(a1, a2) such that sal = a2 contains
a, and s-'a is positive for each a E A2. Then we have

(4.1) f E(nx, (, O) dn = 2 Ep(x, M(s, 0)4, sO).
N(Q)\N(A) sEf(a1; P)

The verification of this formula is a simple exercise which we can
leave to the reader. It can be proved directly from the series definition
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of E(x, ), 4). Alternatively, one can prove it by induction on dim A,
applying [4(b), Lemma 3.7] to the group M

LEMMA 4.1: Suppose that P EEP as above, that 4 E tp,(rr)X and
that ; is a point in a*c whose real part OR lies in p +(a*)+. Then
A TE(x, 4, O) equals

(4.2) 2 2 2 E2(SR)42(SR, Ho(5x)- T))
Pi 6EP2(O)\G(O) sEG(ai,a2)

. (s+±XHo(x))(M(ss,())(6x).

with the sum over 8 converging absolutely. (The functions E2 and 42
are as [l(c), §8].)

PROOF: Suppose that P2 and s E Q(ai, a2) are given. In the process
of verifying the equality of (8.5) and (8.6) in [l(c)], we ended up
proving that for all H E ao,

E2(SR)d42(S5R, H)
was equal to

2 (- )dim(Ap/Z),p(H).
{P: PDP2,ssE(al; P)}

Apply this to (4.2). Then decompose the sum over P2(Q)\G(Q) into a
sum over P2(Q)\P(Q) and P(Q)\G(Q). The sum over P(Q)\G(Q) will
be finite by [l(c), Lemma 5.1]. If a E ad, S-la' is a nonnegative sum
of elements of the form BV, for / E Al. It follows that

(SR - p2)(cX ) = (R - pl)(s-'la + pl(S-a )-- P2(a )

is positive. Therefore the sum

2 eWP(stHi6fx)) . (M(S, 00)(6Sx)
eEP2(0)\P(Q)

is absolutely convergent, and in fact equal to Ep(8x, M(s, )4), s'). In

particular, the original sum over 8 in (4.2) is absolutely convergent.

We find that (4.2) equals
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E (_l)dim(A/Z) Ep(8x, M(s, ), sO i(H(x) - T).
P 8EP(Q)\G(Q) sEn(a; P)

If the left hand side of (4.1) is substituted into the brackets, the result
is ATE(x, p, i). D-
To simplify the notation, we shall assume that 7r(a) is the identity

operator for all a E AI(R)°. This entails no loss of generality, since
any wl-E H(Mi) equals rtr, for some such ir and some 71 E ia*. Given
P2, define

412(X) = E2(S4;R)2(S4R, Ho(x)- T)
sER2(al,a2)

. e(S+P2xHO))(M(s,' ))(x).

If A E ia*, define

'2(A, x) = f (e-(A+p2HO"(ax2(ax)) da,
A2(R)°nG(A)l

for x E G(A)'. This function is not hard to compute. We have only to
evaluate

fI e )(W(E2(SR)42(s5R, Ho(ax) - T) da

Since a ->H2(ax) is a measure preserving diffeomorphism from
A2(R)°)n G(A)1 onto a2G, this last expression equals

eses-AXH) 2(sSR)2(ssR, H T) dH.

Make a further change of variables

H= 2 tav, t,ER.
arE42

Of course, we will have to multiply by the Jacobian of this change of
measure. It is the volume of a2G modulo the lattice, L2, spanned by
{a': a E A2}. The integral becomes a product of integrals of decreas-
ing functions over half lines; it is easy to evaluate (see [l(b), Lemma
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3.4]). We find that V2(A, x) equals

(s-S-H T)

vol(a2/L2) * (M(s ))(0).sef(a1a-) H(sj - Ai)(aa)

We have been assuming that ,R is a point in pi + (a*)'. Let us suppose
from now on that it is suitably regular. Then F2(A, x) can be analy-
tically continued as a holomorphic function, for A in a tube in a*2
over a ball Bp, in a2, centered at the origin, of arbitrarily large radius.
The functions

/52(A): x -* 42(A, x),

indexed by A, span a finite dimensional subspace of
L2(M2(G)\M2(A)'x K). For fixed A0 in Bp,, T2(A) is a square in-
tegrable function from Ao + i(a )* to this finite dimensional space.
Suppose that P; is another group in SY. Pick a class T' E H(M'), a

vector O'E pi(7r') and a point ('E atic to satisfy the same con-
ditions as above, and define the functions 12 and gV associated to any
other group P' in ?. Then

(4.3) A TE(x, ,,) A TE(x, ',c') dx
G(O)\G(A)l

is the sum over P2 and P2 in Px of

f ( 2 q2(8x))(( E +2(6x)) dx.IG(Q)\G(A)' GEP2(O)\G(Q) EP(O)\G()

This last inner product is given by a basic formula in the theory of
Eisenstein series ([4(a), Lemma 4.6]). It equals

f G (M(t, A) 2(A), A(-tA))dA,
O+i(a(2)* tE20(a2,a)

where Ao is any point in Bp, n (P2 + (a*)+), and dA is the Haar measure

on i(a2)* which is dual to our Haar measure on a'. Therefore, (4.3)
equals the sum over P2 and s E Q(a, a2), of the integral over A, of the
product of

(sC-AXT)
(4.4) vol(a /L2)2

aE(2et -=J
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and

(4.5) e'(s''+tA) T)
(4.5) E E --e

Pi tEQ(a2,a) s'Ef(ajai) -l (s''+ tA)(a )
aE-A

x (M(t, A)M(s, 0), M(s',I')X').

We shall show that (4.5) is a regular function of A on the tube over

P2 + (a*)+. The functions M(t, A) are regular on this tube, so the only
signularities are along hyperplanes

{A (s' + tA)(a) = },

for fixed s', t, C' and a E A'. Let Sa E (N(a2, a'') be the simple reflection
belonging to a (see [4(b), Pg. 35]). Then 3 = -sa is a root in dp5, and

{A: (sas'' + stA)(3) = 0}

is the same hyperplane as above. Thus, the summands in (4.5) which
are singular along a given hyperplane occur naturally in pairs. We
shall show that the two residues around the hyperplane add up to 0.
Assume that (s''+ tA)(a ) =. Then (s,s'' + stA)(0))=0. The in-
ner product from the summand of (4.5) corresponding to P'2, sas', Sat
equals

(4.6) (M(sat, A)M(s, 0)O, M(s\s', ;')r')
= (M(s,, s';')*M(s,, tA) * M(t, A)M(s, ;)4, M(s', ;')4')

by the functional equations. But

M(sa, s'T')* = M(a, - s'')-l = M(sa, tA)-l,
since M(sa, tA) depends only on the projection of tA onto a. There-
fore (4.6) equals

(M(t, A)M(s, C), M(s', C")O'),

which is the inner product from the summand of (4.5) corresponding
to P2, s', t. It follows that the residues of the two summands do add
up to zero. Therefore (4.5) is regular at the hyperplane under con-
sideration, and so is regular on the tube over p2 + (a*)+
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Next we shall show that if s . 1, the integral in A of the product of
(4.4) and (4.5) equals 0. Given such an s, choose a root a E Ad such
that (s4R)(a') < 0. Change the path of integration from Re A = Ao to
Re A = A0 + Nw,, where N is a positive integer which we let ap-
proach oo. We can do this by virtue of the regularity of (4.5) and the
fact that the numbers

{lIM(t, A)||: Re A = A + Nm,}

are bounded independently of N. Notice that

le-A(r) e(ttlXT)I = e(tAo- to+N(ti a-m,)X T)

is no greater than 1. Therefore, the integral over Re A = Ao+Na
approaches 0 as N approaches oo. It follows that the original integral
equals zero.
We have only to set s = I in (4.4), multiply the result by (4.5), and

then integrate over A. Make a change of variables in the integral over

A, setting

A= f ZaWa, ZaEC.

With this change of measures, we must multiply the result by the
volume of i(a )* modulo the lattice spanned by {,a: a E A2}. Since
dA represents the measure on i(aG)* dual to that on ai, and since
{ a} and {a'} are dual bases, this factor equals

1 \ dim(A2/Z)

½--i) vol(a 2/L2)-'
The product of this factor with (4.4) then equals

dim(A2/Z)
V T e (

2( ri2)Cvol(a L2)e eZa ,aT)\27-~/i~/ ~a/Ed'(a )--~

Each a, is to be integrated over the line Ao(a v) + iR). We replace this
contour with the line Ao(at) + N + iR, and let N approach oo. Ac-
cording to our assumptions on , CR(a ) > AO(a'), so we will pick up a
residue at Za = (a '). By the arguments of the previous paragraph,
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the integral of Za over the line Ao(ac)+N + iR approaches 0 as N
approaches oo. Therefore the integral of Za over Ao(at)+ iR equals
the residue of the integrand at Za = ?(a ). It follows that (4.3) is the
product of vol(aG/L2) with the value of (4.5) at s = 1 and A = W.We
have proved

LEMMA 4.2: (Langlands) Suppose that Pi, P; E Px, that 4 E Xlp,(r)x,
4(' E Pi(Tr')x and that t and 4' are vectors in a ,,c and a Pj,c whose real
parts are suitably regular points in (a4)+ and (a )+ respectively. Then

f|IA) A E(x, , )A TE(x, )',C') dx
-G(Q)\G(^)~

equals the sum over P2 E Px, s E f(al, a2), and s' E Q(a;, a2) of

e(s"+s''XT)
vol(aG2L2) - (M(s, 00, M(s', ')). D

H (sC + s'')(a)
aEA2

Both sides of the identity of the lemma are meromorphic functions
in (r, c'). Therefore the identity is valid for all regular points C and r'.

Recall that the elements of X are equivalence classes of pairs
(MI, pi). We shall say that X is unramified if for any pair (MI, p) in X,
the only element s E f((al, a,) for which sp = p is the identity. For the
remainder of this section, assume that X is unramified. Suppose that
Pi =P== P and that ir = ir'. Then if 4, 4b', s and s' are as in the
lemma,

(M(s,5), M(s', "')') = 0

unless s = s'. It follows that for i E ia*, (Mi(i,)), 4) equals

(sCXT)
lim 2 2 vol(aQI/L2) - (M(s, 27 + 0), M(s', "7)<').0 P2EX sE7(4a,42) H-(s)(a')

aE42

We can now take ir to be any class in H(M). We have shown that for
P E Px and 7r E H7(M),

M'(ir) = vol(a/ILp) lim 2 2 xe')M(s, )-M(s, ir,-pP2E )sEnl(a,42) n (slma')
aEA2

On the other hand, if P does not belong to 9x and Xr EH(M), then
eP(ir)x = {0}. This fact can be extracted from the results of [4(b), §7].
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We can therefore write

J(f) = n(A)-' tr(M(rr)x · Ip(r, f)) d7r,
PEJ G(M)

with Mp(7r)x given explicitly above in terms of the global intertwining
operators. If we wanted to pursue the analogy with §8 of [l(c)], we
might regard this formula as a linear combination of 'weighted
characters' of f.

5. Conclusion

The results of this paper, and of [l(c)] can be summarized as an

identity for the reductive group G. Namely, there is an integer r >
such that for any f E Cr(G(A)') and any suitably regular point T E aO,

2 J )= JX
ree xEt

where

JT(f)= kT(x,f)dx
,(Qo)\G(A)

j[(x, f)dx,
G(Q)\G(A)z

and

(o)G()\G

= n(A)- f tr(MT(7r)x Ip(r, f)x) drr.
P Gn(M)

Let Rcusp be the restriction of the representation R to

L2usp(G(\G)\G(A)). Let X(G) be the set of classes X E ' such that
= {G}. Then Rcusp is the direct sum over all X in i(G) of the

representations Rx. If X E X(G) and xr E H(G), MT(rr)X is the identity
operator. It follows from the finiteness of (3.1) that if f is in
C'(G(A)'), Rcusp(f) is of trace class. (This fact also follows from [3,
Pg. 14] and [l(c), Corollary 4.2].) Moreover if f E Cr(G(A)'), for r as



[35] A trace formula for reductive groups II 121

in Theorem 3.2,

tr Rcusp(f)
= E trR(f)

xEV(G)

= XE(2( tr(G(7r, f)) drXEX(G) UG(G)

= 2 xj(f).XEa(G)

Thus

tr Rcusp(f)= (f)- 2 J(f).
fECO xEx\X(G)
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