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Preface

This article is an introduction to the monograph [ECR/], the purpose of
which was to classify the automorphic representations of a family of classical
groups. The groups are quasisplit, special orthogonal and symplectic groups
G. Their representations are classified in terms of those of general linear
groups GL(N). The monograph is based on the stabilization of the trace
formula for G, established for any connected group in [A1]. It also depends
on the stabilization of the twisted trace formula for GL(N'), which represents
work in progress by Moeglin and Waldspurger [W5|-[W7]|, [MW2]. Until
it has been completed, the classification will remain conditional.

There are already two short surveys [A4], [A5] of some of the main
results of [ECR]. This article is somewhat different. I have tried to write
it as a longer report that might be suitable for the broader readership of
Current Developments in Mathematics. The monograph [ECR] is long, and
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often quite complex. It draws on techniques from many diverse sides of the
subject, which would be hard to present in any detail here. Moreover, what
has been included in this report might still be difficult in places. I hope,
however, that I have given enough motivation to offer some perspective on
the modern theory of automorphic forms, as well as the actual contents of
[ECR].

For the most part, we confine ourselves to the orthogonal and symplectic
groups G whose representations we classify. We recall these groups in §1,
and their relations with Langlands’ principle of functoriality. In §2, we
discuss the automorphic Langlands group Lp. Its existence is far from
known, but its expected properties offer much guidance. In §3, we describe
how Langlands parameters and their generalizations, which in their global
form would be defined on the hypothetical group Lr, suggest how to relate
representations of G with those of general linear groups GL(NV). This simple
exercise in linear algebra also provides an entry into the theory of endoscopy,
which underlies the statements (and proofs) of our theorems.

The representation theory of GL(N) is relatively simple, and quite well
understood now, thanks to the work of a number of mathematicians over the
past forty years. We shall review some of it in §4, taking the opportunity
also to review the theory of arithmetic and automorphic L-functions. We
shall use the automorphic representations of GL(N) in §5 as a foundation
for ad hoc global parameters for G that do not depend on the hypothetical
group Lp. The construction requires two “seed” theorems (Theorems 5.1
and 5.2), which we state but (like everything else) do not prove.

In §6, we review the theory of endoscopy, whose spectral roots we en-
countered in §3. We use it to state a critical local result (Theorem 6.1),
which is the starting point for the local classification. We will then be in a
position to state the main theorems (Theorems 7.1, 7.2 and 7.3) in §7. In the
final §8, we will add some supplementary comments on how the theorems
relate to the two fundamental cases of functoriality discussed in §1. These
observations do not appear in [ECR].

We follow the discussion from [ECR] closely in some places, and reorder
it in others. We are also including supplementary background material from
the theory of automorphic forms and the Langlands program. We have not
tried to cross-reference statements here with those of [ECR], but a reader
will have no difficulty seeing how they correspond. This report takes us
through Sections 1.1-2.1 (and the beginning of §2.2) of [ECR], the part of
the monograph given to the statements of the main theorems. Most of the
rest of the monograph, specifically Sections 2.3-8.2 (and the remaining part
of §2.2), is devoted to the proofs. The argument is long and complex, but it
has a certain unity. It comes with several layers of induction, of which we
will see hints in §5. We will add nothing further to this, except to note that
the heart of the argument is an endoscopic comparison of trace formulas.
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1. Classical groups and functoriality

The groups we consider will be attached to the four infinite families of
complex simple Lie algebras. These are represented by the following four
infinite families of Coxeter-Dynkin diagrams, for which I am indebted to
W. Casselman.

Type A,

O———0—++*—0 O o
Type B,

O———O0— e —O0——O0—>—0
Type C,

O———O0—¢¢e —O——O0——0
Type D,

For corresponding complex groups, we could take the special linear groups
SL(n + 1,C), the odd orthogonal groups SO(2n + 1,C), the symplectic
groups Sp(2n,C) and the even orthogonal groups SO(2n,C). The family
A, will be our starting point. Since the theory here is simplest for general
linear groups, we will take the reductive groups GL(N,C), N = n + 1, as
the complex representatives for this family.

We actually want to take these groups over a number field F' (such as
the rational numbers Q) or one of its completions (such as the real number
field R or a p-adic field Q,). We therefore take F' to be any local or global
field of characteristic 0.

We recall the fundamental theorem of Chevalley, which implies that any
of these complex groups has a canonical F-structure. In other words, for
each of the diagrams, there is a canonical classical group that is defined over
F. It is the split group attached to the given diagram (and centre). Our
interest is actually in quasisplit groups. They represent a broader class of
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groups, obtained by twisting any given split group by a Galois action on the
diagram. The symmetry group of a diagram is the group of bijections of the
set of vertices that preserve all of the edges and arrows. It is isomorphic to
7/2Z in type A,, trivial in types B, and C,, and equal® to Z/27Z in type
D,,. A quasisplit group is determined by a homomorphism from the Galois
group
I'p = FF/F = Gal(F/F)

of an algebraic closure I over I to the symmetry group of the diagram.
The monograph [ECR] does not treat nonsplit, quasisplit groups of type
A,,. (These are unitary groups, for which we refer the reader to [Mok].)
Since a quasisplit group of type B,, or C,, is split, we have only to consider
type D,,. In this case, a quasisplit group is determined by a quotient of I'p
of order 1 or 2, or in other words, a Galois extension E/F of degree 1 or 2.

One of the remarkable discoveries of Langlands has been the fundamental
role played by a certain dual group. We take G to be the group over F
we are working with, either a general linear group GL(N) or a quasisplit
special orthogonal or symplectic group. The dual group Gis a complex
classical group, which is attached to the dual diagram obtained by reversing
the directions of any arrows in the diagram of G. Chevalley’s theorem is
based on an identification of the symmetry group of the diagram with the
group of outer automorphisms of the split group (or rather, a group of F-
automorphisms that represent those outer automorphisms). This transfers
to a dual Galois action of I'r by complex analytic automorphisms of C:‘,
which factors through the quotient

of I'p. Langlands built this action into the dual group by forming the
semidirect product

LG = é bl PF
that is now known as the L-group.

The L-group is actually a more concrete object than might be suggested
by the large Galois factor. For many purposes, one can replace I'r by any
quotient I'g/r through which the Galois action factors, and in particular, by
the minimal such quotient above. If G is split, for example, one can often
take E = F and LG = G. Equipped with this minimal form *G = LGE/F
of the L-group, our four families of groups are then as follows.

Type Ay: G = GL(N) is split, and G = GL(N,C) = “G, where N = n+1.
Type Bn: G = SO(2n + 1) is split, and G = Sp(2n,C) = LG,
Type Cn: G = Sp(2n) is split, and G = SO(2n +1,C) = *G.

Lifp = 4, this group is actually isomorphic to S3, but we agree to consider only the
standard symmetries that interchange the two right hand vertices in the diagram.
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Type D,: G = SO(2n) is quasisplit, and G = SO(2n,C);
LG = 50(2n,C) x T'g/p, where deg(E/F) € {1,2}.

To keep the scope of the article within bounds, we will generally confine our
discussion to groups from this list. Unless otherwise stated, groups G, G’,
etc. will be assumed to be taken from our four families of quasisplit classical
groups, or possibly to be direct products of such groups. In fact, we will
often restrict G to be of type B,,, C,, or D,,, and explicitly write GL(N) for
any one of our groups of type A,,.

We are interested in the representation theory of G. If F' is local, our
concern will be the set II(G) of equivalence classes of irreducible represen-
tations of G(F), together with its subsets

Htemp(G) o= Hunit(G) = H(G>

of representations that are respectively tempered and unitary. (A tempered
representation can be described informally as an irreducible representation
7 such that the tensor product

TRmY, v (z) = tn(z)7t, ze G(F),
occurs in the decomposition of the regular representation
(R(y1,y2)9) (x) = (yy 'wya), z,y1y2 € G(F), ¢ e L*(G(F)),

of G(F) x G(F) on the Hilbert space L?(G(F)). It is automatically unitary.)
If F' is global, we are interested in the set II(G) of automorphic representa-
tions of G. These are irreducible representations of the adelic group G(A),
which are of a very special sort.

We recall that the adeles A = Ap of F' form a locally compact ring, in
which F' embeds as a discrete subring. The adelic group is then a restricted
direct product

(1) G =[G

taken over the valuations v on F'. For any v, F), is the locally compact field
obtained by completing F' with respect to v. It is modeled on the standard
case of the completion F;, = R of F' = Q with respect to the usual absolute
value | - |, = | -|. We recall that the complementary valuations for F' = Q
are the nonnegative functions

[P = rabr € (@) = (bp) = 1,
u =
"o, ifu=o,

on Q, parametrized by prime numbers p. In general, the restricted direct
product is the group of elements

xznxv, xy € G(Fy),
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in the direct product such that for almost all valuations v, z, lies in the
maximal compact subgroup G(o,) of points in G(F,) with values in the
compact subring

0y = {uy € Fy & |uyly, < 1}

of integers in F},. It becomes a locally compact group under the appropri-
ate direct limit topology. The group G(F') embeds in G(F,) (as a dense
subgroup). The diagonal embedding of G(F') into G(A) exists (because an
element in G(F') is integral at almost all valuations v), and is easily seen to
have discrete image.

Since G(F) is discrete in G(A), the quotient G(F')\G(A) is a reasonable
object. It comes with a right invariant measure, which is determined up to
a positive multiplicative constant. One can therefore form the associated
space L?(G(F)\G(A)) of square-integrable functions. It is a Hilbert space,
equipped with the unitary representation

(R(y)9)(x) = d(zy),  w,yeG(A), ¢ L*(G(F)\G(A)),

of G(A) by right translation. An automorphic representation is an irre-
ducible representation of G(A) that occurs in the spectral decomposition of
R.

The description of an automorphic representation just given is more of an
informal characterization than a definition. It can be made precise, but it is
also more restrictive than the formal definition? in [L3]. The representation
R has a subrepresentation Rgisc that decomposes discretely3 into a direct
sum of irreducible representations (like the 1-dimensional representations

T e?ﬂznx

, rxeR, ne’Z,

from the theory of Fourier series), and a complementary subrepresentation
Reont that decomposes continuously into a direct integral of irreducible rep-
resentations (like the 1-dimensional representations

r — e, reR, \eiR,

from the theory of Fourier transforms). The point is that an automorphic
representation can occur in either the discrete or the continuous spectrum.
In another sense, however, the analogy with classical Fourier analysis is mis-
leading. This is because an automorphic representation 7 of G(A) has much
more structure than these familiar 1-dimensional representations. According

2This refers to the definition on p. 203 of [L3] that was shown in Proposition 2 of [L3] to
be equivalent to the formal definition of an automorphic representation in [BJ].

3 To be correct, we should really be speaking of the relative discrete spectrum. That
is, Raisc is the representation of G(A) on the invariant subspace L. (G(F)\G(A)) of
L?(G(F)\G(A)) that decomposes discretely modulo the centre Z = Z(G) of G. This
distinction is only relevant to the reductive group GL(N), in which Z(F)\Z(A) is non-
compact.



CLASSIFYING AUTOMORPHIC REPRESENTATIONS 7

to [F], any such 7 can be written as a restricted tensor product
(12) ™= ®7TU7 Ty € Hunit(Gv)a
v

of irreducible unitary representations m, for the local groups G, over F,. It
is one thing to be able to put together an irreducible representation 7 of
G(A) explicitly as a product of this sort. We would require some knowledge
of the sets ITynit(Gy), an interesting problem to be sure, and one that has
not been solved in general, but nothing further. It is quite another matter
to determine which such products are automorphic. This new constraint
imposes profound relations among the different constituents m, of .

In fact, it is pretty clear that we will never be able to write down all
automorphic representations explicitly. Langlands’ point of view was more
subtle. He discovered unexpected reciprocity laws among the automorphic
representations for different groups. Thus, although an explicit construction
of all automorphic representations will not be available, there will still be
hidden ties that bind different automorphic representations. Langlands for-
mulated them as a fundamental principle [L1], which later became known
as functoriality. It pertains to any analytic homomorphism p between two
L-groups “G’ and G, taken as groups over the full Galois group I'r, that
commutes with the two projections onto I'p. (A homomorphism with these
properties is called an L-homomorphism.)

PrINCIPLE 1.1 (Langlands Functoriality). Suppose that G and G’ are
general quasisplit groups over a number field F'. Then any L-homomorphism
p: ¢ — L@

between their L-groups determines a natural correspondence

T — 7
of their automorphic representations, which is compatible with their local
decompositions (1.1), and depends only on the orbit of p under the action of
G by conjugation on “G.

By correspondence we mean a relation rather than a function, and for
this assertion, automorphic representations are to be understood in the in-
clusive sense of the precise definition in [L3], which we have not given, rather
than the restrictive characterization we have given. Langlands also stated a

local form of the principle of functoriality, which applies to any local field F
of characteristic 0. The compatibility assertion for global F' above is that if

T — m,
then

/

ﬂ-fy — 7T’U)

for any completion F, of F. In other words, if 7’ and 7 are automorphic
representations of G’ and G that correspond under global functoriality for p,
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then their local components 7, and m, correspond under local functoriality
for the completion

pw: FG — L@,

of p.

This is the informal version of functoriality stated by Langlands in his
original paper [L1]. It leaves unspecified the nature of the correspondence.
Nevertheless, it still gives a sense of the depth of what was a completely
new phenomenon. Whatever might be the internal relations among the
constituents m, of the automorphic representation 7 of G, they will be re-
flections of the corresponding internal relations among the constituents 7/,
of the automorphic representation 7’ of G’. This will become clearer when
we describe more precise versions of functoriality in the final section of the
paper.

The principle of functoriality is one of the great problems of mathe-
matics. It has been established in a significant number of cases. However,
these pale in comparison with the cases that remain unknown. Langlands
has introduced some striking ideas for attacking the general case through a
completely new application of the trace formula. (See [FLN], [L6] and [A3,
Afterword]. It is not known, however, how far these ideas will ultimately
take us. Even if they work in principle, there will still be many years of
effort required by many mathematicians before they can be fully realized.

One of the goals of the monograph [ECR] was to establish the principle
of functoriality in two basic cases. We shall describe them in turn.

The first case arises from the natural embedding of a complex classical
group into a complex general linear group. Suppose that G belongs to one
of our families B, C,, or D,,. There is then a canonical embedding of the
dual group G into a general linear group GL(N, C), for N equal to 2n, 2n+1
and 2n respectively. If G is split over F', this extends trivially to a canonical
embedding

LG =G xTp — L(GL(N)) = GL(N,C) x T'p

of the full L-group of G to that of GL(N). In the special case of type
Cy, we also obtain a nonstandard embedding of G into “(GL(N)) for any
quadratic extension E/F, by mapping the quotient I'p/p = I'r/I'g isomor-
phically into the central subgroup {+1} of the image of O(2n + 1,C) in
GL(N,C). If G is not split over F, it is of type D,. The associated qua-
dratic quotient I'g/p then acts on G = SO(2n,C) through the nonidentity
connected component of the complex group O(2n,C). This leads again to a
canonical embedding

LG =GxTp — L(GL(N)) = GL(N,C) x T'p

of L-groups. We will discuss the various L-embeddings for this basic case of
functoriality from a different perspective in Section 3.
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In the second case, G is above. This time, however, we take a product
G' =G| x G
of smaller such groups. We require that the dual group
G' =G x G
come with a natural embedding into G. This means that
G' = Sp(2m,C) x Sp(2n — 2m,C) < Sp(2n,C) = G,
G' = SO(2m,C) x SO(2n +1—2m,C) c SO(2n +1,C) = G,

and
G' = SO(2m,C) x SO(2n — 2m,C) < 50(2n,C) = G,

for integers 0 < m < n, where G is of type B,, C,, and D,, respectively.
If G is of type B, G’ is split, and the embedding of G’ into “G extends
trivially to an L-embedding of *G’ into *G. If G is of type C,,, G and G}
are split, but G} can be a quasisplit group defined by a quadratic extension
FEq of F. In this case, we obtain an L-embedding

La = (G x GY) xTp — LG =G xTp

from the nonstandard embedding of the second factor “G) attached to the
quadratic extension Ej/F. Finally, if G is of type D,, it is the quasisplit
group defined by an extension E = F(+/d) of degree 1 or 2. We can then
take G} and G}, to be quasisplit groups of types D,, and D,,_,, defined by
any quadratic extensions F1 = F(y/dy) and Ey = F(+/dy) such that dyds
equals d. It is then easy to see that there is a canonical embedding

La' = (G x GY) »Tp — 'G=GxTp

of L-groups.

We thus obtain two basic cases of the principle of functoriality by taking
the L-homomorphism p of Principle 1.1 to be any one of the L-embeddings
we have just described. The first is at the heart of the classification of
representations of G (both local and global) in terms of those of GL(N).
The second provides the foundation for an understanding of the precise
functorial correspondence from G to GL(N).

2. The automorphic Langlands group Lg

About ten years after formulating the principle of functoriality [L1],
Langlands introduced something just as surprising [L4]. It is a hypothet-
ical group that would be universal, in the sense that it could be used to
characterize the automorphic representations of any group (connected and
reductive, but not necessarily belonging to one of our four families) over a
number field F. The existence of the Langlands group is closely related to
the principle of functoriality, even somewhat deeper, but its hypothetical
properties are still very useful for guidance and motivation.
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In the earlier paper [L1], Langlands had already predicted a major role
for a smaller group, the variant of the absolute Galois group I'r introduced
by Weil. The Weil group Wr is a locally compact group that is defined if F
is either local or global. It comes with a continuous homomorphism

¢: WF - FF)

with dense image and connected kernel, under which the preimage of any
subgroup I'g of I'r of finite index equals the Weil group Wg of the associated
finite field extension E of F. For each such E, W is equipped also with a
topological isomorphism

rg C E — ng
where WP = Wg/ W is the abelianization of Wg, and

) £, the multiplicative group of E, if E is local,
L A% /E*, the idele class group of E, if E is global.

The triplet (Wg, ¢, {rg}), which one usually denotes simply by Wg, is sub-
ject to four natural conditions [T, §1.1, (W;)—(Wy)]. With these conditions,
Wr is defined and uniquely determined up to an isomorphism, which itself
is uniquely determined up to conjugation by an element in the kernel of ¢.
(See [T].)

If F = C, for example, Wr equals the multiplicative group C*. If F' = R,
W is a nontrivial central extension

1 — We — W — Z/2Z — 1

of We. It can be identified with the explicit group generated by C* and a
symbol og with O'H% = —1, subject to the conjugation relation

ORZOR = Z, ze C*.

If F is a local field that is nonarchimedean (which is to say that it is not
equal to C or R), W is an extension

1—>IF—>WF—><FI‘Ob>—>1

of an infinite cyclic group by a compact subgroup Iy (the inertia group)
of I'pr. The element Frob represents the Frobenius automorphism in the
absolute Galois group

Gal(E/k) = FF/IF

of the residue field k of F', a compact, totally disconnected group, in which
the cyclic group generated by Frob is dense. In this case, Wp is still a
reasonably explicit object. If F' is global, Wg is more complicated. But
as in the local case, the computations with W that arise in representation
theory can often be made quite explicit.

The global Weil group has some extra structure. It comes with embed-
dings of the local Weil groups Wr,, which are determined up to conjugacy,
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and are compatible with the associated embeddings of Galois groups. In
other words, for every valuation v on F, we have a commutative diagram

(2.1) WFU E— FFU

!

WF*)FF

in which the vertical embeddings are determined up to conjugacy in Wg and
T'p.
Suppose that G is one of our groups over F'. Since

WF/WE = FF/FE,

for any finite extension E of F', the Weil group acts on G. We can therefore
take the Weil form
LG = G % Wg

of the L-group. This seems more cumbersome than the Galois form, es-
pecially if we take the minimal Galois form with I'r replaced by the finite
group I'g . However, it is ultimately the best version of the L-group to
work with. We can still talk about L-homomorphisms in this context, and
we are free to formulate the principle of functoriality as in §1. We shall use
the Weil form of the L-group in the rest of this section, as well as in the
next.

Langlands conjectured the existence of a natural mapping ¢ — Il,, from
L-homomorphisms

¢o: Wr — LG,

taken up to conjugacy of “G by its subgroup CA}, to packets Il of irreducible
representations. The proposed sets Il later become known as L-packets,
since they were conjectured to consist of representations with the same L-
functions and e-factors. For local F, they should be finite subsets of II(G).
For global F', they should be compatible with the localizations ¢ — ¢,
defined by the embeddings (2.1). More precisely, the global L-packet of a
global parameter ¢ would simply be defined as the set

(2.2) Iy = {77 = ® Tyt Ty € g, , unramified® for almost all v}
v

of irreducible representations of G(A). The conjectural part of this global
definition can be taken as an assertion that the global L-functions attached
to representations m € Il have analytic continuation and functional equa-
tion. This conjecture, local and global, became known as the Langlands
correspondence. Notice that Wg can be regarded as the Weil form of the
L-group “G’, for the trivial group G’ = {1} over F.. The Langlands corre-
spondence can therefore be regarded as a very special case of principle of

4 We will leave this notion undefined for the present, and return to it in §4.
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functoriality. It is an illustration of the depth of functoriality, as a conjec-
ture that governs the very foundations of the subject in spite of its seemingly
innocuous statement.

If F" equals C or R, Langlands established a correspondence ¢ — Il
for any G over F. Part of the problem was of course to formulate the defi-
nitions, which necessarily go to the roots of Harish-Chandra’s monumental
contributions to harmonic analysis on real groups. Langlands then showed
that II(G) is a disjoint union of the packets Il,, taken over the (C:’—orbits) of
L-homomorphisms ¢. His results can be regarded as a classification of the
representations of a real group.

If F is local nonarchimedean, much less is known, in part because there
is no p-adic analogue of Harish-Chandra’s classification of the discrete se-
ries. It was also clear from early examples that the L-packets Ils would
not exhaust the representations in II(G). If F' is global, the problem not
surprisingly is much deeper. In particular, it is known that the automor-
phic representations 7 € II(G) that happen to lie in some Weil packet Il
are really quite sparse. It was with this understanding that Langlands was
led to introduce a larger group that would replace Wy in his conjectural
correspondence.

Assume that F' is global. In Langlands’ original article [L4], the univer-
sal automorphic Galois group was to be an object in the category of complex,
reductive pro-algebraic groups. It was formulated as an extension of the ab-
solute Galois group I'r by a connected, complex, reductive pro-algebraic
group. Kottwitz [K]| later pointed out that the group would be simpler if
it were taken in the category of locally compact topological groups, like the
WEeil group itself. In this formulation, the global Langlands group Lz should
be an extension of Wr by a connected, compact group. It would thus take
its place in a sequence

Lr — Wrp — I'p

of three locally compact groups, all having fundamental ties to the arithmetic
of F'. The group L should also have a local analogue Lp,, for any valuation
v on F', that embeds into an extension

(2.3) Lp, WE, I'p,
Lp Wg I'r

of the commutative diagram (2.1). In particular, Ly should be equipped
with a canonical embedding of Lr, , which as in the cases of Wr and I'p, is
determined only up to conjugacy.
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Suppose that F' is local. The local Langlands group Lp is known. It is
defined as

Wr, if F'is archimedean,
(2.4) Lp =

Wg x SU(2), if F is nonarchimedean.
Given G over F', we write ®(G) for the set of L-homomorphisms
(2.5) ¢: Lp — LG,

taken up to @—conjugacy. The conjectural Langlands correspondence for GG
again takes the form of a mapping

Qb - H(ba d) € (I)(G)v
from ®(G) to finite subsets II, of II(G). However, this time it should have

the property
e = ] o
(@)
of exhaustion. In particular, the extra unitary factor SU(2) in the definition
(2.4) would be what is needed to obtain a full classification in case F' is p-
adic. It is equivalent to the supplementary data that had been used earlier
to construct the Weil-Deligne group. (See [T}, [L4].)

Suppose again that F' is global. The global Langlands group Lpg is far
from known. It would be much larger than Wg, for the reason that “most”
automorphic representations contain information that cannot be reduced to
something as simple as the Weil group. In the article [A2], we described a
conjectural construction of Lp. It is given by an extension

(2.6) 1l — K — Lp — Wp — 1

of Wr by an infinite product Kz of compact, connected, simply connected
groups. The factors of K are parametrized by certain very basic automor-
phic representations of G (which we called primitive in [A2]), as G ranges
over all simply connected, quasisplit groups. The group Lr would then be
somewhat self-referential, in that it is supposed to classify automorphic rep-
resentations, and yet at the same time, is built out of certain automorphic
representations. This does not make its existence any easier to establish.
One requires the principle of functoriality for all groups G, and more, to
define the primitive automorphic representations at the core of Lp.

In any case, the global Langlands group is supposed to be character-
ized in terms of automorphic representations of general linear groups. It
was predicated by Langlands on the assumption that for any IV, there is a
bijective correspondence between irreducible N-dimensional representations
of Lp, and cuspidal automorphic representations of the group GL(N). We
recall that the cuspidal automorphic representations are the fundamental
building blocks for general automorphic representations, and always occur
in the discrete spectrum. (See [BJ, p. 191-197] and [L3, Proposition 2].)
More generally, given one of our groups G over F', and assuming the existence
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of the global group L, we define the associated set of L-homomorphisms
®(G) as in the local case (2.5). The elements ¢ € ®(G) would again pa-
rametrize global L-packets Iy, defined in terms of their local components
by (2.2). As in the special case of a Weil parameter, we could state the
conjectural part of this global definition by saying that global L-functions
attached to representations m € Il should have analytic continuation and
functional equation.

In terms of representation theory, the real global conjecture concerns au-
tomorphic representations in a packet Il4. It is convenient to write ®pq4q(G)
(in both the local and global cases) for the subset of parameters in ®(G)
whose image in G projects onto a bounded (that is, relatively compact)
subset of G. If G = GL(N), for example, elements in ®pqq(G) project
to N-dimensional representations of Lpr that are unitary. With F' being
global, there will be no automorphic representations 7 in the packet Il of
any global parameter in the complement of ®pqq4(G). This is only because
we have taken the restricted definition of automorphic representations, as
elements 7 € II(G) that occur in the automorphic spectral decomposition,
rather than including the supplementary representations obtained by ana-
lytic continuation into the complex domain, as in [L3]|. By the same token,
if F'is local, there will be no tempered representations 7 in the packet of a
local parameter ¢ taken from the complement of ®y,44(G).

If F is global, the packets Il of parameters ¢ € ®1,4q4(G) should contain
many automorphic representations w. However, they will still not exhaust
the set II(G) of all automorphic representations. The situation here is like
that of a nonarchimedean local field F', where we had to define local pa-
rameters on the product Wg x SU(2) rather than just Wg. The final step
for the global field F' is likewise to add a factor SU(2), and form a product
Lp x SU(2). The localization of this group at v, which will be needed to
construct the local components of representations attached to the resulting
global parameters, will be a new product Lg, x SU(2). In particular, if F,
is nonarchimedean, we will be dealing with a local product

Wrg, x SU(2) x SU(2)
with two factors SU(2).
If F is local or global, we write ¥(G) for the set of L-homomorphisms
¢: Lp x SU2) — LG,

taken up to @—conjugacy, but with the property that the restriction of ¢ to
L lies in the subset ®pqq(G) of ®(G). If F is global, the diagram (2.3)
gives a localization mapping

Y —

5 We are assuming in this heuristic discussion that the generalized Ramanujan conjecture
is valid for GL(N). Since this is not known, one must make a minor adjustment in practice.
See the discussion of [ECR, (1.3.10)] and of (4.12) in §4 here.
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from ¥(G) to ¥(G,). If F is local, we conjecture that there is again a natural
mapping ¢ — Ily, this time from parameters 1) € W(G) to finite subsets II,,
of Myt (G). If F is global, we will then be able to attach a global packet

(2.7) II, = {77 = ® Ty @ Ty € Iy, m, unramified for almost all v}

of irreducible unitary representations of G(A) to parameters ¢ € U(G).
Many of the representations in these packets should be automorphic. More-
over, they ought now to exhaust the set of all automorphic representations.

The set U(G), defined for F' local or global, is where the process ends.
It contains Ppaq(G), as the set of parameters on Lr x SU(2) that vanish
on the second factor. The set ®pqq(G) in turn contains the set @%d(G) of
bounded parameters on Wg, as the parameters on Lp that are pullbacks
from Wg. We obtain embeddings

Ppad(G)

/ \
Pa(G ¥(G)
‘)\A /
\I/W

pad (G)

where " 1(G) is the subset of parameters in ¥(G) whose restrictions to Ly
lie in the subset ®}%;(G). The global family ¥(G) appears to be the right
set of parameters for classifying automorphic representations of G. Its local-
izations are then forced on us if we want to describe the local constituents
of automorphic representations.

There is still something more to say. We would of course like to know how
to construct the local packets II,. We would also like to characterize which
representations in a global packet 11, are actually automorphic. The answers
to these questions are closely related to a certain finite group attached to 1.

For any ¢ € ¥(G), with F being either local or global, we have the
centralizer

(2.8) Sy = Cent (im(1), G)

of the image of 9 in @, a complex, reductive subgroup of G. We also have
its finite group

(2.9) Sy =Su/Sy, = Sy/S92(G)'F
of connected components, or rather, connected components in the quotient
(2.10) Sy = Sy/Z(G)'F

of Sy by the group of elements in the centre Z (@) of G that are invariant
under the action of the Galois group I'r. (The group Z(G)'F equals Z(G)
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unless G is a nonsplit group SO(2), and in particular, of type D, with
n=1.)

With our standing agreement that G belongs to one of the families A,,—
D,,, the quotient Sy, is an abelian 2-group. If F'is local, the representations
in the local packet 11, are closely tied to the group of (linear) characters on
Sy. If F' is global, the group Sy, is contained in the centralizer Sy, of any
localization ,. It follows that there is a canonical mapping from &y into
Sy,. The representations in a global packet Il that are automorphic are
then tied to characters on the product

Sy =] ]Su.

whose restrictions to the diagonal image of Sy equal a certain character ey,
on Sy that is defined explicitly in terms of arithmetic invariants attached to
1. The case that €, is nontrivial will obviously be interesting, as also will be
the case that the mapping from Sy, to Sy a is not injective. But if neither of
these exceptional conditions hold for 1, we see a particularly clear analogy
between the local groups G(F;,) and global quotient G(F)\G(A) introduced
in §1 and the “miniature models” Sy, and S;\Sy a we have just defined.

3. Self-dual, finite dimensional representations

The last section contained a good deal of information, some of which is
perhaps difficult to absorb at the early stages of our presentation. Moreover,
it seems to have been built on the shaky foundation of a hypothetical group
Lp. Some such discussion, however, is a necessary part of the exposition. It
helps us to see what we should be looking for.

We are trying to classify representations of groups G of type B,,, C,, and
D, in terms of those of general linear groups GL(N). If representations are
indeed attached to parameters on a group Lr x SU(2), it makes sense to try
to compare parameters for G with those of GL(N). We shall do so in this
section. The calculation will be an elementary exercise in linear algebra,
which follows the discussion of §1.2 of [ECR].

We are assuming that F' is a local or global field of characteristic O.
Suppose that Ap is any locally compact group over Wr with connected
kernel. We are of course thinking of the case that Ar equals the product
Lp x SU(2) (which is hypothetical if F' is global), but the arguments will
be the same for any Ap. We have already noted the obvious fact that
an L-homomorphism from Ap to the L-group of GL(N) projects onto the
dual group GL(N,C) of GL(N), and can therefore be identified with an
N-dimensional (continuous, complex) representation

r: Ap — GL(N,C)
OfAF.
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We say that r is self-dual if it is equivalent to its contragredient repre-
sentation

TV(A) = tT(A)_la A€ AFa

where x — 'x is the usual transpose mapping. In other words, the equiva-
lence class of r is invariant under the usual automorphism

O(x) =¥ ="ta !, x € GL(N),

t

of GL(N). This condition depends only on the inner class of 6. It remains
the same if § is replaced by any conjugate

Og(x) = g~'0(x)g,  ge GL(N).

We shall analyze the self-dual representations r in terms of orthogonal and
symplectic subgroups of GL(N, C).

We decompose a given representation r into a direct sum
(3.1) r=»>0r1 @ - DLy,

for inequivalent representations

T : AF I GL(Nk,C), 1

N
e
A
=3

and multiplicities £, with
N =/0Ny +---+{.N,.

The representation is self-dual if and only if there is an involution k£ — kY
on the indices such that for any k, ;" is equivalent to ryv and £ = fv.
We say that r is elliptic if it satisfies the further constraint that for each k,
kY =k and ¢;, = 1. We shall concentrate on this case.

Assume that r is elliptic. Then

(3.2) r=ri®---@r,

for distinct, irreducible, self-dual representations r; of Ag of degree ;. If ¢
is any index, we can write

Y (\) = Airi( VA NeAp,

7

for a fixed element A4; € GL(N;,C). Applying the automorphism 6 to each
side of this equation, we see that

ri(A) = A7 ry (A(AY) T = (A Adr(A)(AY A~

Since r; is irreducible, the product A; A; is a scalar matrix. We can therefore
write

tAi = C,L'AZ', C; € C*.
If we take the transpose of each side of this equation, we see further that
¢? = 1. Thus, ¢; equals +1 or —1, and the nonsingular matrix A; is either

7
symmetric or skew-symmetric. The mapping

Tr; — (A;l)txlAl, T; € GL(NZ),
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represents the adjoint relative to the bilinear form defined by A;. Therefore
r;(A) belongs to the corresponding orthogonal group O(A;, C) or symplectic
group Sp(A;, C), according to whether ¢; equals +1 or —1.

Let us write Ip and Ig for the set of indices i such that ¢; equals +1 and
—1 respectively. We then write

Ts()‘) = C—Dri()‘)v A€ Ap,

i€l
AE = @ Ai7
i€l

and

N, = Y| Ny,

i€l

for a symbol € that can be either O or S. Thus Ao is a symmetric matrix in
GL(Np,C), Ag is a skew-symmetric matrix in GL(Ng,C), and ro and rg
are representations of Ay that take values in the respective groups O(Ap, C)
and Sp(Ag,C). We have established a canonical decomposition

r=ro@®rs

of the self-dual representation 7 into orthogonal and symplectic components.

It is only the equivalence class of r that is relevant. We can therefore
replace r(\) with its conjugate by any matrix B € GL(N,C). This has the
effect of replacing the matrix

A=A0®As

in GL(N,C) by 'BAB. In particular, we can take Ap to be any sym-
metric matrix in GL(Np,C) and Ag to be any skew-symmetric matrix in
GL(Ng,C). We can therefore put the orthogonal and symplectic groups
that contain the images of rp and rg into some standard form.

It is generally most convenient to choose the standard form for these
groups so that the subgroup of diagonal matrices is a maximal torus. For
our standard orthogonal group in GL(N), we therefore take

O(N) = 0(J),
where
0 1
J=J(N) = B
1 0

is the second diagonal in GL(N). It is a group with two connected compo-
nents, whose identity component is the special orthogonal group

SO(N)={x € O(N) : det(z) = 1}.
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As the standard symplectic group in GL(N), defined for N even, we can
take

~

Sp(N) = Sp(J),

where

(_1)N+1 . 0

for any N. Notice that Sp(N) is the group of fixed points of the automor-
phism

O(N)=Int(J)ob: o — JO(z)J ",
while O(N) is the group of fixed points of the automorphism

~ ~

It (1) o O(N)
in the inner class of 8(N) (and 6), where

1 0
.~ o~ N ~1
I=IN)=JJ =

0 (_1>N+1
It is customary to treat §(N) as the standard automorphism in the inner
class of 6, since it stabilizes the standard splitting [K, (1.3)] of GL(N).
Returning to our discussion, we can arrange that A equals
J(No)@® J(Ng). In the interest of symmetry, we actually take A to be
the matrix

0 J(vy)
JO,S = J(No,Ns) =1 _ J(No) , Ng = 2Ng,
J(NY) 0
obtained from the obvious embedding of J(No) @ J(Ng) into GL(N, C).
The associated representation r from the given equivalence class then maps

Ap to the corresponding subgroup of GL(N, C), namely the subgroup
O(N07 (C) x Sp(NSa C)
defined by the embedding

yir. 0 w12
(x’ y) - 0 x 0 )
y21 0 w22

where y;; are the four (Ng x Ng)-block components of the matrix y €
Sp(Ns, C).



20 JAMES ARTHUR

The subrepresentations ro and rg of r can be analyzed separately. The
symplectic factor rg is the simpler of the two. Its image is contained in the
connected complex group

Cs = Sp(Ns, C).
This in turn is the dual group of the split special orthogonal group
Gs =SO(Ng +1).

We need say nothing more in this case.
The orthogonal factor rp is complicated by the fact that its image is
contained in the disconnected group O(Np, C). Its projection

Ar — O(No,C)/SO(No,C) = Z/2Z

onto the corresponding group of connected components is a character n of
Ap of order 1 or 2. Since the kernels of the mappings Ap — Wp and
Wr — I'p are connected, 1 can be identified with a character on the Galois
group I'p of order 1 or 2. This determines a field extension E of F' of degree
1or 2.

Suppose first that No is odd. In this case, the matrix (—1) in O(Np)
belongs to the nonidentity component, and the orthogonal group is a direct
product

O(No,C) = SO(No,C) x Z/27.
We write
SO(No,C) = Go,

where G is the split group Sp(Np — 1) over F. We then use 7 to identify
the direct product
LGopr=Go xTgr

with a subgroup of O(Np, C), namely SO(No,C) or O(Np,C), according
to whether 1 has order 1 or 2. We thus have an embedding of a restricted
form LGQE/F of the L-group of G into GL(Np, C).

Assume next that Np is even. In this case, the nonidentity component
in O(Np) acts by an outer automorphism on SO(Np). We write

SO(No,C) = Go,

where Go is now the corresponding quasisplit orthogonal group SO(Np,n)
over F' defined by 1. In other words, Go is the split group SO(Np) if 7 is
trivial, and the nonsplit group obtained by twisting SO(Np) over E by the
given outer automorphism if 7 is nontrivial. Let @(Np) be the permutation
matrix in GL(Np) that interchanges the middle two co-ordinates, and leaves
the other co-ordinates invariant. We take this element as a representative
of the nonidentity component of O(Np,C). We then use 1 to identify the
semidirect product

LGopr = G x I'p/r
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with a subgroup of O(Np, C), namely SO(Ng, C) or O(Np, C) as before. We
again obtain an embedding of a restricted (in this case minimal) L-group of
Go into GL(Np,C).

We have shown that the elliptic self-dual representation r factors through
the embedded subgroup

LGE/F = L(GO X GS)E/F
of GL(N, C) attached to the quasisplit group
G=GopxGg

over F'. The group G is called a twisted endoscopic group for GL(N). It is
determined by r, and in fact, by the decomposition N = Np + Ng and the
character 7 = ng attached to r. The same is true of the L-embedding

£=Cosy: “G=GxTp — (GL(N)) = GL(N,C) x T'p,

obtained by inflating the embedding above to the full L-groups. A third
object we can associate to the decomposition N = Np + Ng, and hence to
r, is the product

§ =380, = ‘]5,15 x 6.

It is a semisimple element in the coset

~

(3.3) G(N) = GL(N,C) x 6

of # in the semidirect product G(N)* of GL(N,C) with the group % of
order 2 generated by 6. The complex group G = Go x Gg is then the
connected centralizer of s in the subgroup

GL(N,C) = GL(N,C) x 1.

The triplet (G, s,¢&) is called a twisted endoscopic datum for GL(N).

The triplet (G, s, £) belongs to a special class, called elliptic twisted endo-
scopic data. This is a consequence of our condition that the original self-dual
representation is elliptic. A general (nonelliptic) twisted endoscopic datum
for GL(N) is again a triplet (G, s, &), where G is a quasisplit group over F,
s is a semisimple element in GL(N,C) x 6 whose connected centralizer in
GL(N,C) equals @, and ¢ is an L-embedding of G into “GL(N). We re-
quire that £ equal the identity on é’, and that the projection onto GL(N,C)
of the image of £ lie in the full centralizer of s. The twisted endoscopic group
G (or datum) is said to be elliptic if its subgroup Z(G)''F is finite.

We have been following a special case of the general terminology of
[KS, p. 16]. The notion of isomorphism between general endoscopic data is
defined in [KS, p. 18]. In the case at hand, it is given by an element g in
the dual group GL(N,C) whose action by conjugation is compatible (in a
natural sense we do not spell out, but which is easy to imagine) with the two
twisted endoscopic data. We write Aut ~(G) for the group of isomorphisms
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of the twisted endoscopic datum G to itself. The main role for this group is
in its image
Outn (G) = Auty(G)/ Tty (G)

in the group of outer automorphisms of the group G over F. (Following
standard practice, we often let the twisted endoscopic group G represent a
full datum (G, s,€), or even an isomorphism class of data.) If G represents
one of the elliptic data above, Out ~(G) is trivial if the integer N is odd or
zero. In the remaining case that N is even and positive, Outy (@) is a group
of order 2, the nontrivial element being the outer automorphism induced by
the nontrivial component of O(Np, C), which we have represented by the
permutation matrix @(Np) above.

We writeS N N

E(N) = S(G(N))

for the set of isomorphism classes of twisted endoscopic data for GL(N),
and N N

Ean(N) = Ean(G(N))

for the subset of classes that are elliptic. The data (G,s,§), attached to
equivalence classes of elliptic, self-dual representations r as above, form a
set of representative of Eqi(N). The set Eq(N) is thus parametrized by
triplets (No, Ng,n), where No + Ng = N is a decomposition of N into
nonnegative integers with Ng even, and 1 = 7ng is a character of I'r of order
1 or 2 such that n = 1 if No =0 and n # 1 if No = 2. (The last constraint
is required in order that the datum be elliptic.)

Our general goal is to describe the representations of a quasisplit, special
orthogonal or symplectic group in terms of those of general linear groups.
The twisted endoscopic groups G are obviously relevant to the problem.
Indeed, they are just the groups we want to study. But they are also part
of the broader theory of endoscopy, which can therefore be brought to bear
on the task. Since the general arguments are often inductive, the case that
G is either purely orthogonal or purely symplectic will have a special role.
Accordingly, we write

gsim(N) = gsim (G(N))

for the subset of elements in gell(N ) that are simple, in the sense that one
of the integers Np or Ng vanishes. We then have a chain of sets

(3.4) Esim(N) © Earl(N) < E(N),

which are all finite if F' is local, and all infinite if F' is global.

The objects we have been discussing concern the L-embeddings for the
first case of functoriality at the end of §1. We have provided some motivation
for them. We have also used them as a way to introduce the theory of

6 It is understood that é(N) = GL(N) x 6 is the nonidentity component of the reduc-
tive, nonconnected group G(N)t = GL(N) x 6% over F, and that the complex variety

G(N) = GL(N,C) x 6 above is the associated “dual set”.
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twisted endoscopy for GL(NN). We shall now consider the L-embeddings of
the second case of functoriality from the end of §1.

To this end, we note that in addition to the twisted endoscopic data
for GL(N), one has also to work with ordinary (untwisted) endoscopic
data. These are attached to our quasisplit, special orthogonal or sym-
plectic groups, which is to say, the groups G € g'sim(N ). An endoscopic
datum for G is similar to what we have described for GL(N) above. It is a
triplet (G, ', ¢’), where G’ is a (connected) quasisplit group over F, s’ is a
semisimple element in G of which G is the connected centralizer, and &’ is
an L-embedding of “G’ into “G. We again require that & equal the identity
on G, and that its image lie in the centralizer of s’ in “G. (See LS, (1.2)],
a special case of the general definition in [KS], which we have specialized
further to the case at hand.) There is again the notion of isomorphism of
endoscopic data, which allows us to form the associated finite group

Outg(G') = Autg(G')/Intg(G')

of any given G’. (We again often let the endoscopic group G’ stand for an
endoscopic datum (G',s',£’), or an isomorphism class of data.) We write
E(Q) for the set of isomorphism classes of endoscopic data G’ for G, and

E1(G) for the subset of data that are elliptic, in the sense that Z (CAJ’ )E
is finite. We write &Esim(G) for the subset of data G’ € E(G) such that

Z(G')FF equals the minimal group Z(G)'7. It consists of the simple group
G alone. We then have a second chain of sets

(3.5) &im(G) < (@) = £(G),

which is parallel to (3.4). Similar definitions apply to groups G that repre-
sent more general data in £(N).

The explicit description of elements G’ € £ (G) is similar to our analysis
of the set SNGH(N) above. If G € gsim(N) is of type B,,, we have

G' = Sp(N},C) x Sp(N4,C) < Sp(N,C) = G,

for a decomposition N = Ni + Nj of N = 2n into even integers with 0 <
N{ < Nj. If G is of type C,,, we have

&' = SO(N!,C) x SO(N}, +1,C) = SO(N,C) = &,

for a decomposition N —1 = N| + Nj of N —1 = 2n into nonnegative, even
integers. If G is of type D,,, we have

G' = SO(N},C) x SO(N},C) = SO(N,C) = G,

for a decomposition N = N + Nj of N = 2n into even integers with
0 < N{ < N,. It is clear that the products are all connected centraliz-
ers of diagonal matrices s’ € G with entries +1. The reader will also be able
to construct all endoscopic groups G’ = G} x GY with these dual groups,
referring as needed to the end of §1, from quasisplit twists of the even or-
thogonal factors G). The endoscopic groups G’ determine the endoscopic
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data (G',s',¢’), unlike what was the case for twisted endoscopic data for
GL(N). (See the end of [ECR, §1.3] for more remarks.)

We have completed our brief examination of elliptic, self-dual represen-
tations r. We are regarding these objects as parameters for GL(N), in the
spirit of §2. We have seen that any such parameter factors into a product of
two parameters for two different quasisplit classical groups. These products
are governed by twisted endoscopic data G € gell(N ). They can be refined
further according to ordinary endoscopic data G’ € ENen(G). Thus, while the
parameters will not be available in the global case of ultimate concern (for
lack of a global Langlands group L), the endoscopic data that control many
of their properties will be. Before we can examine the ramifications of this,
however, we have first to formulate a makeshift substitute for global parame-
ters attached to our quasisplit special orthogonal and symplectic groups. We
shall do so in §5, after a discussion in §4 of the automorphic representations
of GL(N) that will serve as the global parameters for this group.

We have considered only the self-dual representations r that are elliptic,
since it is these objects that pertain directly to our global theorems. We
might ask what happens if r is not elliptic. With a little reflection, one sees
that any such r factors through subgroups of GL(N, C) attached to several
data G € SNeH(N ), in contrast to what we have seen in the elliptic case. It also
factors through subgroups attached to data G € £ (N) in the complement of

~

Ee(N). These matters are best formulated in terms of the centralizers

~

3, (N) = 5, (G(N)) = Cent (im(r), G(N))
and

S, = S,(G) = Cent (im(r), G)

of the images of r. Their analysis is closely tied to an elementary but
important bijective correspondence (5.11) we will describe later.

4. The case of GL(N)

In §2, we introduced the kind of parameters that ought to characterize
representations of a given group G. In §3, we examined how the parameters
for an orthogonal or symplectic group G are related to those for a general
linear group GL(N). This was in support of our goal, to classify representa-
tions of G in terms of those of GL(NN). What makes the goal worthwhile is
the fact that much of the representation theory of GL(N) is well understood
and relatively simple. In this section, we shall review what we need of the
theory, following [ECR, §1.3] and [A5, §1].

Assume for the time being that F is global. If the global Langlands group
Lp existed, its corresponding set \II(GL(N )) of global parameters would
be identified with the set of equivalence classes of unitary, N-dimensional
representations of the locally compact group Lg x SU(2). Following notation
from [ECRJ, we could then write Wsim (GL(N)) for the associated subset of
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irreducible representations. It would correspond to the set of pairs (u,v),
where p is an irreducible unitary representation of Lp of dimension m,
and v is the irreducible representation of SU(2) of dimension n, for some
decomposition N = mn into a product of positive integers.

We do not, of course, have the group Lr at our disposal. However,
its irreducible N-dimensional representations are supposed to correspond to
something we do have, cuspidal automorphic representations of GL(N). We
shall therefore take Wgim(N) = Wgm (GL(IN)) to be the set of pairs (u,v) as
above, with 4 now being a unitary, cuspidal automorphic representation of
GL(m) instead of an irreducible, unitary m-dimensional representation of
the hypothetical group Lp.

THEOREM 4.1 (Moeglin-Waldspurger [MW1]). There is a canonical bi-
jection
1/} — Ty, ¢€ \I’sim(N),
from Vg (N) onto the set of irreducible unitary representations of
GL(N,A) that occur in the automorphic, relative discrete spectrum
LgiSC(GL(N, F)\GL(N, A)) of GL(N). Moreover, for any v, my occurs in
the relative discrete spectrum with multiplicity one.

More generally, we let ¥(N) = W(GL(N)) denote the set of formal,
unordered sums

(41) sz) = ¢1 e 1/17"’ Q;Z)z € \Ijsim(Ni)a

for some partition
N=N;+---+ N,
of N. It would correspond to the set

D1 @D DYy

of N-dimensional direct sums of irreducible unitary representations 1); of
the hypothetical group Lg x SU(2), or in other words, the set of all unitary,
N-dimensional representations of Ly x SU(2).

COROLLARY 4.2. There is a canonical bijection
P — Ty, P e U(N),

from W(N) onto the set of irreducible constituents of the full automorphic
spectrum L?(GL(N, F)\GL(N,A)) of GL(N).

The irreducible constituents of the automorphic spectrum are just the
automorphic representations, according to the informal definition from §1
we are working with. The corollary tells us that there is a natural bijection
from W(N) onto the set of automorphic representations of GL(N). This is a
consequence of Langlands’ theory of Eisenstein series [L2], which provides an
explicit construction of the automorphic continuous spectrum of any group
in terms of (relative) discrete spectra for smaller groups.

If ¥ = (u,v) belongs to Ygim(IV), Moeglin and Waldspurger construct
the representation m, as a global Langlands quotient. It is by definition the
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unique irreducible quotient of the representation of GL(n,A) obtained by
parabolic induction from the nonunitary representation

n—1 n—3 _(n=1)
x — p(xy)|det x| 21®,u(x2)|detz2| 23®~-®,u(acn)|detxn| 2

of the standard Levi subgroup
Mp(A) ={z = (z1,...,2,) : @ € GL(m,A)}.

More generally, if 1 is a general element in W(N) of the form above, 7y, is
the irreducible representation of GL(N, A) obtained by parabolic induction
from the unitary representation

Ty (21) ® - - - @ Ty, ()
of the standard Levi subgroup
Mp(A) = {z = (z1,...,2;) : i € GL(N;,A)}.

In both cases, Eisenstein series provide functions that represent intertwining
operators from the representations 7y to the associated constituents of the
automorphic spectrum.

Suppose that 7 is an irreducible representation of GL(N, A). We assume
implicitly that 7 is admissible [F, p. 182], a broad condition that is always
valid if 7 is automorphic. The condition includes a property of weak con-
tinuity, which in view of the direct limit topology on the restricted direct
product (1.1), implies that m is unramified for almost all valuations v of
F. We alluded to unramified representations in our heuristic description of
the general global packets (2.2) and (2.7). For the group G = GL(N), an
irreducible representation m, of G(F),) is unramified by definition if F), is
nonarchimedean, and the restriction of m, to the open compact subgroup
G(o0y) of G(F),) contains the trivial, 1-dimensional representation. Unrami-
fied representations have a very simple classification. A well known integral
transform, introduced into p-adic harmonic analysis by Satake, leads to a
canonical bijection

(4.2) T — c(my),

from the set of irreducible unramified representations m, of GL(N, F,) onto
the set of semisimple conjugacy classes ¢, in the dual group GL(N,C) of
GL(N). The given global representation 7 thus gives rise to a family of
conjugacy classes

(4.3) () = {co(m) = c(my) : v ¢S},

parametrized by a cofinite set of valuations of F'. In order to remove its
dependence on S, some finite set that contains the archimedean valuations,
we write ¢(7) for the equivalence class of ¢%(7) with respect to the relation
defined by setting ¢ ~ (¢/)%" if ¢, = ¢, for almost all .

We call ¢(rr) (or any of its representatives ¢*(7) within the equivalence
class) a Hecke eigenfamily. It represents a set of simultaneous eigenvalues
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for the action of the factors of the restricted tensor product

/HEH(N) = ® Hv,un(N)
vgS

of local unramified Hecke algebras
Houn(N) = CL(GL(N, 0,)\GL(N, F,)/GL(N, 0,))
under convolution, relative to the hyperspecial maximal compact subgroup
GL(N,0%) = | [ GL(N, 0,)
v¢S
of GL(N,A®), on the space of GL(N,0%)-invariant vectors of 7°. Our in-
terest of course is the case that 7 is automorphic.

Suppose that v is an element (4.1) in the set U(/N). We then obtain a
Hecke eigenfamily

(4.4) cs(@b) = cS(7r¢) = {Cu(T/J) =c(mypp): v S},

with equivalence class ¢(1) = ¢(my), from the irreducible representation 7y,
of GL(N,A). It is to be regarded as a concrete datum, which is attached to
the formal object 1 through the automorphic representation 7. According
to the remarks following the statement of Corollary 4.2, ¢(1);) will be given
explicitly in terms of Hecke eigenfamilies c(u;), represented by sets

i) = {eo(m) s v S}, 1<i<m
which we extract from the cuspidal components p; of constituents ¢; of 1.
More precisely, if ¢ = (u,v) belongs to Wgm(N) then

(15) @) = () ®el) = c@an® ® - Gan *,  v#s
while if ¢ is a general element (4.1) in ¥(N), we have
(4.6) c(V) = (Y1) @ @ co(Pr), végS.

These elements are to be regarded as diagonal matrices in GL(N, C), which
of course represent semisimple conjugacy classes.
We write

(4.7) C(N) = {e(w) : e W(N)}

for the set of Hecke eigenfamilies attached to elements in W(N).
THEOREM 4.3 (Jacquet-Shalika [JS]). The mapping

v — (), e ¥(N),
is a bijection from W(N) to C(N).

As we noted in [A5, §1], which we have been following closely here,
Theorem 4.3 predates Theorem 1.1. As stated in [JS], it applied to a class
of automorphic representations Langlands introduced in [L4], and called
isobaric. At the time, it was not known whether this class included the
constituents of the automorphic (relative) discrete spectrum. Theorem 4.1
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implies that such constituents are distinct and isobaric. It therefore yields
the interpretation we have stated above for the original theorem of Jacquet
and Shalika.

Theorem 4.3 is a striking result. It implies that any information that
might be contained in a constituent m,; of the automorphic spectrum of
GL(N) will be captured in the corresponding Hecke eigenfamily ¢(1)). Since
c() appears to contain less information, and since it is just a concrete set
of complex parameters, the assertion is indeed remarkable. It is the more
so for our expressed goal of classifying automorphic representations of the
other groups G in terms of those of GL(N), and thus in terms of Hecke
eigenfamilies c(v)).

Before turning to the other groups, we shall discuss the local theory
for GL(N). The local Langlands correspondence is known in this case. In
order to review it, we shall first say something about local L-functions and
e-factors.

Assume now that F' is local. There are two kinds of local L-functions,
arithmetic and representation theoretic. The former are attached to finite
dimensional representations of the local Langlands group L, the latter to
irreducible representations of general linear groups over F.

Suppose that

¢: Lp — GL(N,C)

is an N-dimensional (semisimple, continuous) representation of Lp. The
associated arithmetic L-function L(s, ¢) is a meromorphic function of s € C.
One can also form the local arithmetic e-factor (s, ¢, ¥ r), a monomial of the
form ab™*, which depends on a nontrivial additive character ¢¥r of F. The
definition of the coefficient a for nonarchimedean F' is by far the most subtle
part of the process. It was constructed canonically by Deligne, following
ideas of Artin and Langlands, by a global argument. If F'is archimedean,
we refer the reader to the definition in [T, §3]. If F' is nonarchimedean, one
extends ¢ analytically to a representation to the product of Wr with the
complexification SL(2,C) of the compact unitary subgroup SU(2) of Lp.
This gives a representation

pior-o(n (55 9 )). werws

of Wg, in which |w| is the absolute value on Wy, and a nilpotent matrix

oo () )

The pair V, = (ug, Ny) provides representation of what is known as the
Weil-Deligne group, from which one can define an L-function

L(s,¢) = Z(Vs, q5")
and e-factor
8(5) d)v ¢F) = €(V¢, (I];S)a
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with gp being the order of the residue field of F, following notation in [T,
§4]. Of particular interest are the tensor product L-function

L(s,¢1 x ¢2) = L(s, 1 ® ¢2)
and e-factor

(s, 1 x ¢2,9F) = e(s, 91 @ b2, YF)

attached to any pair of representations ¢1 and ¢9 of L.

Representation theoretic L-functions L(s, 7, r) and e-factors e(s, m, 7, ¥ F)
ought to be attached naturally to irreducible representations 7w of G(F') and
finite dimensional representations r of “G, for any reductive group G over
F. For general G, this can be done in only relatively simple cases. How-
ever, if G is a product GL(N7) x GL(N3) of general linear groups, there is
a broader theory [JPS]. It applies to any representation 7 = m ® mo, with
r being the standard representation

r(g1,92): X — g1 X go, g€ GL(N;,C),
of
G = GL(Ny,C) x GL(N»,C)
on the space of complex (N7 x Na)-matrices X. The theory yields functions
L(s,m x mg) = L(s,m,1)

and
e(s,m x mo,Yp) = ¢e(s,m,r,p)
known as Rankin-Selberg products.

We write ®(N) = ®(GL(N)), ®paa(N) = Ppaa(GL(N)) and ¥(N) =
U(GL(N)) for the specialization to GL(N) of the local parameter sets
from §2, and I(N) = II(GL(N)), ILemp(N) = Iliemp(GL(N)) and
Iynit (V) = ymit (GL(N )) for the associated sets of irreducible representa-
tions of GL(N, F'). The local Langlands correspondence applies to the first
of these. It is characterized essentially by its compatibility with Rankin-
Selberg products.

THEOREM 4.4 (Langlands [L5], Harris-Taylor [HT], Henniart [H], Scholze
[Sch]). There is a canonical bijective correspondence

¢ — Ty
from ®(N) to II(N) such that
(4.8) L(s,mgy, X mg,) = L(s, 1 X ¢2)
and
(4.9) (8, Ty, X Tpy, Yr) = (8, P1 X P2, V),

for any pair of local parameters ¢1 € ®(N1) and ¢y € P(Na).
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The correspondence also satisfies other natural conditions. These include
compatibility with the automorphism 5(]\7 ) of GL(N), with tensor products
by 1-dimensional representations, and with the one-dimensional correspon-
dence given by class field theory (as it relates to determinants and central
characters). If we append these three supplementary conditions to its com-
patibility (4.8) and (4.9) with Rankin-Selberg products, the correspondence
becomes unique. It is in this sense that it is canonical.

The local correspondence has other properties as well. It restricts to
a bijection from the subset ®pqq(N) of ®(N) to the subset Iiemp(NNV) of
II(N). It restricts further to a bijection from the subset ®gip, paa (V) of irre-
ducible representations in ®pqq(N) to the subset Il temp (V) of irreducible
representations of GL(N, F') that occur in the relative discrete spectrum
of L*(GL(N, F)). In the case that F is nonarchimedean, it also takes the
subset of representations ¢ in ®gim temp(/N) that are trivial on the factor
SU(2) of Lr onto the subset of representations in Ilgm temp(/V) that are
supercuspidal.

The local Langlands correspondence also bears on the local set W(N).
For any ¢ € U(N), we write

sr=s(o (7)) vere

where |w| is now the pullback to Lg of the absolute value on Wr. We obtain
a mapping

(4.10) Y — oy, e W(N),

from W(N) to ®(N), which is in fact injective, as one sees easily from the
fact that restriction of ¢ to L lies in ®pqq(N). The representation

7T1/,=7T¢w, QﬁE\If(N),

defined by the local correspondence is called a Speh representation. It is
known to be unitary. We thus have an injective mapping

(4.11) p—

from WU(N) to it (V). This is the local analogue of the global bijection of
Corollary 4.1.2. In contrast to the global setting, however, it does not have
a natural interpretation in terms of local harmonic analysis. It is also not
surjective.

Suppose that ¢ is a general local parameter in W(N). The centralizer
Sy, defined (2.8) in §2 is the group of invertible intertwining operators of the
N-dimensional representation given by . It is a product of complex general
linear groups, embedded diagonally in GL(N, C), and is therefore connected.
The associated group of connected components S, is consequently trivial.
Our heuristic discussion at the end of §2 suggests that the packet I, ought
then to consist of only the one representation m,. This in fact matches the
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formal definition we will discuss in §6. It is one more indication that the
representation theory of GL(N) is simpler than that of other groups.

Suppose again that F' is global. If ¢ = (u,v) belongs to the global
set Wgim(N), any local constituent my , of the automorphic representation
of Theorem 4.1 equals the Speh representation y, attached to the local
parameter’ 1, = i, ®v. This is not hard to establish from the definitions of
my and my, as Langlands quotients. The generalized Ramanujan conjecture
asserts that as a local constituent of u, u, is a tempered representation of
GL(m, F,), or equivalently, that it is a unitary m-dimensional representation
of Lg,. Since we do not know that this conjecture is valid, however, we
can assume only that the local parameter 1, lies in the set U (N) of N-
dimensional, not necessarily unitary representations of Lp, x SU(2). More
generally, suppose that

Y=Y By, V1, € Weim (Vi)

is a general element in W(N). As in the case above that v is simple, one
sees that
Topv = Ty

for the local parameter

¢v :¢1,v®"'®¢r,v

in U, (V). We thus obtain a natural localization mapping

(4.12) Y — Py, P EY(N),

from W(N) to U (N). We also see that the global packet IIy, defined
heuristically (2.7) in terms of Lp, should consist of the one representation

v

Once again, the representation theory of GL(N) seems to be about as simple
as it can be.

As we noted in §2, global packets should have implications for global
L-functions. Arithmetic global L-functions and e-factors are attached to N-
dimensional representations ¢ of Wr (or more generally, of the hypothetical
group Lp). They are defined as products

L(s,¢) = | [ L(s, bv)

and

5(87 ¢> = 1_[5(57 ¢'U7va)

7 We are writing u, for both the local constituent of the cuspidal automorphic represen-
tation u of GL(m), and the m-dimensional representation of Lz, to which it corresponds.
This is natural if we consider that u should really represent an irreducible, m-dimensional
representation of the global group L.
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of their local analogues, where ¥ g is a nontrivial additive character on the
quotient A/F. Automorphic (representation theoretic) versions are attached
to admissible representations 7w of G(A) and finite dimensional representa-
tions 7 of LG, for any reductive group G over F. They are again defined as
products

(4.13) L(s,m,r) = HL(S,?TU,TU)
and
(4.14) e(s,m,r) = HE(S,TFU,TU,va)

of their localizations. The products of e-factors can be taken over a finite
set. The products of L-functions converge for the real part of s in some
right half plane.® They should have analytic continuation® to meromorphic
functions of s, which satisfy the functional equations

L(s,¢) = &(s,¢)L(1 = 5,¢")
and
(4.15) L(s,m,r)=¢(s,m,r)L(1 —s,m,1r"),
where ¢ and rV denote the contragredients of the finite dimensional rep-

resentations ¢ and r. The two kinds of objects should ultimately be related
by identities

(4.16) L(s,m,r) = L(s,70¢)
and
(4.17) e(s,m,r) =¢e(s,r00),

for any representation 7 in the global packet of ¢. However, these “reci-
procity laws” are still far away in general, and as in the local case, one
needs to study the arithmetic and automorphic objects independently.

The correspondence ¢ — ¢y, of (4.10) will be completely general. As in
the local case discussed for GL(N) above, it will map general parameters
on Lp x SU(2) injectively to parameters on the group Lp. One then defines
arithmetic L-functions and e-factors for any ¢ and r by

L(s,r o) = L(s,7 0 ¢y)
and
e(s,mrot)) = L(s,r o ¢y).
They should be equal to representation theoretic functions L(s, 7y, r) and
(s, my, ) respectively, for any representation 7y, in the global packet Ly v
A reader unfamiliar with these notions might be overwhelmed now with
the details of what has taken the world of number theory many years to

8 In the representation theoretic case, one must impose a property of weak growth on 7,
which always holds if 7 is automorphic.
9 In the representation theoretic case, 7 should now be automorphic.
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absorb, while at the same time, an expert might be quite tired of my repe-
tition. At the risk of exhausting the patience of both parties, let me say a
word on the concrete roots of global L-functions.

An irreducible admissible representation m of G(A) still has unramified
local constituents 7, at almost all v. Moreover, the Satake transform (4.2)
remains valid. It is a bijection from the set of unramified representations
7y of G(F,) onto the set of semisimple conjugacy classes ¢(m,) in the dual
group whose image in the factor Wr, of “G, is a Frobenius element. The
given global representation 7 then gives rise to a family

{cv —cm:vgéS}

of semisimple conjugacy classes in “G, and a corresponding equivalence class
c(m) that is independent of S. For any unramified representation r, of “G,,
the local L-function of m, and r, is defined

L(s,my,7) = det (1 =1, (c(m))as®) ™) v = qrs

in terms of the characteristic polynomial of the conjugacy class rv( (m )) If
r is allowed to range over representations of “G that are unramified outside
S (a set we can allow to vary), the partial global L-functions

LSST("I“ HLS?TU,TU
vgS

give an elegant way to package the concrete data from c(w). If 7 is au-
tomorphic, each associated partial L-function is supposed to have analytic
continuation to a meromorphic function of s, which satisfies a functional
equation that is now quite complex. The object is then to define supple-
mentary factors L(s, m,,r,) (which should be relatively straightforward) for
v e S, and &(s, Ty, Ty, ¥y) (Which are deep if v € S, but equal to 1 if v ¢ S)
so that the products (4.13) and (4.14) satisfy the simple functional equation
(4.15). The Langlands-Shahidi method [Sha] has been the most success-
ful technique for studying these questions, but as in the local situation, it
applies only to relatively simple cases.

Global Rankin-Selberg products are well understood, thanks again
to [JPS]. They apply to the representation = of the group
G = GL(N;7) x GL(N2) on the space of (N7 x Na)-matrices. Suppose that
1 € U(Ny) and 12 € ¥(Ng) are elements in the sets we have introduced
as substitutes for general global parameters. The corresponding representa-
tions

T = Ty = Ty s 1=1,2,
of GL(N;, A) are automorphic, according to Corollary 4.2. We write
(4.18) L(s,¢1 x ¢2) = L(s, m x 72)

and

(4.19) e(s, 11 x ) = e(s,m X m2)
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for the associated global L-functions and e-factors (4.13) and (4.14). It fol-
lows from [JPS] that they have analytic continuation and functional equa-
tion (4.15). The definitions (4.18) and (4.19) are suggestive. They look
like examples of the fundamental reciprocity laws between arithmetic and
automorphic L-functions. But because we have had to define the global
sets W(NN) in terms of cuspidal automorphic representations instead of rep-
resentations of the Langlands group Lp, they remain just definitions. How-
ever, in a formal sense, they confirm the expectation that global L-functions
attached to representations in global packets (2.2) and (2.7) should have
analytic continuation and functional equation. They also represent formal
global versions of the compatibility conditions (4.8) and (4.9) that charac-
terize the local Langlands correspondence.

5. Global parameters for G

In the last section we introduced a set of global “parameters” W¥(N)
for GL(N). It is our substitute for the actual set of parameters, which
would consist of unitary representations of the hypothetical global group
Lp x SU(2). We also saw how to describe the automorphic representation
theory of GL(N) in terms of W(NN). In this section, we turn to our classical
groups G. Motivated by the heuristic discussion of §3, we will try to identify
the subset U(G) of W(N) that will serve as a set of global parameters for
G. Among other things, we will have to attach a subgroup S, of G to
any 1 € ¥(G), since its group of connected components governs global
multiplicities. We follow the discussion in [ECR, §1.4].

We assume in this section that the field F is global. The notation (4.1)
for a general element ¢ € ¥(N) should not be confused with the similar way
we denoted an elliptic representation (3.2) of the abstract group Ap. This
is because the simple factors ¢; in (4.1) are not required to be distinct. In
future, we shall prefer the analogue of the notation (3.1). That is, we denote
a general element in W(N) as a formal, unordered direct sum

(5.1) Y =>4 H---BOYr,

for positive integers ¢y and distinct elements 1y = (ug, V) in Ygim (Ng). The
ranks are positive integers N, = mygng such that

N=0UNy+- -+ N, =lyming + -+ Lrmpn,.

We will also often denote the simple components ¢, of ¢ as formal tensor
products

VY = (b, V) = o X v,
since they replace tensor products of irreducible representations of the two
groups Lp and SU(2).
We are looking to §3 for guidance. The essential objects there were
the representations of Ag, an abstract group over Wg, that were self-dual.
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The corresponding duality operator on W(N) is given by the outer automor-
phism 0: © — z¥ of GL(N). It transforms a general parameter (5.1) to its
contragredient
VY =bpy BBy
=G D) 8- B () Rvy),

since
Vr = (e X vg)Y =l Ky = pp K g

We are writing
,ul\c/(x) ::u’k(tx_l) ;tﬂk(x)_lv xEGL(mkvA)7
for the contragredient of the cuspidal automorphic representation pui of
GL(my), and we have written v;” = vy, since any representation of SU(2)
is self-dual. The contragredient 7, of the associated automorphic repre-
sentation my of GL(N) then equals 7y, as follows from the various defini-
tions. Since the local correspondence of Theorem 4.4 commutes with dual-
ity, according to one of its supplementary conditions, the mapping ¢ — ¢V
is the analogue for W(N) of duality for N-dimensional representations of
We write
G(N) =G(N)’ % §(N) = GL(N) % 6
as in §3 for the nonidentity connected component of the semidirect product
G(N)* = G(N)? x (N)* = GL(N) x 6+

of GL(N) with the group of order 2 generated by either of the automor-
phisms 6(N) or §. We also write

(5.2) U(N) = U(G(N)) = {v e U(N): ¢ =}

for the set of self-dual elements in W(N). This subset is indeed associated

with the component G(N). It consists of the elements ¢ € WU(N) such
that the automorphic representation my = 77 of GL(N) = G(N )? has an

extension to the group G(N,A)*t generated by G(N,A). We observe also
that there is pointwise action

c={at — ¢ ={q}

of 6 on the set of (equivalence classes of) Hecke eigenfamilies C(NN). The
mapping of Theorem 4.3 restricts to a bijection from ¥(N) onto the subset

C(N)={ceC(N): ¢" =¢}

of self-dual elements in C(IV).
We are particularly interested in the subset

Ugim(N) = U(N) A Wy (N)
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of W(N). Tt consists of the simple parameters ¢ = pXv in ¥(N). Among
these, we have the smaller subset

cEsim(]\[) = q}cusp(N)

of parameters that are generic, in the sense that v is trivial. A simple generic
parameter is therefore a self-dual, cuspidal automorphic representation of
GL(N).

The term simple was also applied in §1.2 to endoscopic data. It was
used to designate the subset gsim(N ) of elliptic twisted endoscopic data
G e ENGH(N ) that are not composite. An element in gsim(N ) is therefore
one of our quasisplit, special orthogonal or symplectic groups G over F', but
armed with some extra structure (namely, a choice of endoscopic embedding)
in case G = Sp(2n) and G = SO(2n + 1,C). For any such G, we need to
introduce the subset ¥(G) of ¥(N) that will serve as global parameters for
G. Its construction will be based on the following fundamental case.

THEOREM 5.1. Suppose that ¢ € &)Sim(N) is a simple generic global

parameter. Then there is a unique Gy € En(IN), regarded as an isomorphism
class of twisted endoscopic data (Gg,S4,&e) for GL(N), such that

c(p) = &4 (c(m)),
for some automorphic representation ™ of G. Moreover, Gy is simple, and
T occurs in the automorphic discrete spectrum L3 (G(F)\G(A)).

disc
The theorem asserts that among all twisted elliptic endoscopic data G €
gell(N ), there is exactly one that contains the automorphic source for the
Hecke eigenfamily c(¢) of ¢. The result serves as a “seed theorem” for
our construction of W(G). However, it has to be proved at the same time
as broader theorems that pertain to the set W(G) under construction. In
this process, Theorem 5.1 becomes an induction hypothesis in the general
treatment of parameters in \TI(G) We shall assume it in what follows.
Suppose that 1) is a fixed element in \TJ(N ). It is convenient to write Ky,
for the set {1,...,r} that indexes the simple constituents 5 of 1. Since 1
is self-dual, there is an involution k& — k" on K such that iy = ¢, and
liv = L. The indexing set is then a disjoint union

Kw:IwUJwLIJJ, JJ:{jvijGJd,},

where I, is the set of fixed points of the involution, and Jy, is some comple-
mentary set of representatives of the orbits of order 2. With this notation,

we write
v=(H tv)B (6 @e).
1€ 1Ly, JEJy

If i belongs to I,;, we apply Theorem 5.1 to the simple generic factor p; €

~

Dgim (m;) of 1; = pi Jv;. This gives an endoscopic datum (G, , s,,, ;) in

~

Esim(m;), which we denote by H;. If j belongs to Jy, we set H; = GL(m;).
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We thus obtain a connected, reductive group Hy over F' for any index k in
either Iy, or Jy, which is to say, in the set

{Klp} gt Lp L J¢

of orbits of the involution on K. Let L H, be the Galois form of its L-group.
We can then form the fibre product

(5.3) Ly= [] (*H, — Tp)
ke{Ky}

of these groups over I'p.

We will use the group Ly, as a substitute for the global Langlands group
Ly in our study of automorphic representations attached to . To make
matters slightly more transparent, we have formulated it in algebraic form,
as an extension of the pro-finite (and hence pro-algebraic) group I'r by a
complex reductive group, rather than an extension of the locally compact
group Wr by a compact topological group. For this reason we will work from
now on with the Galois forms of L-groups rather than their Weil forms.

If k = ¢ is any index in I,;, we have the L-embedding

i = €+ "Hi — "(GL(mi)) = GL(m;, C) x T'p

that comes with H; as a (twisted) endoscopic datum for

~

G(m;) = GL(m;) » 6(m;).
If k = j belongs to Jy, we define an L-embedding
fij: YH; — "(GL(2m;)) = GL(2m;,C) x T'p
by setting

~

ﬁj(hj X O‘) = (hj (—ng(hj)) X o, hj € Hj = GL(mj,(C), ocelp,

where N N N N

0;(hj) = 0(m;)(hy) = J(my) - *h; ' J(my) ™"
We then define an L-embedding

¢ Ly x SL(2,C) — L(GL(N)) = GL(N,C) x I'p
as the direct sum
(5.4) b= (@uom)e( @ 4er)).
iEIw jEJw

Our use of SL(2,C) here in place of SU(2) is purely notational, and is in
keeping with our construction of L, as a complex pro-algebraic group. We

are of course free to interpret the embedding 1Z also as an N-dimensional
representation of L, x SL(2,C). With either interpretation, we shall be pri-
marily interested in the equivalence class of 1Z as a GL(N, C)-conjugacy class
of homomorphisms from £, x SL(2, C) to either GL(N, C) or GL(N,C)xI'f.

We can now define the set of global parameters attached to any of our
classical groups. Suppose that G € Egm(N). We write U(G) for the set of
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elements ¢ € \T/(N ) such that 1; factors through “G. By this we mean that
there exists an L-homomorphism

Yo Ly x SL(2,C) — Fa

such that
(5.5) §ova =1,
where ¢ is the L-embedding of “G into © (GL(N)) that is part of the twisted
endoscopic datum represented by G. Since 1; and ¢ are to be regarded as
GL(N, C)-conjugacy classes of homomorphisms, JG is determined up to the
stabilizer in GL(N, (C) of its image, a group that contains G. The quotient
of this stabilizer by G equals the group Out ~(G) of outer automorphisms
of G described in §2. It is trivial unless G is of type D,,, the case of an even
orthogonal group in which Out ~(G) equals Z/2Z. This case complicates
our study of automorphic representations in a number of ways, all stemming
from the fact that there can be two G-orbits of homomorphisms 1/1(; in the
larger class of wg. It is why we write \I/(G) in place of the more familiar
symbol U(QG).

More generally, suppose that G belongs to the larger set geu(N ) of elliptic

data, or even the full set £(N) of (twisted) endoscopic data for G(N). As a
group over F, G equals a direct product

G:HGa

of groups G, that range over (quasisplit) special orthogonal and symplec-
tic groups and (split) general linear groups. We define the set of global
parameters for G as the product
= H ‘IJOL(GQ)
«

where ¥, (Gy) equals ‘T/(Ga) if G, is special orthogonal or symplectic, and
equals U(Gy) if G, is a general linear group. It is not hard to see that
an element in \TJ(G) can be identified with a pair (v, JG), for a parameter
¢ € U(N) and an L-homomorphism

Yo Ly x SL2,C) — @
that satisfies (5.5), and is defined as a G-orbit only up to the action of
Outy (G). The projection
(¥, da) — ¥

is not generally injective, in contrast to the injective embedding of \T/(G) into
\Tl( N) for simple G that is an implicit part of our original deﬁnition How-
ever, we still sometimes denote elements in the more general sets (G’) by
1) when there is no danger of confusion. In the global situation at hand, one
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is usually concerned only with the case that G is elliptic, but the mapping
is still not injective if G is not simple.

Suppose that 1 belongs to the set \TI(G) we have just defined for any
endoscopic datum G € g (N). We can then define the group

Sy = Sy(G) = Cent(im(¢g), G)

we have been looking for as the centralizer of the image of QZG It is a
reductive subgroup of GG, whose quotient

Sy = Sy(G) = 84/802(G)Fr

is a finite abelian 2-group. Notice that there is a canonical element

(5.6) P (1,(‘01 _01>>

in Sy. Its image in Sy plays a role in the classification of nontempered
automorphic representations of G. We can also assign a twisted centralizer

Sy(N) = Sy (G(N)) = Cent(im()), GL(N,C) x )
to v, as well as its untwisted analogue
SY(N) = Sy (G°(N)) = Cent (im(¢), GL(N, C)).

Then §3} (N) is a product of complex general linear groups, embedded diag-

onally in GL(N, C), as we noted in §4, and acts simply transitively by right

or left translation on §¢ (N). Since §¢,(N ) and §1(1)1<N ) are both connected,

they do not complicate the automorphic representation theory of GL(N).
Following §3, we write

~

o (N) = U (G(N))

for the subset of parameters v € (IVI(N ) such that the indexing set Jy, is
empty, and such that ¢; = 1 for each i € I,,. These objects are analogous
to the self-dual representations r we called elliptic in §2. Using the group
Ly x SL(2,C) in place of Ap, we can carry out the discussion of §3 without

change here. Among other things, it tells us that any ¢ € Woi(N) has a
unique source in one of the sets

\TI(G), Ge gell(N)-
To be more precise, let \Tlg(G) be the preimage of \Tleu(N) in \TJ(G), for any
G € Eu(N). The mapping from ¥(G) to ¥(N) then takes Uy(G) injec-
tively'? onto a subset of We(N), which we identify with W5(G). Moreover,

1056 in particular, the mapping from \TJ(G) to \TI(N) that we agreed above was not injective

if G lies in the complement of Eim (N) in (), is injective upon restriction to the subset
T2(G) of T(@).
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~

Uen(N) is a disjoint union

Ta(N) =[] %20
Ge€an(N)

of these subsets. We thus have parallel chains of parameter sets
Ui (N) < Ty (N) < U(N)

and

(5.7) Um(G) € Uo(Q) c U(G), G e&u(N),

where W (G) denotes the intersection of Wgm(N) with Us(G). Observe
that Wy(G) is the subset of parameters 1) € U(@G) such that the centralizer
Sy is finite, while \Tfsim(G) consists of those 1 such that Sy equals the
minimal group Z(G)'*.

The group L, now seems quite promising. As we have just seen, it
leads to the kind of objects we would attach to parameters defined on the
product Ly x SU(2). In particular, we now have L-homomorphisms QZ and
Y from Ly xSL(2,C) to groups “ (GL(N)) and “G, with the corresponding
centralizers §¢(N ) and Sy we will need. There is no denying that the
process is pretty crude, starting with the ad hoc definition (5.3) that requires
Theorem 5.1 as a long term induction hypothesis. It is also not appealing
that £, depends on the parameter ¢. Nevertheless, the group £, does in
the end serve our purpose. It is a kind of endoscopic hull of what would be
the image of the Langlands group Ly under a parameter .

Much of our discussion here has been taken directly from §1.4 of [ECR].
The reader can refer to this section of [ECR] for some further discussion,
having to do with the following natural questions:

(i) given ¢ € Ugy(N), determine the unique G € & (N) such that 1
belongs to Ws(G);

(ii) more generally, given any ¢ € U(N), determine all G € Eqi(N) such
that v lies in the image of \TI(G);

(iii) given G € Eim(N) and ¢ € ¥(G), determine the centralizer Sy =

Sy (G) explicitly.
However, there is another point from [ECR, §1.4] that we do need to men-
tion here. It concerns a bijective correspondence, which is elementary, but

which is also in some sense the theoretical center of the theory of endoscopy.
In §3, we described endoscopic data G’ € £(G) for G. Since any such G’

is again a direct product
¢ =1]6G.
a/

of groups of the kind we have studied, we can define the set of parameters

W@ = []wE).

~
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as above. We can also form the centralizer group Sy = Sy (G'), for any ¢’
in this set.
Consider a pair

(5.8) (G ), G e&(@), ¢ eV(@).

We recall that G’ really represents an isomorphism class of triplets (G', s', ¢'),
where s’ is a semisimple element in G’ and ¢’ is an L-embedding of *G’ into
L@. The parameter 1/ = 1) can be identified with a pair (1,v'), for a
parameter ¢ € ¥(G) and an L-embedding

’LZ/ = QZG’ : Ew X SL(Q,C) i LG/
such that
(5.9) ¢ ot =g,

in the notation above, where ' is defined as a G'-orbit only up to the action
of the finite group

Outy(G') = Outg(G') x Outy(G).
The pair (G’, 1)) gives rise to a second pair
(5.10) (W,s),  we¥(G), se&(Sy),

where £(Sy) = £(Syss) denotes the set of semisimple conjugacy classes in
the complex reductive group Sy, = Sy/Z (CA?)FF . Indeed 9 = ¢ is attached
to ¢’ as above, while s is just the image &'(s’) of &’ in G.

Conversely, suppose that it is a pair (¢, s) of the second sort (5.10)
that we are given. With this information, we set G’ equal to the connected
centralizer of s in CA?, and s’ equal (somewhat superfluously) to the preimage
of sin G'. The product

G' =G Pa(Ly x SL(2,0))

of G’ with the image of @ZG can be identified with an L-subgroup of LG,
for which the identity embedding ¢’ is an L-homomorphism. We define G’
to be a quasisplit group for which G , equipped with the L-action induced
by G', is a dual group. The triplet (G’,s,¢’) represented by G’ is then an
endoscopic datum for G, as defined in §3. Since s lies in the centralizer of
the image of the L-embedding JG attached to v, JG factors through “G’.
We obtain an L-embedding ¢ of Ly x SL(2,C) into “G’ that satisfies (5.9),
and hence, an element ¢’ € \II(G/ ). The pair (¢, s) thus leads in the other
direction to a pair (G’,v’) of the first sort (5.8).
The bijective correspondence

(5.11) (G ) — (¥,9)
is a general phenomenon. It applies to arbitrary endoscopic data, twisted

or otherwise, and corresponding spectral parameters. In particular, it has
a natural variant in the case that (G,G’) is replaced by (G(N),G). It
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also applies without change if F' is replaced by a local field. In all cases,
the correspondence transforms questions on the transfer of characters to
questions on the groups Sy.

Finally, we will need to know how to localize global parameters for G.
For any v, we have the local parameter set ¥(G,) defined in §4. We write
Ut (G,) for the larger set of parameters on Ly, x SU(2), in which the image
in G is not required to be bounded. To match our global convention, we
will also write Ut (G,) for the quotient of U (G,) by the group Outy(Gy).
We would like to show that for any G € Egm(N), the mapping (4.12) from
U(N) to U} (N) takes the subset W(G) of U(N) into the subset U*(G,) of
W (N). This property is not elementary. It is a consequence of a second
“seed theorem”, which we state as a complement to Theorem 5.1, but which
like Theorem 5.1, has in the end to be proved at the same time as broader
theorems.

THEOREM 5.2. Suppose that ¢ € %Sim(N) is simple generic, as in The-
orem 5.1. Then the localization ¢, of ¢ at any v, a priori an element in
the subset ®,(N) of local generic parameters in W} (N), lies in the sub-
set &)(Gqﬁ,v) of ®,(N) attached to the localization Gy of the global datum
Gy € gsim(N) of Theorem 5.1.

The theorem asserts that the N-dimensional representation ¢, of Lf,,
which is attached by the local Langlands correspondence to the cuspidal
automorphic representation of GL(N) given by ¢, factors through the local
endoscopic embedding

ot PGoy —> T(GL(N),).

It allows us to identify ¢, with a local L-homomorphism from Lp, to LGW,.
Like its global companion Theorem 5.1, Theorem 5.2 is proved by a long
induction argument that includes the proof of broader theorems. Since we
will not be able to present the general argument here, we will just assume
both Theorems 5.1 and 5.2 in what follows.

We apply Theorem 5.2 to each of the orthogonal and symplectic factors
LH} in the fibre product (5.3). Putting them together, and applying only
the local correspondence of Theorem 4.4 in case Hp = GL(my), we obtain
a conjugacy class of L-homomorphisms

(5.12) Lp, —Tp,

|

Eq/) — 7T F
It is determined up the action of the group

(N)ut(£¢) = H (N)utmk (Hy),
k
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where (N)utmk(Hk) =1 1in case Hy = GL(my). This is the analogue of (2.3)
for our makeshift substitute £, for L.

Suppose that 1 belongs to U(G) for some G € Esim(N), or indeed, for
any G in the general set £(N). It then follows from this discussion that
we can identify the localization of v, as an element in W} (N), with an
L-homomorphism

Yy : Lp, x SU(2) — G,.

v

This fits into a larger commutative diagram of L-homomorphisms

(2

(5.13) LFU X SU(Q) LGU FFv
Ly x SL(2,C) Y5 Lo Iy

where the left hand vertical arrow is given by the mapping of L, into Ly
in (5.12), and the embedding of SU(2) into SL(2,C). In particular, we
obtain a localization mapping of the form (4.12) that takes (@) into the
set \T'J“(Gv). Moreover, since 1, is essentially the restriction of the global
embedding ¥ to the image of Lp, x SU(2), the global centralizer Sy is
contained in Sy, . From this, it follows that there is a canonical mapping

T — Ty, r € Sy,

of Sy into Sy, .

6. Transfer and the fundamental lemma

The field F' will be local in this section unless stated otherwise. The
essential problem is to establish the local Langlands correspondence for a
special orthogonal or symplectic group G € gsim(G). It is closely related
to local functoriality, specifically the second of two cases described at the
end of §1, in which G’ € & (@) is an endoscopic group for G. Within the
general principle of functoriality, this case is distinguished by being also a
part of the separate theory of endoscopy. As such, it should come with a
characterization of the image of the functorial correspondence

n — 7 e II(G"),

of Principle 1.1. The reason for this is that the functorial correspondence of
representations will be dual to a transfer of functions from G(F) to G'(F).

The transfer of functions is based on harmonic analysis. Its domain
is a space of test functions on G(F), such as the space CL(G) of func-
tions on G(F') that are smooth (which means infinitely differentiable if F is
archimedean, and locally constant if F' in nonarchimedean) and compactly
supported. Following [ECR], we will instead take the Hecke algebra H(G),
a convolution algebra that equals CZ°(G) if F' is nonarchimedean, but that is
the proper subalgebra of functions f € C°(G) that satisfy a supplementary
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finiteness condition under left and right translation of f by elements in a
fixed maximal compact subgroup of G(F)), if F' is archimedean.
An element v € G(F) is called strongly regular if its centralizer

G, = Cent(y,G) = {reG: v 1yx =~}
is a (maximal) torus in G. For any such 7, we have the associated invariant
orbital integral

fa() = |D()|2 fla\ya)de

wa (FN\G(F)
of any test function f € H(G), where dz is a fixed, right invariant measure
on the coset space G~(F)\G(F'). We have normalized fg(y) by the Weyl
discriminant

D(y) = det (1 — Ad(7)) /g, )

where g and g, are the Lie algebras of G and G,. We regard fg as a function
on the set of strongly regular points v, and write

(6.1) I(G) = {fa: [eH(G)}

for the image of H(G) under this transform.
The functions in Z(G) also have a spectral interpretation. Any repre-
sentation 7 € II(G) has a character, which can be identified with the linear

form
tr(r(f)) = tr(f

G(F)

f@m(@)dz),  feHE),

on H(G). We set

fa(m) = tx(x(f)),
in analogy with the notation we have used for the dual orbital integrals.
It can then be shown that either of the two functions {fg(v)} or {fa(n)}
attached to f determines the other. We can therefore regard any element
fc in Z(G) as a function of either v or 7. It is invariant, in the sense that

it depends only on the conjugacy class of v or the equivalence class of 7. It
also remains invariant if its preimage f € H(G) is replaced by any conjugate

fy(w) :f(ywy_l)a $7y€G(F)

The theory of endoscopy is founded on the fact that conjugacy in G(F) is
finer than geometric conjugacy. Two strongly regular elements in G(F') are
said to be stably conjugate if they are conjugate as elements in the group
G(F) of geometric points in G. For the local field F, it is easy to show
that there are only finitely many G(F)-conjugacy classes 7 in any (strongly
regular) stable conjugacy class §. The corresponding sum

F90) =Y, fe(),  feH(G),
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of orbital integrals is called the stable orbital integral of the given function
f at 6. We write

(6.2) S(G) ={f: [eH()}

for the space of functions of § obtained in this way. As we shall see, L-packets
arise when we try to find a spectral interpretation for the functions f¢ in
S(G) analogous to the values fg(m) of functions fg in Z(G). In general, a
distribution on G(F'), or more correctly a continuous linear form on H(G),
is said to be stable if its value at any f depends only on f&. If this is so, we
can identify S with the linear form

(6.3) S(f% =8(f),  feH@),

on §(G). The spectral question above is then to attach stable distributions
to representations 7.

Suppose that G’ is an endoscopic datum for G. Langlands and Shelstad
[LS] define a strongly regular element ¢’ in G'(F) to be strongly G-reqular
if its image in G(F') (under any admissible embedding [LS, (1.3)] of its
centralizer G%, into G) is strongly regular for G. The space of strongly G-
regular elements remains open and dense in G’(F'), so functions in the space
S(G’) are determined by their values on strongly G-regular, stable conjugacy
classes in G'(F'). The point of the article [LS] was to introduce an explicit
function A(d’,7) of a strongly G-regular stable conjugacy class ¢’ in G'(F)
and a strongly regular conjugacy class v in G(F’), which they called a transfer
factor for G and G'. By construction, this function vanishes unless v belongs
to the stable conjugacy class of the image of ¢’ in G'(F). It therefore has
finite support in either of the variables when the complementary variable is
fixed. The role of A(¢’,7) is as the kernel function for the transfer mapping
that sends a function f € H(G) to the function

(6.4) F1(8") = &) =Y. AW ) falv)

of §’. Langlands and Shelstad conjectured that the function f’(6") belongs
to the space S(G').

The Langlands-Shelstad transfer conjecture remained a fundamental
problem for twenty years. It had been established earlier for archimedean
F' (and ad hoc transfer factors) by Shelstad [Shel]. But for nonarchimdean
F, it was closely tied to the fundamental lemma. The fundamental lemma
is a related conjecture, posed originally by Langlands, which became precise
with the introduction of the transfer factors of [LS]. It applies to the case
that the quasisplit groups G and G’ are unramified, which means that they
are both split over an unramified extension of the nonarchimedean field F'.
With this condition, G(F') has a hyperspecial maximal compact subgroup
Kp, an important object determined uniquely up to the appropriate ana-
logue of stable conjugacy. The fundamental lemma asserts that if f is the
characteristic function of Kr (a function in H(G) since K < G(F') is open),
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then f’ equals the image in S(G’) of the characteristic function of any hy-
perspecial maximal compact subgroup K7 of G'(F). It thus represents a
more precise version of the transfer conjecture in a special case.

Kottwitz and Shelstad [KS] later extended the results of [LS] to twisted
endoscopic data. They had a number of new problems to deal with, but
for our setting here, we need include only a small modification of the
discussion above. To do so, we replace the group G by the component
G(N) = GL(N) x §(N), and its endoscopic datum G’ by a twisted endo-
scopic datum G € & (N). Endoscopic transfer in this setting is again tied to
local functoriality, this time to the first of the two cases introduced at the
end of §1. From what we have just said, it is clear that this case is also
distinguished by being part of the separate theory of endoscopy.

One defines the Hecke module H(N) = ”H(CNJ(N)) of functions f on
C:‘(N, F'), and the notion of a strongly regular element 7 in é(N, F). One
then defines the twisted orbital integral ]‘N’N(ﬁ) of f over the orbit of 5 under
the group G°(N, F) = GL(N, F) acting by conjugation on G(N,F). The
twisted transfer factor from [KS] is an explicit, but sophisticated function
3(6, v) of a strongly é(N )-regular, stable conjugacy class § in G(F') and
a strongly regular, twisted conjugacy class ¥ in C:’(N ,F). It serves as the

kernel function for the transfer mapping that sends a function f~‘ € 7—~t(N ) to
the function

(6.5) FE©0) = F£8) = DIAWGH) In®)
ol

of §. For reasons similar to those above, the sum can again be taken over
a finite set that depends only on J. Folowing [LS], Kottwitz and Shelstad

conjectured that the function f¢(8) belongs to the space S(G). The twisted

fundamental lemma asserts that if G is unramified, and fis the characteristic
function of the open subset GL(N,o0r) 5(]\7) of G(N, F), f¢ is the image
in S(G) of the characteristic function of a hyperspecial, maximal compact
subgroup Kr of G(F).

For archimedean F', Shelstad has recently completed a proof of the gen-
eral twisted transfer conjecture [She5], using the explicit specialization to
real groups of the twisted transfer factors of [KS]. This followed other re-
cent papers [She2]-[Shed4], in which she reformulated much of her earlier
work on ordinary (untwisted) endoscopy from the perspective of [LS].

For nonarchimedean F', the breakthrough was the geometric proof of the
fundamental lemma by Ngo6 [N]. He combined the local geometric ideas of
Goresky, Kottwitz and MacPherson [GKM] on affine Springer fibres with
an analogue of the global Hitchin fibration to establish the fundamental
lemma for a local field of positive characteristic. By earlier results on the
independence of characteristic [W2], this gave the fundamental lemma also
for the local field F' of characteristic 0. The paper of Ngo treats the ordinary
(untwisted) fundamental lemma, and a variant to which Waldspurger had



CLASSIFYING AUTOMORPHIC REPRESENTATIONS 47

reduced the general (twisted) case [W3]. It therefore resolves the fundamen-
tal lemma in complete generality. As for the Kottwitz-Langlands-Shelstad
(KLS) transfer conjecture, Waldspurger had established some time ago that
the ordinary transfer conjecture would follow from the fundamental lemma
[W1]. His more recent papers [W3|, [W4] extend this implication to the
general case. The general results of Waldspurger therefore yield the nonar-
chimedean LSK-conjecture in all cases.

We will use the transfer mapping from C:’(N ) to answer the question
posed above on a spectral interpretation for the functions in S(G). We be-
gin with a local parameter ¢ € ¥(N) for GL(N). From the correspondence
(4.11) derived from Theorem 4.4, we obtain a irreducible unitary represen-
tation 7y € Ilunit(N) of GL(N, F'). Assume that 1) lies in the subset (IVI(N)
of self-dual parameters. As we have noted, 7, then has an extension to the
group G (N, F)*. However, the extension is determined a priori only up to
the sign character on the semidirect factor 6(N)* of G(N, F)*. We need to
define it uniquely.

It is the theory of Whittaker models that provides a canonical extension
of my. This theory is well understood for general linear groups, and is
expected to carry over to tempered L-packets for general quasisplit groups.
In fact, for our group G, the conjectured properties (proposed by Shahidi
in [Shal]) were established in §8.3 of [ECR]. In general, one must fix a
Whittaker datum (B, x), consisting of a rational Borel subgroup B of a given
quasisplit group over F', and a nondegenerate character x on the unipotent
radical Ng(F) of B(F). (In the case of a twisted group, such as G(NN), one
must take (B, Y) to be stable under the relevant automorphism, §(N) in the
case G(N).) A (B,x)-Whittaker vector for an irreducible representation
is then a nonzero vector in the underlying complex vector space, on which
Np(F) is x-equivariant. If it exists for the given representation, a (B, x)-
Whittaker vector is known to be unique up to a complex multiple. (See the
brief introduction in [ECR, §2.5], for example.)

We will not review the theory of Whittaker models further, except to
note its role in the choice of transfer factors. In general, a transfer factor
is defined uniquely only up to a nonzero scalar multiple. But for our group
G (and indeed, for any quasisplit group over F'), Langlands and Shelstad
attach a canonical transfer factor to any F-splitting [LS, §1.3] of G. The
group G.q(F) of F-points in the adjoint group of G acts simply transitively
on the set of F-splittings of G. The associated transfer factors are equal (for
all G’) if and only if their splittings lie in the same orbit under the image
(G(F)),q of G(F) in Gaa(F). The finite quotient

(6.6) Caa(F)/(G(F))

therefore acts simply transitively on the set of (families of ) normalized trans-
fer factors. These normalizations are really geometric, in that they lead to
the simplest explicit formulas for the transfer of orbital integrals. Kottwitz
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and Shelstad, for their part, introduced a different normalization for the
transfer factors of G (and for any quasisplit group over F'). It was attached
to any Whittaker datum for G. The group G.q(F) also acts simply tran-
sitively on the set of Whittaker data, and the quotient (6.6) again acts
simply transitively on the corresponding set of such normalizations. These
are spectral normalizations, in that they are expected to lead to the simplest
explicit formulas for the transfer of characters. We assume implicitly from
now on that the transfer factors for G have been assigned the Whittaker
normalization attached to a fixed Whittaker datum.

Similar remarks apply to twisted transfer factors, but there is no need
to discuss them explicitly. We simply fix a 6(N)-stable Whittaker datum
(E(N ), X(IV)) for GL(N), and work with the associated normalized twisted

transfer factors. If ¥ = ¢ lies in the subset ®paq(N) of W(N), the self-
dual representation 7y, = 74 of GL(N, F) is tempered, and therefore has a
(§ (N), X(N))-Whittaker vector. We take 74 to be the unique extension of
mg to the group G(N, F)* such that the operator Ty(N) = Ty (5(]\7)) maps
the Whittaker vector to itself. The definition carries over to our general
parameter ¢ € \TI(N ), even though the nontempered Speh representation
Ty need not have a Whittaker vector. For we can work with the induced
representation py, of which my, is the Langlands quotient. This representation
does have a Whittaker vector, which serves to define an extension py of py.
Its quotient then gives an extension 7y, of my. (See [ECR, §2.1].)
Given the extension 7y, of my, we define a linear form

(6.7) @) =te(7e(),  FeHDN),

on H(N). Does it transfer to G? More precisely, is it the image of a stable
linear form on H(G) that is dual to the transfer f — fC of functions? We
would expect a necessary condition to be that as an L-homomorphism from
L x SU(2) into (GL(N)), ¢ factors through the L-subgroup “G. In other
words, 1 should lie in the subset

¥(G) = ¥(G)/Outy(G)

of \T/(N ) attached to our group G € g‘sim(N ). Now the dual transfer of
functions takes 7 (N) into the subspace S(G) of functions in (@) that are
invariant under the finite group Outy(G). It is convenient also to write
H(G) for the subspace of functions in H(G) invariant under Outy(G) (with
the nontrivial element in Outy (G), when it exists, identified as in §3 with an
actual F-automorphism of G). The question above should then be whether
(6.7) transfers to a stable linear form on the subspace H(G) of H(G). The
following theorem, which is a foundation for the local correspondence we
will state in the next section, gives an affirmative answer.

THEOREM 6.1. Suppose that F is local, that G € gen(N), and that
lies in the set V(G) attached to a fived group G € Eqi(N). Then there is a
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unique stable linear form

(6.8) f— [, feH(G),

on ﬁ(G) with the general property

together with the secondary property

(6.10) 1EW) = fS(ws) o), JeH(@),
m case

G=GgsxGo,  GeeEsm(No),
b = s x Yo, be € U(Ge),

and
fG = #5 x £9, ffeS8(G.), e = 0,5,

are composite.

REMARKS. 1. The primary case is for G € Egm (V) simple. It has domi-
nated our past discussion, for the reason that many questions for composite
twisted endoscopic data are amenable to induction. When G is simple,
the mapping f — fC takes H(N) onto S(G) [ECR, Corollary 2.2]. The
uniqueness of the linear form (6.8) then follows from the formula (6.9) in
this case. N

2. If G € Eq(N) is composite, the uniqueness follows from the product
formula (6.10). In this case, the symbol ¢ on the right hand side of (6.9)
is understood to be the image of the given composite parameter under the
(not necessarily injective) mapping from ¥(G) to W(N). The problem here
is to establish the compatibility condition represented by the two sides of
(6.9).

3. Suppose that v lies in the set \TI(G) attached to some G in the
complement of E(N) in the full set £(N) of twisted endoscopic data. The
assertions (6.8) and (6.9) of the theorem then follow easily by reduction to
the Levi component of a proper, 9~(N )-stable parabolic subgroup of GL(N).

4. The notation f&(1)) in (6.8) is deliberate, even if perhaps also slightly
confusing. It reminds us that we are dealing with a linear form on S(G). In
particular, we can define fC(¢) for any ¢ in the subset ®paq(G) of ¥(G), or
by analytic continuation, any ¢ in the larger set &)(G) It can be shown that
either of the two functions {f(8)} or {f%(¢)} attached to f determines
the other. We can therefore regard any element € in S(G) as a function
of either § or ¢. This is in answer to the question above on a spectral
interpretation of the function f& (or rather, the slightly weaker question
for the subspace S(G) of S(G)). The local classification theorem, which we
state in the next section, expresses the stable character (6.8) of ¢ in terms of
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the characters of representations 7 in the L-packet of ¢, in spectral analogy
with the conjugacy classes v in a stable conjugacy class §.

7. Statement of theorems

We will now state our theorems of classification. We fix a (quasisplit,
special) orthogonal or symplectic group G € g’sim(N ) over the field F. Our
ultimate concern is the global classification of automorphic representations.
However, this necessarily relies on an understanding of local irreducible rep-
resentations. We therefore assume for the moment that F' is local.

We would ideally like to attach a canonical L-packet Il of irreducible
representations 7w € II(G) of G(F) to any local Langlands parameter ¢ €
®(G). As we shall explain presently, it would suffice to consider the case of
bounded parameters ¢ € ®1,qq4(G), which leads to L-packets I14 of tempered
representations 7 € Iliemp(G). It also represents a special case of our other
family of parameters ¢» € ¥(G), which leads to packets Il of unitary repre-
sentations 7w € Iyt (G), and will be the setting for the theorem we actually
state. We do need to bear in mind that the packets II, are larger than the
L-packets Il attached to the (unbounded) images ¢, (4.10) of ¢ in ®(G).
In particular, they are not in general a part of the local Langlands classi-
fication. Their role is rather to describe local constituents of automorphic
representations.

We actually have to settle for something a little weaker. As we discussed
at the end of the last section, the transfer mapping f~—> fG from 7?[(]\7 ) to
S(G) is not generally surjective. Its image is the subspace S(G) of Outy (G)-
invariant functions in S(G). We have therefore to work with the set U(G)
of Out y(G)-orbits in ¥(G). This fits into the sequence

Bpaa(G) = T(G) = B(G)

of families of orbits of parameters. The group Outy (G) (of order 1 or 2) acts
by outer automorphisms also on G(F’), and hence on equivalence classes of
irreducible representations. We therefore have an associated sequence

ﬁtemp(G) c 1Elunit(G) < ﬁ(G)

of families of orbits of representations. This qualification is only relevant to
the case that G is type D,,. If G is of type B, or C,, 6utN(G) is trivial,
and the sets are unchanged from before.

We have thus to attach packets ﬁw in ﬁunit(G) to parameters v € \T/(G)
We expect them to be multiplicity free. If F' is nonarchimedean, this is a
deep theorem of Moeglin [M2]. If F' is archimedean, however, it is unknown.
We have therefore to formulate the local theorem as an assertion for packets
with multiplicities.

If S is any set, a set over S, or an S-set, or even an S-packet will mean
simply a set S7 with a fibration

S — S
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over S. Any function on S, such as the character fg(7) on H(G) in case S
equals II(G), will be identified with its pullback to a function on S;. The
order

my: S — Nu{0,00}
of the fibres in 57 represents a multiplicity function, which makes S into

what can be called a multiset on S. If S; is multiplicity free, in that every
element in S has multiplicity at most 1, it is of course just a subset of S.

THEOREM 7.1. Assume that F is local and that G € E(N).
(a) For any local parameter 1 € V(G), there is a finite packet 11y, over
it (G), together with a mapping

(7.1) T — (my,  welly,

from ﬁd, to the group §¢ of irreducible characters on Sy, with the following
property: if s is a semisimple element in the centralizer Sy, = Sy(G) and
(G', ") is the preimage of (¢, s) under the local version of the correspondence
(5.11) in §5, then

(7.2) W)=Y, sy, mfalr),  feH(G),

mwelly
where x is the image of s in Sy, and sy is the image in Sy of the element
(5.6).

(b) If 1 = ¢ belongs to the subset Bpaa(G) of parameters in V(G) that
are trivial on the factor SU(2), the elements in ﬁ¢ are tempered and mul-
tiplicity free, and the corresponding mapping from ﬁ¢ to §¢ s injective.
Moreover, every element in ﬁtemp(G) belongs to exactly one packet ﬁ¢. Fi-
nally, if F' is nonarchimedean, the mapping from ﬁ¢ to §¢ 1s bijective.

REMARKS. 1. The premise of this theorem depends on Theorem 6.1.
To be precise, the left hand side of (7.2) is a product of linear forms (6.8)
postulated by the earlier theorem, taken over the factors of the endoscopic
group G'. Composed with the transfer mapping f — f/, it represents a
linear form on 7—~[(G) As such, it determines the packet ﬁ¢ and the pairing
{z,7) from the expression on the right hand side of (7.2).

2. The finite subsets ﬁ¢ of ﬁtemp(G) in (b) represent the tempered L-
packets. They are composed of Out ~(G)-orbits of tempered representations,
which are parametrized by characters in §¢. Since the theorem posits a
disjoint union

(7.3) ﬁtemp(G) = H ﬁ¢’
Ppaa(G)

it can be regarded as an endoscopic classification of the irreducible tempered
representations of G(F'). It amounts to the local Langlands correspondence
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for G if GG is of type B,, or C,,, and something slightly weaker if G is of type
D,,.

3. Suppose that F' is archimedean. Shelstad has established a general
classification

(7.4) Memp(@) = [ T
Ppaa(G)

of Itemp (G) for any real group G, in terms of L-packets IT, that satisfy endo-
scopic character relations (7.2) (with s;, = 1). In the papers [Shel]-[She4],
she does not define the stable distributions on the left hand side of (7.2)
(in case G € Eim(N) and ¢ = ¢) in terms of twisted transfer from general
linear groups. However, this property (and more) is established in the recent
papers of Shelstad [She5] and Mezo [Me]. We depend on these results for
our proof of the theorem for nonarchimedean F' (and for the proof of the
global theorems we will state presently). For general parameters ¢, Adams,
Barbasch and Vogan [ABV] have constructed packets 11, that satisfy rela-
tions (7.2), again for any real group G. However, it is not presently known
whether the stable distributions they define for the left hand side of (7.2)
match those we obtain by twisted transfer from general linear groups (in our
case that G € g’sim(N )). The point is important for our purposes, because
the global results at which the local packets ﬁw are ultimately aimed are all
proved by comparison with the twisted trace formula for GL(N).

4. Suppose that F' is nonarchimedean. The structure of the general
packets ﬁw is better known than in the archimedean case, thanks to the work
of Moeglin. We have already mentioned her proof [M2] that the packets ﬁw
are multiplicity free. This is a consequence of a general algorithm [M1]
for computing the Langlands parameters of elements in ﬁw, assuming the
classification of the tempered representations ﬁtemp(G) provided by part (b)
of the theorem.

Suppose that 1 belongs to the larger set \TJ+(G) of local parameters for
G, defined without the condition that their restriction to Lz be bounded.
Then 1 can be expressed rather simply as a composition

Y= &m0 Yua,

where 1y 5 is a twist of a parameter s € \TI(M ) for a Levi subgroup M of
G and &) the embedding of “M into LG attached to a parabolic subgroup
P e P(M) of G with Levi component M. The twisting element A lies in the
open chamber defined by P in a certain real vector space

ay = X(M)r ®R.
It can be identified with either a homomorphism from Lg x SL(2,C) into the

connected component of 1 in Z (M\ )Y or a real quasicharacter on the group
M (F'). With the former interpretation, we observe that .Sy is contained in

M , and hence that the mapping x — x); of Sy,, into Sy is an isomorphism.
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With the latter interpretation, we define the packet of ¥ as a corresponding
set (of orbits of) induced representations, which we denote hesitantly as

(7.5) ﬁ¢ = {7T =Zp(mmy): T™m € ﬁ¢A4}.
It is bijective with ﬁva and comes with a pairing

{xym) = {xpr, o), x € Sy, ﬂ'eﬁw,
with Sy. The assertion (a) of Theorem 7.1 for the more general parameter
1), with the understanding that the elements in the packet ﬁw might now be
reducible, then follows from its analogue for ¢, and the standard character
formula for an induced representation.

Consider the case that the local parameter ¥ = ¢ in \Tﬁ(G) is trivial on
the factor SU(2). Then ¢ belongs to the set ®(G) of general (unbounded)
Langlands parameters. It has a decomposition ¢ = {7 o ¢prx, as above.
However, we shall denote the packet we introduced above differently, as

Py ={p=Tp(mun) : mar €11y, }.

(The P in ]3¢ is to be understood as an upper case p.) We reserve the
symbol II, for the packet

(7.6) ﬁ¢ ={mr=m,: pe ]Sw}

of irreducible Langlands quotients of representations in ﬁ¢. It comes with
the pairing

(x,m) =z, mp) = (&, p) = {TM,TM)s x € Sy, WEﬁw,

with Sy, that it inherits from ]51/,. However, it does not satisfy the endo-
scopic character relation (7.2), since the Langlands quotient 7, need not
be induced. Nonetheless, the original Langlands classification [L5] for real
groups (extended to p-adic groups in [BW]) tells us that

(7.7) mG) = [[ .
¢ed(G)

We therefore obtain an explicit classification of general representations 7 €
II(G) from the tempered case given by Theorem 7.1(b).

Incidentally, it would appear that the notation in (7.5) is in conflict with
that of (7.6). We hope that it will not be! For we shall consider only pa-
rameters ¢ € \Tﬁ(G) that arise from the local components of automorphic
representations. That we have to take them in the larger set \TI+(G) is a
necessary consequence of our not having at our disposal the generalized Ra-
manujan conjecture for GL(N), as we have noted. But it is still a pretty
stringent restriction, which we conjecture implies that the induced repre-
sentations p = Zp(mpr,y) are irreducible (and unitary) [ECR, Conjecture
8.3.1]. If this is so, each p equals its Langlands quotient 7,, and there is no
conflict with the notation (7.5).
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Suppose now that the field F' is global. There will be two global theorems
for the group G € Egm(N) over F. The first is the central result. It gives a
decomposition of the automorphic discrete spectrum of G in terms of global
parameters in the subset

Uy(G) = {9 e U(G) : [Sy| < 0}

of U(@) and the local objects of Theorem 7.1(a). It is best formulated in
terms of the global Hecke algebra H(G) of functions on G(A), with respect
to a suitable maximal compact subgroup

K=]]K,
v

of G(A).

By definition, H(G) is the space of finite linear combinations of products

[1f  foeH(G),

such that f, is the characteristic function of K, for almost all v. We write
H(G) for the locally symmetric subalgebra, in which each f, lies in the
subalgebra H(G,) of H(G,). For any function f in H(G), and any admissible

representation

7r=®7rv, 7y € I(Gy),

the character fg(w) depends only on the Outy(G,)-orbit of m, in II(G,),
for any v. We will have to describe the discrete spectrum of G as an H(G)-

module, since the local packets consist of (N)utN(Gv)-orbits T, In ﬁunit(Gv).
Of course if G is of type B,, or C,,, the groups Outy(G,) are all trivial, and

~

H(G) equals H(G). We would then have a description as an H(G)-module,
or for that matter, a decomposition in terms of irreducible representations
T E Hunit(G)-

We are assuming the seed Theorems 5.1 and 5.2. The first of these
was needed to define the global set \TJ(G) itself. The second led us to a

localization mapping ¢ — v, from W(G) to the local set U (G). The local
theorem we have just stated (together with the ensuing discussion) allows

us to attach a local packet ﬁwv to 1 and v. We can thus attach a global
packet

(7.8) ﬁw = {w = ®7TU D Ty € ﬁwv, (-, myy =1 for almost all v}

of (orbits of) representations of G(A) to any ¢ € U(G). Any element 7 in
the global packet II,, determines a character

(7.9) {(z,7my = H<$“7 Ty s r €Sy,
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on the global centralizer quotient Sy. On the right hand side of (7.9), the
product can be taken over a finite set, while x — x, is the mapping from
Sy to Sy, we have discussed earlier.

THEOREM 7.2. Assume that F is global and that G € Egm(N). Then
there is an H(G)-module isomorphism

(7.10) L (GING@) = @ mu( @ 7).
Yevs(G) melly (ey)
where my, equals 1 or 2 and
ey Sy — {£1}
is a linear character defined explicitly in terms of symplectic € factors while

Hw(ew) is the subset of representations w in the global packet H¢ such that
the character (-, m) on Sy equals €.

The statement will not be complete until we define the integer m,, and
the character . The first of these is quite elementary. The global param-
eter 1 comes with the L-embedding

da: Ly x SL2,C) — G,

determined as a G-orbit up to the action of the group Out ~N(G). We de-
fine my for any 1 € U(G) to be the number of G-orbits in the associ-
ated Out ~N(G)-orbit. For an equivalent description, we write the parameter
¥ € Uy(G) as
Y=Y -Hr,

for distinct, self dual factors ; € \Tlsim(Ni). One checks that m,, equals 1
unless @ is of type D,, (or in other words, N is even and G = SO(N,C)),
and the rank N; of each of the components v; is also even, in which case
my, equals 2. The integer m,, obviously bears on the question of the mul-
tiplicity with which a representation 7 occurs in the automorphic discrete
spectrum, but one also needs information about the localizations %,. For a
full statement in the case that 1) = ¢ lies in the subset ®paq(G) of W(Q),
see [A4, §3(vii)].

The sign character ¢, is more interesting. We first make an observation
on some general e-factors. Suppose that ¢ € \II(N ) is an arbitrary global
parameter, and that r is an arbitrary finite dimensional representation of
Ly, subject only to the condition that its equivalence class is stable under
the group Aut(Ly). Then r pulls back to a well defined representation r, of
Lp,, for any v. We can therefore define the global L-function

= HL(S,TU)

by an FEuler product that converges for the real part of s large. We do
not know that it has analytic continuation and functional equation, since it
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really amounts to a rather general automorphic L-function, even though its
local factors are arithmetic L-functions defined as in [T]. But we can still
define the corresponding global e-factor as a finite product

€(S,T, wF) = HE(Sﬂﬂmva)-

Again, we cannot say that this function is independent of the nontrivial
additive character ¢y on A/F. But if r is symplectic, by which we mean
that it takes values in the symplectic subgroup of the underlying general
linear group, the value of the local factor e(s,r,, ¥r,) at s = % is known to
equal +1 or —1, and to be independent of 1f,. We therefore have a global
sign
5(%,7“) = 5(%,7“,1#1:) = =1

in this case, which is independent of ¢ p.

We can define ¢y if ¢ is a general parameter in U(G). We first define a
representation

Ty - Sw X [:1/, X SL(2,C) — GL(a)

on the Lie algebra of § of G by setting

7y(s,9,h) = Adg (s - Yl h)), s€ Sy, (g,h) € Ly x SL(2,C),

where Adg is the adjoint representation of “G. This representation is or-
thogonal, and hence self-dual, since it is invariant under the Killing form on
g. Let
Ty = @Ta = @()\a@,ucu@Va)
(0% (0%
be its decomposition into irreducible representations \,, po and v, of the
respective groups Sy, Ly and SL(2,C). We then define

ep(@) = ] det (Mals)). s Sy,

where z is the image of s in Sy, and [T denotes the product over those
indices o with p, symplectic and with

e(3#a) = =1

The second global theorem is a supplement to the first. It gives a long
conjectured L-function criterion for whether a self-dual cuspidal automor-
phic representation of GL(N) is symplectic or orthogonal, in the sense that
it is a functorial image from a group G whose L-group is symplectic or or-
thogonal. It also gives an automorphic analogue of a well known property
[FQ], [D] of orthogonal (arithmetic) root numbers. The main point for us,
however, is that this theorem has a critical role in the proofs of all of the
theorems. It is an indispensable part of what governs the signs that arise in
the comparison of trace formulas.

To place the second global theorem in context, we observe a property
of certain Rankin-Selberg L-functions. The Rankin-Selberg representation
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of GL(N,C) x GL(N,C) on the space of complex (N x N)-matrices is ir-
reducible, but its restriction to the diagonal image of GL(N,C) is a direct
sum S? @ A%, where S? (resp. A?) is the representation of GL(N,C) on the
space of symmetric (resp. skew-symmetric) (N x N)-matrices. If 7 is a cus-
pidal automorphic representation of GL(N), the diagonal Rankin-Selberg
functions then break into formal products

(7.11) L(s,m x 7) = L(s,m,S%)L(s, 7, A?)
and
(712) E(Svﬂ- X 7T) = 5(3777527¢F) 6(877T7A27¢F)'

The two L-functions on the right hand side of (7.11) are among the cases
of the Langlands-Shahidi method treated in [Sha]. In both cases, the local
L-functions and e-factors can be constructed, with the consequence that the
formal products (7.11) and (7.12) become actual products, for which the
resulting two global L-functions have analytic continuation with functional
equation (4.15).

Suppose that ¢ € cfsim(N ) is a simple generic parameter. For us, this
amounts to a cuspidal automorphic representation 7 = 74 of GL(N), which
is now self-dual. Theorem 5.1 asserts that ¢ belongs to the subset

Py (G) = B (N) N U(G),

for a unique G € &4 (V). We need to understand how G is related to
L-functions and e-factors. It is known that the Rankin-Selberg L-function

L(s,¢p x ¢) = L(s,m xm) = L(s,m xw")
has a pole of order 1 at s = 1. It is also known that neither of the corre-
sponding factors L(s, ¢, S?) and L(s, ¢, A?) on the right hand side of (7.12)
has a zero at s = 1. It follows that exactly one of them has a pole at s =1

(which will be of order 1). This motivates the assertion (a) of our second
global theorem.

THEOREM 7.3. Assume that F is global.

(a) Suppose that G € Egm(N) and that ¢ belongs to Psm(G). Then G is
orthogonal if and only if the symmetric square L-function L(s,¢,S?) has a
pole at s = 1, while G is symplectic if and only if the skew-symmetric square
L-function L(s,,A?) has a pole at s = 1.

(b) Suppose that for i = 1,2, ¢; belongs to &DSim(Gi), for simple en-
doscopic data G; € g’sim(Ni). Then the associated Rankin-Selberg e-factor
satisfies

5(%7¢1 X ¢2) = 17
if él and GQ are either both orthogonal or both symplectic.

We have completed the formal statements of the three main theorems
of [ECRJ. Representations of quasisplit special orthogonal and symplectic
groups G have been studied from other points of view. There is a rather
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complete theory for the special case of representations with Whittaker mod-
els [CKPS], [GRS]. Since Theorems 7.1 and 7.2 give a classification of local
and global representations, it is reasonable to ask which of these have Whit-
taker models. The answer is given in [ECR, §8.3], following a conjecture
in [Sha]. The f-correspondence has been a different source of results. (See
[Ku], for example.) It would be very interesting to compare the relations it
has provided with the classification of Theorems 7.1 and 7.2. Considerably
more is known in the local case, thanks to the article [M3] and its predeces-
sors. For global F', we refer the reader to [Ji] for examples and a description
of some of the problems.

Some applications of the theorems were listed in [A4, §3]. There will
no doubt be others. Some will follow from the extension of the theorems to
orthogonal and symplectic groups that are not quasisplit. For a description
of a proposed classification of representations for such groups, which remains
conjectural, see [ECR, §9]. Other applications await an extension of the
theorems to different groups, such as the split group G:Sp(2n) of symplectic
similitudes, for example.

8. Implications for functoriality

It remains to add some observations on functoriality (Principle 1.1). We
consider the two cases

(8.1) (G, p) = (GL(N),G,€), G e Eim(N),
and
(8.2) (GG, p) = (G,G.€),  Ge&m(N), G calQ),

discussed at the end of §1. What are the implications of the theorems we
have stated?

We first observe that in both cases, we have a mapping
(8.3) Vo— p=poy =p¥), ¢ eV,
from U(G') to U(G). This is obvious if F is local, and would be so in the
global case as well if our parameters were defined on the Langlands group
L. As matters stand, we must appeal to the definitions of §5 for global F,
which depend on the nontrivial Theorems 5.1 and 5.2. In any case, we do
have the mapping (8.3) for any F. As usual, we have particular interest in
its restriction to the subset ®pqq(G’) of ¥(G).

Suppose for the moment that F'is local. Local functoriality in the first
case (8.1) is given by Theorem 6.1 and the definition (6.7) of the linear
form on the right hand side of (6.9). In the second case, it is given by the
character identity (7.2) in Theorem 7.1(a) and the bijective correspondence
(5.11). Because these two cases have their origins in the theory of endoscopy,
we obtain an explicit description of the local functoriality correspondence.
It is given by the relation

(8.4) r — x, 7 ell(d),
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where for a given 7/, m ranges over the representations in the packet ﬁ¢ of the
local parameter ¢ € ®(G) such that ¢ = p(¢/) is the image of the parameter
¢ € O(GQ') with 7’ € ﬁ¢/. In other words, it is the correspondence

ﬁ¢/ I ﬁ(i)?
in which ¢ ranges over the local parameters in ®(G’) and ¢ — ¢ is the
mapping from ®(G’) to ®(G) analogous to (8.3).

Functoriality is called a “principle” for a reason. It represents a phenom-
enon, which we can almost regard as a general law of nature, rather than a
precise conjecture. It is capable of taking different forms, which depend on
the context. This flexibility is built into its statement in §1, by postulating a
correspondence rather than a mapping, whose precise nature is left unspec-
ified. For example, in the local case above, we can consider packets ]3¢ of
induced representatlons p (sometimes known as standard representatlons) in
place of packets H¢ of irreducible Langlands quotients . Let HJr be the set
of irreducible constituents 7 of these representations, a packet that contains
ﬁ¢, and equals ﬁ¢ if ¢ lies in the subset ®paq(G) of ®(G). These larger
packets are no longer disjoint, in contrast to the L-packets ﬁ¢. This leads
to a more complicated version of local functoriality. We take it to be the
coarser relation

(8.5)  — o, ell(G),
where for a given 7/, m ranges over the representations in packets ﬁ; of

local parameters ¢ € ®1(G) such that ¢ = p(¢/) is the image as in (8.3) of a
parameter ¢’ € ®(G’) with 7’ € H;f,. We should also not be distracted by the

fact that ]5¢ and ﬁ¢ consist of orbits of irreducible representations (unless
G = GL(N)), rather than actual representations. This is a side issue, which
is not present if G is of type B, or C,, and is not particularly significant
for what we are discussing here.

Assume now that F'is global. Global functoriality is harder to describe.
For among other things, the statement of Principle 1.1 is predicated on the
broader, formal definition [L3] of automorphic representations, which we
have not given. We can, however, formulate it without difficulty for the
subsets

My aut < g, &€ Ppaa(G),
of automorphic representations in the global packets attached to parameters
in ®p4q(G). In this case, global functoriality is given by the correspondence

H(b’,aut > H¢),aut

in which ¢’ ranges over global parameters in ®pqq(G’), and ¢ — ¢ is the
mapping given by the restriction of (8.3) to the subset ®pqq(G’) of ¥(G).
The correspondence follows from the definitions of §5, the multiplicity for-
mula of Theorem 7.2, and the reduction by FEisenstein series of the full
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automorphic spectrum to relatively discrete automorphic spectra for Levi
subgroups. This reduction also gives an explicit characterization of the sub-
set ﬁ¢>,aut of ﬁ¢.

More generally, consider a global parameter ¢ in the larger set &)(G)
We can then form the global packet

ﬁ(‘; = {77 = ® Ty @ Ty € ﬁ(‘;ﬂ, 7, unramified for almost all U},
v

in analogy with (2.2). The global parameter ¢ can be represented as the
image of a “discrete” parameter ¢ € ®o(M), for a Levi subgroup M of G,
under the dual embedding “M < “G. Let H;j aut Pe the subset of irreducible

representations in ﬁg obtained from parabolic induction from representa-

tions in the subset ﬁ¢ araut Of ﬁ¢ - It is then a consequence of the definitions
[L3, p. 203] that HJr . is the subset of representations in HJr that are auto-
morphic in the extended sense of [L3]. In this more general setting, global
functoriality is given by the correspondence

(86) H;;’ aut - H;,auﬁ

where ¢ ranges over global parameters in the larger set ®(G’), and ¢/ — ¢ is
the mapping from ®(G’) to (@) analogous to (8.3). It is clearly compatible
with the local functoriality correspondence (8.5).

The global functoriality correspondence (8.6) treats many automorphic
representations (in the extended sense of [L3]), but it still represents a spe-
cial case. For example, it does not include the subset ﬁd,,cusp of cuspidal
automorphic representations in a packet ﬁ¢, if ¢ lies in the complement of
&)bdd(G). This subset is a subtle object, which has been studied in depth by
Moeglin. Leaving aside the question of how to characterize it explicity, we
let \Il+(G) be the global analogue of the local set defined after the statement
of Theorem 7.1. This will be the largest of our global sets of parameters,
a family that contains both W(G) and ®(G). As in the special case of the
subset ®(G), a parameter ¢ in T (G) is the image of a discrete parameter
VS \Tl+(M) for some M. We then write H+7lc = H:Z ind-cusp for the packet
of irreducible constituents of standard representations p obtalned by para-
bolic induction from representations in the subset HwM cusp Of HwM It lies
in a chain

+ +
Hw,lc < Hz/; aut

for packets ﬁaaut and ﬁ:z defined in the same way, but with ﬁwM,cusp re-

o i,

placed by the larger sets ﬁwM,aut and INL/,M. The packet ﬁ;’, for example,
is also equal to the set of restricted tensor products of representations in
the local packets Hiv, as in the special case of the global packet H;ﬁ defined

above. As 1) varies, the global packets H:Z .. are presumably disjoint, which
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would give a classification of the set ﬁaut(G) below as a disjoint union of
these packets.

General global functoriality ought then to be given by the generalization
(8.7) H:Z,,ic — H:Z’ic, Y e UH(GE),
of (8.6). It would be compatible with a version of local functoriality that
generalizes both the coarser relations (8.5) above and (8.11) below. I have
not thought carefully about the implications of these constructions. Rather
than pursue them further here, let me describe a simpler variant of global
functoriality, which is easy to formulate.

We define

(8.8) Caut (G) = {c(m) : 7€ Hant(G)},

where I, (G) is the set of representations
T=)m
v
of G(A) that are automorphic in the sense of [L3]. Repeating what was

implicit above, we write ﬁaut(G) for the set of orbits of representations of
G(A) under the group

Outy (Ga) = [ [ Outn(Gy)

that have a representative in Il (G), for any group G € Egm(N). If
G = GL(N), we take II,4(G) to be simply the set of self-dual represen-
tations in I,y (G). In either case, we can then define a set

5aut(G) = {c(ﬂ') cme ﬁaut(G)}.

It consists of Outy (G4 )-orbits of (equivalence classes of) families of semisim-
ple conjugacy classes with representatives in Cay(G) if G € 5Sim(N ), and
simply the subset of self-dual elements in Caut (V) if G = GL(N). We then
have a mapping
(89)  d~idy vg S} — c=p(d) ~ {pulc)) : v S)
from Cpui(G') to a larger set Ca (@), defined as above but without the condi-
tion of automorphy. We claim that this mapping takes Cout (G") to the subset
Cont (@) of C4(G). In other words, the image p(c’) of ¢ can be represented
by an element ¢ in Cpy (G). This version of functoriality is less delicate than
the others. We leave the reader to check that it follows from the various
definitions and theorems above. N

The mapping ¢ — ¢ from Cpy (G') to Cayt (G) is obviously quite concrete,
like the sets of Hecke eigenfamilies that comprise its domain and codomain.
It also illustrates the term “functoriality”. For we can build a category
C from the groups we have been working with. Its objects are quasisplit
groups over F'| primarily the groups G € c‘j’sim(N ) and the general linear
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groups GL(N), but also direct products of such groups. The morphisms
hom(G’, G) between objects G', G € ob(C') are L-homorphisms
p: ¢ — L@
given by (8.1) and (8.2), and whatever supplements are required for direct
products. We then have a mapping
F: G — Can(G), Geob(0),

from objects G € ob(C) to sets. The version of functoriality we have just
formulated asserts that for any p € hom(G’, G), the mapping

F(p) cd — :0<C/)7 de CNaut(G/)7

given by (8.9) takes the set F(G') = Caut(G’) to the set F(G) = Caut(G). In
other words, the mapping

F: ob(C) — ob(St)
comes also with a mapping
F: hom(G',G) — hom(F(G'),F(G)), G’ ,Geob(0),

and is therefore a functor from C to the category St of sets.

In this section, we have abandoned our informal characterization of au-
tomorphic representations, which we adopted for expository reasons in §1,
for the broader definition in [L3]. We shall call the representations in this
smaller class globally tempered automorphic representations, since we de-
fined them in terms of global harmonic analysis. We have already agreed to
denote them by II(G), for any one of our groups G over the global field F.
We thus have an embedding

I(G) = 7 (G),
where II1(G) = It (G) is the set of general automorphic representations.
This is parallel to the associated embedding

U(G) < ¥ (G)
of global parameter sets. How would we formulate the principle of functori-
ality for globally tempered automorphic representations?

Given G, we have the associated sets II(G) < I (G), which are parallel
to the global parameter sets W(G) ¢ U (G). For any ¢ € ¥(G), we also
have the subset

Iy aue = Iy N I(G) = Ty, A I (G)

of automorphic representations in the packet ﬁ¢. Functoriality for globally
tempered automorphic representations will then be the correspondence
(810) Hw’,aut - HQ,/),autn

where 1/ ranges over the global parameters in W(G’), and ¢/ — 1 is the
mapping (8.3) from ¥(G’) to ¥(G).
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The local analogue of (8.10) will have to be a little different from (8.4)
and (8.5). Taking F' now to be local, we assume for simplicity that Conjec-
ture 8.3.1 of [ECR] is valid (as we already have implicitly, in the notation
of (8.10)). This was the assertion we mentioned in §7 that the local packets
(7.5) and (7.6) are the same for the local parameters 1) € UT(G) obtained
from (globally tempered) automorphic representations. The conjecture was
actually stated more generally for any % in the intermediate set

V(@) c Ut (G) c UH(@),

unit
defined in terms of unitary representations for GL(N), following the state-
ment of Theorem 1.5.1 of [ECR|. Now as 1 varies over even the smallest

set \I/(G), the associated packets ﬁ¢ are not disjoint, in contrast to the

packets ﬁ¢ attached to parameters ¢ € <T>(G) This complicates the local
functoriality analogue of (8.10). We define it as the coarser relation

(8.11) m — 7w, 7 ell(d),

where for a given 7/, m ranges over the representations in packets ﬁ¢ of local
parameters ¢ € \T/:lrnit(G) such that ¢ = p(¢’) is the image (8.3) of a pa-
rameter 1)’ € \I'init(G’ ) with 7’ € ﬁw/. The (globally tempered) functoriality
correspondence (8.10) is then compatible with its local analogue (8.11).

There is one last point, which might be somewhat surprising. It is
conceivable that for global F', there could be elements ¢ € \T/Q(G) such that
the set ﬁ¢7aut in (8.10) is empty. One sees easily that ¢ cannot contribute to
the continuous automorphic spectrum of G [A5, §3], so ﬁd,,aut is equal to the
set ﬁw(%) of Theorem 7.2. Whether it is empty or not therefore depends
on the sign character ;. Examples of this phenomenon were found some
years ago by Cogdell and Piatetski-Shapiro [CP], by different methods. The
question for us here is whether there is a global parameter 1)’ € \TI(G’ ) with
image 1 = p(¢’) in \TJ(G) such that the set ﬁw,aut is empty, but ﬁw’,aut is not.
If the answer is affirmative, there will be a globally tempered automorphic
representation 7’ of G’ that is not in the domain of the global functoriality
correspondence for p.

This last section has been written quite quickly. I hope that the discus-
sion has not been too murky, and that it is essentially correct. It does seem
to raise some interesting questions, which bear further reflection.
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