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Introduction

Suppose that G is a reductive group over a p-adic field F of characteristic 0. Langlands

and Shelstad [22] conjectured the existence of a remarkable family of maps

f −→ fG′

= f ′ .

These maps transfer functions on G(F ) to functions on endoscopic groups G′(F ), certain

quasi-split groups which are typically less complicated than G. The maps represent the

analytic side of an algebraic phenomenon, namely, that stable conjugacy is weaker than

conjugacy. In other words, nonconjugate elements in G(F ) could be conjugate over the

algebraic closure G(F ). The transfer maps are expected to play an important role in the

theory of automorphic forms, as well as the local harmonic analysis on G(F ).

Waldspurger [28] recently established the Langlands-Shelstad conjecture, under the

hypothesis that the fundamental lemma holds for a Lie algebra. The fundamental lemma

is a hard problem that remains unsolved. However, it has always been regarded as a

separate question, and Waldspurger’s result came as a considerable surprise. He used

global methods on the Lie algebra, and was able to deduce the conjecture by imposing the

fundamental lemma at the unramified places. In this paper we shall establish some new

properties of the transfer mappings, under the assumption of the fundamental lemma on

both a group and its Lie algebra.

Each map is defined by a transfer

f ′(σ′) =
∑

γ

∆(σ′, γ)fG(γ) , f ∈ C∞
c

(
G(F )

)
, (1)

of orbital integrals. Here, fG(γ) is the orbital integral

|D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)dx

of f over a (strongly regular) conjugacy class in G(F ), and ∆(σ′, γ) is the Langlands-

Shelstad transfer factor, an explicit function of a stable conjugacy class σ′ in G′(F ) and
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the conjugacy class γ in G(F ). (We shall recall these notions in more detail in Sections 1

and 2. The most general case is actually a bit more complicated than we are indicating

here in the introduction.) Now the space of orbital integrals

I(G) = {fG(γ) : f ∈ C∞
c

(
G(F )

)
}

comes with a natural filtration over the partially ordered set of Levi subgroups of G. By

construction, the transfer map is compatible with this filtration. On the other hand, the

representation theory of G(F ) actually determines a grading of I(G). The purpose of this

paper is to show that the transfer map is also compatible with the grading. This amounts

to establishing certain character identities between G(F ) and G′(F ).

The identities we seek are between characters on G(F ) and stable characters on G′(F ).

The proper notion of a stable character on G′(F ) depends on the classification of repre-

sentations of G′(F ) into L-packets Πφ′ , parametrized by maps

φ′ : WF × SU(2,C) −→ LG′ ,

from the Langlands group WF × SU(2,C) into the L-group of G′. The stable characters

should be parametrized by the set Φ(G′) of (equivalence classes of) such maps. The

important subset of elliptic stable characters would correspond to the subset Φ2(G
′) of

cuspidal parameters, which factor through no proper parabolic subgroup of LG′. There is

a natural decomposition

Φ(G′) =
∐

{M ′}

(
Φ2(M

′)/W (M ′)
)

of Φ(G′) into cuspidal parameters for Levi subgroups M ′ of G′. None of this helps us,

however, since the required classification is well beyond the scope of present understanding.

We shall have to look for a substitute.
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We take our lead from the orthogonality relations satisfied by elliptic tempered char-

acters. In the paper [3], we introduced a family of virtual characters

γ −→ I(γ, τ) , τ ∈ Tell(G),

of G(F ) whose restrictions to the elliptic set form an orthogonal basis of the space Icusp(G)

of orbital integrals of cuspidal functions. This allows us to identify a function fG ∈ Icusp(G)

with its set of Fourier coefficients

fG(τ) =

∫
fG(γ)I(γ, τ)dγ , τ ∈ Tell(G),

relative to the orthogonal basis. Similarly, the set of cuspidal Langlands parameters should

determine an orthogonal basis of the space SIcusp(G′) of stable orbital integrals of cuspidal

functions on G′(F ). It is this property that we shall use. We shall construct a suitable

orthogonal basis of SIcusp(G′), indexed by an abstract set which we shall take the liberty

of denoting by Φ2(G
′). Any function f ′ ∈ SIcusp(G′) can then be identified with its set of

Fourier coefficients

f ′(φ′) , φ′ ∈ Φ2(G
′),

relative to this orthogonal basis.

Suppose that f ′ is the image of a function fG ∈ Icusp(G) under the transfer map.

Then for each φ′ ∈ Φ2(G
′), we can expand f ′(φ′) as a linear combination

f ′(φ′) =
∑

τ∈Tell(G)

∆(φ′, τ)fG(τ) , (2)

of character values fG(τ). The coefficients ∆(φ′, τ) can be regarded as spectral analogues

of the transfer factors ∆(σ′, γ). They are uniquely determined by the linear forms f ′(φ′)

and fG(τ) on Icusp(G) in (2). The character identities arise when we try to extend (2)

to arbitrary functions fG in I(G). The right hand side of (2) is composed of virtual

characters, that are of course defined on the full space I(G). The left hand side, however,
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is defined a priori only for functions in the subspace Icusp(G). There are two questions.

In the special case where G′ = G (and in particular, where G is quasi-split), we shall show

that the right hand side of (2) is a stable distribution, in that it depends only on the stable

orbital integrals of fG (Theorem 6.1). This allows us to define f ′(φ′) for any φ′ and any

function fG ∈ I(G). In the general case, we then have to show that the two sides of (2)

are equal (Theorem 6.2).

The disjoint union

T (G) =
∐

{M}

(
Tell(M)/W (M)

)
,

over conjugacy classes of Levi subgroups of G, parametrizes a general set of virtual char-

acters of G(F ). These objects determine a natural grading of I(G) which is compatible

with the filtration defined by orbital integrals. Similarly, if we construct orthogonal bases

of SIcusp(M ′) for Levi subgroups M ′ of G′, we obtain an analogue

Φ(G′) =
∐

{M ′}

(
Φ2(M

′)/W (M ′)
)

of the entire set of Langlands parameters for G′. It is a consequence of Theorem 6.1 that

Φ(G′) determines a grading on SI(G′). Theorem 6.2 then implies that the transfer map

fG → f ′ preserves the two gradings.

A fundamental global problem is to stabilize the trace formula [21]. A second purpose

of this paper is to lay some local foundations for the future study of this problem. The

ultimate goal is to express the invariant distributions in the trace formula explicitly in terms

of stable distributions on endoscopic groups. Locally this entails studying the transfer maps

fG → f ′ simultaneously. Let IE(G) be the image of I(G) in
⊕
G′

SI(G′) under the map

T E : fG −→ fE
G =

⊕

G′

f ′ .

In Section 2 we shall construct a set ΓE(G) from the stable conjugacy classes on the

endoscopic groups {G′}. We shall characterize IE (G) in Section 3 as a space of functions
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on ΓE(G) (actually, on a slightly different set Γ̃E(G) in the most general case). In Section

5 we shall construct a spectral analogue T E(G) of ΓE(G) from the sets {Φ(G′)}. Theorems

6.1 and 6.2 will allow us to characterize IE (G) as a space of functions on T E(G).

The virtual characters

f −→ fG(τ) = IG(τ, f)

are part of a larger family of invariant distributions

f −→ IM (τ, f) , τ ∈ T (M),

obtained from weighted characters on G(F ). Weighted characters (as well as weighted

orbital integrals) are important components of the trace formula. The stabilization problem

includes being able to describe how they behave under endoscopic transfer. In the last

section of the paper, we shall state a conjectural transfer formula for the distributions

IM (τ, f). The formula relies intrinsically on the objects T E(M) and on the spectral transfer

factors we have defined.

The paper is organized as follows. In Section 2 we review some properties of the

Langlands-Shelstad transfer factors. We shall introduce adjoint transfer factors, and we

shall establish an inversion formula (Lemma 2.2) that was suggested by Kottwitz. In

Section 3 we recall the fundamental lemmas we are taking as hypotheses. We also introduce

the map T E . The main step for determining the image of T E is Lemma 3.4, which is a

consequence of Waldspurger’s kernel formula [28] and the descent properties of transfer

[23]. In Section 4 we review the virtual characters fG → fG(τ) and we discuss some

related properties of Langlands parameters as motivation for what follows. In Section 5

we construct our orthogonal bases of the spaces SIcusp(G′) (Proposition 5.1). We then

introduce the general sets Φ(G′) and T E(G), and the spectral transfer factors ∆(φ′, τ).

The spectral objects of Section 5 are parallel to many of the geometric objects of Section

2. Once we have introduced them, we will be in a position to state our two main theorems
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at the beginning of Section 6. The rest of Section 6 will be devoted to some interpretations

and consequences of the theorems.

The proofs of the two theorems will be taken up in Sections 7–9. The arguments

are global. In Section 7 we recall the simple form of the global trace formula, as well

as Langlands’ stabilization of the regular elliptic terms [21]. We establish Theorem 6.1

in Section 8, and Theorem 6.2 by similar arguments in Section 9. The main technical

ingredient is a description of an orbital integral fG → fG(γ) as a distribution on T (G).

For each γ, there is a smooth function τ → I(γ, τ) on T (G) such that

fG(γ) =

∫

T (G)

I(γ, τ)fG(τ)dτ , fG ∈ I(G),

for a natural measure dτ on T (G) [4, Theorem 4.1]. We end up comparing such a function

with a sum of Dirac measures on T (G)C contributed by two spectral expansions (Lemmas

8.4 and 9.4). We will be able to conclude that the contributions of the spectral expansions

cancel, and to deduce the theorems from the resulting identity of geometric expansions.

The global arguments of Sections 7–9 are certainly not new. They go back to Kazh-

dan’s theorem on the density of characters [13, Appendix]. The arguments were succes-

sively refined in a series of three papers, beginning with the work of Clozel [8] on the

fundamental lemma, and followed by the papers [9] of Hales and [28] of Waldspurger. The

present article owes much to these papers, and especially to the work of Waldspurger.

We had originally thought of working with twisted groups, in order to take advantage

of the constructions of Kottwitz and Shelstad [18], [19]. This would have relied on various

results for twisted groups which, though undoubtedly known to experts, have not been

published. In the end it seemed better just to work with connected groups. We have

nevertheless tried to write the paper in a way that suggests at least some of the appropriate

generalizations to twisted groups.

1. The spaces I(G) and SI(G)
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Let G be a reductive algebraic group over a field F of characteristic 0. By a Levi

subgroup of G, we mean an F -rational Levi component of a parabolic subgroup of G

defined over F . Let M0 be a minimal Levi subgroup of G, fixed for the duration of the

paper, and let L = LG be the finite set of Levi subgroups of G which contain M0. The

Weyl group

W0 = WG(M0) = NormG(M0)/M0

of (G,M0) acts by conjugation on L. We write L/W0 for the set of orbits. For any M ∈ L,

we identify the quotient by WM (M0) of the stabilizer of M in W0 with the Weyl group

W (M) = WG(M) = NormG(M)/M

of (G,M). We shall be interested in the partial order on L defined by inclusion, as well as

the induced partial order on the quotient L/W0.

We assume that F is a local non-Archimedean field. Recall that for each M ∈ L,

there is a homomorphism HM from M(F ) to the real vector space

aM = Hom
(
X(M)F ,R

)
,

defined by

e〈HM (m),χ〉 = |χ(m)| , χ ∈ X(M)F , m ∈M(F ).

Since F is p-adic, the image of M(F ) is a lattice aM,F in aM . If AM denotes the split

component of the center of M , the image of AM (F ) under HM is also a lattice ãM,F in

aM , that has finite index in aM,F . We form the dual lattices

a∨M,F = Hom(aM,F , 2πiZ)

and

ã∨M,F = Hom(ãM,F , 2πiZ)
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in the imaginary dual space ia∗M . The quotient

ia∗M,F = ia∗M/a∨M,F

is of course a compact torus, and is a finite covering space of the compact torus ia∗
M/ã∨M,F .

We choose the Haar measures on the spaces aM and ia∗M for which the compact tori

aM/ãM,F and ia∗M/ã∨M,F each have volume 1. The two measures are dual to each other.

Combined with the corresponding measures on aG and ia∗G, they determine Haar measures

on the kernels aG
M and i(aG

M )∗ of the canonical projections aM → aG and ia∗M → ia∗G,

which are dual to each other. While we are at it, we recall [4, p. 168] how we can normalize

the Haar measures on maximal tori. Suppose that T is a maximal torus in G which is

defined over F . Replacing T by a G(F )-conjugate if necessary, we can assume that T is

an elliptic maximal torus in some group M ∈ L. That is to say, T is contained in M , and

T (F )/AM (F ) is compact. The group AM (F ) has a canonical Haar measure, since HM

maps AM (F ) onto the discrete group ãM,F and has compact kernel. We choose the Haar

measure on T (F ) determined by the measure on AM (F ) and the normalized Haar measure

on T (F )/AM (F ).

We shall write Γ(G) = Γreg

(
G(F )

)
for the set of strongly regular, semisimple con-

jugacy classes in G(F ) and Γell(G) = Γreg,ell

(
G(F )

)
for the subset of elliptic conjugacy

classes. Thus, Γell(G) is the set of conjugacy classes γ in G(F ) such that Gγ is an elliptic

maximal torus in G. (As usual, Gγ denotes the centralizer of γ in G, with γ being allowed

to stand for an element in the conjugacy class as well as the class itself.) If G′ is some

other group, together with a G-conjugacy class of maps T ′ → G of one of its maximal tori

into G, the notion of a strongly G-regular element in G′(F ) makes sense. We shall write

ΓG(G′) = ΓG-reg
(
G′(F )

)
and ΓG,ell(G

′) = ΓG-reg,ell

(
G′(F )

)
for the corresponding sets of

conjugacy classes in G′(F ). It is clear that Γ(G) equals the set of W0-orbits in the disjoint

union
∐

M∈L

(
ΓG,ell(M)

)
of elliptic, G-regular conjugacy classes in Levi subgroups. We
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can obviously replace this by a disjoint union over the orbits of L/W0. In general, we shall

denote these orbits throughout the paper by {M}, often without comment. Thus

Γ(G) =
∐

{M}

(
ΓG,ell(M)/W (M)

)
. (1.1)

Suppose that f is a function in H
(
G(F )

)
, the Hecke algebra of locally constant func-

tions of compact support on G(F ). For any γ ∈ Γ(G) we can form the orbital integral

fG(γ) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)dx ,

normalized by the Weyl discriminant

D(γ) = DG(γ) = det
(
1 − Ad(γ)

)
g/gγ

.

We write I(G) = I
(
G(F )

)
for the image of the map f → fG. Then I(G) is the space of

functions on Γ(G) of bounded support that satisfy a Shalika germ expansion around any

semisimple conjugacy class in G(F ). Both H
(
G(F )

)
and I

(
G(F )

)
have natural topologies

as direct limits of finite dimensional spaces, and f → fG is an open, continuous map from

H
(
G(F )

)
onto I

(
G(F )

)
. It is known that for any invariant distribution I on G(F ), there

is a unique continuous linear form Î on I
(
G(F )

)
such that

I(f) = Î(fG) , f ∈ H
(
G(F )

)
.

For any Levi subgroup M ∈ L, there is a restriction map aG → aM from I
(
G(F )

)
to

I
(
M(F )

)
. This provides I

(
G(F )

)
with a natural filtration

FM
(
I(G)

)
= {aG ∈ I(G) : aL = 0, L $ M}

over the partially ordered set L. The subspace FM
(
I(G)

)
depends only on the W0-orbit of

M , so the filtration is really over the quotient L/W0. The smallest subspace FG
(
I(G)

)
is
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denoted Icusp(G) = Icusp

(
G(F )

)
. We also write Hcusp

(
G(F )

)
for the preimage of Icusp(G)

in H
(
G(F )

)
. Observe that the graded component

GM
(
I(G)

)
= FM

(
I(G)

)
/

∑

L%M

FL
(
I(G)

)

attached to M is canonically isomorphic to the space Icusp(M)W (M) of W (M)-invariant

functions in Icusp(M). By a grading on I(G), we mean an isomorphism of I(G) with the

graded vector space

Igr(G) =
⊕

{M}

Icusp(M)W (M) ,

which is compatible with the filtrations, and induces the canonical isomorphism of

GM
(
I(G)

)
with Icusp(M)W (M) for every {M}. Orbital integrals do not by themselves

lead to such a structure, essentially because of their germ expansions. On the other hand,

we shall observe in Section 4 that certain virtual characters on G(F ) do provide a natural

grading on I(G).

There is a natural measure on Γell(G) given by

∫

Γell(G)

α(γ)dγ =
∑

{T}

∣∣W
(
G(F ), T (F )

)∣∣−1
∫

T (F )

α(t)dt ,

for any α ∈ Cc

(
Γ(G)

)
. Here {T} is a set of representatives of G(F )-conjugacy classes of

elliptic maximal torus in G over F , W
(
G(F ), T (F )

)
is the Weyl group of

(
G(F ), T (F )

)
,

and dt is the Haar measure on T (F ) we have fixed. The corresponding measures on the

sets Γell(M) then determine a measure

∫

Γ(G)

α(γ)dγ =
∑

{M}

|W (M)|−1

∫

Γell(M)

α(γM )dγM

on the larger set Γ(G). (See [2, Section 2].) Since any function in I
(
G(F )

)
is bounded on

Γ(G) [10, Theorem 14], we can form the inner product

(aG, bG) =

∫

Γ(G)

aG(γ)bG(γ)dγ
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on I
(
G(F )

)
. We will be concerned with the restriction of the inner product to Icusp

(
G(F )

)
,

in which case the formula reduces to an integral over Γell(G).

In dealing with stable conjugacy classes we shall usually take G to be quasi-split,

but this is not necessary. We shall write Σ(G) = Σreg

(
G(F )

)
, Σell(G) = Σreg,ell

(
G(F )

)
,

ΣG(G′) = ΣG-reg
(
G′(F )

)
, etc. for the set of stable conjugacy classes in Γ(G), Γell(G) and

ΓG(G′). Then

Σ(G) =
∐

{M}

(
ΣG,ell(M)/W (M)

)
, (1.2)

where {M} ranges over the orbits in L/W0, as we have agreed. For any maximal torus T

of G defined over F , we have [15, Section 7] the finite abelian group

K(T ) = π0

(
T̂Γ/Z(Ĝ)Γ

)
,

where T̂ and Ĝ are complex dual groups of T and G, Z(Ĝ) is the center of Ĝ, and

Γ = ΓF = Gal(F/F ) .

If γ is any element in Γ(G), there is a bijection between the set of G(F )-conjugacy classes

in the stable conjugacy class σ of γ, and the set of characters on the group

Kσ = Kγ = K(Gγ) .

(See [20]. This assertion depends on F being a p-adic field.) In particular, n(σ) = |Kσ| is

the number of such conjugacy classes.

If f ∈ H
(
G(F )

)
and σ ∈ Σ(G), we can form the stable orbital integral

fG(σ) =
∑

γ→σ

fG(γ) ,

where the sum is over the conjugacy classes γ in σ. We write SI(G) = SI
(
G(F )

)
for the

image of the map f → fG. Then SI(G) is the space of functions on Σ(G) of bounded
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support which satisfy a stable Shalika germ expansion around any stable semisimple con-

jugacy class. It has a natural topology, and f → fG becomes an open continuous map

from H
(
G(F )

)
onto SI

(
G(F )

)
. A stable distribution on G(F ) can be defined as any dis-

tribution which is in the closed linear span of the stable orbital integrals f → fG(σ). For

any stable distribution S, there is a unique continuous linear form Ŝ on SI
(
G(F )

)
such

that

S(f) = Ŝ(fG) , f ∈ H
(
G(F )

)
.

Other constructions for I
(
G(F )

)
are easily adapted to SI

(
G(F )

)
. There are restric-

tion maps aG → aM from SI
(
G(F )

)
to SI

(
M(F )

)
, and these provide a natural filtration

FM
(
SI(G)

)
= {aG ∈ SI(G) : aL = 0, L $ M}

of SI
(
G(F )

)
over the partially ordered set L/W0. We again write SIcusp(G) =

SIcusp

(
G(F )

)
for the smallest space FG

(
SI(G)

)
. Then the graded component

GM
(
SI(G)

)
= FM

(
SI(G)

)
/

∑

L%M

FL
(
SI(G)

)

attached to {M} is canonically isomorphic to the space SIcusp(M)W (M). One of the pur-

poses of this paper will be to define a natural grading of SI
(
G(F )

)
, that is, an isomorphism

of SI
(
G(F )

)
with the graded vector space

SIgr(G) =
⊕

{M}

SIcusp(M)W (M)

which for each {M}, induces the isomorphism above.

We define a measure on Σell(G) by setting

∫

Σell(G)

β(σ)dσ =
∑

{T}stab

|WF (G, T )|−1

∫

T (F )

β(t)dt ,
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for any β ∈ Cc

(
Σ(G)

)
. Here {T}stab is a set of representatives of stable conjugacy classes

of elliptic maximal tori in G over F , and WF (G, T ) is the subgroup of elements in the

absolute Weyl group of (G, T ) defined over F . We then obtain a measure

∫

Σ(G)

β(σ)dσ =
∑

{M}

|W (M)|−1

∫

Σell(M)

β(σM )dσM

on the larger set Σ(G). It is easy to see that the measures on Γ(G) and Σ(G) are related

by a formula ∫

Σ(G)

( ∑

γ→σ

α(γ)
)
dσ =

∫

Γ(G)

α(γ)dγ , (1.3)

valid for any α ∈ Cc

(
Γ(G)

)
. Recalling that n(σ) = |Kσ|, we can form the inner product

(aG, bG) =

∫

Σ(G)

n(σ)−1aG(σ)bG(σ)dσ

on SI
(
G(F )

)
. Its restriction to the subspace SIcusp

(
G(F )

)
of cuspidal functions reduces

to an integral over the elliptic elements Σell(G).

We shall sometimes work with spaces of functions that are equivariant on some central

subgroup rather than compactly supported. For simplicity, we shall confine our attention

to central tori in G. Let Z be a connected subgroup of the center of G defined over F ,

and let ζ be a character on Z(F ). We write H
(
G(F ), ζ

)
for the space of locally constant

functions f on G(F ) that are compactly supported modulo Z(F ), and such that

f(xz) = ζ(z)−1f(x) , x ∈ G(F ), z ∈ Z(F ).

Let I(G, ζ) = I
(
G(F ), ζ

)
be the image of H

(
G(F ), ζ

)
under the map which sends f to

the function

fG(γ) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)dx , γ ∈ Γ(G).
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Similarly, let SI(G, ζ) = SI
(
G(F ), ζ

)
be the image of H

(
G(F ), ζ

)
under the map which

sends f to the function

fG(σ) =
∑

γ→σ

fG(γ) , σ ∈ Σ(G).

Then I(G, ζ) and SI(G, ζ) are spaces of functions on Γ(G) and Σ(G), respectively, that

transform by ζ−1 under translation by Z(F ). There is a projection f → fζ from H
(
G(F )

)

into H
(
G(F ), ζ

)
defined by

fζ(x) =

∫

Z(F )

f(xz)ζ(z)dz ,

which has obvious analogues for I
(
G(F )

)
and SI

(
G(F )

)
. These projections allow us

to carry the constructions above directly over to the spaces H
(
G(F ), ζ

)
, I

(
G(F ), ζ

)
and

SI
(
G(F ), ζ

)
. We obtain, for example, inner products

(aG, bG) =

∫

Γreg

(
G(F )

)
/Z(F )

aG(γ)bG(γ)dγ

and

(aG, bG) =

∫

Σreg

(
G(F )

)
/Z(F )

n(σ)−1aG(σ)bG(σ)dσ

on the spaces Icusp(G, ζ) = Icusp

(
G(F ), ζ

)
and SIcusp(G, ζ) = SI

(
G(F ), ζ

)
of cuspidal

functions. Throughout the paper we shall pass back and forth between the two settings as

necessary, with only minimal comment.

It will actually be sufficient to consider the case that Z is an induced torus. We mean

by this that Z is a product of tori of the form ResE/F (Gm), for finite extensions E of F .

For example Z could be the split component AG of the center of G. If Z has this property,

and E is any extension of F , the map G(E) → (G/Z)(E) is surjective [14, Lemma 1.1(3)].

This often allows us to work directly with the group G/Z. For example,

Γreg

(
G(F )

)
/Z(F ) = Γreg

(
(G/Z)(F )

)
= Γ(G/Z) ,
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and

Σreg

(
G(F )

)
/Z(F ) = Σreg

(
(G/Z)(F )

)
= Σ(G/Z) .

2. Geometric transfer functions

Let Eell(G) be the set of equivalence classes of elliptic endoscopic data (G′,G′, s′, ξ′)

for G over F [22, (1.2)]. Then G′ is a quasi-split reductive group over F , G ′ is a split

extension of the Weyl group WF by the dual group Ĝ′, s′ is a semisimple element in Ĝ,

and ξ′: G′ → LG is an L-homomorphism, all subject to conditions (a) and (b) on [22,

p. 224]. Elliptic means that the image of G ′ in LG is contained in no proper parabolic

subgroup of LG, or equivalently, that

(
Z(Ĝ′)Γ

)0
=

(
Z(Ĝ)Γ

)0
.

Two data are equivalent if they are isomorphic in the sense defined on [22, p. 225]. As is

customary, we generally denote an element in Eell(G) by G′, even though G′ is really only

the first component of a representative (G′,G′, s′, ξ′) of an equivalence class. We shall also

write OutG(G′) for the group of outer automorphisms of an element G′ ∈ Eell(G). Then

OutG(G′) ∼= AutG(G′)/ξ′(Ĝ′) ,

where AutG(G′) is the group of elements g ∈ Ĝ such that gs′g−1 lies in s′Z(Ĝ), and such

that Int(g) is an L-isomorphism of ξ′(G′) onto itself. Any element in OutG(G′) can be

identified with an outer automorphism of G′ which is defined over F . (See [15, Section 7].)

Suppose that (G′,G′, s′, ξ′) is an elliptic endoscopic datum. The group G ′ need not be

an L-group. That is, there might not be an L-isomorphism from G ′ to LG′ which is the

identity on Ĝ′. To deal with the problem, one uses the following construction. (See [22,

(4.4)], [18, (2.2)].)
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Lemma 2.1. There is a central extension of groups

1 −→ Z̃ ′ −→ G̃′ −→ G′ −→ 1

over F with the following properties.

(i) The central subgroup Z̃ ′ of G̃′ is an induced torus.

(ii) The dual exact sequence

1 −→ Ĝ′ −→
̂̃
G′ −→

̂̃
Z ′ −→ 1

extends to a short exact sequence of L-homomorphisms

1 −→ G′ ξ̃′

−→ LG̃′ −→ LZ̃ ′ −→ 1 .

(iii) Every element of OutG(G′) extends uniquely to an outer automorphism of G̃′ over F

which leaves Z̃ ′ pointwise fixed.

Proof. This is essentially the construction [22, (4.4)] of Langlands and Shelstad. The

required group G̃′ can be obtained from a z-extension [14, Section 1]

1 −→ Z̃ −→ G̃ −→ G −→ 1

of G. That is, G̃′ is an endoscopic datum for G̃, and the central subgroup Z̃ ′ of G̃′ equals

Z̃. Condition (i) is part of the definition of a z-extension. Condition (ii) follows from the

main theorem of [20]. It remains to establish (iii).

The group G̃′ can be written as a fibred sum

(Z̃ ′ ×G′
1)/Z1 ,

where Z1 is a finite subgroup of Z̃ ′ defined over F , and G′
1 → G′ is a finite central extension

over F with kernel Z1. An outer automorphism α of G′ clearly has at most one extension

to G̃′ which leaves Z̃ ′ pointwise fixed. Such an extension exists if and only if there is an
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extension of α to G′
1 which leaves Z1 pointwise fixed. This will be the case if and only if

the dual outer automorphism α̂ of Ĝ′ leaves the finite subgroup

Ẑ1 = Hom(Z,Gm)

of Z(Ĝ′) pointwise fixed. These remarks apply to any central extension G̃′ → G. However,

if G̃′ is obtained from a z-extension of G as above, the finite group Ẑ1 will be contained

in the subgroup Z(Ĝ) of Z(Ĝ′). Assume that α lies in OutG(G′). Then α̂ is induced

by conjugation in Ĝ′ by an element in Ĝ, and therefore leaves Z(Ĝ) pointwise fixed. In

particular, α̂ leaves Ẑ1 pointwise fixed. It follows that α extends to an outer automorphism

of G̃′ which leaves Z̃ ′ pointwise fixed. �

For each elliptic endoscopic datum, we fix a central extension G̃′ → G′ and an L-

embedding

ξ̃′ : G′ −→ LG̃′ ,

which satisfy the conditions of the lemma. We can assume that these objects are compatible

under isomorphisms of endoscopic data, and therefore depend only on the elements G′ ∈

Eell(G). Fix G′. Condition (i) implies that the map G̃′(F ) → G′(F ) is surjective. The

composition

WF −→ G′ ξ̃′

−→ LG̃′ −→ LZ̃ ′ ,

determined by condition (ii) and any section WF → G′, provides a Langlands parameter

for the torus Z̃ ′. This is dual to a character ζ̃ ′ on Z̃ ′(F ). By condition (iii), OutG(G′)

can be identified with a finite group of F -rational outer automorphisms of G̃′ which leave

Z̃ ′ pointwise invariant. In particular, every element in OutG(G′) acts on G̃′(F ) (up to

inner automorphisms of G̃′ which are defined over F ), and fixes the central character ζ̃ ′ on

Z̃ ′(F ). Therefore OutG(G′) acts as a finite group of linear automorphisms of the vector

space SI
(
G̃′(F ), ζ̃ ′

)
.
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Associated to the objects G′, G̃′, ξ̃′ and ζ̃ ′, we have the transfer factor

∆(σ′, γ) = ∆G(σ′, γ)

of Langlands and Shelstad [22, especially (4.4)] (and Kottwitz and Shelstad [18] in the

more general twisted case). It is a smooth function of (σ′, γ) in ΣG(G̃′) × Γ(G). As a

function of σ′, ∆(σ′, γ) transforms under translation by Z̃ ′(F ) according to the inverse of

the character ζ̃ ′. More generally, suppose that Z is a central induced torus in G over F ,

as in Section 1. Then Z embeds canonically as a central torus in G′. Its preimage in G̃′

is also a central induced torus over F , which we shall denote by Z̃ ′Z. Then there is a

character ζ̃ ′Z on (Z̃ ′Z)(F ), whose restriction to Z̃ ′(F ) equals ζ̃ ′, such that

∆(σ′z, γzG) = ζ̃ ′Z(z)−1∆(σ′, γ) , z ∈ (Z̃ ′Z)(F ), (2.1)

where zG is the projection of z onto Z(F ) = (Z̃ ′Z)(F )/Z̃ ′(F ). (See [22, (4.4)], [18, (5.1)].)

For any G′ ∈ Eell(G) there is an injective linear map λ→ λ′ from a∗G,C to a∗
G̃′,C. To see

this, observe that a∗G,C and a∗
G̃′,C are the Lie algebras of the complex, connected abelian

Lie groups
(
Z(Ĝ)Γ

)0
and

(
Z(

̂̃
G′)Γ

)0
. Since G′ is elliptic,

(
Z(Ĝ)Γ

)0
equals

(
Z(Ĝ′)Γ

)0
, and

there is an injection from
(
Z(Ĝ′)Γ

)0
to

(
Z(

̂̃
G′)Γ

)0
which is dual to the projection G̃′ → G′.

The map λ → λ′ obtained in this way is in turn dual to a projection from aG̃′ onto aG.

According to the construction in [22], ∆(σ′, γ) vanishes unless the projection of σ′ onto

G′(F ) is an image of γ (in the language of [22]). In particular, the point HG̃′(σ′) in aG̃′

must project onto the point HG(γ) in aG. It follows that

eλ′(H
G̃′ (σ

′))∆(σ′, γ) = ∆(σ′, γ)eλ(HG(γ)) , (2.2)

for any λ ∈ a∗G,C.

One of the purposes of this paper is to keep track of transfer mappings as G′ varies.

To this end, we introduce an “endoscopic” set Γ̃E
ell(G) which is to be parallel to Γell(G).

We define Γ̃E
ell(G) to be the set of isomorphism classes of pairs (G′, σ′), where G′ is an
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elliptic endoscopic datum for G and σ′ in an element in ΣG,ell(G̃
′). By an isomorphism

from (G′, σ′) to a second pair (G′
1, σ

′
1), we mean an isomorphism from the datum G′ to

G′
1, which takes σ′ to σ′

1. It is clear that Γ̃E
ell(G) can be identified with the disjoint union

over G′ ∈ Eell(G) of the sets

Σell(G̃
′, G) = ΣG,ell(G̃

′)/OutG(G′)

of OutG(G′)-orbits in ΣG,ell(G̃
′). Observe that there is an internal action

(G′, σ′) −→ (G′, zσ′) , z ∈ Z̃ ′(F ),

of the groups Z̃ ′(F ) on Γ̃E
ell(G). We have reserved the symbol ΓE

ell(G) for the associated

quotient. Thus ΓE
ell(G) is the disjoint union over G′ ∈ Eell(G) of the sets

Σell(G
′, G) = ΣG,ell(G

′)/OutG(G′) .

We shall usually denote a pair (G′, σ′) in either Γ̃E
ell(G) or ΓE

ell(G) simply by σ′, since the

element G′ ∈ E(G) is uniquely determined by σ′.

It is a direct consequence of the definitions in [22] that ∆(σ′, γ) depends only on the

isomorphism class of (G′, σ′). The restriction of the transfer factors to the elliptic set can

therefore be regarded as a single function on Γ̃E
ell(G) × Γell(G). We propose to study this

function together with the adjoint function

∆(γ, σ′) = |Kγ |
−1∆(σ′, γ) (2.3)

on Γell(G) × Γ̃E
ell(G). Observe that any product

∆(γ, σ′)∆(σ′, γ1) , γ, γ1 ∈ Γell(G),

is invariant under the action of the groups Z̃ ′(F ) on σ′, and can therefore be regarded as

a function of σ′ in the quotient ΓE
ell(G).
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We shall write

δ(γ, γ1) =

{
1, if γ = γ1,
0, otherwise,

for any elements γ, γ1 ∈ Γell(G), and

δ̃(σ′, σ′
1) =

{
ζ̃ ′(z′), if σ′

1 = zσ′ for some z′ ∈ Z̃ ′(F ),
0, otherwise,

for any elements σ′, σ′
1 ∈ Γ̃E

ell(G).

Lemma 2.2. The transfer factors satisfy

∑

σ′∈ΓE
ell

(G)

∆(γ, σ′)∆(σ′, γ1) = δ(γ, γ1), γ, γ1 ∈ Γell(G), (2.4)

and
∑

γ∈Γell(G)

∆(σ′, γ)∆(γ, σ′
1) = δ̃(σ′, σ′

1), σ′, σ′
1 ∈ Γ̃E

ell(G). (2.5)

Proof. We can assume that the extensions G̃′ → G′ are all obtained from a fixed extension

G̃→ G, as in [22, (4.4)]. The definitions of [22, (4.4)] then allow us to reduce the problem

to the case where this extension is trivial. We shall therefore assume that G̃′ = G′ for each

G′ ∈ Eell(G).

The required formulas reduce in the end to inversion on the finite abelian group Kγ .

To get to that point, one has to go through an argument like that of [22, Section 6.4].

Instead of embedding a group of rational points into a group of adèlic points, however,

one considers the diagonal embedding γ → (γ, γ−1) of G(F ) into G(F ) ×G(F ). That the

transfer factors simplify in this situation was pointed out to me by Kottwitz.

We shall make free use of the language and notation of [22], often without comment.

To define the general transfer factor ∆(σ′, γ), it is necessary to fix elements σ′ and γ such

that σ′ is an image of γ (in the language of [22, (1.3)]), and to specify ∆(σ′, γ) arbitrarily.
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We will take it to be any complex number of absolute value 1. Then ∆(σ′, γ) is defined to

be the product of ∆(σ′, γ) with the factor

∆(σ′, γ;σ′, γ) =
∆I(σ

′, γ)

∆I(σ
′, γ)

∆II(σ
′, γ)

∆II(σ
′, γ)

∆2(σ
′, γ)

∆2(σ
′, γ)

∆1(σ
′, γ;σ′, γ) .

There is an additional factor

∆IV (σ′, γ) = |DG(γ)||DG′

(γ′)|−1

included in the definition of [22], but since we have already put these normalizing factors

into our orbital integrals, we must leave them out here. The remaining factors are all con-

structed from the special values of unitary abelian characters, and therefore have absolute

value 1. We can therefore write the summand

∆(γ, σ′)∆(σ′, γ1) = |Kγ |
−1∆(σ′, γ)∆(σ′, γ1)

in (2.4) as the product of |Kγ |
−1 with

∆(σ′, γ;σ′, γ)−1∆(σ′, γ1;σ
′, γ) .

By [22, Lemma 4.1A], this last product can be written as

∆(σ′, γ1;σ
′, γ) =

∆I(σ
′, γ1)

∆I(σ′, γ)
·
∆II (σ

′, γ1)

∆II(σ′, γ)
·
∆2(σ

′, γ1)

∆2(σ′, γ)
· ∆1(σ

′, γ1;σ
′, γ) .

We shall examine the four terms in the product on the right.

Recall that one has to fix an inner twisting ψ: G→ G∗ of G with a quasi-split group

G∗ over F . The simply connected covering G∗
sc of the derived group of G∗ then plays an

important role in the definitions. We are implicitly assuming that σ′ is an image of both γ

and γ1, since the corresponding summand in (2.4) would otherwise vanish. Let T ′ be the

centralizer of σ′ in G′. We choose an admissible embedding T ′ → T ∗ of T ′ into G∗ [22,

(1.3)], and we let γ∗ denote the image of σ′ in T ∗. The factors ∆I(σ
′, γ), ∆II(σ

′, γ) and

∆2(σ
′, γ) which occur in the first three terms in the product ∆(σ′, γ1;σ

′, γ) are defined
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in [22, (3.2), (3.3), (3.5)]. An examination of the definitions reveals that while they may

depend on γ∗ and σ′, these factors are all independent of γ. The first three terms in the

product ∆(σ′, γ1;σ
′, γ) are therefore all equal to 1. We conclude that

∆(γ, σ′)∆(σ′, γ1) = |Kγ |
−1∆1(σ

′, γ1;σ
′, γ) .

The definition of ∆1(σ
′, γ1;σ

′, γ) is given in [22, (3.4)]. Since the first and third

arguments are the same, the definition reduces to a pairing

∆(σ′, γ1;σ
′, γ) = 〈µT∗(γ, γ1), sT∗(σ′)〉 ,

of elements defined as follows. The first element µT∗(γ, γ1) lies in H1(F, T ∗
sc), where T ∗

sc is

the preimage of T ∗ in G∗
sc. It is the class of the cocycle

τ −→ v1(τ)
−1v(τ) , τ ∈ Gal(F/F ),

for elements v(τ) = hu(τ)τ(h)−1 and v1(τ) = h1u(τ)τ(h1)
−1 defined as on p. 245 of [22].

It depends only on γ, γ1 and γ∗. For fixed γ1 and γ∗, the map γ → µT∗(γ, γ1) is easily seen

to be a bijection from the set of elements in Γ(G) which lie in the stable conjugacy class of

γ1 onto H1(F, T ∗
sc). This relies on the property that H1(F,G∗

sc) = {1}, and therefore holds

only in the p-adic case at hand. The second element sT∗ = sT∗(σ′) is defined on p. 241 of

[22]. It is the image in

K(T ∗) = π0

(
(T̂ ∗)Γ/Z(Ĝ∗)Γ

)
,

under the isomorphism T̂ ′ → T̂ ∗ which is dual to the admissible embedding T ′ → T ∗ of

the preimage of s′ in T̂ ′. For any γ∗ and σ′, there is a unique admissible embedding which

maps σ′ to γ∗. Since ∆1 is independent of the admissible embedding [22, Lemma 3.4A], we

can fix γ∗ and allow the embedding to vary with σ′. We obtain a map σ′ → sT∗(σ′) from

the set of images of γ∗ in ΓE
ell(G) to K(T ∗), which is easily seen to be a bijection. (The

argument here is identical to the proof of the corresponding global assertion, which was
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established in greater generality in [16, Lemma 9.7].) The finite abelian groups H1(F, T ∗
sc)

and K(T ∗) are in duality with each other.

We can now establish (2.4) and (2.5). The left hand side of (2.4) equals

∑

σ′∈ΓE
ell

(G)

∆(γ, σ′)∆(σ′, γ1)

= |Kγ |
−1

∑

σ′

〈µT∗(γ, γ1), sT∗(σ′)〉

= |K(T ∗)|−1
∑

κ∈K(T ∗)

〈µT∗(γ, γ1), κ〉 .

By Fourier inversion on the finite abelian group K(T ∗) ∼= Kγ , this equals the right hand

side δ(γ, γ1) of (2.4), since µT∗(γ, γ1) = 1 if and only if γ = γ1. To deal with (2.5), we

observe that

∆(σ′, γ1)
−1∆(σ′, γ) = ∆(σ′, γ1)∆(σ′, γ) = 〈µT∗(γ, γ1), sT∗(σ′)〉−1 .

Consequently

∆(σ′, γ)∆(γ, σ′
1)

= |Kγ|
−1∆(σ′, γ)∆(σ′

1, γ)−1

= |Kγ|
−1∆(σ′, γ1)∆(σ′

1, γ1)
−1〈µT∗(γ, γ1), sT∗(σ′

1)sT∗(σ′)−1〉 .

Summing over γ in the stable conjugacy class of γ1, we see that the left hand side of (2.5)

equals

|K(T ∗)|−1∆(σ′, γ1)∆(σ′
1, γ1)

−1
∑

µ∈H1(F,T ∗
sc)

〈µ, sT∗(σ
′
1)sT∗(σ′)−1〉

= ∆(σ′, γ1)∆(σ′
1, γ1)

−1δ(σ′, σ′
1)

= δ(σ′, σ′
1) ,

again by Fourier inversion on K(T ∗). �

We pause for a moment to note that transfer factors can govern a change of variables

of integration. Our set ΓE
ell(G) inherits a measure from the sets ΣG,ell(G

′), or rather, from

the quotient measures on the sets Σell(G
′, G).
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Lemma 2.3. Suppose that α ∈ Cc

(
Γell(G)

)
, and that β ∈ C

(
Γ̃E

ell(G)
)

is such that the

product β(σ′)∆(σ′, γ) descends to a function of σ′ ∈ ΓE
ell(G). Then

∫

Γell(G)

∑

σ′∈ΓE
ell

(G)

β(σ′)∆(σ′, γ)α(γ)dγ =

∫

ΓE
ell

(G)

∑

γ∈Γell(G)

β(σ′)∆(σ′, γ)α(γ)dσ′ .

Proof. Let ψ: G→ G∗ be the underlying quasi-split inner twist of G. According to (1.3),

the integral over Γell(G) can be decomposed into an integral over σ∗ ∈ Σell(G
∗) and a sum

over the elements γ ∈ Γell(G) which map to σ∗. Similarly, the integral over ΓE
ell(G) can be

decomposed into an integral over σ∗ ∈ Σell(G
∗) and a sum over the elements σ′ ∈ ΓE

ell(G)

which map to σ∗. This is a variant of (1.3), which can be established from the definitions

of the measures on ΣG,ell(G
′), and the fact that the map

σ′ −→ sT∗(σ′) , T ∗ = G∗
σ∗ ,

from the proof of the last lemma, is a bijection from the preimage of σ∗ in ΓE
ell(G) onto

K(T ∗). We leave this point for the reader to check.

With the two decompositions, we can represent each side of the required identity as

an integral over Σell(G
∗), and a double sum over σ′ and γ. By its definition, the transfer

factor ∆(σ′, γ) vanishes unless σ′ and γ have the same image in Σell(G
∗). The double sum

in each case can therefore be taken over the preimages of σ∗ in ΓE
ell(G) × Γell(G). The

identity follows. �

To complete the picture, we need to expand Γ̃E
ell(G) into a larger set Γ̃E(G) which

is parallel to Γ(G). The simplest procedure is simply to copy the decomposition (1.1) of

Γ(G). This requires a brief word about non-elliptic endoscopic data.

We write E(G) for the set of equivalence classes of general endoscopic data for G.

Elements in E(G) can be represented in two separate ways — as elliptic endoscopic data
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for Levi subgroups of G, or as Levi subgroups of elliptic endoscopic data for G. This

provides two decompositions

E(G) =
∐

{M}

(
Eell(M)/W (M)

)
(2.6)

and

E(G) =
( ∐

G′∈Eell(G)

LG′
)
/ ∼ , (2.7)

where the last equivalence relation is defined by Ĝ-conjugacy. (Keep in mind that distinct

elements G′ ∈ Eell(G) can have a Levi subgroup in common, which of course contributes

only one element to E(G).) For each element (M ′,M′, s′M , ξ
′
M) in Eell(M), we choose an

extension M̃ ′ → M ′ and an embedding ξ̃′M : M′ → LM̃ ′ (and hence also a character ζ̃ ′M

on the central subgroup Z̃ ′
M (F ) of M̃ ′(F )), as in Lemma 2.1. We can assume that if M ′

belongs to LG′

, for G′ ∈ Eell(G), then M̃ ′ is a Levi subgroup of G̃′ and ξ′M is a restriction

of the corresponding embedding for G′. For example, if the objects are all obtained from a

fixed extension G̃→ G, as in the proof of Lemma 2.1, all required compatibility conditions

will hold. Moreover, each group

OutG(M ′) = AutG(M ′)/ξ′M(M̂ ′)

acts by outer automorphisms of M̂ ′ over F which leave Z̃ ′
M pointwise fixed.

Motivated by (2.6), we define

Γ̃E(G) =
∐

{M}

(
Γ̃E

G,ell(M)/W (M)
)

(2.8)

and

ΓE(G) =
∐

{M}

(
ΓE

G,ell(M)/W (M)
)
, (2.9)

where the subscript G as usual stands for elements which are G-regular. We can easily

extend the definition of the transfer factors to elements σ′ and γ in the larger sets Γ̃E(G)
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and Γ(G). We define ∆(σ′, γ) and ∆(γ, σ′) to be zero unless there is an M such that (σ′, γ)

belongs to the Cartesian product of Γ̃E
G,ell(M)/W (M) with ΓG,ell(M)/W (M). If there is

such an M , (σ′, γ) is the image of a pair (σ′
M , γM) in Γ̃E

G,ell(M) × ΓG,ell(M). In this case

we set

∆(σ′, γ) = ∆G(σ′, γ) =
∑

w∈W (M)

∆M (σ′
M , wγM)

and

∆(γ, σ′) = ∆G(γ, σ′) =
∑

w∈W (M)

∆M (γM , wσ′
M ) .

Each sum contains at most one nonzero term, and depends only on σ′ and γ. If we apply

(2.4) and (2.5) to each M , we obtain general inversion formulas

∑

σ′∈ΓE(G)

∆(γ, σ′)∆(σ′, γ1) = δ(γ, γ1), γ, γ1 ∈ Γ(G), (2.10)

and
∑

γ∈Γ(G)

∆(σ′, γ)∆(γ, σ′
1) = δ̃(σ′, σ′

1), σ′, σ′
1 ∈ Γ̃E(G), (2.11)

on Γ(G) and Γ̃E(G).

The transfer factors we have just defined are no different from the original ones.

Consider an arbitrary element σ′ ∈ Γ̃E(G). This element actually stands for the W (M)-

orbit of a pair (M ′, σ′
M ) in ΓE

G,ell(M). In general, there can be several elliptic endoscopic

groups G′ ∈ Eell(G) that contain M ′ as a Levi subgroup. Pick one of them. The WG′

(M ′)-

orbit of σ′
M , which we shall also denote by σ′, is a class in ΣG(G̃′). The original transfer

factor ∆(σ′, γ) from G to G′ is then defined. The point is that it matches the function

above defined in terms of Levi subgroups. One sees this by examining the four terms [22,

(3.2)–(3.5)] in the Langlands-Shelstad definition, and by observing that the χ-data in [22,

(2.5)] can be chosen so that χα = 1 for each root α of (G, T ) that is not a root of (M,T ). In

particular, the original transfer factor ∆(σ′, γ) depends only on the image of σ′ in Γ̃E(G).

We shall denote the image of ΣG(G̃′) in Γ̃E(G) by Σ(G̃′, G).
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3. The transfer map and its adjoint

Suppose that aG is a function on Γ(G). If G′ belongs to Eell(G), the transfer factors

serve to define a function

a′(σ′) = aG′

(σ′) =
∑

γ∈Γ(G)

∆(σ′, γ)aG(γ) (3.1)

on ΣG(G̃′). In particular, we obtain a function f ′ = fG′

on ΣG(G̃′) for any f ∈ H
(
G(F )

)

by taking aG = fG.

If Sections 7–9, we shall use global arguments to study the transfer mapping. These

require the fundamental lemma (for units), which we shall have to take on as a hypothesis.

Hypothesis 3.1. Suppose that F1 is a p-adic field of characteristic 0, that G1 is a con-

nected reductive group over F1 which is unramified, and that G′
1 is an element in Eell(G1),

together with the auxiliary data (G̃′
1, ζ̃

′
1), which is also unramified. Let f ∈ H

(
G1(F1)

)

and g ∈ H
(
G̃′

1(F1), ζ̃
′
1

)
be the unit elements of unramified Hecke algebras relative to fixed

hyperspecial maximal compact subgroups. Then the functions f ′ and g′ on ΣG1
(G̃′

1) are

equal.

We will also rely heavily on Waldspurger’s proof of the Langlands-Shelstad transfer

conjecture. This depends on the fundamental lemma for Lie algebras, which we shall state

as a second hypothesis. On the Lie algebra g(F ) of G(F ), one can define orbital integrals

φ → φG and transfer factors ∆(S ′, X). These provide a transfer map φ → φ′ = φG′

from

C∞
c

(
g(F )

)
to functions on ΣG(g′) = ΣG(g̃′/z̃′), the Lie algebra analogue of ΣG(G′). (See

[27].)

Hypothesis 3.2. Suppose that G1/F1 and G′
1/F1 are as in Hypothesis 3.1, and that

φ ∈ C∞
c

(
g1(F1)

)
and χ ∈ C∞

c

(
g′1(F1)

)
are the characteristic functions of fixed hyperspecial
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lattices in the corresponding Lie algebras g1(F1) and g′1(F1). Then the functions φ′ and

χ′ on the G1-regular, stable conjugacy classes in g′1(F ) are equal.

Under the assumption of Hypothesis 3.2, Waldspurger has established the fundamental

transfer theorem.

Theorem 3.3. (Waldspurger [28, 11.5]). For any G′ ∈ Eell(G), the image of the transfer

map

f −→ f ′ , f ∈ H
(
G(F )

)
,

is contained in SI
(
G̃′(F ), ζ̃ ′

)
.

From this point on, we shall generally use the more compact notation I(G), Icusp(G),

SI(G̃′, ζ̃ ′) etc., in order to focus on the relationships between various spaces of invariant

functions. For each G′ ∈ Eell(G), let us write SI(G̃′, G) for the subspace of functions in

SI(G̃′, ζ̃ ′) which depend only on the image in Γ̃E(G) of the variable σ′ ∈ ΣG(G̃′). Then

SI(G̃′, G) is a space of functions on the closed subset Σ(G̃′, G) of Γ̃E(G). The intersection

of SI(G̃′, G) with SIcusp(G̃′, ζ̃ ′) equals the space

SIcusp(G̃′, G) = SIcusp(G̃′, ζ̃ ′)OutG(G′)

of cuspidal functions which are symmetric under OutG(G′). It follows from Waldspurger’s

theorem and the definitions that f → f ′ maps H
(
G(F )

)
continuously into SI(G̃′, G) and

maps Hcusp

(
G(F )

)
continuously into SIcusp(G̃′, G). Equivalently, we can state things in

terms of the map aG → a′. The space I(G) is sent continuously into SI(G̃′, G), while

Icusp(G) is mapped continuously into SIcusp(G̃′, G).

We shall use the spaces SIcusp(G̃′, G) to construct an “endoscopic” space which is

parallel to Icusp(G). Set

IE
cusp(G) =

⊕

G′∈Eell(G)

SIcusp(G̃′, G) .
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Then IE
cusp(G) is a topological vector space of smooth functions on ΓE

ell(G). For any

function aG ∈ Icusp(G), we define

aEG =
⊕

G′∈Eell(G)

a′ ,

the direct sum of the images of aG. Then

T E : aG −→ aEG

is a continuous linear map from Icusp(G) to IE
cusp(G). It is important for our purposes to

know that the map is actually surjective. We shall use Waldspurger’s results to establish

this basic property.

Lemma 3.4. T E maps Icusp(G) onto IE
cusp(G).

Proof. As in the proof of Lemma 2.2, we can appeal to the definitions of [22, (4.4)] to reduce

the problem to the case of endoscopic data which are L-groups. We assume therefore that

G̃′ = G′ for each G′ ∈ Eell(G). The lemma will be a corollary of Waldspurger’s basic kernel

formula [28, (1.2)]. We first recall this formula.

Fix a symmetric, nondegenerate G-invariant bilinear form B on g, and a nontrivial

additive character ψ0 on F . The Fourier transform

φ̂(Y ) =

∫

g(F )

φ(X)ψ0

(
B(X,Y )

)
dX , φ ∈ C∞

c

(
g(F )

)
,

is a linear isomorphism of C∞
c

(
g(F )

)
onto itself. Moreover, there is a smooth function

i(X,Y ) = iGG(X,Y )

of two variables in Γ(g), the space of regular G(F )-orbits in g(F ), such that

φG(X) =

∫

Γ(g)

i(X,Y )(φ̂)G(Y )dY , X ∈ Γ(g),
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for a certain measure dY on Γ(g) [11, Theorem 3]. If G is quasi-split, set

s(S, T ) = sG
G(S, T ) = |KT |

−1
∑

X→S

∑

Y →T

i(X,Y ) ,

for regular stable G-orbits S and T in greg(F ). The sums are over the G(F )-orbits in the

given stable orbit, and |KT | denotes the number of Y in the orbit of T . Waldspurger’s

kernel formula applies to any G′ ∈ Eell(G). It is

∑

X∈Γ(g)

∆(S′, X)i(X,Y ) = γ0

∑

T ′∈ΣG(g′)

s′(S′, T ′)∆(T ′, Y ) , (3.2)

for elements S′ ∈ ΣG(g′) and X ∈ Γ(g), and a constant γ0 = γ0(G,G
′). The set ΣG(g′)

here is the Lie algebra analogue of ΣG(G′), and we have written s′(S′, T ′) for sG′

G′(S′, T ′).

Fix G′ ∈ Eell(G) and S′ ∈ Σ(g′, G). If φ belongs to C∞
c

(
g(F )

)
, we can write

φ′(S′) =
∑

X∈Γ(g)

∆(S′, X)φG(X)

=
∑

X

∆(S′, X)

∫

Γ(g)

i(X,Y )(φ̂)G(Y )dY

= γ0

∫

Γ(g)

( ∑

T ′∈ΣG(g′)

s′(S′, T ′)∆(T ′, Y )
)
(φ̂)G(Y )dY ,

by (3.2) and the formula above for φG(X). A Lie algebra variant of Lemma 2.3 can be

used to change the sum over T ′ and the integral over Y into a sum over Y and an integral

over T ′. We obtain a formula

φ′(S′) = γ0

∫

ΣG(g′)

s′(S′, T ′)(φ̂)′(T ′)dT ′ . (3.3)

We shall apply this formula with φ being a function supported on the regular elliptic set

in g(F ).

Let Gcusp(g) be the space of germs

X −→ φG(X) , φ ∈ C∞
c,cusp

(
g(F )

)
,
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around 0 of orbital integrals of cuspidal functions on g(F ). Then Gcusp(g) is a finite

dimensional space of germs of functions of X ∈ Γ(g). For each G′ ∈ Eell(G), we also define

the space SGcusp(g′) of germs of stable orbital integrals of cuspidal functions, and we set

SGcusp(g′, G) = SGcusp(g′)OutG(G′) .

Let τE be the Lie algebra analogue of the map T E . The main step is to show that τE maps

Gcusp(g) onto the finite dimensional vector space

GE
cusp(g) =

⊕

G′∈Eell(G)

SGcusp(g′, G) .

It is enough to consider elements in GE
cusp(g) which are supported on only one component.

We therefore fix G′ ∈ Eell(G), and take an arbitrary function

g′(S′) , S′ ∈ Σell(g
′, G) = ΣG,ell(g

′)/OutG(G′),

in SGcusp(g′, G). Since SGcusp(g′, G) is a finite dimensional vector space, it follows from

(3.3) that we can represent g′(S′) as a finite linear combination

g′(S′) =
n∑

i=1

λis
′(S′, T ′

i ) ,

for points T ′
i ∈ ΣG,ell(g

′). We can assume that the bilinear form B′(·, ·) on g′ is invariant

under the group OutG(G′). It follows easily that the function s′(S′, T ′) is invariant under

the diagonal action of OutG(G′) on the two variables. Since g′(S′) is invariant under

OutG(G′), we can arrange matters so that OutG(G′) leaves invariant the finite set {T ′
i}

and so that the coefficients {λi} are constant on the OutG(G′)-orbits. For each i, we can

choose a compact neighbourhood Vi of T ′
i in ΣG,ell(g

′) such that

s′(S′, T ′) = s′(S′, T ′
i )
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for all T ′ ∈ Vi and all S′ sufficiently small. This is a straightforward consequence of Howe’s

finiteness theorem on the Lie algebra g′(F ) ([12], [11, Theorem 2]). We can therefore find

a function α′ ∈ C∞
c

(
Σell(g

′, G)
)

such that

g′(S′) = γ0

∫

ΣG,ell(g′)

s′(S′, T ′)α′(T ′)dT ′ ,

for all S′ sufficiently small. Now the inversion formulas (2.4) and (2.5) from Lemma 2.2

have obvious Lie algebra analogues, which imply that the map

τE : C∞
c

(
Γell(g)

)
−→

⊕

G′
1∈Eell(G)

C∞
c

(
Σell(g

′
1, G)

)

is actually a linear isomorphism. It follows from this that there is a function

ψ ∈ C∞
c

(
greg,ell(F )

)
such that

ψG′
1 =

{
α′, if G′

1 = G′,
0, otherwise,

for any G′
1 ∈ Eell(G). Let φ be the function in C∞

c

(
g(F )

)
such that φ̂ = ψ. It follows from

(3.3) that

φ′(S′) = γ0

∫

ΣG,ell(g′)

s′(S′, T ′)α′(T ′)dT ′ = g′(S′) ,

and that φG′
1 = 0 for any G′

1 6= G′. This establishes surjectivity for the map of germs on

the Lie algebra.

The proof can now be completed using the results of Langlands-Shelstad [23] on de-

scent. We shall just sketch the argument, referring the reader to Section 1 and Sections

2.1–2.3 of [23] for more details

Let aEG =
⊕
G′

a′ be an arbitrary function in IE
cusp(G). According to the inversion

formula (2.5), the function

aG(γ) =
∑

σ′∈ΓE
ell

(G)

∆(γ, σ′)aEG(σ′) , γ ∈ Γell(G),
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is such that

aEG(σ′) =
∑

γ∈Γell(G)

∆(σ′, γ)aG(γ) = (T EaG)(σ′) .

Together with the other formula (2.4), this tells us that aEG will be in the image of Icusp(G)

if and only if the function aG belongs to Icusp(G). We can assume that the components

a′ of aEG vanish except at one fixed element G′ ∈ Eell(G). We have therefore to show that

the function

aG(γ) =
∑

σ′∈Σell(G′,G)

∆(γ, σ′)a′(σ′), γ ∈ Γell(G), (3.4)

belongs to Icusp(G).

The problem is a local one. Let ε be a fixed elliptic semisimple conjugacy class in

G(F ), and let Gcusp(G, ε) be the space of germs around ε of functions in Icusp(G). It is

enough to show that for γ near ε, aG(γ) belongs to Gcusp(G, ε). If ε = 1, this follows

from what we have already established on the Lie algebra, given the inversion formulas

(2.4) and (2.5) and the fact that the exponential map is a linear bijection from Gcusp(g) to

Gcusp(G, 1). The property also follows easily from the generalization [23, Lemma 3.5A] of

(2.1) if ε is in the center of G. In general, let ε′1, . . . , ε
′
n be representatives in G′(F ) of the

OutG(G′)-orbits of stable conjugacy classes which are images of ε [23, Section 1.2], chosen

so that each group

G′
j = G′

ε′
j

= Cent(G′, ε′j)
0

is quasi-split [14, Lemma 3.3]. The image of aG in Gcusp(G, ε) depends only on the image

of a′ in the spaces SIcusp(G′, ε′j) of germs of functions in SIcusp(G′) around ε′j . We can

assume that these images all vanish except for one fixed j. In other words, we can restrict

the sum in (3.4) to points σ′ ∈ Σell(G
′, G) which are close to ε′j . Now the group G′

j

determines an endoscopic datum in Eell(Gε) [23, Section 1.4]. If γ and σ′ are close to

ε and ε′j respectively, the terms aG(γ), ∆(γ, σ′) and a′(σ′) can be identified with the

corresponding objects for (Gε, G
′
j) [23, Sections 1.6–1.7]. The fact that aG(γ) lies in
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Gcusp(G, ε) then follows from the corresponding property we have established for the central

element ε in Gε. This completes the proof of the lemma. �

We have introduced the inner product (·, ·) on the space Icusp(G). We can also define

an inner product on the second space IE
cusp(G) in terms of our inner products (·, ·) on the

spaces SIcusp(G̃′, ζ̃ ′). If aEG =
⊕
G′

a′ and bEG =
⊕
G′

b′ are two functions in IE
cusp(G), set

(aEG, b
E
G) =

∑

G′∈Eell(G)

ι(G,G′)(a′, b′) ,

where

ι(G,G′) = |OutG(G′)|−1|Z(Ĝ′)Γ/Z(Ĝ)Γ|−1 .

Proposition 3.5. The map

T E : Icusp(G) −→ IE
cusp(G)

is an isometric isomorphism.

Proof. It is obvious that T E is linear, and we have just shown that it is surjective. We can

identify Icusp(G) and IE
cusp(G) with spaces of functions on Γell(G) and Γ̃E

ell(G), respectively.

It follows immediately from (2.4) and (2.5) that T E is an isomorphism, with inverse

bEG −→ bG , bEG ∈ IE
cusp(G),

given by

bG(γ) =
∑

σ′∈ΓE
ell

(G)

∆(γ, σ′)bEG(σ′), γ ∈ Γ(G). (3.5)

It remains to show that T E is an isometry.

Let aG and bEG =
⊕
G′

b′ be arbitrary functions in Icusp(G) and IE
cusp(G). As above, we

denote the functions T EaG and (T E)−1(bEG) by aEG =
⊕
G′

a′ and bG, respectively. We have

to show that (aG, bG) equals (aEG, b
E
G).

35



We can write the inner product (aEG, b
E
G) as

∑

G′∈Eell(G)

ι(G,G′)

∫

ΣG,ell(G′)

n(σ′)−1a′(σ′)b′(σ′)dσ′ ,

since the integrand depends only on the image of the element σ′ ∈ ΣG,ell(G̃
′) in the set

ΣG,ell(G̃
′)/Z̃ ′(F ) = ΣG,ell(G̃

′/Z̃ ′) = ΣG,ell(G
′) .

This equals

∑

G′

ι(G,G′)

∫

ΣG,ell(G′)

( ∑

γ∈Γell(G)

|Kσ′ |−1|Kγ|aG(γ)∆(γ, σ′)b′(σ′)
)
dσ′ ,

by the definition of ∆(γ, σ′). If ∆(γ, σ′) 6= 0, we have

ι(G,G′)|Kσ′ |−1|Kγ |

= |OutG(G′)|−1
∣∣π0

(
(T̂ ′)Γ/Z(Ĝ)Γ

)∣∣−1∣∣π0

(
T̂Γ/Z(Ĝ)Γ

)∣∣

= |OutG(G′)|−1 ,

since the tori T ′ = G′
σ′ and T = Gγ are isomorphic. But the constant |OutG(G′)|−1 is

exactly what is required to normalize the measure on the quotient Σell(G
′, G) of ΣG,ell(G

′).

We obtain

(aEG, b
E
G) =

∑

G′∈Eell(G)

∫

Σell(G′,G)

∑

γ∈Γell(G)

aG(γ)∆(γ, σ′)b′(σ′)dσ′

=

∫

ΓE
ell

(G)

∑

γ∈Γell(G)

aG(γ)∆(γ, σ′)bEG(σ′)dσ′ .

Applying Lemma 2.3, we see that this last expression can be written as

∫

Γell(G)

aG(γ)
∑

σ′∈ΓE
ell

(G)

∆(γ, σ′)bEG(σ′)dγ ,

which is just ∫

Γell(G)

aG(γ)bG(γ)dγ = (aG, bG) ,
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by (3.5). Therefore T E is an isometry. �

The definitions at the end of Section 2 suggest a way to combine the noncuspidal

spaces SI(G̃′, G) into a larger space IE (G), which contains IE
cusp(G), and is parallel to

I(G). The set Γ̃E(G) is a union over G′ ∈ Eell(G) of subsets Σ(G̃′, G) obtained from the

stable conjugacy classes in G̃′(F ). The subsets Σ(G̃′, G) need not be disjoint, however,

since they will intersect at Levi subgroups which are common to different G′. We define

IE(G) to be the set of functions

aEG =
⊕

G′∈Eell(G)

a′ , a′ ∈ SI(G̃′, G),

with the property that a′ and a′′ have the same image in SI
(
M̃ ′(F ), ζ̃ ′

)
, for any pair of

elements G′ and G′′ in Eell(G) which have the Levi subgroup M ′ in common. Then IE(G)

can be identified with a space of smooth functions on Γ̃E(G). As with I(G), there is a

natural filtration on IE(G) over the partially ordered set L/W0. Its associated graded

vector space is

IE
gr(G) =

⊕

{M}

IE
cusp(M)W (M) .

For any function aG ∈ I(G), we define a second function

aEG =
⊕

G′∈Eell(G)

a′

in IE (G) as a direct sum of endoscopic images of aG. Then we have

aEG(σ′) =
∑

γ∈Γ(G)

∆(σ′, γ)aG(γ) , σ′ ∈ Γ̃E (G), (3.6)

and

aG(γ) =
∑

σ′∈ΓE (G)

∆(γ, σ′)aEG(σ′) , γ ∈ Γ(G), (3.7)

for the transfer factors defined at the end of Section 2. It is clear that

T E : aG −→ aEG
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is a continuous linear map from I(G) into IE(G). By following the arguments from the

proof of Lemma 3.4, we can establish that the map is surjective. (This assertion is also a

direct consequence of the two theorems we will state in Section 6, and prove in Sections

8 and 9.) Therefore T E is a linear isomorphism from I(G) onto IE(G). The mapping is

clearly compatible with the filtrations on the two spaces. One of our goals is to show that

it is also compatible with gradings we shall define on the two spaces.

The discussion is easily adapted to the case of equivariant functions. As at the end

of Section 1, suppose that Z is a central induced torus in G which is defined over F , and

that ζ is a character on Z(F ). For any G′ ∈ Eell(G), Z̃ ′Z is a central induced torus in G̃′,

and ζ pulls back to a character on the group (Z̃ ′Z)(F ). Recall (2.1) that there is also a

character ζ̃ ′Z on this group determined by the transfer factor. We shall write ζ̃ ′ζ for the

product ζ̃ ′Z⊗ζ of the two characters on (Z̃ ′Z)(F ). The transfer map sends H
(
G(F ), ζ

)
into

SI(G̃′, ζ̃ ′ζ). Its image is the subspace SI(G̃′, G, ζ) of SI(G̃′, ζ̃ ′ζ) composed of functions

of σ′ ∈ ΣG(G̃′) which depend only on the image of σ′ in Γ̃E (G). Putting the spaces

together as above, we obtain a general space IE (G, ζ) and a transfer isomorphism T E from

I(G, ζ) onto IE (G, ζ). The obvious variant of Lemma 3.5 asserts that T E maps Icusp(G, ζ)

isometrically onto the subspace IE
cusp(G, ζ) of cuspidal functions in IE (G, ζ).

4. Virtual characters

We shall review the representation theoretic data which are dual to conjugacy classes.

The irreducible tempered characters could well be regarded as the objects dual to semisim-

ple conjugacy classes in G(F ). It is better, however, to take the family of virtual characters

studied in [3] and [4].

This second family is parametrized by a set T (G) introduced in [3, Section 3], and

which we shall denote here by T̃ (G). By definition then, T̃ (G) is the set of W0-orbits of
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(essential) triplets

τ = (L, π, r) , L ∈ L, π ∈ Π2(L), r ∈ R̃π,

where Π2(L) stands for the equivalence classes of irreducible unitary representations of

L(F ) which are square integrable modulo the center, and R̃π is a fixed central extension

1 −→ Zπ −→ R̃π −→ Rπ −→ 1

of the R-group of π. The purpose of the extension is to ensure that the normalized

intertwining operators

r −→ R̃P (r, π) , r ∈ R̃π, P ∈ P(L),

for the induced representation IP (π) give a representation of R̃π instead of just a projective

representation of Rπ. This representation of R̃π has a central character on the central

subgroup Zτ = Zπ, denoted by χ−1
τ = χ−1

π . There is then a bijection ρ → πρ from

Π(R̃π, χπ), the set of irreducible representations of R̃π whose central character on Zπ is

equal to χπ, onto the set of irreducible constituents of IP (π), with the properties that

tr
(
R̃P (r, π)IP (π, f)

)
=

∑

ρ∈Π(R̃π ,χπ)

tr
(
ρ∨(r)

)
tr

(
πρ(f)

)

and

tr
(
πρ(f)

)
= |R̃π|

−1
∑

r∈R̃π

tr
(
ρ(r)

)
tr

(
R̃P (r, π)IP (π, f)

)
.

Of particular interest is the subset T̃ell(G) of (orbits of) elements τ = (L, π, r) in T̃ (G)

such that the kernel of (1 − r), acting on the space aL, equals aG. We can represent the

original set T̃ (G) as the set of W0-orbits in the disjoint union
∐

M∈L

(
T̃ell(M)

)
of elliptic

elements in Levi subgroups. We can therefore write

T̃ (G) =
∐

{M}

(
T̃ell(M)/W (M)

)
, (4.1)
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where {M} as usual runs over the orbits in L/W0. There is an action

τ −→ τλ = (L, πλ, r) , τ ∈ T̃ell(G), λ ∈ ia∗G,

of ia∗G on T̃ell(G), where πλ(x) equals π(x)eλ(HL(x)) for any x ∈ L(F ). There is a similar

action of ia∗M on T̃ell(M) for each M , and this gives T̃ (G) the structure of a disjoint union

of finite quotients of compact tori. We shall write T̃ (G)C for the corresponding union of

quotients of complex tori. Then T̃ (G)C is the disjoint union over {M} of the spaces of

W (M)-orbits in

T̃ell(M)C = {τλ : τ ∈ T̃ell(M), λ ∈ a∗M,C} .

Observe that there is an internal action

τ −→ zττ = (L, π, zτr) , zτ ∈ Zτ ,

of the groups Zτ on T̃ (G). We have reserved the symbol T (G) for the corresponding

quotient of T̃ (G). Then T (G) is the set of W0-orbits of triplets τ = (L, π, r), in which r

simply lies in the R-group Rπ. This can be written

T (G) =
∐

{M}

(
Tell(M)/W (M)

)
. (4.2)

We shall also write T (G)C for the associated quotient of T̃ (G)C.

We are going to fix two objects which are a bit artificial in the present context. They

will be needed in Section 5, but it is also useful to see here how they relate to the set T̃ (G).

The first object we fix is a finite group O of outer automorphisms of G(F ). We assume

that there is an action τ → τα, α ∈ O, of O on T̃ (G) that extends its canonical (right)

action on T (G), and commutes with the internal actions of the groups Zτ . Since O also

acts on ia∗G,F , we can form the semi-direct product

O+ = ia∗G,F o O .
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We then obtain a right action

τ −→ τΛ , Λ = (λ, α) ∈ O+,

of O+ on T̃ (G). The second object to fix is the central induced torus Z in G over F . We

assume that Z contains AG, and also that O normalizes Z(F ). The elements in T̃ (G) have

central characters on Z(F ). This provides a decomposition

T̃ (G) =
∐

ζ

T̃ (G, ζ)

parametrized by the characters ζ of Z(F ), in which T̃ (G, ζ) is the subset of elements in

T̃ (G) whose central character on Z(F ) equals ζ. We write T (G, ζ) and Tell(G, ζ) for the

quotients of T̃ (G, ζ) and T̃ell(G, ζ) = T̃ell(G)∩ T̃ (G, ζ) by the internal Zτ -actions. We shall

also sometimes write T̃par(G, ζ) and Tpar(G, ζ) (and for that matter T̃par(G, ζ)C, Tpar(G)

etc.) for the “parabolic” elements in the given set, or in other words, the complement of

the corresponding elliptic set.

The set T̃ (G) parametrizes a family of locally integrable functions

γ −→ I(τ, γ) , τ ∈ T̃ (G),

of γ ∈ Γ(G). The function attached to τ = (L, π, r) is just the normalized virtual character

I(τ, γ) =
∑

ρ∈Π(R̃π,χπ)

tr
(
ρ∨(r)

)
I(πρ, γ)

obtained from the normalized irreducible characters

I(πρ, γ) = |D(γ)|
1
2 Θ(πρ, γ) .

We summarize three properties of these functions.

(I1) The action of the group O+ on T̃ (G) satisfies

I(τΛ, γ) = I
(
τ, α(γ)

)
eλ(HG(α(γ))) , Λ = (λ, α) ∈ O+.
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(I2) If τ belongs to a subset T̃ (G, ζ) of T̃ (G), then

I(τ, γz) = I(τ, γ)ζ(z) , z ∈ Z(F ).

(I3) For any character ζ on Z(F ), the functions

γ −→ I(τ, γ) , τ ∈ T̃ell(G, ζ),

taken up to equivalence in the quotient Tell(G, ζ), form an orthogonal basis of

Icusp(G, ζ). (See [3, Section 6].)

The internal actions of the groups Zτ also contribute an identity

I(zττ, γ) = χτ (zτ )−1I(τ, γ) , zτ ∈ Zτ .

Characters exist of course to be integrated against functions. To illustrate future

constructions, let us tentatively write

aG,gr(τ) =

∫

Γ(G)

I(τ, γ)aG(γ)dγ ,

for any aG ∈ I(G) and τ ∈ T̃ (G). According to Kazhdan’s theorem [13, Appendix,

Theorem 1], aG → aG,gr is a injective linear map from I(G) onto a space of functions on

T̃ (G). The trace Paley-Wiener theorem [6] in turn allows us to characterize the image.

The two theorems together imply that the map is an isomorphism from I(G) onto the

Paley-Wiener space on T̃ (G), which can be defined as the space of functions α on T̃ (G)

such that

(i) α is supported on finitely many connected components of T̃ (G).

(ii) On the connected component of any element τ ∈ T̃ell(M)/W (M), α(τλ) is a finite

Fourier series in λ.

(iii) For any τ ∈ T̃ (G) and zτ ∈ Zτ , α(τzτ ) equals χτ (zτ )−1α(τ). (See [3].)

The subspace Icusp(G) is mapped to the subspace of functions on T̃ (G) which vanish on
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the complement T̃par(G) of T̃ell(G) in T̃ (G). In other words, Icusp(G) can be identified

with the Paley-Wiener space on T̃ell(G). Applied to each Levi subgroup M , this gives us

a canonical isomorphism of the Paley-Wiener space on T̃ (G) with the graded vector space

Igr(G) =
⊕

{M}

Icusp(M)W (M)

attached in Section 1 to the filtration on I(G). Therefore, aG → aG,gr can be regarded

as an isomorphism from I(G) onto Igr(G) which is compatible with the filtrations. With

this understanding, we are free to drop the subscript gr, and to interpret Igr(G) simply

as a grading in I(G) which is compatible with the filtration. In particular, an element

aG ∈ I(G) will be regarded as a function either on Γ(G) or on T̃ (G). Observe that if aG

is the image of a function f ∈ H
(
G(F )

)
, we have the direct formula

fG(τ) = tr
(
R̃P (r, π)IP (π, f)

)
, τ = (L, π, r).

The spectral form of the inner product on Icusp(G) is given by the local trace formula,

or rather the simple version of the local trace formula that applies to a pair of cuspidal

functions [3, (4.15)]. We first define a measure on Tell(G) by setting

∫

Tell(G)

α(τ)dτ =
∑

τ∈Tell(G)/ia∗
G,τ

∫

ia∗
G,τ

α(τλ)dλ ,

for any function α ∈ Cc

(
T (G)

)
. The integral on the right is over the compact torus

ia∗G,τ = ia∗G/a
∨
G,τ ,

where a∨G,τ is the stabilizer of τ in ia∗G, a lattice that lies between a∨G,F and ã∨G,F , and dλ

is the measure we have fixed on ia∗G. For future reference, we also define a measure

∫

T (G)

α(τ)dτ =
∑

{M}

|W (M)|−1

∫

Γell(M)

α(τM )dτM
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on the larger space T (G). A similar formula, based on the spaces i(aG
M )∗ instead of ia∗M ,

determines a measure on T (G, ζ). Now, for any element τ = (L, π, r) in Tell(G), set

n(τ) = |Rπ,r||det(1 − r)aL/aG
| ,

where Rπ,r is the centralizer of r in the R-group Rπ. The spectral form of our inner

product on Icusp(G) is then given by

(aG, bG) =

∫

Tell(G)

n(τ)−1aG(τ)bG(τ)dτ , aG, bG ∈ Icusp(G).

(See [3, Corollary 3.2]. We have made allowance for the fact that our measure on Tell(G)

differs from the one defined by [3, (3.5)] by a factor |Rπ,r|.) This formula is equivalent to

the orthogonality of the characters {I(τ, γ)}, together with the formula

∫

Γell(G/Z)

I(τ, γ)I(τ, γ)dγ = n(τ)

for their norms [3, Corollary 6.2].

We would also like to have a spectral interpretation of the space IE
cusp(G). For this we

require orthogonal bases of the spaces SIcusp(G̃′, G). We shall construct such objects ab-

stractly in Section 5. In the meantime, we can motivate the construction by recalling some

aspects of the conjectural theory of endoscopy. A reader could easily skip this discussion,

and go directly to Section 5.

Assume that G is quasi-split for the rest of this section. Stable characters on G(F )

ought to be attached to Langlands parameters

φ : LF −→ LG ,

which are maps from the Langlands group LF = WF ×SU(2,C) into the L-group LG. For

this discussion, let Φ(G) denote the set of Ĝ-orbits of parameters which are tempered (the

image of LF in Ĝ is bounded), and let Φ2(G) be the subset of parameters in Φ(G) which
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are cuspidal (the image of LF is contained in no proper parabolic subgroup). As in the

earlier case of T (G), there is a canonical decomposition

Φ(G) =
∐

{M}

(
Φ2(M)/W (M)

)
.

Recall that for any φ, Sφ denotes the centralizer in Ĝ of the image of φ, and Sφ stands

for the group of connected components in Sφ = Sφ/Z(Ĝ)Γ. Suppose that Z is a central

induced torus in G over F . Any parameter φ ∈ Φ(G) has a central character ζ on Z(F ),

whose Langlands parameter is just the composition

WF
φ

−→ LG −→ LZ .

The entire set Φ(G) decomposes into a disjoint union over ζ of the subsets Φ(G, ζ) of param-

eters with central character ζ. The set Φ(G) also comes with an action

φ→ φλ = φ · ρλ of ia∗G,F , where ρλ is the unramified parameter which maps the Frobenius

element to the image of λ in
(
Z(Ĝ)Γ

)0
under the exponential map. (Recall that a∗G,C is

the Lie algebra of
(
Z(Ĝ)Γ

)0
.) If O is a finite group of outer automorphisms of G which

are defined over F , we can extend this to an action

φ −→ φΛ , Λ = (λ, α),

of the semi-direct product O+ = ia∗G,F o O on Φ(G).

For each φ ∈ Φ2(G), we expect to have a canonical family of nonnegative integers

{∆(φ, π) : π ∈ Π2(G)} with the property that the function

S(φ, σ) =
∑

π∈Π2(G)

∆(φ, π)I(π, γ) , γ ∈ Γ(G), (4.3)

depends only on the stable conjugacy class σ of γ. The set

Πφ = {π ∈ Π2(G) : ∆(φ, π) > 0}
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should have cardinality equal to that of the set Ŝφ of irreducible characters of Sφ, with

the number of particular values ∆(φ, π) matching the number of characters having corre-

sponding degrees. The packets Πφ ought to be disjoint, and to have union equal to Π2(G).

Finally, the “stable characters” S(φ, σ) should satisfy

S(φΛ, σ) = S
(
φ, α(σ)

)
eλ(HG(α(σ))) , Λ = (λ, α) ∈ O+,

and

S(φ, σz) = S(φ, σ)ζ(z) , φ ∈ Φ2(G, ζ), z ∈ Z(F ).

Suppose that all these properties hold. The function (4.3) can be regarded as a stable

distribution, since it depends only on the stable conjugacy class σ of γ. This is not quite

the same thing as a stable orbital integral, even on the elliptic set. Stable orbital integrals

are defined by summing over γ in the stable class σ, which amounts to multiplying (4.3)

by the integer n(σ) = |Kσ|. By doing this, and taking the complex conjugate as well, we

obtain a family of functions

σ −→ n(σ)S(φ, σ) , φ ∈ Φ2(G, ζ), σ ∈ Σell(G), (4.4)

in SIcusp(G, ζ). The inner product of two such functions equals

∫

Σell(G/Z)

n(σ)−1n(σ)S(φ, σ)n(σ)S(φ1, σ)dσ

=

∫

Γell(G/Z)

( ∑

π∈Πφ

∆(φ, π)I(π, γ)
)( ∑

π1∈Πφ1

∆(φ1, π1)I(π1, γ)
)
dγ

=
∑

π,π1

∆(φ, π)∆(φ1, π1)δ(π, π1)

= δ(φ, φ1)n(φ) ,

where n(φ) = |Sφ|, and δ(·, ·) is the Kronecker delta. We have used the orthogonality

relations for the characters {I(π, γ)} and the disjointness of the packets {Πφ}. Thus,
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(4.4) is an orthogonal family of functions. It should in fact be an orthogonal basis of

SIcusp(G, ζ). If this is so for each ζ, we can identify SIcusp(G) with the space of functions

aG(φ) =

∫

Σell(G)

S(φ, σ)aG(σ)dσ , aG ∈ SIcusp(G), (4.5)

of φ ∈ Φ2(G).

The theory of endoscopy would apply in this way to each of the quasi-split groups

G′ ∈ Eell(G). Assume for simplicity that we can take G̃′ = G′ for every G′. We would then

obtain parameters Φ2(G
′), functions S(φ′, σ′) on Σell(G

′), linear forms a′(σ′) on SIcusp(G′),

and the corresponding linear forms f ′(φ′) on Icusp(G) obtained from the transfer map. The

latter objects depend only on the image of φ′ in Φ2(G
′, G), the set of AutG(G′)-orbits in

Φ2(G
′). They will have expansions

f ′(φ′) =
∑

τ∈Tell(G)

∆(φ′, τ)fG(τ) ,

for coefficients ∆(φ′, τ) on Φ2(G
′, G)× T̃ell(G) which are clearly to be regarded as represen-

tation theoretic analogues of the transfer factors ∆(σ′, γ). As a function on the Cartesian

product of

T E
ell(G) = {(G′, φ′) : G′ ∈ Eell(G), φ′ ∈ Φ2(G

′, G)}

with T̃ell(G), ∆(φ′, τ) is simply the matrix of the transfer map T E with respect to two bases.

We shall give the details of these constructions in Section 5 for our formal replacements of

the Langlands parameters.

Of course the conjectural theory of endoscopy would give much more than we will

be able to deduce in this paper. What distinguishes the genuine Langlands parameters

from the formal objects we shall define is the existence of a natural map from Φ2(G
′, G) to

Φ(G). The image of Φ2(G
′, G) in Φ(G) does not have to be contained in Φ2(G). We have

reserved the symbol Φell(G) for the union over G′ of these images. Suppose that (G′, φ′)

is a pair in T E
ell(G), and φ is the image of φ′ in Φell(G). Then the semi-simple element s′
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attached to G′, taken modulo Z(Ĝ)Γ, lies in the subset Sφ,fin of semi-simple elements in

Sφ whose centralizer in Sφ is finite. One can show that (G′, φ′) → (φ, s′) is a bijection

from T E
ell(G) onto the set

{
(φ, s′) : φ ∈ Φell(G), s′ ∈ Sφ,fin/Sφ

}
,

where Sφ,fin/Sφ is the set of Sφ-conjugacy classes in Sφ,fin.

The set T̃ell(G) should have a parallel interpretation. Suppose that φ belongs to

Φell(G). The identity component S
0

φ of Sφ must then be a torus in Ĝ, and the centralizer

of S
0

φ in Ĝ will be the dual group of a Levi subgroup L of G. Let S1
φ be the group of

components in Sφ which centralize S
0

φ. Then S1
φ equals SφL

for a parameter φL ∈ Φ2(L)

whose composition with the embedding LL ⊂ LG equals φ. There should be a bijection

π → 〈·, π〉 from the L-packet ΠφL
for L onto the set of characters Ŝ1

φ of Sφ. But the set Ŝ1
φ

has a natural action of the quotient group Rφ = Sφ/S
1
φ. The R-group Rπ of any π ∈ ΠφL

should simply be the stabilizer Rξ in Rφ of the corresponding character ξ = 〈·, π〉. There

is no a priori reason why ξ should extend to an irreducible character on the preimage of

Rξ in Sφ. The obstruction will be a class in H2(Rξ,C∗). The group R̃π defined earlier

ought to be any extension R̃ξ of Rξ which splits this cocycle. It follows that there should

be a bijection (L, π, r) → (φ, ξ, r) from T̃ell(G) onto the set

{(φ, ξ, r) : φ ∈ Φell(G), ξ ∈ Ŝ1
φ, r ∈ R̃ξ,reg} ,

where R̃ξ,reg is the set of elements in R̃ξ which have a finite centralizer in S
0

φ. Notice that

the question of whether any of the extensions R̃π are nontrivial has been formulated purely

in terms of the parameters. It appears to be quite accessible in this form, but I do not

know the answer.
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5. Spectral transfer factors

In the absence of the local theory of endoscopy, the parameters will have to be relegated

to the role of abstract indices. We will simply choose a family of functions

σ −→ S(φ, σ) , σ ∈ Σell(G),

which satisfy some general conditions. We will denote the set of indices φ by Φ2(G), with

the expectation that they may eventually be taken to be Langlands parameters.

For the time being, G will be quasi-split. We fix a finite group O of outer auto-

morphisms of G defined over F . Then O acts by permutation on Σ(G). We form the

semi-direct product O+ = ia∗G,F o O as before, and define the action

aG −→ aG
Λ , Λ = (λ, α) ∈ O,

of O+ on the space of functions {aG} on Σ(G) by setting

aG
Λ (σ) = aG

(
α(σ)

)
eλ(HG(α(σ))) , σ ∈ Σ(G).

We must incorporate this into our construction. We have also to keep track of central

characters. We have fixed a central, induced torus Z of G over F , which contains AG, and

which we assume is normalized by O. We begin with a fixed character ζ on Z(F ). The

stabilizer of ζ in O+ is the finite group

O+
ζ = (ã∨G,F /a

∨
G,F ) o Oζ ,

where Oζ is the stabilizer of ζ in O. We require a family of functions in SIcusp(G, ζ) on

which O+
ζ acts by permutation.
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Lemma 5.1. We can choose a family of functions

σ −→ S(φ, σ) , φ ∈ Φ2(G, ζ),

of σ ∈ Σell(G), indexed by a set Φ2(G, ζ), with the following two properties.

(i) The family remains invariant under the action of O+
ζ .

(ii) The functions

σ −→ n(σ)S(φ, σ) , φ ∈ Φ2(G, ζ),

form an orthogonal basis of SIcusp(G, ζ).

Proof. The group Oζ acts on functions through its permutation representation on Σell(G).

This action obviously leaves invariant the coefficients n(σ) = |Kσ|. Our task, then, is to

construct an orthogonal basis of functions

σ −→ Sφ(σ) = n(σ)S(φ, σ)

in SIcusp(G, ζ) on which O+
ζ acts by permutation. The idea is simple enough. Since O+

ζ

preserves the inner product on SIcusp(G, ζ), we can decompose the space into an orthogonal

direct sum of finite dimensional subspaces on which O+
ζ acts irreducibly. What we want is a

decomposition of SIcusp(G, ζ) into an orthogonal direct sum of permutation representations

of O+
ζ . By exploiting the infinite dimensionality of SIcusp(G, ζ), we will avoid having to

deal with the finite dimensional representation of O+
ζ on the space SGcusp(G, 1) of stable

cuspidal germs.

The homomorphism

HG : G(F ) −→ aG,F

maps G(F )/Z(F ) surjectively onto the finite abelian group A = aG,F /ãG,F which is dual

to ã∨G,F /a
∨
G,F . For any X ∈ A, let SIcusp(G, ζ)X be the space of functions in SIcusp(G, ζ)
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that are supported on the inverse image of X. We shall say that X is elliptic if the space

is nonempty, and we write AE for the set of elliptic elements in A. Then

SIcusp(G, ζ) =
⊕

X∈AE

SIcusp(G, ζ)X .

Observe that X is elliptic if and only if G/Z has an elliptic maximal torus T over F such

that the set

T (F )X = {t ∈ T (F ) : HG(t) = X}

is nonempty. In particular, if X is elliptic, so is every element in the cyclic group generated

by X, as well as every element in the Oζ -orbit of X. We shall prove the lemma directly,

without worrying about whether every element in A is elliptic.

Let OX
ζ be the stabilizer in Oζ of a given element X ∈ AE . We shall look at the linear

representation of OX
ζ on SIcusp(G, ζ)X . Let ΣX

ζ be the subset of

Σell(G)X = {σ ∈ Σell(G) : HG(σ) = X}

on which OX
ζ acts properly discontinuously. Keeping in mind how outer automorphisms

act on maximal tori, and noting that Σell(G)X is an open subset of Σ(G), we observe

that ΣX
ζ is an open dense subset of Σell(G)X . In particular, the space C∞

c (ΣX
ζ , ζ) of

smooth ζ−1-equivariant functions on ΣX
ζ with compact support modulo Z(F ), is an infinite

dimensional subspace of SIcusp(G, ζ)X . Since OX
ζ acts properly discontinuously on ΣX

ζ ,

the corresponding linear action of OX
ζ on C∞

c (ΣX
ζ , ζ) is isomorphic to a countably infinite

number of copies of the regular representation. We conclude that the multiplicity of any

irreducible representation of OX
ζ in the OX

ζ -module SIcusp(G, ζ)X is infinite. This is all

we need.

We base the construction on the family CE of subgroups C of A which are contained in

AE . We choose an orthogonal basis B of SIcusp(G, ζ)0 on which Oζ acts by permutation,

together with a partition B =
∐
C

BC indexed by the elements C ∈ CE , which is compatible
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with the action of Oζ . In other words, α(BC) equals BαC for every α ∈ Oζ . We also assume

that for each X ∈ AE , every irreducible representation of OX
ζ has infinite multiplicity in

the linear representation attached to the permutation representation of OX
ζ on B(X) =

∐
{C:X∈C}

BC . This is clearly possible, given the condition above on the representation of Oζ

on SIcusp(G, ζ)0. The same condition, with X 6= 0, allows us to choose orthogonal bases

BX of the spaces SIcusp(G, ζ)X , partitions

BX =
∐

{C∈CE : X∈C}

BX
C ,

and bijections

βX
C : BC −→ BX

C , C ∈ CE , X ∈ C,

which are norm preserving and compatible with the action of Oζ . The last condition, in

more precise terms, is that any α ∈ Oζ maps BX
C bijectively to BαX

αC , and satisfies

αβX
C α

−1 = βαX
αC .

We can now construct the required orthogonal basis of SIcusp(G, ζ). It will be

parametrized by the set of triplets

φ = (C, b, µ) , C ∈ CE , b ∈ BC , µ ∈ Ĉ.

The function in SIcusp(G, ζ) corresponding to φ = (C, b, µ) is defined to be

Sφ =
∑

X∈C

µ(X)βX
C (b) .

If φ′ = (C ′, b′, µ′) is another triplet, the inner product (Sφ, Sφ′) vanishes by construction

unless C ′ = C and b′ = b, in which case it equals

∑

X∈C

(
βX

C (b), βX
C (b)

)
µ(X)µ′(X) = (b, b)

∑

X

µ(X)µ′(X)

= (b, b)δ(µ, µ′) .
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It follows that the family of functions {Sφ} obtained in this way is an orthogonal set. Any

element in BX
C is of the form βX

C (b), and can be written as

|C|−1
∑

µ∈Ĉ

µ(X)−1S(C,b,µ) .

Since the union over C and X of the sets BX
C spans SIcusp(G, ζ), so does our family {Sφ}.

Therefore, {Sφ} is an orthogonal basis.

Finally, consider elements λ ∈ Â and α ∈ Oζ . If φ = (C, b, µ), we have

(Sφ)λ =
∑

X∈C

λ(X)µ(X)βX
C (b) =

∑

X

(λµ)(X)βX
C (b) = Sφλ

,

where φλ = (C, b, λµ). Moreover,

α(Sφ) =
∑

X∈C

µ(X)α
(
βX

C (b)
)

=
∑

X

(αµ)(αX)βαX
αC (αb) = Sαφ ,

where αφ = φα−1 = (αC, αb, αµ). It follows that the group O+
ζ = Â o Oζ acts by

permutation on our basis {Sφ}. The construction is complete. �

If Λ = (λ, α) is an element in O+,

ζΛ(z) = ζ
(
α(z)

)
eλ(HG(α(z))) , z ∈ Z(F ),

is another character on Z(F ). For any φ ∈ Φ2(G, ζ), the function

σ −→ S
(
φ, α(σ)

)
eλ(HG(α(σ))) , σ ∈ Σell(G),

is ζΛ-equivariant under translation by Z(F ). We shall denote the function by S(φΛ, σ).

Thus, if we define a new indexing set formally by

Φ2(G, ζΛ) = {φΛ : φ ∈ Φ2(G, ζ)} ,

we obtain a corresponding family of functions

σ −→ S(φ, σ) , φ ∈ Φ2(G, ζΛ).
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In this way, we construct a family of functions for each character of Z(F ) in the O+-orbit

of ζ. Carrying out the process for every O+-orbit, we obtain sets Φ2(G, ζ) in which ζ

varies over all the characters of Z(F ). The disjoint union

Φ2(G) =
∐

ζ

Φ2(G, ζ)

parametrizes a larger family of functions

σ −→ S(φ, σ) , φ ∈ Φ2(G),

on Σell(G), which has the following properties.

(S1) The group O+ operates on Φ2(G), and

S(φΛ, σ) = S
(
φ, α(σ)

)
eλ(HG(α(σ))) , Λ = (λ, α) ∈ O+.

(S2) If φ belongs to a subset Φ2(G, ζ) of Φ2(G), then

S(φ, σz) = S(φ, σ)ζ(z) , z ∈ Z(F ).

(S3) For any character ζ of Z(F ), the functions

σ −→ n(σ)S(φ, σ) , φ ∈ Φ2(G, ζ),

form an orthogonal basis of SIcusp(G, ζ).

Having fixed Φ2(G) and its associated family of functions, we define

aG(φ) =

∫

Σell(G)

S(φ, σ)aG(σ)dσ , φ ∈ Φ2(G),

for any function aG ∈ SIcusp(G). This allows us to identify SIcusp(G) with a space of

functions on Φ2(G). As was the case with Tell(G), the action φ→ φλ of ia∗G makes Φ2(G)

into a disjoint union of compact tori of the form

ia∗G,φ = ia∗G/a
∨
G,φ ,
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where a∨G,φ is the stabilizer of φ in ia∗G. By expanding aG in terms of the orthogonal bases

{n(σ)S(φ, σ)}, we see easily that SIcusp(G) becomes the Paley-Wiener space on Φ2(G);

that is, the space of functions on Φ2(G) which are supported on finitely many connected

components, and which on the component of any φ, pull back to a finite Fourier series on

ia∗G,φ. In particular, functions in SIcusp(G) extend to the complexification

Φ2(G)C = {φλ : φ ∈ Φ2(G), λ ∈ a∗G,C} ,

which, as an abstract indexing set, parametrizes the functions

{S(φλ, σ) = S(φ, σ)eλ(HG(σ)) : σ ∈ Σell(G)} .

It is easy to describe the spectral form of the inner product on SIcusp(G). We define a

measure on Φ2(G) by setting

∫

Φ2(G)

β(φ)dφ =
∑

φ∈Φ2(G)/ia∗
G

∫

ia∗
G,φ

β(φλ)dλ ,

for any function β ∈ Cc

(
Φ2(G)

)
. For any φ ∈ Φ2(G), set

n(φ) =

∫

Σell(G/Z)

n(σ)S(φ, σ)S(φ, σ)dσ ,

the inner product of the function in (S3) with itself. Then the inner product on SIcusp(G)

becomes

(aG, bG) =

∫

Φ2(G)

n(φ)−1aG(φ)bG(φ)dφ , aG, bG ∈ SIcusp(G).

The parameters in Φ2(G) are only the cuspidal elements in a larger set Φ(G). We

can apply the construction of Lemma 5.1 to any Levi subgroup M , relative to the central

induced torus ZM = AMZ, and any finite group of outer automorphisms OM that contains

the Weyl group W (M), and normalizes ZM . We then define

Φ(G) =
∐

{M}

(
Φ2(M)/W (M)

)
, (5.1)
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a disjoint union over the orbits of L/W0 as in (4.1), (1.2) and (1.1). We introduce the

natural measure on Φ(G) by setting

∫

Φ(G)

β(φ)dφ =
∑

{M}

|W (M)|−1

∫

Φ2(G)

β(φM )dφM ,

for any β ∈ Cc

(
Φ(G)

)
. Similarly, we can define measures on the spaces

Φ(G, ζ) =
∐

{M}

(
Φ2(M, ζ)/W (M)

)
,

in terms of our measures on spaces {aG
M}. We define the complex spaces Φ(G)C and

Φ(G, ζ)C as before, and we write Φpar(G)C, Φpar(G, ζ), Φpar(G) etc., for the complements

of Φ2(G)C, Φ2(G, ζ)C and Φ2(G) in corresponding ambient spaces. We shall get to the

study of functions on Φ(G) in Section 6.

We now remove the hypothesis that G is quasi-split. We apply the construction of

Lemma 5.1 to each of the quasi-split groups G′ ∈ Eell(G), relative to the finite group

OutG(G′) of outer automorphisms of G′. In this case we shall write

Φ2(G̃
′, G) = Φ2(G̃

′, ζ̃ ′)/OutG(G′)

for the set of OutG(G′)-orbits in Φ2(G̃
′, ζ̃ ′). More generally, suppose that O is a finite

group of outer automorphisms of G over F , which has been embedded into the group of

outer automorphisms of G(F ). Then O acts as a group of Γ-invariant outer automorphisms

of Ĝ, and therefore acts on Eell(G). Let O′ be the stabilizer of G′ in O. Then O′ normalizes

OutG(G′), and

OutG(G′) o O′

is a finite group of outer automorphisms of G′. We obtain a family

Φ2(G̃
′, G)/O′ = Φ2(G̃

′, ζ̃ ′)/OutG(G′) o O′
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of O′-orbits in Φ2(G̃
′, G). We assume that for each G′ ∈ Eell(G), the corresponding pa-

rameter set has been fixed. We would like to describe the linear isometry

T E : Icusp(G) −→ IE
cusp(G)

of Proposition 3.5 in spectral terms.

Let f be an arbitrary function in Hcusp

(
G(F )

)
. For any G′ ∈ Eell(G), f ′ is a function

in

SIcusp(G̃′, G) = SIcusp(G̃′, ζ̃ ′)OutG(G′) ,

and f ′(φ′) is defined for every φ′ ∈ Φ2(G̃
′, G). As a linear form in f , f ′(φ′) can certainly

be written in terms of the virtual characters fG(τ). We obtain an expansion

f ′(φ′) =
∑

τ∈Tell(G)

∆(φ′, τ)fG(τ) , (5.2)

for uniquely determined coefficients

∆(φ′, τ) = ∆G(φ′, τ) , φ′ ∈ Φ2(G̃
′, G), τ ∈ T̃ell(G),

such that

∆(φ′, zττ) = χτ (zτ )∆(φ′, τ) , zτ ∈ Zτ .

We continue to work with an underlying central induced torus Z of G over F , which

contains AG and is normalized by O. If τ belongs to Tell(G, ζ), for a character ζ of Z(F ),

it follows easily from (2.1) that ∆(φ′, τ) vanishes unless φ′ belongs to Φ2(G̃
′, ζ̃ ′ζ). From

(2.2) we obtain the identity

∆(φ′, τ) = ∆(φ′λ′ , τλ)

for any λ ∈ ia∗G. More generally, suppose that Λ = (λ, α) belongs to the semi-direct

product of ia∗G with OutG(G′) o O′, and that Λ′ = (λ′, α). Then

∆(φ, τ) = ∆(φ′Λ′ , τΛ) . (5.3)
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The set T̃ell(G) parametrizes an orthogonal basis of Icusp(G) (modulo the actions of

Zτ and Z(F )). Let us define

T E
ell(G) = {(G′, φ′) : G′ ∈ Eell(G), φ′ ∈ Φ2(G̃

′, G)} .

Then T E
ell(G) parametrizes an orthogonal basis of IE

cusp(G) (again up to the action of Z(F )).

The coefficients {∆(φ, τ)} give the matrix of the transfer map T E with respect to these

bases. It is a straightforward matter to describe the matrix of the adjoint map (T E)∗.

Arguments similar to those of the proof of Proposition 3.5 establish that if aEG =
⊕
G′

a′ is

any function in IE
cusp(G), the adjoint function

aG = (T E)−1(aEG) = (T E)∗(aEG)

is given by

aG(τ) =
∑

φ′∈TE
ell

(G)

∆(τ, φ′)aEG(φ′) , (5.4)

where

∆(τ, φ′) =
∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ

∣∣−1
n(τ)n(φ′)−1∆(φ′, τ) . (5.5)

Lemma 5.2. Both ∆(τ, φ′) and ∆(φ, τ) have finite support in φ′ for fixed τ , and finite

support in τ for fixed φ′. Moreover,

∑

φ′∈TE
ell

(G)

∆(τ, φ′)∆(φ′, τ1) = δ̃(τ, τ1), τ, τ1 ∈ T̃ell(G), (5.6)

and
∑

τ∈Tell(G)

∆(φ′, τ)∆(τ, φ′1) = δ(φ′, φ′1), φ′, φ′1 ∈ T E
ell(G), (5.7)

for Kronecker delta functions δ̃(τ, τ1) and δ(φ′, φ′1) analogous to those of Section 2.

Proof. Fix τ ∈ T̃ell(G). Then ∆(φ′, τ) will vanish unless φ′ and τ have the same central

character on Z(F ). That is, the central character of φ′ on (Z̃ ′Z)(F ) must be equal to the
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product of ζ̃ ′ with the central character of τ on Z(F ). Let aG ∈ Icusp(G) be a pseudo-

coefficient of τ . By this we mean that aG is supported on the (Zτ × ia∗G)-orbit of τ , and

that

aG(τ1) =

{
χτ (zτ )−1, if τ1 = zττ , zτ ∈ Zτ ,
0, otherwise,

if τ1 is any element in the (Zτ × ia∗G)-orbit of τ with the same Z(F )-central character as

τ . Then aEG = T EaG lies in IE
cusp(G), and is supported on finitely many components in

T E
ell(G). Since there are only finitely many φ′ in any component with the same Z(F )-central

character as τ , the definition (5.2) tells us that ∆(φ′, τ) vanishes for all but finitely many

φ′. On the other hand, if we take aEG to be a pseudo-coefficient of a fixed pair (G′, φ′) in

T E
ell(G), we see from (5.4) that ∆(τ, φ′) has finite support in τ . The first assertion of the

lemma then follows in all cases from (5.5).

Since T E is a linear isometry, the matrices {∆(φ′, τ)} and {∆(τ, φ′)} are the inverses

of each other. The second assertion of the lemma follows. �

We shall need the spectral analogue of the change of variables in Lemma 2.3. Our set

T E
ell(G) inherits a measure from the quotient measures on the sets Φ2(G̃

′, G).

Lemma 5.3. Suppose that β ∈ Cc

(
T E

ell(G)
)
, and that α ∈ C

(
T̃ell(G)

)
is such that the

product ∆(φ′, τ)α(τ) descends to a function of τ ∈ Tell(G). Then

∫

Tell(G)

∑

φ′∈TE
ell

(G)

β(φ′)∆(φ′, τ)α(τ)dτ =

∫

TE
ell

(G)

∑

τ∈Tell(G)

β(φ′)∆(φ′, τ)α(τ)dφ′ .

Proof. According to the definition of the measure dτ , we can decompose the left hand side

of the required identity into an expression

∑

τ

∫

ia∗
G

/ã∨
G,F

∑

λ1

∑

φ′

∑

µ

∑

µ1

β(φµ+µ1
)∆(φ′µ+µ1

, τλ+λ1
)α(τλ+λ1

)dλ ,

with sums over τ ∈ Tell(G)/ia∗G, λ1 ∈ ã∨G,F /a
∨
G,τ , φ′ ∈ T E

ell(G)/ia∗G, µ ∈ ia∗G/ã
∨
G,F and

µ1 ∈ ã∨G,F /a
∨
G,φ′ . Recall that the transfer factor ∆(φ′

µ+µ1
, τλ+λ1

) vanishes unless φ′µ+µ1
and
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τλ+λ1
have the same central character on Z(F ). The central characters remain invariant

under translation of the elements µ1 and λ1. On the other hand, if we choose φ′ and τ so

that they have the same central character, we see that the sum over µ reduces to the one

element µ = λ. The expression becomes

∑

(τ,φ′)

∫

ia∗
G

/ã∨
G,F

∑

λ1,µ1

β(φ′λ+µ1
)∆(φ′λ+µ1

, τλ+λ1
)α(τλ+λ1

)dλ ,

where (τ, φ′) is summed over pairs in
(
Tell(G) × T E

ell(G)
)
/ia∗G with a common central

character on Z(F ). From its obvious symmetry, we conclude that the expression must also

be equal to the right hand side of the required identity. The identity is therefore valid.

�

The basis of Icusp(G) given by T̃ell(G) is contained in the larger basis of I(G)

parametrized by T̃ (G). We would like to parametrize a parallel “endoscopic basis” by

a set that contains T E
ell(G). The process is similar to the construction of the set Γ̃E(G) at

the end of Section 2. Recalling that

T̃ (G) =
∐

{M}

(
T̃ell(M)/W (M)

)
,

we simply define

T E(G) =
∐

{M}

(
T E

ell(M)/W (M)
)
. (5.8)

In more direct terms, T E(G) is the union over the W0-orbits {M} in L, and the W (M)-

orbits {M ′} in Eell(M), of parameter sets

Φ2(M̃
′,M)/W (M)′ = Φ2(M̃

′, ζ̃ ′)/OutM (M ′) oW (M)′ ,

where W (M)′ = W (M)M ′

denotes the stabilizer of M ′ in W (M). It is a disjoint union

of compact connected spaces, each of which is a quotient of a compact torus by a finite

group. We are of course assuming that for each M ′, Φ2(M̃
′, ζ̃ ′) has been chosen according

to Lemma 5.1, as a set on which the group OutM (M ′) oW (M)′ acts by permutation.
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We next extend the definition of the spectral transfer factors to elements φ′ and τ in the

larger sets T E(G) and T̃ (G). We define ∆(φ′, τ) and ∆(τ, φ′) to be zero unless there is anM

such that (φ′, τ) belongs to the Cartesian product of T E
ell(M)/W (M) with T̃ell(M)/W (M).

If there is such an M , (φ′, τ) is the image of a pair (φ′
M , τM ) in T E

ell(M)× T̃ell(M). In this

case, we set

∆(φ′, τ) = ∆G(φ′, τ) =
∑

τ̃M

∆M (φ′M , τ̃M )

and

∆(τ, φ′) = ∆G(τ, φ′) =
∑

φ̃′
M

∆M (φ̃′M , τM ) ,

where τ̃M and φ̃′M are summed over the respective Weyl orbits W (M)τM and W (M)φ′M .

It follows from (5.3) and (5.5) that the two sums are independent of the representatives

φ′M and τM . If we apply (5.6) and (5.7) to each M , we obtain general inversion formulas

∑

φ′∈TE(G)

∆(τ, φ′)∆(φ′, τ1) = δ̃(τ, τ1), τ, τ1 ∈ T̃ (G), (5.9)

and
∑

τ∈T (G)

∆(φ′, τ)∆(τ, φ′1) = δ(φ, φ′1), φ′, φ′1 ∈ T E(G), (5.10)

on T̃ (G) and T E(G). Observe that T E(G) is a disjoint union of subsets T E(G, ζ)

parametrized by the characters ζ of Z(F ). The transfer factor ∆(φ′, τ) will vanish un-

less φ′ and τ belong to corresponding subsets T E(G, ζ) and T̃ (G, ζ).

Finally, we define the complex spaces

T E(G)C =
∐

{M}

(
T E

ell(M)C/W (M)
)

and

T E(G, ζ)C =
∐

{M}

(
T E

ell(M, ζ)C/W (M)
)
.
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There is an obvious way to extend the transfer factors to functions on T̃ (G)C × T E(G)C.

For example, given τ ∈ T̃ell(G), φ′ ∈ T E
ell(G) and λ, µ ∈ a∗G, we define

∆(φ′λ, τµ) =

{
∆(φ′, τ), if λ = µ,
0, if λ 6= µ.

The inversion formulas (5.9) and (5.10) then hold for elements in the sets T̃ (G)C and

T E(G)C. As before, we shall write T E
par(G)C, T E

par(G, ζ)C, T E
par(G) etc., for the complements

of T E
ell(G)C, T E

ell(G, ζ)C and T E
ell(G) in the corresponding ambient spaces.

This is of course quite analogous to the discussion of the geometric transfer factors.

As in the geometric case, we often want to focus on the subset of T E(G) attached to a

given G′ ∈ Eell(G). There is a natural map from the set Φ(G̃′, ζ̃ ′) into T E(G), whose image

we shall denote by Φ(G̃′, G). Then Φ(G̃′, G) is a union of connected components of T E(G).

Observe that the intersection

Φ(G̃′, G, ζ) = Φ(G̃′, G) ∩ T E(G, ζ)

equals the image of Φ(G̃′, ζ ′ζ) in T E(G, ζ). Similarly, we define subsets Φ(G̃′, G)C and

Φ(G̃′, G, ζ)C of T E(G)C and T E(G, ζ)C attached to G′. If we take the elements φ′ above

from any one of these subsets, we get spectral transfer factors for the pair (G,G′).

6. Statement of two theorems

We described the map f → f ′ from H
(
G(F )

)
to SI(G̃′, ζ̃ ′). It is defined by the transfer

of orbital integrals. We can also define a map f → f ′
gr from H

(
G(F )

)
to SIgr(G̃

′, ζ̃ ′) by a

transfer of characters. The problem is to relate the two maps.

For the appropriate level of generality, we need to fix an induced central torus Z of

G over F , and a character ζ of Z(F ). Suppose for a moment that G is quasi-split. As we

agreed in the last section, SIcusp(G, ζ) can be regarded as a space of functions on either
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Σell(G) or Φ2(G, ζ). In particular, it can be identified with the natural Paley-Wiener space

on Φ2(G, ζ). The larger graded vector space

SIgr(G, ζ) =
⊕

{M}

SIcusp(M, ζ)W (M)

can therefore be identified with the natural Paley-Wiener space on the set

Φ(G, ζ) =
∐

{M}

(
Φ2(M, ζ)/W (M)

)
.

For any f ∈ H
(
G(F ), ζ

)
, we define a function

fG
gr(φ) =

∑

τ∈T (G,ζ)

∆(φ, τ)fG(τ), φ ∈ Φ(G, ζ), (6.1)

on Φ(G, ζ). Then f → fG
gr is a continuous map from H

(
G(F ), ζ

)
to SIgr(G, ζ). In the

case of general G, we have an induced central torus Z̃ ′Z in G̃′ and a character ζ̃ ′ζ on

(Z̃ ′Z)(F ) for each G′ ∈ Eell(G), and we identify the graded vector space SIgr(G̃
′, ζ̃ ′ζ) with

the Paley-Wiener space on Φ(G̃′, ζ̃ ′ζ). For any f ∈ H(G, ζ), we again define a function

f ′
gr(φ

′) =
∑

τ∈T (G,ζ)

∆(φ′, τ)fG(τ), φ′ ∈ Φ(G̃′, ζ̃ ′ζ), (6.2)

on Φ(G̃′, ζ̃ ′ζ). Then f → f ′
gr is a continuous linear map from H

(
G(F ), ζ)

)
to SIgr(G̃

′, ζ̃ ′ζ).

Theorem 6.1. Suppose that G is quasi-split and that φ ∈ Φ(G, ζ). Then the linear form

f −→ fG
gr(φ) , f ∈ H

(
G(F ), ζ

)
,

is stable.

The theorem asserts that any element φ ∈ Φ(G, ζ) determines a stable, ζ-equivariant

distribution onG(F ). The distribution has then to factor through the transfer map f → fG

of H
(
G(F ), ζ

)
to I(G, ζ). We shall denote the corresponding linear form on I(G, ζ) by

fG(φ). In other words, once we have proved the theorem we shall define

fG(φ) = fG
gr(φ), φ ∈ Φ(G, ζ), (6.3)

for any f ∈ H
(
G(F ), ζ)

)
.
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Theorem 6.2. Suppose that G is arbitrary, that G′ ∈ Eell(G), and that

φ′ ∈ Φ(G̃′, ζ̃ ′ζ). Then

f ′(φ′) = f ′
gr(φ

′) ,

for any f ∈ H
(
G(F ), ζ

)
.

The special case that G is quasi-split and G′ = G is just the definition above. The

general case is a separate question, however, since the maps f ′ and f ′
gr are not obviously

related. Before beginning the proofs, we shall discuss a few elementary consequences of

the theorems.

If G is quasi-split, Theorem 6.1 asserts that the map f → fG
gr factors through the

original transfer f → fG. We obtain a continuous linear map aG → aG
gr from SI(G, ζ)

to SIgr(G, ζ). The map is compatible with the filtrations on the two spaces, and for any

M , induces the canonical isomorphism of GM
(
SI(G, ζ)

)
with Icusp(M, ζ)W (M). The map

is therefore a linear isomorphism of SI(G, ζ) with SIgr(G, ζ), and induces a grading on

SI(G, ζ) which is compatible with the filtration. Once the theorem has been established,

we will be able to drop the subscript gr. In other words, we will identify SI(G, ζ) with

SIgr(G, ζ) by means of the map aG → aG,gr. In particular, an element in SI(G, ζ) will be

regarded as a function on either Σ(G) or Φ(G, ζ).

Consider the general case, with a fixed element G′ ∈ Eell(G). Then

FM
(
SI(G̃′, ζ̃ ′ζ)

)
=

∑

M ′∈(Eell(M)∩LG′
)/W (M)

FM ′(
SI(G̃′, ζ̃ ′ζ)

)

is a filtration on SI(G̃′, ζ̃ ′ζ) which is indexed by the elements {M} ∈ L/W0. The original

transfer mapping f → f ′ determines a linear transformation aG → a′ from I(G, ζ) to

SI(G̃′, ζ̃ ′ζ) which is compatible with the filtrations on the two spaces. On the other

hand, the mapping f → f ′
gr determines a linear transformation aG → a′gr from I(G, ζ) to

SI(G̃′, ζ̃ ′ζ) which is compatible with the associated gradings. Theorem 6.2 asserts that
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the two maps are the same. In particular, the original transfer map is compatible with the

gradings we have defined on the two spaces.

There is an equivalent way to say these things. At the end of Section 3 we defined

a space of functions IE (G, ζ) on Γ̃E(G). We also defined a linear isomorphism aG → aEG

from I(G, ζ) onto IE(G, ζ) by the transfer of orbital integrals. Following our discussion of

the space IE
cusp(G) in Section 5, we may regard the graded vector space

IE
gr(G, ζ) =

⊕

{M}

IE
cusp(M, ζ)W (M)

associated with IE (G, ζ) as the Paley-Wiener space on

T E(G, ζ) =
∐

{M}

(
T E

ell(M, ζ)/W (M)
)
.

We earlier agreed to write

I(G, ζ) =
⊕

{M}

Icusp(M, ζ)W (M) ,

thereby identifying I(G, ζ) with the Paley-Wiener space on

T (G, ζ) =
∐

{M}

(
Tell(M, ζ)/W (M)

)
.

We can therefore map I(G, ζ) to IE
gr(G, ζ) by a transfer of characters. Using the transfer

factors introduced in Section 5, we map any function aG ∈ I(G, ζ) to the function

aEG,gr(φ
′) =

∑

τ∈T (G,ζ)

∆(φ′, τ)aG(τ) (6.4)

on T E(G, ζ). Then

T E
gr : aG −→ aEG,gr

is a continuous linear isomorphism from I(G, ζ) onto IE
gr(G, ζ), whose inverse is given by

aG(τ) =
∑

φ′∈TE(G,ζ)

∆(τ, φ′)aEG,gr(φ
′) . (6.5)
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Consider an element G′ ∈ Eell(G). Then Σ(G̃′, G) is a closed subset of Γ̃E(G), and the

subspace SI(G̃′, G, ζ) of SI(G̃′, ζ̃ ′ζ) is simply the space of functions on Σ(G̃′, G) obtained

by restricting functions in IE(G, ζ). In particular, for any f ∈ H
(
G(F ), ζ

)
, f ′ is just

the restriction of fE
G from Γ̃E(G) to Σ(G̃′, G). Moreover, Φ(G̃′, G, ζ) is a closed subset

of T E(G, ζ), and the subspace SIgr(G̃
′, G, ζ) of SIgr(G̃

′, ζ̃ ′ζ) is the space of functions on

Φ(G̃′, G, ζ) obtained by restricting functions in IE
gr(G, ζ). In particular, f ′

gr is the restriction

of fE
G,gr from T̃ E(G, ζ) to Φ(G̃′, G, ζ). Theorem 6.1, applied to G′, allows us to identify

the space SI(G̃′, G, ζ) with SIgr(G̃
′, G, ζ). Since Γ̃E (G) and T E(G, ζ) are each unions

over G′ of the associated closed subsets, we can therefore identify IE (G, ζ) with the space

IE
gr(G, ζ). Theorem 6.2 then tells us that the maps T E : aG → aEG and T E

gr : aG → aEG,gr can

also be identified. Once again, we drop the subscripts gr. An element aEG ∈ IE (G, ζ) is to

be regarded as a function on either Γ̃E (G) or T E(G, ζ). If aEG is the image of an element

aG ∈ I(G, ζ) under the map defined in Section 3 by the transfer of orbital integrals, the

values {aG(τ)} and {aEG(φ′)} will be related by (6.4) and (6.5).

Another way to view Theorems 6.1 and 6.2 is through the group theoretic analogue

of Waldspurger’s kernel formula [28, 1.2]. There are actually two such analogues. One is

a family of relations for the virtual characters {I(τ, γ)}. By definition,

I(τ, γ) = IG
G (τ, γ)

is the smooth function on T̃ (G, ζ) × Γ(G) such that

fG(τ) =

∫

Γ(G/Z)

I(τ, γ)fG(γ)dγ, f ∈ H
(
G(F ), ζ

)
. (6.6)

The other is a family of relations for the adjoint functions {I(γ, τ)} introduced in [4,

Section 4]. By construction,

I(γ, τ) = IG
G (γ, τ)
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is a smooth function on Γ(G) × T̃ (G, ζ) such that

fG(γ) =

∫

T (G,ζ)

I(γ, τ)fG(τ)dτ, f ∈ H
(
G(F ), ζ

)
. (6.7)

(This is the special case of [4, Theorem 4.1 (4.1)] in which M = G. The kernels

τ −→ IM (γ, τ) , τ ∈ T̃disc(L), L ∈ L,

of [4] are then supported on the subsets T̃ell(L) of T̃disc(L), and can be put together as a

single smooth function on T̃ (G). The kernel here actually differs from the one in [4] by a

factor |Rσ,r|, since our measure on Tell(G) differs from the one in [3, (3.5)] by the same

factor.) Since we are restricting τ to the subset T̃ (G, ζ), the functions I(τ, γ) and I(γ, τ)

are respectively ζ and ζ−1-equivariant under translation of γ by Z(F ).

We shall state and prove the relations as a corollary of the two theorems. However,

we must first construct the stable versions of the functions I(τ, γ) and I(γ, τ).

Lemma 6.3. Suppose that G is quasi-split and that Theorem 6.1 holds for G. Then

there are smooth functions S(φ, σ) = SG
G(φ, σ) and S(σ, φ) = SG

G(σ, φ) of φ ∈ Φ(G, ζ) and

σ ∈ Σ(G), which are respectively ζ and ζ−1-equivariant under translation of σ by Z(F ),

such that

fG(φ) =

∫

Σ(G/Z)

S(φ, σ)fG(σ)dσ (6.8)

and

fG(σ) =

∫

Φ(G,ζ)

S(σ, φ)fG(φ)dφ , (6.9)

for any f ∈ H
(
G(F ), ζ

)
.

Proof. The arguments required to construct the two functions are dual to each other, so it

will be enough to deal with the second one. Fix σ ∈ Σ(G). Then for any f ∈ H
(
G(F ), ζ

)
,

we have
fG(σ) =

∑

γ∈Γ(G)

∆(σ, γ)fG(γ)

=

∫

T (G,ζ)

( ∑

γ∈Γ(G)

∆(σ, γ)I(γ, τ)
)
fG(τ)dτ .
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Since we are assuming that Theorem 6.1 holds, we can identify SI(G, ζ) with SIgr(G, ζ).

In particular, fG(σ) depends only on the function fG(φ) on Φ(G, ζ). But fG(φ) is the

restriction of fE
G,gr, a function in the Paley-Wiener space on T E(G, ζ), to the closed subset

Φ(G, ζ) of T E(G, ζ). Since Φ(G, ζ) is also open in T E(G, ζ), we can in fact assume that

fE
G,gr is supported on Φ(G, ζ). Therefore

fG(τ) =
∑

φ∈Φ(G,ζ)

∆(τ, φ)fG(φ) .

We substitute this into the formula above. By a variant of Lemma 5.3, we can convert the

sum over φ and the integral over τ into a sum over τ and an integral over φ. Formula (6.9)

follows, with

S(σ, φ) =
∑

γ∈Γ(G)

∑

τ∈T (G,ζ)

∆(σ, γ)I(γ, τ)∆(τ, φ) .

The ζ−1-equivariance of σ → S(σ, φ) follows from (2.1) and the corresponding property of

I(γ, τ). �

We remark that if φ ∈ Φ2(G, ζ), the restriction of the first function S(φ, σ) to elements

σ in Σell(G) is just the original function constructed in Proposition 5.1. Its extension to

Σ(G) is determined by the extensions of the elliptic virtual characters γ → I(τ, γ) from

Γell(G) to Γ(G).

Suppose now that G is arbitrary, and that Theorem 6.1 holds for each quasi-split

group G̃′, for G′ ∈ Eell(G). We shall write

S′(·, ·) = SG̃′

G̃′
(·, ·)

for the functions of σ′ ∈ ΣG(G̃′) and φ′ ∈ Φ(G̃′, ζ̃ ′ζ) given by the last lemma. The two

theorems together then have the following corollary.
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Corollary 6.4. Suppose that G′ ∈ Eell(G). Then

∑

τ∈T (G,ζ)

∆(φ′, τ)I(τ, γ) =
∑

σ′∈ΣG(G′)

S′(φ′, σ′)∆(σ′, γ) , (6.10)

for any φ′ ∈ Φ(G̃′, ζ̃ ′ζ) and γ ∈ Γ(G), while

∑

γ∈Γ(G)

∆(σ′, γ)I(γ, τ) =
∑

φ′∈Φ(G̃′,ζ̃′ζ)

S′(σ′, φ′)∆(φ′, τ) , (6.11)

for any σ ∈ ΣG(G̃′) and τ ∈ T̃ (G, ζ).

Proof. Observe that the summand on the right hand side of the first identity does indeed

depend only on the image of σ′ in the quotient ΣG(G′) of ΣG(G̃′) by Z̃ ′(F ). This follows

from (2.1) and the ζ̃ ′-equivariance of S′(φ′, σ′). The two identities are dual to each other,

and it will be enough to prove the second one.

At first we shall assume only that Theorem 6.1 holds for the quasi-split group G̃′. Fix

σ′ ∈ ΣG(G̃′). Then for any f ∈ H
(
G(F ), ζ

)
, we have

f ′(σ′) =
∑

γ∈Γ(G)

∆(σ′, γ)fG(γ)

=

∫

T (G,ζ)

( ∑

γ∈Γ(G)

∆(σ′, γ)I(γ, τ)
)
fG(τ)dτ .

In addition to f ′, we have the function f ′
gr, which belongs to a space SIgr(G̃

′, ζ̃ ′ζ) that we

have agreed to identify with SI(G̃′, ζ̃ ′ζ). The value f ′
gr(σ

′) is therefore defined. It is given

by

f ′
gr(σ

′) =

∫

Φ(G̃′,ζ̃′ζ)

S′(σ′, φ′)f ′
gr(φ

′)dφ′

=

∫

Φ(G̃′,ζ̃′ζ)

∑

τ∈T (G,ζ)

S′(σ′, φ′)∆(φ′, τ)fG(τ)dφ′ .

By a straightforward variant of Lemma 5.3, we can rewrite this last expression in the form

∫

T (G,ζ)

( ∑

φ′∈Φ(G̃′,ζ̃′ζ)

S′(σ′, φ′)∆(φ′, τ)
)
fG(τ)dτ .
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We conclude that

f ′(σ′) − f ′
gr(σ

′) =

∫

T (G,ζ)

F (σ′, τ)fG(τ)dτ ,

where

F (σ′, τ) =
∑

γ∈Γ(G)

∆(σ′, γ)I(γ, τ)−
∑

φ′∈Φ(G̃′,ζ̃′ζ)

S′(σ′, φ′)∆(φ′, τ) . (6.12)

Now assume that Theorem 6.2 also holds. The two functions f ′ and f ′
gr in

SI
(
G̃′(F ), ζ̃ ′ζ

)
then take the same values at any φ′, and are therefore equal. Thus

∫

T (G,ζ)

F (σ′, τ)fG(τ)dτ = 0

for any f ∈ H
(
G(F ), ζ

)
. It follows that F (σ′, τ) vanishes for every σ′ and τ . This

establishes the identity (6.11). The derivation of the other identity (6.10) is similar. �

Having discussed some ramifications of the two theorems, we can now begin their

proof. It will occupy most of the rest of the paper. We shall always assume that our

induced torus contains AG, since we can convert our results to the case of a smaller torus

by taking a Fourier transform in ζ. We shall also assume inductively that both theorems

hold if G is replaced by a group of smaller dimension. We begin by showing that with this

assumption, the theorems hold for elements φ and φ′ which are not cuspidal. We will then

deal with the cuspidal case in Sections 8 and 9.

Suppose first that G is quasi-split. Assume that φ lies in the complement Φpar(G, ζ)

of Φ2(G, ζ) in Φ(G, ζ). Then φ is the image of an element φM ∈ Φ2(M, ζ), for a proper

Levi subgroup M of G. Then

fG
gr(φ) =

∑

τ∈T (G,ζ)

∆(φ, τ)fG(τ) =
∑

τ

( ∑

τM→τ

∆M (φM , τM )
)
fG(τ)

=
∑

τM∈Tell(M,ζ)

∆M (φM , τM)fM (τM ) = fM
gr (φM ) ,

since fG(τ) = fM (τM ). Applying Theorem 6.1 inductively to the proper Levi subgroup

M , we conclude that

fM −→ fM
gr (φM ) = fM (φM ) , fM ∈ H

(
M(F ), ζ

)
,
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is a stable distribution on M(F ). Since the pullback under the map fG → fM of a stable

distribution on M(F ) is a stable distribution on G(F ), we see that

fG −→ fG
gr(φ) = fG(φ) , f ∈ H

(
G(F ), ζ

)
,

is a stable distribution on G(F ). This establishes Theorem 6.1 for the element φ ∈

Φpar(G, ζ). Observe that by construction, fG(φ) equals fM (φM ).

Now suppose that G is arbitrary, that G′ ∈ Eell(G) is given, and that φ′ lies in the

complement Φpar(G̃
′, G, ζ) of Φ2(G̃

′, G, ζ) in Φ(G̃′, G, ζ). Then φ′ is the image of an element

φ′M ∈ Φ2(M̃
′,M, ζ), for proper Levi subgroups M ′ $ G′ and M $ G, with M ′ ∈ Eell(M).

We have

f ′
gr(φ

′) =
∑

τ∈T (G,ζ)

∆(φ′, τ)fG(τ) =
∑

τ

( ∑

τM→τ

∆M (φ′M , τM)
)
fG(τ)

=
∑

τM∈Tell(M,ζ)

∆M (φ′M , τM)fM (τM ) = fM ′

gr (φ′M )

= fM ′

(φ′M ) = fG′

(φ′) ,

by our induction assumption and the quasi-split case just treated. This establishes Theo-

rem 6.2 for the element φ′ ∈ Φpar(G̃
′, G, ζ).

7. Simple trace formulas

It remains to prove the two theorems for cuspidal elements φ and φ′. For this, we

shall need the global trace formula. We shall review the simple version of the ordinary

trace formula [1, Section 7], and the corresponding form of the stable trace formula [21].

We reserve the symbols G and F for the local objects we have been considering. We

shall denote corresponding global objects by the same symbols, augmented by a dot on

top. Thus Ġ stands for a reductive group over a number field Ḟ . We take (Ġ, Ḟ ) to be

any such pair, with the property that (Ġu, Ḟu) = (G,F ), for some fixed nonArchimedean

valuation u of Ḟ . We fix a central induced torus Ż in Ġ, which is defined over Ḟ and
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contains AĠ. The adèlic quotient Ż(A)Ġ(Ḟ )\Ġ(A) then has finite volume. We also fix a

character ζ̇ on Ż(Ḟ )\Ż(A). Our concern will be the representation of Ġ(A) on the Hilbert

space of ζ̇-equivariant functions on Ġ(Ḟ )\Ġ(A). This is the setting of [21], but is slightly

different from that of [1]. We shall make what minor modification are necessary in the

formulation of [1], without comment.

Having fixed Ġ, Ż and ζ̇, we can form the adèlic Hecke algebra H
(
Ġ(A), ζ̇

)
of smooth

functions on Ġ(A) which are compactly supported modulo Ż(A), and which transform

under Ż(A) according to ζ̇−1. We shall define a subspace of “simple functions”. Let

Hsimp

(
Ġ(A), ζ̇

)
be the subspace of functions in H

(
Ġ(A), ζ̇

)
spanned by functions ḟ =

∏
v
ḟv

such that ḟv is cuspidal at two nonArchimedean places v, and ḟw,Ġ is supported on the

strongly regular elements at one nonArchimedean place w. The global space of invariant

functions I
(
Ġ(A), ζ̇

)
can be defined as a direct limit, over finite sets S of valuations of

Ḟ , of spaces I
(
Ġ(ḞS), ζ̇S

)
[1, Section 1]. There is then a continuous map ḟ → ḟĠ from

H
(
Ġ(A), ζ̇

)
onto I

(
Ġ(A), ζ̇

)
. We write Isimp

(
Ġ(A), ζ̇

)
for the image of Hsimp

(
Ġ(A), ζ̇

)
in

I
(
Ġ(A), ζ̇

)
.

The simple trace formula applies to any function ḟ in Hsimp

(
Ġ(A), ζ̇

)
. It is an identity

∑

γ∈Γell(Ġ/Ż)

aĠ(γ̇)ḟĠ(γ̇) =
∑

ν

∑

π̇∈Πdisc(Ġ,ζ̇,ν)

aĠ
disc(π̇)ḟĠ(π̇) , (7.1)

whose terms we describe. On the left hand side,

Γell(Ġ/Ż) = Γreg,ell

(
Ġ(Ḟ )

)
/Ż(Ḟ )

denotes the set of strongly regular elliptic conjugacy classes in the group (Ġ/Ż)(Ḟ ) =

Ġ(Ḟ )/Ż(Ḟ ), and

ȧĠ(γ̇) = m(γ̇)−1vol
(
Ġγ̇(Ḟ )Ż(A)\Ġγ̇(A)

)
,

where m(γ̇) is the number of points ż ∈ Ż(Ḟ ) such that γ̇ż is Ġ(Ḟ )-conjugate to γ̇. The

global orbital integral ḟĠ(γ̇) is left Ż(Ḟ )-invariant in γ̇, and therefore depends only on
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γ̇ as an element in Γ(Ġ/Ż). On the other side, ν runs over Weyl orbits in the complex

vector space h∗
C of Archimedean infinitesimal characters defined in [1, Section 4]. Thus,

hC is a Cartan subalgebra of the complexified Lie algebra of the real Lie group Ġ∞ =

(ResḞ /QĠ)(R). The coefficients aĠ
disc(π̇) are defined as on p. 517 of [1], while Πdisc(Ġ, ζ̇, ν)

is a set of irreducible representations of Ġ(A) whose central character on Ż(A) equals ζ̇, and

whose Archimedean infinitesimal character equals ν. In particular, the term corresponding

to ν in (7.1) vanishes unless the projection of ν into the Lie algebra of Ż∞ = (ResḞ /QŻ)(R)

coincides with the differential of the Archimedean component ζ̇∞ of ζ̇. (In [1, p. 517], it

is the norm t = ‖Im(ν)‖ which is specified, rather than ν itself.) The convergence of the

right hand side of (7.1) is as an iterated sum; both the inner and the outer sums converge

absolutely. Actually, the results of Müller [24] can be used to show that the right hand side

of (7.1) converges absolutely as a double sum, but the estimates we will use do not require

this stronger assertion. We write I(ḟ) for the linear form on Hsimp

(
Ġ(A), ζ̇

)
defined by

either side of the identity (7.1).

We are trying to deduce local results at the place u. We follow the usual conventions

of using a superscript u to denote a component (relative to A) away from u, as well as

the standard subscript u for a component at u. Thus ζ̇ = ζ̇u ⊗ ζ̇u is the decomposition

of ζ̇ into characters on Ż(Au) and Ż(Ḟu). We shall write ζ = ζ̇u and Z = Żu. We

define the space Hsimp

(
Ġ(Au), ζ̇u

)
of simple functions on Ġ(Au) as above. Then if ḟu

lies in Hsimp(Ġ(Au), ζ̇u
)
, and f = ḟu is an arbitrary function in H

(
G(F ), ζ

)
, the product

ḟ = ḟuf belongs to Hsimp

(
Ġ(A), ζ̇

)
. In what follows, ḟu will generally be fixed while f

will be allowed to vary. To keep track of the dependence on f , we write the left hand side

of (7.1) as

I(ḟ) =
∑

γ∈Γell(G/Z)

I(ḟu, γ)fG(γ) , (7.2)

where

I(ḟu, γ̃) =
∑

γ̇

aĠ(γ̇)ḟu
Ġ
( ˙̃γ

u
) ,
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for any preimage γ̃ of γ in Γell(G). The last sum is over elements γ̇ ∈ Γell(Ġ/Ż) which

have a preimage ˙̃γ ∈ Γell(Ġ) such that ˙̃γu equals γ̃, while the summand in (7.2) depends

only on the element γ in Γell(G/Z).

The right hand side of (7.1) can be written in a similar way. It equals

I(ḟ) =
∑

ν

Iν(ḟ) , (7.3)

where

Iν(ḟ) =
∑

π̇∈Πdisc(Ġ,ζ̇,ν)

aĠ
disc(π̇)ḟĠ(π̇) .

We can certainly write

ḟĠ(π̇) = ḟu
Ġ

(π̇u)fG(π) ,

for irreducible representations π̇u ∈ Π
(
Ġ(Au), ζ̇u, ν

)
and π ∈ Π(G, ζ)C of Ġ(Au) and G(F )

respectively. However, we would like to end up with a sum over τ ∈ T (G, ζ)C rather than

π ∈ Π(G, ζ)C. To this end, we first define new coefficients aĠ
disc(π̇

u, τ) on

Π
(
Ġ(Au), ζ̇u, ν

)
× T̃ (G, ζ)C

by writing Iν(ḟ) in the form

∑

(π̇u,τ)

aĠ
disc(π̇

u, τ)ḟu
Ġ
(π̇u)fG(τ) .

This is possible because fG(π) has a finite expansion in terms of values fG(τ), and because

the original sum over π̇ can be taken over a finite set. We can therefore write

Iν(ḟ) =
∑

τ∈T (G,ζ)C

Iν(ḟu, τ)fG(τ) , (7.4)

where

Iν(ḟu, τ) =
∑

π̇u∈Π(Ġ(Au),ζ̇,ν)

aĠ
disc(π̇

u, τ)ḟu
Ġ
(π̇u) .
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The summand in (7.4) (and in the expression preceding (7.4)) does indeed depend on τ

only as an element in T (G, ζ)C (rather than T̃ (G, ζ)C). We have already noted that the

sum over ν in (7.3) is absolutely convergent. We recall the uniform description [1, Section

6] of this convergence.

The Cartan subalgebra hC is defined [1, Section 4] as the complexification of a real

Lie algebra

h = ihK ⊕ h0

which is invariant under the complex Weyl group W∞ of Ġ∞. In this paper, a multiplier for

Ġ will be a function α in C∞
c (h)W∞ . The Fourier transform α̂ will then be a W∞-invariant

function in the Paley-Wiener space on h∗
C. If ḟ is any function in H

(
Ġ(A), ζ̇

)
, one can

transform the Archimedean components of ḟ by α. This provides a second function ḟα in

H
(
Ġ(A), ζ̇

)
, which is characterized by the property that

ḟα,Ġ(π̇) = α̂(ν)ḟĠ(π̇) ,

for any representation π̇ ∈ Π
(
Ġ(A), ζ̇

)
with Archimedean infinitesimal character equal to

ν. In particular,

Iν(ḟu
α , τ) = α̂(ν)Iν(ḟu, τ) (7.5)

for any ḟu ∈ H
(
Ġ(Au), ζ̇u

)
and τ ∈ T (G, ζ)C. The convergence estimate is given by the

values of α̂ on a subset

h∗
u(ν, T ) = {ν ∈ h∗

u : ‖Re(ν)‖ ≤ r, ‖Im(ν)‖ ≥ T}

of h∗
C. Here h∗

u denotes the set of points ν ∈ h∗
C such that ν = ην for some element

η ∈ W∞θ∞ of order 2, where θ∞ is the Cartan involution of Ġ∞ acting on h∗
C. The

infinitesimal character ν of any unitary representation of Ġ(A) is known to lie in the

subset h∗
u. (We neglected to include the Cartan involution in the original definition of [1,
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p. 536].) The Hermitian norm ‖ · ‖ in the definition is dual to a fixed W∞θ∞-invariant

Euclidean norm on h.

The convergence estimate is given by the next lemma, which follows directly from [1,

Lemma 6.3], in the same way as [1, Corollary 6.5].

Lemma 7.1. For any function ḟ in Hsimp

(
Ġ(A), ζ̇

)
, we can choose constants C, k and r

with the following property. For any positive numbers T and N and any α in C∞
N (h)W∞ ,

the space of multipliers with support of norm bounded by N ,

∑

{ν:‖Im(ν‖>T}

|Iν(ḟα)| ≤ CekN sup
ν∈h∗

u(r,T )

(|α̂(ν)|). (7.6)

The role of the trace formula in this paper will be in its stabilization, a linear combi-

nation of stable distributions on global endoscopic groups. Suppose for a moment that Ġ is

quasi-split. We define SI
(
Ġ(A), ζ̇

)
as a direct limit, over finite sets S of valuations of Ḟ , of

spaces SI
(
Ġ(ḞS), ζ̇S

)
. Then ḟ → ḟ Ġ is a continuous map of H

(
Ġ(A), ζ̇

)
onto SI

(
Ġ(A), ζ̇

)
,

which sends Hsimp

(
Ġ(A), ζ̇

)
to a closed subspace denoted by SIsimp

(
Ġ(A), ζ̇

)
). If σ̇ is a

strongly regular, elliptic element in Ġ(Ḟ ), ḟ Ġ(σ̇) is defined, and depends only on the image

of σ̇ in the set

Σell(Ġ/Ż) = Σreg,ell

(
Ġ(Ḟ )/Ż(Ḟ )

)
= Σreg,ell

(
Ġ(Ḟ )

)
/Ż(Ḟ )

of strongly regular, stable elliptic conjugacy classes in Ġ(Ḟ )/Ż(Ḟ ). One of the purposes

of [21] was to introduce a linear form S = SĠ on Hsimp

(
Ġ(A), ζ̇

)
, defined by an expression

S(f) =
∑

σ̇∈Σell(Ġ/Ż)

bĠ(σ̇)ḟ Ġ(σ̇) ,

for certain coefficients bĠ(σ̇). This linear form is a stable distribution (by definition), and

can obviously be identified with the pullback

S(ḟ) = Ŝ(ḟ Ġ)
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of a linear form Ŝ on SIsimp

(
Ġ(A), ζ̇

)
. Suppose that ḟ = ḟuf , for ḟu ∈ Hsimp

(
Ġ(Au), ζ̇u

)

as above. Then we can write

S(ḟ) =
∑

σ∈Σell(G/Z)

S(ḟu, σ)fG(σ) , (7.7)

where

S(ḟu, σ̃) =
∑

σ̇

bĠ(σ̇)ḟu,Ġ( ˙̃σ
u
) ,

for any preimage σ̃ of σ in Σell(G). The last sum is over elements σ̇ ∈ Σell(Ġ/Ż) which

have a preimage ˙̃σ ∈ Σell(Ġ) such that ˙̃σu equals σ̃, while the summand in (7.7) depends

only on the element σ.

Returning to the case where Ġ is arbitrary, we let Eell(Ġ) denote the set of elliptic

global endoscopic data for Ġ over Ḟ . Lemma 2.1 has an obvious analogue for the global

field Ḟ . For each Ġ′ ∈ Eell(Ġ), we fix a central extension

1 −→
˙̃
Z ′ −→

˙̃
G′ −→ Ġ′ −→ 1

over Ḟ which satisfies the three conditions of the lemma. As with the local constructions

of Section 2, we obtain a global Langlands parameter for
˙̃
Z ′, and hence a character

˙̃
ζ ′

on
˙̃
Z ′(Ḟ )\

˙̃
Z ′(A). The datum also determines an extension

˙̃
ζ ′Ż of

˙̃
ζ ′ to an automorphic

representation on the induced torus
˙̃
Z ′Ż obtained by taking the preimage of Ż in

˙̃
G.

Following the local notation further, we write
˙̃
ζ ′ζ̇ for the automorphic representation

˙̃
ζ ′Ż⊗ζ̇

on
˙̃
Z ′Ż.

Suppose that v is a valuation for Ḟ . Then Ġ′ determines a local endoscopic datum

Ġ′
v ∈ E(Ġv). The choices above also determine auxiliary objects

˙̃
G′

v,
˙̃
Z ′

v and
˙̃
ζ ′v for

Ġ′
v which satisfy the conditions of Lemma 2.1. Appealing to the transfer theorem of

Waldspurger [28] or Shelstad [25] (according to whether v is discrete or Archimedean),

we obtain a map ḟv → ḟ ′
v from H

(
Ġ(Fv), ζ̇v

)
to SI

( ˙̃
G′(Ḟv),

˙̃
ζ ′v ζ̇v

)
. If Ġv and ζ̇v are

unramified, and ḟv is the element in a hyperspecial Hecke algebra determined by ζ̇v, then
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ḟ ′
v vanishes unless Ġ′

v is also unramified [16, Theorem 7.5], in which case it is given by

Hypothesis 3.1. Putting the local transfer maps together, we obtain a global transfer map

ḟ → ḟ ′ from H
(
Ġ(A), ζ̇

)
to SI

( ˙̃
G′(A),

˙̃
ζ ′ζ̇

)
. There are only finitely many Ġ′ ∈ Eell(Ġ)

which are unramified outside any given finite set of places [21, Lemma 8.12]. It follows

that for any ḟ , there are only finitely many Ġ′ ∈ E(Ġ) with ḟ ′ 6= 0.

For each Ġ′ ∈ Eell(Ġ), we have the stable linear form S ′ = S
˙

G̃′
on Hsimp

( ˙̃
G′(A),

˙̃
ζ ′ζ̇

)
.

If ḟ belongs to Hsimp

(
Ġ(A), ζ̇

)
, ḟ ′ lies in SIsimp

( ˙̃
G′(A),

˙̃
ζ ′ζ̇

)
, and we can evaluate Ŝ′ at ḟ ′.

In [21], Langlands establishes an expansion

I(ḟ) =
∑

Ġ′∈Eell(Ġ)

ι(Ġ, Ġ′)Ŝ′(ḟ ′) , (7.8)

for certain coefficients ι(Ġ, Ġ′). The formula is valid for any function ḟ ′ ∈ Hsimp

(
Ġ(A), ζ̇

)
,

and for any such ḟ , the sum over Ġ′ can be taken over a finite set.

In order to exploit the stabilized trace formula (7.8), we have to apply a stable version

of (7.6) to each of its terms. The dual groups ̂̇G and ̂̇G′ ⊂
̂̃̇
G′ provide a linear embedding

of h∗ into the corresponding space (h̃′)∗ for
˙̃
G′, which is defined up to the action of the

Weyl group W∞. There is also an affine linear embedding from h∗
C into (h̃′)∗C, of the form

ν −→ ν′ = ν + d
˙̃
ζ ′∞ ,

which is compatible with the Archimedean transfer map ḟ∞ → ḟ ′
∞. This can be established

from the Archimedean analogue of (2.1) and the differential equations satisfied by orbital

integrals. (See [26].) If α ∈ C∞
c (h)W∞ is a multiplier for Ġ, let α′ ∈ C∞

c (h̃′)W ′
∞ be any

multiplier for
˙̃
G′ such that

α̂′(ν′) = α̂(ν) , ν ∈ h∗
C.

Then

(ḟα)′ = ḟ ′
α′ , ḟ ∈ H

(
Ġ(A), ζ̇

)
. (7.9)

78



Suppose again that Ġ is quasisplit. Then we take
˙̃
G′ = Ġ′, with the embedding

˙̃
ξ′

equal to the identity. In particular, ν ′ = ν for any ν ∈ h∗
C. For each element ν which is

compatible with dζ̇∞, we define a distribution Sν = SĠ
ν on Hsimp

(
Ġ(A), ζ̇

)
inductively by

Sν(ḟ) = Iν(ḟ) −
∑

Ġ′ 6=Ġ

ι(Ġ, Ġ′)Ŝ′
ν′(ḟ ′) .

An expansion

S(ḟ) =
∑

ν

Sν(ḟ) , ḟ ∈ Hsimp

(
Ġ(A), ζ̇

)
, (7.10)

then follows inductively from (7.8) and the corresponding expansion for I(ḟ). We also

have an identity

Sν(ḟα) = α̂(ν)Sν(ḟ) , (7.11)

for each ν and α ∈ C∞
c (h)W∞ . This follows inductively from the corresponding formula

(7.5) for Iν(ḟα) and the relation (7.9).

Corollary 7.2. For any function ḟ ∈ Hsimp

(
Ġ(A), ζ̇

)
, we can choose constants C, k and

r such that for any positive numbers T and N , and any α ∈ C∞
N (h)W∞ ,

∑

{ν: ‖Im(ν)‖>T}

|Sν(ḟα)| ≤ CekN sup
ν∈h∗

u(r,T )

(
|α̂(ν)|

)
. (7.12)

Proof. It follows from (7.9) and the definition of Sν(ḟ) that the left hand side of (7.12) is

bounded by
∑

‖Im(ν)‖>T

|Iν(ḟα)| +
∑

Ġ′ 6=Ġ

ι(Ġ, Ġ′)
∑

‖Im(ν)‖>T

|Ŝ′
ν′(f ′

α′)| .

We can assume inductively that the corollary holds for each of the quasi-split groups
˙̃
G′,

with Ġ′ 6= Ġ. The estimate follows without difficulty from Lemma 7.1. �
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8. Proof of stability

We shall now prove Theorem 6.1. For this section, the group G over F will be

quasi-split. We are going to derive the local result from the global trace formula, so we

fix global objects Ġ, Ḟ , Ż and ζ̇ as in Section 7. In addition to the requirement that

(Ġu, Ḟu) = (G,F ), we ask that Ġ be quasi-split over Ḟ , and that AĠ,u equal AG. The

torus Z = Żu will then contain AG. It is clearly possible to choose Ġ so that these

additional conditions are met.

We have to exploit the fact that the distribution S(ḟ) is stable. The first step is to

verify that the same is true of Sν(ḟ).

Lemma 8.1. For each ν, the linear form Sν(ḟ) on Hsimp

(
Ġ(A), ζ̇

)
is stable.

Proof. Choose any function ḟ ∈ Hsimp

(
Ġ(A), ζ̇

)
with ḟ Ġ = 0. Our task is to show that

Sν(ḟ) = 0 for any ν. If α ∈ C∞
c (h)W∞ is any multiplier, we have

∑

ν

Sν(ḟα) = S(ḟα)

= Ŝ
(
(ḟα)Ġ

)
= Ŝ

(
(ḟ Ġ)α

)
= 0 ,

by (7.9) and (7.10). We shall combine this with Corollary 7.2. The argument is like that

of [5, Section 2.15], but simpler.

Choose constants C, k and r so that the estimate (7.12) holds. Let ν1 be a fixed

W∞-orbit in h∗
u. Enlarging the constant r in (7.12) if necessary, we may assume that ν1 is

contained in the cylinder h∗
u(r) = h∗

u(r, 0). We can choose a function α1 ∈ C∞
c (h)W∞ such

that α̂1 maps h∗
u(r) to the unit interval, and such that the inverse image of 1 under α̂1 is

the Weyl orbit ν1. (See [5, Lemma II.15.2]. The proof of this lemma must be augmented

with the fact that W∞ normalizes the set W∞θ∞.) Then α1 belongs to C∞
N1

(h)W∞ , for

some positive integer N1. Since α1 is rapidly decreasing on h∗
u(r), we can choose T > 0

such that

|α̂1(ν)| ≤ e−2kN1 ,
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for all W∞-orbits ν in h∗
u(r, T ). Let αm be the convolution of α1 with itself m times. Then

αm lies in C∞
mN1

(h)W∞ . Since α̂m(ν) =
(
α̂1(ν)

)m
, the estimate (7.12) gives us

∑

‖Im(ν)‖>T

|Sν(ḟαm
)| ≤ C(e−kN1)m .

Therefore, the left hand side approaches 0 as m approaches infinity.

Now by (7.11),

Sν(ḟαm
) = α̂1(ν)

mSν(ḟ)

for any ν. In particular,

Sν1
(ḟαm

) = α̂1(ν1)
mSν1

(ḟ) = Sν1
(ḟ) .

Since
∑
ν
Sν(ḟαm

) = 0, we find that |Sν1
(ḟ)| is bounded by the sum of

∑

{ν: ‖Im(ν)‖≤T, ν 6=ν1}

|Sν(ḟαm
)|

and
∑

‖Im(ν)‖>T

|Sν(ḟαm
)| .

We have just observed that the second sum goes to 0 as m approaches infinity. There are

only finitely many nonzero terms in the first sum, and for each such term,

lim
m→∞

|Sν(ḟαm
)| = lim

m→∞

(
|α1(ν)|

m|Sν(ḟ)|
)

= 0 ,

since α1(ν) < 1 for any W∞-orbit ν in h∗
u not equal to ν1. It follows that Sν1

(ḟ) = 0.

Consequently, Sν is a stable distribution for any ν. �

As in Section 7, we take ḟ = ḟuf , for a fixed function ḟu ∈ Hsimp

(
Ġ(Au), ζ̇u

)
and

an arbitrary function f ∈ H
(
G(F ), ζ

)
. We can assume that ḟu =

∏
v 6=u

ḟv = ḟu,wḟw, where

ḟw is cuspidal for some nonArchimedean place w 6= u. Applying Proposition 3.5 to the

nonArchimedean group Ġw, we can write ḟw = ḟw,1 + ḟw,2 for functions ḟw,1 and ḟw,2 in
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Hcusp

(
Ġ(Ḟw), ζ̇w

)
such that ḟ ′

w,1 = 0 for every Ġ′ ∈ E(Ġ) with Ġ′ 6= Ġ, and such that

ḟ Ġ
w,2 = 0. (The image of Ġ′ in E(Ġw) need not be elliptic, but ḟ ′

w,1 will of course still

vanish, since ḟw,1 is cuspidal.) We write ḟ as a sum ḟ1 + ḟ2, where

ḟi = ḟu,wḟw,if = ḟu
i f , i = 1, 2.

Then ḟ ′
1 = 0 for every Ġ′ 6= Ġ, while

ḟ Ġ = ḟ Ġ
1 + ḟ Ġ

2 = ḟ Ġ
1 .

Since Sν is stable, we have

Sν(ḟ) = Ŝν(ḟ Ġ) = Ŝν(ḟ Ġ
1 ) = Sν(ḟ1)

= Iν(ḟ1) −
∑

Ġ′ 6=Ġ

ι(Ġ, Ġ′)Ŝ′
ν(ḟ ′

1)

= Iν(ḟ1) .

It follows from (7.4) that

Sν(ḟ) =
∑

τ∈T (G,ζ)C

Sν(ḟu, τ)fG(τ)

where

Sν(ḟu, τ) = Iν(ḟu
1 , τ) .

The support of the function τ → Sν(ḟu, τ) meets any connected component of T̃ (G, ζ)C

in a finite set. Since fG(τ) is supported on only finitely many components, the product

of the two functions is supported on a finite subset of T (G, ζ)C. It follows easily that the

coefficients Sν(ḟu, τ) are independent of the decomposition ḟ = ḟ1 + ḟ2, as the notation

implies.

We would rather have a formula for Sν(ḟ) in terms of the basis T E(G, ζ)C instead of

T (G, ζ)C. To this end, we substitute the inversion formula (6.5) for fG(τ) (or rather its

analogue for τ in the complex domain T (G, ζ)C) into the formula above. We obtain

Sν(ḟ) =
∑

φ′∈TE(G,ζ)C

Sν(ḟu, φ′)fE
G,gr(φ

′) , (8.1)
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where

Sν(ḟu, φ′) =
∑

τ∈T (G,ζ)C

Sν(ḟu, τ)∆(τ, φ′) .

The main point is to show that the coefficient Sν(ḟu, φ′) vanishes if φ′ lies in the com-

plement of Φ(G, ζ)C in T E(G, ζ)C. We first deal with the case that φ′ lies in the subset

T E
ell(G, ζ) of T E(G, ζ)C.

Lemma 8.2. If φ′ lies in the complement of Φ2(G, ζ) in T E
ell(G, ζ), then Sν(ḟu, φ′) = 0

for any ν.

Proof. Choose f ∈ Hcusp

(
G(F ), ζ

)
so that the function fE

G,gr on T E
ell(G, ζ) is the charac-

teristic function of the point φ′. Since f is cuspidal, fG
gr equals fG, and since fG

gr is the

restriction of fE
G,gr to Φ2(G, ζ), f

G vanishes. Therefore the function ḟ = ḟuf also has the

property that ḟ Ġ vanishes. Having established that Sν is stable, we can conclude that

Sν(ḟ) = 0. But fE
G,gr vanishes on the complement of T E

ell(G, ζ), so from (8.1) we see that

Sν(ḟ) equals Sν(ḟu, φ′). The lemma follows. �

The domain of the integral (8.1) can be represented as a disjoint union

T E(G, ζ)C = Φ(G, ζ)C ∪
(
T E

ell(G, ζ) − Φ2(G, ζ)
)
∪

(
T E

par(G, ζ)C − Φpar(G, ζ)C
)
.

The lemma implies that the integral vanishes on ΦE
ell(G, ζ)−Φ2(G, ζ), so (8.1) can be taken

as the relation which identifies the two expressions

Sν(ḟ) −
∑

φ∈Φ(G,ζ)C

Sν(ḟu, φ)fG
gr(φ) (8.2)

and
∑

φ′

Sν(ḟu, φ′)fE
G,gr(φ

′) , (8.3)

where φ′ is summed over T E
par(G, ζ)C − Φpar(G, ζ)C. We must prove that the coefficients

Sν(ḟu, φ′) in (8.3) also vanish.
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Let ΩC be a connected component in the complement of Φpar(G, ζ)C in T E
par(G, ζ)C.

Set

Ω = ΩC ∩ T E(G, ζ) .

We can identify Ω with a set of orbits ΩM/W (Ω), where M is a proper Levi subgroup

of G, ΩM is a connected component in T E
ell(M, ζ), and W (Ω) is the stabilizer of ΩM in

W (M). If φ′ is any point in ΩM , the compact torus

i(aG
M,φ′)∗ = i(aG

M )∗/i(aG
M )∗ ∩ a∨M,φ′

acts simply transitively on ΩM . Let IE(Ω) be the space of functions on Ω which pull back

to finite Fourier series on this torus. Then IE (Ω) can be identified with the closed subspace

of functions in IE
gr(G, ζ) which are supported on Ω. For any ω ∈ IE (Ω) there is a function

fω ∈ H
(
G(F ), ζ

)
such that

fE
ω,G,gr(φ

′) =

{
ω(φ′), if φ′ ∈ Ω,
0, otherwise,

for any φ′ ∈ T E(G, ζ). If we take ḟ to be the function ḟω = ḟufω, the expression (8.2)

reduces to Sν(ḟω) while (8.3) reduces to a sum over ΩC. The identity of the two becomes

Sν(ḟω) =
∑

φ′∈ΩC

Sν(ḟu, φ′)ω(φ′) . (8.4)

Lemma 8.3. Suppose that S is a stable, ζ-equivariant distribution on G(F ). Then there

is a smooth function F on Ω such that

S(fω) =

∫

Ω

F (φ′)ω(φ′)dφ′ ,

for any ω ∈ IE(Ω).

Proof. As a linear form on H
(
G(F ), ζ

)
, S lies in the closed linear span of the stable orbital

integrals

f −→ fG(σ) , σ ∈ Σ(G).
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Suppose that σ does not belong to Σell(G). Then σ lies in ΣG,ell(L)/W (L), for a proper

Levi subgroup L of G. Applying our induction hypothesis that Theorem 6.1 holds for L,

we obtain

fG
ω (σ) = fL

ω (σ) = fL
ω,gr(σ) .

The right hand side depends only on the restriction of the function f E
ω,G,gr to the subset

Φ2(L, ζ)/W (L) of Φ(G, ζ). Since the component Ω lies in the complement of Φ(G, ζ) in

T E(G, ζ), this restriction must vanish. Therefore fG
ω (σ) = 0.

We can therefore take σ to be in Σell(G). Following the definition, we write

fG
ω (σ) =

∑

γ∈Γell(G)

∆(σ, γ)fω,G(γ) .

The dependence on ω is of course through the terms fω,G(γ), which are determined by the

function
fω,G(τ) =

∑

φ′∈TE(G,ζ)

∆(τ, φ′)fE
ω,G,gr(φ

′)

=
∑

φ′∈Ω

∆(τ, φ′)ω(φ′)

on T̃ (G, ζ). In fact, for any f ∈ H
(
G(F ), ζ

)
we can write

fG(γ) =

∫

T (G,ζ)

I(γ, τ)fG(τ)dτ ,

for the smooth function I(γ, τ) on Γ(G) × T̃ (G, ζ) described in Section 6. If we combine

these formulas, and use a variant of Lemma 5.3 to change variables in the integral-sum,

we see that

fG
ω (σ) =

∫

Ω

F (σ, φ′)ω(φ′)dφ′ ,

where

F (σ, φ′) =
∑

γ∈Γell(G)

∑

τ∈T (G,ζ)

∆(σ, γ)I(γ, τ)∆(τ, φ) .
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Since Σell(G) is compact modulo Z(F ), we can apply the Howe conjecture [7]. We deduce

that the linear forms

ω −→ fG
ω (σ) , σ ∈ Σell(G),

span a finite dimensional space. The lemma follows, with F (φ′) being a finite linear

combination of the functions φ′ → F (σ, φ′). �

Lemma 8.4. If φ′ is any point in ΩC, then Sν(ḟu, φ′) = 0 for any ν.

Proof. According to Lemma 8.1, Sν is a stable distribution on Ġ(A). Therefore

f −→ Sν(ḟuf) , f ∈ H
(
G(F ), ζ

)
,

is a stable ζ-equivariant distribution on G(F ). We can therefore apply Lemma 8.3 to the

left hand side of the identity (8.4). The identity becomes

∫

Ω

Fν(ḟu, φ′)ω(φ′)dφ′ =
∑

φ′∈ΩC

Sν(ḟu, φ′)ω(φ′) , (8.5)

for a smooth function φ′ → Fν(ḟu, φ′) on Ω.

The identity (8.5) is valid if ω is any function in the Paley-Wiener space on ΩM which

is symmetric under W (Ω). As a function of φ′ ∈ ΩM,C, Sν(ḟu, φ′) is certainly symmetric

under W (Ω). The same is true of Fν(ḟu, φ′), as a function of φ′ ∈ ΩM . It follows that

(8.5) actually holds for any ω in the Paley-Wiener space on ΩM . We shall show that both

Sν(ḟu, φ′) and Fν(ḟu, φ′) vanish.

Fix φ′ ∈ ΩM . Then ΩM can be identified with the compact torus i(aG
M,φ′)∗ under

the map λ → φ′λ. We can take the function ω in (8.5) to be any finite Fourier series on

i(aG
M,φ′)∗. The Fourier transform of ω can then be identified with an arbitrary function of

finite support on the dual lattice

Λφ′ = aM,φ′/(aM,φ′ ∩ aG) .
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Consider the Fourier transform of each side of (8.5) as a distribution on Λφ′ . The function

λ −→ Sν(ḟu, φ′λ)

is defined on the complexification of the torus i(aG
M,φ′)∗, but is supported at finitely many

points. Its Fourier transform is therefore a finite linear combination of complex exponential

functions on the lattice Λφ′ . The Fourier transform of

λ −→ F (ḟu, φ′λ) ,

on the other hand, is a rapidly decreasing function on Λφ′ . The two can be equal only if

they both vanish. Thus

Fν(ḟu, φ′) = Sν(ḟu, φ′) = 0 , φ′ ∈ ΩM ,

and therefore Sν(ḟu, φ′) vanishes for any φ′ ∈ ΩC. �

Since ΩC is an arbitrary connected component in the domain of summation of (8.3),

the summands in (8.3) are all equal to 0. Thus, the expression (8.3) vanishes, and so

therefore does (8.2). We obtain

Sν(ḟ) =
∑

φ∈Φ(G,ζ)C

Sν(ḟu, φ)fG
gr(φ) , (8.6)

for any ν and for ḟ = ḟuf as above. We are going to use the global identity (8.6) to

establish the local result that f → fG
gr(φ) is stable.

Fix a function f ∈ H
(
G(F ), ζ

)
such that fG(σ) = 0 for every σ ∈ Σ(G). We want

to show fG
gr(φ) = 0 for any φ ∈ Φ(G, ζ). If φ belongs to the complement of Φ2(G, ζ) in

Φ(G, ζ), the result follows from our induction assumption, as we saw at the end of Section

6. In other words, the function φ → fG
gr(φ) on Φ(G, ζ) is supported on Φ2(G, ζ). It has

finite support on this set, so we can find a function h ∈ Hcusp

(
G(F ), ζ

)
such that

hG(φ) = hG
gr(φ) = fG

gr(φ)
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for every φ ∈ Φ(G, ζ).

We have a fixed function ḟu ∈ Hsimp

(
Ġ(Au), ζ̇u

)
. The function f we have chosen

determines the global function ḟ = ḟuf in Hsimp

(
Ġ(A), ζ̇

)
. The stable distribution Sν

must vanish on ḟ , and the identity (8.6) reduces to

∑

φ∈Φ2(G,ζ)C

Sν(ḟu, φ)fG
gr(φ) = 0 .

From h we obtain a second global function

ḟh(ẋ) = ḟu(ẋu)h(x) , ẋ = ẋux ∈ Ġ(A),

in Hsimp

(
Ġ(A), ζ̇

)
. Applying (8.6) to ḟh and summing over ν, we see that

S(ḟh) =
∑

ν

Sν(ḟh)

=
∑

ν

∑

φ∈Φ(G,ζ)C

Sν(ḟu, φ)hG
gr(σ)

=
∑

ν

∑

φ

Sν(ḟu, φ)fG
gr(φ) = 0 .

We then obtain
∑

σ̇∈Σell(Ġ/Ż)

bĠ(σ̇)(ḟu)Ġ(σ̇u)hG(σ̇u) = 0 , (8.7)

from the original geometric expansion of S(ḟh). This sum can be taken over a finite set

that depends only on the support of ḟh. We shall use the identity (8.7) to show that hG

vanishes at any element σ ∈ Σell(G).

At this point we must impose another constraint on (Ġ, Ḟ ). We assume that Ġ splits

over some finite Galois extension Ė of Ḟ such that Gal(Ė/Ḟ ) is equal to a decomposition

group Gal(Ėw1
/Ḟu1

), for a valuation u1 6= u of Ḟ and a valuation w1 of Ė over u1. We can

always modify our global data to make this additional condition hold. (See the discussion

of this stage of the proof of Theorem 6.2 near the end of Section 9.) The condition implies

that Ėu1
= Ė ⊗ Ḟu1

is a field. It follows from [17, Lemma 1(b)] that Ġ(Ḟ ) is dense
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in G(F). We can therefore approximate any σ ∈ Σell(G) by Ḟ -rational stable conjugacy

classes σ̇ ∈ Σell(Ġ). Since hG is continuous, we have only to show that hG(σ̇) vanishes for

any σ̇ ∈ Σell(Ġ).

Fix σ̇ ∈ Σell(Ġ). We would like to choose the function ḟu =
∏

v 6=u

ḟv so that the

summand corresponding to σ̇ is the only nonvanishing term in (8.7). We are dealing with

stable orbital integrals here, so it is enough to shrink the function at one place. We choose

a finite place v 6= u, and vary fv so that the function ḟ Ġ
v on Σell(Ġ) approaches the

ζ̇−1
v -equivariant Dirac measure on σ̇vŻ(Ḟv). There will then be at most one nonvanishing

summand in (8.7). If we assume also that (ḟu)(γ̇) 6= 0, as we may, the formula (8.7) leads

to the conclusion that hG(σ̇) = 0.

We have established that the cuspidal function hG vanishes on the dense subset Σell(Ġ)

of its domain Σell(G). Therefore hG vanishes identically. It follows that

fG
gr(φ) = hG

gr(φ) = hG(φ) = 0 ,

for any cuspidal element φ ∈ Φ2(G, ζ). This completes our proof of Theorem 6.1. �

We shall use the identity (8.6) again in our proof of Theorem 6.2. It was proved

above under the local assumption that AĠ,u = AG, but this restriction, which was only

for simplicity anyway, is no longer needed. Having established Theorem 6.1 for G, we can

identify the spaces I(G, ζ) and Igr(G, ζ). The expansion (8.6) then follows easily from

(8.1) and the fact that Sν is stable. At the same time, we also see that the coefficients

Sν(ḟu, φ) are stable linear forms in ḟu ∈ Hsimp

(
Ġ(Au), ζ̇u

)
.

9. Proof of the character relations

In this section we shall establish Theorem 6.2. We therefore take G to be a general

group over F . We have established Theorem 6.1, and can apply it to the various quasi-split

groups G̃′, with G′ ∈ Eell(G). As we agreed in Section 6, we shall identify the two spaces
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SI(G̃′, ζ̃ ′ζ) and SIgr(G̃
′, ζ̃ ′ζ). The problem is then to show that the corresponding maps

f ′ and f ′
gr are the same. Alternatively, we could treat all G′ together, using Theorem 6.1

to identify the two spaces IE(G, ζ) and IE
gr(G, ζ). In this setting, the problem is to show

that the maps fE
G and fE

G,gr are the same. The two problems are of course equivalent,

since for any G′, f ′ and f ′
gr are the restrictions of the functions fE

G and fE
G,gr to the closed

subsets ΣG(G̃′) and Φ(G̃′, G, ζ) of Γ̃E(G) and T E(G, ζ) respectively. We shall freely use

notation from both viewpoints during the course of the proof.

It will be convenient to establish a dual assertion. Define

fgr
G (τ) =

∑

φ′∈TE(G,ζ)

∆(τ, φ′)fE
G(φ′) ,

for any f ∈ H
(
G(F ), ζ

)
and τ ∈ T̃ (G, ζ). The inversion formula (5.10) then gives an

identity

fE
G(φ′) =

∑

τ∈T (G,ζ)

∆(φ′, τ)fgr
G (τ) ,

for any φ′ ∈ T E(G, ζ), which can be compared with the definition

fE
G,gr(φ

′) =
∑

τ∈T (G,ζ)

∆(φ′, τ)fG(τ) .

To establish the required equality of fE
G(φ′) and fE

G,gr(φ
′), it is necessary and sufficient to

prove that fgr
G (τ) equals fG(τ). Again we shall derive this local result from the global trace

formula. We shall describe the argument in steps which are parallel to those of Section 8.

We fix global objects Ġ, Ḟ , Ż and ζ̇ as in Section 7. The only local conditions we

impose for the moment are that (Ġu, Ḟu) = (G,F ) as always, and that the F -split tori AĠ,u

and AG are the same. The original distribution I on Hsimp

(
Ġ(A), ζ̇

)
has an expansion

I(ḟ) =
∑

ν∈h∗
u

Iν(ḟ)
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indexed by Archimedean infinitesimal characters. It also has a parallel expansion

I(ḟ) =
∑

ν∈h∗
u

IEν (ḟ)

determined by (7.8) and (7.10), in which

IEν (ḟ) =
∑

Ġ′∈Eell(Ġ)

ι(Ġ, Ġ′)Ŝ′
ν′(ḟ ′)

is defined in terms of endoscopic data.

Lemma 9.1. For each ν, the linear forms Iν(ḟ) and IEν (ḟ) on Hsimp

(
Ġ(A), ζ̇

)
are equal.

Proof. Suppose that α ∈ C∞
c (h)W∞ is a multiplier. Then

Iν(ḟα) = α̂(ν)Iν(ḟ) .

We also have
IEν (ḟα) =

∑

Ġ′

ι(Ġ, Ġ′)Ŝ′
ν′(ḟ ′

α′)

=
∑

Ġ′

ι(Ġ, Ġ′)α̂′(ν′)Ŝ′
ν′(ḟ ′)

= α̂(ν)IEν (ḟ) ,

by (7.9). On the other hand,

∑

ν

(
IEν (ḟα) − Iν(ḟα)

)
= I(ḟα) − I(ḟα) = 0 .

Moreover, the estimate of Lemma 7.1 holds if Iν(ḟα) is replaced by IEν (ḟα), since by Corol-

lary 7.2 the same estimate holds for the terms Ŝ′
ν′(f ′

α′) indexed by Ġ′.

Fix ν1 ∈ h∗
u/W∞, α1 ∈ C∞

N1
(h)W∞ and T as in the proof of Lemma 8.1. Then

IEν1
(ḟ) − Iν1

(ḟ)

equals

IEν1
(ḟαm

) − Iν1
(ḟαm

)
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for any m, and this is bounded in absolute value by the sum of

∑

{ν: ‖Im(ν)‖≤T, ν 6=ν1}

|IEν (ḟαm
) − Iν(ḟαm

)|

and
∑

‖Im(ν)‖>T

|IEν (ḟαm
) − Iν(ḟαm

)| .

As in the proof of Lemma 8.1, each of these two sums approaches 0 as m approaches

infinity. The lemma follows. �

As before, we take ḟ = ḟuf , for a fixed function ḟu ∈ Hsimp

(
Ġ(Au), ζ̇u

)
and a general

function f ∈ H
(
G(F ), ζ

)
. The distribution Iν(ḟ) can be expressed according to (7.4) as

a sum over T (G, ζ)C. To obtain a similar expression for IEν (ḟ), we have first to substitute

the formula

Ŝ′
ν′(ḟ ′) =

∑

φ̃′∈Φ(G̃′,ζ̃′ζ)C

Ŝ′
ν′

(
(ḟu)′, φ̃′

)
f ′(φ̃′)

obtained by applying (8.6) to
˙̃
G′ and ḟ ′, into the definition above for IEν (ḟ). The coefficients

of f ′(φ̃′) here come from stable linear forms on Hsimp

( ˙̃
G′(Au), (

˙̃
ζ ′ζ̇)u

)
, and are therefore

well defined functions of (ḟu)′. (See the remarks at the end of Section 8.) We obtain

a double sum over Ġ′ ∈ Eell(Ġ) and φ̃′ ∈ Φ(
˙̃
G′

u, ζ̃
′ζ)C. The linear form fE

G(φ′) = f ′(φ̃′)

depends only on the image φ′ of φ̃′ in T E(G, ζ)C, and is independent of
˙̃
G′

u. We can

therefore write

IEν (ḟ) =
∑

φ′∈TE(G,ζ)C

IEν (ḟu, φ′)fE
G(φ′) ,

where

IEν (ḟu, φ′) =
∑

Ġ′∈Eell(Ġ)

∑

φ̃′

ι(Ġ, Ġ′)Ŝ′
ν′

(
(ḟu)′, φ̃′

)
,

with φ̃′ being summed over the preimage of φ′ in Φ(
˙̃
G′

u, ζ̃
′ζ)C. Applying the inversion

formula for fgr
G (τ) above, we see that

IEν (ḟ) =
∑

τ∈T (G,ζ)C

IEν (ḟu, τ)fgr
G (τ) ,
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where

IEν (ḟu, τ) =
∑

φ′∈TE(G,ζ)C

IEν (ḟu, φ′)∆(φ′, τ) .

But Iν(ḟ) equals IEν (ḟ), by Lemma 9.1. Identifying the corresponding two expansions, we

obtain an identity

∑

τ∈T (G,ζ)C

(
IEν (ḟu, τ)fgr

G (τ) − Iν(ḟu, τ)fG(τ)
)

= 0 . (9.1)

Lemma 9.2. If τ lies in T̃ell(G, ζ), we have

IEν (ḟu, τ) = Iν(ḟu, τ)

for any ν.

Proof. Choose f ∈ Hcusp

(
G(F ), ζ

)
so that the function fG on T̃ (G, ζ) vanishes on the

complement of τZτ , and is nonzero at τ . Since f is cuspidal, the functions fE
G and fE

G,gr

in IE
cusp(G, ζ) are equal. Therefore the functions f gr

G and fG in Icusp(G, ζ) are also equal.

The lemma follows without difficulty from (9.1). �

Lemma 9.2 simplifies the part of the sum in (9.1) that is over the subset Tell(G, ζ)

of T (G, ζ)C. Suppose that τ lies in the complement T̃par(G, ζ)C of T̃ell(G, ζ) in T̃ (G, ζ)C.

Then fgr
G (τ) equals fG(τ), since our induction hypothesis implies that f ′(φ′) = f ′

gr(φ
′) for

every φ′ in the complement of T E
ell(G, ζ) in T E(G, ζ)C. The formula (9.1) can therefore be

taken as the relation which identifies the two expressions

∑

τ∈Tell(G,ζ)

Iν(ḟu, τ)
(
fgr

G (τ) − fG(τ)
)

(9.2)

and
∑

τ∈Tpar(G,ζ)C

(
Iν(ḟu, τ) − IEν (ḟu, τ)

)
fG(τ) . (9.3)

We must show that the identity of Lemma 9.2 also holds for the coefficients in (9.3).
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Let ΩC be a connected component in Tpar(G, ζ)C, and set Ω = ΩC ∩ Tpar(G, ζ). Then

Ω = ΩM/W (Ω), where M is a proper Levi subgroup of G, ΩM is a connected component

of Tell(M, ζ), and W (Ω) is the stabilizer of ΩM in W (M). If τ is any point in ΩM , the

compact torus

i(aG
M,τ )∗ = i(aG

M )∗/i(aG
M )∗ ∩ a∨M,τ

acts simply transitively on ΩM . In the present context, we have to take the preimage Ω̃ of

Ω in T̃ (G, ζ). Let I(Ω̃) be the space of functions on Ω̃ which transform under the action

of Zτ by the character χ−1
τ , and which pull back to finite Fourier series on i(aG

M,τ )∗. Then

I(Ω̃) can be identified with the closed subspace of functions in I(G, ζ) which are supported

on Ω̃. For any ω ∈ I(Ω̃), there is a function fω ∈ H
(
G(F ), ζ

)
such that

fω,G(τ) =

{
ω(τ), if τ ∈ Ω̃,
0, otherwise,

for any τ ∈ T̃ (G, ζ). If we take ḟ to be the function ḟω = ḟufω, the expression (9.3) is just

∑

τ∈ΩC

(
Iν(ḟu, τ) − IEν (ḟu, τ)

)
ω(τ) . (9.4)

To control (9.3) we need the following analogue of Lemma 8.3.

Lemma 9.3. Suppose that I is an invariant, ζ-equivariant distribution on G(F ). Then

there is a smooth function F on Ω̃, which transforms under Zτ according to χτ , such that

Î(fgr
ω,G − fω,G) =

∫

Ω

F (τ)ω(τ)dτ ,

for any ω ∈ I(Ω̃).

Proof. By definition, fgr
G − fG is the function

τ −→ fgr
G (τ) − fG(τ) , τ ∈ T̃ (G, ζ),

in I(G, ζ). If τ belongs to a subset T̃ell(L, ζ)/W (L) of T̃ (G, ζ), for a proper Levi subgroup

L, our induction hypothesis implies that f gr
G (τ) − fG(τ) = 0. It follows that f gr

G − fG
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belongs to Icusp(G, ζ). Let J be the linear form on the associated space IE
cusp(G, ζ) given

by

J
(
T E(aG)

)
= Î(aG) , aG ∈ Icusp(G, ζ).

Recall that T E is an isomorphism from Icusp(G, ζ) onto IE
cusp(G, ζ) which can be expressed

in terms of either conjugacy classes (Section 3) or virtual characters (Section 5). The second

description gives

(
T E(fgr

G − fG)
)
(φ′) =

∑

τ∈Tell(G,ζ)

∆(φ′, τ)
(
fgr

G (τ) − fG(τ)
)

= fE
G(φ′) − fE

G,gr(φ
′) ,

for any φ′ ∈ T E
ell(G, ζ). Therefore T E(fgr

G − fG) equals the difference of the two functions

fE
G and fE

G,gr in IE(G, ζ). Now any continuous linear form on IE
cusp(G, ζ) is in the closed

linear span of the evaluation maps

aEG −→ aEG(σ′) , σ′ ∈ Γ̃E
ell(G).

It follows easily from the Howe conjecture that the distribution

ω −→ Î(fgr
ω,G − fω,G) = J(fE

ω,G − fE
ω,G,gr)

is a finite linear combination of values

fE
ω,G(σ′) − fE

ω,G,gr(σ
′) , σ′ ∈ Γ̃E

ell(G).

But we saw in the proof of Corollary 6.4 that

fE
ω,G(σ′) − fE

ω,G,gr(σ
′) =

∫

T (G,ζ)

F (σ′, τ)fω,G(τ)dτ

=

∫

Ω

F (σ′, τ)ω(τ)dτ ,

for the smooth function F (σ′, τ) given by (6.12). (Recall that this earlier argument de-

pended only on the validity of Theorem 6.1.) The lemma follows, with F (τ) being a finite

linear combination of the functions φ′ → F (σ, φ′). �
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Lemma 9.4. If τ is any point in Ω̃C, the preimage of ΩC in T̃ (G, ζ)C, we have

IEν (ḟu, τ) − Iν(ḟu, τ) = 0

for any ν.

Proof. By (7.4), the expression (9.2) is the value of the ζ-equivariant distribution

f −→ Iν(ḟuf) , f ∈ H
(
G(F ), ζ

)
,

(or rather its push-forward to I(G, ζ)) at the function f gr
G − fG. We can apply the last

lemma to this distribution. The value of (9.2) at f = fω takes the form

∫

Ω

Fν(ḟu, τ)ω(τ)dτ , (9.5)

for a smooth function τ → Fν(ḟu, τ) on Ω̃ which transforms under Zτ according to χτ .

The expressions (9.4) and (9.5) are then equal for any function ω ∈ I(Ω̃).

The rest of the proof is similar to that of Lemma 8.4. The two functions

IEν (ḟu, τ)−Iν(ḟu, τ) and Fν(ḟu, τ) are both χτ -equivariant under translation by Zτ . How-

ever, any choice of section Ω → Ω̃ allows us to regard the first one as a function of finite

support on ΩM,C/W (Ω), and the second one as a smooth function on ΩM/W (Ω). The

identity of (9.4) with (9.5) then holds with ω being any function in the Paley-Wiener

space on ΩM . Fix τ ∈ Ω. This identifies Ω with the compact torus i(aG
M,τ )∗, under the

map λ → τλ. The Fourier transform of ω becomes an arbitrary function of finite support

on the dual lattice

Λτ = aM,τ/(aM,τ ∩ aG) .

By taking Fourier transforms of (9.4) and (9.5), we obtain an identity of distributions on

Λτ . As in the proof of Lemma 8.4, we deduce that

IEν (ḟu, τ) − Iν(ḟu, τ) = 0 ,
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for any τ ∈ Ω̃C. �

Since ΩC is an arbitrary component in the domain of the sum (9.3), this sum has to

vanish. Since (9.3) equals the expression (9.2), we obtain

∑

τ∈Tell(G,ζ)

Iν(ḟu, τ)
(
fgr

G (τ) − fG(τ)
)

= 0 (9.6)

for any ν. We shall use this global identity to prove the local result that f gr
G (τ) equals

fG(τ).

Set

hG(τ) = fgr
G (τ) − fG(τ) , τ ∈ T̃ (G, ζ).

According to our induction hypothesis, this function is supported on T̃ell(G, ζ). Since fgr
G

and fG both lie in I(G, ζ), hG belongs to Icusp(G, ζ), and is the image of some function

h ∈ Hcusp

(
G(F ), ζ

)
.

We are working with the function ḟ = ḟuf in Hsimp

(
Ġ(A), ζ̇

)
constructed from

ḟu ∈ Hsimp

(
Ġ(Au), ζ̇u

)
. We can also form the second function ḟh = ḟuh in Hsimp

(
Ġ(A), ζ̇

)
.

Observe that
I(ḟh) =

∑

ν

Iν(ḟh)

=
∑

ν

∑

τ∈Tell(G,ζ)

Iν(ḟu, τ)hG(τ) = 0 ,

by (7.3), (7.4) and (9.6). It follows from (7.2) that

∑

γ̇∈Γell(Ġ/Ż)

aĠ(γ̇)ḟu
Ġ

(γ̇u)hG(γ̇u) = 0 . (9.7)

The sum can be taken over a finite set which depends only on the support of ḟh. We

can certainly assume that ḟu splits into a product ḟ∞ḟ
∞,u of Archimedean and non-

Archimedean components. The function ḟ∞ is supposed to lie in an Archimedean Hecke

algebra H
(
Ġ(Ḟ∞), ζ̇∞

)
. However, H

(
Ġ(Ḟ∞), ζ̇∞

)
is dense in C∞

c

(
Ġ(Ḟ∞), ζ̇∞

)
, and as a

linear form in ḟ∞, the left hand side of (9.7) extends continuously to C∞
c

(
Ġ(Ḟ∞), ζ̇∞

)
.

97



The identity (9.7) therefore holds for any ḟ∞ ∈ C∞
c

(
Ġ(Ḟ∞), ζ̇∞

)
and

ḟ∞,u ∈ Hsimp

(
Ġ(Ḟ∞,u), ζ̇∞,u

)
. We shall use it to show that hG vanishes at any element

γ ∈ Γell(G).

Fix γ ∈ Γell(G). We shall also write γ for a representative of the conjugacy class in

G(F ), so that T = Gγ is a fixed, elliptic maximal torus in G over F . We must first impose

some new conditions on the global objects (Ġ, Ḟ ).

We choose (Ġ, Ḟ ), together with an elliptic maximal torus Ṫ in Ġ over Ḟ , such that

(Ġui
, Ṫui

, Ḟui
) ∼= (G, T, F ) , i = 0, 1, 2,

for three nonArchimedean places u = u0, u1 and u2 of Ḟ . To see that this is possible, let

E be any finite Galois extension of F over which G and T split, and let Ė′ be a global

field such that Ė′
w′

∼= E for some valuation w′. The local Galois group Gal(E/F ) is a

subgroup of the decomposition group at w′ in Gal(Ė′/Q). In other words, Gal(E/F ) can

be identified with a subgroup of Gal(Ė′/Q) and therefore acts on Ė′. Let Ḟ ′ ⊂ Ė′ be its

fixed field, and let u′ be any valuation on Ḟ ′ which w′ divides. The completion Ḟu′ is then

isomorphic with F . The required global field Ḟ can be any finite Galois extension of Ḟ ′

of degree at least 3, in which u′ splits completely, with {u0, u1, u2} being three valuations

which divide u′. If Ė is the composite field Ė′Ḟ , then

Gal(Ė/Ḟ ) ∼= Gal(E/F ) ∼= Gal(Ėwi
/Ḟui

) , i = 0, 1, 2,

for valuations wi of Ė which divide ui. If follows easily that there is a pair (Ġ, Ṫ ) over Ḟ ,

which splits over Ė, and has the required properties. Our original local data also include

a central torus Z ⊃ AG and a character ζ on Z(F ). The global construction is such that

there is a central induced torus Ż ⊃ AĠ over Ḟ and a character ζ̇ on Ż(Ḟ )\Ż(A), such

that

(Żui
, AĠ,ui

, ζ̇ui
) ∼= (Z,AG, ζ) , i = 0, 1, 2.
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Since Ṫ splits over the Galois extension Ė of Ḟ , and since Ėu1
is a field, for the

valuation u1 6= u, Ṫ (Ḟ ) is dense in T (F ) [17, Lemma 1(b)]. We can therefore approximate

γ by Ḟ -rational points γ̇. Since hG is continuous, we need only show that hG(γ̇) = 0 for

any fixed class γ̇ ∈ Γell(Ġ) with a representative, which we shall also denote by γ̇, in Ṫ (Ḟ ).

Let V be a large finite set of valuations of Ḟ which contains the Archimedean places

and the nonArchimedean valuations {ui}. At the places v 6∈ V , we assume that Ġv, Ṫv

and ζ̇v are unramified, and also that |α(γ̇v) − 1|v̄ = 1 for any root α of (Ġ, Ṫ ). (v here

stands for the valuation over v in an algebraic closure of Ḟv.) We choose the function

ḟu =
∏

v 6=u

ḟv = ḟ∞ḟ
∞,u

so that for each v ∈ V , ḟv,Ġ approaches the ζ̇−1
v -equivariant Dirac measure on γ̇vŻ(Ḟv). At

the places v 6∈ V , we take ḟv to be the unit in the appropriate unramified Hecke algebra.

The functions ḟu1
and ḟu2

will be cuspidal, and ḟ∞,u will belong to Hsimp

(
Ġ(A∞,u), ζ̇∞,u

)
.

The identity (9.7) will therefore hold for ḟu. But the conditions on ḟu imply that the left

hand side of (9.7) is a nonzero multiple of hG(γ̇u). This is a consequence of [16, Proposition

7.1], and the fact that any class in H1(Ḟ , Ṫ ) which maps to 0 in
⊕
v 6=u

H1(Ḟv, Ṫv) also maps

to 0 in H1(Ḟu, Ṫu). (See [13, Appendix], [1, p. 528–529].) It follows that hG(γ̇u) = 0.

We have established that hG vanishes on a dense subset of T (F ). Therefore, hG(γ) = 0

for the arbitrary element γ ∈ Γell(G) which we fixed. Since hG can be regarded as a function

on either Γell(G) or T̃ell(G, ζ), we conclude that

fgr
G (τ) − fG(τ) = hG(τ) = 0

for any element τ ∈ T̃ell(G, ζ). This is what we set out to prove. It implies that f ′
gr(φ

′)

equals f ′(φ′) for any G′ ∈ Eell(G) and any element φ′ ∈ Φ2(G̃
′, ζ̃ ′ζ). This completes our

proof of Theorem 6.2. �

10. A problem on weighted characters
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The virtual characters

f −→ fG(τ) = IG(τ, f) , τ ∈ T̃ (G),

are included in a more general family of invariant distributions

f −→ IM (τ, f) , M ∈ L, τ ∈ T̃ (M),

which are attached to weighted characters on G(F ). Weighted characters (as well as

weighted orbital integrals) arise in the general global trace formula. It is an important

problem to understand how they behave under endoscopic transfer. We shall state a

conjectural identity for these distributions in terms of the spectral transfer factors, which

may be regarded as a generalization of Theorems 6.1 and 6.2.

Weighted characters are usually defined so that they depend on a choice of normal-

izing factors for intertwining operators. (See for example [4, Section 2].) To simplify the

discussion, we shall not deal with the question of choosing compatible normalizing factors

on different groups. Let us instead just consider weighted characters that are constructed

from unnormalized intertwining operators. The resulting objects are then only defined on

an open dense subset of the usual domain. We define

JM (π, P ) = lim
λ→0

∑

Q∈P(M)

JQ|P (π)−1JQ|P (πλ)θQ(λ)−1 ,

in notation similar to that of [4, Section 2]. Here M ∈ L is a Levi subgroup, P ∈ P(M) is

a fixed parabolic subgroup with Levi component M , π ∈ Πtemp

(
M(F )

)
is an irreducible

tempered representation of M(F ), and

JQ|P (π) : IP (π) −→ IQ(π) , Q ∈ P(M),

are the unnormalized intertwining operators between corresponding induced representa-

tions. The operators are defined and analytic on an open dense subset of Πtemp

(
M(F )

)
,
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and the limit exists at every π in this subset. The weighted character at π is given by the

trace

JM (π, f) = tr
(
JM (π, P )IP (π, f)

)
, f ∈ H

(
G(F )

)
.

The weighted character at an element

τ = (L, π, r) , L ⊂M, π ∈ Π2(L), r ∈ R̃M
π ,

in T̃ (M) is defined [4, (2.4)] to be

JM (τ, f) =
∑

ρ∈Π(R̃M
π ,χπ)

tr
(
ρ∨(r)

)
JM (πρ, f) , f ∈ H

(
G(F )

)
.

As with JM (π, f) above, and with other functions introduced below, JM (τ, f) is to be

regarded as an analytic function on an open dense subset of its domain.

As a distribution in f , JM (τ, f) is not invariant, but it becomes invariant when it is

modified by weighted orbital integrals. (See [4, Section 3].) The resulting linear form has

to be defined, initially at least, on the subspace C∞
c

(
Greg(F )

)
of H

(
G(F )

)
. The image of

this space under the map f → fG is the subspace

I∞c (Greg) = C∞
c

(
Γreg

(
G(F )

))

of functions in I(G) of compact support on Γreg

(
G(F )

)
. Similarly, the image of

C∞
c

(
Greg(F )

)
under the map f → fG is the subspace

SI∞c (Greg) = C∞
c

(
Σreg

(
G(F )

))

of functions in SI(G) of compact support on Σreg

(
G(F )

)
. The invariant distributions

IM (τ, f) = IG
M (τ, f) , τ ∈ T̃ (M), f ∈ C∞

c

(
Greg(F )

)
,

are defined [4, (3.5∨)] inductively by a formula

JM (τ, f) =
∑

S∈L(M)

ÎS
M

(
τ, φS(f)

)
,
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where

φS : C∞
c

(
Greg(F )

)
−→ I∞c (Greg)

is a map defined as a weighted orbital integral

φS(f, γ) = JS(γ, f) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)vS(x)dx , γ ∈ ΓG(S).

(See [4, Section 1].) We want an identity relating these invariant distributions with corre-

sponding objects on endoscopic groups.

Fix the Levi subgroup M ∈ L, and consider an element M ′ ∈ Eell(M). We choose a

representative (M ′,M′, s′M , ξ
′
M ) within the given equivalence class so that M′ is a sub-

group of LM , and the embedding ξ′M is the identity. Then s′M is a semisimple element in

M̂ which centralizes M′. Suppose that s′ is an element in the set s′MZ(M̂)Γ, and that

Ĝ′ is the connected centralizer of s′ in Ĝ. Then G′ = Ĝ′M′ is a subgroup of LG, and is

a split extension of WF by Ĝ′. Taking ξ′ to be the identity embedding of G ′ into LG, we

obtain an endoscopic datum (G′,G′, s′, ξ′) for G. We shall write EM ′(G) for the set of such

s′, taken modulo the subgroup Z(Ĝ)Γ of Z(M̂)Γ, for which the corresponding endoscopic

datum for G is elliptic. Following the earlier convention, we shall represent a given element

in EM ′(G) by its endoscopic group G′. We are not actually taking isomorphism classes

of endoscopic data here, so different elements in EM ′(G) could give the same element in

Eell(G). However, the ellipticity condition we have imposed at least means that there are

only finitely many elements in EM ′(G). We can identify M ′ with a Levi subgroup of any

given G′ ∈ EM ′(G). We shall write

ιM ′(G,G′) =
∣∣(Z(M̂)Γ

)0
∩ Z(Ĝ′)Γ/

(
Z(M̂)Γ

)0
∩ Z(Ĝ)Γ

∣∣−1
.

To state the conjecture in the same form as the theorems of Section 6, we fix a central

induced torus Z of G over F , and a character ζ of Z(F ). The weighted characters and

the associated invariant distributions have obvious variants for functions in the subspace

C∞
c

(
Greg(F ), ζ

)
of H

(
G(F ), ζ

)
.
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Conjecture 10.1. Suppose that M ∈ L and φ′ ∈ T E(M, ζ). Then the linear form

IM (φ′, f) =
∑

τ∈T (M,ζ)

∆M (φ′, τ)IM(τ, f) , f ∈ C∞
c

(
Greg(F ), ζ

)
,

equals an endoscopic expression

IEM (φ′, f) =
∑

G′∈EM′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(φ
′, f ′) , (10.1)

for any fixed element M ′ ∈ Eell(M) such that φ′ ∈ Φ(M̃ ′,M, ζ), and for stable linear forms

SG̃′

M̃ ′
(φ′α) on C∞

c

(
G̃′

reg(F ), ζ̃ ′ζ
)
.

It is implicit in (10.1) that IEM (φ′, f) should be independent of the choice of M ′, as

well as the representative of φ′ is in Φ(M̃ ′, ζ̃ ′ζ). Moreover, SG̃′

M̃ ′
(φ′) is to depend only on

G̃′ and M̃ ′ (and not on G or M). When G is quasisplit, the identity includes an inductive

definition of these stable distributions. The assertion in this case is that

SG
M (φ, f) = IM (φ, f) −

∑

G′∈EM (G)

G′ 6=G

ιM (G,G′)ŜG̃′

M (φ, f ′) (10.2)

is a stable linear form on C∞
c

(
Greg(F ), ζ

)
, for every φ ∈ Φ(M, ζ). If G is not quasisplit,

or if φ′ does not lie in Φ(M, ζ), we can assume inductively that the terms on the right

hand side of (10.1) have been defined. The assertion becomes a general identity between

two different invariant distributions. Observe that when M = G, the conjectural assertion

includes Theorem 6.1 if G is quasisplit, and is Theorem 6.2 in general.

As with the two earlier theorems, Conjecture 10.1 can be formulated in terms of

integral kernels. It is known that there is a function

IM (τ, γ) = IG
M (τ, γ)

on T̃ (M, ζ) × Γ(G) such that

IM (τ, f) =

∫

Γ(G)

IM (τ, γ)fG(γ)dγ , (10.3)
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for any τ ∈ T̃ (M, ζ) and f ∈ C∞
c

(
Greg(F ), ζ

)
[4, Theorem 4.3]. As a function of γ ∈ Γ(G),

IM (τ, γ) actually turns out to be locally integrable, so (10.3) provides a canonical extension

of the distribution to H
(
G(F ), ζ

)
. The conjectural assertion for (10.2) implies that the

stable distributions SG
M (φ) are also given by integral kernels. If G is quasisplit, it can be

established inductively from (10.2) that

SG
M (φ, f) =

∫

Σ(G)

SG
M (φ, σ)fG(σ)dσ , (10.4)

for a function SG
M (φ, σ) on Φ(M, ζ) × Σ(G). In fact, Conjecture 10.1 is equivalent to the

following.

Conjecture 10.2. Suppose that M ∈ L, φ′ ∈ T E(M, ζ) and γ ∈ Γ(G). Then the function

IM (φ′, γ) =
∑

τ∈T (M,ζ)

∆M (φ′, τ)IM(τ, γ)

equals an endoscopic expression

IEM (φ′, γ) =
∑

G′

∑

σ′∈ΣG(G′)

ιM ′(G,G′)SG̃′

M̃ ′(φ
′, σ′)∆G(σ′, γ) , (10.5)

forM ′ andG′ as in (10.1), and for functions SG̃′

M̃ ′
(·, ·) on Φ(M̃ ′, ζ̃ ′ζ)×ΣG(G′). �

In an attempt to state things as clearly as possible, we have perhaps formulated the

conjectures more precisely than is justified by the available evidence. A careful study of

the descent and splitting properties of the distribution (10.1) should reveal, for example,

whether our definition of the constants ιM ′(G,G′) is correct. What does seem apparent

is the essential role of the spectral transfer factors. This is one reason why we have spent

the time we have taken to set them up.
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