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Introduction

Suppose for a moment that H is a locally compact group and that F is a discrete
subgroup of H. The problem of the spectral decomposition of L^I^H) has long been
known to be both difficult and important. In the 1950's, Selberg introduced a trace
formula in certain special cases, and emphasized the importance of obtaining a more
general formula. The first goal of Selberg's program was to construct the continuous
spectrum. One would then be able to restrict certain operators to the complement of
the continuous spectrum, namely the discrete spectrum. The second goal was to construct
an explicit expression for the traces of these operators on the discrete spectrum.

The most fruitful setting for the problem has been the case of a reductive Lie
group, and an arithmetic congruence subgroup. This is actually equivalent to taking
H = G(Ap) and F == G(F), where G is a reductive algebraic group over a number
field F. The group of F-rational points is then a discrete subgroup of the group of
F-addlic points, and the quotient has finite invariant volume, modulo the center. In
this setting, Selberg's program has been carried out ([12], [26], [28]). The trace formula

* Supported in part by NSERC Operating Grant A3483.



6 JAMES ARTHUR

takes the form of two different expansions of a certain distribution on G(Ap). One
expansion is in terms of irreducible representations—spectral data—and includes the
trace on the discrete spectrum. The other expansion is in terms of conjugacy
classes—geometric data—and includes invariant orbital integrals.

The trace formula promises to yield deep information about the discrete spectrum
ofL^I^H). However, there are serious problems still to be solved before this goal can
be fully realized. Most of the problems are local in nature, and involve the distributions
on the geometric side. Besides invariant orbital integrals on conjugacy classes, these
terms include more exotic objects, weighted orbital integrals, not previously encountered
in local harmonic analysis. It is believed that there are striking relationships between
orbital integrals—both invariant and weighted—on different groups. It is these identities
which must be established before the trace formula can be fully exploited.

A few years ago, Kazhdan suggested that there should also be a different kind
of trace formula, attached to a real or j^-adic group. Suppose now that F is a local field
of characteristic 0, and that G is a connected, reductive algebraic group over F. Consider
the regular representation

(R(JW2) 9) W = 9(A-1 ̂ 2), 9 e L^F)), x,^^ e G(F),

of G(F) x G(F) on the Hilbert space L2(G(F)). The spectral decomposition in this
case is less deep. It is given by Harish-Ghandra's Plancherel formula, which provides
a rather explicit decomposition

R=R^®R^

of R into subrepresentations with purely discrete or continuous spectrum. Consider a
smooth, compactly supported function on G(F) X G(F) of the form

/OW2) =/l(^)/2(j2), JW2<=G(F).

Then

R(/) = f f /i(^i)/2(^2) R(JW2) dy.dy,
JG(F) JG(F)

is a bounded linear operator on L2(G(F)) which has a decomposition

R^-Rd^/^RcontC/).

Kazhdan's proposal amounts to finding an explicit formula for the trace of the ope-
rator Rdiac(j0. The purpose of this paper is to establish such a formula.

The operator R(/) maps any function 9 eL2(G(F)) to the function

(R(/) y) {x) = f f /^)/,(jQ 9(^ xy) du dy
JG(F) JG(F)

= f fiWf^uy) <p(jQ du dy
JG(F) JQ(F)

=( K{x,y)^)dy,
JG(V)
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where

K(^) = f f^xu)f^uy) du = f f^u)f^x-1 uy) du.
^G(F) JG(F)

Therefore, R(/) is an integral operator with smooth kernel K(^). Our goal is to
convert this simple formula for the kernel into an expression for the trace of RcuscC/).

If G(F) is compact, the problem is easy. For the Peter-Weyl theorem tells us that
Rdiac = R- Moreover, the trace of an integral operator with smooth kernel on a compact
(real or j&-adic) manifold is just the integral over the diagonal. Therefore

f f f^Wf,{x-lux)dudx==tr{R^f))
JG(F) JG(E)

in this case. The Weyl integration formula provides an expansion of the left hand side
in terms of conjugacy classes { y } of G(F). Similarly, the Peter-Weyl theorem gives an
expansion of the right hand side in terms of irreducible representations { a} of G(F).
The result is

where

(^(YJ^Y- S J^,/),
J n = (o^ o)

JG(Y,/) - I D(v) | f /i(̂ -1 Y.<-i) ̂ i f f^1 Y^) ^2
•/G(F) JG(F)

and
Jo(^/) = tr^/i)) tr(a(^)).

The measure df is supported on the regular conjugacy classes, and comes in the usual
way from the normalized Haar measure on the maximal torus that centralizes y, while

D(y) - det(l - Ad(v))^

is the Weyl discriminant.
The real problem comes when G(F) is not compact. In this case, Harish-Ghandra's

Plancherel formula tells us that there is a continuous spectrum. Then R(/) is not of
trace class and K{x, x) is not integrable, even modulo the split component AQ(F) of
the center of G(F). This circumstance complicates matters considerably.

Our initial strategy will be as follows. We shall multiply K{x, x) by the charac-
teristic function u[x, T) of a large compact subset of G(F)/A^(F). This allows us to
define a distribution

K^/) = f K(^, x) u{x, T) dx
</G(F)/AQ(F)

in which the truncation parameter T can vary over lattice points in a chamber a^ of
a real vector space. The Weyl integration formula is of course still valid for a noncompact
group. It leads directly to an expansion of

K(^, x) = f fMf^ux) du = f f^u)f^x-1 ux) du
JQW) JGKF)
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in terms of regular semisimple conjugacy classes ofG(F). Harish-Chandra's Plancherel
formula gives a parallel expansion of K{x, x) in terms of irreducible tempered repre-
sentations of G(F). Together, they provide two expansions

(i) s i w y i i w ^ r f K^y,/)^
M J FelKMW)

and

(2) S W I I W ^ r f K^o,/)^
M J na(M(F))

for ICV).
The identity of (1) and (2) can be regarded as a preliminary version of the local

trace formula. The steps required to derive it are formal, and will be taken in § 2 and § 3.
However, the terms in (1) and (2) are themselves too formal to be of much use. For
one thing, it is hard to see how the distributions K^y,/) and K^CT,/) behave as
functions of T. Our main task will be to obtain expansions of (1) and (2) which are
more concrete, and which do not depend on the parameter T. Along the way, we shall
have to solve a number of analytic and combinatorial problems. Rather than trying
to describe these in any detail here, we shall just give a brief summary of the overall
process.

We study the geometric expansion (1) in § 4-§ 6. This leads to some understanding
of K^y) as a function of T. We shall show that as T approaches infinity, K^^f) is
asymptotic to another distribution J^./) which is more manageable (Proposition 4.5).
We shall then see (Proposition 6.1) that ^{f) is of the form

(3) S ̂ (T,/) e^\
fc=0

where E;o = O? Si5 • • • 3 SN are distinct points in the dual space u^, and where each pjc^yf)
is a polynomial in T. In particular, the constant term

JC/)-^/)
can be defined, and is uniquely determined by the original function K^y). The dis-
cussion in § 4-§ 6 also provides a rather explicit formula for J(./). The result (Propo-
sition 6.1) is a geometric expansion ofJ(y) in terms of weighted orbital integrals on
semisimple conjugacy classes.

We study the spectral expansion (2) ofK^^f) in § 7-§ 11. A key step is an asymp-
totic formula (Theorem 8.1) for the truncated inner product of matrix coefficients of
induced representations. This generalizes an inner product formula of Waldspurger
for spherical functions on the j&-adic general linear group. We shall use the inner product
formula to construct a function from spectral data which is asymptotic to K^/) and
which is of the general form (3). Since these two properties characterize a function
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of T uniquely, we will be able to conclude that the function actually equals J^/)
(Lemma 11.1). The corresponding constant term then provides a second formula
^.K/) (Corollary 11.2). In the end, we obtain a spectral expansion ofJ(/) in terms
of weighted characters of induced representations (Proposition 11.3).

The local trace formula is a straightforward consequence of the two expansions
ofJ(/). It will be established in § 12. The final result (Theorem 12.2) is an identity
between two expressions

(4) S | W? | | W? |-1 (~ I)<^<AM/AO) f j^y) ̂
M Jrell(M)

and

(5) S | W? | | W^ |-1 (- I)^AM/AO) f ^ j^y) ̂
M •/IIdi8c(M)

which are remarkably similar to the geometric and spectral sides [12, (3.2) and (3.3)]
of the global trace formula. We refer the reader to § 12 for precise descriptions of the
terms in these expressions. It is enough to say here that the weighted orbital inte-
grals JM(Y?/) and the weighted characters J^^f) are essentially the local terms that
occur in the global trace formula. As the main constituents of (4) and (5), they now
have a purely local interpretation. They have arisen naturally as the solution to a
problem in local harmonic analysis.

An obvious question at this point is whether the local trace formula can be used
to establish the local identities required for a comparison of global trace formulas. Such
identities actually make sense only for invariant distributions. The terms JM(T?/) ^d
J-sn^f) in (4) and (5) are in fact not invariant if M + G. However, it would not be
difficult to establish an invariant version of the local trace formula from the identity
of (4) and (5). (See [13, § 8] and [14, § 1-2].) It is likely that this invariant local trace
formula will have significant applications to the study of the invariant distributions
that occur in the invariant global trace formula.

In keeping the introduction within bounds, we have not given much of a des-
cription of the techniques in the main body (§ 4-§ 11) of the paper. These techniques
have been discussed elsewhere, in an earlier provisional paper [13], and to some extent
in [14, § 2]. We also refer the reader to [9], where some of the methods of§ 4-§ 6 were
applied to a special case of the problem.

This paper owes a good deal to the work of Waldspurger [31]. In addition to
establishing a truncated inner product formula, Waldspurger solved a number of combi-
natorial problems related to j^-adic groups, and established a connection between
weighted characters and local harmonic analysis. I have also profited from conversations
with Gasselman and Kazhdan. Finally, I would like to thank the referee for a number
of helpful comments.
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1. The group G(F)

Let G be a connected, reductive algebraic group over a local field F of charac-
teristic 0. Our concern is the harmonic analysis of the locally compact group G(F).
To this end, we fix a maximal compact subgroup K ofG(F), which is hyperspecial [30]
if F is a j&-adic field.

We first recall some of the usual objects attached to G. The split component of
the center of G is denoted by A^. We also have the real vector space

a^=Hom(X(G)p,R)

obtained from the module X(G)p of F-rational characters on G. There is a canonical
homomorphism

H,:G(F)-^
defined by

,<HO(.).X> ̂  | ̂ ) [^ ^ ^ G(F), x e X(G)p,

where | • [ is the normalized valuation on F. The kernel of H^ is denoted by G(F)1. Set
do,? = H^(G(F))

and
^ = H^(F)).

If F is Archimedean, o^ ̂  = o^p == OQ. However, if F is a ^-adic field, of^p and o^p
are lattices in o^.

We also fix an F-rational Levi component MQ of some minimal parabolic subgroup
of G defined over F. We assume K and A^(F) are in good relative position, in the sense
that the Lie algebras of K and Mo(F) are orthogonal relative to the Killing form if F
is Archimedean, and the vertex of K in the Bruhat-Tits building lies in the apartment
of Mo if F is ^-adic. Then

G(F) = KMo(F) K.

Suppose that P is a parabolic subgroup of G which is defined over F and contains
Mo. Then

G(F) = P(F) K = Mp(F) Np(F) K,

where Np is the unipotent radical of P, and Mp is the unique Levi component of P
which contains Mo. Both Np and Mp are defined over F. In particular, Mp satisfies
the same conditions as G, and we can define the split torus Ap = A^ and the real
vector space dp = a^. Associated to P we have the subsets

ApCS;C2p

of roots of (P, Ap), Ap being the simple roots, 2p the reduced roots, and Sp the set
of all roots. As usual, we regard these roots as linear functions on dp. If Q, is a parabolic
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subgroup of G which contains P, let Ap1 denote the simple roots of the parabolic sub-
group P n MQ of MQ. Then Ap^ is a subset of Ap.

By a Levi subgroup of G, we mean a group M which contains MQ, and which is
the Levi component of a parabolic subgroup of G which is defined over F. For any
such M, set KM == M(F) n K. Then the triplet (M, K^(, Mo) satisfies the same hypo-
theses as (G, K, Mo). We write ^(M) for the set of parabolic subgroups P over F with
Mp = M. We also let ^(M) and oSf(M) denote the finite sets of parabolic subgroups
and Levi subgroups of G which contain M. In the special case that M = MQ, we will
generally write y = ^(Mo) and JS? = oS?(Mo). We shall also write Ao = A^, OQ = a^
and Ho = H^.

We shall have to keep some account of Haar measures. Unless otherwise stated,
the Haar measure on a compact group will be normalized to have total volume 1. We
also fix Haar measures on each of the spaces a^, for Levi subgroups M e oS?. We can
then take the corresponding dual measures on the spaces ia^. If F is a j&-adic field,
o^ p == H^(A^(F)) is a lattice in a^. In this case, we normalize the measure on a^
so that the volume of the quotient (X^/SM, p cq11^ 1 • Then the volume of the quotient

ia^Hom{^,2niZ)

with respect to the dual measure is also equal to 1. In particular, the measure on ia^
is the one fixed by Harish-Ghandra in [23, § 2]. It assigns the quotient

ia^y == z'aM/Hom(a^F, 27riZ)

a volume equal to the index | Cl^p/o^p |. In general, the kernel of H^( in A^(F) is
compact, and therefore has a canonical Haar measure. Since the group H^(A^(F))
is either discrete or equal to 0^5 it also has an assigned Haar measure. The two measures
determine a unique Haar measure on A^(F). Similarly, any choice of Haar measure
on M(F), together with the Haar measure on H^(M(F)), determines a unique Haar
measure on the kernel M(F)1 of H^.

There is a canonical way to compare a Haar measure on G(F) with one
on any Levi subgroup M(F). Suppose that Pe^(M). Then we have the modular
function

Sp(^) = ̂ BM^ m e M(F), n e Np(F),

on P(F), where 2pp is the usual sum of roots (with multiplicity) of (P, Ap). Let P e ̂ (M)
be the parabolic subgroup which is opposite to P. Then the number

T(P) ̂ ^2pp(Hp(n)) ̂

NpCF)

is finite, and depends linearly on the choice of Haar measure in on Np(F). Consequently,
Y(P)"1 dn is a canonical Haar measure on Np(F). If dm is a Haar measure on M(F),
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a standard integration formula of Harish-Ghandra asserts the existence of a Haar
measure dx on G(F) such that

( 1 . 1 ) f /(^^(^(P))-^ f f Anm^S^m^dndmdn,
J G(F) J Np(F) J M(F) J Np(F)

for any function f e C^(G(F)). We shall say that the measures dx and dm are compatible.
It is in fact not hard to show that dx is independent of the choice of P e ̂ (M). Moreover,
compatability has the obvious transitivity property relative to Levi subgroups of M.

How do compatible measures behave in other integration formulas? IfP e^(M),
set

x = mp{x) np{x) kp{x), mp(x) e M(F), Up{x) eNp(F), kp{x) e K,
and

HpW = H^M),

for any point x e G(F). Then the right hand side of (1.1) can be written

(Y(P) Y(P))-1 f f f Anmrn^W »p(n) Ap(n)) Sp(m)-1 dndm dn
JNp(F) JMp(F) JNp(F)

= (Y(P) T(P))-1 f f f /(w^p(")) <2PP(H (̂")) 8p(<")-1 dndm dn
JNp(F) JMp(F) JNp(F)

= (y(P) Y(P))~1 f f f Amnk^n)) ̂ (H^)) dndm dn.
JNp(F) JM(F) JNp(F)

It is known that

f <p(A) dk = Y(P)~1 f ?(^)) ^2pp(HP(n)) ^^
J'e •/Np(F)

where (p is any function in G(K n P(F)\K), and dk is the normalized Haar measure
on K. (To obtain the constant Y(P)~"1^ simply set 9 === 1.) Substituting into (1.1), we
see that

(1.2) f /W^=Y(P)- l f f f Amnk)dndmdk,
JGCF) JKJM(F) JNp(F)

for anyjfeG^(G(F)), and for compatible measures dx and dm on G(F) and M(F).
Suppose that Po e ̂ (Mo) is a minimal parabolic subgroup. Every element in Mo(F)

can be conjugated under K into the set

Mo(F)p, == { m e Mo(F) : a(Ho(^)) ^ 0, a e Ap,}.

In particular,

G(F)=K.Mo(F)^.K.
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Suppose that dx and dm are compatible Haar measures on G(F) and M()(F). Then
there is a nonnegative function Dp^ on Mo(F), which is supported on Mo(F)^ and is
invariant under Mo(F)1, such that

(1.3) f M dx === f f f Dp,(w)/(^ mk,) dm dk, dk^
JQ(E) JK:JKJMo(F)

for any/eC^G(F)). If F is Archimedean, it is well known that

D^m) = CQ n | ^(HM(m)) - e-^^ \, me Mo(F)^,
a

where a ranges over the roots of (Po, Ao), repeated according to multiplicity, and CQ
is an absolute constant. It is less well known that CQ is actually equal to 1. This amusing
fact was observed by Harish-Ghandra, but was never explicitly published as far as I
know. In the /»-adic case

Dpo(̂ ) = voVK^K) vol^(K^)-1

== 1 K/K n m-1 Km \ vol^(K) vol^(K^)-1, m e Mo(F)^,

where vol^ denote the volume in G(F). What the two cases have in common is a simple
asymptotic formula for Dp (m). To state it, we let || • |[ be the Euclidean norm attached
to a fixed inner product on do which is invariant under the Weyl group W^ of (G, Ao).

Lemma 1 .1 . — Suppose that P is a parabolic subgroup which contains Po, and that 8 > 0.
Then there are positive constants C and s such that

1 DP.W - W1'2 Dp,̂ (m)1/2 | ̂  G 8p,(m)1/2 ,-HH.<"»II,

for all points m in Mo(F)p" such that a(Ho(w)) ^ 8 [| Ho(w) || for every root a in Ap — Ap^.

For real groups, the lemma is simply the assertion that the constant CQ above
equals 1. This can be extracted from the proof [24, p. 381] of the formula (1.3). We
leave the reader to battle with the different choices of Haar measures on the various,
groups. If F is ^-adic, the required asymptotic formula is actually an exact formula.
When G is simply connected, it is just the formula given by [27, Proposition 3.2.15].
In this case, we leave the reader to relate Y(Po) wlt^1 ̂ le number denoted Q,(^~1) in [27],
and also to extend the lemma to groups which are not simply connected.

The following estimate is a straightforward consequence of the lemma.

Corollary 1.2. — There is a positive constant G such that
Dp^^CSp^2, ^eMp,(F)^. D

We should add some comments concerning the spaces a^. These will be useful
in the^-adic case for dealing with lattices related to a^p and o^p. First, let us agree
to set

V^ == Hom(Vi, 27riZ) c= iV*,
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if Vi is any closed subgroup of a real vector space V. This is simply to have uniform
notation in the example that V == OM and Vi equals either a^r or a^p. If F is ^-adic,
Vi is a lattice in this example, and V^ is the dual lattice in iV*. In the Archimedean
case Vi = V and V^ = { 0 }. In each case, the group iV^ = iV/V^ is identified with
the unitary dual of Vi under the pairing

(y,X) -^w, yeV, XezVi*.

The embeddings

A^F) C A^F) C M(F) C G(F)

give rise to a commutative diagram
*MG

OM,F —>> OG.F
u . u^ ^

aM, F <—— aG, F

The surjectivity of h^ follows, for example, from the property G(F) = KMo(F) K
and the fact that K lies in the kernel of the map HQ. The injectivity of h-y^ is a conse-
quence of the fact that A^ is a subtorus ofA^. We can also form the dual diagram

V ^MG V

<IM.P <—:) OG.F
n , n

/^/V ^MG /^/V

^M,F —>> aG,F9

in which A^Q is injective and h^Q is surjective. These four maps have extensions

^MG : ̂  "̂  ^^
^
^MG : ^Q c~> ^^

AMG : ̂  <-^ ^M?
^V • * • *
^MG •* ^M"^ ̂ 5

as linear maps between real vector spaces. We shall identify o^ and ia^ with their
respective images in a^ and ia^. Let a^ be the kernel of h^Q in a^. Then a^ == a^® OQ.
We shall often simply identify a§ with the quotient 0^/010. Similarly, ia^ equals
{id^ @ iCtQ, where {ia^)° is the kernel of JI^Q in ia^.. Again, we shall often identify
(Uln)0 with iciM/<.

The decomposition a^ = a^ ® do is orthogonal relative to the restriction to a^
of the W^-invariant inner product on do. It is a consequence of the definitions that
the map h^Q is identified with the orthogonal projection of a^ onto o^. In particular,
OQ^P is just the projection of a^ p onto OQ. On the other hand, we have

(1.4) a'G,F=OGn^M.F•
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This follows easily from the fact that AQ is a subtorus of A^. Similar assertions apply
to the dual spaces. The inner product on do determines a positive definite bilinear form
on m^, relative to which (m^)0 and ia^ are orthogonal. The map ^^ is the orthogonal
projection of ia^ onto tOo, and
(1.5) O^F ==uiG^a^F.

We have fixed Haar measures on the spaces a^ and OQ. These define a Haar
measure on the orthogonal complement a^ ^ (XM/OG. If F is a j&-adic field, it follows
easily from (1.4) that the volume of the quotient 0^/0'^? + OQ equals 1. In general,
we take the dual Haar measure on the real vector space

taM/< = W ^ i{^r = (iOM)0

The quotient Ul^/o^p can °^ course be identified with the group of unramified
characters of A^(F).

Lemma 1.3. — Suppose that ^ is an unramified character on A^(F) which is trivial
on AQ(F). Then there is an element (JL e {id^ such that

^)^^HM(a))^ aeA^-F).

Proof. — By assumption,
^(fl)==^HM(^ aGA^(F),

for some linear function ^ e ia^ which maps VQ p into 27riZ. In particular, the res-
triction of p. to o^p lies in 27rf'3'o[F. Recall that the map A^ sends 0?^ p surjectively
onto SQ^F. We can therefore find an element [LQ in 10̂  which maps o^ p to 2m'Z, and
such that the difference

^ == (AI — (AO

is trivial on o'^p. The element (A then lies in (m^)0, and satisfies the conditions of
the lemma. D

2. Two expansions of the kernel

We turn now to our primary object of study, the regular representation R of
G(F) x G(F) on L2(G(F)). Recall that

(K^i^) ?) W = P^i'1 ̂ 2). ^J^i^2 e G(F).

for any function 9 eL2(G(F)). It is convenient to use notation which emphasizes the
analogy with automorphic forms. In particular, we shall write

G(A^)=G(F) XG(F)

for the group of points in G with values in the ring
Ap = F C F.
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Then G(F) embeds diagonally as a subgroup of G(Ap). The map which sends any
y eL2(G(F)) to the function

( î, ̂ ) -> <p(̂ -1 ^)> ( î, ^2) e G(F)\G(Ap),

is an isomorphism of L2(G(F)) onto L2(G(F)\G(Ap)) which intertwines R with the
regular representation of G(Ap) on L2(G(F)\G(Ap)).

Let Jf(G(F)) be the Hecke algebra of smooth, compactly supported functions
on G(F) which are left and right K-finite. Similarly, let^(G(Ap)) be the Hecke algebra
on G(Ay) relative to the maximal compact subgroup K x K. We fix a function in
Jf(G(A^)) of the form

/(JW2) ==fl^l)f2{^2). JW2^=G(F),

for functions/i and/g in ^(G(F)). We then form the linear operator

R(/) == f /(JO R(j0 dy
•/G(Ap)

on L2(G(F)). As we observed in the introduction, R(/) is an integral operator on
L2(G(F)) with integral kernel

(2.1) K(^)=f A{xu)f^)du, ^eG(F).
JQ(F)

We propose to study this kernel as a function on the diagonal. There are two funda-
mental formulas in harmonic analysis that lead to parallel expansions of K{x,jy). The
Weyl integration formula provides an expansion into geometric data, while the Plancherel
formula leads to an expansion into spectral data.

We shall first recall a version of the Weyl integration formula that is suitable
for our purposes. Let F^(G(F)) denote the set of conjugacy classes { y } in G(F) such
that the centralizer ofy in G(F) is compact modulo Ao(F). We need only be concerned
with the intersection of I\n(G(F)) with G^(F), the set of G-regular elements in G(F).
Recall that we have fixed a Haar measure on AQ(F). It determines a canonical
measure d^ on the set r^(G(F)), which vanishes on the complement of G^g(F) in
r^(G(F)), and such that

f 9(Y)^ = = S|W(G(F) ,T(F)) | - l f ^t)dt,
^reU(G(F)) { T } JT(P)

for any continuous function 9 of compact support on I\u(G(F)) n G^g(F). Here,
{ T } is a set of representatives of G(F)-conjugacy classes of maximal tori in G over F
with T(F)/A^(F) compact, W(G(F), T(F)) is the Weyl group of (G(F), T(F)), and
dt is the Haar measure on T(F) determined by the Haar measure on AQ(F) and the
normalized Haar measure on the compact group T(F)/AQ(F). Now an arbitrary
G-regular conjugacy class in G(F) is the image of a class { y } e F^(M(F)), for some
Levi subgroup M which contains Mo. The pair (M,{y}) is uniquely determined only
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up to the action of the Weyl group W^ of (G, Ao), so the number of such pairs equals
I ^? I I ^T 1~1- The Weyl integration formula can then be written

(2.2) f h{x)dx== S WIIW^rf |D(Y)|(f h{x-l^dx\d^
JGCF) MG.S? JreiKM(F)) \JAM(F)\G(F) /

where h is any function in G^(G(F)), and

D(y) = det(l - Ad(y))^

is the Weyl discriminant. Each side of the formula depends on a choice ofHaar measure
on G(F).

Returning to the kernel (2.1), we change variables in the integral over u. This
gives a formula

K(x,x) == f f^u)f^x-lux)du
JQCF)

which reflects the behaviour of/i and/a on conjugacy classes. The Weyl integration
formula then gives the expression

(2-3) M^'^I l̂ 1"1! '^(f f^^f^^^dx^Me^ JreU(M(F)) \JAM(F)\G(F) /

for 'K(x, x). This the geometric expansion of the kernel.
Before recalling the Plancherel formula, we should mention a point concerning

irreducible representations. Let us write II^p(H) for the set of (equivalence classes of)
irreducible tempered representations of any suitable group H. There is a locally free
action of ic^ on II^p(G(F)) defined by

n^x) == n{x) ^(HG(a;)), ^eG(F),

for any n e Tl^^{G(F)) and X ezcio. Let TC denote the restriction of TC to the normal
subgroup

G(F) 1 ={^6G(F) :H^)==0}.

If F is Archimedean, n is irreducible, and {^}<->TC is a bijective correspondence
between the zo^-orbits in n^p(G(F)) and II^(G(F)1). However, if F is ^-adic,
the representation TT could be reducible. In this case, the action of G(F) by conjugation
on t^n^0^11)1) is nontrivial, and the set {n} of irreducible constituents of TC is a
G(F)-orbit. In general, we shall write o^ for the stabilizer of7r in zc^. Then

.V f» .M ^ yV
^G.F^^TC^OG,??

and the group

<,7r = i^l^n

acts simply transitively on the orbit { n^}.
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These comments of course apply if G is replaced by any Levi subgroup M e oSf.
For a given a e n^p(M(F)) and X em^ we write

^p(^), Pe^(M), ^eG(F),

as usual for the corresponding parabolically induced representation of G(F). It acts
on a Hilbert space J^p((r), of vector valued functions on K, which is independent of X.
Let Il2(M(F)) be the subset of representations in II^p(M(F)) which are square
integrable modulo A^(F). We shall write {na(M(F))} or H^(M{'F)) lia^a. for the set
of za^-orbits in II^M^F)). These orbits are of course the connected components in
the natural topology on II^M^F)). Now we have fixed a measure d\ on ia^. This
determines a measure on either of the two quotient spaces

^M,? = ̂ M^M,:? -̂ M^M.o == ^M,o-

Following Harish-Ghandra [23, § 2], we define a measure da on ri2(M(F)) by setting

<p((r) da = S; 9(^) d\
J na(M(F)) o G { n2(M(F))} J ia^ y(2.4)

= S |aM>M,rrf 9(^)^
oe{n2(M(p))} Jia; F

for any function <peG<;(M(F)). Harish-Chandra's Plancherel formula [22], [23] can
then be written

(2.5) A ( l ) = S W I I W ^ I ^ f ^(o)tr(^p(cT,A))^
Me-? Jna(M(F))

where A is any function in G^(G(F)), m{a) is the Plancherel density, and P is any group
in ^(M). We will eventually need the precise description of m{a) in terms of Harish-
Ghandra's [ji-functions and the formal degree of a (and the various constants which
occur in Harish-Ghandra's formula). For the moment, however, we need only know
that m{a) is a smooth, tempered function on ri2(M(F)) which depends inversely on
a choice of Haar measure on G(F) and the choice of Haar measure on m^.

Returning again to the kernel (2.1), we set

hW == ! f,{xu)f,{uvx) du, v eG(F).JG(F)
Then A is a function in G^(G(F)) such that

hW=K{x,x).

If
/î i) =fi^1),

we can also write

^p(<r, A) = AB*,
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where

and
A = ̂ p^) ^p((7, X) ̂ p(^)

B=^p(or,^).

For each P and a, let ^p((r) be a fixed K-finite orthonormal basis of the Hilbert space
of Hilbert-Schmidt operators on Jfp(cr). Then

tr(^p(a, h)) = tr(AB-) = S (A, S*) (B, S*).
se^p(o)

Therefore
tr(^p(<T, A)) == Str(^p(o,//) ^p(cr, ^) ^p(a,/2) S) tr(^p((r, ̂ ) S)

= S tr(^p(o, ̂ ) S(/)) tr(^p(o, x) S),

where
S(/) = ̂ p(<T,/,) S^p(o,//).

The Plancherel formula applied to h then becomes the expression

(2.6) S WIIW^I-^ mW{ S tr(^p(<T^)S(/))tr(^p(<r^)S))rfa
M e ̂  J n2(M(F}) s e ̂ p(o)

for K(A*, ^). This is the spectral expansion of the kernel.

3. Truncation

We have described two different expansions (2.3) and (2.6) for K{x, x), the value
of the kernel ofR(/) on the diagonal. It is not hard to show that the terms with M = G
in each expansion are integrable over x in G(F)/AQ(F). In fact, if G is semisimple, the
integral of the term with M = G in (2.6) is just the trace of R^/). If we were able
to integrate the other terms, the resulting identity could serve as the local trace formula.
However, the terms with M =1= G in each expression are not integrable. We must
truncate these functions in such a way so that they can all be integrated.

The truncation procedure is simpler than what has been used for the global trace
formula [3]. It is perhaps surprising that it works out so well. We shall simply multiply
each term by the characteristic function of a large compact subset of G(F)/AQ(F). To
describe this we must first recall some simple notions [1, § 3], [6, § 3] which are relevant
to the parameter of truncation.

Fix a Levi subgroup M e oSf. A set

^ = ^ = { Y p : P e ^ ( M ) }

of points in 0^3 indexed by the finite set ^(M), is said to be a (G, M)-orthogonal set if
it satisfies the following property. For any pair P and P' of adjacent groups in ^(M),
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whose chambers in OM share the wall determined by the simple root a in Ap n (—• Ap.),
we have

Yp — Yp. =^= r?^ p, a ,

for a real number r^y. Recall that o^ is the cc co-root" associated to the simple root
a e Ap [2, § 1]. We say th^t the orthogonal set is positive if each of the numbers r? pr
is nonnegative. This is the case, for example, if the number

(3.1) d{W) == inf a(Yp)
v / {a^Ap:Pe^(M)} ' x 7

is positive. Given ̂  we can form the ,(MQ, M)-orthogonal set

^={Yp^=Yp:Pe^(M) ,PCQJ

for any group Q e ̂ (M). IfL belongs to «S?(M) and Q, is a group in ̂ (L), we define YQ
to be the projection onto OL of any point Yp, with P e^(M) and PCQ. Then YQ is
independent of P, and

^={YQ:Q^(L)}

is a (G, L)-orthogonal set. In general, we shall write S^(^) for the convex hull in O^OQ
of a (G, M)-orthogonal set W.

One example is the set

{~Hp(^) :Pe^(M)},

defined for any point x e G(F). This is a positive (G, M)-orthogonal set [1, Lemma 3.6],
which is a familiar ingredient of the global trace formula. It will play a parallel role
here in the final description of the terms on the geometric side.

The truncation procejss depends on an even simpler orthogonal set. Suppose that
T is any point in do. If PO is any group in ^(Mg), let Tp^ be the unique W^-translate
of T which lies in the closure of the chamber 0?'. Then

{Tp^Poe^(Mo)}

is a positive (G, Mo) -orthogonal set, which we shall denote simply by T. We shall
assume that T is highly regular, in the sense that its distance from any of the singular
hyperplanes in do is large. In other words, the number

d{T) = inf{ a(Tp^) : a e Ap,, Po e ̂ (Mo)}

is suitably large. Keep in mind that we can also form the (G, M)-orthogonal set

TM=={Tp:Pe^(M)}, MeJSf,

as above, where Tp is the projection onto OM of any point Tp,, P^ being any group
in ^(Mo) which is contained in P. For future reference, we note that

(3.2) d{T) < a(Tp), P e^(M), a eAp.
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Indeed, if Po C P as above, and a is the projection onto a^ of the root (XQ e Ap — A1*
then

^o(Tp,) < a(Tp^) = a(Tp).

This follows from the elementary properties of roots.
We fix the point T e do with d(T) large. If F is a ^-adic field, we also assume

that T belongs to the lattice a^p. The truncation will be based on the decomposition
G(F) == KMo(F) K. We define u{x, T) to be the characteristic function of the set of
points

x == ̂  mk^ m e A^F)\Mo(F), ^, ̂  e K,
m AG(F)\G(F) such that Ho(m) lies in the convex hull S^(T). Since S^(T) is a large
compact subset of OM/OG, u{x, T) is the characteristic function of a large compact subset
of Ao(F)\G(F). In particular, the integral

(3.3) K^C/^f K(x,x)u(x,T)dx
J AQ(F)\G(F)

converges.
The distribution K^/) will eventually lead to a local trace formula. One begins

with the two expansions ofK^/) obtained by substituting the formulas (2.3) and (2.6)
for K{x,x) into (3.3). The geometric expansion is

(3.4) ^ ( . /^SIW^IIW?!-^ K^y,/)^,
sS.eS' JreiKM(F))

where

K^y,/) = |D(Y)| f f f^^f^x-^^^u^dx^dx.J AO(F)\G(F) J AM(F)\G(F) i / \ .» / i

In this last expression, it is convenient to take the integral over x inside the integral
over A?i, and then to replace x by x^~1 x. The resulting integral over A^(F)\G(F) can
then be expressed as a double integral over a e A^(F)\A^(F) and ^ eA^(F)\G(F).
Since a commutes with y? we obtain

(3.5) K^J^IDMif f f^^f^^u^^x^dx^
JAM(F)\G(F)JAM(F)\G(P)

where

MM Î, x^ T) = | u(x^~1 ax^, T) da.
^AG(F)\AM(F)

The spectral expansion is just

(3.6) K^./^ S IW^HW?!-^ K^a,/)^,
M€•sf' Jn2(M(p))

where

(3.7) K^,/)^^ ( 2 tr(^p(o, x) S(/)) tr(^p((r, ̂ ) S)) u{x, T) ̂ .
JAQ(F)\G(F) SG^p(o)
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The geometric and spectral expansions (3.4) and (3.6) of K^/) are not very useful
as they stand. It is not even clear how they behave with respect to the truncation
parameter T. The rest of the paper will be devoted to deriving new expressions from (3.4)
and (3.6) which are more tractible.

We shall study the geometric expansion in § 4-6 and the spectral expansion
in § 7-11. In the remainder of this section, we shall discuss various characteristic functions
which are related to (G, M)-orthogonal sets. This is partly a review, similar results
being familiar from the global trace formula. We shall use the results here in our study
of both the geometric and spectral terms.

Let W be a fixed (G, M)-orthogonal set. We first recall the decomposition of the
characteristic function ofS^(^), valid when W is positive, which comes from Langlands9

combinatorial lemma [1, § 2-3]. Suppose that A is a point in 0^,0 whose real part
AR e OM is in general position. If P e^(M), set

^={^e^:A^)<0).

Let cp^ denote the characteristic function of the set of H e a^ such that CTa(H) > 0 for
each a e A^, and CT^(H) ^ 0 for each a in the complement of Ap^ in Ap. Here

Ap=={^ :aeAp }

is the basis of (d^)* which is dual to { a^ : a e Ap }. We define

(3.8) "M(H,^)= 2 (- 1)^1 <p^(H-Yp)
PG^(M)

for any point H e a^/Oo. Then the function ^(^^O vanishes on the complement
of S^(^), and in particular, is compactly supported. Moreover, if W is positive,
OM^^O is actually equal to the characteristic function of Sj^^). (See Lemma 3.2
and Corollary 3.3 of [1] for the special case that H lies on the complement of a finite
set of hyperplanes. The general case follows the same way from the stronger version
[2, Lemma 6.3] of Langlands9 combinatorial lemma.) The decomposition (3.8) will
be useful later on for interpreting the integrals on the geometric side.

If Q is a group in ^(M), we shall often write S^(^) = S^®^) and
CT^(H, W) == o-^(H, ̂ ). We shall also write TQ for the characteristic function in do of

{ H e a o : a ( H ) > 0 , a e A Q } .

A second consequence of Langlands5 combinatorial lemma is a formula

(3.9) S c^(H, @Q TQ(H - YQ) = 1
Qe^(M)

for any point H 6 (XM- In particular, ifW is positive, the summands in (3.9) are charac-
teristic functions, and we obtain a partition of a^ into a finite disjoint union of subsets.
To prove (3.9), simply substitute the definition (3.8) of og(H, W) into the left hand
side. It then follows from [2, Lemma 6.3] that the resulting double sum over P and Q^
equals 1.
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Assume now that the number d{W) is positive. This means that each Yp belongs
to the positive chamber

a} == { H e Op : Tp(H) = 1 }.

Then the intersection of S^^O with dp" has a simple description. For convenience,
we include a proof of this property.

Lemma 3.1. — For any group P e^(M) we have
S^W n op- = = { H e a?^ : t3(H - Yp) ^ 0, cs eAp}.

PTW/. — According to [1, Lemma 3.2], S^W is just the intersection over
Qe^(M) of the sets

SQ = { H e OM : ts(H - YQ) < 0, CT e AQ }.

In particular, S^^) n 0?" is contained in the required set Sp n dp". We must show
conversely that Sp n a^ is contained in each of the sets SQ.

Fix a point H e Sp n a} . Suppose that H belongs to a set SQ, and that Qi e ̂ (M)
is a group which is adjacent to Q. Assume that the root (3 in AQ n (— AQ) is negative
on a?". We shall show that H also belongs to SQ^. Observe that AQ is the union of
^i02^ wlt^ ^e weight c^eAo^ corresponding to (3. If CT belongs to AQ n AQ,
we have

GS(H - YQ^) = ts(H - YQ - fQ^o (B^ === cs(H - YQ) < 0.

Therefore, if we write
H - Y Q ^ = - S ^ a ^ + Z , ^ e R , Z e a ^ ,

a£AQ^

we see that each of the numbers ^, a =(= [B, is nonnegative. On the other hand
(B(H - YQ^) == p(H) - P(YQ^) < 0,

since YQ^ e a^, H e Op", and p is negative on dp". Consequently

- P(^) ^3 = P(H - ̂  + S ^ ̂ a^ < 0,
a + &

so that /p is also nonnegative. It follows that CT(H -- YQ ) < 0 for every CT e AQ . In
other words, H belongs to SQ^. This completes the argument. For since H lies in Sp
by assumption, it belongs to all the sets SQ, and therefore to S^^). D

If P belongs to ^(M), we shall write 9? for the characteristic function in do of
{ H e do: Gs(H) ^ 0, c5 e Ap }.

Set

T?(H, Yp) == Tp(H) 9p(H - Yp), H e Oo,

for any point Yp in 0?'. If Yp is a member of an orthogonal set W as in the last lemma,
Tp(-,Yp) is just the characteristic function in a^ of the set S^(W) n a?". Given any
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group Qe^(M) which contains P, we write 9^ == q^p and T^ == r^np for the
functions corresponding to the parabolic subgroup MQ n P 3 P of MQ. We continue
to write YQ for the projection of Yp onto OQ.

Lemma 3.2. — Fix P e^(M), and suppose that Yp and Yp are points in dp . TA^

(3.10) Q2?^ Yp) TQ(H - YQ) = Tp(H),

(3.11) ^p^^ Y?) ̂  - Y^ Yo) == ^(^ Yp + Yp),

and

(3.12) ^^W To(H' ̂  = VP^ - Yo)'

y^r fl7y^ j&om^ H e do.

Proo/; — We can assume that Yp belongs to a (G, M)-orthogonal set
W = { Y p ^ : Pi e^(M)} for which each Yp^ lies in a^. We can also assume that H
lies in a^. Suppose for a moment that H is actually a regular point. Then for any fixed
Qe^(M), H belongs to some open chamber a^^o- Applying the last lemma, with
G replaced by MQ, we see that

^(H,^)= 2 Tp^H.Yp^).
{Pie^(M):PiCQ} - 1

It follows from (3.9) that

(3.13) S S T^(H, Yp^) TQ(H - YQ) = 1.
Pie^(M) Q3Pi x

Now, we claim that each function

H -T?(H,Yp) TQ(H - YQ), H eaM, Q3P,

is supported on dp". To see this, observe that if the function equals 1, we can write

H - Y p = S, ̂ v - S ^+Z,
c5 e AQ a e A§

for nonnegative real numbers { c^ } and{ Cy,}, and for Z G o^. Let (B be a root in Ap — Ap1.
Then

^ (H-Y^^^-^^^^a^^O.

Consequently

P(H) = p(H - Yp) + P(Yp) > 0.

On the other hand, if a is a root in Ap', a(H) is positive, since T^(H, Yp) = 1. Therefore
H belongs to dp", as claimed. The formula (3.10) then follows by multiplying each
side of (3.13) with the characteristic function Tp(H).
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To establish the second formula (3.11) we multiply each side of (3.10) by
?p(H — Yp — Yp). The right hand side then coincides with the right hand side
of (3.11). The summands on the corresponding left hand sides are related by the
inequality

T^(H, Yp) TQ(H - YQ) <pp(H - Yp - Yp)

< T^(H, Yp) TQ(H ~ Yo) <po(H - YQ - YQ,) = T^(H, Yp) ^(H - YQ, Y^).

We must show that this inequality of characteristic functions is actually an equality.
Suppose that H is any point such that the characteristic function on the right equals 1.
We need to prove that <pp(H - Yp ~ Yp) equals 1. Since 9o(H - YQ - Y^) == 1,
this amounts to showing that ©(H — YQ — Y^) ^ 0 for every weight cs in Ap — AQ.
Take such a cs, and write cs = c$i 4- ̂  where ©g belongs to OQ and ©i belongs to the
orthogonal complement (a?)0 of OQ in a?. Since GS belongs to the closure in dp of the
chamber corresponding to P, GS^ and GSg lie in the respective closures of the corresponding
chambers in (a^ and OQ. Given that

T ^ ( H , Y P ) = I = ^ ( H - Y Q - Y Q ) ,

we can then assert that G5i(H — Yp) < 0 and CT^H — YQ — Y^) ^ 0. It follows that

o(H - YQ - Yo) = ^,(H - Yp) - ̂ (Yp) + "2(H - YQ - YQ) ^ 0,

as required. This gives (3.11).
To prove the third formula, replace H by H + Yp in (3.11). Then in the resulting

formula
^T^(H + Yp, Yp) TQ(H, Yo) == T?(H + Yp, Yp + Yp),

let Yp approach infinity, in the sense that its distance from all the walls of Op" becomes
large. In the limit we obtain

^^(H) TQ(H, YQ) = <pp(H - Yp),

which is just (3.12). D

Remark. — Given Yp e a?", it is convenient to write

T?(H, Yp) == Tp(H) 9p(H - Yp), H e do,

for the characteristic function of

{ H e do : a(H) ^ 0, a e Ap; o(H - Yp) < 0, o e Ap }.

From (3.11) one can easily derive the parallel formula

(3.14) ^p^"5 Y?) ̂ H ~ ̂  ̂  = ̂ (^ YP + ̂
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4. The geometric side

We turn first to the geometric expansion of K^jF). This expansion is not in a
satisfactory state. For example, the terms corresponding to M = G ought to reduce
simply to invariant orbital integrals off. This is not the case, for as they stand, these
terms contain the weight factor u^{x^ x^ T). In the next two sections we shall show
that K^y) is asymptotic in T to another function J^./), which is defined by a better
behaved geometric expansion. This second expansion will be formally similar to the
first, except that ^(^i, A^, T) will be replaced by a different weight factor ^(^i? x^ T).
The new factor has better properties, and is closer to what occurs in the global trace
formula. In particular ^0(^1, ^3, T) will be identically equal to 1$ the terms corres-
ponding to M == G in the expansion ofj^jf) will then be invariant orbital integrals.

In order to keep track of estimates, we must make use of a height function 11 • 11
on G(F). Recall [2, § 1] that this is determined by a finite dimensional representation
Ao : G -» GL(Vo) of G over F, and a basis { yi, . . . , »„} of Vo(F). The height of any
vector

n

z^S^, ^eV,

in Vo(F) is defined to be
f (S, | Si I2)172, it F is Archimedean,

IHI = ... , .[ max, | ^ |, otherwise.

The basis of Vo(F) determines a basis of the vector space of endomorphisms ofVo(F),
which in turn provides a height function.

|M|=||AoW||, ^eG(F),

on G(F). We can assume that || x || ^ 1, and that
(4.1) \\xy\\^ || x || || y ||, ^eG(F).

We fix the height function || x \\ on G(F) in such a way that if || A{x) |[ is another height
function, attached to a second rational representation A, then
(4.2) || AM[| ̂ JMÎ , ^eG(F),

for positive constants c^ and N^. We can also choose constants c and N so that

(4.3) II^IKdI^r xeG{F).

If P e 3^ is a parabolic subgroup, we have agreed to write
(4.4) x = mp{x) np{x) kp{x), mp(x) e Mp(F), np{x) e Np(F), kp{x) e K,

for the components of a point x e G(F) relative to the decomposition
G(F) = Mp(F) Np(F) K.
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It is not difficult to show that c and N may be chosen so that

(4.5) I I ^pW||+11^)11^11^ ^eG(F).

Suppose that S is a maximal torus of G over F. We will need some general estimates
on the size of elements x in G(F) and y in S^g(F) = S(F) n G^g(F), in terms of the
size of the corresponding conjugates x~1 ̂ x.

Lemma 4.1. — Suppose that the maximal torus S is F-anisotropic modulo AQ. Then one
can choose an element yo e Sreg(F) and constants CQ and No such that

1 1 v 1 1 <" r 1 1 y— ^ -̂  y 1 1 ̂ 0] | X \ [ ^ CQ 1 1 X TO ^ 1 1

yor ^w^ /WZT^ x e G(F)1.

Proof. — Let Pg = No MQ be a fixed minimal parabolic subgroup. Then
No(F) Mo(F) No(F) is an open subset of G(F) which contains 1. (As usual, No denotes
the unipotent radical of the parabolic subgroup Po e^(Mo) opposite to PQ.) Observe
that the set of points y e S(F), such that k~1 ̂ k belongs to No(F) Mo(F) No(F) for each
k eK, contains an open neighbourhood of 1 in S(F). We take yo to be any G-regular
point in this set.

For any k e K, let Y{k~1 yo k) be a vector in the Lie algebra Tto(F) of No(F) such
that k-'^^k belongs to exp(Y(A-1 yo^)) Mo(F) No(F). This vector of course has a
decomposition

Y^-^)- S Yp(A-1^), Y^^en^F),
3£Sp,

relative to the root spaces rip of Ho. For any simple root a e Ap , let Sp (a) be the set
of roots (B e Sp^ which contain a in their simple root decomposition. Then the vector

Ya{k-l^k)= S Y^-^)
0 e Sp,(a)

cannot vanish. Otherwise k~1 ̂ k would belong to the maximal parabolic subgroup
determined by a, contradicting the fact that k~1 Yo k ls a G-regular element in an aniso-
tropic torus. Choose a height function || • || on the vector space Ho(F), relative to a basis
which is compatible with the root space decomposition. Then |[ Y"^""1 Yo^ ) l l ls a

continuous nonvanishing function on the compact group K. Since the function is
determined by the components || Yp(A~1 Yo ^) I I wlt!1 P 6 ̂ (^^ we can choose a positive
constant SQ such that

e^a)^^"1^^!^60'

for all k e K, and each a e Ap^.
Now suppose that x is a variable point in G(F)1. Given positive functions a[x)

and b{x) of A:, we shall use the notation a{x) •< b{x) or b (x) ̂  a{x) to indicate that

a{x)^cb{x^, xeG{-F)\
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for positive constants c and N. We can write

x == kak+, k e K, a e Ao(F) n G(F)1, A+ e K^

where Ho(fl) lies in the closure of a^ and K.+ c G(F)1 is a fixed compact set such that
(Ao(F) n G(F)1) K+ = (Mo(F) n G(F)1) K.

It then follows from (4.1) and the definition of [ [ • | | that

|M|^ max ̂ ^^
ocEAp.

It remains for us to examine || x~1 yo x || as a function of k, a and k+.
In the notation above, we have

k " 1 To k === exp(Y(A-1 Yo k)) m^ n^,

for elements m^ e Mo(F) and T^I^/F). The points (T^m^a and fl"'1^^ remain
bounded, since a acts on No(F) by contraction. Combining this with (4.1), we obtain

II ̂  To x II ^ (II ̂  || || (^r1 II)-1 II ̂ 1 ̂ 'Yo^ II

^^-^(Y^YoA))^.

Since exp is a bijective polynomial mapping oftto onto Ng, there are positive constants c
and N such that

(^^[^(Y)^, Yeno(F).

It follows that

j| a-1 exp(Y(A-1 YO^)) a \\ > \\ Ad(a-1) Y(A-1 Yo^)ll.

But if p belongs to Sp^(a), for some a e Ap^, we have

|| Ad(a-1) Y(A-1 YoA)| | ^ || Ad(a-1) Yg(^-1 Y,^||
^,a(Ho(,))(|Y^-l^^||,

since a(Ho(fl)) ^ p(Ho(fl)). The supremum over (B and a then gives us

|| AdQz-1) Y(A-1 Y O ^ I I ^ so max ^(^o(o))) > || ^ ||.
aGAp,

Putting all these inequalities together, we end up with the relation
II v 1 1 ^^ 1 1 v " '\^ v 1 1|| x [ | •<, |[ x Yo x I I *

In other words, there are constants CQ and No such that

IMI^oll^To^ir0, A;eG(F)1. D

Lemma 4.1 will be required only for the proof of the next result, in which S is
an arbitrary maximal torus over F.
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Lemma 4.2. — There is a positive integer k, with the property that for any given compact
subset Q of G(F) there is a constant c^ such that

inf l l^j l ̂ |D(Y)|-»,
8 fc S(D

for all points y e S^(F) and x e G(F) with x~1 ̂ x eQ.

Proof. — Suppose that F' is a finite extension of F. One can extend the absolute
value [ - I from F to F', and the height function ||-|| from G(F) to G(F'). We claim
that there are constants c and N such that
(4.6) inf ||.y;d| < t ? inf | |^A;|F, A:eG(F).

sGS(F)" " s'eS'(F)" "

To establish (4.6), suppose first that S is F-anisotropic modulo A^. Choose
Yo ^S^F) as in Lemma 4.1. Since G(F)1AQ(F) is of finite index in G(F), we can
use Lemma 4.1 in conjunction with the property (4.1) to show that

inf IMI^oll^Yo^lF0, ^eG(F),
s £ S(F)

for constants CQ and No. But (4.1) and (4.3) tell us that there are constants c^ and N\
such that

I I Y~ 1 V Y I I __ I I ( C' Y\ ~ 1 V ( C' Y\\ I < r I I C' Y I ̂ l
I I x TO x | | —— | | {s x ) YO^ x ) | | ̂  c! I I s x II 5

for any elements x e G(F) and s ' e S(F'). This establishes (4.6) in case S is anisotropic.
In the general case, we can always replace S by a G(F)-conjugate. We may therefore
assume that S is contained in a fixed Levi subgroup M e JSf, and that S is F-anisotropic
modulo A^. Take any parabolic subgroup P e^(M). Then

inf || ̂  || = inf || smp(x) Up{x) kp{x) ||
s G S(F) s

^ (mf || ̂ pW||) || n^)|[ ||̂ )||,

by (4.1). Applying the anisotropic case we have just established, we obtain

inf 1 | sx || < ̂  mf || .' mpW ||̂ ) || ̂ {x} ||
stmjp) s t o ( j D )

=c,in{\\mr{s'x)\\^\\nr{s'x)\\,

for constants c^ and N3. The general estimate (4.6) then follow from the property (4.5).
In view of (4.6), it is sufficient to prove the lemma for a given S with F replaced

by F'. We can of course choose the extension so that S splits over F'. It is therefore
sufficient to prove the lemma in the special case that S splits over F.

Assuming that S splits over F, we take B = SN to be a Borel subgroup of G over F
which contains S. Since G(F) equals S(F) N(F) K, and K. is compact, it will be enough
to verify the condition of the lemma for points x == n in the unipotent radical N(F). Set

n~1 ̂ n = yv, v e N(F),
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for any points y e S^(F) and n e N(F). For any given y, ^ -> v is a bijection of N(F)
to itself. Consider the inverse n == 71 (y, v) as a function of both y and v. There is a positive
integer k such that the map

(y^) ^D(Y)^(Y,V>

is defined by an F-rational morphism between the algebraic varieties S X N and N.
This is a consequence of the proof of Lemma 10 of [17]. (See also [8, p. 237].) But if
n~1 y% lies in the compact set t2, y ^d v "^ust lie in compact subsets tig and 0^ of S(F)
and N(F) which depend only on Q,. It follows that

IKT^)ll^olD(T)[^

for a constant CQ that depends only on £2. This completes the proof of the lemma. D
Fix a Levi subgroup M e oSf. If y is a G-regular point in M(F), we recall (3.5)

that K^y,/) equals

I ̂ Y) I f f /l(^r1 Y^)/2^2'1 Y^2) ̂ 1, ̂ 2. T) ̂  rf^.
J AM(F)\G(F) J AM(F)\G(F)

where

^(^, x^ T) = f ^(^-1 ̂ . T) ̂ .
JAG(F)\AM(D

We would like to be able to replace MM by a different weight function.
If x^ x^ eG(F), set

Yp(^, ̂ , T) = Tp + Hp(^) - Hp(^), P e ̂ (M).

The points

^M(^I. ̂  T) == { Yp(^, ̂  T) : P e^(M)}

form a (G, M)-orthogonal set, which is positive if d(T) is large relative to x^ and ^.
The second weight function is given by the integral

î> ̂  T) == f ^(HM^), ̂ M Î. ̂  T)) rffl.
J AG(F)\AM(D

We then define J^Y)/) to be the corresponding weighted orbital integral

I ̂ r) I /i(^r1 T^i)^^"1 T^) ^(^1. ^2. T) rf^ ̂ 2.•/ AM(F)\G(F) •/ AM(F)\G(F)

Let S be a fixed maximal torus in M which is F-anisotropic modulo A^. Our
aim is to show that the integrals of K^y,/) and ^(y?/) over y e S^g(F) differ by
a function which approaches 0 as d(T) approaches infinity. We shall first deal with
integrals over domains
(4.7) S(e,T) =={xeS^{-F) : \ D(y)| ^ .-^H },

which for large T lie near the singular set.
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Lemma 4.3. — Given s> 0, we can choose a constant c such that for any T,
f e||T||

(IK^^I+IJ^/)!)^^^——^-.
JS(e,T)

Proof. — Take points x^ x^ e G(F) and a e A^(F). If we set

x^-1 ax^ == k^ hk^ k^ k^ e K, A e Mo(F),

we see easily that

l o g i i ^ ^ i i ^ o a i H o W i i + i ) ,
for some constant CQ. It then follows from the definition o f^ (« ,T ) that there is a
constant c^ such that

inf ( l o g l l ^ - ' ^ I D ^ ^ I I T I I + l ) ,
2 £ AotJf)

whenever M^1 ax^ T) does not vanish. In fact, by the properties (4.1) and (4.3),
we can choose c^ so that

.̂ (log I I za ||) < .,(11 T || + log 1| x, || + log || x, ||).

The integral over a in AQ(F)\A^(F) then yields an inequality

(4.8) t^, ̂ , T) < ^(|| T || + log || x, || + log || x, ||)^,

for positive constants ^ and rfg.
Now assume that

/i^Y^^Y^+O.

Taking t2 c G(F) to be any compact set which contains the support ofjfi andjfg, we
obtain

^mJJI^II^^Y)]-^ z = = l , 2 ,

from Lemma 4.2. We shall combine this with the estimate (4.8). Notice that (4.8)
remains valid if either x^ or x^ is replaced by a left translate from A^(F). Since S(F)/A^(F)
is compact, we obtain a constant c^ such that

^(^, x,, T) < ^(|| T || + log([ D(y) l-"))^

The next step is to apply a fundamental theorem ([15, Theorem 2], [18, Theorem 14])
of Harish-Ghandra on orbital integrals. This result yields a constant ^3 such that

i^^rf I/^Y^I^^ ^ = = 1 , 2 ,
J AM(F)\G(F)

for all Y e S^g(F). Putting these two estimates into the definition ofK^Y,^), we obtain
the inequality

I K^Y,/) | < ^ ̂ (|| T || + log(| D(Y) r^.
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It is not hard to show that any power of log [ D(y) | is integrable over any bounded
subset B of S^g(F). In fact, there is a constant c^ such that

r eiiTii
(|| T || + log(| D(y) 1-^2 ̂  ̂  ^ ,-^T-.

JBn8(e,T)

This is an exercise in elementary real or j^-adic analysis which we leave to the reader.
Taking

B^YeS^F):]^,/)^},

we see finally that
r e i i T i iIK^Y,/)!^^-^-,

J8(e,T)

for some constant c. This establishes half of the lemma.
The proof of the other half of the lemma is similar. It is a simple consequence

of (4.5) that the points Hp(;v), P e^(M), can be bounded in terms of x. In fact there
are positive constants c^ and d^ such that

I I HpM) || ̂  ^(1 + log || x \\)\ P 6 ̂ (M), x 6 G(F).

It follows from the definition of v^{x^y x^ T) that

^i. ̂  T) < ^(|| T || + log || x, || + log || x, \\)^

for constants c^ and d^. This, of course, is the analogue of (4.8) for the second weight
function. We can consequently estimate J^y,/) by arguing exactly as above. We obtain
a constant c such that

r ci iTi i
U^/)!^^'".

•/S(e,T)

The lemma follows. D
We must now compare the integrals of K^y,/) and J^y?/) w^ Y m ̂

complement of S(s, T) in S(F). The essential step is to estimate the difference of the
two weight functions. This is summarized in the next lemma, which is one of the main
technical results of the paper. We shall postpone its proof until § 5.

Lemma 4.4. — Suppose that 8 > 0. Then there are positive numbers C, e^ and e^ such that

| ̂ (^, ̂ , T) - ̂ , ̂ , T)| ̂  Qr-6!"^,

for all T with d(T) ̂  8 || T ||, and all x^ and x^ in the set

(4.9) { ^ 6 0 ( ^ : 1 1 ^ 1 1 ^ ^ ^ 1 1 } .

Granting Lemma 4.4, let us compare the two integrals. Let s be an arbitrary
but fixed positive number. We shall apply Lemma 4.2 to points y m S(F) — S(e, T),
with 0 any compact subset ofG(F) which contains the support of/i and/g. Combined
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with the definition of S(s, T), the lemma asserts that if y belongs to S(F) — S(s, T),
and A:i and ^ are such that

/i^r'T^^Y^+O,
then

^ I I ̂  11^1 W I-' ̂  C^ll^l, i == 1, 2,

for constants c and ^. The constants are, of course, independent of s. We choose e so
that ks is smaller than the constant Sg given by Lemma 4.4. Then, translating x^ and ̂
by elements in S(F) if necessary, and taking || T [| to be sufficiently large, we can
assume that

11^11^^", z = l , 2 .

It follows from Lemma 4.4 that

I ̂ i, ̂  T) - ̂ , x^ T) | ^ C^ill^l.

Recalling the definition of K^y,/) and .Hy,/), we see finally that

(4-10) f IK^Y,/) -jT(^y)|^^ C -̂6!!!1!!,
JSW)-S{S,T)

where Gi equals the constant

^ f D(Y) I Cf v 1^^~1 ̂ i) I ̂ i f |/.(^1 Y^) I ^2) ^Y^JSreg(F) \JAM(F)\G(F) JAM(F)\G(F) v ^ * ^ ' ^ «

The finiteness of Ci follows from the theorem of Harish-Ghandra ([15 Theorem 21
[18, Theorem 14]).

We have shown that for any 8 > 0, there are positive constants e, s^ and Gi such
that (4.10) holds for all T with rf(T) ^ 8 || T [|. When we combine this with Lemma 4.3,
we obtain a similar estimate for the integral over y in the entire set S (F). The
conclusion is that there are positive constants G' and

£ '=min^i ,JJ

such that

(4-11) f IK^T,/) -JW)!^^-8^!',
J Srea(F)

for all T with d(T) ̂  8| |T|[.
Define

(4.12) W) = S \ WS11 | W? |-1 f ^,f) df.. "0 I I "0 .
^^-S" ^reii(M(F))Me•s' ^relKM(F))

There are, of course, only finitely many M e ,Sf, and finitely many conjugacy classes
of (anisotropic) tori S in any M. The estimate (4.11) therefore leads immediately to
the following proposition, which gives the promised asymptotic formula for K^/).
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Proposition 4.5. — Suppose that 8 > 0. Then there are positive numbers G and s such that

(4.13) iK^/^rcni^G.-6^,
for all T with d(T) ^ 8 || T ||. D

5. Proof of the main geometric lemma

In the last section we established an asymptotic formula (4.13) which will even-
tually lead to an explicit expression for the geometric side. However, we put aside the
proof of Lemma 4.4, which was the essential step in the process. We shall now give
the proof. It is an extension of the derivation of Lemma 3 of [9], which was the main
ingredient of that paper.

We fix the positive number 8, and we assume from now on that rf(T) > 8 [[ T ||.
We also fix the Levi subgroup M e oSf. Lemma 4.4 is trivial if 11 T ] | remains bounded.
It therefore suffices to prove the lemma for || T || sufficiently large. We must select a
positive number eg such that if
(5.1) H^ll^6211^ ^ = 1 , 2 ,

then
,̂ ̂  T) - v^ x^ T)| < Ge-^\

for positive constants G and Sr
Recall that u^{x^ x^, T) and v^(x^ x^, T) are the integrals over a in A^(F)/AQ(F)

of two compactly supported functions u{x^1 ax^, T) and ^{H^a), ̂ (^i? x^ T)).
We shall decompose each of these integrals into a finite sum over the groups Qe <^"(M).
Indeed, for any s>0, one can partition A^(F)/A^(F) into a disjoint union over
Q e ̂ "(M) of the sets

AM(Q^) ={aeA^(F)/A^(F):^(H^),£T)TQ(H^(a) -sT^) = 1}.

This is just the formula (3.9) applied to the positive (G, M)-orthogonal set
{ sTp: P e ̂ (M)}. We shall fix the positive number s, which we take to be small in
a sense that depends only on G and 8. We also fix a group Qe ̂ (M), and then take
a GA^(F)/AQ(F) to be any fixed point in the set A^(Q, s). Since the vectors £TQ are
to be large, this means that a~1 will act on No(F) by contraction.

Most of our efforts will be devoted to the function u{x^~1 ax^ T) whose integral
gives the first weight factor. If^i and x^ belong to G(F), we can write

-̂1 ax^ == k^)~1 n^)-1 m^)-1 am^) n^) k^).

The idea is to move n^x^'1 to the right under conjugation, in order to take advantage
of the contracting property of the element a~1. The vector log(nQ(^)~1) lies in the Lie
algebra HQ(F) ofNQ(F), and its conjugate

x' = Ad(^(^)-1 am^x,) ̂ (^r'aog^r1))
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belongs to the Lie algebra g(F) ofG(F). Similarly, we shall move n-^{x^ to the left under
conjugation to exploit the contracting property of a. We form the vector log^^g)""1)
in TIQ(F), and its conjugate

X = Ad(m^)-1 am^x,)) (log(^)-1)).

Then we have

x^1 ax^ == k^)-1 S~1 m^)-1 am^) ̂  A^),

where ^ = exp(X) and ̂  = exp(X'). Fix a height function [| • || on the vector space g(F).
We shall estimate the heights || X [| and || X' ||.

The vector X' is defined as the value of

Ad(^)-1) o Ad(^)-1) o Ad(a-1) o Ad(^)),

a composition of four operators on g(F), at the vector log^C^)"1). We have to estimate
the heights of these objects, all of which are determined by the height function on 9(F).
Since exp is a bijective polynomial map of HQ(F) onto NQ(F), || log^^)""1)!] is
bounded by some polynomial in || ^Q(^)||. By (4.5), this is bounded in turn by a poly-
nomial in [1^11, or equivalently since [ [ x^\\ ̂  1, by a constant multiple of a power
of || ̂  I ] , Observe next that the height of the operator Ad^A^)-1) is bounded by a
constant multiple of a power of || x^ ||. This follows from the properties (4.2), (4.3)
and (4.5). Similar remarks apply to the contributions of Ad^^)"1) and AA{m^(x^).
The final contribution is that ofAd(a~1), and is bounded by the height of the restriction
of this operator to TtQ(F). This is of course where we exploit the contraction property
ofAd(o~1). Since a belongs to A^(Q^, s), H^(a) can be written as the sum of a vector
in a'Q with a convex linear combination of points

{cTp:Pe^(M),PCQJ.

It follows that if a is any root for the action of A^ on HQ, then

oc(H^)) ^ c inf oc(Tp) > s rf(T) ^ c 8 || T ||,

by (3.2). Therefore the height of the operator Ad(fl)~1 on HQ(F) is bounded by a
constant multiple of^"68^^ Putting these contributions together, we see that

iix'iK^-wiidi^ii+ii^ir,
for constants c' and n1.

We estimate || X [| the same way. Taking into account the fact that Ad(fl) acts
on HQ(F) by contraction, we find that

iixiK^^ii^di^ii+n^ii)-,
for constants c and n. In particular, ifA:i and x^ satisfy (5.1), we have an inequality

(5.2) I IXI l+I IX ' IKG. - ' l l 1 ' ! ,
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where
e' == e 8 — eg n,

and G and n are fixed constants. Once we have chosen e we are free to take eg to be as
small as we like. This allows us to assume that the number s' is positive.

It follows from the definitions that

t^-1 ax,, T) = u^-1 m^x,)-1 am^x,) ̂  T).

Fix a minimal parabolic subgroup Po e ̂ (Mo) which is contained in Q. Then there
is a point

h = AQ^, x^ x^)

in Mo(F), with Ho(A) in the closure o^ of a^, such that

(5.3) m^)-1 am^) = k-1 hk\ k.k' eK n M^F).

The inequality (5.2) guarantees that for large [| T |[, the points ^ = exp(X) and
^ == exp(X') are very close to 1. For this reason, it makes sense to study the function

u(m^x,)-1 am^x,), T) == u(h, T).

Write
Ho(A) = H?(A) + H^(A)

for the decomposition of Ho(^) relative to the direct sum Oo = a^@ OQ. Observe that
(5.4) H^h) = - H^A;,) + H^) + H^^).

As for the other point H^(^), we claim that there is a constant c^ such that

(5.5) || H?(A)|| ^ ^(1 + || H?(a)|| + log || x, || + log || x, ||),

for all points h, a, x^ and x^ related as in (5.3). To see this, choose r> 0 so that the
product of AQ(F) with

M^y={meM^F):\\H^m)\\^r}

equals MQ(F). It is clear that for any m eM^F), and any decomposition

m = m, a, m, e M^F)^ a e AQ(F),

the height || wj| is bounded by a fixed constant multiple of || m ||. It is also easy to
check that if m belongs to the subgroup M()(F), then

I I Ho0^) || ̂  ^(1 + || log(^) ||) < c[[\ + || H^m) ||),

for constants ^ and c[ which depend only on r. Applying the first half of this estimate
to the element h in (5.3) (with r replaced by 3r), we obtain

I I Ho°(A) || < .,(1 + log [ I km^1 a, m-^\ (^)-11|)

< .,(1 + log || m^-11| + log || a, || + log || m^x,) ||),
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for some constant c^. By the second half of the estimate, and also the properties (4.3)
and (4.5), this is bounded by a constant multiple of

(l+log|i^| |+| |H^)| |+log| |^| |) .

The claim follows.
We are assuming that x^ and x^ satisfy the inequality (5.1) and that a lies

in A^(Q^ s). The first condition leads to

log || x^ || + log I I ̂  I I < 2^ I I T I I < 282 8-1 d(T).

The second condition implies that H^(a) lies in the convex hull in OM/OQ of the points
{sTp:Pe^(M),PCQJ,

and since
||Tp||^ ||T||< s-^cr)

for any such P, we obtain the inequality
(5.6) iiH^ii^s-^cr).
Combining these remarks with the inequality (5.5), we find that
(5.7) ||H?(A)||^rf(T),

where
80 = ̂ WT)-1 + e 8-1 + 2s2 8-1).

We are free to make d{T) as large as we want, and we can choose e and s^ to be small.
We can therefore assume that the positive number SQ is small. It follows from [9,
Lemma 1] that the characteristic function u{h, T) equals 1 if and only if the vector

H^h) = - H^) + H^a) + H )̂

lies in the convex hull S^(T).
There is a similar way to characterize the function whose integral gives the second

weight factor.

Lemma 5.1. — Assume that x^ and x^ satisfy (5.1) for a small positive number eg. Then
^1(^1 ? ^23 T) is a positive orthogonal set, and the characteristic function

^M(HM )̂, ̂ M Î. ̂  T)), a e A^(Q, e),

equals 1 if and only if the vector
H^h) = - H )̂ + H )̂ + H )̂

lies in the convex hull S]-(T).

Proof. — It follows from (4.5) and (5.1) that if a is any root in Ap, for some
Pe^(M), then

| a(Hp(^) - Hp(A:,)) | < .(log || x, || + log || x, ||)
< 2^8~ lrf(T),
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for some constant c. This estimate leads directly to the inequality
(5.8) d(W^ x^ T)) ^ (1 - 2^ 8-1) d(T)

for the (G, M)-orthogonal set

^M^I. ^2, T) == { Hp(^) ~ Hp(^) + Tp : P e^(M)}.

Since e^ is very small, 2c^ S~1 is close to 0, and the number d{W^{x^ x^ T)) is positive.
This implies that ^(^i? ^2? T) is a positive orthogonal set, as required. In particular,
^(•3 ^M^I? ^2? T)) is the characteristic function in 0^/0^ of the convex hull
SM(®M(^2,T)).

We have also chosen s so that s 8~1 is small. Let a be any point in A^(Q, s). It
follows from (5.6) and (5.8) that the projection ofH^(<z) onto a§ is small relative to
rfC^i.^.T)). Appealing to [9, Lemma 1] as above, we deduce that H^(fl) belongs
to SM^M^I. ̂  T)) if and only if H^a) lies in the convex hull S^W^{x^ x^ T)).
We can also apply Lemma 3.1, since d{W^[x^ x^ T)) is positive. It tells us that the
intersection of OQ with S^ (^^) is the set

{ H e OQ : cs(H - YJ < 0, CT e AQ }.

Since a belongs to A^(Q, s), HQ^) lies in the chamber (XQ. Moreover

HQ(O) - YQ(^, ̂ , T) = H^a) ~ HQ(^) + HQ(^) - TQ = HQ(A) - TQ.

We can assume that eg is small relative to e, so our assumptions on fl, A?i and ^ imply
that HQ(A) also lies in OQ. We conclude that HQ^) belongs to S^(^(^i, ̂ , T))
if and only ifH^) belongs to S^T). This gives the second assertion of the lemma. D

If we combine the discussion preceding the lemma with the lemma itself, we
see that

(5.9) u{h, T) = ̂ (HMW, ̂ i, ̂  T)),

for any point a eA^(Q, e). However, it is not u[h, T) that we want. Instead, we must
consider the original function

^-1 ax^ T) = u{^-1 m^x,)-1 am^x,) ̂ , T)

^(r^-^'^T)

=^-1^T),

where ^ = k^k-1 and ^' == ^' ^'(A/)-1. It follows from (5.2) that if ^ is small relative
to e, we can make ^ and ^' approach 0 as || T || approaches infinity. In particular, ifF
is a j^-adic field, ^ and ^ both belong to K when [| T [| is large. In this case we have

^r^.T)^^),
for any a eA^(Q, s). Combining this with (5.9), we see that

t^-1 ax^ T) == ^(^(o), ̂ (^, ̂ , T)).
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Neither function in the last identity depends on Q, so the identity holds for any point a
in A^(F)/AQ(F). Integrating over a, we see that the weight factors u^{x^, x^ T) and
z^(A*i, x^, T) are actually equal. This establishes a strong version of Lemma 4.4 for
p-adic F. The required asymptotic formula holds as an exact formula for all T, x^ and x^
satisfying the given conditions.

It remains to establish Lemma 4.4 for Archimedean F. We can always reduce
the problem from C to R by reduction of scalars. We shall therefore assume for the
rest of§5 that F is equal to R. Then we can identify do with the Lie algebra ofAo(R), and

G(R)=Kexp(o^)K.

We can also take the height function on g(R) to be a positive definite quadratic form
given by

| |X| |^=--B(X,eX), X69(R),

where B is a G(R)-invariant form, and 6 is the Gartan involution with respect to K.

Lemma 5.2. — Suppose that X and X' are points in g(R), and that Ho and H^ are points
in d} with the property that

exp(X)-1 exp(Ho) exp(X') == k, exp(H,) k[, k^ k[ e K.

Then
|| tT "LT II <?• II Y II _1_ II V II
II ril — -"O II < II x II + II x II-

Proof. — It is enough to prove the lemma when H() is a point in the open
chamber Op*. When Ho is fixed, H^ becomes a well defined function of X and X', and
we write

/.(X.X')^^)

for any linear functional Xea; . Then f^ (0,0) equals X(Ho). Observe that f^tX.tX')
is a continuous, piecewise smooth function of t e R. It follows that

| X(Hi - Ho) | = |A(X, X') -A(0, 0)1

sup
0«<1

sup ^([t+s)X,i

^A(fX,<x')

+sup ^tX^t+s)X')..,

We shall estimate the two derivatives in this last expression.
Set A{ = exp(H(), where H( is the point in a^ such that

exp(fX)-1 exp(Ho) exp(fX') == A,-1 exp(H,) ̂ ,
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for points ̂  and k\ in K. Then ho = exp H^, and
exp(^X)-1 Ao exp((^ + s) X') = ̂ 1 ̂  exp(^X;) k^

where X(' = Ad(^) X'. Given that Ho belongs to a^, one shows easily that H( also
belongs to the open chamber Op^ if t is in general position. This in turn implies [16,
Lemma 21] that there is a decomposition

X; = H(X;) - Ad(^)-1 C(X;) + CTO,

where C(X^) and G'(X;) belong to the Lie algebra of K, and H(X() belongs to the
Lie algebra do ofAo(R). The vector H(X() is just the orthogonal projection of X(' onto
the subalgebra OQ of 9(R). Consequently

| |H(X;) | |^ | |X; | |=| |X' | | .

However, if F is any smooth function on a neighbourhood in G(R) of the point
exp(^X)-1 Ao exp^X') = ̂ -1 h, k\,

the derivative

^(^^exp^X;)^,

is the sum of three partial derivatives, at the points h^ eAo(R), k^ e K and k\ e K,
relative to the respective right invariant vector fields attached to H(X(), C^X^) and
G^X;). In particular, if

V(k exp(H) k ' ) = X(H), H e a^, A, k' e K,

the obvious extension of the function
F(^1 h, k[) = X(Ho(A<)) = X(H<) =/,(^X, ^X'),

the derivative above simply equals X(H(X()). It follows that

^/^X, \t + s) X')^o == X(H(X;)).

This derivative is bounded in absolute value by || X | | || X' ||. Arguing in a similar
manner, we also see that

^((^^X^X')^ ^ | |X | | | |X | | .

Combining these estimates with the discussion above, we obtain
I I H . - H o l l ^ l l X I I + I I X ' H . D

We shall now finish the proof of Lemma 4.4 for F == R. The first weight factor
^(A:i, x^ T) equals the sum over Qe <^(M) of the integrals

(5.10) f u{x^ax^T)da,
J An(Q.e)
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while the second weight function v^{x^ ^3 T) is the sum over Q of

(5.11) f ^(HM(^), ^M^I> ̂  T)) da.
</AM(Q,e)

We must estimate the difference between the two summands (5.10) and (5.11).
Fix Qe^(M) and a eA^(Q, e). Then we can write

u^ax^^u^K:^)

as before, where h = h^a, x^, x^) as in (5.3), and
^y^^e^Ad^X)

and
^ = W ^'(A')-1 = exp(Ad(^') X'),

in the notation above. Let

hi ==h^Q{a,x^x^)

be the point in Ao(R), with HQ^) e 0^3 such that
^:- l^'=^Al^, k,,k[eK.

Then by Lemma 5.2

|| Ho(Ai) - HoWII ^ || Ad(A) X || + || Ad(^') X' || = || X || + || X' ||.

We are assuming that ^ and ^ satisfy (5.1). It then follows from (5.2) that
(5.12) I IHo^-HoWII^G^l^ l .

In particular, the point H^(^i) can be made very close to H^(A). In view of (5.7), we
can therefore assume that

l lHoWII^QW,

where SQ is a small positive number. It follows from [9, Lemma 1] that the characteristic
function

i^,T) ̂ (^-^.T)

equals 1 if and only if the vector HQ^) lies in S^T). We can certainly write

H(A) = HQ^) - H^) + H ,̂) + (HQ(A,) - H^(A)).

We therefore conclude that the integrand in (5.10) equals 1 or 0, according to whether
or not HQ^) lies in the translated polytope
(5.13) (H^(^) - H ,̂) - (H^,) - H^W)) + S^(T).

To deal with the other expression (5.11), we simply apply Lemma 5.1. It tells us that
the integrand in (5.11) equals 1 or 0, according to whether or not li^a) lies in the
translated polytope
(5.14) (H^) - H^,)) + S^(T).
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Consider now the difference between (5.10) and (5.11). According to the
definition ofA^(Q,s), the integral in either (5.10) or (5.11) can be changed under
the transformation

a-^H^a)@H^a)

to a double integral over the product of S^(eT) with the affine chamber (eTo + a^/Oo
in OQ/OG. Let A»(T) be the subset of points in OQ/OO which lie in either the complement
of (5.13) in (5.14) or the complement of (5.14) in (5.13). Since the set (5.14) is the
translate of the polytope (5.13) by the vector (HQ^) — HQ(A)), we can use (5.12)
to estimate the volume of A^(T). The volume of any facet of S^(T) is bounded by
a polynomial in || T j|, from which it follows easily that

vonA^mX^dlTII).-67!'1!',

for some polynomial^. Consequently, the difference between (5.10) and (5.11) is
bounded in absolute value by

vol(S5(T))A(||T||).-efllT^'.

But vol(S^(T)) is also bounded by a polynomial in [[ T [|. Therefore the difference
between (5.10) and (5.11) is bounded in absolute value by Go^r6111^1, where CQ

is some constant and si == —. Taking the sum over Q^e^(M), we see that

11^, x,, T) - v^ x^ T) | < Ce-^

with G === S CQ. This is the required estimate.
Q

We have just established Lemma 4.4 for the remaining case F = R. The lemma
therefore holds in general. Since Lemma 4.4 represented the unproved portion of
Proposition 4.5, we have also completely proved the asymptotic formula (4.13) for
the geometric side. D

6. The function J^/)

We have shown that the truncated integral K^/) is asymptotic to a function,?(/)
defined by a manageable geometric expansion. We shall later see that K^/) is also
asymptotic to a function defined by a parallel spectral expansion. In fact, we will want
to identify this second function with .?'(/). To do so, we will need to have a good
understanding of S^^f) as a function of T.

Recall (4.12) that J1'(/) is defined in terms of the distributions

JT(^/) = | D(y) I f f /i(̂ -1 Y^)A(^-1 Y^) ̂ i. ̂  T) dx, dx^
J AM(F)\G(F) J AM(F)\G(F)

with Y e I^(M(F)) and

î. ̂  T) = f ^M(HM )̂, ̂ i. ̂  T)) da.
JAa(r)\AM(F)
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We shall study v^x^x^T) as a function of T. If F is Archimedean, the integral
over Ao(F)\A^(F) can be transformed into an integral over OM/OG. It then follows
easily from [4, Lemma 6.3] that z^, x^ T) is a polynomial in T. However, if F is
^-adic, the integral can be replaced only by a sum over the lattice o^ p/o^ p. Instead
of a volume of a convex hull, we are faced with having to count lattice points.

Assume for the time being that F is a j^-adic field. Then T belongs to the
lattice OMo,p in d^, and the points Tp, P e^(M), all belong to the lattice a^ p in OM.
The kernel of the surjective map

HM:A^F)\A^(F)^p/^

is a compact group which has volume 1. Therefore, as we mentioned above, we can
write

î, ̂  T) == ^ ^ (T^X, @ ,̂ ̂ , T)).
XeaM.F/Oo.p

It will be convenient to write

-^M = %I,F + OG/OG
and

^^^M^+CLolOG

for the lattices in (XM/OG obtained by projecting o^p and a^p onto the quotient. We
can also form the dual lattices

^ = Hom(J ,̂ 27riZ), ^ == J ,̂ ̂ ,

in (tOM)0. Since

^F/^.F == OIM.F/SM.F n OG ^ ^M,F + CIO/OG = Sy.

by (1.4), we can take the sum above over X e ̂ . However, for future comparison
purposes, it would be preferable to take a sum over JSf^. We can certainly do this,
provided that we also take a sum over ^/^^ a fim^ quotient which is identified
with the character group of oS^/o^ under the pairing

e^\ vej^/^, Xe^/^.

Thus, ^M^^T) equals

i^M/^Mr s s ^(X,^(^,^,T))^.
ve^M/^; xe^M

Let A be a small point in (0^/00)^ in general position. According to the defi-
nition (3.8),

^(X, ̂ i, ^2, T)) = S (- 1)1^1 y^(X - Yp)
pe^'(M)

== lim S (~ 1)'^1 9^(X - Yp) ^(x),
A-^O P6^(M) / ^^^ ^ ?
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where
Yp == Yp(^, x^ T) = Tp + Hp(^) - Hp(^).

We observe for future reference that Yp belongs to the lattice (t^p? and that <p^(X — Yp)
depends only on the image ofYp in oS? .̂ It follows from the definition of (pp- that the
function ^A(x) is rapidly decreasing on the support of 9^(X — Yp). In particular, the
product of these two functions is summable over X in JSf^. Therefore, v^{x^ x^ T)
equals the expression obtained from

(6.1) | JS^M I-1 S (- 1 ) 1 ^ 1 <p^(X - Yp) e^^
S. £-z"M

by first summing over P e^(M), then taking the limit as A approaches 0, and finally
summing over v e °^M/°^M*

If k is any positive number, we shall write
^=Mog(yp) a\ a e A p ,

where q^ is the order of the residue class field of F. The additive subgroup

^M,.=^og(fo)Z(A^)={ S n,^:^eZ}
aeAp

of a^ is a lattice in a^ which is independent of P. Having agreed earlier to identify aS
with OM/OG, we shall also regard -S^M.A; as a lattice in a^a^. It is easy to see [9, p. 12]
that if k is a suitably large positive integer, oSf^fc ls a sublattice of o6f^. We choose such
a ^, valid for all M, for once and for all. We then write (6.1) as

I ̂ M/^M I"1 S S (- 1)1^1 9^(X' + X - Yp) ^A+v)(X-+X)1 M/ Ml xe^M/^M.fc x'e^M.A • p v p/

As in [9, § 4], we shall evaluate the sum over X' as a multiple geometric series.
If Y is any point in oS?̂  and X belongs to -^M/°^M,A;? ^t ^-pOO be the repre-

sentative of X in oS?̂  such that
(6.2) Xp(Y)-Y= S r,̂ ,,

a e Ap

for real numbers r^ with — 1 < r^ ^ 0. Set

X^(Y)=Xp(Y)+ S .̂,
aeAp

=Y+ S (l+rj^,+ S r,̂ .
aeAp aeAp-A^

Then X^(Y) is also a representative ofX in oSf^, and we can set
<p^(X' + X - Yp) == ̂ (X' + X^(Yp) - Yp)

in the sum above. The set of points X' e »S^M,& ^or ^ich this characteristic function
equals 1 is just the set

{ S 7^^- S ^a^a.fc}.
aeAp aeAp-Ap
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in which each n^ ranges over the nonnegative integers. Therefore

(- i)IApl ^ ^(x' + X - Yp) ^A+V)(X-+X)
x'e^M.A;

= (- 1)1^1 S <p^(X' + X^(Yp) - Yp) ^A+V)(X'+X^(YP))
ye^M,fc

== (— l)IA^(A+v)(X^(Yp)) JJ ^ __^(A+v)(n^-l JJ (1—^-(A+v)(tAa,fc))-l

aeAp aeAp-Ap

^A+v)(Xp(Yp)) JJ ^ _ ^-(A+V)((X^-^

aeAp

(The notation Xp(Yp) is an unfortunate consequence of using the subscript P for the
map X -> Xp as well as the set { Yp }. We hope that the meaning is clear.) Set

(6.3) ep^(X)=vol(aS/^r1 n (l-.-^a..))
aeAp

for any point X e a ^ c * Recall that we have fixed the Haar measure on the space
°Si ^ ^/^ I1 ^3LS ̂  property that the quotient of CL^IOQ by the lattice -^ has
volume 1. This means that

I ^M/^M I-1 n (1 - ,-<A+v)(^))-l ̂  [ ̂ /^, |-1 Q [A + V)-1.
aeAp

Therefore (6.1) equals
I ̂  1^ I-1 Y .(A+v)(Xp(Yp)) Q / A i \-1

—M/'—M.fe ^ v -P k\'1- I" v/
Xe-2?M/-^M,fc

Now, set Xp = Xp(0). Then if Y = Yp in the expression (6.2), we have

Xp(Yp)=Yp+ S r,^=Yp+(X~Yp)p.
aeAp

Replacing X by X — Yp in the sum over -^M/^M.A; above, we see that (6.1) equals

I^M/^MJ"1 S .(A+v)(xp+YP)6p^(A+v)-l.
xe^M/^M.fc

We have established that 2^(^15 x^ T) equals

(6.4) S Um (̂ S I^M/^M.J"1 S ^A+v)(xp+YP)ep^(A+v)-l),
ve^M/^M ^ pe^(M) xe-^M/^M.fc

where
Yp = Tp + Hp(^) - Hp(^).

The discussion above implies that the function in the brackets is analytic at A = 0,
so the limit does exist. To analyze ^(^i? ^25 T) as a function of T, replace A by -sA,
z e C, and then take the Laurent expansion at z = 0 of the expression in the brackets.
(See [31, p. 315].) The constant term of the Laurent expansion is a finite sum of functions

^(Tp)^ ve^/JS^ Pe^(M),
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where q? ^ is a polynomial function on c^. These functions depend only on the image
of T in do/do, so we shall assume that T lies in the lattice

^o = »S?Mo = ̂ o.F + OG/OG-

For any P, the map T -^ Tp sends o§?o surjectively onto the intersection of JS?^ wlt^
the closure dp" of the chamber associated to P. We may as well restrict T to lie in the
intersection of oS^o with the suitably regular points in some fixed chamber a^ of OO/OQ.
Then Tp ranges over the suitably regular points in oSf^ n Op". It follows that

(6.5) ^1^2, T)= S ^(T)^,
se^)/^

where N is a positive integer which can be chosen independently of M, y^(T) is a
polynomial in T, and

^ == Hom(^o, 27riZ)
as above.

The coefficients <^(T) in the decomposition (6.5) are obviously uniquely deter-
mined. In particular, the (< constant term " yo(0) is a well defined function of ^(^i? ^2? T).
To obtain an explicit formula for ?o(0)? take the summand corresponding to v = 0 in
the expression (6.4) for ^(^i? ^2? T), and then set T == 0. The result is

(6.6) ^(^)==lim S I^M/^J-1 S ^p+Hp^-Hp^e p^(A)-1.
A-»"O pe^(M) xe-s'W-s'M.fe

We substitute the formula (6.4) we have obtained for ^(^i? ^29 T) into the
expression for J^y?/)- The integral over y, whose convergence we treated in § 4, then
provides a description of ^(f) as a function of T. Indeed, the decomposition (6.5)
ofz^(A:i, x^ T) gives us a similar decomposition forj^y*). In particular, we can define
the "constant term" J(/) of.?^/). Moreover, J(/) can be written in terms of the
function ?^(A:i, ^2) defined by (6.6).

In summary, we have obtained

Proposition 6.1. — There is a decomposition

rC/^ S ^(T,/)^, Te^nao4-,
^Q^o

where N is a fixed positive integer, and p^(T,f) is a polynomial in T. Moreover, the constant term

}(/)== A>(0,/)

°f ̂ {f) is given by

}(/)== s iw^i iw^rf JM(TJ-)^
MG^ JrelKM(F))

Z^^^

JM(Y,/)=|D(Y)lf f f^^f^^Tf^^dx^. D
J AM(F)\G(P) J AMW)\GKP)
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Remarks. — 1. Proposition 6.1 was proved if F is a j&-adic field, but with minor
modifications it holds in general. If F is Archimedean, the groups ̂  and ̂  are
both equal to OM/OG. In this case, we simply set JS?^ == O^OQ, and we take Op ^X)
to be the usual function

(6.7) 6pM=vol(4/Z(A^))-1 n H^).
a£Ap

The definition (6.6) and the formula in the proposition make sense in this context.
With these interpretations. Proposition 6.1 is valid for all F.

2. As a function of T, the original distribution K^/) is invariant under the
Weyl group W^. It follows easily from Propositions 4.5 and 6.1 that J^/) is also
W^-invariant. This implies that the constant term J(/) =^(0,/) is independent of
the chamber o^.

7. Eisenstein integrals and ^functions

In studying the spectral expansion (3.6) ofK^/), it will be convenient to for-
mulate some of the problems in terms of Eisenstein integrals and ^-functions. These
objects are of course an essential part of Harish-Chandra's Plancherel theorem. We
shall review some of their basic properties.

If TT is an admissible tempered representation of G(F), ^(G) will stand for the
space of functions on G(F) spanned by K-finite matrix coefficients of TT. Let ^^aw(G)
be the sum over all such TT of these spaces, and set J^a(G) equal to the subspace obtained
by taking only those TC e Il2(G(F)). Suppose that T is a unitary, two-sided representation
of K on a finite dimensional Hilbert space V. Then ^^(G, r) will denote the space
of functions / e ̂ temp(G) ® V such that

/(^ ̂ ) == Wf{x) T(^), x e G(F), k^k,e K.

The subspaces ^(G, r) and ^(G, r) of ^ten^0? T) are defined in the same way.
IfTc belongs to Il2(G(F)), the inner product

(^ ̂  = f (TO, W) dx, ^, ̂  e <(G, T),
JAo(F)\G(F)

is defined, and we can form the corresponding norm || ^ [| == (^, ^p)172.
Suppose that M e JSf is a fixed Levi subgroup. Then T^ denotes the restriction

of T to KM = K n M(F). If/ is a function in ^tenj^ T) and p e^(M), we shall
write CVfor the weak constant term of/ ([20, § 21], [23, § 3]). It is the uniquely deter-
mined function in j^^p(M, T^) such that

SpM172/^) - (CV) (ma), m eM(F), a eA^F),

is asymptotic to 0 as a approaches infinity along the chamber of P.
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IfP' and P are groups in ^(M), let Tp^p denote the subrepresentation of T^ on
the invariant subspace

Vp,(p = { v e V : T(»') v^(n) == v, n' e Np,(F) n K, n e Np(F) n K }

of V. (See [19, § 11]. This definition is only significant in the ^-adic case, for if F is
Archimedean, Tp^p equals T^.) Since Tp,jp is a two-sided representation of K^, we
can form the corresponding spaces ^^p(M, Tp^p), ^(M.Tp^p), etc., of spherical
functions on M(F). The Eisenstein integral, which depends on a parameter \eia^
maps functions ^ G J^(M, Tpjp) to functions

Ep(^X):^^Ep^,^ ,X) , ^eG(F),

in ^temp^^- I1 ls defined by

Ep(̂ , ,̂ ^) = f T(^)-1 ^{kx) ^+PP)(HP^)) ̂
JK

where
^(nmk) = ̂ (m) ̂ k), n e Np(F), m e M(F), k e K.

For fixed x and ^, the Eisenstein integral extends to an entire function of X e a^ c-
Recall that the ^-functions are defined by weak constant terms of Eisenstein

integrals. Suppose that

P,=M,Np^ MiCjS?,

is a parabolic subgroup which is associated to P. This means that the Levi components M
and Mi are conjugate, or equivalently, that the set W(aM3dM) of all possible iso-
morphisms of OM onto a^i obtained by restricting elements in W^ to a^? is nonempty.
Then the weak constant term

(G^ Ep) (^, \):m^ (C^ Ep) (mi, ̂  ̂ ), ^ e M^F),

equals
S (^ip^X)^^)^^^,

seW(aM,a^)

where each Cp ip(^,X) extends to a meromorphic function of X e a^ c ^fh values in
the space of linear maps from ^(M.Tp^p) to ^2(^1, T p j p ) . Harish-Ghandra has
established a number of functional equations relating Eisenstein integrals, ^-functions
and the auxiliary c-functions

4iip(^ x) = ̂ ip(^ x) ^pip(i. ̂ -1

and
°^lp(J, X) = ^ip,(l, ^X)-1 ̂ ip(^, X).

These have been summarized in [7, § 1.2].
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Next we review some of the properties of intertwining operators, and in particular,
their connection with c-functions. Suppose that F is a finite set of classes of irreducible
representations of K. Let Vp be the finite dimensional subspace of functions

a: (k^k^) ->o^

in L^K X K) which transform in each variable according to representations in F.
Then there is a two-sided representation T? on Vp defined by

(Tr(^i) arr(^))^ == a^^.

Suppose that a is a representation in r4(M(F)). For each Pe^(M), the induced
representations ^p(o^), X ea^c? a11 act on the Hilbert space ^p(<7). Let ^p(<7)r be
the subspace of vectors inJ?p((r) which transform under K according to representations
in r. Harish-Chandra has defined an isomorphism T -> ̂  from End(^p(<r)r) onto
J<(M, (Tr)p(p) ([22, § 7]). The map has the properties that

(7.1) (^ +r) = C1 tr(ST*), S, T e End(^p((r)r),

and

(7.2) Ep^, ̂ , ̂ ^ = tr(^p(o,, k, xk,) T),

where dy is the formal degree of (T. It is through this map that the ^-functions are related
to intertwining operators.

The unnormalized intertwining operators

Jr|p(^) ^p(^) ^^p^), P, F e^(M),

are defined by integrals over Np,(F) n Np(F)\Np,(F) [11, § 1]. We do not fix invariant
measures on these spaces, but we can use the constants

r(P) =;, ^2pp(Hp(n)) ̂

Np(F)

as in § 1 to take care of the indeterminacy in the choice of measures. The normalized
intertwining operators

Rp.,p(^):^p((T) -̂ p,(o)

are better behaved [11, Theorem 2.1]. They are related to the original operators through
a product

(7.3) Jp-|p(^x) = ^ip^x) ^ip^x)?
in which

^'Ip^x) = II rp(CT^)
pe4'^4

is a meromorphic scalar valued function composed of normalizing factors for maximal
parabolic subgroups. In this paper, we will not need to deal explicitly with the nor-
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malized operators, but we will use the factors rp'\-p{^) to keep track of the singularities
of the operators Jp'|p(o^) and the ^-functions. Recall that

^p'jp^x) == (Jplp'^xUp'lp^x))"1

is a scalar valued meromorphic function of X which is analytic on m^. The case that
P' == P is particularly significant. The function p.p|p(<^) depends inversely on a choice
of Haar measure on Np(F) x Np(F), but

(7.4) ^)-Y(P)Y(P)^p|p(^)

is not only independent of any choice of measures, but is also independent of the choice
of P e^(M). This is essentially Harish-Chandra's ^-function. It is a consequence of
the properties of the operators Rp'|p(cr^) that

(7.5) M-1 == (y(P) y(P))-1 rp,p(^) rpip(^).

The relationship between intertwining operators and ^-functions can be described
as follows. Suppose that ?i e ̂ (M^) is another parabolic subgroup, and that
s eW(aM5 (XM^). Then
(7.6) ^ip(^, X) ̂  = y^-1 Pi)-1 s^,

where
TI =J8-lpl|p((Tx) TJp|,-ip^(^)

and
(^) (7^) == w, ̂ (^71 m^ w,) w~;\ m^e M:i(F),

m which Wy is a representative of.? in K. (See [7, (1.2.4)] and the formulas at the end
of [7, § I.3], which were quoted from Harish-Ghandra's formula [22, Corollary 18.1]
for real groups. The^-adic case follows in a similar way from [19, Theorem 23].) There
are similar formulas for the °c and c° functions. For example, it will be convenient to
link the ^-functions with the operators

^IP^ ^x) = ^^-ipiip^x)

(which depend on the representative Wg of s). The relationship is

(7.7) °^ipMk=^

where
T' = Rp^p(., G,) TRp^p^, o,)-1.

(See [22, Lemma 18.1], [7, (1.2.15)].) Let c^y{s, X)^ denote the restriction of(;p^p(^, X)
to J^o(M, (Tr)p|p). The formula

(7.8) l̂ x)"1 = ̂ |p(^ ̂ )^pjp(^ ̂ o. ^ eiaM,

is a straightforward consequence of (7.6) and the definition (7.4) of the p-function.
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We shall state a precise form of the relationship between the Plancherel
density m(cr^), and the functions dy and (Jt(cr^). It can be read directly off Harish-
Ghandra's explicit Plancherel formula [22, Theorem 27.3], [23, § 16]. We first choose
compatible Haar measures on G(F) and M(F), in the sense of § 1. Recall also that
in § 1 we fixed dual Haar measures on ia^ and A^(F). The measure on A^(F), together
with the Haar measure on M(F), then determines a Haar measure on M(F)/A^(F).
The function m{a^ depends inversely on both the choice of measure on ia^ and the
choice of measure on G(F). With our conventions, this reduces simply to an inverse
dependence on a choice of Haar measure on M(F)/A^(F). Since dy has the same
property, the quotient of m{a^) and dy is independent of any choice of Haar measure.
The relationship is then just

(7.9) ^x)=^(^).

Harish-Ghandra's formula looks slightly more complicated, but this is due to different
normalizations of (A-functions ([22, Lemma 13.4], [23, Theorem 4]), different nor-
malizations of Haar measures on G(F) and M(F) ([20, Lemma 7.1], [23, § 5]) and
the fact that he takes a sum over G(F)-conjugacy classes of groups M instead of the
full set JS?. This accounts for the constants ^(G/A)-2, y(G/A)-1 and | o/(G/A)|-1 in
his formula rather than the quotient | W51 [ | W^ |~1 in (2.4).

We will need to deal with the weak constant term of an Eisenstein integral along
an arbitrary parabolic. For this, it is convenient to work with standard parabolic
subgroups. Accordingly, assume for the rest of the section that PQ e ̂ (Mo) is a fixed
minimal parabolic subgroup. We assume also that P e ̂ (M) contains Pg, and in addition
that Qis some other parabolic subgroup which contains P(). Since P is uniquely deter-
mined by its standard Levi component M, we shall often write

EM,X) =Ep(^,^X).

Similarly, if P^ e^(Mi) also contains Pg, and s belongs to W(a^, a^), we can set

c{s,\) =^|p(^,X).

Finally, if Q, happens to contain both P and Pi, and r eW(a^ C^) leaves OQ pointwise
fixed, we can write

E^Q, +, ̂  == EPHM^Q. +. ̂  ^Q e MQ(F),

and
C (r, X) == ^nMolPuMQ^? x)

for the corresponding objects on MQ. In general, let W(ctp; QJ denote the set of ele-
ments s in

U W(ap,dp,)
PI 3 Po -
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such that the space Op^ = sdp contains OQ, and such that .^(a) is a root of (P, Ap)
for every root a e Ap^. The weak constant term of E along Qis then given by

(7.10) (G0 E) (m^ ^ X) = S E0^, ̂ (1, ̂ )-1 ̂ , X) +, ^X),
s e W(OP ; Q)

for any WQeM^F), ^ ej^(M,Tpjp) and ^em^. This formula is easily established
by checking that for any group Pi, with PoCP^CQ^ the cuspidal component of
(G^ E) {x, 4/5 X) matches that of the weak constant term along Pi n MQ of the right
hand side of (7.10).

Let us recall Harish-Ghandra's quantitative asymptotic relation between E
and C° E. While we are at it, we shall also state the standard estimate for an Eisenstein
integral. Let

w 4^PPO(HPO^)) dk
K

be the elementary spherical function. We also set

( 1 + || ^ ||? if F 1s Archimedean,N(X) =
1, otherwise,

for any point X e?a^.

Lemma 7.1. — a) Fix a representation a e ri2(M(F)) and a positive number 8. Then
there are positive constants G, k and s such that

|| S^m)112^ +, X) - (C° E) (̂ , ̂  X)|| < CN^ || + || S^(m) e-6^^

for all X e ia^, ^ e J^a(M, Tp|p), and all m e Mo(F)p^ such that

a(Ho(^))^8||Ho(m)||, aeAp^-A^.

b) There is a positive constant G such that

||E(m,+,X)||^G||^||3^),

for all \ e ia^, ^ e ̂ ^(M, Tpjp) and m e Mo(F).

Proof. — Part a) is included in Harish-Ghandra's asymptotic estimates for functions
in ^tempC^'1')- ^or Archimedean F it follows directly from [21, Lemma 14.5]. For
^-adic F there is unfortunately less of Harish-Ghandra's work in print, but in this case,
a) can be deduced from [18, Theorem 7] and the theory [23, § 3] of the weak constant
term. Part b) follows directly from the definitions of E and S^, and the fact that the
pointwise values of <p can be bounded in terms of || ^ |[. D

We shall actually apply the asymptotic relation in terms of the function Dp^
discussed in § 1.
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Corollary 7.2. — Given 8 > 0 we can choose positive constants G, k and s such that

|| Dp^)172 E(m, ̂  X) - Dp^^(^)l/2(GQ E) (m, ̂  X)||

^ bounded by

GNM^II^H^-8"^^",

/or fl/Z X, ^, fl̂ rf m a? in part a) of the lemma.

Proof. — Multiply the estimate in Lemma 7.1 a) by Dp^^fw)172. By Lemma 1.1
and Lemma 7.1 b),

|| Dp^2 E(^, +, X) - S^2 Dp^«/2 E(m, ^, X) ||

is bounded by

G^p^^.-ill^llll^llS^),

for positive constants Ci and Si. We can also apply Harish-Ghandra's estimate

(7.11) 8p/^2 S^m) ̂  W + || Ho(m) ||)^

for the elementary spherical function ([16, Theorem 3], [19, Theorem 25]). The original
function can therefore be bounded by an expression of the form

G|| ^ || <?-e||Ho(m)||^

Moreover, applying Corollary 1.2 and (7.11) to MQ, we obtain an estimate

(7.12) Dp^«/2 3 (̂m) ^ G' Sp^W72 SM,(̂ ) ^ G' G,(l + || H,{m)\\)^.

The corollary follows. D
It will be necessary to control the weak constant term (7.10) in future induction

arguments. Consider an element s e W(a?; QJ. It follows from (7.8) that the linear map

^r^Mo
is unitary. Similarly, if p^ denotes the pi-function relative to MQ instead of G, the
linear map

^(^^(i^Lo
is also unitary. Consequently

(7.13) || ̂ (1, A)-1.(., X) <H| == ̂ W2 (.(o,)-1/21| + [|,

for any ^ e J^,(M, Tpjp). As a function of X, the (A-function ^{sa^) is analytic and
of polynomial growth [22, Theorem 25.1], [23, § 6]. Therefore, the left hand side
of (7.13) is bounded by

G^-^rwmi,
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for constants C and k. Applying this to (7.10) in conjunction with Lemma 7.1 b), and
taking into account the estimate (7.12), we obtain constants G, k and d such that

(7.14) Dp^(^21| (G^ E) (^ ̂  X) || ̂  G^)-^2 N(^ || + ||(1 + || Ho^))^,

for all X e ia^? + e ̂ o(M, Tp.p) and w e Mo(F).
Actually, (GQ E) (m, ^, X) is an analytic function o f X e ia^., and one could remove

the factor ^(c^)"172 from (7.14) with some further argument. However, we shall only
require the estimate in its present form.

8. Inner products

For the next two sections M and M' will be fixed Levi subgroups in oS?. It is
convenient to assume that they are both standard with respect to a fixed minimal
parabolic subgroup P() e^(Mo). In other words, there are (uniquely determined)
parabolic subgroups Pe^(M) and P' e^(M') which contain Pg. We shall also fix
a two sided unitary representation T of K on a finite dimensional Hilbert space. We
can then form the Eisenstein integrals

E(A:, ̂  X) = Ep(A?, ̂  X), X e KIM, ^ e J (̂M, Tp,p),

and
E( ,̂ +', X') = Ep.(̂  +', X'), X' e <,, ^' e ̂ (M', Tp,ip.),

as in § 7. These functions are not square integrable in x. However, if we multiply them
each by the characteristic function u{x, T), we can form their inner product over any
of the sets

G(F) z ={^eG(F) :H^)=Z} , Zeo^.

Our goal is to establish an asymptotic formula for this inner product. For real groups
of rank 1, such formulas have been proved by techniques from the spectral theory of
ordinary second order differential operators. Waldspurger [31] has used completely
different methods to establish a truncated inner product formula for /^-adic spherical
functions on GL(^). We shall use Waldspurger's techniques to prove a general result
which can be regarded as a local analogue of the inner product formula [3], [5] for
truncated Eisenstein series.

Define

(8.1) Q^(X', X, <{/, ̂ z = f (E(^, +', X'), E(^, +, X)) u{x, T) dx.
»/G(F)Z

It is clear that ̂ (X', X, <{/, ̂ z extends to an entire function of (X', — X) in a^ c x ^ c-
However, we shall be mainly concerned with its values for imaginary (X', X). In particular,
it is only for these values that the asymptotic formula will hold. We shall state the
formula in this section, and prove it in the next one.
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In order to state the asymptotic formula, we must make some preliminary obser-
vations. These remarks are really only of interest if F is ^-adic, but there is no need to
assume this explicitly. Our discussion at this point pertains only to a general Levi
subgroup M ejSf, and does not rely on the minimal parabolic subgroup P(). We shall
describe some inner products on ^(M, T^).

Let Y' and Y be fixed functions in J^(M, T^). For any X in a^ p, we can certainly
take the inner product

(Y'.^^f (Y'(m),Y(m))rfm.
JM(F)X

However, it is useful to introduce another bilinear form that depends on the point T
and a group P e^(M). For a given point A e a^c? Ae function

Y^(w) == Y'(m) (̂HM(̂  ^ ^ M(F),

also belongs to ^{M, T^). We shall assume for the moment that the real part of A(av)
is positive for every root a e Ap. Then 9^ equals 9?, the characteristic function of

{ H e OM : o^(H) < 0, a e Ap }.

The bilinear form is defined by

WA. ̂ z == ! (Yi(m), T(^)) 9p(HM(̂ ) - Tp) dm.
•/MtDnGfF)2

Equivalently, we have

(8.2) r̂ , Y)2 = f (Y', T^ 9p(X - Tp) ̂  rfX,
-^S.F

where
<F={XeaM.p:A^(X)=Z}.

It is clear from our condition on A that the integral in (8.2) converges absolutely.
Moreover, it is not hard to show that r^(Y^, Y)2^ has analytic continuation as a mero-
morphic function of A e 0^,0 • ̂ e ^all prove this fact in detail, in order to introduce
some auxiliary notions we will need later.

Observe that

^(n+^^^^^Y^Y)2,

for any point ^ in o^ p. It is therefore enough to prove the analytic continuation if A
is replaced by any A + ^. In particular, we can assume that A belongs to (a^ c)°-
There is also no loss in generality in assuming that

(8.3) (Y'(^), YM) = (Y^), Y(^)), m e M(F), ^eA^(F).

Taken together these two assumptions imply that

^(^^^'-^(Y^.Y)2,
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for any point 2 in 0'^p. In particular, the expression

W,^)A- S, ^(Y^Y)2

ZeClG,F/aG,F

is well defined. If!: belongs to ^p, the pair (Y;, Y) also satisfies (8.3), and we can
form the function r^(Y^ Y)^. We obtain an inversion formula

WA, Y)2 = I Oo,p/^p |-1 Sr?(Y,, Y)^-^,

where the sum is taken over £; in 'a^p/O^p. It is therefore enough to show that ^(V, Y)^
extends to a meromorphic function of A in (a^ c)0-

Obviously ^(M, T^) is a direct sum of eigenspaces under the action of the
compact abelian group A^(F) n M(F)1. Since different eigenspaces are orthogonal
under r^(., .)^, we may assume that Y' and Y lie in the same eigenspace. We can also
assume that Y' and Y are eigenvectors under the action of A^(F). This means that

(8.4) (Y'(^), V{ma)) = (Y'(77z), Y(m)) ̂ ^^ ^ e M(F), <z e A^(F),

for some point ^ GZOM. We can then form the inner product

(Y',Y),=(Y^T)

= f (Y^m), Y(m)) ^-^M(m)) ̂
•/M(F)/AM(F)

= S^ (Y'.Y)3^^-^.
XG OMtP/ttM,?

The point ^ is not unique. However, (8.3) does tell us that the restriction of [L to OQ
lies in o^p. It follows from Lemma 1.3 that [L can be chosen to lie in (m^)0-

The expression for ^(V, Y)^ can be evaluated explicitly. Assume for the moment
that F is a j&-adic field. It follows from (8.2) that

(8.5) ^(V, Y)^ == S , (Y', ̂  9p(X - Tp) ̂ (x\
XeaM,F/ao,F

We fix a number ^ = (k')~1 for all time, where V is a suitably large positive integer.
We can then form the lattice

^M^={ S n^\L f:n^eZ}
a£Ap

in (W^G? as in § 6. Since k' is large, we may assume that JSf^ contains both
^M == ̂ r + OQldQ and ̂  = ^p + aa/do as sublattices. The pairing

e^\ ve^/^,,Xe^,/^

identifies ^M/^M,^ wth the dual group of ^^M- Choose a point (JL e (mM)® such
that (8.4) holds. Since

(Y', ̂ x+S = (Y', Y)X ^(£)
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for any X e oSf^, we can write

^(Y', Y)^ = S S (Y', Y)3^ <pp(X + X ~ Tp) ̂ (x) ̂ (A +(A) (x)

xeaM.F/%(,F xe^M

= S (Y^Y)^^ | J^M/̂  1~ 1 S S <pp(X + X - Tp) ,(A+^V)(^
x VG^M/^M,/ xe^M./

by applying Fourier inversion to the finite abelian group oS^A^M- The sum ^er X
is easily expressed as a multiple geometric series as in § 6. Using the fact that A + (A + v
belongs to (a^c)0? we write

S; <pp(X + X - Tp) e(A+v'+^&

xe-SF^
= S cp f5c) ^(A+lJl+v)(x) ^(A+IA+V)(TP-:X:)

xe-^M,^ p

= VOl(aS/^M^)~1 6p^(A + (A + V)~1 ^A+'A+V«TP) ^-A(X) ^-((x+v)(X)^

where

Since

and

we obtain

6p,/(X) = vol(aS/^M,/)-1 n (l-,-^a,/>), x e a M c .
agAp

^M/̂ M,/ I-1 vol(aS/^M./)-l = vol(a^M)-1 = 1,

y .,-(tA+v)(X)/W*' XIMX _ /'W W*\
Y^-, ^ ^ 5 / — I1 5 ^ J tX+v?X£ (IM.P/QM.F

(8.6) r^Y', Y)^ = S (V, Y)^^<A+.+V)(TP) ̂  ,(A + (1 + v)-1.
VG^M/^M,^

If F is Archimedean, the argument is similar but simpler. In this case oS? ,̂ Sy^
and ̂  ^ are all just equal to OM/OG. If we agree to set 6p ^ = 6p for Archimedean F,
as in § 6, the formula (8.6) will remain in force.

Before going on, we observe that (8.6) simplifies slightly if T' ej3^(M, T^) and
Y eja^(M,TjJ, for fixed representations n and TT in Il2(M(F)). Let ^(TT', 7r) denote
the set of points v e (ia^)0 sach that TC' is equivalent to TT^. Then the group

^={ve^:n^n},

which lies between oSf^ and ̂ , acts simply transitively on (^(n, n). Observe that
the inner product (Y^Y)^^.^ in (8.6) vanishes unless (JL + v belongs to ^(TC', 7r).
Rewriting (A + v as v, we obtain

(8.7) r^Y', T)^ = S , (Y', Y), .(A+V)(TP) Op^A + v)-1,
Ve^Tt'.TCV.^M,/

in the special case that Y7 e^(M,T^) and Y e^(M,T^).
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The formula (8.6) implies that r^(Y', Y)^ extends to a meromorphic function
ofA in (a^, c)0- This implies the assertion we set out to check, namely that each ^(Y^, Y)2

can be analytically continued to a meromorphic function of A e a^ c- The assertion
is valid for arbitrary functions Y' and Y in ^(M, T^). In fact it is convenient to extend
the various bilinear forms above to the full space J^(M, Tj^) by defining them to be zero on
the complement ofj^M, T^). (The existence of a vector space complement ofj^a(M, T^)
in J^(M, T^) is a consequence of Harish-Chandra's theory of the constant term.) The
analytic continuation remains in force. For general T' and T we shall also write

r^(Y', Y) = r?(Y', Y)o

and
r^(Y', Y)2 = r^(Yo, Y)2

if the functions are analytic at A = 0.
We now return to our discussion at the beginning of the section. Then P' e^(M')

and P e ̂ (M) are standard parabolic subgroups, ̂  e J^(M', Tp^p,) and ^ e J^(M, Tpip)
are fixed functions, and E((j/, X'), X' e m^? and E(^, X), X e m^, are the corresponding
Eisenstein integrals. For each standard parabolic subgroup P^ e^(Mi), we can form
the weak constant terms (G^ E) (^', X') and (G^E)^,^). We obtain functions
in ^tenu^i^piipi)- Define

(8.8) ^(X', X, +', ̂ z = S ^((G^ E) (^', X'), (G^ E) (^ X))2.
PI 3 PO

This function is to be our asymptotic approximation of i2p (X', X, <j/, 40^ Observe that
a summand corresponding to P^ will be nonzero only if the cuspidal components of
both (G1*1 E) (^', X') and (G1*1 E) (^3 X) are nonzero. This means that Pi is associated
to both P and P', and in particular, that P is associated to P'. We should also point out
that the summands on the right are only defined for X' and X in general position. However,
the sum does extend to a meromorphic function of (X', — X) in a^' c x ^ c-

We want to establish an asymptotic relationship which is uniform in (X', X). It
can be shown that (o^(X', X, ^'3 4^ ls actually an analytic function of (X', X) in ia^' X td^,
and one could probably establish an asymptotic formula for all such points. However,
to avoid burdening the reader with the required extra generality [21, § 8], we shall
be content to prove a slightly weaker result that allows for the singularities of the
^-functions. This is in fact quite natural. As in Harish-Ghandra's estimates for wave
packets, we will ultimately rely on the Plancherel density to cancel the singularities.

To state the asymptotic formula, it is convenient to fix representations <?' e II^M^F))
and or e ng(M(F)), and to assume that the vectors ^' and ip lie in J^(M', Tp.ip») and
j^g(M,Tp|p) respectively. This of course entails no loss of generality. We may as well
also assume that the truncation parameter T e d^p ^les m tlle chamber dp" corresponding
to PO. Recalling the functions ^(a^) and N(X) from § 7, we introduce the quantity

(8.9) N,(X',X,^) ^^ r^^^-^NCxr^X^I I^ I I I I+H,
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with k any positive integer, in order to describe the error in the asymptotic estimate.
Let us also write

^(cr', a) == {(X' X) e <- X i(^: (x(c^) ̂ ) + 0 }
={(X' ,X):N,(X^X,^)=t=0}.

The asymptotic inner product formula can then be stated as follows.

Theorem 8.1. — Suppose that 8 > 0. Then there are positive constants G, k and s such that

I W. \ +', ̂ z - <(^ \ ̂ \ ̂ z I ^ CN,(X', X, +', ^) .-^ll,

for all (X'.X) e^(cr',(r), Zea^, ^ 'e ̂ (M', Tp.ip/) and ^ e J<(M, Tpjp), ^ ^
T e ClMo,F n ̂ o ̂  ̂ (T) ^ 8 II T II-

We shall prove Theorem 8.1 in the next section. Notice that the estimate of the
theorem implies that the meromorphic function (Op (7/, X, ^'3 ^a22 is analytic for all (X', X)
in '̂(0', cr). This follows directly from the continuity of N^(X', X, ^', ^) on ^(cr', a)
and the fact that Q^(X', X, ^'3 ip)21 is analytic everywhere.

Suppose that the central characters of CT' and cr coincide on A^(F). Then (8.3)
will hold, and if X' — X belongs to the space (za^)0, we can define functions

W, ̂  ̂  +) = f (E(^ +', X'), E(^, ̂  X)) u{x, T) dx
J AG(F)\G(F)

and
<(^, ̂  +', ^) == S ^((G^ E) (^ X'), (G^ E) (^, X)).

PI 3 PO

The following corollary is an immediate consequence of the theorem.

Corollary 8.2. — Given 8 > 0, we can choose the constants of the theorem so that

I W. \ y. ̂  - <(̂  ̂  +'. 401 < CN,(X', x, y, ̂ ) .-ellTl',
for all (X', X), '̂, ^ flT^f T as in the theorem, with the additional condition that X' — X belongs
to (z-OM)0. D

We conclude this section with some comments on the asymptotic expression
c>)^(X', X, <j/, ^) in the corollary. Substituting the ^-functions into the constant terms,
we first write co^X', X, y, ̂ ) as

S S S r^CF^T,),
PI 3 PO s' e w(ap', dp )̂ 8 e w«tp, ap )̂

where
T;,̂ ) == (c( '̂, X') ^') (mi) e^ ̂ ^

and
(̂̂ i) == (^ ̂  ^) (̂ i) <?f8x)(HM(wl)).

We are assuming that the representations cr' G II^M^F)) and cr e n2(M(F)) are fixed
and that ^/e^/o'(M', Tp^p») and ^ ej^,(M, Tpjp). Consequently, the functions T^
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and Y, belong to «<^(Mi, Tp^) and j<^(M:i, Tp^) respectively. Applying the for-
mula (8.7) (with P, TI:', n replaced by P^, j' CT^, ̂ , and with A = 0), we obtain a
more explicit expression for <x)p (X', X, ^'5 ^). The result is
(8.10) <(X', X, ̂ ) = S S S (Y:., Y,)^ ̂ ^ 6p^(A,)-1,

PiDPo s ' , s Ai

where the sums are taken over s ' e W(a^ 3 a^)? '$' e ̂ (0^, a^) and A^ e ^(s' a^, SG^)J^^{.
Observe that

<^V ̂ , ̂ ) = s' X' ~ JX + ̂ '(T', ̂ (T),

and if A^ == '̂ X' — ^X + ^i, for î e ^(s' a ' , sa), then
(T^Y^^M^^^^X)^.

With this substitution, the right hand side of (8.10) looks more like the asymptotic
formula [5, p. 36] for the inner product of truncated Eisenstein series.

If F = R, much of this discussion is superfluous. For M(R) is the direct product
ofM(R)1 with A^(R)°, and we can take </ and a to be representations of M^R^A^R)0

and M(R)/A^(R)° respectively. The set <^°{s' a^sa^) is either empty or contains the
one point s ' X' — s\. The formula (8.10) becomes

<(^^+) == S ^(^^^^^^^^-^^ep^'x'-^)-1.
PI^PO a', s

This is an exact analogue of the asymptotic formula for Eisenstein series.

9. Proof of the inner product formula

The purpose of this section is to prove Theorem 8.1. In the special case that G
is a torus, notice that

W, x, 4,', 4Q2 = W, ̂  = ̂ ', x, <{/, +)2,
so there is nothing to prove. In general, we shall assume inductively that the theorem
holds if G is replaced by any proper Levi subgroup.

The key step in the proof of the theorem will be to show that the difference
(9.1) A^(X', X, +', +)2 = %(X', X, ̂  +)2 ~ (^(X', X, ^/, ̂

has a limit as T approaches infinity. This idea is due to Waldspurger, who worked with
j&-adic spherical functions on GL(^) [31, Proposition 11.4]. The existence of the limit
will be an easy consequence of the following weaker version of Theorem 8.1.

Lemma 9.1. — For any positive numbers S and r, we can choose positive constants G, k
and s such that

| A^X', X, ^', ̂  - A^(X', X, ^', ̂  | < CN,(X', X, ̂  ̂  ̂ '̂ l,

for all (X', X), Z, i}/, 4' cmd T as in the statement of Theorem 8.1, and all points S e a^p n dp^
with || S [ I ^ r N T ||.
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Proof. — Assume that T and S satisfy the conditions of the lemma. For any point

x = A! mk^ k^ k^ e K, m e Mo(F)^,

in G(F), we have

u{x, T + S) = Tp/Ho(w), T + S)

by Lemma 3.1. It follows from the integration formula (1.3) that a^8^', X, ^', ̂ z

equals

(^ f Dp,(m) Tp,(Ho(m), T + S) (E( ,̂ ̂ ', X'), E(m, ̂  X)) rfm.
»/Mo(F)nG(F)2

Into this expression we substitute the expansion (3.14) for Tp (• , T + S). We obtain
the sum over parabolic subgroups Q, which contain Pg, and the integral over m in
Mo(F) n G(F)Z, of the product of

(9.3) Dp,(m)(E(m,^X'),E(^^X))

with

(9.4) T^(Ho(m), T) ̂ {H^m) - T^ S^).

Fix QD Po for the moment, and consider points m e Mo(F) n G(F)Z such that
the function (9.4) does not vanish. For any such m, we can write

Ho(m)=T- S c^ + S ^+Z,
p G A^ a e AQ

where { ̂  } are (c co-roots 5?, { ̂  } are " co-weights ", and { c^} and { ̂  } are non-
negative real numbers. This follows directly from the definition of the two functions
in the product (9.4). Let a be any root in Ap^ — Ap^. Since a(^) ^ 0 for each (3 e Ap^,
we have

a(Ho(^)) ^ a(T) + d^ ^ a(T) ^ rf(T) ^ 8 || T ||,

with cs^eAQ being the weight corresponding to a. Furthermore, Tp^(Ho(77z), T + S)
equals 1, and this implies that

l |Ho(m)| |^ | | S+T | | ^ ( l+ r ) | |T | | .

Consequently,
a(Ho(m))^8J|Ho(m)||,

where §1 = 8(1 + r)-1. We may therefore apply Corollary 7.2, which tells us that

|| D^m)112 E(m, ̂  X) - Dp^Jm)172 {G^ E) (m, ̂  X) ||

is bounded by a function of the form

GN^II^Il^-6^^!'.
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Applied to both (<p, X) and (^', X'), this estimate enables us to replace (9.3) with a
similar expression

(9.5) Dp^(m) ((G^E) (^',X'), (G^E) (m,+, X))

built out of weak constant terms. For we can use the inequality (7.14) (applied to
both Qand G) to take care of the resulting cross-terms. The difference between (9.3)
and (9.5) is then bounded in absolute value by a function of the form

GN,(X'X, +', +) (1 + || Ho^)!!)^-6"^^".

For any Q, let W^m) denote the product of (9.5) with T^(Ho(^), T). If
Q^= G, the expressions (9.3) and (9.5) are equal, and the integral of W^^w) is
precisely the contribution of Q to the original expression (9.2). Suppose that 0,4= G.
Then we can choose a root a e Ap^ — A^, and as we have seen, a(Ho(m)) ^ 8 ]|T [|
for any m such that (9.4) does not vanish. It follows without difficulty that the integral
over Mo(F) n G(F)Z of the product of (9.4) with a function

(l+IIHo^)!!)^-6!^^"

is bounded by G^e~sl^T^y for positive constants G^ and Q-^. We have thus shown that
the difference between (9.2) and

S f ^(H^TTZ) - TQ, SJ W^ ̂ m) dm
QDPo JMotDnOT)2

is bounded in absolute value by an expression

(9.6) GN^',^^-8'^'

of the required form.
Let us decompose the integral

f TQ(HQ(W) - TQ, SQ) W^m) dm
JMo(F)nG(F)2

into a double integral

f ( f W^m) dm} TQ(X - TQ, SJ rfX.
•^^ ,P ^MotDnMQtF)^ /

Here, we recall that

<,,F = { X e (XMQ,F ^tht^X.) == Z }.

Substituting the formula (7.10) for G° E into (9.5), and then using (1.3) to change
variables, we find that

f W^{m)dm
JMWUMQtF)2
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equals

(9.7) ^^^M^'^^^l^^')-1^'^') ̂ (l,^)-1^) ̂ x

the sum being taken over ^ eW(dp.; Q) and .?eW(cip;QJ. Suppose that d+ G.
Then by our induction hypothesis. Theorem 8.1 holds for MQ. This will allow us to
replace the function Op,^ in (9.7) by the corresponding function cop^^. The
difference between (9.7) and the new expression will in fact be bounded in absolute
value by the sum over s ' and s of the product of
(9.8) ^Q(^)-1/2||^(1,^)-1^^)^||,

(9.8') (xV ̂ -1/2 I I ^(1, ^ ̂ r1 ̂ /, ̂ ) ^/ 11,
and a function of the form

^N^N^'))^-6^!'.

According to the relation (7.13), the product of (9.8) and (9.8') equals

^x)-1^!^!^^)-172!!^!!.
Thus, for any Q,=t= G, the difference between (9.7) and

(9.9) ScOp^M^'^^^l^^')-1^^') ̂ (l,^)-1^) ̂ x

is bounded in absolute value by a function of the form (9.6). If Q= G, we cannot
apply the induction hypothesis. However, in this case the difference between (9.7)
and (9.9) is just the function A^(X', X, ^', ̂ z. Putting together everything we have
shown so far, we conclude that the difference between

(9.10) ^'(^ ̂  ̂  ̂ z - W ̂  ̂  ̂
and the function obtained by taking the sum over Q, 3 Po and the integral over X e a^ p
of the product ofrQ(X — TQ, So) with (9.9), is bounded in absolute value by a function
of the form (9.6).

The expression (9.9) can be simplified. Applying the definition (8.8) to MQ,
we first write the expression as

S S ̂ ((G^i E0) (^(1, s- X')-1 ̂ ', X') ^', .' X'), (G^i E0) (^(1, .X)-1 c{s, X) +, ̂
8' f 8 RI

The inner sum is over the parabolic subgroups R^ of MQ which contain Po n MQ. Next
we apply the formula (7.10) for G° E. This absorbs the sum over .y', s, and we obtain

^((G^G^E) M/,X'), (G^G^E) (^X))^
BI

Finally, the transitivity property of the weak constant term implies that G111 G° = C\
where Pi = Q(Ri) is the unique parabolic subgroup with Pi C Q and Pi n MQ = Ri.
It follows easily that (9.9) equals the sum over { P^ : P^ C Pi C QJ of
(9-11) ^nM,((C^ E) (+', X'), (G^ E) (^ X))^
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To get back the function which is asymptotic to (9.10) we must multiply (9.11)
with TQ(X — TQ, So), and then take the integral over X e d^p, and the sum over Pi
and Q. This becomes the sum over P]^ 3 Pg of

(9-12) S f ^(X-TQ,SQ)r£^(T',Y)^X,
Q^l ^Q.P

where Y'= (C^ E) (^/, X') and Y == (G^ E) (^,X). Our final task is to evaluate
(9.12).

Let us temporarily replace T7 by Y^, where A is a point in a^c suc!1 A^
the real part of A(av) is large for every root a e Ap . We can then make use of the
formula

^nM^A, ̂ x = f (Y', Y)^ 9p,nM,(X, - Tp )̂ ̂  rfX,,
^F

obtained by applying (8.2) to MQ. Substituting this into (9.12) 5 we combine the
resulting double integral over X^ea^p and X e a^ p into a single convergent
integral over X e a^ p. We obtain

f {VF',VV)X{ S yp^MjX-Tp^X-T^SJ^'^X
^M P ^

= f (Y', ̂  9p/X ~ (Tp^ + Sp^)) ̂ > rfX
^^.p

_ yT+S/W' W\Z
— î I1 A3 ]L ) •

The last steps follow from (8.2), (3.12) and the fact that pp^nMo = 9?i- But

^+s^ip^ xp^z extends to a meromorphic function of A e a^c ^ose value at A = 0
equals

r^W Y)2 = ̂ ((C^ E) (+', X'), (G^ E) (^, X))2.

This then equals the original expression (9.12).
It follows from the definition (8.8) and what we have just proved that the required

sum of (9.12) over P^ equals o) '̂1"8 '̂, X, ^', ̂ z. This is our asymptotic approximation
of (9.10). More precisely, the difference between (9.10) and co^+^X', X, ^/, ̂ z is
bounded in absolute value by a function of the form (9.6). However, the difference
is nothing more than the original given expression

A^+S(X',X,^,+)Z-A^(X /,X,+',+)Z.

The proof of Lemma 9.1 is therefore complete. D
Let us write lim to denote a limit as || T || approaches infinity, with T ranging

8

over the set of T for which rf(T) ^ 8 || T ||.
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Lemma 9.2. — The limit

Ap,(X', X, ̂  ̂ z = jî m A^(X', X, ,̂ ̂ z

5

exists, uniformly/or (X', X) ^ compact subsets of ̂ "(cr', (?). J^/^ ^?r<? are positive constants C, A
flyzrf s .y^A ^to

I Ap,(X', X, +', ̂ z - A^(X', X, +', ̂ z | ̂  CN,(X', X, ^/, ̂  ̂ ll̂ l,

/or ^ (X', X), Z, (j/, ^ ^rf T as in the statement of Theorem 8.1.

Proof. — Fix TI e aM^.p n a^ with rf(Ti) ^ 8 || Ti |[. Set T^ = ^Ti. Applying
the last lemma with T = T^ and S = T^, we see that

I A^(X', X, ̂  ̂ z - A^(X', X, ̂  ̂ z | ̂  GN,(X', X, '̂, +) . - 6 11 T »11 ,

for positive constants G, k and s. Since ^ll^ll equals (^ll^ll)^ the limit
Apo(X', X, +', ̂ z = Hrn̂  A^-(X', X, ̂  ^)z

^A^X'^X,^^

+ ̂  (A^-^X', X, '̂, ̂ z - A^(X', X, +', ̂ z)

exists, and
I Ap,(X', X, +', ̂ z ~ A^(X', X, +', ̂ z | < C, N,(X', X, y, ̂  .-ellT"ll, n ̂  0,

where Ci = G(l — ^-sllTlll)- l. Suppose that T is any point with d(T) ^ 8 || T ||. We
may assume that || T || ^ || T^ [|. Choose a positive integer n such that T^ belongs to
T + a?Q. It is easy to check that || T^ |[ ^ || T ||, and we can also arrange to have
|| T\ — T || ̂  r || T ||, for a positive constant r which depends only on G and 8. We
can therefore apply Lemma 9.1, with S = T^ — T. Combined with the inequality
above, it yields an estimate

I Ap/X', X, ̂  ̂  - A^(X', X, +', ̂ z | ̂  GN,(X', X, ̂ ', ̂  ̂ ll̂ l,

of the desired form. In particular,
Ap/X', X, +', ̂ z = jî m A^(X', X, ^/, ̂ z.

8

The uniform convergence in (X', X) follows directly from the estimate. D

Proof of Theorem 8.1. — Suppose that the limit Ap^(X', X, ^/, ̂ z vanishes for
all (X', X) in an open dense subset ^(<r', o) of ^((T', or). Then the estimate provided
by Lemma 9.2 reduces to the required estimate for

A^(X', X, ̂ /, ̂  = ̂ (X', X, ^/, ̂  - o^(X', X, +', ̂ z,

whenever (X', X) belongs to ^(o-', o"). Recall that 0^(X', X, ^/, ^)z is an analytic function
of (X', X). Since the majorizing function N^(X', X, ^', ip) is locally bounded on ^(o-', o-),

9
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the meromorphic function o^(X', X, i{/, 40 z must itself be locally bounded on ^"(o', o).
This means that co^(X', X, (j/, ̂ z is actually analytic on ^'((/, a). The required estimate
will then hold on all of^'(<y', o), which is what we want to prove. Our remaining task,
then, is to show that Ap^X', X, ij/, 40z = 0 on an open dense set.

Observe that if ^ is any point in Ul^p, the expressions Ap (X', X, ̂ , i}/)^
Ap/X', X, ^/, ̂ j^, Ap,(X', X - ?:, ̂ ^z and Ap,(X'+ !:, X, ̂ .^ are e°ach equal to

^Ap^X'.X,^)2.

Replacing </ and a by representations of the form a^ and or_^ if necessary, we can
assume that the central characters ofcy' and a are trivial on AQ(F). Replacing X by X — ^
if necessary, we can also assume that X belongs to the space

(^p)0 = (W/(W n an.? ^ (ioM)0 + OM.p/aM.p.

Similarly, we can assume that X' belongs to (m^p)0. In particular, we can form the
function

A^(X', X, .}/, ^) = %(X', X, ^', ^) - <(X', X, ^/, +)

considered in Corollary 8.2. Now

A^(X',X,^)= S, A^X'.X,^,^)2.
Z6ao,F/aG,F

It follows from Lemma 9.2 that the limit

Ap,(X', X, <{/, <{<) = Jîm A?,(X', X, <!.', 4,)
8

exists uniformly for (X', X) in compact subsets of .^"(a', cr). On the other hand, we have
an inversion formula

W, ̂  ̂  +)2 = I <IG,»/^,P I-1 SAp,(X', X, ̂ , +) .-^:<z>,

where the sum is over the dual finite group of^ p/o^ p. It is therefore enough to show
that Ap^(X', X, ^', 4') vanishes for all (X', X) on an open dense subset of

^(o', o)0 = ((za^p)0 X (iaM,?)0) n ̂ (d', a).

The reason for this simple reduction is that (8.10) provides us with a formula
for (Q^(X',X, ^'.^). We find that o)^(X', X, ^', ^) equals the sum over PI^PO,
s ' e W(OM-, OM^), s e W(OM, OM,) and Vi e ̂ (j' (T', Jd)/^./ of the functions

(9.13) (̂ ', X') +', .(., X) ̂  ,(^'-^+vi)(Tp.) e^^(,' X' - .X + vi)-1.

Observe that as a function of (X', X) e^c/.o)0, each summand (9.13) has finitely
many singular hypersurfaces, which are independent of T. Let ^/(o', a)0 be the
complement in ^((T', cr)0 of these hypersurfaces. Then Ap (X', X, ^/, ̂ ) is a uniform



A LOCAL TRACE FORMULA 67

limit of continuous functions on ^(a', o)0, and is itself a continuous function of (X', X)
in ^/((T', 0)°. Suppose that

^(^M^-^^oCM.Tpip)

and
^(^p)°^<WTp.ip,)

are smooth, compactly supported functions such that fl'(X') ®fl(X) is supported on the
open subset ^((/, ̂ of^a^F)0 X (mM.p)0. We would like to prove that the integral

W, ̂  = f f ApjX', X, a'(X'), ̂ (X)) (i(̂ ) ̂ ) rfX ̂ /

^(iaM'.F)® •/(laM.F)0

vanishes. It is clear that

Ap^a)==^mA^^),
8

where A^(^ fl) is the difference between

W. ^ = ffW, ̂  ^'(^), ̂ )) ^(^x') ^(^x) ̂  ̂ '

and

<(^ ^) - JJ^o^. ̂  ̂ (^). fl(x)) (JL(^) ^(^) ̂  ̂ '.

We shall show that the limit of each of these functions is zero.
To deal with ^(fl7, CL) we will use a version of the Plancherel formula on

G(F)/A^(F). If

^(a) = | W(OM) H^/^l,

the function

W = ̂ )-1 f E(^ ̂  ̂ ) ^(^) ̂
•/(iaM.F)®

is a T-spherical Schwartz function on G(F)/Ao(F). One then has the formula

(9.14) f (E,,(A:), E^)) dx = n^a)-1 f (^(X), <z(X)) (.(0,) ̂
J G(F)/Ao(F) J (iai, p)®

where
^(mM^-^^Tpip)

is a fimction obtained by symmetrizing a' with respect to both W(OM) and JS?^. More
precisely, a^{\) is defined to be the function

n°W-1 S S , (°.(̂  X + v)-1 fl'(^ + ̂ ))-v
8 e W(QM. ftn') v £ ^(ao, o)/.2?M
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in ja^,(M, Tp|p). Using the fact that the wave packets E^ lie in the Schwartz space
([21, Theorem 19.2], [23, Theorem 6]), one deduces the formula (9.14) from the
original Plancherel formula (2.5), the relations (7.7) and (7.9), and the properties (7.1)
and (7.2). In the present context, our support condition on a! and a insures that the
function

((° ,̂ \ + v)-1 a\s\ + ̂ v))_,, fl(X)) == (°̂ , X + v)-1 a^s-h + ̂ ), a(X)),

vanishes for each s and v. This means that (^(X), fl(X)) equals 0 for every X, so the right
hand side of (9.14) in fact vanishes. On the other hand, applying the definition (8.1)
and changing orders of integration, we see that Q^a', a) is just the product of ^(o)2

with

f (E,^), E,M) t^, T) dx.
JG(F)/AG(F)

As T approaches infinity, this approaches the left hand side of (9.14). Since both sides
of (9.14) vanish, we obtain

^W, a) == 0.
8

Next, consider <o^(fl', a). The contribution of the summand (9.13) to (Op (fl', a)
equals the integral over (X', X) of the product of ^x'-sx+vl)(TPl) with the function
(9.15) (.(,', X') ^'(X'), c{s, X) a{\))^ 6p^(/ V - ̂  + Vi)-1 (x(^) (x(o,).

The support condition on (fl', a) implies that (9.15) is a smooth, compactly supported
function of (X', X) in (m^p)0 X (uiM,?)0- The contribution to (o^(fl', a) is therefore
a Schwartz function of

((,')-! T^,-.-^).

It approaches 0 as || T || approaches infinity. Since (o^(^, fl) is a finite sum of such
contributions, we obtain

^^{a',a)=0.
8

We have established that Ap^(a', a) = 0. Since Ap^(X', X, ^', ^) is a continuous
function on ^(^'3 a)0, and (a', a) is an arbitrary test function, this proves that
Ap^X'3 X, ^', 4>) vanishes on the open dense subset ^"/(o', c)0 of ^((T', o-)0. We have
attained our goal. As we noted earlier, the estimate required for Theorem 8.1 follows,
completing the proof of the theorem. D

10. The spectral side

In this section we shall use the asymptotic inner product formula to investigate
the spectral expansion ofK^/). This will eventually lead to a spectral expansion of
the distribution J^/) and of its constant term J(/). The final expansion will be the
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result of various operations applied to an expression obtained by substituting the inner
product formula into the original expansion (3.6) of K^/). For real groups, the
process is quite similar to the combinatorial manipulations that were used to deal with
the spectral side of the global trace formula [6]. The idea of applying such techniques
to local harmonic analysis is due to Waldspurger [31], who carried out the procedure
for the general linear group of a j^-adic field. At this stage, ^-adic groups are more
difficult than real groups, for they contain combinatorial difficulties not encountered
in the global trace formula over a number field.

As we left it in § 3, the spectral expansion of K^/) was

S WHW?!-^ K^o,/)^.
MG-S? JlIa(M(F))

Recall that { Il2(M(F))} stands for the set of orbits of ia^, or equivalently the quotient
^M.F == ^M/^M.P? in ^(^F))- Since the stabilizer in ia^y of any c is OM.O/^M.F?
we have

K^f) == S IW^j |W?|-1 S | (XM.o/OM.pl-1 f K^a,,/) d\.
M oe{IIa(M(F))} Jiai,p

Since w(^) equals dy (Ji(c^) by (7.9), we shall write K^CT^/) as

M f S tr(^p((T,, x) S,(/)) tr(^p(c^)S) u{x, T) dx,
J Ao(F)\G(F) S e ̂ p(o)

where
Sx(/) = d^^f,) SJ^,//).

We can certainly take the integral over J^(F)\G(F) inside the sum over S. We can
also replace x by k^ xk^y and then integrate over k^ and k^ in K. The formula (7.2) then
gives an interpretation in terms of Eisenstein integrals. Since u{x, T) is left and right
K-invariant, the double integral over K leads to a (pointwise) inner product of Eisenstein
integrals. We obtain

f tr(Jp(^, x) S^(/)) tr(^p(<T^)S) u(x, T) dx
J AG(F)\G(F)

= f (Ep(̂ , ̂ ^ X), Ep(̂ , ̂ , X)) «( ,̂ T) dx
J Ao(F)\G(F)

=D^(X,X,^g^,^s),

in the notation of § 8. Here T?Q e ̂ (Mo) depends on M, and is any minimal parabolic
subgroup for which M is standard. We see that K^/) equals

S | W g 1 1 1 W? |-1 S S | OM, J<p I-1 f %(x, x, ̂ , ̂ ) ̂ 0,) rfx,
M 0 S •'»ClM,F

where the sums are over M e oS?, CT e { Il2(M(F))} and S e^p((r).
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Motivated by Corollary 8.2, we set /^(f) equal to

(10 .1 ) ^ | W? 1 1 W? |-1 S S | < J<F \-1! <(X, X, ̂ , ̂ ) ̂ ,) ̂ .
0 8 •'^CMtP

By our assumptions on/and ^p(cr), the summand will vanish for all but finitely many a
and S. To apply the estimate in Corollary 8.2, we note that

N.(X, ̂  ̂ , +,) M == NW^ || ̂  || || ̂  ||

=Wd^\\S,(f)\\,\\S\^
by (7.1). This is bounded by

W II ^P(^/2)||oo || S ||, || ̂ p(<^//)||, 1 | S ||,,

a rapidly decreasing function o f X e m^, p. Corollary 8.2 then tells us that the integrand
in (10.1) is analytic and rapidly decreasing on ia^ p. The estimate of Corollary 8.2
also leads directly to

Lemma 10.1. — There are positive constants C and s such that
(10.2) IK^/)-^/)!^.-6^

for all T with d{T) > 8 [| T ||. n

Since the integrand in (10.1) is a limiting value of

^o^ ^SX(/P ^s) ̂ (^
for points X', X eia^y in general position, we shall investigate the expression provided
by (8.10) for this latter function. It equals

(10.3) 2 S 2 S (.(.', X') ̂  c^ X) ̂ .™ 6p^(A,)-1 ̂ ),
PI 8 8 YI

where the sums are over Pi 3 Po, s e W(OM, a^), s' e W(OM, a^), and Vi € <?G '̂ CT, w)/^/,
and where Ai = (^')/ — A) + Vi. Following [6], we make a change of variables

s'=st, <eW(aM),

in the sum over s ' . Setting Q, = s~1 P,, we can then replace the sum over Pi and s by
a sum over the groups Q^e^'(M). It follows from the definitions that

^^ Op^(Ai)-1 = c '̂ 6^/(A)-1,

where A = s~1 A^. Moreover,
C{st, \') = C^{st, \') = WQ,p(f, X')

and
c(s, X) = Cp^p ,̂ X) = WQ]p(l, X).

(See [7 (1.2.12)].) Since the operator
s: ̂ a(M, Ty) -> ̂ (Mi, TM^)
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is an isometry between inner products (., .)^i^ and (•, -)^, the expression (10.3)
becomes

<eSaM) ̂ (M)?^^ ̂ )^Qlp(l^)^)^A(TQ)9,.,(A)-^(o,),

where v is summed over ^(ta, CT)/JS^ and A equals t\' — X + v.
Harish-Ghandra has established the functional equation

^Q1P(^ ^/) == ^Qjp(l, ̂ ') %»lp(^ ̂ ).

(See [19, Theorem 21], [22, Corollary 17.2], [7, (1.2.9)].) For simplicity we shall write
^lp(A') =CQip(l,^'),

and also
o,(^)==o,pip(^')

if the group P is understood. Suppose that v belongs to ^(to, o). Given vectors
9' e^^^^pjp) and 9 e^(M,Tp|p), the reader can check that

(?', ^Q|pW ?)v = (<?', ^Qjp(l, ^)o ?)v

= ^QlpC1^-^^?'^)^

Moreover, since ta ^ 0^, we can use (7.8) to write

M == ^((^)x-v) - ^Qjp(l. ^ - ^)(ol(^|p(l. ^ - V):o)~1.

It follows that (10.3) equals the sum over t eW(aM) of

^•^ QE^M)? ^lp(x~v)~l^lP^/)o^x')^(/)^s)^A(TQ)9Q^(A)-l,

where v is summed over ^(/(T, o)/^ ^ and A equals ^' — X + v. To retrieve the
original expression (10.1) for A^/), we must set X' equal to X in the sum over t e W((XM)
of (10.4), integrate the resulting expression over X eia^y) and then sum the product
of this with

| TVM | | -IA7-G j-1 | ^V / V j-l
I ^O I I ' '0 I I ^o/^F I

over S, CT and M.
IfF is Archimedean, J§f^^ = { 0 }, and the sum over v in (10.4) contains at most

one term. However, if F is j^-adic, this sum is over a more complicated finite set. To
deal with the associated combinatorial problems, we turn to another idea ofWaldspurger.

Lemma 10.2. — IfF is a p-adic field we can choose a family of functions
{^eG?(tapAao):Pe^}

with the following properties :

(i) S Up{A + v) == 1, A e iciplia^,
ve-^Mp.^
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(ii) For each P, the function

(10.5) ^,(A) = ̂ p(A) 6p(A) 6p^(A)-1, A e mp/<,

^ smooth on zap/io^.

(in) 7/*P contains P^, ^p ̂  ̂ p ^ ̂  ̂  restrictions of i^p and Up { to iap.

Proof. — The fact that F is p-'ddic means that for each P, -S^p,/' ls a lattice in
^Mp/^- Suppose first that P^e^Mo) is a minimal parabolic subgroup. We shall
assume that Hp^ is supported on the set

(10.6) {Aem^ao:|A(^,)|<^ aeAp,}.

Glancing back at the definitions (6.3) and (6.7) of 6p^ and 6p, we see that the only
singularities of Mp/A) 6p^(A)-1 will be hyperplanes through the origin, and that
these will be cancelled by the zero sets of9p^. Therefore if u?^ is smooth, the function Up {
will also be smooth. On the other hand, the region of support for Up contains a funda-
mental domain for the lattice ^Mo,/- ^t ls ihen easy to arrange that

2^ Up^A +v)==l , Aei'o;.

(See [31, Lemme 11.7.1].) If

PO==.PO, ^eW?,

is any other minimal parabolic subgroup, define

^(A)^^-1^.

Then conditions (i) and (ii) are also valid for t^.
Suppose that P e y is an arbitrary parabolic subgroup. Choose a minimal para-

bolic subgroup Po which is contained in P, and set Up equal to the restriction of lip
to idp. This function is independent ofPo. Suppose that P contains a group P^. Recall
that any root a e Ap is the restriction to a? of a unique root ai e Ap — Ap , and that
o^ is the projection ofa^ onto dp. In particular, ̂  ̂  is the projection of ^ ( onto dp,
and »^Mp,^ls ti^ subgroup of characters in oS ,̂ ^ which are trivial on the elements [LQ ^
|3eAp^. It follows from the definitions (6.3) and (6.7) that the function 6p9p} is
the restriction of6p^ 6p^ to za?. Moreover, it is obvious that Uy is the restriction of Up
to idp. Consequently, ^p ( equals the restriction to idp of Up ^ This is the third
condition.

Assume now that P^ == P^ is minimal. Since Up ^ is smooth and compactly sup-
ported, the same is true of the function Mp ^. This is the second condition. It remains
to establish the first condition. Suppose that A is a point idp. If v is any element in the
complement of o^Mp,^ m °^Mo.^ ^^ ls a root a e ̂ o suc^ t^t ^a.^) ls a nonzero
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integral multiple of 2m, so that |(A + v) (^ /)\ is bounded below by 2n. In other
words, A + v lies outside the support of Up . We obtain

S ^p(A+v)= S ^(A+v)
ve-^Mp,^ ve-^Mp^

= S ^(A+v)=l,
ve^M.,^ °

the required first condition on Up. D
IfF is Archimedean, we simply set Up = 1. Then Up ( is also equal to 1, and the

three conditions of the lemma are trivially true.
We return to the expression (10.4). It depends on an element t eW(aM)? which

will be fixed until further notice. The expression equals

S S , A^)^e^(A)-1,
Q6^(M) ve^°«o,o)/;S?i(,/

where

and

A = A(X', X, v) == A' — X + v,

A<»(v) = (^|p(^ - v)-1 ̂ ip(A') ° ,̂ X') ̂ ,/,, +s),.

Applying the last lemma, we write (10.4) as

ssAQM^oe^/CA)-1 s, MQ(A+^),
a v Se-8''n,/

an expression which also equals

S S S A«,(v + S) .<A+S><T<> 9^ /(A + SO-1 ^(A + S),
Q v S

in view of the definitions ofAo and Qq ^ and the fact that TQ belongs to d^y. Since
A + S = ̂  - X + (v + ^),

we can combine the double sum over (v, ^) into a single sum over (S^^ta, c). It follows
from the definition (10.5) that (10.4) equals

S J A^M ̂ ^(A) O^A)-1.
QG^(M) ve^°((o,o)

Define a Levi subgroup L e JS?(M) by setting
a ^ = { H e a M : r i H = H } .

From now on we will take X' = X + ^, where ^ is restricted to lie in the subspace m^.
Then ^ == ^ and

A==t\— X + ^ + v .

We shall write X^ for the projection ofX onto m^, relative to the canonical decomposition
id^ === (iOM)1'®^- Then the "̂ ^

(10.7) (X, ̂  v) -> (A, X^, v), A = t\' - X + v, X' = X + ̂
10
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is a bijection of ia^ X z< X ^(ta, a) onto itself. In particular, the points X and
^/ ^ X + ^ are uniquely determined by A, ^ ^d v. Define
(10.8) DQ(A, X^, v) = AQ(A, ̂ , v) ^,(A),

where
AQ(A, X^, v) = A^v) = (^,p(X- v)-1 ̂ ip(^) °̂ , X') ̂ , ̂ ),

as above. It follows easily from the definition that for fixed v, AQ(., ., v) extends to a
meromorphic function on a^c X <c which is analytic for points in ia^ X ia^ in
general position. In particular, DQ(A, X^, v) is well defined for generic (A, XJ. However,
in contrast to the situation for Eisenstein series [6, p. 1298], DQ(., ., v) is not a smooth
function on ia^ X ic^. We note for future reference that

(10.9) A^(A + v^, X^, v + VM) == AQ(A, \^ v)

for any point v^ e JSf^. This is an immediate consequence of the definitions of A and
the inner product ( • , - )^ . We shall also write
(10.10) CQ(A,T) =e^\

In this notation, the formula for (10.4) becomes

S S CQ(A,T)DQ(A,^,v)6Q(A)-1,vG^«o,o) Qe^(M) / vv i, / y\ / 3

where A = ^X' — X + v is understood to be a variable that depends on v.
We would like to apply the notions introduced in [4, § 6] to the sum over Q. We

begin by observing that
{GQ(A,T):Q^(M)}

is a (G, M)-family of functions of A e m^, in the sense of [4, p. 36]. This is an immediate
consequence of the definition of TQ.

Lemma 10.3. — a) For any A eia^, the set of points \ ezci^ such that DQ(-, • , v)
is regular at (A, Xj is an open dense subset of ic^.

^) DQ^? ^L5 v) can be regarded as a smooth function of A em^ with values in a topo-
logical vector space of meromorphic functions of \.

c) The set

{DQ(A,^ ,V) :QG^(M)}

is a (G, M) -family of functions of A eia^.

Proof. — We begin by investigating the regularity of DQ. According to (7.6),

^Q|pW +T == Y(QJ~1 ^,p(o^TJp,^),

for any T eEnd(Jfp(cr)r) and Tiem^. If we divide ^ip(X) by the normalizing
factor ^Q 10(^)5 the J-functions on the right become normalized intertwining operators,
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which are both regular and invertible for any X eia^. The function °c{t, X) takes values
which are unitary operators on e^p(cr)r, and is therefore already regular for all X e ia^.
It follows from the definition (10.7) and (10.8) that D^(A, ̂ , v) is regular, up to
singularities in the normalizing factors. More precisely, if

^(A, \, V) = ̂ |Q((^-v)~1 ^Q|Q((^)^).

the function
^(A, ̂ , v) == r^(A, ̂ , v)-1 D^(A, ̂ , v)

is regular for all A eia^ and \ ezc^. It is enough to prove the assertion a) with
OQ^ -^) replaced by r ^ ' , - ,v) .

Observe that

W^-v)-1-^,^)"^ n^p(o,)-\
3e2^

since v belongs to ^(/o, or). Moreover,

^QIQ^)^) == n ^_ip(^),
Pes^

since the rank one normalizing factors can be chosen so that

^((^(X') ==r<-lp(<7X')•

It follows that

(10.11) ^(A,^,v)== n^r^)-1^^).
0£ SQ

Suppose that (B belongs to the subset S^^ of roots in 2^ which vanish on c^. Then
a = r1 p also vanishes on a^. Since X and X' have the same projection onto (ia^,
^(^x') equals r^(cr^). If a remains in S ,̂ the function rJ<T^) will then cancel the
term rjc^)-1 in the product (10.11). It follows that ^(A, \, v) can be written

n^^)-1^,).^^,)-1^^^),
where the products are taken over { a e S^ : ̂ a e S^^ } and { (B e 2^ — S^^ }.

For any root a, ^(^) is a meromorphic function of X((TV) which does not vanish
for any imaginary X. Ifr^o^) has a pole at a point \ e Z'OM, the representation o^ will
be fixed by the simple reflection w^. (This is a consequence of Corollary 5.4.2.2 of [29]
and its analogue for real groups.) In this case

r_a(<^+tJ == ^-a(^a(^o-J) = ̂ Xo-^ ^ € ^M:^M?

so the quotient of this function by ^(or^+^) is analytic at pi = 0. We have established
that

(10.12) rM-^r.M

is an analytic function ofleia^. Therefore, the product over a above contributes no
singularities to ^(A.^.v). Now, for the purpose of proving a), we can translate 7^
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by a generic point in ia^. This has the effect of translating both X and X' by the same
generic point. Since (B and t~1 (B both have nontrivial restriction to a^, for any root p
in S^ — S^^, we can arrange that the singularities in corresponding product over (B
avoid the given point A. This proves a).

The assertion b) is essentially a restatement of a). The function u^f in (10.8)
depends only on A. Consequently, Do(A, \, v) extends to a meromorphic function
of X^, which by a) is well defined for any point A em^. We leave the reader to for-
mulate a definition of the topological vector space in which DQ takes values.

Finally, we must establish that { D Q } is a (G, M)-family. Although it is not an
important point, the definition of a (G, M)-family in [4] requires that the functions
D^(A) = DQ(A, X^, v) be smooth in A. This is the reason for the interpretation b).
The essential condition on a (G, M)-family concerns the compatibility of functions
attached to adjacent groups Q^ and Q' in ^(M). Let a be the unique simple root of
(Q^, A^) which is not a root of (Q', A^). Then the hyperplane

ia^={Aeia^:A{^) =0}

is generated by the common wall of the chambers of Q^and Q' in za^. We must show
that if A belongs to ia^ , then DQ.(A) equals DQ(A).

Suppose that Q^ e ̂ (MJ is the parabolic subgroup generated by Q^ and Q,'.
According to Lemma 10.1, UQ ^ equals the restriction of both u^^ and u^f to id^ .
In particular, u^. ̂ (A) = ^Q^(A) for any A em^ • To deal with the other factor in
the definition of DQ,, we first write

^Q'lP^ - ̂ "^Q'lP^') = W^ - v)"1 ^lO^ - v)"1 ̂ '^W ^lp(^),

by the functional equation [7, (1.2.9)]. Now it is easy to check that

^Q'|QW == JQ'IQW JQIQ'W 3

where ]1 andj*" are the standard left and right intertwining integrals defined in [7, § 1.2].
(The formula [7, (1.2.14)] was transcribed incorrectly.) In particular, ^'|Q(X) depends
only on the projection of X onto id^lia^ . Since t^ equals (X — v) + A, we find that
^.Q^X') equals ^ | Q ( X — ^ ) ifAez'a^. The required assertion

DQ,(A) =D^(A), Ae^M,,

follows. D

Corollary 10.4. — Suppose that R is a group in ^"(M). Then the limit

D5(A - X + ̂  \, v) == lim S D^(A, \, v) 6Q(A)-1

A->«X-X+v) {QG^(M) :QCE}

extends to a smooth function ofh eia^ IfF is Archimedean^ the function belongs to the Schwartz
space on ia^.
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Proof. — We have

DQ(A, XL, v) = ̂ (A, XL, v) ^(A, XL, v)

in the notation of the proof of the lemma. Since { r^} and { d^} are themselves (G, M)-
families of functions of A, we can apply the splitting formula [10, Corollary 7.4] to
the product { DQ }. We see that D^(A — X + v, XL, v) equals

S (̂L', L") r^X - X + v, XL, v) <^X - X + v, XL, v),
i/, it"

in the notation of [10, § 7]. The sum is over groups L', L" e oSf(M) which are contained
in the Levi component Mp, of R. Now ^(A, XL, v) is constructed from normalized
intertwining operators, which are analytic functions ofX, X' eia^. In the Archimedean
case, these functions are also rational in X, X' [11, Theorem 2.1 (Re)]. It follows from
[4, Lemma 6.2] that d^'\t\ — X + ^, XL, X) is a smooth function of X em^, which
in the Archimedean case can be written as a finite sum of products of rational functions
with matrix coefficients of the operator S^(/). Since the matrix coefficients of S^(/)
are Schwartz functions, it will therefore be enough for us to show that rg'^X — X + v, XL, v)
is a smooth function of X e ia^, any derivative of which is slowly increasing.

Recall that a group P e ̂ (M) has been fixed. Set

FQ(A, XL, v) = ̂ (A, XL, v) rp(A, XL, v)-1.

Then
r^^X - X + v, XL, v) = rp(^X - X + v, ̂  ̂  %^ - ̂  + v, ̂ , v).

We see directly from (10.11) that

W, XL, v) == Ft (rp(^) r.p^)-1)-1 (r<-ip(^) r_^ip(^)-1).
pes^nSp

Having established the analyticity of each function (10.12), we know the product on
the right is an analytic function of (X, X') e ia^ X ia^. It follows from [4, Lemma 6.2]
that

(̂̂  - X + v, XL, v) = ̂ im^ (̂A, XL, v)

is an analytic function of X eia^. On the other hand, setting X' = X in (10.11), we
obtain

rp(^X - X + v, XL, v) = I! ̂  rp((^)-1 r,-ip(^)
PeSp

= ^1 ^(^F1^)-
{3eSp:<peSp}

This too is a product of functions (10.12), and so is analytic at any X em^- Thus,
r§'(^X — X + v, XL, v) is an analytic function of X e ia^.

IfF is Archimedean, the normalizing factors are given explicitly in terms of gamma-
functions [11, § 3], From this, one verifies that derivatives of (10.12) are slowing increasing.
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The argument above then confirms that any derivative in X of r^{t\ — X + v, X^, v)
is also slowly increasing. The proof of the corollary is complete. D

We return to our study of ^(f). We have written (10.4) as the sum over
v e (^(ta, a) of the expression

(10.13) S GQ(A, T) D^(A, ̂ , v) O^A)-1

Q £ ̂ (M)

built out of a product of (G, M)-families. There are two splitting formulas that can
be brought to bear on this sum over Q. The last corollary suggests that we turn to the
second one [10, Corollary 7.4], instead of the formula [4, Lemma 6.3] that was used for
Eisenstein series in [6, Lemma 2.1]. This result allows us to express the sum (10.13) as

S 4(Li, L,) G^(A, T) D^(A, ̂  v),
-IJ!»-"av- ̂ (^s-i

in the notation introduced in [10, § 7] and used above in the proof of Corollary 10.4.
In particular, ^(L^, Lg) is the constant defined in [10, p. 356], and

(Li, L,) -> (Qi, 0,2) e^(Li) x ^(L^)

is the retraction defined on [10, p. 357-358]. (The reader can also consult the proof
of Corollary 11.2 below for a precise description of the retraction.)

It follows from Lemma 10.3 and [4, Lemma 6.2] that (10.13) can be regarded
as a smooth function of A with values in a space of meromorphic functions of Xr.
Therefore the limit of (10.13), as X' approaches a generic point X, exists. In particular,
the original limit of the sum over t of (10.4) may be brought inside the sum over t and
also the sum over v e ^(^o, <r). The limit of (10.13) becomes

(10-14) S ^(Li .L^G^X-X+^^D^^-X+^^.v) .
LiiLgG-S^M)

The last corollary tells us that the summands in (10.14) extend to smooth functions
ofX em^. IfF is Archimedean, <g^(ta, o) consists of at most one element, and (10.14)
is rapidly decreasing in X. If F is ^-adic, m^p is compact, and v can be taken to lie in
a finite subset of ^{ta, o-). In particular, the sum and integral over v and X, required
to construct k^{f) from (10.14), are absolutely convergent. They can both be taken
inside the sums over t, Li and L^.

We summarize what we have obtained so far.

Lemma 10.5. — The distribution k^{f) equals the sum over M e J^, a e { IIa(M(F))},
S e ̂ p((r) and t e W(OM), of the product of

| TVM | j - I A 7 G |-1 | ̂ V / V |-i
I "'O I 1 ^0 I | ̂ o/^F I

with

(10.15) S 4(Li, L^) f S G^X - X + v, T) D^(A ~ X + v, ̂  v) rfX,
^.^ •/«IM,F v

wfer^ (Li, Lg) and v are summed over oSf(M) x JS^(M) anrf ^(to, o) respectively. D
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11. The spectral side; continued

We proceed with the discussion initiated in the last section. We shall investigate
the formula for A^/) provided by Lemma 10.5, with particular regard for its depen-
dence on T. We continue to combine the techniques [6, § 2-4] of the global trace formula
with methods of Waldspurger [31] for dealing with j^-adic groups.

Consider the integral over ia^y == id^a^-p in the expression (10.15). According
to (1.5), c^p equals ia^ n 0^,?- The integral can therefore be decomposed into a
double integral over X1' in ia^la^ p + ia^ and \ in ia^y == u^/a^p. Observe that
^ — \ depends only on the image of \ in ia^la^-p + m^. In tact, if

<< == {t- 1) OM,P == { ̂  - v : v e OM,pL

the map
-^ -> p. = ̂ L — ̂

is a diffeomorphism of UIM/OM.P + ̂  onto (m^^a^t whose Jacobian determinant
(relative to our chosen measures on these spaces) equals | det{t — 1)^ |. Therefore
(10.15) can be written as the product of | det(^ — 1)^ |~1 with

(11.1) S ^(Li.L^ff ^J^SC^+^^D^+v^^v)},^ l̂?
Ia,X<2 Uia^pLi,L2 UiaLp ^ v /

where [JL is integrated over {ia^la^t and v is summed over ^{ta, a). It follows from
the definition (10.8) that D^(., \, v) depends only on the images of ^ and v in the
quotients ia^y == ia^a^y and ^(^ cr)/aM,<. (Indeed, OM,( is contained in a^p,
and from the definition in § 8 of the inner product (• , • )„, it is clear that Dg2 is invariant
under translation of the third variable by elements in a^p.) We can therefore write
the expression in the brackets of (11.1) as

S f C^+v,T)(f D^+v,^,v)^)^.
ve^o.ovaM^ Jac^ Y^aS.F /

Recall that o^-, T) stands for the characteristic function in OM/O^ of the convex
hull of

T^^T^Q.e^TO.QCQ^}.

We can write

G^ + v, T) == f (̂H, T) ^+V)(H) dH.
JTQ^+a^

(See [1, pp. 219-220], [6, (3.1)].) Our expression (11.1) becomes

S S f ^(H.^O^H.v)^,
ve^to.oYaM^ Lie-2f(M) ^TQ^+a^1
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where 0^ (H, v) equals

S ^g(L,, L,) f ( f D^ + v, ̂ , v) rfxj ̂ +v)^ rf(x,
LaG-S^M) J(iai)1' Wia^y /

for any point H e OM. The integral

f D^+v,^,v)^
^<a£,p

converges absolutely, and the resulting function of p. e {ia^ belongs to a Schwartz
space. Therefore if

H = H ^ + H ^ , I%ea^ H^ea^

the function 0^(H, v) is the product of ^V(HL) with a Schwartz function of H^. We
should also point out that the sum over v above can be taken over a finite set of repre-
sentatives of orbits in ^{ta, cO/a^c This is trivial if F is Archimedean, and in the
^-adic case it follows from the definition of O^ (H, v), the compact support of the
function MQ^(-) in (10.8), and the fact that the lattice ((XM,< + a^p) has only finitely
many orbits in ^{ta, a).

We assume that d(T) > 8 |[ T || for some fixed 8 > 0. We must study the function

(11-2) f ogi(H, T) <D^(H, v) dH
^+a&

as 1 1 T 11 approaches infinity. There are two cases. If L^ does not contain L, we argue
as on p. 1306 of [6], and conclude that the absolute value of (11.2) is 0(|| T ||~~) for
any n. If Li does contain L, we argue as on p. 1307 of [6]. In this case, (11.2) differs
from the function

f ^(H^,T)(f 0^(H£+H^v)rfH^^H^
JT^+O^ \Ja^ I

by an expression whose absolute value is 0(|| T Ij"") for any n. Before summarizing
these conclusions, we shall describe the last function slightly differently. Let v^ denote
the projection of any element v e ^{ta, cr) onto ia^. This depends only on the a^ (-^bit
of v. Combining Fourier inversion on a^ with the definition of 0^ , we see that

f <D^(H^+H^,v)<;H^
J a^

equals

S (̂Li, L,) e^ f D ,̂ ̂ , v) d^.
LoG-TOI) </ia£.pLaG-TOI) •/iaL.p

But if Li contains L,

f <T^(H^, T) <^> dH^ = C^, T),
•'To.+d1*
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so that the function which is asymptotic to (11.2) can be written as

S ^(Li, L,) G^, T) f D^ ̂  v) d^.
Lae^(M) Jia£.p

We have reached the following conclusion. There is a constant ^ for each n, such that
the difference between (11.1) and the expression

(1L3) ,S ^ S ^(Li,L,)G^,T)f Dg^^.v)^
ve^o.O/dM.f Lie.gF'(L) Jia^p

L2e-2?(M)

is bounded in absolute value by c^ \\ T H"".
We now have an expression from which we can reconstruct the distribution J^/)

obtained earlier from the geometric side. To account for the dependence of the group L
on the element t eW{a^), we shall write W(an) as the disjoint union over L e ̂ (M)
of the sets

W((^L, == { t e W(a^) : det(t - 1)^ + 0 }.

Lemma 11.1. — The distribution J^/) equals the sum over M e JS?, a e{ Il2(M(F))},
S e ̂ p(o), L e »Sf(M) and t e W(a^)^ of the product of

(11.4) | W? | | W? |-11 det{t - 1)^ |-11 aM>M,p I-1

w^A the expression (11.3).

Proof. — Write J^{f) for the given sum. We must show that J^(f)
equals J^/). Combining Lemmas 10.1 and 10.5 with the discussion above, we see
that there is a constant c^ for every positive integer n, with the property that

iKw-ju^i^jiTir
whenever d(T) ̂  8||T||. But J^/) bears a similar relationship with K^/), by
Proposition 4.5. We can therefore choose c^ such that

iJW-ju^i^jiTir"
whenever d(T) ̂  8 || T ||. According to Proposition 6.1, J^/) is of the general form

(11.5) S ^(T,/)^,
^(^o)/^o

where N is a positive integer and/^(T,/) is a function whose restriction to each chamber
JS^o n af is a polynomial in T. If we can show that J^ec(/) is also of the form (11.5),
we will be done. For a nonzero expression (11.5) cannot be rapidly decreasing as T
ranges over the points in any chamber.

By definition [4, § 6]

G^VL, T) == lim S ^+VL)(TB) 6^ + vj-\
^°{Ee^(L):ECQi}

11
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where ^ is a small point in io^ in general position. Taking the Laurent expansion of
the function

^^^e^+^r1, ^c,
about z = 0 as in [31, p. 315], we see that

G^T)= S 9^We^\
{EG^(L) :ECQi}

where { ^^(T^)} are polynomials in T^. This in turn is of the form
(11.6) S ^^(T),

^(^S)/^

where N is a positive integer which can be chosen independently of v, L and M, and
each y^(T) is a polynomial in T e oS^ n a^. We note for future use that ^(T) vanishes
identically unless ̂  belongs to the subgroup JSf^ of oSf^. Indeed, ^(TR) equals 1 for
all T e oSfo precisely when v^ lies in oSfj^. Suppose that this is actually the case. Then
<7o(T) equals C^v^, T), and is a homogeneous polynomial of total degree equal to
dim(A^/A^). In particular, yo(0) vanishes unless Li = L, in which case it equals 1.
We shall use this in the proof of the corollary below.

To complete the proof of the lemma, we need only observe that if the expres-
sion (11.6) is substituted back into (11.3), the result is just a finite linear combination
of such expressions. The same is then true ofj^(/), which for any given/is just a
finite linear combination of functions (11.3). In other words, J^(jf) is of the form (11.5),
and consequently equals J^V). D

It is notj^/) that we ultimately want, but rather the constant term J(/) = po{0,f)
in the expansion (11.5) ofJ^jF).

Corollary 11.2. — The distribution J(/) equals the sum over M e JS?, a e{ Il2(M(F))},
S e ̂ p(o), L e JSf(M) and t e W(a^)reg of the product of (11.4) with the expression

(11.7) , s . S f DJ^.X^+vJ^.
^ £ ̂  t o, o)/dM, ( VL e ̂ L J iai, F

Proof. — We have seen that as a function of T, (11.3) is of the general form (11.5).
According to remarks in the proof of the lemma, the constant term of any summand
in (11.3) vanishes except when Li == L and the projection of v onto ia^ lies in oS?^.
It follows from the lemma itself that J(/) equals the sum over M, CT, S, L and t of the
product of (11.4) with the expression

(11.8) S S 4(L, L^) f Dg2(^, ̂ , v) d\,
v Lae.SF'(M) •/»<?

in which v is summed over the set
{^e^(t^a)la^,:^e^}.

It remains to show that (11.8) equals (11.7).
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If v is an element in ^{ta, a) such that v^ belongs to oS^, the element v — v^
belongs to the set

<^(tG, a) n {ia^ == ^{ta, 0).

The sum over v in (11.8) can therefore be written as a double sum over (v^ vj as
in (11.7).

To treat the sum over Lg in (11.8), we should examine the retraction

(Li, L,) -> (Q^, 0.2) e^(Li) x ^(L,)

which has been implicit in our recent discussion. The retraction is defined by an arbitrary
point X in a^ in general position. For a given pair (Li, Lg), assume that the constant
<^(LI, Lg) does not vanish. Then a^ is the direct sum of a^ and a^ , and we can write

X=Xi -X2, X,ea^ i==l,2.

The groups Q^e^L,) are determined by the condition that X^ belongs to the
chamber a^.. (See [10, § 7].) We have set Li = L in (11.8). Then if

X == X^ - XS,, X^ e ag, X^ e a^,

our point Xg is the projection of X^ onto a^ 5 relative to the decomposition
0^ = a^ ® a^ . In other words, the retraction Lg -> Qg is determined by a point X^
in general position in a^. This was the set-up for the descent formula [10, Corollary 7.2],
which tells us that

S ^(L, L,) D^(^, ̂ , V1- + vj = DJv^, X^, .L + vj.
LgG^M)

If we substitute this into (11.8) we obtain (11.7), and complete the proof of the
corollary. D

We want to interpret Corollary 11.2 as an elementary identity involving induced
representations and intertwining operators. However, we shall first derive an expression
that will be easier to compare with the earlier geometric formula for J(,/).

Consider the expression (11.7). The double sum-integral over v^ and X^ is
absolutely convergent, so its order may be reversed. According to the definition (10.8),

S.D^^+vJ
vLe-27;

= S lim S D^S: + v^, \, ̂  + vj 6^ + ̂ )-1

VL ^0 KG^(L)

= lim S S A^ + VL. ̂  ̂  + ̂  ̂ QK,^ + ̂ ) W + ̂ )~\
^->0 Ee^(L) VL

where ^ stands for a small generic point in ia^, and Q,== Q^R stands for any group
in ^(M) which is contained in R. We are making implicit use of Lemma 10.3 a), which
tells us that AQ^ + ^5 ^L^ VL + vj ls we^ defined for a generic point \. By (10.9),

AQ^+VL^L^^+VJ-A^.X^,^), ^6^,
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since .S?̂  is a subgroup of .S? .̂ Moreover, we deduce that

^a^+vJQ^+vJ-1

=S"B,/(^+^)e^+vi.)-1

== S^+^^+Vl.)-1

VLG-^L

== S ( S , ^(S: + ̂  + v^,)) Q^ + vj-1

VLe^L/^L./ VL^e-2^

== s , e^+vj-1,vLe-^/-^./'
from the conditions of Lemma 10.2, and the fact that OK,/ is invariant under -S? .̂
It follows that (11.7) equals the sum over ^ e ^(^r, a)la^t ^d Ae integral over
^L e^^.F of

(11.9) lim S A^X^H S , 6^^+vJ-).
!:->0 BG^(L) VLe-2^/-^.^

It remains for us to express the sum in brackets in (11.9) in terms of the
function 6^, where k is a large positive integer such that

•^L^^ °^L^ ̂ L.^

for each L. If X belongs to ^^L.fc? and R is in ^(L)? we write X^ as in § 6 for
the representative of X in oSf^ { such that

XB == S r<, (A ^ — 1 < r^ < 0.
aeAn

Applying the identity
(1 - t)-1 = (1 - t^)-1 (1 + / + . . . + f^-1),

with N=^-1 and t == ^-^+^)(^a.^ to the definition (6.3) of 6^ and 6^, we
obtain

s . e^+vL)-1
^e^ii^t

= S| ̂ .̂ L,.!-^^^ + Vj-^ S ^+^)(XB))
^L xe^f/^L,k

=I^L,^L,J-1 s , s ^e^)--1^.
VLG^/^,^ xe^L^/^L.^

The last equation follows from the invariance of the function 6^ ^ under the translation
by oS ,̂ a group which contains «Sf^. This in turn equals

'̂ "'"•'A/")9'. '̂'
by Fourier inversion on the finite abelian group oS?̂  //-S^*

We pause to restate Corollary 11.2 in terms of the new expression we have obtained
from (11.7). It will be convenient to take the sum over S inside all the other operations.
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This is certainly permissible, since AQ^, X^, ^L) vanishes for all but finitely many S.
Then J(/) equals the sum over M ^ J§^ a e { IL^F))}, Le^(M), ^eW(a^,
v1' e ^{ta, cr)/ClM,< and the integral over \ ^id^y of the product of (11.4) with

( 1 1 . 1 0 ) lim S ( S A^^^HI^J^J-1 S ^e^)-1).
C-^o BG^(L) se^p(o) R XG^L/-^

This begins to resemble the geometric formula for 3{f) of § 6.
The representation theoretic objects are of course wrapped up in AQ (^ ,X^,v) .

Fix t and v^ and let (A be the uniquely determined point in (m^)1' such that v1' = [L — ^.
We shall also take a variable point i; e (Kin)1' in general position which approaches 0.
Fixing the other two points in the triplet (^, \, v1') as well (with the proviso that \
be in general position), we set X = S + ^ + ^L> 3Ln(^ x' = ^ + ^- Then the point

A = t\' - X + ̂  = ̂  - S + t:

approaches ^ as ^ approaches 0. It follows from the definition that AQ^, 7^, v1') is the
limit as ^ approaches 0 of

(^,p(X - ̂ L)-1 ^ip(^') ^(^ X') ̂ , ̂ ),.

Set CT = a^. Since ^L belongs to ^{ta^ o), we have
fa = (^)^ = (T^L+^ ==5.

Let A^ be the map which sends any ^ ej^g(M,Tpjp) to the function

^W = W e^^, m e M(F),

in j^g(M,Tpip). Then if T belongs to End(Jfp((r)r) for some F, and T is the corres-
ponding operator in End(.^p(<r)r)5 A^(4^) equals ^r- ^t follows from the definitions
of the ^-functions, and the invariance of Qc(t^ •) under translation by za^ that

(^|p(X - ̂ )-1 c^W °c{t, X') ̂ , ̂ ),

= (A<,(^|p(X - v1-)-1 ^ip(^') 0.̂  X') ^(/)), A^(^))o

= (^QIP^ - ̂  - ̂ )~1 ^Q|p(^ - ̂ ) ^(^ ̂  - ̂ ) A^(^x(/)). A^(^))o

= (^Q|p(S + XJ-1 ^ip(^ + \ + ̂ ) ^(^ S) tex(7p +s)o-

To this last expression we apply the formulas (7.6) and (7.7) for ^-functions, and also
the inner product formula (7.1). Since

sZT) = d-^^.^) s^p ĵ̂
we find that

where

and

AQ^, \\ ̂ ) = 1^(^(^(S)8T^). ^s)o)

=lim(tr(T,(S)ST^)y)),S-^o

T^) = ̂ p^+x.,//) R^^^JPIQ^S+X^^JPIQ^+X.)-1

T2(S) =JQP(^+XL)~1JQ1P(CT<S+XL+^;) R(^as) ^P^+XL^)-
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This formula becomes slightly more tractible when we take the required sum
over S e^p(o-). For { S : S e^p((r)} is an orthonormal basis of the space of Hilbert-
Schmidt operators on J^p((r). Therefore

S tr(T,(S) STi(S) S*)
s e ̂ p(o)

equals the trace of the endomorphism T -> T^S) TT^(^) on the space of Hilbert-
Schmidt operators, or what is the same thing, the product of the traces of Ti(^) and
T^). We obtain

S A^, ̂ , ̂ ) = lim (tr(T^)) tr(T,(^))),
se^p(o) ^->0

for the operators T^) and T^) on J^p^) defined above.
It is not hard to compute the limit as ^ approaches 0. The group P e ̂ (M) is

fixed, so that II == P n L is a fixed parabolic subgroup of L. Remember that Q^ == Q^
stands for any group in ^(M) which is contained in R. We take Q, to be R(II), the
unique such group whose intersection with L equals II. Then the only singular hyper-
planes which separate the chambers of P and Q, in a^ correspond to roots which do
not vanish on a^. It follows that Jpio^J is well defined and analytic at the generic
point XL e^. Taking the limits of each of the four operators in the product Ti(^),
we obtain

Um^Ti(S) == ̂ p^/^) R^^-^pi^^+^JpiEro^)"1.

To deal with T^), we note that Q^== R(Ti), and that

rf(0, P) = ^R(iT), R(n) + rf(R(n), P).
(We write rf(Q,, P) for the number of singular hyperplanes which separate the chambers
of Q, and P.) It follows that

J Q I P ^ * ) === JE(n)|E(ii)(') JB(n) |p( ' )*
Therefore

^T^ =JE(^)lp(^)~l•£oW•JE(^)|p(^4-^ R^c^) ̂ P(^./2).

where
s^) = ^(JE(^)|E(^)(^)-lJB(^)|Bc^)(CT<s))•

We are using the fact that J^rDiEdD^T)) ^P61^ ^Y on ^e projection of the point
7) ez'OM onto ia^liai.

The operator s^(^) is actually a scalar. To evaluate it, write

W = r^) R,(o,).

The normalized intertwining operator, being regular at T) = 0, contributes nothing to
the limit. Therefore, s^) equals

lim (^TOIMI)^)"1 ^TOlEal)^)) = lim "r rp(c^s)-l ̂ ^(S)-S-^o S-^o pes^
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Let S^g denote the set of roots (B eS^ such that the function ^(op) has a simple pole
at ^ = 0. If (B belongs to the complement ofS^ ^ in S^, yp(<^) is analytic and nonzero
at ^ = 0, and so contributes nothing to the last limit. (This follows from the fact that
the rank one [A-function ^(crp) == [ ^p^)!"2 is either analytic and nonzero at ^ == 0,
or has a zero of order 2.) We obtain

, s^)=iim n r^-'r^^lim n W)W{^)-\
S->o &es^ s-^o Pe2%^

Because yp(5^) equals ^-13(^)5 we see that t~1 maps S^j ^ into the union of 2^^
with S^ ^. It follows that s^(^) equals ( — 1 ) raised to the power

I^S^nS^I.

We have established that

S A^,^)
se^p(o)

equals the product of Sg(^) with the traces of each of the operators

^P^XL'/I ) ^(^^^JpiBTO^XL+^Jpwn^L)""1

and
JK(^)|p(C^XL)~lJB(^)|p(o'XL+?:) ^-(^ cr) ^P^L'J^)-

If we substitute this expression into (11.10), we obtain an elementary but rather
complicated formula for J(./) in terms of representation theoretic data. Before stating
the formula, we shall describe how to combine the required sums over a and v1'.

In general, for any t e W(a^) we shall write II^M^F)^ for the set of represen-
tations in na(M(F)) which are fixed by t. We also write I^M^F))^'^ for the set of
orbits in II^M^F)^ under the action of m^. Fix t e W(a^)reg as above. For a given
a e IIa(M(F)), we have associated a representation a == a^ in II^M^F)^ to each
point ^ e ^(ta, G-). Conversely, if CT == a^ is a representation in II^M^F))^ the point
V1' === (JL — t[i belongs to ^{tc, cr). Now the original sum over ^L e ^(^cr, a) was taken
only modulo the action of a^ < • The isotropy group a^, < i3 isomorphic under the map
(JL -» v1' = (JL — ̂  to the group

(aM.F + ̂ 0/< ̂  dM,F/aM,F n < = <p/<r-

On the other hand, two representations cr^ and (T^ define the same object in IIa(M(F)) ̂ /ia^
if and only if (JL — (A' belongs to the group

«€ + 0/< ̂  <XM,o/aM,o n ̂  == a^o/a^.

We are supposed to sum the product of (11.4) and (11.10) over ^L e ^[ta, cr)/aM,c
We see that we can convert this to a sum over cr e II^M^F)^ /m^, provided we multiply
the summand by

I (<XM.,/<,)/(aM.X,.) I - I aM.o/ttM.F I I <o/<P I-1-
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Observe that the product of (11.4) with this number equals

I W? | | W^ | - 1 1 det(^ - 1)^ |-1 | <J<p I-1.

We have at last obtained a reasonably explicit spectral expansion for J(/). In
stating it, we shall write (T instead ofo for a representation in II^M^F)^ and X instead
of 7^ for a point in ia^. For each such a and X, set Ji/c^, /,/) equal to(ll•ll) "m..̂ .,T•••l(!:)t"(!;)(l̂ / .̂•l-\.̂ ,,<?e•.>(!:»-'».
where

^.B^) = tr(^p(o,,//) R(^ ̂ -^pi^^x+^Jri^n)^)-1)
and

^,R(^) == tr(JE(^)|p(<^)-lJE(^)|p(^+^ R^ CT) ^P^X^)).

for any point ^ em^. The discussion above can then be summarized as

Proposition 11.3. — The distribution 3{f) equals

( 1 1 . 1 2 ) SSSSIW^IIW^r^det^-l^l-^^la^/a^l-^ U^t,f)d^
M L < o J»a£,F

wz% the sums being taken over M e oSf, L e oS^(M), ^ e W(a£[)^ and a e ^2(M(F))</^<. D

12. The local trace formula

We are at last in a position to establish our local trace formula. We shall first
describe the objects which go into the final formula. We shall then derive the formula
from the two expansions (Propositions 6.1 and 11.3) for the distribution J(/).

Ifx== (^i, x^) belongs to G(Ap) = G(F) x G(F), and M e ̂  is a Levi subgroup,
the functions
(12. 1) ^p(A, X) = ^-A(Hp(^)-Hp(^ ^ ^ ̂  p g^3(M),

form a (G, M)-family. The limit

v^{x) == lim S ^p(A, ^c) 6p(A)-1

A->0 P£^(M)

then exists [4, Lemma 6.2], and in fact equals the volume in 0^/0^ of the convex hull
of the points

{-Hp(^) +Hp(^):Pe^(M)}.

The function v^{x) is invariant under left translation by M(Ap) = M(F) x M(F).
If Y is a G-regular element in M(F), embedded diagonally in M(Ap), we can define
the weighted orbital integral

(12.2) JM(Y,/) = | D(y) | f f{x-1 ̂ x) v^x) dx,
JAM(AF)\G(AP)
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which of course also equals

I ̂ T) I f f /l(̂ ~1 Y l̂)/2^2~1 T^) ̂ 1. ̂  ̂ 1 ^2-
J AM(F)\G(F) J AM(F)\G(F)

Let us write I\u(M) simply for the set of conjugacy classes in M(Ap) of the form (y, y),
where y is an F-elliptic conjugacy class in M(F). The distributions J^Y?./)? taken at
the G-regular elements in F^M), will be the main ingredients on the geometric side
of the formula.

To describe the terms on the other side, we shall first define a distribution that
can be called the c( discrete part" of the spectral side of the formula. Suppose that a
is a representation in Il2(M(F)), for some M e oS .̂ We shall write a^ for the contra-
gredient of (T. In § 11 we introduced a function e^, which may be regarded as a sign
character on the group

W,={^eW(aM):^(r}.
Then
(12.3) ^{t) = (- l)l<o)n2^ ^^

where P e ̂ (M) is a parabolic subgroup, and Sp y is the set of reduced roots (B e Sp
whose normalizing factor rp(c^) has a pole at S = 0. If t belongs to Wg, we can form
the (normalized) intertwining operator

R(^, ^ ® a) = R(^, (T^ ® R(^, o)

from the induced representation
J^p^ ® CT) = J^rp((TV) ® ̂ p((l)

to itself. This operator is independent of the representative of^in the normalizer ofM(F)
in G(F). Moreover, it depends only on the orbit of a in n^M^F^/uiQ. The distribution

f U^tJ)d\= f t^R^O^CT)^^,®^,/))^
•/iaS,F ./ia^.F

also depends only on the orbit of (T, and in addition, depends only on the restriction/1

ofjf to the subgroup
G(A,)i = {(^,j,) 6 G(A^) : Ho(^) = H<,(^)}.

In analogy with automorphic forms, we define

Uf) = i^(/)
to be the expression

(12.4) S IW^IIW^I-^det^-l^l-^^la^.^Fl-^ 3^,t,f) rfX,
M,( ,o M •/»aS,p

where the sums are taken over M e JS?, / e W(a^)reg and a e n^M^F^^aG- Regarded
as a distribution in/1, t^sc{f) is a finite linear combination of irreducible characters.
We will use the coefficients to describe the general terms on the spectral side.

12



90 JAMES ARTHUR

Let II^(G) denote the set of equivalence classes of irreducible representations
TC = TT^ ® TTg of G(Ap) which are constituents of induced representations

J^p^ ® a) = J^p^) ® ̂ (a), P e ̂ (M),

in which (T is a representation in II^M^F)^ for some element t eW(a^)reg- ^e wrlte

n^(G)/uiQ for the set of orbits in n^(G) under the action

TT-^7^ ==71;^ ®^2.^ x e^

oft'Oo. It is known that a is uniquely determined by TC, up to conjugation by W0. We
can therefore define a measure At on II^(G) by setting

(12.5) f (p(Tr) dn = S | o^/o^ |-1 f <p(^) ̂ ,
•/ndigc(G) "endigc(G)/»a5 JiaS.p ^ ,„ ^^V^C^n^G)).

It follows from the definitions that we can write

(12.6) W / ) = f ^) tr(7r(/)) ̂
^ndiac(G)

where each fl^ac(7t) is a uniquely determined complex number that depends only on
the z'OQ-orbit of TT. The numbers

flSL(7r), M e J§f, TT e II^(M)/mM,

can be defined in this way for all Levi subgroups. They will appear as the general
coefficients on the spectral side.

Suppose that M e J§f is a general Levi subgroup, and that n == TC^ ® TC^ is a
representation in II^(M). For any P e^(M) and X G^OM, we can form the induced
representation

^p(^/) -^p^-^/i)®^^,?^

of the Hecke algebra J^(G(Ap)), and the standard unnormalized intertwining operators

JQIP(^) -JQIP^-.WQIP^X). Qe^(M).

Observe that Jo|p(^) maps ^{^) ® ̂ (^2) to ^Q^) ̂ ^Q^)- However, the
operators
(12.7) ^(A,T^P) ==JQ|p(^)-lJQlp(7^^J, Aeia^

map J^p(Tr) = ̂ p(^) ® ̂ pC^) to itself. In fact, the set
{^(A,7^P):Qe^(M)}

can be regarded as a (G, M)-family of functions of A eia^ with values in the space
of (operator-valued) meromorphic functions of X. In particular, the limit

A(^P)=lim S ^(^^^(A)-1

A-i-O Qe^(M)

exist, and is a meromorphic function of X.
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Lemma 12.1. — The matrix coefficients of the operator ^^(^x? P) are ci^lytic functions
of \ euiM,F whose derivatives are slowly increasing.

Proof. — Consider the special case that
70=^00 , oeIl2(M(F)).

The assertion of the lemma then becomes a special case of Corollary 10.4, in which
L == M and t == 1. For arbitrary TC, the lemma can be proved either directly from this
special case, or by mimicking the relevant part of the proof of Corollary 10.4. D

Writing /y^, P) for the value of^(^, P) at \ == 0, we define
(12.8) J^TC,/) = tr(^(7T, P) ^p(7.,/)).

The distributions JM^?/)) which depend only on equivalence classes of representations
TT e n^(M), will be the main ingredients of the spectral side of the formula.

We can now state the local trace formula.

Theorem 12.2. — For any function fe Jf(G(Ap)), the expression

(12.9) S I W ^ H W ^ I - ^ - l)^AM/Ao)r J^f)d^
Me.s? ^r^M)

equals
(12. lo) s i w? 1 1 w? i-1 (- I)^<AM/AO) r ^^ j^y) ̂

MG^ ^^w

Proof. — We should first observe that the integrals in the two expressions are
absolutely convergent. For the integrand in (12.9) is a locally integrable function of
compact support (cf. Lemma 4.3). In the case of (12.10), the K-finiteness of/implies
that the expression is a finite linear combination of integrals

f JM^/W 7ien^(M).
•/ia&.F/»aM,F

But it follows easily from Lemma 12.1 thatj^(7r^,y) is a Schwartz function of X e ia^ p.
Next we note that it is sufficient to take

fW =/i(^i)/2(^), f. ̂ (G(F)),
as before. Given our control over the convergence of the integrals, this follows from
a standard approximation argument.

We make the induction assumption that the theorem holds if G is replaced by
any proper Levi subgroup. We shall write J^(/) ==J^eom(/) and JspecC/) ==J^ec(/)
for the respective expressions (12.9) and (12.10). Our aim is to convert the geometric
and spectral expressions ofJ(y) into two parallel linear combinations of distributions
(J^m(/Q)} and {J^c(/Q)}^ in which (granges over the groups in "̂, and

f^rn) = ̂ (m)112 f f f{k-1 mnk) dn dk, m e M )̂.
J K X K JNQ(AF)
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We will then be able to exploit the induction hypothesis, in the form

(12 .11) J^(/Q)=J^e(/Q), Q.+G.

Consider first the geometric side. According to Proposition 6.1,

JC/^siw^iw^-^ JM(Y,/)^
M (̂M)

where

JM(Y,/) = I D(y) | f f{x-1 ̂ x) W dx.
•/AM(AP)\G(AF)

Motivated by the definition (6.6) of7y{x}, we set

(12 .12) .p(A) == | J?M/̂ M.. I-1 2 ^(xp) 6p ,(A)-16p(A),
xe-^M/^M^

for Pe^(M) and A e z o M . Then

W == lim S ^p(A, x) ,p(A) 6p(A)-1

A-^O P£^(M)

== (- l)^^/^ lim S v^A, x) ^p(A) 6p(A)-\
A->0 PE^(M)

since 6p(A) equals (—l)^^^^ 6p(A). It is clear that <:p(A) is smooth for A
near 0. Moreover, it is easy to check from the definitions of Xp, 6p ^ and 6p that
(<;p(A) : P e^(M)} is a (G, M)-family of functions of A, in a neighbourhood of 0
in zair It follows from the product formula [4, Lemma 6.3] that

W = (- l)^^ S v^{x) c^Qe^(M)

in the notation of [4, § 6]. When we substitute this back in the integral above, and apply
the usual change of variable formula, we obtain a term

I D(Y) I f /(^-1 Y^) ̂ ) dx = J^(Y,/J.
J AM(AF)\G(AP)

This is the analogue for MQ of the distribution J^(y) =JS(v)- Therefore the original
sum over M, taken inside the sum over Q, yields the distribution J^J/o)- ^ follows
that

(12.13) J(/) = ̂  | W^ 1 | W^ |-1 (- l^^J^t^) c^.

We turn next to the spectral side. By Proposition 11.3, J(/) may be written as
the sum over L e ,Sf of the product of | W^ | | W^ [-1 with

(12.14) S IwyilW^-ldet^-l^l-s^la^/a^r^ U^tJ)d^
M t <*0 «/i<F

where the triple sum is over { M e ^ ? : M C L } , t eW(a^)reg and (T e n2(M(F))7m^.
The distribution Ji,(^, t,f) is defined by the expression (11.11), in which we can
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recognize the formula (12.12) for the function ^(*). Substituting for this formula
in (11.11), we obtain

JL^X, tJ) = lim S T,̂ ) ̂ ^) c^) 6^)-1

^-^0 Be^(L)

= (- l)-"- '̂ lim S T^(^ T,^(^) c^) 6^)-1.
^->0 Be^'(L)

We must examine the numbers T^(^) and Tg s(^), which were defined prior to the
statement of Proposition 11.3.

Writing Av for the transpose of an operator A, one sees from the definitions of
induced representations and intertwining operators that

^B(^) = tr(^p(^//) R(^ ^-^pi^^o^^Jpi^n^o,)-1)

= ̂ (J^^(^)-1J^^(^^) R ,̂ o)-1 ^(o,,//))
= tr(JB(^)|p((7-x)~lJE(^)|p(CT-(x+!;)) R(^ Grv) ^(^-x^/i))-

If we set
JE|P(<^®^) ^JBTOIP^^^JETOIP^). Re^(L),

we can then write the product T^ ^(^) Tg ^(^) as

^(JBIP^X^^-'JEIP^^X+Q^^+^R^^®^^^^^^

in the notation above. Recall that P is any group in ^(M) such that P n L = II. We
claim that Ji,(c^, tyf) is independent of which such P is chosen. To see this, write the
unnormalized operator

jBip^x^r'jBip^x+o0^^
in the expression above as the product of a normalized operator

(12.15) REip^^^-'RBip^a^)®^^,)

and the scalar

^EaDip^-x) ^EdDip^-a+o) ^EKiDip^x)""1 rE(^)|p((yx+?;)
= rplE(^)(CTx) rP|E(^)((yx+!:) ^EdDip^x) rE(^)|p(c^x+^:)•

The property P n L = II implies that

rf(R(n), P) + ^(P, R(n)) = rf(R(n), R(n)).
The scalar therefore equals

^EdDiBdD^x) rB(^)|B(^)((7x+^)5

and is independent of P. On the other hand, the contribution to Ji/^,^/) of the
term (12.15) is also independent of P. This follows from the multiplicative properties
of normalized intertwining operators, as on [4, p. 44]. Having justified the claim, we
are free to choose P = S(II), where S is a fixed group in ^(L).
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For any irreducible subrepresentation TT = T^ ® n^ of the induced representation
^i^^00) °fL(Ap), there is a canonical embedding of ^(TT) into e^p^ ®CT). The
restriction of.^^®^,/) to this subspace equals ^(^x?/)? while the restriction of

JElp(G^VX0^)~ lJE|p(^v(X+00CTX+^

to ^s(Tr) equals the operator

JE|s(7^x)-lJEls(7^X+^:) =<Al(^7^^s)•

With these observations, we can apply the definition (12.4) of 1̂  to the expres-
sion (12.14). The two parallel expansions in (M, t, o) become parallel expansions in
the elements TT e n^L)/^. Combining the formulas we have obtained for J^^ ̂ /)
and Ti^(^) ^E^)? we see Aat (12.14) equals

where

Thus,

f ^L(^JL(^/)^•/n^,,(L)"disc^

JL(^/) = (- ̂ l̂im S tr(^(!:,7r,S) J^/)) ̂ ^) ̂ (y-1.
^ -> 0 Re ̂ (L)

}(/) = S I W^ I I W^ I-1 f ^(TT) J^TT,/) dn.
Le-s? */n^.(L)Lejg? ^n^D

Now, we can write

JL(^/) = (- l)^^ S tr(^(7r, S) ^(TC,/)) ̂ ,
QG^'(L)

by the product formula [4, Lemma 6.3]. Moreover, a standard argument [4, Lemma 7.1]
gives us

tr(^(^S)^(7r,/))=J^(7r,^),

the analogue for MQ of the distribution JjTr) ==Jg(7r). Take the sum over Q^ outside
the sum over L. After making the substitution

W/Q) = S |W^| IWM-^- 1)^^A,) r ^(7r)J^(7T,/Q)^,
{ L ^ C Q } ./n.,..,-(L)

JspecVJQ^ — ^ I ^0 I I ̂ 0 ' 1 ^~ L ) ' | ^disc^'^JL
^disc^

we are left with the formula

(12.16) }(/) = 5^| WM | W? l-^- l)^^^) ̂ .

The theorem follows from the identity of right hand sides of (12.13) and (12.16).
By our induction hypothesis (12.11), the terms corresponding to Q=t= G are pairwise
equal. This leaves the two terms with Q^== G, which are just Jgeom(/) anc^ Jspec(/)-
The equality of these distributions was what we had to prove. D

Remarks. — 1. The local trace formula is thus the identity between the two
distributions (12.9) and (12.10). This should be compared with the global trace formula.
The global trace formula of course applies to a function on an adele group, rather than
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a real or ^-adic group. It is nevertheless an identity of two distributions [12, (3.2)
and (3.3)], defined by geometric and spectral expansions which are remarkably similar
to (12.9) and (12.10). The local ingredients of these expansions are distributions on
the adele group which are analogues of (12.2) and (12.8). (The notation in (12.8)
is slightly different from that used in the global trace formula. The distribution J^TT,/)
here has been defined in terms of uimormalized intertwining operators, whereas its
global counterpart in [12, (3.3)] was defined in terms of normalized operators.)

2. The local trace formula is actually not as difficult as the global trace formula.
One reason for this is that the geometric terms are parameterized only by semisimple
conjugacy classes. In the global formula, the geometric terms are parametrized by uni-
potent as well as semisimple classes. A similar phenomenon occurs on the spectral side.
The terms in the local formula are parametrized by tempered representations, while
in the global formula there are also terms coming from non-tempered representations
in the discrete spectrum.

3. The sign s^(f), which occurs in the definition (12.4) and (12.6) of the coeffi-
cients a^{n), is an interesting object. It has a simple description in terms of the
R-group of CT. Recall [25] that there is a decomposition

W, = W^ R,

of the stabilizer of a in W(OM) into a semi-direct product. The group W^ is the Weyl
group of a root system, namely, the reduced roots whose corresponding rank one
Plancherel density vanishes at CT. The R-group Rg is the subgroup of elements in Wg
which preserve a positive chamber for this root system. It follows from the definition (12.3)
that €g is the pull-back to Wg of the usual sign character of the Weyl group Wg.

4. The distributions (12.2) and (12.8) are not invariant. However, it is not hard
to derive an invariant local trace formula from the identity of (12.9) and (12.10). One
ends up with an identity of two expansions which are identical to (12.9) and (12.10),
except that J^,f) and J^^yf) are replaced by invariant distributions. The process,
which is similar to that used in the global trace formula, is described in [13, § 8]. (See
also [14, § 1-2].)

5. The formula is likely to have a number of applications to local harmonic
analysis. Three such examples, all based on a natural approximation argument, have
been sketched in [14, § 3]. We hope to investigate further applications in another paper.

REFERENCES

[1] J. ARTHUR, The characters of discrete series as orbital integrals, Invent. Math., 32 (1976), 205-261.
[2] J. ARTHUR, A trace formula for reductive groups I: terms associated to classes in G(Q), Duke Math. J., 45

(1978), 911-952.
[3] J. ARTHUR, A trace formula for reductive groups II: applications of a truncation operator, Compos. Math.^

40 (1980), 87-121.
[4] J. ARTHUR, The trace formula in invariant form, Ann. of Math., 114 (1981), 1-74.



96 JAMES ARTHUR

[5] J. ARTHUR, On the inner product of truncated Eisenstein series. Duke Math. J., 49 (1982), 35-70.
[6] J. ARTHUR, On a family of distributions obtained from Eisenstein series II: Explicit formulas, Amer. J. Math.,

104 (1982), 1289-1336.
[7] J. ARTHUR, A Paley-Wiener theorem for real reductive groups, Acta Math., 150 (1983), 1-89.
[8] J. ARTHUR, The local behaviour of weighted orbital integrals. Duke Math. J., 56 (1988), 223-293.
[9] J. ARTHUR, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad.

Sci., 97 (1987), 3-19.
[10] J. ARTHUR, The invariant trace formula I. Local theory, J . Amer. Math. Soc., 1 (1988), 323-383.
[11] J. ARTHUR, Intertwining operators and residues I. Weighted characters, J. Funct. Anal., 84 (1989), 19-84.
[12] J. ARTHUR, The trace formula and Hecke operators, in Number Theory, Trace Formulas and Discrete Groups,

Academic Press, 1989, 11-27.
[13] J. ARTHUR, Towards a local trace formula, in Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins

University Press, 1989, 1-24.
[14] J. ARTHUR, Some problems in local harmonic analysis, to appear in Harmonic Analysis on Reductive Groups,

Birkhauser.
[15] HARISH-CHANDRA, A formula for semisimple Lie groups, Amer. J . Math., 79 (1957), 733-760.
[16] HARISH-CHANDRA, Spherical functions on a semisimple Lie group. I, Amer. J . Math., 80 (1958), 241-310.
[17] HARISH-CHANDRA, Two theorems on semisimple Lie groups, Ann. of Math., 83 (1966), 74-128.
[18] HARISH-CHANDRA, Harmonic Analysis on Reductive />-adic Groups, Springer Lecture Notes 162, 1970.
[19] HARISH-CHANDRA, Harmonic analysis on reductive p-adic groups, in Harmonic Analysis on Homogeneous

Spaces, Proc. Sympos. Pure Math., 26, A.M.S., 1973, 167-192.
[20] HARISH-CHANDRA, Harmonic analysis on real reductive groups I. The theory of the constant term, /. Funct.

Anal., 19 (1975), 104-204.
[21] HARISH-CHANDRA, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space,

Invent. Math., 36 (1976), 1-55.
[22] HARISH-CHANDRA, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the

Plancherel formula, Ann. of Math., 104 (1976), 117-201.
[23] HARISH-CHANDRA, The Plancherel formula for reductive p-a.dic groups, in Collected Papers, Vol. IV, Springer-

Verlag, 353-367.
[24] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[25] D. KEYS, L-indistinguishability and R-groups for quasi-split groups: Unitary groups of even dimension, Ann.

Scient. £c. Norm. Sup., 4e Ser., 20 (1987), 31-64.
[26] R. P. LANGLANDS, Eisenstein series, the trace formula and the modern theory of automorphic forms, in Number

Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 125-155.
[27] I. G. MACDONALD, Spherical Functions on a Group of p-Adic Type, Publications of the Ramanujan Institute,

Madras, 1971.
[28] W. MULLER, The trace class conjecture in the theory of automorphic forms, Ann. of Math., 130 (1989), 473-529.
[29] A. SILBERGER, Introduction to Harmonic Analysis on Reductive p-Adic Groups, Mathematical Notes, Princeton

University Press, 1979.
[30] J. TITS, Reductive groups over local fields, in Automorphic Forms, Representations and ^-functions, Proc. Sympos.

Pure Math., 33, Part I, A.M.S., 1979, 29-69.
[31] J. L. WALDSPURGER, Integrales orbitales spheriques pour GL(N) sur un corps />-adique, Asterisque, 171-172

(1989), 279-337.

Department of Mathematics
University of Toronto
Toronto M5S 1A1
Canada

Manuscrit refu Ie 7 juin 1990.


