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Introduction 

Suppose that G is a semisimple Lie group and that F is a discrete subgroup 
of G. We assume that F is an arithmetic subgroup defined by congruence condi- 
tions, and for simplicity, suppose also that G is contained in a simply connected 
complex group. A fundamental problem is to decompose the regular representa- 
tion of G on L2(f\G) into irreducible representations. In particular, if n is 
an irreducible representation of G,  one could try to compute the multiplicity, 
mdisc(n), with which n occurs discretely in L2(f\G). This is probably too much 
to ask in general. However, if n belongs to the integrable discrete series of 
G, and f\G is compact, there is a finite closed formula for mdisc(n) [13a]. 
We shall consider the corresponding question when F\G is not compact 

If I'\G is noncompact, the problem is complicated considerably by the 
existence of a continuous spectrum. In fact, the present state of the trace formula 
allows us only to answer a weaker question. The discrete series for G is a 
disjoint union of finite subsets b i s c ( p ) ,  parametrized by irreducible finite dimen- 
sional representations p. of G. In this paper, we shall find a formula for the 
sum 
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under a weak regularity assumption on the representations in ndisc(p). The 
packet Hdisc(p) consists of the set of discrete series representations with the 
same infinitesimal character as p. Therefore, the question of the sum of the 
multiplicities is quite natural from the point of view of spectral theory. More 
generally, we shall consider Hecke operators h on L2(r\G). Any such operator 
commutes with the action of G. Its restriction Raise(^ h) to the subspace that 
decomposes discretely according to TT can therefore be identified with an 
(mdisc(n) x mdiSc(7t))-matrix. We shall find a formula for 

under the same regularity condition. The question is again an obvious one 
in the context of spectral theory. 

The expressions (1) and (2) have a cohomological interpretation. Assume 
that F has no elements of finite order. Then if K is a maximal compact subgroup 
of G, 

is a locally symmetric Riemannian manifold which is in general not compact. 
Given the finite dimensional representation p, acting on the complex vector 
space V,, one can form the locally constant sheaf 

on X r .  One then has the L2-cohomology groups 

with coefficients in 5. We are assuming that G has a discrete series, and the 
cohomology groups are known to be finite dimensional under this condition. 
Any Hecke operator h for F gives an linear map 

Consider the expressions 

and 

If the highest weight of p is regular, it turns out that (I*) and (2*)  are equal 
to the product of (- l)*dim^r) with the respective expressions obtained from 
(1) and (2) by replacing p with its contragredient f i .  We will therefore obtain 
formulas for (I*) and (2*). However, with this cohomological interpretation, 
the formulas are actually valid without the regularity assumption on p. In partic- 
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ular, they will hold if p is the trivial representation. We will thus obtain a 
formula for the L2-Euler characteristic of X r  and, more generally, the 
L2-Lefschetz number of any Hecke operator. 

It is easier to state (and prove) the formulas if we work over the adeles. 
In the paper we shall take G to be a reductive algebraic group over Q. For 
the rest of the introduction, assume that G is a semisimple, simply connected 
group over Q, such that G(R) has no compact simple factors. 

The locally symmetric space X r  can then be recovered as a double coset 
space 

where K O  is an open compact subgroup of the finite adele group G(Afin), and 

is the associated globally symmetric space. The Hecke operators are elements 
in the algebra 3^', of compactly supported functions on G(Afin) which are bi- 
invariant under K O .  Our formula for the Lefschetz number (2*) is 

The outer sum is over the set of Levi subgroups M of G which contain a 
fixed minimal one. The function (PMf"/, p) is perhaps the most interesting ingre- 
dient in the formula. It vanishes if y is not R-elliptic in M ,  but it is built 
out of discrete series characters if y is R-elliptic in M. The function hn{y) is 
essentially an orbital integral of h at y. If 7 is any element in M(Q), M y  is 
the centralizer of y in M ,  a group which is connected if G is simply connected 
and y is semisimple. Finally, '/.{My) is a simple constant which is closely related 
to the (classical) Euler characteristics of the locally symmetric spaces of M y .  
The sums in (3) are both finite, and the terms can be written down explicitly, 
at least in principle. 

The formula (3) will be derived from the trace formula. We shall first show 
that the Lefschetz number (2*) equals 

where Rdisc is the subrepresentation of L2 (G(Q)\G(A)) which decomposes discre- 
tely, and f is a certain function on G(R). This step involves fairly familiar 
ideas, and will be completed early in $ 3  (see (3.2)). In the latter part of $ 3  
we shall apply the trace formula. Combined with the special properties of fp, 
it will provide an expansion 

for the trace of Rdisc(fp h) (Proposition 3.2). It will remain for us to identify 
the terms in (4) with those of (3). 
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From the results of an earlier paper [l fl, the function 

can be evaluated in terms of characters of discrete series whenever y is G-regular. 
In $4 and $5, we shall study the case of singular y. A key step will be to 
show that 

if y is not semisimple. When M =G, this is the real analogue of a property 
Kottwitz has established [12] for p-adic groups. To prove it we need a general 
result of Harish-Chandra on unipotent orbital integrals. Harish-Chandra's theo- 
rem is unfortunately not published, and since we must use it in an essential 
way, we have included a proof in the appendix. Given this result, we shall 
establish the property (5) as part of a general formula for IM(y, fu) in 9 5 (Theo- 
rem 5.1). We will then be able to restrict the sum over y in (4) to semisimple 
elements. In the earlier paper [la], there is a simple formula for the constant 
aM(S, y), for any element y in M(Q) which is semisimple. This is all we shall 
need. We shall collect the various terms in $6, where they will be combined 
as our main formula (3) in Theorem 6.1. 

Acknowledgements. I would like to thank the mathematicians at both the Tata Institute of Fundamental 
Research and the University of Paris VII for their hospitality during the preparation of this paper. 

5 1. Hecke operators and L2-cohomology 

Let G be a connected reductive algebraic group over Q. We shall write AG 
for the split component of the center of G. There are many locally symmetric 
spaces associated with G. First of all, fix a maximal compact subgroup KR 
of G(R), and set K& KR AG(R)O. Then 

is a globally symmetric space with respect to a fixed left G(lR)-invariant metric. 
Let ifin be the ring of finite adhles of Q, so that 

is the full ring of adeles. The space 

is equipped with a left G(i)-action, and a right G(Afin) action. Locally symmetric 
spaces are attached to open compact subgroups K O  of G(Afin), through the 
spaces 
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It is these objects that we propose to study. 
We shall work strictly over the adeles, but is would be easy to translate 

everything back into the language of real groups. The double coset space 

is known to be finite. If 

is a set of representatives in G(Afin) of the cosets, the groups 

are arithmetric subgroups of G(R). One sees immediately that is the disjoint 
union of the spaces c\X. Replacing K O  by a subgroup of finite index if necessary, 
we can assume that 4 acts on X without fixed points. Then each (r,\X) is 
a locally symmetric Riemannian manifold. 

Define 

Then A is homeomorphic with 

a projective limit of manifolds. The advantage of considering A is that it has 
a right action under the group G(Afin). Given A, we can recover as the 
space of fixed points under the open compact subgroup K O .  

We shall first recall some general properties of L2-cohomology, after which 
we will be able to formulate our problem. We refer the reader to [5] and [6] 
for general references on L2-cohomology, to [4] and [3] for the L2-cohomology 
of locally symmetric spaces, and to [4] and [20] for relative Lie algebra cohomo- 
logy. 

The space A? can obviously be equipped with a cotangent bundle ^/-*(A?), 
so it makes sense to  speak of differential forms on A. More generally, we 
want to consider forms with values in a locally constant sheaf. Let (p,  Vp) be 
a fixed finite dimensional representation of G which is irreducible and defined 
over Q. Let 

= V, (C) x (X x G (Afin) 
G(Q) 

be the corresponding locally constant sheaf on A. A q-form with values in 
6 is then a smooth section of the bundle 

which is right invariant under an open compact subgroup of G(Afin). Observe 
that G(Afin) acts by right translations on the vector space of such forms. We 
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have already fixed a left invariant Riemannian metric on X. If we combine 
this with a fixed Haar measure on G(Afin), we obtain a measure on A. We 
also fix a Hermitian inner product on V,(C) which is invariant under K R .  This 
allows us to speak of a square integrable form with values in 9. Let AM&, 6) 
be the space of q-forms cu on A with values in 9 which satisfy the following 
three conditions. 

(i) co is invariant under an open compact subgroup of G(Afin). 
(ii) m is smooth. 

(iii) cu and dm are square integrable. 
Then 

is a differential complex. Its cohomology 

can be taken as the definition of the L2-cohomology of .M (with values in ^fr). 
Each element geG(Afin) acts on ,̂ ), and commutes with the differential 
d. We therefore obtain operators 

on the cohomology. Thus, the L2-cohomology provides a linear representation 
(1.1) of the group G(Afin). 

If K O  is an open compact subgroup of G(Afin), we can define the 
L2-cohomology of 4 exactly as above. Then H(2)(AK0, 6) equals 
H(2!, (A, %)*o, the space of fixed vectors in H&(.&, 9,) under K O .  Since the 
taking of cohomology commutes with direct limits, we obtain 

In the language of representation theory, this asserts that the representation 
(1.1) is smooth. 

We would also like the representation (1.1) to be admissible. In other words, 
we want each of the spaces H W K ,  9,) to be finite dimensional. Since this 
is not true in general, we must place a restriction on G. From now on, we 
assume that G contains a maximal torus over IR which is anisotropic modulo 
AG. We shall in fact fix such a maximal torus B such that B (R) is contained 
in K'fi. Bore1 and Casselman have shown that under this condition, all the 
spaces Hc)(AKo,  %) are finite dimensional [3, Theorem 4.51. Let .3^(G(Afin)) 
denote the Hecke algebra of locally constant functions of compact support on 
G(Afin). Then for any he^f(G(Ann)), the operator 
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on H M h ,  6) is of finite rank. In particular, it has a trace. Our goal is to 
compute the Lefschetz number 

^ ( h )  = I( - 1)" tr ( ^ ) (h ,  5)). (1.2) 
1 

2. The spectral decomposition of cohomology 

The first step is to recall the spectral decomposition of cohomology. This gives 
an expansion of the Lefschetz number Y u ( h )  into a sum of terms, which separate 
naturally into local and global constituents. 

We can certainly regard p as an irreducible representation of G ( R )  or G((C). 
In particular, 

where & is a quasi-character on AG(R)' .  Let L2(G(Q)\G(A), &) be the space 
of function d> on G(Q)\G(A) such that 

and which are square integrable modulo AG(lR)O. (One can express G ( A )  as 
a direct product of AC(R)O with a normal subgroup G ( A ) l  which contains 
G(Q),  so this latter condition makes sense). Then G ( A )  acts by right translation 
on L2(G(Q)\G(A), (EJ. In this paper, we shall always write 77(H) for the set 
of equivalence classes of irreducible representations of a given group H. Let 
H ( G ( A ) ,  a denote the set of representations 7ie J7(G(A)) such that 

For any such n, let mdisc(n) denote the multiplicity with which n occurs discretely 
as a direct summand in I?(G(Q)\G(A), f , ) .  The nonnegative integers mdisdn)  
are the global ingredients of the decomposition of cohomology. 

There are local constituents for both the real and p-adic components of 
n. Set 

where n~ and nfin are irreducible representations of G ( R )  and G ( A f i n )  respective- 
ly. If K O  is an open compact subgroup of G(Af in ) ,  let V ( n 2 )  denote the subspace 
of vectors in the underlying space of n f in  which are fixed by K O .  This is a 
finite dimensional subspace which gives the contribution of nfin to the cohomo- 
logy. Observe that the multiplicity with which occurs discretely in the repre- 
sentation of G ( R )  on L2(G(Q)\G(A)/Ko, &) is equal to the sum over n of the 
integers 
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Let g be the Lie algebra of G. (In general, let us agree to denote the Lie algebra 
of a group defmied over Q by the corresponding lower case Gothic letter.) 
Both of g(R) and Kk act on the space of Kk-finite vectors of the representation 
nm <S p of G(R). The relative Lie algebra cohomology groups 

are defined in [4, Chap. I]. They give the contribution of TTR to the cohomology. 
Consider first the case that G is anisotropic over Q. Then the spaces A0 

are compact, and the groups H?^ are just ordinary de Rham cohomology. There 
is a well known isomorphism 

(See [4, Chap. VII]. The coefficient rn,,,.,(n) here of course stands for the multi- 
plicity of the ensuing vector space in the direct sum.) Moreover, the isomorphism 
is compatible with the action of the KO-bi-invariant functions in the Hecke 
algebra. Any such function operates on cohomology through its action on 
V(nz:). It follows that 

The general case is similar. Bore1 and Casselman have shown [3, Theorem 4.51 
that there is still a canonical isomorphism (2.2). The definition is again compati- 
ble with the Hecke algebra, and the isomorphism (2.3) continues to hold. Of 
course, the assumption that G(R)/AG(R)O has a compact Cartan subgroup is 
essential here. 

Define 

the Euler characteristic. Then (2.3) implies 

Proposition 2.1. For any he S (G(Afin)), 

Much is known about the relative Lie algebra cohomology groups (2.1). 
They have been completely characterized [20] if % is an arbitrary irreducible 
unitary representation. We are only interested in the Euler characteristic, which 
is considerably easier. Notice that b(nn)  can be defined by (2.4) if ny_ is any 
representation of G(R) with a finite composition series. Since it is an additive 
function which depends only on the image of in the Grothendieck group, 
x need only be computed on a basis of the Grothendieck group. Such a basis 
is provided by the standard representations. We recall that the standard repre- 
sentations are those which are parabolically induced from irreducible representa- 
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tions of Levi subgroups which are tempered modulo the center. A standard 
representation is either properly induced or it belongs to 27mp(G(R)), the set 
of representations in 77(G(R)) which are tempered modulo AG(R)O. If Q is 
properly induced, it follows from either [7 b, 3 31 or [4, Theorem 111.3.31 that 
)(.n(*)=O. If nR lies in IItemp(G(R)), the infinitesimal characters of TIR and ,u 
will be different unless % actually belongs to IJdisc(G(R)), the set of representa- 
tions in 27(G(R)) which are square integrable modulo AG(R) ) .  It is a general 
fact [4, Theorem 1.5.31, that the groups (2.1) all vanish if the infinitesimal charac- 
ters of nn and p are different. We therefore need only be concerned with 
/7disc (G(R)). 

For our purposes, it is best to discuss the discrete series in terms of the 
representations of a compact real form of G(C)/Ag((C). To be more precise, 
let us fix a pair (G, t]), where G is a reductive group over R ,  and 

is an isomorphism over (C such that the automorphism q u o t ] '  of G is inner 
for o- in Gal(C/lR). We can use q to identify Ac. with the R-split component 
of the center of G, and we assume that G(lR)/Ac.(R) is compact. Then the repre- 
sentations in 77(G(R)) are all finite dimensional. According to the Langlands 
classification [13b], the set &,,,.(G(R)) is a disjoint union of finite subsets 
LIdisc(~), which are parametrized by the irreducible representations T in 77(G(R)). 
The elements in each subset I Id i sc (~)  can in turn be parametrized by cosets 

where W(G, B) is the Weyl group of G on B, and W(G(IR), B(R)) is the subgroup 
of elements induced from G(R). Now, we already have a representation p of 
G. We shall identify p with its composition by q. In particular, we shall often 
regard p as an element in 77(G(R)). A similar convention applies to the contra- 
gredient 

so we obtain finite subsets ndisG(p) and Hdisc(ji) of fldisc(G(R)). 
As is the usual custom, we set 

q(G) = + dim (G (R)/KR). 

Lemma 2.2. Let % be any standard representation of G(R). Then 

Proof. We have already noted that xu(7ts)=0 unless TI^ belongs to IIdisc(G(R)). 
If nR belongs to ndiSc(G(R)), the lemma is also well known, at least when G(R) 
is connected [4, Theorem 11.5.31. Of course, G(R) is not always connected, but 
Kk  does meet every connected component. One can then argue as in the proof 
of [4, Proposition 11.5.7) to establish the lemma in general. 
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5 3. Application of the trace formula 

Even with a knowledge of the Euler characteristics xu(7in), Proposition 2.1 does 
not bring us much closer to an explicit formula for Â£'u{h) The difficulty is 
the lack of information on the multiplicities mdisc(z). We need to interpret (̂h) 
as the trace of a certain operator on L2(G(Q\G(A), u, which we can then 
hope to calculate by the trace formula. 

Extending the notation of 92, we write II(G(IR), 0, I I t m p ( G ( R ) ,  Â£,} 
ZI(G(R) ,  S,\ etc, for the set of representations in ZI(G(R)) ,  I I temp(G(R)) ,  n ( G ( R ) ) ,  
whose central character coincides with a given quasi-character ( on AG(R)O. 
Let us also write 3^,^{G(IR), () for the space of smooth, Kk-finite functions on 
G ( R )  which are compactly supported modulo AG(R)O, and which transform 
under A(;(R)O according to Â£, If f  is any function in K c ( G ( R ) ,  Â £ , - I  and % 
belongs to  I I ( G ( R ) ,  (), we can set 

The following lemma is an immediate consequence of the trace Paley-Wiener 
theorem of Clozel and Delorme [7a]. (See [7c, Proposition 5, Corollaire].) 

Lemma 3.1. There is function f p ~ % & ( G ( l R ) ,  Â £  *) such that for any 
?i~entemp(G(R), <y, 

q(G),  if n s ~ n d i , c W ,  
otherwise. 0 

The function f  has of course been chosen to match Lemma 2.2. Since the 
standard characters on fp are just analytic continuations of tempered characters, 
we obtain 

if nR is any standard representation whose central character on A G ( R )  equals 
( .  Both sides of this equation depend only on the image of z ] ~  in the Grothen- 
dieck group. Since the standard representations form a basis, the Eq. (3.1) holds 
if zn is any representation in I I ( G ( R ) ,  tp). This is a result of Clozel and Delorme 
[7c, Thkoreme 31. We have repeated their observations in order to emphasize 
the character formula of Lemma 3.1, which we will need later. 

Now, fix the function h â ‚ ¬ ^ f ( G ( A f i n )  and set 

for any point 
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is any representation in 77(G(A) ,  t,), we have 

Therefore, Proposition 2.1, combined with (3.1), yields another formula 

for S',(h). 
We shall use the trace formula to evaluate the right hand side of (3.2). For 

the trace formula can be viewed as two different expansions for a certain linear 
functional I .  We shall show that the spectral expansion for I ( f p  h)  reduces to 
the right hand side of (3.2). The resulting equality with the geometric expansion 
will provide our explicit formula for {̂h). In discussing the trace formula, 
we adopt the notation and conventions of [le]. In particular, we fix a minimal 
Levi subgroup M y  of G over (D, and we let 2' denote the finite set of Levi 
subgroups which contain M,,. It is assumed that for each M e S ' ,  the group 
M ( R )  is stable under the Cartan involution defined by K m .  We also note that 
for any Me^?, there is an associated real vector space 

aM = Hom ( X ( M l Q ,  R). 

(This is at minor variance with our general use of lower case Gothic letters 
to denote Lie algebras over Q.) 

We propose to evaluate I at the function f h. Since this function is cuspidal 
at L) = R ,  Theorem 7.1 (a) of [I el tells us that the spectral expansion for I (  f, h)  
takes a rather simple form. It equals 

in the notation of [le], and by the definitions of [le, Â§4] this is the same 
as 

Here, ( f Ã  h)' denotes the restriction of f, h to  the subgroup 

and for a given LeS' ,  Q is a group in 9'(L). Since G is connected, we can 
write 

in the more familiar notation 
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where pQ, (0 )  equals a direct sum 

of induced representations, and M Q  , Q ( ~ ,  0 )  is the intertwining operator corre- 
sponding to s. In (3.4), a ranges over the irreducible subrepresentations of 

whose Archimedean infinitesimal character has imaginary part with norm equal 
to t .  

Suppose that Q # G. The expression (3.3) is a linear combination 

of characters. In order that cn not vanish, n must be a subrepresentation of 
a representation YQ(a) ,  in which a is stable under a nontrivial Weyl element 
s. This means that s is the restriction to ay of an element in the complex Weyl 
group of G which fixes the Archimedean infinitesimal character of a. Thus, 
the Archimedean infinitesimal character of TT, being equal to that of a,  is fixed 
by a nontrivial element of the Weyl group. It is therefore singular. On the 
other hand. the function 

vanishes unless the infinitesimal character of nR equals that of a discrete series. 
Such infinitesimal characters are necessarily regular. We therefore conclude that 
the expression (3.3) vanishes when Q =i= G. 

If L=Q= G, the expression (3.3) is the trace of pG,,(O, (f, h)'). It follows 
that 

Our choice of f, implies that the summands vanish for all but finitely many 
t .  It follows that ( f p  h)' gives an operator of trace class on the subspace of 
L2(G(Q)\G(A)') that decomposes discretely. The trace of this operator is just 
equal to I ( f p  h). But the operator on L2(G(Q)\G(A)') obtained from ( f ,  h)' 
is clearly isomorphic to the operator on L2(G(Q)\G(A), f )  obtained from f k. 
It therefore follows that 

Combining this with (3.2), we obtain 
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The geometric expansion is given by the formula 

expressed in the notation of [le,  Theorem 3.11. Here, S is the union of the 
real valuation with a large finite set So of discrete valuations. The set (M(Q))M,s  
consists of ( M ,  S)-equivalence classes { y }  in M ( Q ) ,  and f, h  is to be regarded 
as a function on G ( Q s j  in evaluating the distributions IM(y ,  f, h). The invariant 
distributions I M ( y ) = g ( y )  are themselves defined and discussed in some detail 
in [I d, 3 21. We claim that 

where Zg(y) is the analogous distribution on G(IR), and IE(y)  is just the ordinary 
orbital integral on M ( Q s ) .  To verify this, we can assume that 

Let v 2  be a fixed valuation in So, and write 

By the splitting formula [Id, Proposition 9.11, 

Since f hl is cuspidal at R, ( f, hl)L,  vanishes unless L l  = G. But 

so we obtain 

The required formula (3.6) follows inductively on the number of valuations 
in So. 

We have established 

Proposition 3.2. For any h  ^ f ( G ( A f i n ) ) ,  

We now have a formula for Y I t ( h )  in terms of orbits on G  and its Levi 
subgroups. In order to make this explicit, we need to examine the individual 
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terms more closely. The invariant orbital integral &(y,  hM) is simple enough, 
and will appear with only minor modification in the final formula. However 

is the invariant distribution attached to a weighted orbital integral, and is more 
complicated. We shall devote the next two paragraphs to its study. 

5 4. The functions <l>u (7, t) 

Suppose that t, is a quasi-character on AG(R)O and that f is a function in 
x c ( G ( l R ) ,  0. Since the contragredient TI 4 is a bijection from I7(G(IR), () to 
77(G(lR), ir I),  we can form tr 7i( f )  for any 7ieL'(G(R), 0. We shall say that 
f is stable cuspidal if the function 

is supported on the subset II,,isc(GflR), Â£,) and is constant on the packets 

The example we have in mind, of course, is the function f=fÃ defined in the 
last section. 

Suppose that M is a Levi subgroup in 9. If y e M  is any element with 
Jordan decomposition y = a u, we have the function 

Here, M u  denotes the connected component of 1 in the centralizer of a in M ,  
and by our general convention, m and m u  denote the Lie algebras of M and 
Mu. In the case that M u  = Go, observe that 

where 

Suppose that M contains a maximal torus T over R such that T ( R ) / A M ( R ) O  
is compact. Assume that feSsC(G(R) ,  !;) is stable cuspidal, and that y belongs 
to T,,(R), the G-regular set in T(lR). According to Theorem 6.4 of [If) ,  

and 0, is the character of TI. We would like to obtain a more general formula, 
in which y is any element in M ( R ) .  
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It is sometimes convenient to write 

In the special case that M = G, this is just equal to 

the ordinary unnormalized orbital integral. If T is a representation in 77(G(R), Â£,) 
we shall also write 

since the number on the right depends only on T.  Finally, if y belongs to Lg(lR), 
we set 

The inner twist q can be used to embed B(R) into G(R) ,  and in the special 
case that M = G, one obtains the finite dimensional character 

This is a well known consequence of the character formulas for discrete series. 
Now, returning to the formula (4.1), we observe that 

It follows that 

Q M ( y ,  f )  =(- l ) d i m ( A ~ I A ~ )  vol(T(R)/AM(R)O)- l &(y, T )  tr f( f ) ,  (4.5) 
=n(G(w,n 

for any Y e T r e g O R ) .  

Before going on, we should note a property from invariant harmonic analysis 
which we shall require later. 

Lemma 4.1. Suppose that @ ( y )  is a function on B ( R )  which is a finite, W(G, B)- 
invariant linear combination of quasi-characters, each of whose restriction to 
AGOR)O equals t. Then there is a stable cuspidal function feJfac(G(R),  t) such 
that 
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Proof. Results of this nature are well known. Indeed, @ ( y )  can be written as 
a finite linear combination 

of finite dimensional characters. By the trace Paley-Wiener theorem [7a], there 
is a function f i n  &(G(R),  f )  such that tr E ( f )  vanishes for any representation 
7teJ7temp(G(lR), f )  which does not belong to some Hdisc(r), and such that 

for any T .  Clearly f is stable cuspidal, and 

The required formula then follows from the special case of (4.5) that M = G. 

The function @&, r)  will be the most interesting ingredient of our final 
formula. It is worth reviewing its explicit expression provided by the formulas 
for the characters of averaged discrete series. First, let us remind ourselves how 
the discrete series are parametrized. Let Z ( B )  be the centralizer of the connected 
component GQR)' in Kv. Since G(R)O is Zariski dense in G, Z ( B )  is in fact 
equal to the intersection of Kv with the center of G. One knows [9b, Lemma 3.41 
that BQR) equals the product of its connected component B(R)' with Z(B) .  
Fix an order on the roots {a} of (G, B), and define pg as usual to be half 
the sum of the positive roots. Let A ( f )  denote the set of pairs 

is a well defined quasi-character on B@) whose restriction to AG(R)O equals 
f .  Let A' ( ( )  be the subset of pairs such that A is regular. These two sets are 
independent of the order on the roots, and both are equipped with an action 
of Weyl group W ( G ,  B). The finite dimensional representations reL ' (G(R) ,  f) 
are parametrized by the orbits of W(G,  B) in A'(^),  while the discrete series 
are parametrized by the W ( G ( R ) ,  B(lR))-orbits in A'(().  A packet ndisc(7) corre- 
sponds to the partition of a given W(G,  B)-orbit into W(G(lR), B(R))-orbits. 
For a given reJ7(G(lR), (), let (c ,  A ) eA1( f )  be the point in the corresponding 
orbit such that A is positive on all the positive co-roots of (G, B). Then if 

y = z  exp H ,  z eZ (B) ,  HebQR), 

is a regular point in B*), one has 
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Here, as usual, 

The values of the averaged discrete series characters on other maximal tori 
are determined by certain integer valued functions 

defined for root systems R whose Weyl group W(R) contains (-1). Here R +  
is a system of positive roots for R, and Q+ is a positive system for the set 
Q = R '/ of co-roots. Observe that for any R +  and Q+,  one has corresponding 
positive chambers aR+ and aQ+ in the real spans of Q and R respectively. Notice 
also that for any root aeR, the set Ra of roots in R which are orthogonal 
to a is a root system of the same type, whose co-root system Ra equals Q,. 
The functions c(Q+,  R + )  are uniquely determined by the following four proper- 
ties. 

( i )c{sQ+,sR+)=c{Q+,R+),  se\V(R). 
(ii) The number c(Q+, R') vanishes unless v{X) negative for every X â ‚ ¬ a  

and YeaQ+. 
(iii) c{Q+, R+)+c{saQ+, Q+)=2c{Q+ n Q a ,  R+ n R,), 

for any reflection sue W(R) corresponding to a root xeR.  
(iv) If R is the empty root system ?(Q+, R + ) =  1. 
As above, let T be a maximal torus in M which is R-anisotropic modulo 

AM(R)O. We take R to  be the set of real roots of (G, T). The existence of the 
torus B means that W(R) contains an element that acts as (-1). If H is a 
regular point in t(R), the Lie algebra of T(R), we shall write R i  for the set 
of roots in R which are positive on H. Similarly, if v is a linear function on 
t(C) such that v(a v ,  is a nonzero real number for each co-root a "  in Q = R v ,  
let Qz be the set of co-roots for which these numbers are all positive. Choose 
a n  order on the roots of (G, T) which is compatible with a choice of positive 
restricted roots for (G, AM). This determines a distinguished set R +  of positive 
real roots, and for any regular point Het(R),  we obtain 

It is best to  take T from among its possible M(IR)-conjugates so that T 
=(TnB)AM. Then there is an  element yeG(C), which commutes with t n b ,  
such that Ad(y)(b((C)) = t(C). We shall write A -+ y 2 for the corresponding 
isomorphism from b(C)* onto t(C)*. Now, suppose that TeII(G(lR), 0, and 
that (C, A)eA'(<) is a point in the corresponding W(G, 5)-orbit such that y/. 
is positive on all the positive co-roots of (G, T). Then <PM(y, T) vanishes for 
any regular point y l T(IR) unless y is of the form 
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in which case 

This follows from the general formulas of Harish-Chandra [9a] for the charac- 
ters of discrete series, with obvious allowances made for the possibility that 
G(IR) is not connected. We have followed the discussion of R. Herb [lo], who 
treats the averaged discrete series characters in detail, and gives a simple formula 
for the constants ?(Q+, R') in terms of root systems of rank 2. 

Lemma 4.2. The function 

extends to a continuous, W(M, T)-invariant function on T(R). 

Proof. Shelstad has pointed out to me that the lemma follows easily from the 
stability of the averaged discrete series characters. We shall instead argue directly 
from the formula (4.8). We can assume that y is of the form (4.7), since G(y, T) 

vanishes otherwise. The Weyl group W(M, T) acts on t n b, and can be regarded 
as a subgroup of W(G, B) which commutes with y. For any element r in this 
subgroup, we have 

It follows from (4.8) that the function 

is skew-symmetric under W(M, T). Moreover, E,((H) and c{Q+,,̂ , R y )  are locally 
constant on 

It follows that QM(z exp H, 7) extends to a smooth, W(M, T)-invariant function 
on the closure of any connected of t(lR)'. We need only show that the boundary 
values match. But &(z exp H, T) is invariant under the Weyl group W(R) of 
R. This follows directly from the definition of Q M  in terms of characters, since 
every element in W(R) is induced by a conjugation from G(R). Therefore, 
&(z exp H, T) does extend continuously across the singular hyperplanes of 
A(R)'. We have thus established that &(y, T )  defines a continuous function 
on T(lR), which is in fact invariant under both W(M, T) and W(R). 

From the proof of the lemma, we also obtain 

Corollary 4.3. On any connected component of the set 

the function &(y ,  T) is a finite, W(M, T)-invariant linear combination of quasi- 
characters of T(R). Q 
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It is convenient to extend <P&, T) to  a function on all of M(R). If y is 
any point in M(R), we define (̂(y, T )  to  be 0 unless y is M(R)-conjugate 
to a point y' in T(IR), in which case we set <PM(7, T) equal to @^(yl, T). Then 
Q M ( - ,  T) is an M(R)-invariant function on M(R)  which is supported on the 
M(R)-elliptic conjugacy classes. Furthermore, let us define the functions &('A T) 
and <Pw(y, f )  for any Levi subset M E T  by simply setting them equal to 0 
if M is not cuspidal over R .  

8 5. Proof of Theorem 5.1 

In this paragraph we shall establish a general formula for DM(?, f).  The result 
will be stated in terms of a simple constant which we must first define. 

Any Haar measure on G(R) is obtained from a differential form of highest 
degree, which can be transferred by the inner twist q to a form on G(R). We 
obtain a uniquely determined Haar measure on G(R), with respect to which 
we define 

This constant depends only on G as a group over R, and on a choice of Haar 
measure on G(R). 

Theorem 5.1. Suppose that f ~ z , ( G ( l R ) ,  <) is stable cuspidal and that yeM(R). 
Then 

In particular, @ ^ ( y ,  f) vanishes i f  y is not semisimple. 

Proof. We shall need to make use of the following result on unipotent orbital 
integrals. 

Lemma 5.2. For any unipotent element UEG(R), there is a harmonic element hu 
in S(b(C)), which is homogeneous of degree 

+(dim (G/B) - dim (GIGu)), 
such that 

Here 
F / ( H )  = A ~ ( H )  1 f (x- ' exp(H) x) d x, 

B(R)\G(R) 

for any regular element H in b(R). 

This lemma is the specialization to cuspidal f of an  unpublished result of 
Harish-Chandra. We shall give a proof in the appendix. Assuming Lemma 5.2, 
let us deduce the special case of the theorem in which M =  G, and y =u is 
a unipotent element in G(R). 
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Suppose first that u + 1. Since 

and since e(s) is just the variance of A^(H), with respect to s, we have 

for any S E  W(G, B). Consequently, 

It follows from the lemma that 

Of course, s hu stands for the image of hu under the natural action of W(G, B) 
on S(b(C)). We know that the harmonic elements form a finite dimensional 
W(G, ̂ -invariant subspace of S(b(C)) on which the action of W(G, B) is equiva- 
lent to the regular representation. Moreover, the vector 

is the harmonic element corresponding to the sign character 8 of W(G, B). Since 
dim(Gu) <dim(G), the lemma tells us that deg(hu) is less than deg(hi). This implies 
that hu transforms under W(G, B) according to a sum of representations, none 
of which is equivalent to e. Therefore A hu = 0 and QG(u, f )  vanishes, as required. 

Now, assume that 7 = u = 1. Then 

by the Plancherel formula. The formal degree d E  depends inversely on a choice 
of Haar measure on G(R). D. Shelstad has verified from the formulas of Harish- 
Chandra that for compatible choices of Haar measures, the formal degrees match 
on groups related by inner twisting. In particular, 
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for any T ~ I ~ ( G ( R ) ,  4 (see [14]). Moreover, 

which is the required formula in the special case under consideration. We shall 
actually combine this with a special case of (4.5). For we can write 

where y stands for a small regular point in B(R). It follows that 

IG(l ,  f)=u(G)-I V O ~ ( B ( R ) / A ~ ( R ) ~ )  lim &(l,  f ) .  
v- ,  1 

(5.1) 

Returning to the general case, we assume that M and yeM(R)  are arbitrary. 
If M is not cuspidal over R ,  both sides of the required formula vanish, by 
definition. We can therefore assume that M contains a maximal torus T over 
R such that T(R)/AM(R)O is compact. By the formula [Id, (2.2)], we have 

where a ranges over small generic points in AM(R). Since f is cuspidal, the 
descent property [Id, Corollary 8.31 implies that IL(a y, f ) = 0  if L+ M. Dividing 
each side by the function 

we obtain the limit formula 

Our definitions also imply that 



278 J. Arthur 

so it would be enough to prove the theorem with y replaced by a y. In other 
words, we can assume that M y =  Gy. Let y = a u be the Jordan decomposition 
of y.  Then Gu = Mu. 

Lemma 5.3. Assuming that Mu=Gu, we can choose a finite set {e} of quasi- 
characters on AM@)', and stable cuspidal functions f in Xac(Mu(lR), ti), such 
that 

for any p in some Mu@)-invariant neighborhood U of 1 in MU(R). 

Proof. If p remains within a small Mu@)-invariant neighborhood of 1 in Mu@), 
the centralizer of a p  is contained in that of a. Therefore, <PM(ap, f )  depends 
on a choice of invariant measures on Mu(R)\G(R) and MU(R)\Mu(R) .  The 
latter of course varies with p. However, OM(/^,  fJ) also depends on such a mea- 
sure, so the formula we are trying to prove makes sense. 

If a is not R-elliptic in M, the centralizer M, is contained in a proper 
Levi subgroup M I  of M over R .  The same is true for Mup, if p is small. It 
follows from the descent property [Id, Corollary 8.31 and the fact that f is 
cuspidal, that 

The lemma follows with f J=0  for each i. We can therefore assume that a is 
IR-elliptic in M. This means that a is M(R)-conjugate to an element in T(R). 
Since IM(ap, f )  is invariant under conjugation by M*), we can assume that 
a actually belongs to T(R). 

Let U be a small invariant neighborhood of 1 in Mu(R). We shall first 
establish the existence of the functions f such that the required property holds 
for all Mu-regular points p in U n T@). The point a p  is G-regular for any 
such p, and we can use (4.5) to write QM(ap, f )  as a sum of functions <I>u(ap, T).  

We must check that each function 

satisfies the conditions of Lemma 4.1. Observe that W(Mu, T), the complex Weyl 
group of Mu, is contained in the subgroup of elements in W(M, T) which fix 
a. Since M u Ã  Gu, there is no real root of (G, T) which is trivial on a .  It follows 
from Corollary 4.3 that for p e T ( R )  near 1, (PM(ap, T) is a finite, 
W(Mu, T)-invariant linear combination of quasi-characters. The conditions of 
Lemma 4.1 are thus satisfied. We may choose quasi-characters <" on AM(R)', 
and stable cuspidal functions f; in Xac(Mu(R), ti), such that (5.2) holds for 
all points p e  U n T(R) which are M,-regular. 

Having proved the existence of the functions fi, we must show that (5.2) 
holds for all points peU.  Suppose first that p is an Mu-regular point in U .  
If p is elliptic in Mum) ,  it is conjugate to a point in T(R). If p is not elliptic, 
the point a p  is not elliptic in M(IR), and the descent properties force both 
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sides of (5.2) to vanish. In either instance, formula (5.2) holds. Now consider 
the case that p is a general point in U .  According to [Id, (2.3)], we have 

This means that there is a function 4 l CF (M(R)) such that 

Dividing each side by 1 DM(op)]*, we obtain 

By Lemma 2.1 of [I b], we can take the integral in y over a compact set which 
is independent of p. Therefore, we can choose U ,  and a function (Aye CxMa(R)) ,  
such that 

We have already shown that if p e  U is My@)-regular, this also equals 

the right hand side of (5.2). Since the orbital integrals at an arbitrary point 
are determined by the orbital integrals at nearby regular points, the formula 
(5.2) holds for all p e  U .  This concludes the proof of the lemma. Q 

We now return to the proof of the theorem. We are assuming that y =au ,  
with Ga=Ma.  Choose stable cuspidal functions f(TeXaC(My(R), <") as in the 
last lemma. Then 

We apply to the group My  the special case of the theorem we have already 
established. If u+  1, the right hand side above equals 0, and we obtain the 
vanishing of IM(y, f),  as required. Assume then that u = 1. Applying the formula 
(5.1) to My, we obtain 
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where t stands for a small regular point in T(R). Applying the formula (5.2) 
again, we see that 

@^(a, f ) =  v(Ma)- l v ~ l ( T ( R ) / A ~ ( R ) ~ ) l i m  <P̂  t, f ) .  
t-^ 1 

Finally, by formula (4.5), this equals 

Since y = a, we obtain 

We have established the required formula for l\t(y, f )  in all cases. 0 

5 6. The main formula 

We now return to the discussion of $3. In order to establish a formula for 
the Lefschetz number Â£'@(h) we have only to combine Proposition 3.2 with Theo- 
rem 5.1. 

We observe first that 

by the product formula. Here, S is as in Proposition 3.2, the union of the real 
valuation with a large finite set So of discrete valuations. We can therefore 
multiply the corresponding term in the formula of Proposition 3.2 by 

where 

If yso is any point in M (Qso), set 

Then Proposition 3.2 yields the formula 
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The function f belongs to X,;(G(R), G1). If T is any representation in 
II(G(R), {p), we have 

1, if r = p ,  
0, otherwise. 

It follows from Theorem 5.1 that @A, fu) equals 

In particular, the function vanishes unless y is semisimple. But the equivalence 
classes in (M(Q))MS which are semisimple are just M(Q)-conjugacy classes. 
Moreover, for any semisimple element yeM(Q), Theorem 8.2 of [la] asserts 
that 

if y is 0-elliptic in M ,  and that aM(S, y )  vanishes otherwise. Here 

the number of connected components in the centralizer of y in M which contain 
rational points. We also point out that if ye M ( 0 )  is semisimple, then 

where P =  MNp is any parabolic subgroup with Levi component M, Sp(yein) 
is the modular function of P, evaluated at the image of y in G(Aein), and Kfin 
is a suitable maximal compact subgroup of G(Afin). In particular, the orbital 
integral on M can be taken over M(Afin) rather that M(Qs) .  We thus have 
no further need to single out the finite set S of valuations. 

It remains only to collect the terms. Looking back at the formula for v(G), 
we are lead to define 

We shall also write (M(Q)) for the set of M(Q)-conjugacy classes in M(Q). 
Our main result is then 

Theorem 6.1. For any he^f(G(Ann)), 

Remarks. 1. The sum in y can be taken over a finite set that depends only 
on the support of h. This follows from a general result [le, Theorem 3.31, or 
can be deduced directly from the fact that h ( y ,  p) vanishes uless y is an R- 
elliptic element in M. The terms y(My), l ~ ~ ( y ) l ' ,  'PM(y, p) and h^[y), which 
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are given by (6.3), (6.1), (4.8) and (6.2) respectively, can in principle be calculated 
explicitly. The theorem therefore provides a finite closed formula for q ( h ) .  

2. Let G be any inner twist of G over Q which is IR-anisotropic modulo 
AG. Kottwitz [12] has shown that the Tamagawa number of G equals that 
of G, at least when G has no simple factors of type Ea. It follows that 

under this condition. 
3. For the study of Shimura varieties, one wants to be able to replace the 

compact group Kc by a subgroup of finite index m. Using the fact that the 
actions of G(R) and G(Afin) on G(@)\G(A) commute, one can show that this 
serves only to multiply the Lefschetz number Tn(h) by the factor m. 

4. If one prefers, one can write the formula for q ( h )  as a sum over the 
boundary components of the Borel-Serre compactification. These are associated 
to standard parabolic subgroups P = MpNp which contain a fixed minimal para- 
bolic subgroup (defined over @). Indeed, the terms in the original formula depend 
only on the Wf-orbit of M .  One obtains 

where r ip  denotes the number of chambers in the split component A p  of P. 
Keep in mind that the contribution from a given P vanishes unless P is a 
cuspidal parabolic subgroup over IR. 

5. Let K O  be a small open compact subgroup of G(Afin). Set h equal to 
l K ,  the characteristic function of K O ,  divided by the volume of K O  (with respect 
to a given Haar measure on G(Afin)). Then Tn(h) equals the L2-Euler characteris- 
tic of ^(v with coefficients in 6. Since K O  is small, the term in the formula 
corresponding to ye(M(Q)) vanishes unless y =  1. The L2-Euler characteristic 
therefore equals 

The leading term, that corresponding to P = G, equals 

Harder [8] has shown that this equals the classical Euler characteristic of 4 
at least when p= 1. The other terms are related to Euler characteristics of the 
boundary components, relative to certain local systems. For OM(1, p) is an inte- 
gral linear combination of degrees of finite dimensional representations of M p .  
The coefficients of these degrees are determined by the simple algebraic proce- 
dure of $4. One could ask whether the coefficients have a geometric interpreta- 
tion. M. Stern [19] has established a general L2-index formula for a Hermitian 
locally symmetric space, in terms of certain eta invariants and zeta functions. 
It would be interesting to compare the formula this provides for the L2-Euler 
characteristic with the expression (6.5). 
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We have written this paper in the framework of L2-cohomology, but it is 
clear that Theorem 6.1 gives dimension formulas for spaces of automorphic 
forms. For each zneII(G(lR), c), let mdisAR, KO) be the multiplicity with which 
zn occurs discretely in the representation of G(R) on 

Here KO is an open compact subgroup of G(Afin}, and {c} are the discrete 
subgroups of G(R) described in 91. It h is a KO-bi-invariant function in 
t?f(G(Afin)), let RdisC(zR, h) be the operator on the zR-isotypical subspace of 
(6.6). It can be interpreted as an (mdisc(%, KO) x m d ~ ,  KO))-matrix. 

Corollary 6.2. Suppose that the highest weight of the representation p is regular. 
Then 

Proof. In [20] there is a classification of the unitary representations z R ~ I I ( G ( R ) )  
such that the cohomology 

does not vanish. Such representations are attached to Levi components L of 
certain parabolic subgroups of G(C). It is required that the simple co-roots 
of L be annihilated by the highest weight of p (relative to some ordering). Since 
we are assuming that the highest weight of p is regular, L must be abelian. 
It follows from [20] that L is conjugate to B, and that bisc(/2) contains the 
only unitary representations with cohomology. The corollary then follows from 
Proposition 2.1, Lemma 2.2 and Theorem 6.1. Q 

There is no particular reason why the representation p of Corollary 6.2 needs 
to be rational. In fact, we can replace p by any representation TEL'(G(R)) whose 
highest weight is regular. We obtain a formula for the sum over %eIIdiSc(?) 
of the traces of the operators Rdisc(xR, h). If we set h equal to the unit l K g  
in Go we obtain an explicit formula for the sum 

of multiplicities. 
The classical problem, of course, has been to compute the multiplicity of 

a single discrete series representation zB of G(R), which one usually assumes 
is integrable. The simplest case is when G is anisotropic over Q. Then G(Q)\G(A) 
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is compact, and the formula for mdisc(nR, KO) is contained in [13a]. The first 
result for noncompact quotient was for G=SL(2), and appeared in Selberg's 
original paper [18]. There, Selberg gave a formula for the trace of certain Hecke 
operators for SL(2). More generally, if G has R-rank one, there is a formula 
for mdiC(xR, KO) in [15]. However, if G is of general rank, a formula for a 
single multiplicity, as opposed to the sum ( 6 4 ,  will probably have to await 
the stabilization of the trace formula. At any rate, observe that the condition 
in Corollary 6.2 is weaker than the integrability of all the representations in 
IZdisc(P). Such conditions were first studied by F. Williams [21], in connection 
with multiplicity formulas for compact quotient. 

Appendix 

The purpose of this appendix is to give a proof of Harish-Chandra's theorem 
that a unipotent orbital integral can be expressed in terms of semisimple orbital 
integrals. Lemma 5.2 will be a special case of this. 

The main step is to establish an analogous result for the Lie algebra. We 
assume a familiarity with the theory of Fourier transforms on semisimple Lie 
algebras. The reader can consult the introduction of [9c] for a summary of 
the main results. Let J =  J(g(<L)} be the algebra of G(C)-invariant elements in 
the symmetric algebra of g((C), and let J+ be the ideal of elements in J with 
zero constant term. We shall consider the space of G(R)-invariant, tempered 
distributions D on g(R) such that 

for every element q e J + .  Here S ( q )  is the differential operator of constant coeffi- 
cients on g(R) associated to q. We shall recall in a moment how to obtain 
distributions in from either nilpotent or semisimple orbital integrals. Harish- 
Chandra's result can be regarded as the assertion that both these classes of 
examples actually exhaust the space go. 

Fix an nondegenerate, G-invariant bilinear form B on g. We can then define 
the Fourier transform 

for any function F in %'(g(R)), the Schwartz space on g(lR). There is an isomorph- 
ism q-+Q from J onto the algebra of G(lR)-invariant polynomials on g(R), 
such that 

Now, suppose that o is a nilpotent G(R)-orbit in g(R). By [16, Theorem I], 
there is a G(lR)-invariant measure on o with respect to which the integral 
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converges, and defines an invariant tempered distribution. Set 

Now, suppose that q belongs to J+. Then 

But 4 is an invariant polynomial which vanishes at 0. It is known that any 
such polynomial vanishes on the entire nilpotent variety. Consequently, the 
function 4F vanishes on D, so that 1.,(@)=0. Thus, the distribution Do belongs 
to So. Let 9 g i 1  denote the subspace of 3>n spanned by distributions of this 
form. 

Suppose that T is a maximal torus of G over R, with Lie algebra t. At 
each H in the regular set t ( R )  of t(R), one has the orbital integral 

on the Lie algebra. Here 

where a ranges over the positive roots of (g, t) with respect to some ordering. 
Harish-Chandra shows that 4; is a smooth function on t ( R ) ,  and that all 
the derivatives of (bl, extend continuously to the boundary of any connected 
component of treg(R). Let h be a harmonic element in S(t((C)), the symmetric 
algebra on t((C), and let c be a connected component of treg(R). Define an 
invariant tempered distribution by a limit 

in which H approaches 0 through the regular points in c. Suppose that q belongs 
to J+. Then 

Observe that 

The function 4(H) is a Weyl invariant polynomial on t(R) which vanishes at 
the origin, so 14{,~ is the restriction to c of an element in the ideal of smooth 
functions on t(R) generated by such polynomials. If one operates on any function 
in this ideal by a harmonic differential operator, one obtains another function 
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which also vanishes at the origin. It follows that DCh(d(q) F)=0. In other words, 
the distribution D c h  belongs to Qy. Let Qî  denote the subspace of So spanned 
by distributions of this form. 

Theorem A.I. (Harish-Chandra) qil = = go. 

Proof. We have already agreed that $33;" and are subspaces of Qy. We 
must therefore show that an arbitrary distribution D in go belongs to both 
<3y1 and Qir. Let I be the invariant tempered distribution which is defined 
by 

If q belongs to J + ,  we have 

It is known that the ring 

generates the ideal of polynomials which vanish on the nilpotent variety in 
g(R). From this, one can deduce that the ring also generates the ideal of Schwartz 
functions that vanish on the nilpotent variety. Thus, I is an invariant distribution 
which annihilates any function which vanishes on the nilpotent set. It is then 
possible, using the natural stratification on the nilpotent variety, to write I 
as a sum x c o I o  of nilpotent orbital integrals. We shall spare the details of 

0 

the argument, since we don't need this part of the theorem for Lemma 5.2. 
The result, in any case, is that D equals a sum x c o  Do, and therefore belongs 

0 

to QiZi'. 

The main point is to show that D belongs to w. Since it is an invariant 
eigendistribution of J ,  D equals a locally integrable function on g(R), by Harish- 
Chandra's fundamental theorem. We may therefore write 

The sum is over a set of representatives {T} of conjugacy classes of maximal 
tori, with Lie algebras { t } ,  and each DT stands for a locally integrable function 
on t(lE2) which is invariant under the real Weyl group W(G(R), T(R)). The 
functions DT are analytic on t re (R) ,  and they satisfy differential equations in 
their own right. Let q -+qT be the Harish-Chandra isomorphism from J onto 
the Weyl invariant elements in the symmetric algebra on t((C). Then 

It follows that the restriction of DT to any connected component of treg(lR) 
is a harmonic polynomial. Writing nT for the dimension of the real split compo- 
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nent of T, we take the largest integer n such that D is supported on the closed 
invariant subset 

We shall prove the required assertion by induction on n. 
To make the inductive argument, we have to look at the expansions (A.1) 

for the invariant eigendistributions om). It is easiest to use the theorem of 
Rossman [17] ,  which implies that the distributions behave like characters of 
induced discrete series. In particular, there is a simple nonvanishing constant 
e (T ) ,  which depends only on T such that the invariant distributions 

are supported on G(nT  + 1). Now, suppose that nT = n. Since T has minimal 
split component from among the tori which meet the support of D, DT extends 
to a smooth function on t(R). This follows from the jump conditions for invariant 
eigendistributions. (See for example [11, p. 1831.) Thus, DT defines a harmonic 
polynomial on all of t(lR). Therefore, there is a harmonic differential operator 
q h T )  on t(R) such that 

for any fixed H e t ( R ) .  Choose a connected component cT of treg(R) for each 
such T, and define 

Then D ,  is also a distribution in go. We claim that it is supported on G(n+ 1). 
For 

and by the remarks above, this distribution is supported on G ( n  + 1). Combining 
this with (A.I), we see that D l  is indeed supported on G(n+ 1). We may assume 
inductively that the distribution D l  belongs to Q)r. It then follows that D itself 
belongs to Qy. 
Corollary A.2. Suppose that o is a nilpotent orbit in g(R). Then we can choose 
a finite set of triplets (T,, c, ,  hi), where T, is a maximal torus, ci is a chamber 
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in ti(R, and hi is a harmonic differential operator on 7'J lR which is homogenous 
of degree 

+(dim G - rank G - dim o), 
such that 

Proof. Since sil equals %s, it is clear from the theorem that a formula (A.2) 
exists. The only possible question concerns the degrees of the operators hi. 
If t is a positive real number, and F belongs to %'(g(R)), the function 

also belongs to W(g(lR)). It can therefore be substituted into (A.2). By changing 
variables in the integral over o, one finds that the resulting left hand side equals 

(t) - flim0 I^). 

One is therefore able to discard the coefficients of t on the right which are 
not of the same degree. The operators 6(hi) can consequently be chosen to 
be of the required degree. Q 

To prove Lemma 5.2, we have to lift the formula (A.2) from the Lie algebra 
to the group. This is a standard technique of Harish-Chandra. Let ((X) be 
the square root of the nonvanishing analytic function 

det ((exp (+ ad X) - exp ( - 4 ad X)) ad (X) - I), X e g (R), 

such that ((0) = 1. Then ((X) is a G(IR)-invariant analytic function on g(R) 
whose restriction to the nilpotent variety of g(R) equals 1. Moreover, on the 
Lie algebra t (R) of a maximal torus T(R), one has 

The exponential map is a diffeomorphism from a G(R)-invariant neighborhood 
of 0 in g(R) to a G(lR)-invariant neighborhood of 1 in G(R). Let <t>(X) be 
a smooth, G(lR)-invariant function on g(R), which equals 1 on a G(R)-invariant 
neighborhood U of 0, and which is supported in the region where the exponential 
map is a diffeomorphism. Then iff is any function in C^{G(R)), the function 

belongs to CF (g (R)). 
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Suppose that u is a unipotent element in G(R). Let o be the nilpotent orbit 
in g(R) whose image under the exponential map equals the orbit of u. Then 
iff and F are related as above, we have 

Moreover, if T is a maximal torus, and H is a point in U n t ( R ) ,  we obtain 

The formula (A.2) then becomes 

We remark in passing that one could also ask for an inverse expansion of 
F a H )  in terms of unipotent orbital integrals. This is closely related to the 
paper [2] of Barbasch and Vogan, and would be a real analogue of the germ 
expansion for p-adic orbital integrals. 

We can assume that B is among our set {T} of nonconjugate tori. Lemma 5.2 
concerns the case that the function fâ‚¬C(X(G(R is stable cuspidal. Then FJ 
vanishes unless T=B. Moreover, F? is a smooth function on b(R). We can 
therefore take only those i on the right hand side of (A.3) for which ti equals 
b, and we may take the limit over H in b(R) rather than just the chamber 
c,. We obtain a harmonic differential operator Q{h,,) on b(R), which is homoge- 
neous of degree 

+(dim (G/B) - dim (GIG,,)), 
such that 

This was the assertion of Lemma 5.2. 
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