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THE LOCAL BEHAVIOUR OF WEIGHTED ORBITAL
INTEGRALS

JAMES ARTHUR

Introduction. Let G be a reductive algebraic group over a local field F of
characteristic 0. The invariant orbital integrals

JG(,f) = D(y) I112 f(x-yx) dx, y e G(F), fe Cc(G(F)),'G(F)\G(F)

are obtained by integrating f with respect to the invariant measure on the
conjugacy class of y. They are of considerable importance for the harmonic
analysis of G(F). Invariant orbital integrals are also of interest because they
occur on the geometric side of the trace formula, in the case of compact quotient.
For the general trace formula, the analogous terms are weighted orbital integrals
[3]. They are obtained by integrating f over the conjugacy class of y, but with
respect to a measure which is not in general invariant. Weighted orbital integrals
may also play a role in the harmonic analysis of G(F), but this is not presently
understood. Our purpose here is to study the weighted orbital integrals as
functions of y. In particular, we shall show that they retain some of the basic
properties of ordinary orbital integrals.

Recall a few of the main features of the invariant orbital integrals. If F is an
Archimedean field, they satisfy the differential equations

(1) JG(Y, zf) = a(h^(z))(y, f), y E reg(F),

where Treg(F) is the set of regular points in a maximal torus of G(F), z is an
element in the center of the universal enveloping algebra, and d(hr(z)) is the
corresponding invariant differential operator on T(F). If F is a p-adic field,
there are no differential equations. Instead, one has the Shalika germ expansion

(2) (Y, f)= E r(, u)JG(u, f)
uE(CG(F))

about 1, or more generally about any semisimple point in G(F). The coefficients
{ (y, u)} are functions of regular points y near 1 and are indexed by the
unipotent conjugacy classes u in G(F). If F is either Archimedean or p-adic, the
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values of invariant orbital integrals at singular points can in principle be
expressed in terms of their values at nearby regular points. The simplest example
of this phenomenon occurs when y belongs to the Levi component M(F) of a
parabolic subgroup of G(F). One can form the induced class yG in G(F), which
may be singular in G(F) even if y is regular in M(F). Then

(3) JG( , f) = limJ(ay,f),
a--l

where a takes values in AM(F), the split component of the center of M(F).
(Actually, yG can be a union of several conjugacy classes in G(F), in which case
the left-hand side of (3) is defined as a sum of several orbital integrals.)
Weighted orbital integrals are distributions on G(F) which are indexed by

Levi components M(F), and elements y e M(F). They reduce to invariant
orbital integrals when M = G. If the centralizer Gy(F) is contained in M(F),
the weighted orbital integral is given by the formula

JM(Y, ) =ID(y) 1/2 f(x-yx)vM(x) dx,
G (F)\G(F)

where vM(x) is the volume of a certain convex hull. However, for general
elements y E M(F), the definition is more delicate and will be a consequence of
Theorem 5.2 and Corollary 6.2. We will end up defining JM(Y, f) as a limit

(3*) JM(, f)= lim E r(y, a)JL(aY,f),
a- LES9(M)

where a takes small regular values in AM(F) and for each Levi component
L(F) D M(F), rm(y, a) is a certain real-valued function. At the same time, we
shall show that the distribution JM(y, f) is given by an absolutely continuous
measure on yG. The analogy between (3*) and (3) is clear. Notice that for any
such a, Gay(F) is contained in L(F) so the distributions on the right side of (3*)
are given by the integral formula above.

In part 2 we shall treat the case of p-adic F. We will derive a germ expansion
(2*) JM(, -f E gM(E u)J,(u, f)

LES(M) uE(IL(F))

about 1, or more generally about any semisimple point in M(F) (Proposition
9.1). In (2*), y ranges over G(F)-regular points in M(F) which are close to 1.
The equivalence of the two sides of the formula means that as functions of y,
they differ by an orbital integral on M(F). In particular, the coefficients
gjL(Y, u) are really equivalence classes of germs of functions of y. We shall also
show (Lemma 9.2) that in certain cases the germs about an arbitrary semisimple
point a in M(F) can be expressed in terms of the germs about 1 in Go(F). In
§10 we shall investigate a homogeneity property and expand the germ

G (yt, V%), tE F*, ve(&G(F)),
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in terms of

g9(y, u), U E ((F)).
We shall deal with Archimedean F in part 3. In Proposition 11.1, we will

derive a differential equation

(1*) JM(y, zf) = E a(y, L)JL(, f), yE Teg(F),
LES(M)

when T(F) is contained in M(F). Here ad(y, z%) is a differential operator on
Treg(F) which depends only on the image ZL of z in the center of the universal
enveloping algebra for L(F). We include y in the notation to emphasize that if
L = Ma, L(y, zL) has variable coefficients. In the case L = M, dM(y, zM) is
equal to the invariant differential operator d(hT(z)). Proposition 11.1 is proved
by a simple invariance argument, but the differential operators dG(y, z) can also
be constructed from the radial decomposition of z (Lemma 12.1). This formula-
tion gives qualitative information which is useful for comparing weighted orbital
integrals on different groups. We will conclude part 3 by looking at the behaviour
of

JM(Y, f), y Treg(F),
as y approaches the singular set.
The coefficients rm(y, a) in (3*) are generalizations of functions used by

Flicker [10]. We shall indicate briefly how they are constructed. The essential
difficulty arises when y = u is unipotent in M(F), so let us assume this to be the
case. The problem is that

a - JM(au, f), a E AM(F),
blows up at a = 1. Suppose first that the Levi component M(F) is maximal.
Then it turns out that the function

JM(au, f) - 2l|vlip(1/, u)loglaf- a-ljG(au, f)
has a limit at a = 1. Here P/ is either of the two reduced roots of (G(F), AM(F)),
and p(/i, u) is a uniquely determined positive number which we shall introduce
in §3. As a function,

p(3, u), U EM(),
is lower semicontinuous on the F-rational unipotent variety of M, and p(,8, u)
depends only on the geometric conjugacy class of u. Now, suppose that the Levi
component M(F) is arbitrary. For each reduced root P/ of (G, AM), we can
define the number p(/3, u) as above. If L(F) D M(F), there is a real vector
space a L whose chambers correspond to parabolic subgroups R of L with Levi
component M. Then r(u, a) equals the volume in a L of the convex hull of the
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points

XR(u, a) = Cp(3, u)logjaa - a-\Ilv,

where for each R, /f is summed over the reduced roots of (R, AM).
The main result in part 1 is the existence of the limit in (3*). The proof is in

two stages, one algebraic (§4) and one analytic (§§5-7). The algebraic part, which
is due to Langlands, is a key step. It is based on the geometry of the
Grothendieck-Springer resolution and establishes the continuity of a certain
function on the product of A,(F) with a subspace of the unipotent variety. The
analytic part, although fairly long, is based on familiar notions. Beginning with
the formula of R. Rao for a unipotent orbital integral, we make various changes
of variable and eventually reduce the question to an elementary problem (Lemma
6.1) in real analysis. At the end of part 1, having finally completed the definition
(3*), we shall derive a descent property (Theorem 8.1) for weighted orbital
integrals. This is used in the proof of the main result of [3] and will also be
required for Lemma 9.2.

Since the results of this paper are to be applied to the trace formula, it is best
to work in a little greater generality. We shall allow F to be a number field,
equipped with a finite set S of valuations. Then the weighted orbital integrals will
be distributions on G(FS). We also want to include the twisted trace formula, so
we will work with disconnected groups. In the paper we will take G to be a

component of a nonconnected reductive algebraic group over F.
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Part 1: The general definition

§1. Assumptions on G. We would like our discussion to include twisted
weighted orbital integrals considered in [9]. This is accomplished by working with
nonconnected groups. Suppose that G is an algebraic group, not necessarily
connected, which is defined over a field F. We shall not focus on G itself, but
rather on a fixed connected component G of G. Given G, let us write G+ for the
subgroup of G generated by G and Go for the connected component of 1 in G+.
We shall assume that G+ is reductive. We also make the assumption that G(F)
is not empty. Then G(F) is a Zariski dense subset of G if F is infinite.
Many of the usual notions for connected groups extend to G. For example, we

can form the polynomial

det((t + 1) - Ad(x)) = EDk(x)tk, x E G.
k

The smallest integer r for which Dr(x) does not vanish identically is called the
rank of G. Choose an element y E G which is G-regular, in that it belongs to the
set

Greg= {x E G: Dr(X) 0),
and let To be the connected component of the centralizer of y in G°. Then To is
a torus in Go ([7, Lemma 1]). We shall call the variety

T= Toy

a maximal torus in G. (Of course, T itself is not an algebraic torus. It is an affine
variety on which the torus To acts simply transitively.) Given T, set

Treg = T Greg
Then the map

Treg X To\ G° - G

given by
(y, x) -* x'yx,

is an open immersion.
If T is a maximal torus in G, let H° be the centralizer of To in G°. We claim

that H° is a maximal torus in G°. To see this, fix an element y E Teg. According
to a result of Steinberg (Theorem 7.5 of [26]), the element y normalizes a Borel
subgroup B° of GO and a maximal torus H° of B°. In particular, a normalizes
the chamber in H° associated to B°. We can therefore find a point in this
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chamber which commutes with y. In other words, To contains a point which is
G°-regular. Consequently, HTO = H° and HT is a maximal torus in G°, as
claimed. We shall write

HT= HOT.

Define a parabolic subgroup of G+ over F to be the normalizer in G+ of a
parabolic subgroup of Go which is defined over F. We define a parabolic subset
of G to be a nonempty set of the form P = P+n G, where P+ is a parabolic
subgroup of G+ over F. A Levi component of P will be a set M = M+n P,
where M+ is the normalizer in G+ of some Levi component of P° which is
defined over F. We shall call such an M a Levi subset of G. Both P and M are
subvarieties of G which are defined over F. It is clear that

p0 = P+n GO
and

MO= M+n G.

Let Np denote the unipotent radical of P°. Then P = MNp. If P+n GO is a
minimal parabolic subgroup of Go over F, then P+ meets every connected
component of G+.
We shall use the symbol M, without comment, to denote a Levi subset of G.

Let Y(M) be the collection of parabolic subsets of G which contain M, and let
S(M) be the collection of Levi subsets of G which contain M. Any P E '(M)
has a unique Levi component Mp in o(M). As usual, we write Y(M) for the
set of P E J(M) with Mp = M. If L belongs to '(M), then M is a Levi subset
of L. We shall write YL(M), SL(M), and 9L(M) for the sets above, but with
G replaced by L. (In general, if our notation calls for a superscript L, we shall
often suppress the superscript if L = G.)

Let AM denote the split component of the centralizer of M in M°. It is a split
torus over F. Let X(M)F be the group of characters of M+ which are defined
over F, and set

a = Hom(X(M) F,R).
Then aM is a real vector space whose dimension equals that of AM. Observe that
AM c AMo and aM c aMo. It is convenient to fix a Euclidean metric II on the
space aM, which we assume is the restriction of a Weyl invariant metric on a
maximal such space. This provides us with a Euclidean measure on aM and also
on any subspace of aM.
Now, suppose that P e Y(M). We shall frequently write Ap = AMP and

a, = am. The roots of (P, Ap) are defined with respect to the adjoint action of
Ap on the Lie algebra of Np. We shall regard them either as characters on Ap or
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as elements in the dual space a * of a . As in the connected case, we can define
the simple roots Ap of (P, Ap) and the chamber a p in ap associated to P. Let Q
be a second set in Y'(M), such that P c Q. Then there are canonical embed-
dings aQ c a,, a C a , and canonical complementary subspaces a c a and
(a Q) * c a . Let AQ denote the set of roots in Ap which vanish on aQ. It can be
identified with the set of simple roots of the parabolic subset P n MQ of MQ. In
§1 of the paper [5] we introduced "co-roots"

{fiv: E Apo}.
For each a E Ap define

av = ERv,
where B ranges over the roots in Apo whose restriction to ap equals a. Then

Av, = {av: a E= Ap}
is a basis of a . For nonminimal parabolics, the co-roots are not really natural
objects, and the definition is somewhat arbitrary. However, one can see easily
that the function

p(A\) = vol(apG/Z(Ap ))1 n , A a* ,
aeAp

does not depend on how the co-roots are chosen. In any case, we take A p = { v:
a E Ap) and { w.v:a e A} to be the bases of (a )* and a G which are dual to
Ap and Ap, respectively.
We shall need the notion of a (G, M)-family. For connected groups (the case

here that G = GO), this was introduced in §6 of [6]. However, the definitions
and results of §6 of [6] rely only on the formal properties of the chambers ( ap:
P E 6(M)}. These properties hold for arbitrary G, so we shall quote freely from
§6 of [6] without being troubled that G is now more general. Thus, a (G, M)-family
is a set of functions {cp(,): P E PA(M)) of A E ia with the property that if P
and P' are adjacent, and A belongs to the hyperplane spanned by the common
wall of the two associated chambers in iaM, then cp(X) = cp,(X). Associated to
any (G, M)-family {cp(X)} is an important smooth function

CM(A)= £ cp(A)op()-1
PE.6(M)

on ia (Lemma 6.2 of [6]). In addition, for any Q E Y(M), there is a smooth
function c (X) on ia defined by formula (6.3) of [6]. As in [6], we shall let CM
and CQ denote the values of these functions at X = 0.
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From now on, we take F to be either a local or a global field of characteristic
0. We fix a finite set S of valuations on F. Put

Fs= HFn
v S

where Fv denotes the completion of F at v. Then Fs is a locally compact ring
which is equipped with the absolute value

II= HlXVV,, x EFs.
vC S

We can regard G, G°, and G+ as schemes over F. Since F embeds diagonally in
Fs, we can take the corresponding sets G(Fs), G°(Fs), and G+(Fs) of Fs-valued
points. Each is a locally compact space. Both G(Fs) and G°(Fs) can be expressed
as products over v E S of sets of Fv-valued points. Both are contained in G+(Fs).
We define a homomorphism

HG: G+(F) -- aG

by
e(HG(x),x) IX(x) , x E G+(Fs), X ( X(G),.

Similarly, for any M we have a homomorphism

HM: M+(Fs) - a,

which restricts to a function on M(Fs) or M°(Fs).
For each v E S, let Kv be a maximal compact subgroup of G°(FJ,) which is

admissible relative to M in the sense of §1 of [6]. Then K = I sK,1 is a

maximal compact subgroup of G°(Fs). If P is any element in Y(M),

G+(Fs) = P+(Fs)K = NP(Fs)Mp(Fs)K.
This follows from the connected case and the fact that P+ meets every compo-
nent of G+. For any point

x = nmk. n p E Np(Fs), mp E Mp(Fs), k E K,

in G+(Fs), define

Hp(x) = HMp(mp).
Set

vp(X, x) = e-X(Hp()), X aP c
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Then, for any x E G+(FS),
{vp(X, x): P E 9(M)}

is a (G, M)-family of functions of X E ia*. (See page 40 of [6].) It is the main
ingredient in the definition of a weighted orbital integral.

§2. Weighted orbital integrals. Suppose that y = Hlvsyv is an element in
G(Fs). For each v, we write Gy for the identity component of the centralizer of
yv in G°. It is a connected algebraic group, defined over Fo, which is reductive if
yv is semisimple. We regard

GY = H-GYV
voS

as a scheme over Fs. It is clear that

G,(F) = Gy(Fv).
yvE

In the special case that y belongs to G(F), as an element embedded diagonally
in G(Fs), Gy is just the identity component of the centralizer of y in G°, and in
particular is a group defined over F. In general, if M is given and P E 9(M), we
can obviously define group schemes M, and Py in the same way.

There is a Jordan decomposition for elements in G(Fs). Any y E G(Fs) can
be decomposed uniquely as y = au, where a is a semisimple element in G(Fs)
and u is a unipotent element in Go(Fs). If y belongs to G(F), then a and u will
belong to G(F) and Go(F), respectively. Define

D(y) = DG(y) = n det(l - Ad(av))o/,
yES

where a = Fn sa and g and gO are the Lie algebras of G and Go, respectively.
Observe that D(y) = Dr(y) if and only if y is G-regular. In general, D(y) is an
element in Fs which depends only on the G°(Fs) orbit of the semisimple
constituent of y. The absolute value

ID(y) = ID(yv) v, E G(Fs),
yeS

is an upper semicontinuous function of y on G(Fs).
We require a compactness lemma.

LEMMA 2.1. Given the semisimple element a in G(Fs), we can find an invariant
neighborhood A,, of 1 in Go(Fs) with the following property: for every compact
subset A of G(Fs) there is a compact subset 2 of G,(Fs) \ G°(Fs) such that

y-'Aoy n A = 0, y E G(Fs)\G0(Fs),
unless y belongs to 2.
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Proof. Clearly it is enough to prove the lemma for each of the groups G(F,,),
v E S. We may therefore assume that S contains just one v, and that F = F, = Fs.
We can also certainly restrict our attention to a fixed maximal torus To of Ga,
defined over F. The lemma is then equivalent to the following assertion: Given To
and a small neighborhood COT of a in

T(F) = aTo(F),
we can choose a compact 2 for every compact A such that if

y-~WTY A= 0, y e G°(F),
then the projection of y onto G(F) \ GO(F) belongs to E. If G = G°, this is a
result of Harish-Chandra. (See [12, Theorem 1] for Archimedean F and [14,
Lemma 19] for discrete F.) In the case of base change for real groups, the
assertion has been proved by Shelstad [23, Theorem 4.2.1].

Harish-Chandra's proof of Lemma 19 of [14] can actually be applied to the
general case. Let F' be a finite extension of F over which the torus HT, defined in
§1, splits. The map

Go(F)\ G(F) -_G(F')\ GO(F')
is a continuous injection, and its image is closed. (See pages 52-53 of [14].) It is
therefore enough to prove the assertion with F replaced by F'. But

G°(F') = B( F')K'
where K' is a compact subgroup of G°(F') and

BO = NHO

is a Borel subgroup of G° defined over F'. We therefore need only consider
elements y in B°(F').
We can write H° as a product To x So, where So is a split torus over F' which

is normalized by ad(a) and for which the endomorphism

S -- S-1 s1a , E So,

has finite kernel. We thus have a surjective map

N,(F') \ N(F') x So(F')- B°(F') \ B(F'),
with finite fibres. Suppose that

y = ns, n E N(F')\N(F'), s E So(F),
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and that

y-'TY n A' 0,

for a given compact subset A' of G(F). We have only to show that y lies in a
compact subset of

N(F') \ N(F') x So(F'),
which depends only on A'.

Observe that

y-lTY c N(F')T(F') . s-laso-.

Consequently, s must lie in a fixed compact subset IE of So(F'). This implies
that

n -1Tn

meets the compact set

{sA's-1: sEE}

It follows that there is a compact subset AC of N(F'), depending only on A',
such that

t-ln-ltNo(F')n n A, 4 0

for some t E oT. But we can then argue as on pages 53-54 of [14]. The
conclusion is that n lies in a fixed compact subset of N(F') \ N(F'). (This
may also be deduced from an integration formula similar to Lemma 2.2 of [1].)
As required, we have established that y lies in E2'S, a compact set which
depends only on A'. a

The space Cc(G(Fs)) of smooth, compactly supported functions on G(Fs) is
defined in the usual fashion. Our objects of study are distributions on G(FS)
which are indexed by elements y E M(FS). We can define them initially, how-
ever, only for elements y E M(Fs) for which My equals Gy. (If y = au is the
Jordan decomposition, this condition is equivalent to the equality of Mo and Go.)
Assume that y has this property. We set

(2.1) JM(Y, f) =ID(Y)I'11/f f(x x)M(x)dv dx,
M0(Fs)\G(Fs) (M°(Fs))

where

(M°(Fs)) = {m-lym: m M°(Fs)}
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and f is any function in Cf(G(Fs)). Implicit in the definition is a choice of a
G°(Fs)-invariant measure on MO(Fs) \ G(Fs) and an M°(Fs)-invariant mea-
sure on the orbit 9Y(M°(Fs)). The convergence of the integrals is assured by the
last lemma and the existence [20] of invariant measures on Oy(M°(Fs)). It is
clear that JM(y) depends only on the orbit OD(M°(Fs)). The choice of the
element y from the orbit allows us to combine our two measures into a
G°(Fs)-invariant measure on Gy(Fs) \ G°(FS). Since

vM(mx) = vM(x), m e M°(Fs),
we obtain an alternate formula

(2.1*) JM(, f) = ID(Y) i/2f f(x-'yx)vM(x) dx.
G (Fs)\G°(Fs)

Our definition is actually a mild generalization of the ones given in [6, §8] and [9].
In the earlier formulations, y was assumed to be a G-regular semisimple element
in M(F5). However, the integral formula given in §8 of [6] is of the same form as

(2.1*), and the two can be subjected to similar manipulations.
We should perhaps stress that although JM(y) is a distribution on G(Fs), it

depends directly on the field F. The dependence is through the Levi subset M,
or, more precisely, the split component AM. There is no need to include this in
the notation, however, as long as we remember to regard M as an object over F.
Weighted orbital integrals are of course generalizations of the invariant orbital

integrals JG(y). In this paper we intend to show that weighted orbital integrals
retain many of the properties of invariant orbital integrals. However, we might
first recall that there is one basic difference. The distribution J,(Y) is not in
general invariant. Suppose that y is any point in G°(Fs). Then for y and f as
above, and

fY(x) =f(yxy-),
we have

(2.2) JM(Y, f )= E JMMQ( ,fQy)-
QeF(M)

Here JMQ(y) stands for the weighted orbital integral on MQ(FS) and fQ y is the
function in CM(MQ(Fs)) defined by (3.3) of [6]. That is,

(2.3)

fQ y(m) = 6(m)/2ff f(k mnk) v(ky) dndk, m e MQ(Fs),
(Fs)

where SQ is the modular function of the group Q(Fs). Formula (2.2) was proved
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in Lemma 8.2 of [6] for y regular. For arbitrary y (with M. = GY, of course) it is
proved exactly the same way. In view of (2.2), the true analogues of the invariant
orbital integrals are really the invariant distributions introduced in §10 of [6]. We
shall return to these in another paper.
The distribution JM(y) does depend on the maximal compact subgroup K as

well as on M. However, suppose that y is an element in G(F). Then we have

(2.4) Jy-'My(ylyY, f) = JM(, f),
where the distribution on the left is taken with respect to the maximal compact
subgroup y- Ky. This follows immediately from the fact that vy-lM(y-1xy),
taken with respect to y-lKy, equals vM(x).

It will be useful to have notation to describe whether a function of y equals an
orbital integral near a given point. Suppose that a is a semisimple element in
M(Fs) and that 01 and <2 are functions defined on an open subset 2 of
aM0(Fs). We assume that the closure of Z contains an MA(Fs)-invariant
neighbourhood of a in aMA(Fs). We shall say that 1p is (M, a)-equivalent to <2,
and we shall write

(M, a)
1(Yr) - P2(Y)

if the difference is an (invariant) orbital integral on M(Fs) near a; that is, if there
is a function h E Cf(M(Fs)) and a neighbourhood U of a in M(Fs) such that

P1(Y) - 02(Y) = JM(, h), Y E Ln U.

Implicit in this definition is the assumption that the function

+1(Y) - 02(Y), y E Z n u,

depends on a choice of an M°(Fs)-invariant measure on Oy(M°(Fs)).
LEMMA 2.2. Suppose that Ma = GQ. Then for any f E Cc°°(G(Fs)),

(M, a)
JM(Yf) 0,) eaM,(Fs).

Proof. The function JM(y, f) is defined for all elements y in aMo(Fs) which
are sufficiently close to a. Indeed, for any such y we have G c G,, so that
Gy = My. We apply the formula (2.1*). Decomposing the integral into a double
integral over

M,(Fs)\M° (F) x M°(F) \ G°(Fs),
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we obtain

JM(Y,f) =D(y)'l/21 J fFs)\GOFf(F)M (yX y)vMy) dxdy.
M°( Fs)\G°( Fs) M( Fs)\M( Fs)

By Lemma 2.1, we can restrict y to a compact set which is independent of y. The
lemma then follows from the fact that

ID(y) 11/2DM() -1/2, yE M(Fs),
is an M°(Fs)-invariant function which is smooth for y near a.

Let AM,reg be the set of elements a E AM such that Ga is contained in M°. It
is an open subvariety of AM which is defined over F. Suppose that y is any point
in M(Fs). Then for any a E AM,reg(Fs) which is close to 1, ay will be a point in
M(Fs) with the property that May = Gay. The distribution JM(ay) is therefore
defined. We propose to investigate its behaviour as a approaches 1.

§3. Polynomials on unipotent orbits. Our goal is to define distributions JM(Y)
when y is an arbitrary orbit in M(FS). We shall later use a descent argument to
reduce the problem to the case of unipotent classes. In the next two sections we
shall study some functions that arise from this special case. In these sections we
assume that GO = G. We shall also assume that S contains one element and F is
local, so that F = Fs.

Since GO = G, M is a Levi subgroup of G. Let /m denote the Zariski closure
in M of the set of unipotent elements in M(F). It is an algebraic variety which is
defined over F. Notice that 9M is a union of unipotent conjugacy classes in M.
We shall write (kMf) for the set of those conjugacy classes in q/M (over F) which
have a rational representative. (This notation is slightly different from that of [3].)
For any U E (/M) it is clear that the set U(F) = M(F) n U of rational points
is Zariski dense in U.

Suppose that P1 belongs to 9(M). We shall write N1 = Np,, and we shall write
rP for the set of reduced roots of (P1, AM). If a E AM and u E T, then

n -+ (au)(au)n, n G N1,

is a polynomial mapping from N1 to itself. It is invertible if a belongs to A, reg
or equivalently, if the function

(3.1) Hn (a, - a-)

does not vanish. Consequently, for any such a and any unipotent element

rT = Uv, U EC M, V G Nl,



THE LOCAL BEHAVIOUR OF WEIGHTED ORBITAL INTEGRALS 237

in P1, we can define n E N1 uniquely by

(3.2) an = n-laun.

The function (a, r) -) n is the product of a negative power of (3.1) with a
morphism from AM X VMN1 to N1 which is defined over F. We shall exploit the
connection with finite-dimensional representations to study vp(X, n) as a func-
tion of a and vr.
There is a natural embedding of the character lattice X(AM) into a . We

write Wt(aM) for the set of elements in a*t which are extremal weights of
irreducible finite-dimensional F-rational representations of G. Then Wt(aM) is a
subgroup of finite index in X(AM) and in particular a lattice in a*. For each
w E Wt(aM) fix (A,, V,, 4,, I| * I), with A, an irreducible representation of G
on a vector space V,, defined over F, o,, an extremal vector in V, with weight w,
and 11 II a norm (height) function on V,(F) which is stabilized by K and for
which a,4 is a unit vector. Suppose that for a given P E .(M), w is P-dominant.
That is, w is nonnegative on the intersection of a with the chamber a ~ of P.
Then for any point

x=pk, p E P(F), k E K,

in G(F) we have

Up(w, x) = e- (Hp(x)) =IIA(p1))
It follows that

(3.3) vp(, x) = lA(x-1),lO.
Now A,,(n-1), is a polynomial in n with values in V,. It follows that vp(o, n),
as a function of (a, r), is the product of the absolute value of a negative power of
(3.1) with the norm of a polynomial in (a, ~r) with values in V,. (By polynomial
we mean of course a morphism between algebraic varieties.)

Suppose that P is a reduced root of (G, AM). Let Mg be the group in 29(M)
such that

am = {H E aM: /(H) = 0).
Then dim(AM/AM) = 1. Let P0 be the unique group in OM(M) whose simple
root is /. We assume that the groups P, P1 E S(M) are chosen so that
P n M =--Pa and P1 A Ml = Pu. Suppose that r = uvfS, where vS is restricted
to lie in NE = N1 n Mw. Then if

asrt = n laun,

as in (3.2), n, will also lie in NA. As a function of a, ne is invariant under AMo.
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Choose w E Wt(aM) such that o(fiv) is positive. Then

Vp((w, nf) = vp(w, n) = IA,(n1)
Any rational function on (AM/AM) has a Laurent expansion in (a - a-:)
about a = 1, so we can write

Ao,(n')0 = E Ck(T)(at - a-f)-k
keZ

for a near 1. The coefficients ck(Tr) are polynomials from /iMNf to V, which are
defined over F. They vanish for almost all positive k.

Consider the restriction of the functions ck('ST) to a set UN#, where U is a class
in (/M). For each u E U(F), let p(/f, u) denote the product of w(fv)-1 with
the largest k such that ck does not vanish identically on UNtO. Notice that Co(7tf)
does not vanish identically, since its component in the direction of l, is 1.
Consequently, p(f3, u) is nonnegative. Define a function

(3.4) rp(X, u, a) = Iap - a-lP(',")x(fl), X e aMec
It depends only on the conjugacy class of u in M. The number p(#/, u) is
evidently characterized by the property that the limit

lim r,(X, u, a)up(X,nv )a-K n

exists and does not vanish identically in 7r E U(F)NB(F). Therefore, p(/f, u)
and r,(X, u, a) are both independent of w. We shall later need to know that

(3.5) r,(X, u, a) = rf(-X, u, a).
This fact is easily deduced from the existence of an involution on G which acts as
(-1) on AM. It also follows from the results of Langlands in the next section. We
note, finally, that by (3.5) and our definition,

p(fl u)O(V)
is an integer for any w E Wt(aM).
Now, as before, assume that Pi is an arbitrary group in 9(M). The functions

n rT(X, u, a), PE 9(M),

form a (G, M)-family of the special sort considered in §7 of [2]. Assume that a,
rT = uv, and n are related as in (3.2), and set

(3.6) p(X, a,)= ( I r,(X, u, a))vp(X, n)
pe Mr . Mr
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for P e9P(M). These functions also form a (G, M)-family, since they are
defined as products from two (G, M)-families. Note that for any k in

KM= Kn M(F),
we have

(3.7) wp(X, a, k-lrk) = wp(X, a, 7r).
Suppose that w is any element in Wt(aM) which is P-dominant. By (3.3) we have

wp(c, a, r) = |W(a, r) ||,
where

(3.8) W.(a, r) = ( (a a-8)P(eu)(<A) A (n-l),,
For any class U E (0M) we shall let U+ denote the Zariski closure of U. (We had
best not use the usual notation for closure, since P1 = MN1 denotes the parabolic
opposite to P1.) The function

W,,(a,rT) (a,a, ) E AM,reg X UN1,

is the product of a negative power of (3.1) with a polynomial from AM X U+N1
which is defined over F. In general, wp(X, a, r) is the exponential of the value of
X at some vector in a . It follows that if {wo,..., w,} is any subset of aM
consisting of P-dominant elements in Wt(a ), and

A=-inlXiWi, Xi C,

then

(3.9) wp(X, a, Tr)= Fi IW,,(a, )l i
i=l

Fix the class U E (qM). The next lemma is essentially a consequence of our
definitions.

LEMMA 3.1. Suppose that P E 9(M) is adjacent to P1. Then for all 7r in an
open dense subset of U(F)N1(F), the limit

lim wp(X, a, r)
a- 1

exists and is nonzero.

Proof Since P is adjacent to P1, there is a unique root / in A p n Ap. Define
Me and P, as above. Then P n MP = Pg and P1 n MB = P. Write

77 = 7T'Op, 7T3 E UNT, P' E N, n Np.
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If n is defined by (3.2), and

n = non', n NE Np , ' E N, Np,
then

anTm = n- aun,,

as above. Since P/ is also the unique root in 2p n ZP, we have

we(X, a, 7r) = r#(X, u, a)vp(X, n)
= r(X, u, a)vp(, n).

We have seen that for generic rT this function has a nonzero limit at a = 1.

§4. A technique of Langlands. In this section we shall extend Lemma 3.1 to

any pair of groups P and P1 in 9@(M). The results here are due to Langlands.*
They hinge on an application of Zariski's main theorem to the
Grothendieck-Springer resolution (or rather, to its analogue for arbitrary para-
bolics). We continue with the assumptions and notation of §3. The main result is

LEMMA 4.1. Suppose that P is any group in P(M). Then for all ST in an open
dense subset of U(F)N1(F), the limit

lim wp(X, a, 7)
a-l

exists and is nonzero.

Proof The lemma will be proved by induction on dist(P, P1), the number of
singular hyperplanes which separate the chambers of P and P1. It follows from
the definition that wp1(X, a, 7) = 1. Assume then that P and P1 = MN1' are
adjacent, with

dist(P, P1) = dist(P', P) + 1,

and that the lemma is valid with P replaced by PI. To prove the lemma, we must
show that for Sr in an open dense subset of U(F)N1(F), the function

(4.1) wp(X, a, 7r)wp;(X, a, 7r)
has a nonzero limit at a = 1.
Assume that a, 7r = uv, and n are related as in (3.2), and write

n = m'n'k', m' E M(F), n' E N1'(F), k' E K.

Set u' = (m')-lum' and define the element ar' = u'v' in U(F)N1'(F) so that a,

*I would like to thank Langlands for communicating his unpublished results to me.
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Ir', and n' are related by the analogue of (3.2). Then

(4.2) ar = n-1aun = (k')-1(n')-au'n'k' = (k')-~ar'k'.
Let Bf be the unique root in Ap n AP;. The function (4.1) equals

vp(X, n)vp;(X, n)-r(X, u, a)

= (vp(A, m')vp(X, n'))(vpL(X, m')vpl(A, n')) -rs(X, a', a)
= r(X, u', a)vp(X, n')

= Wp(X, a, '),
since vp;(X, n') equals 1, vp(X, m') equals vp;(X, m'), and rf(X, u, a) depends
only on the conjugacy class of u. Now Tr' is uniquely defined as an element in
(U(F)N1(F))KM, the space of orbits of K = K n M(F) in U(F)NJ1(F). It
depends only on the image of wr in (U(F)N,(F))KM. Therefore, (a, rt) -- r'
determines a continuous mapping
(4.3) AMreg(F) X (U(F)N,(F))-M (U(F)N1(F))KM.
If we can show that r' extends to a reasonable function of a in a neighborhood
of 1 in AM(F), our lemma will follow from Lemma 3.1.

Let UG be the unipotent conjugacy class which is obtained by inducing U to G
in the sense of Lusztig-Spaltenstein [19]. It is defined as the unique class in (q/G)
such that the set

UP = UG n UN,
is dense in UN1. It is independent of P1. (See [19].) Write (UPI(F))KM for the
space of KM orbits in UP1(F).
LEMMA 4.2. The mapping (4.3) has a continuous extension to an open subset of

AM(F) X (U(F)N1(F))KM which contains {1} X (UP1(F))KM. It maps the latter
set homeomorphically onto (UP,(F))KM.

Proof. The idea of the proof is to define the map (a, zr) -* 7' algebraically by
means of a birational correspondence. Let y be the set of pairs (g, Pjh) in
G x Pi \ G such that g belongs to the parabolic subgroup ph = h-lPh. It is an
algebraic variety which is defined over F. For each w E Wo, the restricted Weyl
group of G on a maximal split torus which contains AM, there is an affine
coordinate system P1 X N1 - yS given by

(p, n) -* (pw, P1iiw), p e P1, nE N1.
The Bruhat decomposition insures that these coordinate patches cover S.
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If (g, P1h) is any point in Y, gh- = hgh-' is a point in P1 which is
determined up to Pl-conjugacy. Its projection onto M determines a conjugacy
class in M. Let y(U) be the subvariety of points (g, P1h) in Y such that the
associated conjugacy class in M belongs to UA,. By taking the semisimple
constituent of this class, we get a map from Y5(U) onto AM. Observe that the
intersection of Y'(U) with any of the coordinate patches above equals
(U+AMN1) x N1. Clearly U+AMNl is an irreducible F-closed subset of P1, so
Y(U) is indeed a closed subvariety of Y which is defined over F. Notice also
that the projection onto the first factor gives a morphism Y--, G. We therefore
obtain a morphism y(U) -, G x AM which is defined over F.

Let Y'(U) be the variety defined as above, but with P1 replaced by P{, and
define W(U) as the fibre product

@(U)
y(U) 5'(U).

\ /
Gx AM

Let Y(U)reg, y"(U)reg, and W(U)reg be the Zariski open subsets of Y5(U),
£Y'(U), and W(U), respectively, which map to G X A,,reg. Notice that the
inverse image in Y(U)reg of a point (g, a) in G x AM re is

{((au), Plh): u E U+, h e P \GG(au)h = g.

This set is empty if g is not conjugate to an element in aU+. However, if g is
conjugate to an element in aU+, the set contains exactly one point as follows
from the fact that the centralizer of au is contained in M. Similar remarks apply
to the inverse image of (g, a) in Y'(U)reg. Consequently, the maps '(U)reg -
y(U)reg and W(U)reg - "'(U)reg are isomorphisms. Composing the second of
these with the inverse of the first, we obtain an isomorphism from (U)reg to
Y'(U)reg which is defined over F. It is the algebraic realization of (4.3).

Let '1(U) be the closure of W(U)reg. It is a closed (irreducible) subvariety of
Y(U) X Y'(U), and its projection onto each factor is a birational map. Let
Y1(U) be the set of points in Y(U) at which the resulting birational transforma-
tion from 5Y(U) to Y'(U) is defined. It is an open subset of Y(U) which is
defined over F and contains Y(U)reg. The birational transformation induces an
isomorphism from 51(U) onto a Zariski open subset Y1'(U) of YP'(U) which is
defined over F. We shall show that 1J(U) contains the set

(4.4) {(P, P1): p UP }.
We shall use Zariski's main theorem ([16], p. 280). Since P{ \ G is a projective

variety, the morphism Y'(U) -- G x AM is projective ([16], p. 103). Therefore,
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the morphism '(U) -, y(U), which is just obtained by a change of base, is also
projective. In particular, the image of '1(U) in 9Y(U) is closed in Y(U) and
hence equal to 9'(U). Zariski's main theorem asserts that the set of points in

"'(U) corresponding to any normal point in £Y(U) is connected. Take any point
(p, P1) in the set (4.4). Such a point is smooth in M(U) and hence normal. Since
UPl and UP are both contained in UG, we can write p = (p,)h for elements
p' E UP and h E G. Choose any point in Y'(U) which corresponds to (p, P1).
It equals (qx,(PT)x) for elements q e U+N1 and x e G such that p = qx.
Consequently, q = (p,)hXl. By Proposition 3.2(b) of [24], q belongs to UN1
rather than just to its closure. Part (e) of the same proposition then asserts that
hx-' belongs to ziP, with {zl,..., z,} a fixed set of representatives of the
connected components of the centralizer of p' in G. It follows that our arbitrary
point equals (( p,)h, (Pi)z-h). In other words, the set of points corresponding to
(p, P1) is finite. By Zariski's main theorem, the set consists of exactly one point.
Therefore, the correspondence is defined at (p, P1).
We have shown that the isomorphism

y'(U)reg - Y'(U)reg
has a continuous extension to an open subset of Y(U) which contains (4.4), and,
moreover, that (4.4) is mapped isomorphically onto

{(P, P '): p EUP}.
A similar assertion holds for the associated map between F-valued points. Now
suppose that a E AM,reg(F) and Ir E U(F)N1(F). Then (ar, P1) is an F-valued
point in Y(U)reg. Its image in Y'(U)reg is

((ar ) k',(P) k'),
where r' e (U(F)N1(F))KM and k' E KM\K are defined by (4.2). To recover
7T', project onto the second factor and recall that

(P \ G)(F) = P1(F) \ G(F) KM\ K.

This gives k' and hence yr', by conjugation of the first factor. Lemma 4.2 follows.

We can now complete the proof of Lemma 4.1. In the expression (4.1), take 7r
in UP1(F), an open dense subset of U(F)N1(F). We have already seen that (4.1)
equals wp(X, a, nr'). Lemma 4.1 therefore follows from Lemma 3.1, Lemma 4.2,
and the fact that a composition of continuous functions is continuous. o
Lemma 4.1 has a formulation in terms of the functions W,(a, r) defined in §3.
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COROLLARY 4.3. For each w E Wt(a M) the function
W ( a, 7r), (a, 7) Areg X UN1,

is the restriction to AM, reg X UN of a polynomial from A X U+N1 to V, which is
defined over F and does not vanish at a = 1.

Proof. We already know that W,(a, r) is the product of a polynomial with a
negative power of the function (3.1). Choose P E 9(M) so that o is P-domi-
nant. Then

I||W(a, 7) = wp(w, a, r).
This has a nonzero limit at a = 1 for all vr in an open dense subset of
U(F)N1(F). But any such set is Zariski dense in U+N1. The corollary follows. E

§5. Statement of Theorem 5.2. We now return to the general setting in which
F is either local or global. Let y be an arbitrary element in M(Fs), with Jordan
decomposition au. Then a = Il,Uo, with each a, a semisimple element in
M(F,), and u = n-lsu, with each uv a unipotent element Mo,(F,). Our
definition of weighted orbital integral applies only when Gy equals MV, which of
course is not generally the case. We must take an element a = n, sa , in
AM reg(Fs) which is close to 1. Then ay is an element in M(Fs) with Gay = M,y
so that JM(ay) is defined.

For each v, a. belongs to AM reg(Fv), a set which is contained in AM ,reg(F,).
We therefore have the function r#(X, uv, a,) introduced in (3.4) (but now with
(Go, F,) in place of (G, F)). For each P E 9(M), define

(5.1) rp(X, y, a)= nH Hr(X, u, at),, E aM,
tIeS #

where /3 ranges over the reduced roots of (Po, AM ). The restriction of any such
/ to aM c aM belongs to Ep, so

{rp(X, y, a): P E (M)}
is a (G, M)-family of the special sort considered in §7 of [2]. It depends only on
the M°(Fs)-orbit of y in M(Fs).

Suppose that L E £S(M). There is certainly an (L, M)-family
{rR(X, y, a): R E L(M)}

obtained by letting (L, M) play the role of (G, M) in the definition above. On
the other hand, for any Q E 9(L) we can define an (L, M)-family { rRQ(, y, a))
by

rQ(A, y, a) = rQ(R)(X, y, a), R E L(M),
where Q(R) is the unique parabolic subset in 9(M) which is contained in Q and
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whose intersection with L is R. These two (L, M)-families are not the same, but
they are closely related.

LEMMA 5.1. For any Q E 9(L),

rQ(y, a) = r(y, a).

Proof The number on the left equals

lim( E rQ(X, , a)OR()X.-:\OR ~.yL(M)

by definition. Note that rR(X, y, a) equals the product of rR(X, y, a) with

n Hr-r(½x, uo, av),
veS a

in which a ranges over the roots of (Q(R),, A ) which do not vanish on a L
This second factor depends on Q but is independent of R. Its value at X = 0 is 1.
Therefore, rQ(y, a) equals

lim( E rR(X, ,a)R(X)-),X o\ RE-gL(M)

which is just rmL(y, a). O
We can now state Theorem 5.2. It provides the definition for JM(y) and is one

of the main results of the paper.
THEOREM 5.2. For each f E Cf(G(Fs)), the limit

lim E rM(y, a)J(a, f)a-*1 LES(M)
exists.

The proof of the theorem will be given in the next two sections. It reduces to a
question concerning integrals over finite regions of Euclidean space of logarithms
of polynomials. A key ingredient is Corollary 4.3. Let us see how we will be led to
this result.

First, we should recall a familiar construction from the theory of unipotent
classes. (See [25].) Given a valuation v in S, let m be the Lie algebra of
Mv = MM. By the Jacobson-Morosov theorem there is a Lie algebra homomor-
phism

Tv: s((2) m,,
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defined over F,, such that

UV = exp(I(0 o)).

Set

H = (1 0
H= %0 -1o)

and

m,1i = { E mv: ad(H)~ = i i},i Z.

Then ( m0 i is a parabolic subalgebra of m, . Define

Zv= {Pv vPv})
where pv ranges over the normalizer in Mv(F,) of ei>o m,,l(F,). It is known
that if

Uv= m.i,
i>2

then ZV is an open subset of exp(uv(Fv)). (See, for example, Lemmas 1 and 4 of
[20].) Suppose that KM is a good maximal compact subgroup of M,,(F,). Then

(ZV)KM'= {k-'kV,:kv e KM,, V EZ,, }
is the conjugacy class of uv in MV(FV). R. Rao [20] has given an explicit
description of the Mv(Fv)-invariant integral on this conjugacy class. It is of the
form

f f| IJV(XV)lIV2 o(k-exp(Xv)kv) dXVdkv,v(.e C(M(F,))log(Z )

where dXv is a Haar measure on uv(Fv) and J, is a polynomial on u ,(F,) which
is defined over Fv.
We shall write Zs = n,-sZ, and KMO = HnvesKM. If

= nexp(X), Xv Eu,,(F,),
,ES

set

d = n (IJ(X,) 2 dX).
UeS
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Then the invariant measure on the M(Fs)-conjugacy class of u is given by

f fz(k-d k) ddk, E C,(M(Fs)).
For each v E S, let K0 be a maximal compact subgroup of Go(Fv) which is

admissible relative to Mo, in the sense of §1 of [6]. Set K0 = FIHv sK. We can
assume that the group KM above equals Ko n Mo(FS). For each P E S(M)
and v E S, the group Pv = Pa belongs to 9(MV), and

Go(F,) = Pv(Fv)K,.
If x = Vsxv is any point in Gy(Fs), set

(5.2) vp(X, , x) = n v(X, x)), P E .(M), X E a.Mc.
yeS

If

Ko = K n Go(Fs),
then

p(Xa,x,x) = Up(X, x).
In any case, (5.2) is a (G, M)-family and we have the function

L(o, x) = lim E vQ(X,a,) ,OQ(X, X iaC,
X X· ° LX--.O Qe(L)

associated to any L e Y(M). Now, fix R = flVsRV, where for each v, RV is a
parabolic subgroup of Go with Levi component MV. Let n = HvE sn and
f = r-IEs v be elements in NR(Fs) and Zs, respectively. As in (3.2), we define
an element rT = flv s7 in

Hs = ZsNR( Fs)
by

a Vl = n la vnv v e S,
so that

(5.3) asr = n-lan, v E S.

In the proof of the theorem we shall be confronted with the expression
(5.4) E r(y, a)L(o, n).

L ( M)

We must be able to rewrite it in terms of Tr.
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By Lemma 5.1 and the formula given by Corollary 6.5 of [6], (5.4) equals the
number

(5.5) lim ( E rp(X, y, a)vp(X, a, n)p(X)-1)X-0 peg(M)

obtained from a product of (G, M)-families. Now

rp(X, y, a)vp(X, o, n) = ( r(,2( V a) vp,(X n.),

since r(½X, u , a,) depends only on the M conjugacy class of uv. It follows
from (3.4) and (3.5) that

l rO( XA, )Vav)2e

= ( 1I ,(X, r))(
,Uv, av)).

M P Mr an Mr

Then, by the definition (3.6),

rp(X,y, a)vp(, a, n)
is the product of

(5.6) wp(X, a, ar) = n wp(X, av, rv)
veS

with

n nr r(2, uv, a,).
vES aERr

This last number is independent of P and equals 1 at X = 0. It therefore gives no

contribution to (5.5). We have established
LEMMA 5.3. For n and qr related as above,

n rj (y, a)vL(, n)
LeS(M)

equals the number

wM(a, ar)= lim( wp(, a, 7r)Op(X) -.
X-O Peg(M) I
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Define the set Wt(aM) of extremal weights exactly as in §3. For any v there is
a natural map w - wO from Wt(aM) into Wt(a M). Given any P E £(M),
suppose that { o,..., } is a basis of aM of P-dominant elements in Wt(aM)
and that

X = 2 lin, Xi E C.

Then by (3.9),

(5.7) wp(X, a, or) = rI Wi.(, v )
oeS i=l1

LEMMA 5.4. For any a E AM, reg(Fs) and r E Is, we can write wM(a, air) as
a finite sum

re, n alog||W(a ,v)1)
where each l is a finite disjoint union ofpairs

(OW, v), o e Wt(aM), v E.S.

Proof The lemma follows from (5.7) and a general property (formula (6.5) of
[6]) applied to the (G, M)-family

{wp(X, a, ar): P E 9(M)}. °

In the next section we can apply Corollary 4.3 to each function W, (a , rTv).
The variable r, lies in ZVNRv(Fo), which is an open subset of exp(uv(Fv) +

nR,(F1)). (nR is the Lie algebra of NR.) Let U, be the conjugacy class in (qM)
which contains Zv. Since exp(uv + nR,) is Zariski closed in U+NRV, the restric-
tion to exp(uv + nR) of a polynomial on U+ remains a polynomial. On the
other hand,

{k-lexp(X,)k,: k, E K0 n Mv, XeuE + nI}
is Zariski dense in Uv+NR. It follows from (3.7), (3.8), and Corollary 4.3 that the
function

(a,, Xv) -- W(a,,exp(Xv)),
can be extended to a polynomial in ao E AM and Xv e (Uv + nR ) which is
defined over Fv and which does not vanish identically at aV = 1.

§6. Reduction of the proof. We shall reduce the proof of Theorem 5.2 to an
elementary result (Lemma 6.1), whose verification we will postpone until §7. At
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the end of this section we shall give the general definition of JM(y, f) and then
state two corollaries of Theorem 5.2.
We are required to show that the expression

(6.1) E rM(y, a)JL(ay, f a E AM,reg(Fs),
LE-(M)

has a limit at a = 1. Since Gay(Fs) = My(Fs), we can write (6.1) as

D(ay) 11/2
f f(x-lax)( rm(y a)vL(X) dx.
(MFFS)G°(FS) LE.(M)

The Jordan decomposition of ay is aa u. It is clear that

M,(Fs) c M,(Fs) Gc(FS) c G°(Fs).
We decompose the integral into a triple integral over (m, x, y) in

(M,(Fs) \ M,(F)) x (M,(Fs) \ Go(F)) x (G,(S) \ G°(Fs)).
The expression becomes

D(aa) l/2 fff( ax-xam-'umxy)( r r(, a)vL(XY) dm dxdy
LeE.<Ef(M)

The integral in m gives the invariant integral over the conjugacy class of u in
M,(Fs) which, as we remarked in §5, can be expressed as a double integral over
(, k) in Zs X KM. Since

L(xy) = VL(kxy), k E KM,

the integral over k may be incorporated into the integral over x. Therefore (6.1)
equals

ID(aa) 2 f f( /(y- x-a'xy)( E rM(y, a)vL(xy)) d;') dxdy.
J S~~~LJeF(M)

For any Q E Y(M) and x E G,(Fs), let KQ,(x) be the point in K, such that
xKQ (x)-l belongs to Q,(Fs). It is uniquely determined modulo left translation
by K, n MQo(Fs). Clearly

vu(X, xy) = vP(X, a, x)v,(X, Kp(x)y), P E 9(L),
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a product of two (G, M)-families. By Lemma 6.3 of [6],

UL(XY)= E vQ(a, x)v(KQ(x)y),
Qe(L)

where vQ is defined by the formula [6, (6.3)]. Consequently, (6.1) equals the
integral over y in G,(Fs) \ G°(Fs) and the sum over Q E J(M) of the product
of ID(ao)l /2 with

(6.2) f( f(yf- ax-arxy)

x( rL(y,a)vQ(a,x)vQ(KeQ(X)y)) ddx.Mo(Fs)\Go(Fs) ZL
L.fMQ(M)

Suppose for the moment that Q E Y(M) is fixed. If v E S, the Levi compo-
nent of Q, = Qo contains MV. Let RV be a parabolic subgroup of the former
group with Levi component the latter group, and set R = n, sRV. Since

M,(Fs) \ G,(Fs) = NR(Fs) X NQo(FS) X Ko,
we can decompose the double integral over x and D in (6.2) into a multiple
integral over (i, n, nQ, k) in

Zs x NR(FS) X NQ(Fs) x K,.
The integrand becomes

f(y- ak-Xn1n- annQkY)VQi(ky)( rL(y, a)vL(a, n))
L.rEMQ(M)

The sum in the brackets immediately suggests Lemma 5.3. Indeed, if we define

nIQ = ZsNR(Fs)
and set

nQ n- laannQ = ar vQ, rE H Q E NEQ(Fs),
then ', n, and sr are related by the equation (5.3) (or, rather, by its analogue with
G replaced by MQ). Lemma 5.3, applied to MQ instead of G, tells us that the sum
in the brackets wM(a, ar). Therefore, we shall rewrite the triple integral over
(S, n, nQ) as a double integral over (,r, vQ) in IIQ x NQ(Fs). (The measure de
on sIQ is of course the product of our measure d' on Zs with the Haar measure
on NR(Fs).) This final change of variable introduces a Jacobian

ID-(a·) 1-l2SR(a^/2,(a' 12.
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The upshot of all the discussion is that (6.1) equals the product of

(6.3) [DG(aa)DG(a)- 11/2

with the integral over y E Go(Fs) \ G°(Fs) and the sum over Q E Y(M) of

(6.4) SR(a)/2 (a) w Q(a (a, aor) d7r,

where

( (m) = SQ (m)l/)2 KJ| f(y-lok-'mnky)vQ(ky) dndk
QN (Fs)

for any m e MQ (FS). It is clear that I y is a function in C(MQ (Fs)) which
depends smoothly on y. We must show that the entire expression has a limit at
a = 1.
The limit at a = 1 of (6.3) exists and equals IDG(a)l1/2. To deal with what

remains we apply Lemma 2.1. The points

k-larnk, k K,, nt E lQ nNQo(Fs),
will all belong to a given invariant neighborhood A, of 1 in G0(Fs) as long as the
element a E AM,reg(Fs) is sufficiently close to 1. This we can always assume. We
restrict y to a fixed set of representatives of Go(Fs) in G°(Fs). Then Lemma 2.1
tells us that (6.4) vanishes unless y belongs to a fixed compact set. We are left
with showing that (6.4) approaches a limit uniformly for y in compact subsets.
The function wQ(a, aor) which occurs in () n(6.4) can be written as a finite sum

CJ n log|ll WQ(avX) 1)

where each Q is a finite disjoint union of pairs (w, v)E Wt(aM) x S and 7r

equals flvEs7r. (This assertion is Lemma 5.4, with G replaced by MQ. The
notation WS(a , irv) refers to the analogue for MQ of W, (av, %)).) The integral
in (6.4) is over

RIs = ZSNR(F) = (ZVNR (Fv)),yeS

an open subset of

n exp(u,(Fv) + nR(Fv)),
yeS
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where nR~ is the Lie algebra of NR. For each v E S, let {Xv, ,..., Xv, d be a
basis of the Fv-vector space uv(Fv) + n R(Fv). Then for w E Wt(aM),

(XV,1,..., X,d) -> WQ(avexp(xvXv,l + . +XdXod ))
is a polynomial in dv variables with coefficients in VO(Fv).

Fix a finite set Q as above. For any (w, v) E 2, let ((Fvdv, VW) be the set of
polynomials in dv variables with coefficients in Vo(Fv). We give B(Fvd1, V,) the
direct-limit topology inherited from the finite-dimensional subspaces of poly-
nomials of bounded degrees. Let .+(Fvdu, V, ) denote the set of nonzero ele-
ments in A(Fvdv, VT ), and define

B (a)= E 9+(FdSVj).
(w, v) eQ

We shall set Fd = Hnes(F1d), where d = (dv: v E S). Let CC(Fsd) be the space
of continuous (complex-valued) functions on Fs5 of compact support. It is the
topological direct limit of subspaces (equipped with the usual supremum norm)
consisting of functions supported on a given compact set. We state the next
lemma in terms of the dual space CC(Fsd)*, which we equip with the weak-*
topology.
LEMMA 6.1. Let 0 be an open subset of Fd. Then if

P= P,,v p ,v E g+(FdjSV,),(S, v)e a

is an element in 9+(2) and

XP(x) = Hn(lgog(Xo)11))
(o, v)ea

with x = rIvsv in 0, then each integral

(f) = f(x)Xp(x) dx, E Cc(F),
is absolutely convergent. Moreover, p -o X is a continuous function from 9+(2) to
Cd(Fsd)*.
We shall prove this lemma in the next section. Assuming it for now, let us

finish the proof of Theorem 5.2.

Let X be a small neighborhood of 1 in AM(FS). If

do

X= n X = nH nH,i,
veS veS i=1
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set

e(x) = e(x,) = fI exp(xlXv, +' +XvdXvd ).
ES v S

The expression (6.4) equals

f8R(a) j(X)Q ,y(ae(x))wQ (a, ae(x)) dx,

where 0 is an open subset of Fsd and

j(x)= H JV,(v,,1Xv1 + +Xv, dXvd,) vI

a continuous function on Fd. Now for Q as in the lemma,

ED Wy^(aV, e(xv)), a = a, E X,
(o,v)e2 ueS

is a continuous function from X. to Y+(Q). This follows from Corollary 4.3.
(See the remarks following Lemma 5.4.) Lemma 6.1, combined with the formula
above for wQ(a, ar), then tells us that the function which maps a E .A to the
linear form

(x)wQ(a, ae(x)) dx, E Cc(F),
in Cc(Fsd)* is continuous. On the other hand, the map

(a, y) - 8R(a)j(*.)Q,y(ae(.))
is a continuous function from 'x G°(Fs) to Cc(Fd). Therefore, since the
natural pairing on CC(Fd) x Cc(Fd)* is continuous, the expression (6.4) is a
continuous function on Xx G°(Fs). Having agreed that the integral in y can be
taken over a compact subset of G°(Fs), we see that the original expression (6.1)
can be extended to a continuous function of a E X. This is just the assertion of
the theorem. E

Having proved Theorem 5.2 (modulo Lemma 6.1), we can define

(6.5) JM(,f) = lim E rm(y, a)JL(ay, f)
a-1 LE'(M)

In the special case that Gy = My, we have

rL(a) 1( if L M,
M\Y -[Q, ifl M,
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and our definition coincides with the original one given in §2. It is clear that
JM(y) depends only on the M°(Fs)-orbit of y. In our notation, we shall
sometimes identify y with its M°(Fs)-orbit. More generally, if r is a finite union
of M°(Fs)-orbits {yi}, we shall write

JM(r, f) =EJM(if).
i

It is convenient to introduce the notion of an induced space of orbits. Given
the element y E M(Fs), define yG to be the union of those G°(Fs)-orbits (yj) in
G(Fs) which for any P e 9(M) intersect yNp(Fs) in an open set. This is a
simple generalization of the definition in [19]. There are only finitely many such
G°(Fs)-orbits, and they all belong to a single geometric orbit. If y is G-regular,
yG consists of one orbit, that of y itself. If y is unipotent, each y, is contained in
the induced geometric conjugacy class of y. The induced space yG can also be
characterized analytically by a formula

(6.6) JG(y, f) = limJ(ay,f)f), Cc(G(Fs)),a-.1

where a ranges over elements in AM reg(Fs) which are close to 1. To establish
this formula, note that the right-hand side equals

lim IDG(ay) I1/2 / f(x-lm-'laymx) dmdx.
a-1 M (FS)\GO(FS) (FS)\MO(FS)

If P E £9(M), this in turn equals

lim DM(y) 1/2Sp(ay)l/2 f f f kak-m-ymnk) dm dn dk
a-1 KNP(Fs) y(Fs)\M0(Fs)

= IDM(y) l/28p(y)l/2 fN( fMFf(k-lm-lmnk) dmdndk,
(KNpFs) (Fs)\M (Fs)

by a standard change-of-variables formula. This last expression is obviously the
integral of f over the invariant measure on yG. It therefore equals the left-hand
side of (6.6).
COROLLARY 6.2. The distribution JM(y, f) is given by the integral off relative

to a measure on yc which is absolutely continuous with respect to the invariant
measure class.

Proof The changes of variables introduced in the proof of the theorem allow
us to write the invariant integral over yG as

ID(a) i12 (s)\ (s ff f (y-lk-1rnky) drAdndkdy^GoFs)\GoFs) KoNQ(^S) lj
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for any Q =E J(M). On the other hand, JM(y, f) is the value of (6.1) at a = 1,
which by the discussion above equals

ID(a)I/1/2 Jfflf(y -lak-Cinky) v (1,T )v(ky) drndndkdy.

This is a multiple integral whose absolute convergence is assured by Lemmas 2.1
and 6.1. It is therefore absolutely continuous with respect to the invariant
measure. fl

COROLLARY 6.3. Suppose that L1 E 2?(M). Then the limit at a = 1 of the
expression

rL(y, a)JL(ay, f), a E AMreg(Fs),
Le.(L1)

exists and equals JL1(y , f).
Proof. The proof of the existence of the limit is similar to that of Theorem

5.2. We shall forgo the details. To evaluate the limit, set

a = bal, b E AM,reg(F), a1 E AL1 reg(Fs),

and let b approach 1. Since

lim r(y, bal) = rL(y, a, L E Y(L1),

we obtain

lim E LL(fy, al) im JL(baly, f)
a11-LES(L1) b 1

It is clear that Laly equals Ga1y. Applying Lemma 2.2, we see that JL(baly, f)
equals the invariant orbital integral of a function on L(Fs) for b near 1. It then
follows easily from (6.6) that

limJL(bay, f) =J((aly), f) JL(al, f).
b-* 1

Therefore, the given limit equals

lim E r (y, al)JL(al f) = JL(Y f)
a1- 1 L e'(Ll)

as required. o
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§7. Proof of Lemma 6.1. The purpose of this section is to establish Lemma
6.1 and thereby complete the proof of Theorem 5.2. One way to prove the lemma
would be to use the resolution of singularities. By blowing up affine space, one
could replace each set

{ xV: P, v(x) = 0)
by a divisor with normal crossings.1 However, we shall instead treat the lemma as
an exercise in elementary analysis.
The elements in C¢(Fsd)* are Radon measures. The operation which restricts

such a measure to an open subset of Fsd defines a continuous projection on
C d(Fd)*. We conclude that it suffices to prove the lemma with 0 = Fsd. Next, we
note that functions of the form

(x) = n <v(X v E Cc(FV), x, E Fd
yeS

are dense in Cc(Fsd). Since the Haar measure on Fs' is the product of Haar
measures on the spaces Fvdv, it will be enough to prove the lemma in the case that
S contains one valuation v. Therefore, we shall assume in this section that F is a
local field and Fs = F, = F. We take d = do to be any positive integer. Finally,
we see that by setting

v= e v,
(,, v) E=

we may assume that all our polynomial take values in the same space.
Let

= (a,..., ad)

be a multi-index of nonnegative integers. Let 9a(Fd, V) be the set of polynomi-
als in 9(Fd, V) whose coefficients vanish for every multi-index a' with ac > a1
for some i. It is convenient to write |IPI| for the supremum of the norms of the
coefficients of any polynomial p in a,(Fd, V). If 8 > 0, let da(Fd, V) denote
the set of p E ,,(F, V) with IIPII > 8. It is clear that the space +(Fd, V) is
the union over a and 8 of the subsets .a(Fd, V). Therefore, it is good enough to
fix a and 8 and also a positive integer n, and to prove the analogue of Lemma
6.1 for n-tuples

n

pi, Pi E (Fd V).
i=l

We must first prove a supplementary lemma.

1I thank the referee for this observation.
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LEMMA 7.1. Let r be a compact subset of Fd. Then there are positive constants
C and t such that for any e > O, 8 > 0, and p E 9A(Fd, V), the volume of the set

r(p, ) = x E r: IIP(x)11 < E
is bounded by C( e)t.

Proof. Suppose that we can prove the lemma with V = F. Then the result will
hold for arbitrary V, as we see immediately by fixing a basis of V. The constants
C and t will depend at most on the dimension of V. Notice also that if we can
prove the lemma for 8 = 1, it will follow for any 8. Therefore, we shall assume
that V= F and 8 = 1.
We shall first prove the lemma for d = 1. For the moment, then, a is just a

positive integer. Assume inductively that the lemma is true (for any V and 8)
with a replaced by any smaller positive integer. Suppose that 0 < 1 and that
p E 91(F, F). We can write

p(x) = (x - r)p'(x),
where r belongs to an extension field E of F, with deg(E/F) < a, and p'
belongs to 9_ (F, E). The norm function on E is of course the extension of the
valuation on F. By our induction assumption, the lemma applies to p' with fixed
constants C' and t'. Since

|IP1P211 < (deg P1+ 1)lp|l IIP211,
for any polynomials p, and P2 in 9(F, E), we have

'iP'I> min 12
To estimate the volume of r(p, e), we examine the equation

Ip(x) = Ix- rl Ip'(x)
is two separate cases. First suppose that rl > + 1, (where rI = supx, r lx).
Then the set F(p, E) is contained in F(p', e/(Irl - Irl)). Since IIP'll > 1/21rI,
the induction assumption gives

vol r(p, e) C' 2rl Irl- Il < c'(2(FI + 1))

The other case is that Irl < IrF + 1. Then if x belongs to F(p, e), either x

belongs to F(p', e1/2) or Ix - rl < e1/2. Since IIp'II > (lrII + 1)-1 in this case,
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the induction assumption gives

vol r(p, e) < 2e1/2 + C'(2(Irl + 1)El/2).
It follows that for any e and p,

volr(p, e) < CE,
with C = 2 + C'(21rl + 2)" and t = min{ , t'/2}. The lemma is therefore true
if d = 1.

Suppose now that d is arbitrary. Assume inductively that the lemma is true if
d is replaced by d - 1. Choose a compact subset Ir of F such that r is contained
in the Cartesian product Fd. Suppose that p E .(Fd, F) and 0 < E < 1. If
x = (x,..., xd) and a = (al,...,a), set = (x2,...,Xd) and =

(a2,..., ad). Then
al

p(x) = E ()(x)j,
j=1

with pj E 9a(Fd-l, F). Since IIPII > 1, there is a j with lIpjll > 1. Suppose that
x belongs to F(p, e). We consider separately the cases that Ipi(x)I > e1/2 and
Ipi(x)) < e1/2. In the first instance we apply what we have already proved (the
case that d = 1) to p, regarded as a polynomial in x1. In the second case we
apply the induction assumption. We obtain

vol r(p, e) < C,(E-1/2E)t . vol(r- 1) + vol(rF) . Cd1_(E/2)'d-
< Cet

for positive constants C and t. This establishes Lemma 7.1. o
We can now prove Lemma 6.1. Fix a continuous function 4 on Fd which is

supported on the compact set r. Fix also a multi-index a and a positive number
8. Suppose that

n

p= EPi
i=1

is an n-tuple, with each pi E 98(Fd, F). We shall estimate the integral

J Xp(x)dx,
r(p,x)

where

Xp(x) =n(lIogli(X))ji-
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and
n

r(pe)= U r(p,, ).
i=1

For each point x in r(p, e) there is an i such that Ipi(x)l < Itp(x)l for all
j : i. Then x belongs to F(pi, E), and if e is sufficiently small, as we may assume,

Xp(x) < loglpi(x) I.
It follows that

f AXp(x) dx f Ilogpi(x) dx.
(p,e) i- r(Pi, )

If

r(i, k, E) = r(,,2-k) - r(p,2-(k+1)E),
we see that

00

f ilog pi(x) I' dx < E. | 1glPogi(x) I| dx
(Pi,e) k=O (i, k,)

00

_< vol(r(i, k, e))C log(2-(l)e)
k=O

< E C(S2 e) ((k + l)log2 + llog el)
k=O

for positive constants C and t given by Lemma 7.1. It follows that there are
positive constants C1 and tj such that

(7.1) f X(x) dx < C(1E)
r(p, )

for any p and e. In particular, since Xp(x) is bounded on the complement of
r(p, e) in r, the integral

f (x)X,(x) dx

is absolutely convergent. This is the first assertion of Lemma 6.1.
Fix

p0= (Po,, P) P e(Fd, F).
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If p is any n-tuple as above, and e > 0,

Jf (x),(x dx - (x)Xo(x) dx

is bounded by the sum of

(7.2) |L frpO, (x) dx,

(7.3) lIloofr(O )Xpo(x) dx,

and

(7.4) Ill r rpO,(x)- Xpo(x)Idx.
Now p is close to pO precisely when all the coefficients of the polynomials

Pi -P, 1 < i < n,

are small. In particular, the set F(po, e) will be contained in r(p,2e) for all p
sufficiently close to pO. Therefore, both (7.2) and (7.3) may be estimated by the
inequality (7.1). The integrand in (7.4) is bounded on r uniformly for all p
sufficiently close to pO. Therefore, by dominated convergence, (7.4) approaches 0
as p approaches p0. It follows that

lim (x)Xp(x) dx = jf (x)Xpo(x) dx.
p _,pO

This is the second and last assertion of Lemma 6.1. a

§8. A formula of descent. We return to our study of weighted orbital in-
tegrals. As before, y will be a fixed element in M(Fs). We are going to establish
a descent property for JM(y) which will be useful later. However, we shall first
check that the behaviour of JM(y) under conjugation is the same as that
described in §2.
LEMMA 8.1. Iff C°°(G(Fs)) andy E G°(Fs),

JM(Y, fy) = E JMMQ(Y,f y
QGE(M)

Proof By definition

JM(Y, fY) = lim E r(y, a)JL(ay, fY).
a~1 L S'(M)
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Of course, a is assumed to be a small element in AM, eg(Fs). Therefore,
Ga(Fs) = Lay(Fs) for each L E S(M), so the formula (2.2) applies to
JL(ay, fY). We obtain

JM(Y,7 )= lim E rm(y, a) L JLQ(ay,fQ,)a~l LE=(M) QE=(L)

lim E rm(y, a)JLm(ay, fQy)
QeF(M) a-- LE.£MQ(M)

= I JMQ(YfQy),
Q~e(M)

as required. o
We also note in passing that the formula (2.4) holds for our arbitrary element

y. This follows from the formula

·y-LY(y-'yy, y-ay) = r(y, a),
which is a consequence of the definitions.

Suppose that a is a semisimple element in M(Fs) and that

y = oa, ji M (Fs).
We assume that the following three conditions are satisfied:

(i) a belongs to G(F).
(ii) The space aM equals a M.
(iii) GY(Fs) is contained in Ga(Fs).

According to the first condition, GO is a (connected) reductive group defined over
F and M: is a Levi subgroup of GO. The space a M, defined as in §1 but with G
replaced by Mo,always contains a ; the second condition asserts the equality of
the two. This is equivalent to the assertion that a is an F-elliptic element in
M(F). The third condition is equivalent to the equality of G,(FS) with (Go),(Fs).
In other words, G((Fs) may be regarded as an object associated to the group Go.
Let us write Y°(Ma) and 9S°(Mo) for the sets of parabolic subgroups of Ga
whose Levi components contain and respectively equal Ma.
We are going to express JM(y, f) in terms of weighted orbital integrals on the

groups

{MR( F): R E Y°(Ma)}.
This will of course entail dealing with (Ga, Mo)-families. We shall always assume
that the Euclidean norm on the space aM is the same as the one on a . In
particular, the Euclidean measure on a will be that of aM.
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We can write JM(Y, f) as the limit at a = 1 of

(8.1) |D(ayI) 1||2 f (y-'ax-atxy)
G(Fs)\G0(Fs)M (FS)\G(s)

X( E rm(ya)vL(xy) dxdy
LGY(M)

since G,,(Fs) equals My(Fs). It is necessary to transform rL(y, a) and vL(XY)
into functions associated with Gy.
LEMMA 8.2. Suppose that L E S((M). Then

a= (IL,a), if aL = aL,,
r (y, a) = i,

(0, otherwise.

Proof. In order to deal with the (G, M)-family
{rp(X,y, a): P E 9(M)},

we must write down the Jordan decomposition of y. Let ju = r · u be the Jordan
decomposition of u. Then y = ao ' u is the Jordan decomposition of y. Suppose
that P belongs to .9(M). Then P, is a group in °'(Mo), and condition (iii)
above implies that P,,(Fs) = (Po)q(Fs). It then follows from the definition (5.1)
that

rp(X, y, a) = rp(X,A, a).
As a consequence of this, we may write

rM(y, a)= lim E rp(X,,a),p(X)~AP-0peg(M)

= lim rR(X,A,ia)( ZP .
A-° ReOgZ(M) {(Peg(M): PO==R

Suppose first of all that a = aG. Then a G = aF. If R belongs to "(Mo),
the set AV = {aV: a E AR} is a basis of aG. For each root a E AR, there is a
unique reduced root al of (G, AM) such that a' is a positive multiple of av. The
set Fv = {aV: a E AR) is also a basis of aG. Applying Lemma 7.2 of [2], we
obtain

E 9p(X)-1 = vol(aG/Z(FV)) H X(av)-'
{PGg(M): P,=R } aAR

= vol(a G/Z(AV )) n 1(a)
a=(ER

= R(X)-1.
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Therefore, in this case we have

rM(y, a) = lim( rR(X, , a)O(X)
X;O° RES9a(M,)

= rM(I, a)).
Next, suppose that aG is a proper subspace of a . Let D be a vector in the

orthogonal complement of a G in a c. Take

X= t(X0 + ) t EE R, X0A E aG,
and calculate the limit above by letting t approach 0. Since

rR(t(XO + ), t, a) = rR(tXo, pI, a), R E 9°a(M,),
we see that rM(y, a) equals

d E lim( rR(tXo,A, a) ( + ),d. Reg(M) t O dt ({Pe(p(M): Po=R}

where d = dim a . This expression is independent of ' (and also X0). By taking
' to be very large, we see that rM(y, a) equals 0.
We have so far proved the lemma if L = G. However, rm(y, a) is defined by

replacing the underlying group G with L. The lemma is therefore true in general.

Take L E .!S(M). In view of the last lemma, we need only consider the case
that aL = AL. Suppose that x E Go(Fs) and y E G°(Fs). We saw in §6 that

vL(xy) = E vQ(a, x)vQ(KQo(x)y)QeY(L)
LEMMA 8.3. Suppose that as above, x belongs to G,(Fs) and that aL = aL.

Then

(x) if a = cvG(c, x) G = 0aGC,
(0, otherwise.

Proof. We have

G(a, x) = lim p(, x)0p(x)
A-0 pe(L)

= lim E VR(X )( L: P(X)
A ° Re9{(L, ) {PPe(L): P, = R
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Arguing exactly as in the proof of the last lemma, we conclude that vG(a, x)
equals vG(x) if a =a= , and is 0 otherwise. a

More generally, suppose that Q E Y(L), and that

x = nmk, n E NQo(Fs), m E MQ(Fs), k E K,.

It follows from the lemma, with (G, x) replaced by (MQ, m), that v((a, x)
equals vQ (x) if a = aQ, and is 0 otherwise. Therefore, the formula above for
vL(xy) gives us

COROLLARY 8.4. If R is any group in Y°(Mo), set

(8.2) R(z) = E V(Z), zE GO(FS).
{Qe'(M): Q0=R, aQ=aR}

Then

VL(Xy) = E ,V(x)R(KR(x)y).
Rc°(M )

Observe that L -> Lo is a bijection from the set of elements L E oS(M), with
a L = a L, onto the set of Levi subgroups of Go which contain Mo. Combining
Lemma 8.2 with Corollary 8.4, we see that

E r(y, a)vL(xy)
L r=.(M)

equals

, rM:s (I,, a)Rfs(x)v(KR(x)Y).
REY°(Mo) SE~UMR(Mo)

The descent formula can now be proved with some changes of variable similar
to those of §6. Substitute the formula just proved into the original expression
(8.1). In the resulting expression, take the sum over R outside the integral over x,
and then replace the integral over x with a triple integral over (mR, nR, k) in

MY(Fs) \ MR (FS) x NR(FS) x K,.

Finally, write

nR- mRlatmRnR = mRlaumRn, n e NR(Fs),
and change the integral over nR to one over n. Putting in the appropriate



266 JAMES ARTHUR

Jacobian, we find that (8.1) equals

ID'(ay) (ay)- 1 1/2

X (Fs)\O(s) ((M(, a)Js R(a£tL,(IR, y) dy,
G,(Fs)\G0(Fs) Re (M,) SECMR(M,)

where

(8.3) R,() (m)M f(y) ok'mnky)vR(ky) dndkRy )=NRR(Fs)
for m E MR(Fs). It is clear that IORy is a function in Cf(MR(Fs)) which
depends smoothly on y. (For the reader who might remember a similar function
defined in §6, the relation is

Q (M): Q=R,QQE=R )
{Q6jF(M): Q =RaQ= aR}

It is now easy to read off the limit at a = 1 of (8.1). The result is

THEOREM 8.5. Suppose that M and y = Oal are given as above and satisfy the
conditions (i), (ii), and (iii). Then JM(y, f) equals

aDu(G DG)D(IL) 1/2 j( J DR,y) dy.
(Fs)\G°(Fs) RHES(M)

We will need a slight extension of the result for the paper [3]. Suppose that T is
an arbitrary point in aM. For each z E G (Fs), the functions

Vp(X, z, T) = Vp(X, z)ex(T), P E 9(M),
form a (G, M)-family. Since ex(T) is independent of P and equals 1 at X = 0,

vL(z, T) = vL(z), L E- (M).
Suppose that x e Go(Fs) and y E G°(Fs). Then, as in §6, we have a decomposi-
tion

up(X, xy, T) = vp(X, o, x)vp(X, K:(x)y, T), P E 9(L),
as a product of (G, L)-families. Applying Lemma 6.3 of [5], we obtain

VL(xy) = E Uv(o, x)vU(KQ(x)y).
QeF(L)
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We can substitute this formula into the expression (8.1). The proof of the
theorem then leads to

COROLLARY 8.6. Under the assumptions of Theorem 8.5, JM(y, f) equals

I]DG(oIL)DG°(I~)-l1/2fGKJ E J~fMo(DR,y,I T)) dY,G(Fs)\G(Fs)( REI'(M )

where

R,y,T() = s(m)12f f f( y ok-lmnky)v (ky, T) dndk)=R
(Fs)

for m E MR(FS) and for

r(z, T) = E VQ(z,T), z G°(Fs).
{QG(M): Q =R, aQ=aR)

An important special case, obviously, is when /L is unipotent. Then y = ao is
the Jordan decomposition of y, and DG(alu)DGa(1)-l equals DG(a). We obtain

COROLLARY 8.7. Suppose that !i = u is unipotent. Then JM(y, f) equals

DG(o)[11/2 frDG(Fs)\GO(Fs)( RE ((M R,yT) dy

Part 2: p-adic groups

§9. A germ expansion. We now consider properties of weighted orbital
integrals which depend on a given local field. We shall treat the p-adic case first.
The theory of Shalika germs [22] is an important component of the study of
invariant orbital integrals. It turns out there there is a parallel theory for
weighted orbital integrals. Its existence depends on our having defined the
weighted orbital integrals at singular points in M(Fs).
For the next two sections, we shall assume that S consists of one non-Archi-

medean valuation v, and that F = Fv = Fs. We shall also fix a semisimple
element a in M(F). The germs at a associated to JM(y, f) are (M, a)-equiv-
alence classes of functions of y and are defined on the G-regular elements in
aM,(F) which are close to a. They are designed to measure the obstruction to
JM(Y, f) being an (invariant) orbital integral of a function on M(F).

Given L e 2'(M), let

(a&Lj( F))
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denote the finite set of orbits in aoL (F) under conjugation by the group

L(F, a) = Cent(a, L°(F)).

PROPOSITION 9.1. There are uniquely determined (M, a)-equivalence classes of
functions

y - gG(y, 8), y E aM,(F) n Geg,
parametrized by the classes 8 E (aoq(F)) such that for any f E Cf(G(F)),

(M,o)
JM(Y,f) - g(Y8)L(, ).

LEo'(M) 8E(aqLo(F))

Proof. The defining equation is understood to hold for all G and, in particu-
lar, if G is replaced by any set L E S(M). The uniqueness is then equivalent to
the linear independence of the distributions

f -JG(, f), e (ao%(F)).
This is a well-known fact which follows, for example, from the partial order on
the orbit set (a ((F)). We can therefore concentrate on establishing the
existence of the germs.

Suppose first that M = G. Then JM(Y, f) is just the invariant orbital integral,
and

(M,a)
JM(Y, ) -

by definition. We can therefore define

(M,a)
gM(y, ) 0, 8 E (a( M(F)).

Now take M to be arbitrary. We must define the germs gf(y, ) so that for
any f, the function

KM(Y, f) JM(y, f) E E gM(y, )J,(8, f)
Le(M) 8 E(oa l(F))

is (M, a)-equivalent to 0. For each L E S°(M) with L : G, we assume induc-
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tively that the germs gL (y, ) have been defined, and that

(M, )
KL(y,h) " O, heCQ'(L(F)),

For every f E Cc`(G(F)), the function

KM(Y, f) = JM(Y, f) - gm(Y, S)JL(S' f)
(LES2(M): L*G} 8EG(a'Lo(F))

is then defined. Let

, 8 E (aoG(F)),
be functions in CI(G(F)) such that

J (8 M 0(1, 81 =8

for 8, 81 E (aoG (F)). We then define the remaining germs by

g (Y, 8) = K' (y, f8) E= (oaGo(F)).
Observe that for any 8,

KM(y, f,) = KM(y, f8) - E g(y, ,l)JG(l, fA)
8i(oa G,(F))

=K(y, f8) - gG (y, 8)

=0.

It remains for us to show for any f that KM(y, f) is (M, a)-equivalent to 0.
Define

f' f- JG(, f)f .
8e(aIG%(F))

Then

KM(Y, f) = KM(y, f') + EJG(S, f)KM(y, fA)

= KM(y, f')
On the other hand,

G(, f') = 0
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for every 8 E (aoTG(F)). We can therefore make use of a standard argument to
represent f' as a finite sum

2(gY - g), g E Cc(G(F)), y G°(F),
on some G°(F)-invariant neighborhood of a in G(F). (See the discussion
accompanying Proposition 4 of [17].) Therefore, if y E aMo(F) is close to a,

KM(Y, f) = KM(y, f') = EKM(y, gY - g).
By Lemma 8.1 we can write

KM(y, gY - g)
as the difference between

E JM.Q(y,gQ,y){QE(M): Q#G}
and

E
V E gL (, 8)JMQ (8, ge, y).LE2((M) {QCe(L): Q*G}) 8E(o/L(F))

It follows that

KM(7, gY - g)= E KMQ(y, gQ,y).
(Q F(M): Q*G}

By our induction hypothesis, this function is (M, a)-equivalent to 0. Thus,

(M, )
KM(y,f) 0,

and the proposition follows. O
Remark. If Go = Mo,it follows inductively from Lemma 2.2 that the germs

all vanish.

The most important case is when a = 1. Then G = G°, and the germs gG(y, 8)
are parametrized by unipotent conjugacy classes in G(F). It turns out that the
germs for general a have descent properties which reduce their study to the
unipotent case. We shall prove one lemma in this direction.

Observe that each class 8 E (aTL (F)) is a finite union of classes au, with u a
unipotent conjugacy class in 'qL (F). The set of all such u, which we shall denote
simply by

{u: au - 8,
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has a transitive action under the finite group

FL(a) = La(F) \ L°(F ),
where L°(F, a) denotes the centralizer of a in L°(F).
LEMMA 9.2. Suppose that a is a semisimple element in M(F) such that

aM = aM, and that L E YS(M). Then if
y = a, p Ma(F),

is G-regular, we have

g(y S) = EL(a) E g(t, u), 8 E (aoQ(F)),
(U: ou-8)

where eL(a) equals 1 if aL = a and is 0 otherwise.

Proof. We can of course assume that y is close to a. Then y = aut satisfies the
conditions of §8. By Theorem 8.5, JM(y, f) equals the product of

lDG(o ))DG(~)- 1/2

and

J(F)\G°(F) RF. ' ( OR, ))

Since tL is close to 1,

IDG()DGoI ( )1/)-2=Idet(l -Ad(o,))l/ 1 =IDG(oa) 1.

Moreover, for any 1 E C°(Mo(F)),
(M I 1)

jMR~y La(2)gMo(,u)JL$R(u,,),
LoE.G9MR(M) uE(*(L,(F))

by Proposition 9.1. Substitute this into the expression above and interchange the
sums over R and Lo. To any L. E .'(Mo) there corresponds a unique element
L E .S(M). Conversely, an element L EcS(M) arises this way precisely when
EL(a) = 1. It follows that as a function of g, JM(ajo, f) is (M,, l)-equivalent to
the sum over L E Z9(M) and u E (IL(F)) of the product of

eL(c)go(AL, u)
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with

|Do(a) |1 | f °£ JLu,(DR,f ,)dy.G(F)\G (F) R ea(L,)

Applying Corollary 8.7, we obtain

(M,1)
JM(aM,f) £ £ E (a)g( (.U)JL(U, f)

LE=6(M) U(a',( F))

We want to show that gL(y, 8) is (M, a)-equivalent to the germ

g(y, 8) = eL(a) E gk( )
{u: au-a)

It follows easily from Lemma 2.1 that (M, o)-equivalence of functions of y is the
same as (Ma, 1)-equivalence of the corresponding functions of j. Therefore, what
we have already established may be written in the form

(M, a)
JM(Y,f) £ £ gM( )JL(8, f

LE ff(M) 8 e (oadLo(F))
Assume inductively that

gL (Y, 8) = g (y, 8)

for any L 4 G. Then

E (gG(y, 8) - g(Y, 8))J/(8,f) 0.
8 ((oaG,(F))

It follows that

G (y, 8)=g(y, 8), 8 (aIGo(F)),
as required. o

§10. Homogeneity of germs. We would expect the germs introduced in the
last section to behave like Shalika germs. In this section we shall establish a
formula which is the analogue of the homogeneity property [11, Theorem 14(1)]
and [21, Theorem 1.2(4)] for Shalika germs.
We continue to assume that F = F, = Fs is a non-Archimedean local field. We

shall consider only the special case of §9, that a = 1. In particular, we assume in
this section that G = GO. Given a unipotent element u E q/(F), define

dM(u) = (dim M, - rank M).
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This number is a nonnegative half integer, which depends only on the geometric
conjugacy class of u. Recall that the induced space uG is a finite union of
unipotent G(F)-conjugacy classes. For any w E G(F), set

G[U: W]=_ 1, if w E uG,u'wI=( 0, otherwise.

If [uc: w] = 1, it is clear that

dG(w) = dM(u).
The exponential map provides a homeomorphism from an Ad(G(F))-invariant

neighborhood of 0 in g(F) into an ad(G(F))-invariant neighborhood of 1 in
G(F). If t E F, and

x=expX, X g(F),
set

xt = exp tX.

We shall regard this map as a germ, in the sense that is maps a sufficiently small
invariant neighborhood of 1 in G(F) to another such neighborhood. It is clear
that

gxg-1 = (gxg-l), gE G(F).
In particular,

U IU E G(F),
induces a permutation on the set of unipotent conjugacy classes in G(F). If t
belongs to F*, it follows easily from the Jacobson-Morosov theorem that ut and
u are conjugate over the algebraic closure of F. It t belongs to (F*)2, ut and u
are actually G(F)-conjugate. (See the discussion in §1 of [21].) There is a
compatible way to choose invariant measures on the G(F)-orbits of u and ut.
For applying the Jacobson-Morosov theorem as in §5, we see that all the
G(F)-orbits within the geometric conjugacy class of u can be associated to a
single vector space u,(F). The measure

dS= J(X) 1/2 dX, X u,(F),
introduced in §5 then provides invariant measures on all the associated G(F)-
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orbits. However, the map

x -, x', xc (G(F)),
does not preserve the compatible measures. If S is any bounded measurable
subset of O,(G(F)), and

St= {x': x S),

a mild generalization of Lemma 7 of [21] establishes that

(10.1) vol(S') = Itl(1/2)dim(G/G")vol(S).
To state the homogeneity property, we must introduce another (G, M)-family.

Take u to be an element in eM(F). For each reduced root /f of (G, AM), we
defined the number p(13, u) in §5. It depends only on the geometric conjugacy
class of u. Given P E 9@(M), define

cp(v, a, t) = 1ltl-(1/2)p(a, )v(V), v iam,

where the product is taken over the reduced roots /8 of (P, AM). Then

cp(t,u, t), P E (M), v ia,

is a (G, M)-family.
LEMMA 10.1. Suppose that a E A, reg(F) is close to 1. Then

r~(u, a) = E cM,1(U, t)rM,(, a')
M, ESL(M)

for any t E F* and L E.Y(M).
Proof For each P E-(M), we have

rp(v, u, a) = rial - a-l(1/2)p( ")^v(v), v E ian,

where the product is again taken over the reduced roots / of (P, AM). Suppose
that

a = exp H,
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where H is a point in the Lie algebra of AM(F) which is close to 0. Then

la# - a-0\

= (1+ (H)+ (H)2! + ....I , (H)+ (2!

= 12/(H)l,
since H is small and i 'I is a non-Archimedean valuation. Similarly,

i(a't)- (a'))-" =-12t(H),
so that

la#- a-l = It'I l(a't)- (at)-'.
We obtain

rp(v, u, a) = cp(v, u, t)rp(v, u, at),
a product of (G, M)-families. The lemma then follows from Corollary 6.5 of [6].

El

PROPOSITION 10.2. Suppose that t E F* and w e (dG(F)). Then

(M,l)
G (yt

,

wt)r ~ tldG() E E gM(y, U)CL(U, t)[UG: W].
LE'(M) uE(I L(F))

Proof Suppose that f E C,(G(F)) is given. Define

f'(xt) = f(x).
Then f' is the restriction of a function in Cc(G(F)) to an invariant neighbor-
hood of 1 in G(F). Suppose that y is a point in M(F) which is G-regular and
close to 1. We have

JM(Y, f) D(y) 1/2 f(x-lX)vM() dx
G(F)\G(F)

-ID(y) 1/2f f (x- yx)v(x) dx.
Y(F)\G(F)
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The centralizer T = GY is a maximal torus in G and is equal to GY,. We choose
invariant measures on the orbits of y and y' induced by a fixed invariant
measure on T(F) \ G(F). Consequently,

JM(, f) = (ID(Y)I ID()')l -1)/2JM(t ft').

Let Xi) be a basis of q/gy such that

Ad(y)Xi = ,(y)X,, y E T(F),
where (, is a character of T. Since y is close to 1,

II - i(y')l = Itl I1 -,() )I

It follows that

IOD(y')l/2=In-1 - ,( )l1/2

= I(ltll/21 - Si(y)l 1/2)

= it(l/2)(dimG-rank G)ID( )I 1/2

if y is close to 1. Therefore,

JM(y, ft) = tl(1/2)(dimG-rankG)JM(Y, f)
We take the germ expansion of each side of this equation. The left-hand side is
(M, 1)-equivalent to

(10.2) L E gk(Y., w)JL((w', f ),
L1 EY(M)w (L, (F))

since w -* wt is a bijection on (/1r(F)). The right-hand side is (M, 1)-equivalent
to

(10.3) EthI ltl(l/2)(dimC-ranik )g (y, U)JL(U, f).
Le.(M) ue(Lt(F))

We must relate the distributions Jr(U, f) with JL,(w', f ).
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By the definition (6.5) and Lemma 10.1,

JL(u, f) = lim _ cpL1(u, t)L2(u, at)JL2(au, f),
a- {L2, L1: L2 L1 L)

where each a is a small regular point in AL(F). Now, by repeating an argument
above, and noting that Ga = L, we see that

ID(atut) 11/2 = it(1/2)dim(G/L)D(au) 11/2.

Consequently,

JL (au, f) = D(au) 11/2 f(x-aux)vL2(x) dx'Gau(F)\G(F)

- tl-(1/2)dim(G/L)lD(atut) 1}/2 ft(xaux)L(x)dx.-I=I /~"'~(~/~)1 D-tutV) 112 j ft(x-latutx)vL2(x) dx.
Gau.(F)\G(F)

It is easy to see that

Gau =LLu = Gatut.

However, the compatible invariant measures on the orbits of au and atut do not
induce the same measure on

Gau(F)\ G(F) = Gatut(F)\ G(F).
By (10.1) (applied to L instead of G), the invariant measures induced on the
coset spaces differ by the constant

It-(1/2)dim(L/LU)

It follows that

JL2(au, f) _=|tl (1/2)dim(G/Lu)J( atut ft).
We have thus far shown that JL(u, f) equals

Itl-(c/2)dim(G/L,) lim E cL)(u, t)rL2(u, a t)JL(aut, ft).a-( LL2D LDL

But rL (u, at) depends only on the geometric conjugacy class of u, so that

rL2(, a) = r(u,at).
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Moreover, for any L1,

lim r 2(ut, at)JL2(auf )
a L2 E.(L1)

= lim E rL2(u', a)JL( aut, f )a-aa1 L2E( L1)

=JL1((U ) L ft)
= JL1(W', f)[UL W],
we(qL,( F))

by Corollary 6.3. It follows that JL(u, f) equals

-t|-(1/2)dim(G/L.) £ £ CLL(U, t)JL,(W /)[UL: W].
L1,Ej-(L) we(qL, (F))

We have established that (10.3) equals the sum over L1 EG (M) and w E
(/L1,(F)) of

E£ It (2)(dL rL)gL ( U) C ( U t)JL ( W , ft)[ULI: w].
LE.=L1(M) UE(Q(L(F))

Now, if [uL1: w] # 0, we have

Itl(l/2)(dimLu-rankL) = ItIdL(u) = ItIdLJ(w)
It follows that the sum over L1 e Sf(M) and w E (/L1(F)) of the product of

(10.4)

gL(yt', W) - E E ItldL'()gL(., U)CLf(U, t)[ULi: w],
LeA-LI(M) uE(qL(F))

with

JL1(W, f ),

is (M, 1)-equivalent to 0. We are required to show that (10.4) is (M, 1)-equivalent
to 0. We can assume inductively that this is so if L1 4 G. For a given w, E
G(1(F)), choose f so that for each w E (/G(F)),

JG(Wt'ft) = O, otherwise.

Proposition 10.2 follows.



THE LOCAL BEHAVIOUR OF WEIGHTED ORBITAL INTEGRALS 279

Remark. Suppose that t equals a positive rational integer (. Then xt is just
the 'th power of x. In this special case, Proposition 10.2 will be used for the
comparison of germs that arise in base change.

Part 3: Real groups

§11. Differential equations. We come finally to the case of real groups.
Harish-Chandra's theory for invariant orbital integrals is based on the differential
equations associated to the center of the universal enveloping algebra. We shall
examine analogous differential equations satisfied by weighted orbital integrals.
For the rest of the paper, we assume that S consists of one Archimedean

valuation v, and that F = Fv = Fs. We shall regard GO(F) as a real Lie group.
Let

c= g(F) ®RC
be its complexified Lie algebra, and let C be the universal enveloping algebra.
We shall write

for thecenterof Recall that there is an inactive map
for the center of C. Recall that there is an invective map

Z --ZM, Z GE °G,
from SG into AM.

For the rest of the paper we shall fix a maximal torus T of G which is defined
over F. We assume that To contains AM. We shall also assume that To is stable
under the Cartan involution of G0(F) defined by K.

PROPOSITION 11.1. There are uniquely determined differential operators

aG(y, z), y E Tre(F),
on Treg(F), parametrized by elements z E af, such that for any f E Cc(G(F)),

JM(Y, f) = E am(Y, ZL)JL(, f).
LE.(M)

Proof. The defining equation is understood to hold for all G, in particular if
G is replaced by any set L E (M). Now, consider

(11.1) f- JM(,f)
as a linear map from Cc(G(F)) to the space of germs of smooth functions near a
given point in Tre(F). According to the definition (2.1*),

JM(Y,/)= D(y) 12/ \O fJ(x x)VM(x) dx.
F\To( F)
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Since

(11.2) (y, x) x- yx, y E Treg(F), x E To(F) \ G°(F),
is an open immersion into G(F), the map (11.1) is surective. Consequently, the
differential operators

da(y,z)
are uniquely determined by the required formula. We can therefore concentrate
on their existence.

Fix the element z E S. For each L E Y(M), with L :G, we assume induc-
tively that the differential operators ad have been defined and that

JM(Y, ZLh) :Y (.(, ZL,)JL(Y h)
L1 =L( M)

for any h E Cf(L(F)). The distribution

K(y, z , zf) = J(y, z) - L)JL(, f),
{ LG(M): L G}

f E Cc(G(F)), is then defined. Notice that this distribution is supported on the
G°(F)-orbit of y. We claim that it is also invariant. To see this, take an element
y E GO(F) and consider the expression

(11.3) K (y, z, f -f).

By Lemma 8.1, we can write (11.3) as the difference between

E JMMQ(Y (f) Q,y)
(QGF(M): Q*G}

and

E E aM(7y,zL)JJLQ(Y, fQ,y).
Le.'(M) {QeS(L): Q G)

According to (2.3),

(zf)Q, = 8Q(m)12 f f (zf)(k-lmnk)ov(ky) dndk

for any m E MQ(F). The differential operator z certainly commutes with right
translation by elements k E K. It then follows easily from the definition of zMQ
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that

(zf)Q,y = ZMQfQ,y
Thus, (11.3) equals

(J (y, ZMQfQ Y) - E (Y ZL)J(Y/fQ,y))
{QES(M): Q*G}) LEJMQ(M)

According to our induction assumption, this vanishes. Consequently, KMI(y, z, )
is an invariant distribution, as claimed.
We can use the immersion (11.2) to pull back KI(y, z, .). The resulting

distribution on

Treg(F) X (To(F)\ G(F))
is supported at {y} in the first factor and is G°(F)-invariant in the second
factor. We leave the reader to check that any G°(F)-invariant distribution on
To(F) \ GO(F) is a multiple of the invariant measure. It follows easily that there
is a differential operator dG(y, z) on Treg(F) such that

K(y, z,/f)= a(y z)JG(, f).

The required formula then follows immediately from the definition of KI(y, z, f).

§12. Comparison with the radial decomposition. The differential operators
QQ(y, z) were obtained in a nonconstructive way from a simple invariance
argument. They also have a more complicated but constructive description in
terms of Harish-Chandra's radial decomposition of z. We shall review this
description, which in the case of G = G° was introduced in §5 of [1].

Let tc be the complexified Lie algebra of To(F). We can identify the
symmetric algebra S(tc) with its image YS in W. Let qc be the direct sum of the
nonzero eigenspaces of T(F) in gc, and let . be the image of S(qc) in C. Then
for each element y E Treg(F), there is a linear isomorphism

Fr: .S -4 f

which is uniquely defined by

rY(x ... Xk U) = (LAd(y-l)Xl - RX1) .. (LAd(y-1)X - Rxk)U

for Xl,..., Xk in qc and u E -. Here Lxg = Xg and Rxg = gX for X E ic
and g e 9. This is a routine extension to nonconnected groups of a result [12,
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Lemma 22] of Harish-Chandra. Let 9' be the subspace of codimension 1 in 2
consisting of elements with zero constant term. Then for any z E 9, there is a
unique element fl(y, z) in S such that z - f/(y, z) belongs to Fr,(' S'). In
other words, there are elements

{Xi:1 ir}

in .' which are adjoint invariant under T(F), linearly independent elements

{ui: l< i < r}

in A', and analytic functions

{a1: 1 < i < r}

on Teg(F), such that
k

(12.1) z = /(y, z) + E ai(Y)rF(Xi Ui).
i=l

As on pages 229-231 of [1], the decomposition (12.1) provides a formula for
JM(Y, zf). We describe the result. Associated to the elements l(y, z) and u, in
S(tc) we of course have the differential operators d(13(y, z)) and 8(ui) on
Trg(F). Define new differential operators on Treg(F) by

(12.2)
d(a(y, z)) =ID(y)|I/2a(y, z))olD() -1/2, a(y, z) E S(tc),

and

(12.3) i(y, z) = D(y) |/2ai(y) d (u) °D(y) /2, 1 < i < r.

Let

X Dx

be the anti-isomorphism of 9 into the algebra of right G°(F)-invariant differen-
tial operators on G(F). Then JM(y, zf) equals the sum of

d (a(y, z))JM(y f )

and

(12.4) E di(Y, z)(ID(Y) 1/2 f(x-yx)(DXVM(x)) dx.
i=l \ T(F)\G°(F)
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We shall calculate DivM(x). Set

d = dim(AM/AG).
Then by formula (6.5) of [1],

VM(X) = E (Hp(X))d P(v)-
* PEg(M)

The expression on the right is independent of the point v E ias. Consider an
element P = MNp in 9(M). If p1 denotes the Lie algebra of

(x E P(F): Hp(x) = O,

the Lie algebra of P°(F) is the direct sum of pxand aM. The group AM(F) is
contained in To(F) and acts on T(F) by translation. In particular, Xi is
invariant under AM(F). As on page 223 of [1], we see that there is a unique
element (p(Xi) in the symmetric algebra S(aM ) such that

Xi -tp(Xi)
belongs to p19. For each nonnegative integer m, let yp m(Xi) denote the
homogeneous component of gp(Xi) of degree m. We will write

(/p,m(Xi), ), V E i,

for the corresponding homogeneous polynomial of degree m on ia. It follows
from our definitions that

d ! Dv(Hp(x))d = d.DPV()V(Hp(x))Y
d 1

= 1£( d)(Hp(HX)) (pmm(X) V).m=O (m - d)!
Thus,

DxVM(x)
equals

d

Ci(x) = E ((Hp(X))d-m(L, m(Xi,) YV)p(p)-1.
Pe.'(M) m=0 (d m!
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The expression on the right is of course independent of v. It is clear that C, is a
smooth function on T0(F) \ G°(F) whose value at 1 equals the number

(12.5) c, = E (Pd(X), v)Op(v)'
Peg(M)

LEMA 12.1. IfM= G,
G (Y, z)= (a(y, z)).

IfM G,

dG(y, z)= j Cii(Y, ).
i=1

Proof Suppose first that M = G. Then

VM(X) = VG(X)= 1

and

DxvM(x) = O, 1 < i< r.

The first assertion follows.
Assume now that M : G. We have seen that the expression (12.4) equals

JM(Y, zf) - (a(y, z))JM(Y, f).
Since

d(a(y, z)) = aG(y, z) = aM(y, ZM),

this in turn equals

(12.6) E 9A(Y, zL)JL(Y, f)
(LEcY(M): L*M)

by Proposition 11.1. We shall extract the second assertion from the equality of
(12.4) and (12.6).

Fix a small open set U in Treg(F). Then

(y, x) -> x-yx, y E U, x E To(F)\ G°(F),
is an open injective map from

u x (To(F)\ G°(F))
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into G(F). Let 4 be an arbitrary smooth function on U, and let {,)} be a
sequence in C°(To(F) \ GO(F)) which approaches the Dirac measure at 1. For
each n, we choose a function f, e Cc(G(F)) such that

fn(x-1yx) =ID(y) -1'/2(y)4n(x), XE U, X E To(F)\ G°(F).
When f = f,, the expression (12.4) equals

E (d,(y, Z)(y7))f 4An(x)Ci(x) dx.
i= 1 o(F)G°( F)

This approaches

cidi(Y, z)(y)
i=1

as n approaches infinity. On the other hand, the value of (12.6) at f = f, equals

ELM ( am(y,)IZL) (Y))f 4n/(x)vL(x) dx.
L M ITo(F)\G°(F)

Since

vl(1, L=G,

this approaches

a(y, Z)*(y).
The function 4 was arbitrary, so the second assertion of the lemma follows. E

COROLLARY 12.2. For each z there is a positive integer p such that

D(y)PG(T,ZG), Y E Treg(F),
extends to an analytic differential operator on T(F).

Proof. The corollary follows from the lemma, our various definitions, and a
result of Harish-Chandra [12, Lemma 23], which implies that for large p, the
differential operators

OD()pdi(, z)
all extend to T(F). D

The lemma provides an algorithm for computing the differential operators
through manipulations in the universal enveloping algebra. If z is the Casimir
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operator, this leads to a simple formula for d1I(y, z). (See [4] for the case of real
rank 1.) However, the other elements in ' are not so amenable, and for these the
algorithm is not practical. Nevertheless, Lemma 12.1 does give useful qualitative
information about the differential operators that can be applied in general.

Let us consider the triplet (gc, T(F), AM(F)) as an independent entity. Then
we are presented with the following objects: a complex reductive Lie algebra gc,
a manifold T(F) equipped with a simple transitive action of a real torus To(F), a
compatible map

(12.7) Ad: T(F) - GL(ge),
a real split torus AM(F), and an embedding of AM(F) into To(F). The algebra
S is of course determined by gc. It is also apparent that the subset Treg(F) of
T(F) is uniquely defined by gc and T(F) (and the map (12.7)). In fact, it
follows from the definitions that the entire decomposition (12.1) is determined by
gc and T(F). Since the function D(y) is also determined by gc and T(F), the
same is true of the differential operators d(a(y, z)) and di(y, z). Finally, it
follows from (12.5) that the constants ci are determined by our triplet. Therefore,
the formulas from the lemma imply
COROLLARY 12.3. The differential operators d (y, z) are uniquely determined

by the triplet (gc, T(F), AM(F)). O
This corollary tells us that the differential operators can be matched for groups

which differ by an inner twisting. In fact, somewhat more is true. The algebraic
closure F of F is isomorphic to C. The associated space T(F) is a complex
manifold, and (12.7) extends to a holomorphic map

Ad: T(F) GL(gc).
In the definitions (12.2) and (12.3), we can replace ID(y)11/2 by any branch of
D(y)1/2. It then follows from the other definitions that the entire construction
extends holomorphically from Tr(F) to Treg(F). Therefore, by Lemma 12.1, the
analytic differential operators dM(y, z) extend to holomorphic differential oper-
ators on Treg(F). The construction also behaves in the obvious way under
conjugation by M°(F). In particular,

a(m-ym, z) = aG(y, z), m E M°(F).
It follows from these remarks and Corollary 12.2 that the differential operators
d9(y, z) can be computed in general from the special case that GO splits over F
and HO is an F-split torus.

Let T, c be the complexified Lie algebra of the Cartan subgroup H°(F) of
G°(F). Then the Harish-Chandra map

z h(z), z EC-T,
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sends . isomorphically onto the Weyl invariant elements in S()T, c). We can
write

rT,C = tC E C,

where c is spanned by the Ad(T(F))-eigenvectors in b T, with nonzero

eigenvalue. Then

S((T,c) = S(tC) 0 S(Bc),
so that

S(bT,C) = S(tC) S(T,C)C.
Let hT(z) denote the projection of h(z) onto S(tc), relative to this last
decomposition. Then

Z - hT(z)
is a homomorphism of 2 into S(tc). We can expect the image of hT to be the
space of invariants in S(tc) under the normalizer of tc in the Weyl group. (See
[8, Theorem 1.2].) In any case, it is clear that S(tc) is a finite module over
hr(ST).
LEMMA 12.4. ad(y, z) = d(hT(z)), z E S.
Proof By the first assertion of Lemma 12.1, we need only show that hT(z)

equals a(y, z). If G = G°, so that hT(z) = h(z), this is a standard result of
Harish-Chandra [12, Theorem 2]. Harish-Chandra's proof entails differentiating
the characters of finite-dimensional representations. Rather than deal with twisted
characters, we shall use a different argument.

According to the remarks above, we may assume that H° is an F-split torus.
Then GO has a Borel subgroup

B0 = NBHT

which is normalized by T and is defined over F. We can write

JG(,f) =ID(Y) 11/2 f f I f/(k-ln-lh-l hnk) dhdndk.
KNB(F) (TO(F)\HT(F)

Since y is a regular element in T(F), we can change variables in the integral over
NB(F). The usual formula gives

JG(, f) = OBo(Y)1/2 f f(k h-lyhnk) dhdndk.
K4NB(F) TO(F)\HT(F)
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It then follows from the definition of the Harish-Chandra map that

JG(Y, zf) = (hT(z))J(y, f), z E.
Therefore,

(a(y, Z))(JG(, f) = (hT(z))JG(y,f).
Since any smooth function of y E Treg(F) is locally of the form Jc(y, f), we
obtain

d(a(-y, z)) = (hT(z)),
as required. o

§13. Behaviour near singular points. For real groups, the most important
singularities of weighted orbital integrals are at the semiregular points. As with
invariant orbital integrals, a knowledge of the behavior around semiregular
points, in combination with the differential equations, suffices for most applica-
tions. We have investigated this behaviour in [1]. For the sake of completeness,
we shall recapitulate the main result.

Recall that an element o E T(F) is semiregular if the derived group of Go(F)
is three-dimensional (as a real Lie group). Suppose that this is so, and that the
derived group is noncompact. Then F-R. Let P/ be one of the two roots of
(Go, To) and let ]v E t(F) be the corresponding co-root. (Here t is the Lie
algebra of To.) Notice that / extends to a morphism

t -> t, t e T,
from T to GL1 over F, such that oa = 1 and

(tto) = tato, t E T, to E TO.
Let M1 be the Levi subset in oS(M) such that

AM= {a AM: a = 1}.

We shall consider the function

(13.1)
Jo(y, f) = JM(Y, f) + 1IIP11jogli - Y-l1JM,(y ),y) E Treg(F),

where 11i|811 denotes the norm of the projection of /3" onto aM. The reader can
check that

J (aa, f)= E r(o, a)JL(aa, f)
LeS9(M)
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for a E AM(F). In particular, the function on the left is continuous at a = 1.
We are interested in the behaviour of its derivatives.

Let

C: To - Tol
be the Cayley transform in G,. Then C is an inner automorphism on Go which
maps To to a torus To, in Go which is F-anisotropic modulo the center of Go. Its
differential, which we also write as C, maps 1V to a co-root /3 for To,. Set

Yr = exp(r/V), r R,
and

8s =aexp(sfl), s E R.

Suppose that

3(u), uE S(tc),
is an invariant differential operator on T(F). Then if wp denotes the simple
reflection about B, we define an invariant differential operator

a(ul) = a(cwu - Cu)
on

T1(F) = aTol(F).
LEMMA 13.1. Let np(AM) denote the angle between /V and the subspace aM of

t(F). Then the limit

(13.2) lim ( (u)J (Yr, f) - a(u)J(y f ))
r *0+Or

equals
no(AM) lim (a )J (8,, f).

This lemma is essentially Theorem 6.1 of [1]. In [1] we were working only with
connected groups, but the extension of the proof to arbitrary G is formal. There
is a minor difference between our definition of JJ(yr, f) and the analogous
distribution introduced on page 227 of [1]. In place of the function

logl(yr) - (yr)-" = logle2r - e-2r = logler - e-'I + log(er + e-r)
in (13.1), we had

loger e-r
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in [1]. However, since the function

log(er + e-r)JMl(r, f)

is smooth at r = 0, this discrepancy does not affect the limit (13.2). In [1], we in
fact proved that the two one-sided limits in (13.2) each exist.
We shall conclude with a general estimate for the derivatives of JM(y, f) near

an arbitrary singularity. The technique is due to Harish-Chandra [15, Lemma 48]
and exploits the differential equations. We shall apply the technique to weighted
orbital integrals in much the same way as in the proof of Lemma 8.1 of [1].

Let A be a compact subset of T(F), and set

reg = A Geg.
LEMMA 13.2. For every element u E S(tc) there is a positive integer q and a

continuous seminorm c on Ca(G(F)) such that

(13.3) d(u)JM(y, f)l < c(f)|DG(Y)q
for any y E Areg and f Cf(G(F)).

Proof. Suppose first that u = 1. By Corollary 7.4 of [1], we can choose a
positive integer p and a continuous seminorm c on Cf(G(F)) so that

IJM(Y, )l -< c(f )(logl|DG(7)l) l
for y near the singular set of T(F). In particular, (13.3) holds with q = 1.

Next, suppose that

u = hT(z)
for some z E S. Then by Proposition 11.1 and Lemma 12.4,

a(u)JM(y, f) = JM(y, zf ) - E M(Y, ZL)JL(y, f)
(LE.(M): L4M}

Having already dealt with the case that u = 1, we need only estimate

dM(Y, ZL)JL(YY, )

for L D M. Applying Corollary 12.2 to L, we can choose p so that

,L(y, z) = (DG(y)) P Ej(y)d(uj)
J
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for elements uj E S(tc) and analytic functions ij on T(F). Assume inductively
that the lemma holds if M is replaced by L. Then for each j there is a positive
integer qj and a continuous seminorm Cy such that

I (uj)JL(y, f) C(f)DG(y) , Y E Areg.
The required estimate follows.

Suppose, finally, that u is arbitrary. This is the point at which we use
Harish-Chandra's method. We shall simply state the basic formula from the
proof of Lemma 48 of [15] in a form that applies in the present context. (See also
the discussion on page 13 of lecture 3 of [18].) The fact that we are dealing here
with a nonconnected group is of no consequence, for S(tc) is still a finite module
over

h() = {hT(z): z }.

Introduce a distance function for neighboring points in T(F) by exponentiat-
ing a norm on t(F), and let

(y), y E T(F),
denote the distance from y to the singular set

T(F)- reg(F).
We need only establish (13.3) for points y A reg with r(y) small. Set

E = T(Y).
Then Harish-Chandra's argument provides functions E m,..., Ek, and B, on
To(F) and elements u,..., uk in hT(S) such that

(u)JM(y, )

equals the difference between

k

(13.4) EJ d (i)JM(yt, f)Ej,(t) dt
j1 T(F)

and

(13.5) JM(t, f)E(t)dt
To(F)

The functions E, e and Pfe are independent of f but depend on y through the
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number e. They are all supported on the ball of radius 3e. Moreover, each Ej, is
bounded, while f8e satisfies an estimate

I|)e(t) < CE = c(r(y)/6) .

We can certainly produce bounds of the form

CIT(Y) '

< DG (y) < c2T(y),
since y belongs to the compact set A. In particular, we can write the previous
estimate in the form

IB(1t) < c'WDG(y) )I.
Applying the special case established above to the elements uo = 1, u1,..., uk,
we obtain

Id(ui)J (yt, f)l < ci(f)lDO(¥t) ·
Suppose that for a given t, one of the integrands in (13.4) or (13.5) does not
vanish. Then

T(yt) > 3 = 2T(Y),
and we obtain an estimate

| (ui)JM(¥yt,f) < c(f )lDG()I-
The required estimate (13.3) then follows. D
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