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The way that a magic trick works can be 
just as amazing as the trick itself.  My favorite way 
of illustrating this is to talk about shuffling cards.  
In this article, I will try to explain how there is a 
direct connection between shuffling cards and the 
Riemann Hypothesis — one of the Clay Mathematics 
Institute’s Millennium Prize Problems.

Let us begin with perfect shuffles.  Magicians and 
gamblers can take an ordinary deck of cards, cut it 
exactly in half, and shuffle the two halves together so 
that they alternate perfectly as in figure one, which 
shows a perfect shuffle of an eight-card deck.  

If the shuffle is repeated eight times with a fifty-two 
card deck, the deck returns to its original order.  This 
is one reason that perfect shuffles interest magicians.  
To see why gamblers are interested, suppose that 
the deck begins with four aces on top.  After one 
perfect shuffle, the top of the deck is Ace, X, Ace, 
X, Ace, X, Ace, X, where X is an indifferent card.  
After two perfect shuffles, the aces are four cards 
apart.  Thus, if four hands of poker are dealt, the 
dealer’s accomplice gets the aces.  This motivates 
the study of just what can be done with perfect 
shuffles.  Magicians and gamblers (along with a 
few mathematicians) have been thinking about such 
things for at least three hundred years.

To see the connections with mathematics, consider 
the problem of how many times a deck should be 
shuffled to recycle it.  The answer is eight for a fifty-
two card deck.  The answer is fifty-two for a fifty-
four card deck and six for a sixty-four card deck.  
The number of perfect shuffles needed to recycle 
various size decks is shown in table one.

	
Can the reader see any pattern in these numbers?  
Some people find it surprising that sometimes 
larger decks recycle after fewer shuffles.  Decks 
that have size power of two can be seen to recycle 
particularly fast.  To understand this better, label a 
deck of size 2n, starting from the top, as 0, 1, 2, 3, ...,	
2n - 1.  Observe that after one perfect shuffle, the card 
in position i moves to position 2i.  This statement is 
true even when i is greater than n/2, provided we 
take the remainder of 2i when divided by 2n - 1.  
Or, as mathematicians say, we compute 2i modulo 	
2n - 1.  Thus, when 2n = 52, the card in position 0 
stays there.  The card in position 1 moves to position 
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2 (because we label things starting at zero, position 
2 means the third card from the top).  The card in 
position 28 goes to position 56 modulo 51, that is, to 
position 5.  And so on.

Returning to the problem of a deck of arbitrary size n, 
we see that after one shuffle, card i moves to position 
2i modulo (2n - 1).  After two shuffles, it moves to 
position 4i modulo (2n - 1).  After three shuffles, it 
moves to position 8i modulo (2n - 1).  Therefore, the 
deck recycles after k shuffles, where k is the smallest 
power of two such that 2 raised to the kth power is 
one modulo 2n - 1.   For example, when 2n = 52,  
2n - 1 = 51, and the various powers of two modulo 	
2n - 1 are

	      0  2  4  8  16  32  13  26  1

That is, 28 = 256 = 1 modulo 51, so fifty-two cards 
recycle after eight shuffles.  For a fifty-four card deck, 
2 raised to the power 52 is 1 modulo 53.  One sees 
that fifty-two shuffles, but no fewer, are required.  
For a sixty-four card deck, 2 raised to the power 6 
is 1 modulo 63.  One sees that in six shuffles, but no 
fewer, the deck is recycled.

F r o m  t h e s e 
observations, 
it is natural to 
wonder  what 
the longest re-	
cycling times 
are.   Fermat’s 
little   theorem 
shows that the	
worst that can	
happen is that	
the deck re-	
c y c l e s  a f t e r 	
2n - 2 shuffles.
Does this happen 
for arbitrarily 

large decks?   No one knows.   It is a conjecture, 
due to Emil Artin, with antecedents in the work of 
Gauss, that 2 is a primitive root for arbitrarily large 
primes.  (See [1, 6] and [3, 4]). This would yield an 
affirmative answer to the card shuffling problem.  It 
has been rigorously proved that if the generalized 
Riemann Hypothesis holds, then the Artin 

conjecture holds. But, alas, a proof of the Riemann 
Hypothesis, even in its original form, continues to 
elude the efforts of the world’s mathematicians.

I find these connections wonderful.  It is inspiring, 
indeed awe-inspiring, that a simple card-shuffling 
question that fascinated me as a kid of thirteen can 
lead to the edge of mathematics and beyond.  If you 
want to know more about shuffling cards and its 
connections to all sorts of mathematics, see [2].
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Persi Diaconis delivering his talk at MIT.

The audience assisting in one of Persi’s tricks.


