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The	way	 that	 a	magic	 trick	works	 can	be	
just	as	amazing	as	the	trick	itself.		My	favorite	way	
of illustrating this is to talk about shuffling cards.  
In	 this	 article,	 I	 will	 try	 to	 explain	 how	 there	 is	 a	
direct connection between shuffling cards and the 
Riemann	Hypothesis	—	one	of	the	Clay	Mathematics	
Institute’s	Millennium	Prize	Problems.

Let us begin with perfect shuffles.  Magicians and 
gamblers	can	take	an	ordinary	deck	of	cards,	cut	it	
exactly in half, and shuffle the two halves together so 
that they alternate perfectly as in figure one, which 
shows a perfect shuffle of an eight-card deck.  

If the shuffle is repeated eight times with a fifty-two 
card	deck,	the	deck	returns	to	its	original	order.		This	
is one reason that perfect shuffles interest magicians.  
To	 see	 why	 gamblers	 are	 interested,	 suppose	 that	
the	 deck	 begins	 with	 four	 aces	 on	 top.	 	After	 one	
perfect shuffle, the top of the deck is Ace, X, Ace, 
X, Ace, X, Ace, X, where X is an indifferent card.  
After two perfect shuffles, the aces are four cards 
apart.	 	Thus,	 if	 four	 hands	 of	 poker	 are	 dealt,	 the	
dealer’s	 accomplice	gets	 the	 aces.	 	This	motivates	
the	 study	 of	 just	 what	 can	 be	 done	 with	 perfect	
shuffles.  Magicians and gamblers (along with a 
few	mathematicians)	have	been	thinking	about	such	
things	for	at	least	three	hundred	years.

To	see	the	connections	with	mathematics,	consider	
the	problem	of	how	many	 times	 a	deck	 should	be	
shuffled to recycle it.  The answer is eight for a fifty-
two card deck.  The answer is fifty-two for a fifty-
four	 card	 deck	 and	 six	 for	 a	 sixty-four	 card	 deck.		
The number of perfect shuffles needed to recycle 
various	size	decks	is	shown	in	table	one.

	
Can	 the	 reader	 see	 any	 pattern	 in	 these	 numbers?		
Some people find it surprising that sometimes 
larger decks recycle after fewer shuffles.  Decks 
that	have	size	power	of	two	can	be	seen	to	recycle	
particularly	fast.	 	To	understand	 this	better,	 label	a	
deck	of	size	2n,	starting	from	the	top,	as	0,	1,	2,	3,	...,	
2n - 1.  Observe that after one perfect shuffle, the card 
in	position	i moves	to	position	2i.		This	statement	is	
true	 even	 when	 i	 is	 greater	 than	 n/2,	 provided	 we	
take	 the	 remainder	 of	 2i	 when	 divided	 by	 2n -	 1.		
Or,	as	mathematicians	say,	we	compute	2i	modulo		
2n -	1.		Thus,	when	2n	=	52,	the	card	in	position	0	
stays	there.		The	card	in	position	1	moves	to	position	
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2	(because	we	label	things	starting	at	zero,	position	
2	means	 the	 third	card	 from	the	 top).	 	The	card	 in	
position	28	goes	to	position	56	modulo	51,	that	is,	to	
position	5.		And	so	on.

Returning	to	the	problem	of	a	deck	of	arbitrary	size	n,	
we see that after one shuffle, card i	moves	to	position	
2i	modulo	(2n - 1).  After two shuffles, it moves to 
position	4i	modulo	(2n - 1).  After three shuffles, it 
moves	to	position	8i	modulo	(2n -	1).		Therefore,	the	
deck	recycles	after	k shuffles, where k	is	the	smallest	
power	of	two	such	that	2	raised	to	the	kth	power	is	
one	 modulo	 2n -	 1.	 	 For	 example,	 when	 2n	 =	 52,		
2n -	1	=	51,	and	the	various	powers	of	two	modulo		
2n -	1	are

	 					0		2		4		8		16		32		13		26		1

That	is,	28 = 256 = 1 modulo 51, so fifty-two cards 
recycle after eight shuffles.  For a fifty-four card deck, 
2	raised	to	the	power	52	is	1	modulo	53.		One	sees	
that fifty-two shuffles, but no fewer, are required.  
For	a	sixty-four	card	deck,	2	raised	to	the	power	6	
is 1 modulo 63.  One sees that in six shuffles, but no 
fewer,	the	deck	is	recycled.

F r o m 	t h e s e	
observations,	
it	 is	 natural	 to	
wonder 	what	
the	 longest	 re-	
cycling	 times	
are.	 	 Fermat’s	
little	 	 theorem	
shows	 that	 the	
worst	 that	 can	
happen	 is	 that	
the	 deck	 re-	
c y c l e s 	a f t e r		
2n - 2 shuffles.
Does	this	happen	
for	 arbitrarily	

large	 decks?	 	 No	 one	 knows.	 	 It	 is	 a	 conjecture,	
due	to	Emil	Artin,	with	antecedents	in	the	work	of	
Gauss,	that	2	is	a	primitive	root	for	arbitrarily	large	
primes.		(See	[1,	6]	and	[3,	4]).	This	would	yield	an	
affirmative answer to the card shuffling problem.  It 
has	 been	 rigorously	 proved	 that	 if	 the	 generalized	
Riemann	 Hypothesis	 holds,	 then	 the	 Artin	

conjecture	holds.	But,	alas,	a	proof	of	the	Riemann	
Hypothesis,	 even	 in	 its	original	 form,	continues	 to	
elude	 the	 efforts	 of	 the	 world’s	 mathematicians.

I find these connections wonderful.  It is inspiring, 
indeed awe-inspiring, that a simple card-shuffling 
question	that	fascinated	me	as	a	kid	of	thirteen	can	
lead	to	the	edge	of	mathematics	and	beyond.		If	you	
want to know more about shuffling cards and its 
connections	to	all	sorts	of	mathematics,	see	[2].
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Persi Diaconis delivering his talk at MIT.

The audience assisting in one of Persi’s tricks.


