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Another major change this year concerns the 
editorial board for the Clay Mathematics Institute 
Monograph Series, published jointly with the 
American Mathematical Society.  Simon Donaldson 
and Andrew Wiles will serve as editors-in-chief, 
while I will serve as managing editor. Associate 
editors are Brian Conrad, Ingrid Daubechies, 
Charles Fefferman, János Kollár, Andrei Okounkov, 
David Morrison, Cliff Taubes, Peter Ozsváth, and 
Karen Smith. The Monograph Series publishes 
selected expositions of recent developments, both 
in emerging areas and in older subjects transformed 
by new insights or unifying ideas.  The next volume 
in the series will be Ricci Flow and the Poincaré 
Conjecture, by John Morgan and Gang Tian. Their 
book will appear in the summer of 2007.

In related publishing news, the Institute has had the 
complete record of the Göttingen seminars of Felix 
Klein, 1872–1912, digitized and made available on 
the web.  Part of this project, which will play out over 
time, is to provide online annotation, commentary, 
and translations to complement the original source 
material.   The same will be done with the results 
of an earlier project to digitize the 888 AD copy of 
Euclid’s Elements.  See www.claymath.org/library/
historical.

Mathematics has a millennia-long history during 
which creative activity has waxed and waned.  
There have been many golden ages, among which 
have figured the schools of Greece and Göttingen.  
The current period, with the resolution of so many 
long-standing problems, among which are  Fermat’s 
last theorem, the Sato-Tate conjecture, arithmetic 
progressions in the primes, and the Poincaré 
conjecture, is arguably one of these.  In any case, we 
live in exciting times for mathematics.

	 	
	 	 Sincerely,

	 	
	 	 James A. Carlson
	 	 President

Dear Friends of Mathematics,
For the past five years, the annual meeting of the 	
Clay Mathematics Institute has been a one-after- 	
noon event, held each November in Cambridge, 
Massachusetts, devoted to presentation of the 
Clay Research Awards and to talks on the work 
of the recipients.   The award recognizes major 
breakthroughs in mathematical research.  Awardees 
receive flexible research support for one year and 
the bronze sculpture “Figureight Knot Complement 
vii/CMI” by Helaman Ferguson.  Past awardees, in 
reverse chronological order, are Manjul Bhargava, 
Nils Dencker, Ben Green, Gérard Laumon and Bao-
Châu Ngô, Richard Hamilton, Terence Tao, Oded 
Schramm, Manindra Agrawal, Edward Witten, 
Stanislav Smirnov, Alain Connes, Laurent Lafforgue, 
and Andrew Wiles.

Beginning in 2007, the annual meeting will be held 
in May, alternating between Harvard and MIT as 
in the past, with an expanded two-day program of 
talks on recent research developments in addition 
to presentation of the awards. The aim is to offer a 
series of high-quality expository lectures that will 
inform mathematicians regardless of specialty.
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Fields Medal Winner Terence Tao

Terence Tao, a Clay Research Fellow from 
2000 to 2004, was one of four recipients of the Fields 
Medals awarded August 22, 2006.   The citation 
read: “for his contributions to partial differential 
equations, combinatorics, harmonic analysis and 
additive number theory.” The other awardees were 
Andrei Okounkov, Grigori Perelman and Wendelin 
Werner.

Tao, born in 1975, is a native of Adelaide, Australia.  
He began learning calculus as a seven-year-old high 
school student and by age eleven was well known 
in international math competitions.  After graduating 
from Flinders University in Australia with a Masters 
Degree, Tao earned his Ph.D. from Princeton 
University under the direction of Elias Stein. He 
then joined UCLA’s faculty, where he became full 
professor at age twenty-four.   Tao has also held 
professorships at the Mathematical Sciences Institute 
and Australian National University in Canberra.

Among Tao’s many awards are the Salem Prize 
in 2000, the Bôcher Prize in 2002, and the Clay 
Research Award in 2003.  He is also the recipient of 
a MacArthur Fellowship.

Tao’s work is astonishing not only in its depth and 
originality, but also in its quantity and breadth.  	
He is the author of more than 140 papers, about three-
quarters of which have been written with one or more 
of fifty collaborators.  While  the core of his work to	
date has been concentrated in harmonic analysis 	
and partial differential equations, it ranges from  	
dynamical systems to combinatorics, representation 

Terence Tao. Courtesy Reed Hutchinson/UCLA.

theory, algebraic geometry, number theory, and com-	
pressed sensing, a new area of applied mathematics.  	
Of special note is his joint work with Ben Green, 
a Clay Research Fellow from 2005  through 2007.  
In their 2004 paper, “The primes contain arbitrarily 
long arithmetic progressions,” the authors answered 
in the affirmative a long-standing conjecture that had 
resisted many attempts. Vinogradov settled the case 
of arithmetic progressions of length 3 in 1939. Since 
then, however, progress had stalled, and even the 
case of progressions of length 4 was unresolved.  For 
this and other work, Tao was awarded the Australian 
Mathematical Society Medal.

Tao is also unusual in the attention that he gives to 
the exposition of mathematics.  At his website, one 
will find, among other things, a list of courses taught 
with an online edition of his textbook on partial 
differential equations   (Math 251B, Spring 2006), 
and an archive of over ninety notes on topics ranging 
from a survey of harmonic analysis to the Black-
Scholes formula in mathematical finance.  More 
recently Tao started a blog.  It makes for excellent 
reading and includes many of his recent lectures, 
including the Simons Lectures at MIT on structure 
and randomness, the Ostrowski lecture in Leiden on 
the uniform uncertainty principle and compressed 
sensing, and the ACM Symposium talk on the 
condition number of randomly perturbed matrices. 
There are also detailed notes on other lectures, e.g., 
Shing-Tung Yau’s, What is a Geometric Structure, in 
the Distinguished Lecture Series at UCLA, as well as 
talks and notes intended for more general audiences: 
The cosmic distance ladder, a talk given to UCLA 
chapter of the Pi Mu Epsilon society, and Advice on 
mathematical careers, and mathematical writing. 
Tao has also written an article on Perelman’s recent 
spectacular work.

On the web:

Home page:  www.math.ucla.edu/~tao
Blog:  terrytao.wordpress.com
Article on Perelman’s work:  arXiv:math/0610903
Interview:  www.claymath.org/library



CMI ANNUAL REPORT�

The way that a magic trick works can be 
just as amazing as the trick itself.  My favorite way 
of illustrating this is to talk about shuffling cards.  
In this article, I will try to explain how there is a 
direct connection between shuffling cards and the 
Riemann Hypothesis — one of the Clay Mathematics 
Institute’s Millennium Prize Problems.

Let us begin with perfect shuffles.  Magicians and 
gamblers can take an ordinary deck of cards, cut it 
exactly in half, and shuffle the two halves together so 
that they alternate perfectly as in figure one, which 
shows a perfect shuffle of an eight-card deck.  

If the shuffle is repeated eight times with a fifty-two 
card deck, the deck returns to its original order.  This 
is one reason that perfect shuffles interest magicians.  
To see why gamblers are interested, suppose that 
the deck begins with four aces on top.  After one 
perfect shuffle, the top of the deck is Ace, X, Ace, 
X, Ace, X, Ace, X, where X is an indifferent card.  
After two perfect shuffles, the aces are four cards 
apart.  Thus, if four hands of poker are dealt, the 
dealer’s accomplice gets the aces.  This motivates 
the study of just what can be done with perfect 
shuffles.  Magicians and gamblers (along with a 
few mathematicians) have been thinking about such 
things for at least three hundred years.

To see the connections with mathematics, consider 
the problem of how many times a deck should be 
shuffled to recycle it.  The answer is eight for a fifty-
two card deck.  The answer is fifty-two for a fifty-
four card deck and six for a sixty-four card deck.  
The number of perfect shuffles needed to recycle 
various size decks is shown in table one.

	
Can the reader see any pattern in these numbers?  
Some people find it surprising that sometimes 
larger decks recycle after fewer shuffles.  Decks 
that have size power of two can be seen to recycle 
particularly fast.  To understand this better, label a 
deck of size 2n, starting from the top, as 0, 1, 2, 3, ...,	
2n - 1.  Observe that after one perfect shuffle, the card 
in position i moves to position 2i.  This statement is 
true even when i is greater than n/2, provided we 
take the remainder of 2i when divided by 2n - 1.  
Or, as mathematicians say, we compute 2i modulo 	
2n - 1.  Thus, when 2n = 52, the card in position 0 
stays there.  The card in position 1 moves to position 

Mathematics and Magic Tricks

Persi Diaconis
Department of Mathematics and Statistics
Stanford University
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2 (because we label things starting at zero, position 
2 means the third card from the top).  The card in 
position 28 goes to position 56 modulo 51, that is, to 
position 5.  And so on.

Returning to the problem of a deck of arbitrary size n, 
we see that after one shuffle, card i moves to position 
2i modulo (2n - 1).  After two shuffles, it moves to 
position 4i modulo (2n - 1).  After three shuffles, it 
moves to position 8i modulo (2n - 1).  Therefore, the 
deck recycles after k shuffles, where k is the smallest 
power of two such that 2 raised to the kth power is 
one modulo 2n - 1.   For example, when 2n = 52,  
2n - 1 = 51, and the various powers of two modulo 	
2n - 1 are

	      0  2  4  8  16  32  13  26  1

That is, 28 = 256 = 1 modulo 51, so fifty-two cards 
recycle after eight shuffles.  For a fifty-four card deck, 
2 raised to the power 52 is 1 modulo 53.  One sees 
that fifty-two shuffles, but no fewer, are required.  
For a sixty-four card deck, 2 raised to the power 6 
is 1 modulo 63.  One sees that in six shuffles, but no 
fewer, the deck is recycled.

F r o m  t h e s e 
observations, 
it is natural to 
wonder  what 
the longest re-	
cycling times 
are.   Fermat’s 
little   theorem 
shows that the	
worst that can	
happen is that	
the deck re-	
c y c l e s  a f t e r 	
2n - 2 shuffles.
Does this happen 
for arbitrarily 

large decks?   No one knows.   It is a conjecture, 
due to Emil Artin, with antecedents in the work of 
Gauss, that 2 is a primitive root for arbitrarily large 
primes.  (See [1, 6] and [3, 4]). This would yield an 
affirmative answer to the card shuffling problem.  It 
has been rigorously proved that if the generalized 
Riemann Hypothesis holds, then the Artin 

conjecture holds. But, alas, a proof of the Riemann 
Hypothesis, even in its original form, continues to 
elude the efforts of the world’s mathematicians.

I find these connections wonderful.  It is inspiring, 
indeed awe-inspiring, that a simple card-shuffling 
question that fascinated me as a kid of thirteen can 
lead to the edge of mathematics and beyond.  If you 
want to know more about shuffling cards and its 
connections to all sorts of mathematics, see [2].

References
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1929.  Recorded in the diary of Helmut Hasse.
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5. Moree, P., Artin’s primitive root conjecture, http://
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Persi Diaconis delivering his talk at MIT.

The audience assisting in one of Persi’s tricks.
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Clay Lectures at Cambridge University

On November 28, 2006, the Clay 
Institute launched the Clay Lectures in Mathematics, 
an annual series of talks given by CMI’s past or 
current research fellows.  The talks, extending over 
a period of four days, feature three research talks and 
one public lecture by each of two fellows.

The lecture series is aimed at young mathematicians, 
as well as experts from other fields, and aims to 
develop a theme related to the research fellows’ 
interests.

The Cambridge lectures were delivered November 
28–December 1, by fellows Ben Green (2005–07) 
and Akshay Venkatesh (2004–06).   Green is now 
at Cambridge University and Venkatesh is at the 
Courant Institute of Mathematics (New York 
University).

Venkatesh gave three lectures entitled Abelian and 
Nonabelian Symmetry in Analytic Number Theory, 
and a public lecture Adding Square Numbers. The 
operation of adding together square numbers (1, 4, 
9, 16, 25, ...) gives rise to complex and beautiful 
patterns, that have motivated mathematicians from 
ancient times to the present.

Venkatesh’s talks began with a discussion of harmonic 
analysis on the circle and one of its early triumphs 
in the 1918 paper of Hardy-Ramanujan, which gave 
an exact formula for the number of partitions of an 
integer (e.g., 4 = 3+1 = 2+1+1 = 2+2 = 1+1+1+1). 
Modular forms already made their appearance in  
the Hardy-Littlewood paper; behind them lurks the 
nonabelian group SL2(R).

Green gave three lectures entitled Themes in 
Additive Combinatorics and a public lecture, Adding 
Prime Numbers. While it has been noted that it is 
more natural to multiply primes than to add them, 
many famous open problems in number theory are 
concerned with adding primes.  The study of these 
problems has led to some fascinating mathematics, 
including the question of the existence and abundance 
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 Akshay Venkatesh (Courant Institute)

Lecture Series: 

Abelian and Nonabelian Symmetry in Analytic Number 
Theory

  Some theorems of Hardy, Littlewood and Ramanujan.	
  Partitions and sums of squares

  Some theorems of Linnik, Duke and Iwaniec

  A survey of modern developments 

Public Lecture:  

Adding Square Numbers

Akshay Venkatesh delivering one of the Clay Lectures at DPMMS.

of arithmetic progressions in the primes.  The latter 
question was resolved by the recent work of Green 
and Tao.

Green’s lectures on additive combinatorics dealt 
with additive properties of sets of integers. If a set 
A is somewhat closed under addition, what is the 
structure of A?  What do we need to know about A 
in order to be able to locate very regular  structures, 	
such as	 arithmetic progressions, inside A?   How 
does the Fourier transform of A reflect the additive 
structure of A?
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Ben Green delivering one of the Clay Lectures at DPMMS.

Ben Green (University of Cambridge / CMI)

Lecture Series: 

Themes in Additive Combinatorics

  The structure theory of set addition.	
  Freiman’s theorem

  Gowers norms and nilsequences

  The idempotent theorem: an application of additive 
  combinatorics to harmonic analysis

Public Lecture: 

Adding Prime Numbers

The public lectures bring recent research develop-
ments to the educated general public.   For   the 
Cambridge event, the Centre for Mathematical 
Sciences converted its central atrium into a massive 
lecture hall.  A capacity crowd, with many of the 
Centre’s 900 undergraduate mathematics majors, 
attended.

The 2007 lectures will be held at the Tata Institute 
in Mumbai, India, with the talks to be given by 
fellows Elon Lindenstrauss (2003–05) and Mircea 
Mustata (2001–04).   Lindenstrauss and Mustata 
are at Princeton University and the University of 
Michigan, respectively. 
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Summary of 2006 Research Activities

The activities of CMI researchers and 
research programs are described below.  Researchers 
and programs are selected by the Scientific Advisory 
Board (see inside back cover).

Clay Research Fellows
Artur Avila began his three-year appointment in July 
2006.  He is currently working at IMPA in Rio de 
Janeiro, Brazil, where he received his Ph.D.

Samuel Payne graduated from the University of 
Michigan and is working at Stanford University.  
He has a four-year appointment that began in June 
2006.

Sophie Morel graduated from Université de Paris-
Sud, where she is currently conducting her work.  She 
began her five-year appointment in October 2006 at 
the Institute for Advanced Study in Princeton.

Avila, Payne, and Morel joined CMI’s current group 	
of research fellows Daniel Biss (University of 	
Chicago),  Maria Chudnovsky (Columbia University),	
Ben Green (MIT), Bo’az Klartag (Princeton 
University), Ciprian Manolescu (Columbia 
University), Maryam Mirzakhani (Princeton 
University), David Speyer (University of Michigan), 
András Vasy (Stanford) and Akshay Venkatesh 
(Courant Institute).

Research Scholars 
Wolfgang Ziller (University of Pennsylvania).  
September 1, 2005—June 30, 2006 at IMPA, Brazil.

Yaroslav Vorobets (Pidstryhach Institute for Applied 
Problems of Mechanics and Mathematics of 
Ukraine).  September 1, 2005—August 31, 2006 at 
Texas A&M University.

Tom Coates (Harvard University).   February 1—
May 31, 2006.  Research on Gromov-Witten Theory 
at MSRI.

Dihua Jiang (University of Minnesota).   May 1—
May 31, 2006.   Working with Bao-Châu Ngô in 
Orsay.
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Alan Carey (Australian National University).  May 
1—July 30, 2006 at the Erwin Schrodinger Institute 
in Vienna.

Ludmil Katzarkov (University of California, Irvine).  
June 1– June 30, 2006 at the University of Miami.

Mihalis Dafermos (University of Cambridge).  
December 31, 2006 – December 30, 2007.  

Senior Scholars
Yongbin Ruan (University of Wisconsin, Madison). 
January—May 2006.   MSRI program on New 
Topological Methods in Physics.

Jean-Louis Colliot-Thélène (Université de Paris-
Sud).  January 9—May 19, 2006.  MSRI program on 
Rational and Integral Points on Higher-Dimensional 
Varieties.

Robion Kirby (Stanford University).  June 25–July 
15, 2006.   PCMI program on Low-Dimensional 
Topology.

Clay Research Fellow Samuel Payne.

Clay Research Fellow Artur Avila.
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Yakov Eliashberg (Stanford University).   June 25– 
July 15, 2006.  PCMI program on Low-Dimensional 
Topology.

Peter Newstead (University of Liverpool).  October 
2006.  Tufts–BU joint semester on Vector Bundles.

John Milnor (SUNY, Stony Brook).  June 25, 2006–
July 2, 2006.  PCMI program on Low-Dimensional 
Topology.

Book Fellows
Appointed in 2006 were Ralph Greenberg 	
(University of Washington), who began working 
on the monograph Topics in Iwasawa Theory, and 
John Morgan (Columbia University) and Gang 
Tian (Princeton and MIT), who collaborated on the 
monograph Ricci Flow and the Poincaré Conjecture. 

Liftoff Fellows

CMI appointed nineteen Liftoff Fellows for the 
summer of 2006.   Clay Liftoff Fellows are recent 
Ph.D. recipients who receive one month of summer 
salary and travel funds before their first academic 
position.  See www.claymath.org/liftoff.

Research Programs Organized and Supported
by CMI

February 1–May 31. Eigenvarieties program at Harvard 
University.

February 24–27. Conference on Lie Groups, Dynamics, 
Rigidity and Arithmetic at Yale University.

April 6–12.  Workshop on Additive Combinatorics at 
CRM (Montreal).

April 26.  Public Lecture by Persi Diaconis.

May 10–15.  Eigenvarieties Workshop at CMI.

May 14–16.  Conference on Automorphic Forms and 	
L-Functions at Weizmann Institute of Science (Tel 
Aviv).

May 17–22.  Conference on Global Dynamics Beyond 
Uniform Hyperbolicity at Northwestern University.

June 19–24.  Conference on Hodge Theory at Venice 
International University (Italy).

June 19–July 14.  Workshops on Affine Hecke Algebras 
and Langlands Program at CIRM (Luminy, France).
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Program Allocation 

Estimated number of persons supported by CMI in 
selected scientific programs for calendar year 2006:

Research Fellows, Research Awardees,
Senior Scholars, Research Scholars, 
Book Fellows and Public Lecturers                   30

Summer School participants and faculty          135

Student Programs, participants 
and faculty    	 	                                100

CMI Workshops, Liftoff program                      60

Participants attending joint programs and
the Independent University of Moscow      > 1000

Research Expenses for Fiscal Year 2006
(comparative allocations change annually based on scientific merit)

Research Fellows

Students & Liftoff

Senior & Research Scholars

Publications & Book Fellows

Workshops, Lectures & Other Programs

Summer School

42 %

16 %

16 %

9 %

9 %

8 %

July 17–August 11.   CMI Summer School on 
Arithmetic Geometry at Göttingen, Germany.

October 5–10.  Moduli Spaces of Vector Bundles at CMI.

October/November.  Clay Research Conference.
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B e n  G r e e n 
was born in 1977 in	
Bristol, England,   and	
educated at Trinity 
College, Cambridge, first
as an undergraduate	
and later as a research 
student of Fields 	
Medalist Tim Gowers. 	
Since 2001 he has	

 been a Fellow of Trinity	
College, and in that time	

 he has made extended	
research visits to Princeton, the Rényi Institute in Budapest, the University of British Columbia, and the 
Pacific Institute of Mathematics (PIMS), where he was a postdoctoral fellow.  In February 2005 Green 
was named a Clay Research Fellow.   In January 2005, he took up a Chair in Pure Mathematics at the 
University of Bristol.  He began his appointment as a Clay Research Fellow in July 2005, the first year 
of which he spent at MIT.   Ben also spent from February to March of 2006 at CMI working with his 
student Tom Sanders.   In the Spring of 2007, Ben and his student Julia Wolf visited CMI for two weeks.

What first drew you to mathematics?  What are some 
of your earliest memories of mathematics?

I was always very interested in numbers as a small 
child — my mother tells me that I used to demand 
“sums” from the age of about 3 and I took an interest 
in such things as car registration plates and distances 
on signs which would not, perhaps, be regarded as 
normal for a young boy. Apparently the head teacher 
of my primary school (ages 5–11 in the UK) used 
me as an example of why it is not a good idea to try 
to teach your children at home, since I had learnt to 
subtract “the wrong way” (I don’t recall the method 
I was using but, in my parents’ defense, it was one 
I had discovered myself). I first started discovering 
“real” mathematics around the age of thirteen. The 
Olympiad movement — taking part in national 
competitions — was very important to me in this 
respect.   However, I also started paying regular 
visits to the city library in Bristol, which contained a 
surprisingly large, if somewhat eccentric, collection 

Interview with Research Fellow 
Ben Green
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of mathematics books. Thankfully, my father could 
always be persuaded to take me there so that he could 
indulge his interest in obscure folk and blues music 
at the same time. Two books which particularly 
influenced me were Richard Guy’s Unsolved 
Problems in Number Theory and Albert Beiler’s 
Recreations in the Theory of Numbers.

Could you talk about your mathematical education 
in the UK? What experiences and people were 
especially influential?  Can you comment on your 
experiences at Cambridge as an undergraduate? Is 
there something special in the college system that 
had a particular impact on your development?

As I said above, the Olympiad movement was 
very important to me. I was very lucky that there 
were two teachers at my secondary school, Julie 
Kirby and Frank Burke, who took an interest in my 
mathematical development and ensured that I was 
entered for the national competitions. They (and I) 
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that keeps you on your toes, and exposes you to 
some pretty interesting mathematics. 

Did you have a mentor?   Who 
helped you develop your interest 
in mathematics, and how?

I’ve mentioned a few great 
teachers that I had whilst at 	
school. When at university 
I was heavily influenced by 

Tim Gowers, who later became my thesis advisor. 
Towards the end of my thesis I gained a lot by 
talking to Imre Ruzsa in Budapest – I found we were 
interested in exactly the same types of questions. 

What attracted you to the particular problems you 
have studied?

I very nearly opted to do a Ph.D. in algebraic number 
theory, but some somewhat negative experiences 
of this area in my last year as an undergraduate, 
coupled with the recent award of a Fields Medal to 
Tim Gowers, persuaded me to work under Gowers in 
the area now known as additive combinatorics. The 
area is appealing in that the problems may be stated 
quite easily to a general mathematical audience. A 
particular attraction for me was that I could embark 

on research straight 
away – I did not need to 
go and read Hartshorne, 
let alone SGA.

It is hard to say exactly 
what it is that attracts me 
to a problem nowadays. 
I am particularly fond of 

instances in which it is possible to extract “rigid” 
structure from rather soft information – in fact most 
of the questions I am working on right now have this 
kind of flavor.  A theorem of this type that I very much 
admire (though I don’t quite know how to prove, 
I’m ashamed to say) is Marina Ratner’s theorem 
on the closures of orbits of unipotent flows. She 
related these to exact subgroups — that is, she took 
soft information (in this case a dynamical system) 
and found algebraic structure in it. Terry Tao and I 
are working on Freiman’s theorem and on inverse 

were rather surprised when I obtained the highest 
mark in one of these competitions (for students under 
the age of thirteen).  My school is currently ranked 
somewhere around 2000th in the UK academically so 
we were quite pleased 
to have scored this 
very minor victory 
over the famous 
schools like Eton 
and St Paul’s. This 
was when I realized 
that I had a particular 
aptitude for mathematics and started taking it more 
seriously. Subsequently I took part in more senior 
mathematics competitions and twice represented the 
UK at the International Mathematical Olympiad. 
In doing this I made many lasting friends and was 
influenced by several wonderful teachers. Among 
these I would single out Tony Gardiner, Christopher 
Bradley and David Monk who would regularly send 
me sets of interesting problems by post. At the time 
the training system in the UK was delightfully low-
key and personal, and refreshingly non-intensive. 
There was a long weekend at Trinity College, 
Cambridge, but nothing like the “hothouse” training 
camps some other countries employ.

Cambridge is an excellent place to be an undergraduate 
in mathematics. The course is hard and interesting, 
and moreover one is surrounded by other 
good and serious students. Essentially all 
of my close friends at university have gone 
on to tenured positions in mathematics 
of one kind or another. One aspect of the 
Cambridge education that I like personally 
is the fact that it is quite hands-off. The 
example sheets contain tough problems, and 
one is expected to bash one’s head against 
them repeatedly as one would a research problem. 
You won’t generally find Cambridge supervisors 
(people who conduct tutorials) giving away the key 
to the more interesting problems on a sheet unless 
the student has made a real effort.

The collegiate system gives students the 
opportunity to come in close contact with world-
class mathematicians. When I was a first-year 
undergraduate I was taught as one of a pair by both 
Tim Gowers and Bela Bollobas, eight times each: 
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However, I also started paying regular visits to 
the city library in Bristol, which contained a 
surprisingly large, if somewhat eccentric, collection 
of mathematics books. Thankfully, my father could 
always be persuaded to take me there so that he could 
indulge his interest in obscure folk and blues music. 

At the time the training system in 
the UK was delightfully low-key and 
personal, and refreshingly non-intensive. 
There was a long weekend at Trinity 
College, Cambridge, but nothing like the 
“hothouse” training camps some other 
countries employ.
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theorems for the so-called Gowers norms — in both of 
these one starts with something very combinatorial and 
produces an algebraic object from it.

Another thing we try and do is make “robust” versions 
of algebraic results. What is meant by an approximate 
group? An approximate homomorphism? How do these 
relate to the corresponding “exact” structures? Often 
much can be gained by enlarging one’s universe to include 
these approximate algebraic objects, provided one is able 
to handle the requisite approximate algebra.

Of course I am also motivated by the desire to prove 
results on the basic questions in number theory, say about 
prime numbers. But my results with Tao in this area have 
really come out of an attempt to understand the underlying 
structures in a more general context. 

Can you describe your research in accessible terms?  Does 
it have applications to other areas?

Right now I am working with Tao on generalizing the 
Hardy-Littlewood method for primes as far as we can. 
Using this method, Vinogradov proved in 1937 
that every large odd number N can be written 
as the sum of three primes. We have a program 
which should eventually allow us to count 
solutions to a more-or-less arbitrary system 
of linear equations in primes (an example 
that we have already dealt with is the system 
p1 + p3 = 2p2, p2 + p4 = 2p3, which defines an 
arithmetic progression of four primes). There 
is one important exception — we do not have a feasible 
plan for handling certain “degenerate” systems, which 
include the system p1 – p2 = 2 (twin primes) and p1 + p2 = 
N (Goldbach conjecture).

Although people seem to like results about the primes, 
from a mathematician’s point of view the underlying 
methods are much more interesting. Our work, together 
with the work of many other people, has hinted at deep 
connections between several areas of mathematics: 
analytic number theory, graph theory, ergodic theory and 
Lie groups.

What research problems and areas are you likely to explore 
in the future?

There is plenty of work left to be done on the program I 
have just described, and a really serious amount of work 

to be done on the general area of “rigidity” results 
in additive combinatorics and their applications. A 
proper quantitative understanding of   three main 
types of result in this vein (Freiman-type theorems, 
inverse theorems for Gowers-type norms and 
Ratner’s theorem) is probably decades away. In the 
longer term I want to become more competent with 
“non-abelian” tools and questions, that is to say 
the theory of “multiplicative combinatorics”. Who 
knows what may be brought to bear here — given the 
prevalence of Fourier-analytic methods in additive 
combinatorics, it seems likely that representation 
theory will have a major role to play. I also have 
quite a long list of miscellaneous problems that I 
would like to think about at some point.

Could you comment on collaboration versus solo 
work as a research style? Are certain kinds of 
problems better suited to collaboration?   What do 
you find most rewarding or productive?

I just noticed, looking at my webpage, that almost 
all of my first ten papers had just me as an author, 

whereas my	
ten latest are 	
all coauthored.
I have never	
written a 
three-author 
paper, but 
have found 
collaboration 

in pairs very productive.  It took me a while to realize 
that collaboration works best when both parties are 
completely open to sharing their best ideas — when I 
was a Ph.D. student I was terrified that people might 
steal my ideas, or jump in on a paper that I had 95 
percent finished. That attitude was probably fairly 
sensible at that stage, but with the luxury of a tenured 
job I take a much more open position. My joint paper 
with Tao on arithmetic progressions of primes was a 
memorable example of collaboration (it was mostly 
done in a rapid-fire exchange of emails). I am sure 
Terry would agree that this result could never have 
been proved by either of us individually. 

You have taken on thesis students at a very early stage 
in your career. Was that a conscious decision?  How 
did you first start working with research students?  	
	

Although people seem to like results about the 
primes, from a mathematician’s point of view the 
underlying methods are much more interesting. Our 
work, together with the work of many other people, 
has hinted at deep connections between several areas 
of mathematics: analytic number theory, graph theory, 
ergodic theory and Lie groups.
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Does working with students have rewards as well 
as responsibilities?

I currently have three Ph.D. students and also 
talk quite a bit to other students in additive 
combinatorics at Cambridge. I started working 
with Tim Gowers’ student Tom Sanders about four 
years ago, largely because he bugged me quite 
persistently with questions about the projects he 
was thinking about. After a while I came to realize 
that I rather enjoyed these discussions and resolved 
to take on a few good students should any come my 
way. I have a theory that having two children is less 
work than having one, as they can play with one 
another (I currently have none, so this hasn’t been 
tested very thoroughly). I believe that this carries 
over in a reasonably obvious way to graduate 
students — we hold regular reading seminars as a 
group and they can talk amongst themselves when 
I am not available. 

How has the Clay Fellowship made a difference 
for you?

It allowed me to spend the whole academic year 
2005–06 at MIT, which was handy since my 
girlfriend is doing a Ph.D. at Harvard. I was also 
able to bring Tom Sanders over for a few months 
during this time, and we had a very productive 
period leading to an Annals paper that I’m very 
happy with. There is no doubt that the Clay Research 
Fellowship has some of the best conditions of any 
postdoc out there — no teaching duties, excellent 
funds for travel, and so on — and this allows the 
Fellow to work very intensively on research. 

What advice would you give to young people 
starting out in math (i.e., high school students and 
young researchers)? 

A few tips that I have found handy, in no particular 
order: 1. At high school, it’s good to have the 
experience of tackling really hard problems (and 
failing, more often than not). Real mathematics 
is not as “safe” as Olympiad mathematics in 
that you don’t have an a priori upper bound for 
the difficulty of the problem. I’ve listed a few 
books that I enjoyed reading at school in one of 
my answers below. 2. Follow your nose, not 
necessarily what other people tell you, when you 

choose what questions you work on. I have worked 
on some questions which even people in my own 
subject would probably think uninteresting. I’ve 
certainly written papers on questions that nobody 
(before me) asked. Naturally, over the course of 
a career (and to get a job) you want to have some 
results that a lot of people are interested in. Let me 
just say, however, that I can trace my line of thought 
that eventually led to my joint paper on arithmetic 
progressions of primes back to a paper Ruzsa and I 
wrote in answer to a question of Jacques Verstraete: 
how many of the subsets of Z/pZ have the form A 
+ A, for some set A in Z/pZ?  I think most people 
would think of that question as more of a “puzzle” 
than a serious problem. 3. Check the ArXiv every 
day and use MathSciNet obsessively. The latter is a 
wonderful resource — all the papers in mathematics 
(certainly all those in the last 60 years) are indexed, 
cross-linked and reviewed.
 
What advice would you give laypersons who would 
like to know more about mathematics — what it is, 
what its role in our society has been and is, etc.?  
What should they read? How should they proceed? 

Well, I find it hard to do better than recommend 
my advisor Tim Gowers’ little book entitled 	
Mathematics, A Very Short Introduction, the aim of 
which is pretty much to answer those questions.  A 
couple of books that I really enjoyed as a teenager, 
long before I had any real understanding of what 
mathematics was about, are The Mathematical 
Experience by Davis and Hersh and Game, Set and 
Math: Enigmas and Conundrums by Ian Stewart.  
Both of these books do have some mathematics 
in them but they are certainly accessible to bright 
high-school students. Concerning the history of 
mathematics, I recall getting a lot from Makers of 
Mathematics by Stuart Hollingdale. Maybe some of 
these choices are eccentric — perhaps they were just 
the books that Bristol library had in stock — but I 
certainly enjoyed them myself.

There was a TV program in Britain about Wiles’ proof of 
Fermat’s last theorem which gave a wonderful insight into 
the personalities and mode of working of mathematicians.1 
I don’t know how widely available it is.
1. Ben refers to the BBC documentary Fermat’s Last Theorem that 
was written and produced by Simon Singh and John Lynch.  Later, 
the same documentary (reversioned for American audiences and 
renamed The Proof) aired on PBS as part of the NOVA series.  For 
more information, see http://www.pbs.org/wgbh/nova/proof/.
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To get some sense of the way mathematicians talk to 
one another, it could be fun to check out one of the 
increasing number of mathematicians’ blogs. Terry 
Tao has recently created one which attracts a lot of 
attention, and I have followed Luca Trevisan’s “In 
Theory” for a while.

And of course the Clay Institute has some pretty 
interesting and accessible lectures linked from its 
website. 

How do you think mathematics benefits culture	
and society?  

Though this question seems like an invitation to 
say something wildly pretentious, I’ll try and avoid 
doing so. I think one only needs to look at the 
attractiveness of mathematics graduates on the job 
market to realize that the mathematician’s way of 
thinking is something that can be extremely useful in 
many areas of society. I doubt that most jobs require 
a specific knowledge of homological algebra (say) 
but the ability to think creatively within the confines 
of logic and to think “out of the box” are clearly very 
important everywhere. Let me stop before I start 
sounding like a management consultant.

I personally find that mathematics is a wonderful 
way of breaking down cultural barriers. For example 
I spent several months working in Hungary even 
though I speak (almost) no Hungarian. I doubt that 
would have been possible in many other walks of 
life.

Please tell us about things you enjoy when not doing 
mathematics.

Unlike quite a lot, possibly even most, other 
mathematicians, I almost completely avoid activities 
like chess, bridge or computer programming.  When 
I’m not doing mathematics I like to do something 
that doesn’t use my brain so intensively. I’m a keen 
cyclist and outdoor enthusiast, I enjoy playing cricket 
(in the summer) and I play jazz saxophone to a rather 
mediocre standard.

You were recently appointed a full professor at 
Cambridge. Congratulations! What are you planning 
next?

Well I was very pleased to get the job at Cambridge and I 
don’t anticipate moving on for at least ten years or so.  I 
want to develop a group of students and postdocs here, a 
seminar series, and graduate courses. I’m very happy with 
the way my career has gone so far but it is important to 
avoid burnout. I believe that diversity in research is the 
key to that — I always like to feel that one of my projects 
could be completely taken away (solved by someone 
else or studied from a totally new perspective that I don’t 
understand, say) and I’d still have a decent portfolio of 
research projects.P
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Recent Research Articles 

“Linear Equations in primes,” with Terence Tao, to appear 
in Annals of Math.

“A quantitative version of the idempotent theorem in 
harmonic analysis,” with T. Sanders, to appear in Annals 
of Math. 

“Freiman’s theorem in finite fields via extremal set theory,” 
with  Terence Tao, arXiv:math/0703668

“A note on the Freiman and Balog-Szemeredi-Gowers 
theorems in finite fields,” with Terence Tao, arXiv:
math/0701585

“New bounds for Szemeredi’s theorem, II: A new bound 
for r4(N),” with Terence Tao, arXiv:math/0610604
 

Tom Sanders and Ben Green at the Clay Mathematics Institute.
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Normal Numbers are Normal

By Davar Khoshnevisan 
Department of Mathematics
University of Utah

NORMAL NUMBERS ARE NORMAL

DAVAR KHOSHNEVISAN

Abstract. A number is normal in base b if every sequence of k symbols in the letters 0, 1, . . . , b− 1
occurs in the base-b expansion of the given number with the expected frequency b−k. From an informal
point of view, we can think of numbers normal in base 2 as those produced by flipping a fair coin,
recording 1 for heads and 0 for tails. Normal numbers are those which are normal in every base.
In this expository article, we recall Borel’s result that almost all numbers are normal. Despite the
abundance of such numbers, it is exceedingly difficult to find specific exemplars. While it is known
that the Champernowne number 0.123456789101112131415 · · · is normal in base 10, it is (for example)
unknown whether

√
2 is normal in any base. We sketch a bit of what is known and what is not known

of this peculiar class of numbers, and we discuss connections with areas such as computability theory.

1. Introduction

Let x be a real number between zero and one. We can write it, in binary form, as x = 0.x1x2 · · · ,
where each xj takes the values zero and one. We are interested first of all in “balanced” numbers—
numbers x such that half of their binary digits are zeros and the remaining half are ones. More
precisely, we wish to know about numbers x that satisfy

lim
n→∞

# {1 ≤ j ≤ n : xj = 1}
n

=
1
2
, (1)

where # denotes cardinality.
Equation (1) characterizes some, but not all, numbers between zero and one. For example, x = 0

and x = 1 do not satisfy (1), whereas the following do: 0.10, 0.01, 0.001011. The last three examples
are eventually periodic. It is therefore natural to ask whether there are numbers that satisfy (1) whose
digits are not periodic. Borel’s normal number theorem gives an affirmative answer to this question. In
fact, Borel’s theorem implies, among other things, that the collection of non-normal numbers has zero
length. Surprisingly, this fact is intimately connected to diverse areas in mathematics (probability,
ergodic theory, b-adic analysis, analytic number theory, and logic) and theoretical computer science
(source coding, random number generation, and complexity theory).
In this article, we describe briefly a general form of Borel’s normal-number theorem and some of its

consequences in other areas of mathematics and computer science. Our discussion complements some
related papers by Berkes, Philipp, and Tichy [3], Harman [15], and Queffélec [21].

2. Borel’s theorem

Given an integer b ≥ 2 and a number x between zero and one, we can always write x =
∞

j=1 xjb
−j ,

where the xj ’s take values in {0 , . . . , b− 1}. This representation is unique for all but b-adic rationals;
for those we opt for the representation for all but a finite number of digits xj are zero.
We may think of {0 , . . . , b − 1} as our “alphabet,” in which case a “word” of length m is nothing

but the sequence σ1 . . . σm, where each σj can take any of the values 0 , . . . , b− 1.

	             continued on page 27
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CMI—Göttingen Library Project

Two plain shelves in Göttingen, in the 
entrance room of the mathematics library, hold one 
of the best-kept secrets in the history of mathematics. 
In this locked Giftschrank, or poison cabinet,  stand 
several hundred volumes, largely handwritten and 
mostly unique, that form an extensive record of one 
of the world’s most important mathematical centers, 
the home of Gauss, Riemann, Dirichlet, Klein, 
Hilbert, Minkowski, Courant, Weyl, and other 
leading mathematicians and physicists of the 19th 
and early 20th centuries.  A recent Report on the 
Göttingen Mathematical Institute Archive cites “a 
range of material unrivalled in quantity and quality: 
No single archive is even remotely comparable,”  
not only because Göttingen was “the leading place 
for mathematics in the world,” but also because “no 
other community has left such a detailed record of its 
activity — usually we are lucky to have lecture lists, 
with no indication of the contents.”  The collection 
runs from early handwritten lectures by Riemann 
and Clebsch through almost 100 volumes by Hilbert 
to volumes of Minkowski on number theory and 
Max Born on quantum mechanics.  But the largest 
and richest of its centerpieces is the Seminar-
Protokolle of Felix Klein: a detailed handwritten 
record, spanning over 8,000 pages in 29 volumes, of 
40 years of seminar lectures by him, his colleagues 
and students, and distinguished visitors.

The record begins in 1872, when the 23-year-old 
Klein began his new professorship at Erlangen with 
the announcement of his revolutionary Erlangen 
program, unifying the various geometries of the 
time by classifying them by their corresponding 
groups of transformations.  He had recently proved 
that non-Euclidean geometry is consistent if and 
only if Euclidean geometry is, and he would go on 
to do ground breaking work in many other areas, 
becoming, along with Hilbert and Poincaré, the 
last of the mathematicians who could claim to have 
a grasp of the entire field.  Klein then moved to 
Münich, Leipzig and finally Göttingen.  His energy 
and  administrative talent made him the central figure 

in Germany’s leading mathematics department at 
Göttingen, the nation’s leading mathematics journal 
Mathematische Annalen, its first national association 
of mathematicians, and a program of reforms in higher 
education that became known as the Klein reforms.  
His influence on all aspects of mathematical life 
was unmistakable, even in his wife’s wedding dress, 
patterned with arabesques from Kummer surfaces.

Klein’s impact was especially strong in the United 
States. By 1875, in the first century after the 
Revolution, the growing network of American 
universities had only managed to award six doctoral 
degrees in mathematics, an average of less than one 
per decade.  As programs finally began to expand and 
to look to Europe for inspiration, Klein took up the 
challenge, making repeated trips to the United States 
to present the latest in modern mathematics to his 
eager listeners.  His series of lectures in Evanston, 
Illinois, held in conjunction with the World’s Fair in 
Chicago and now known as the Evanston Colloquium, 
had a legendary influence, as did his tours of the 
universities on the East Coast.  Klein himself soon 
became convinced of the potential of American 
mathematics, and worked to organize funding for the 
brightest American students to study in Göttingen.  He 
was soon supporting a steady stream of enthusiastic 
American visitors. Harry Walter Tyler from MIT 
wrote, “I know of no one who can approach him as a 
lecturer….  He’s certainly acute, fertile in resource, 
not only understands other people, but makes them 

The Felix Klein Protocols Digitized
by Eugene Chislenko

Mathematisches Institut Georg-August-Universität, Göttingen.
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understand him, and seems to have a very broad firm 
grasp of the philosophical relations and bearings of 
different subjects, as well as great versatility and 
acquaintance with literature.”

Tyler was one of many Americans to be marked 
by the breadth and power of Klein’s teaching, and 
to leave their own mark, first in his Protokolle 
and then in the world at large: six of the American 
Mathematical Society’s early presidents and two of 
the University of Chicago’s first three mathematics 
professors were students of Klein.

The Protokolle cover every aspect of his astonish-
ingly wide-ranging activity. The first volume alone 
includes presentations not only on Lie groups, 
icosahedra, Riemann, and Abel’s Theorem, but also 
on heat distribution, crystals, comets, and the theory 
of the Northern Lights. From an early emphasis 
on geometry, group theory, and function theory, 
the other volumes expand into number theory, 
probability theory, mechanics, astronomy, geodesy, 
hydrodynamics, electricity, elasticity theory, and, 
in Klein’s last years before his retirement in 1912, 
the psychology and teaching of mathematics.  The 
meetings were small and on a high level.  Participants 
included the young Pauli and Zermelo, Planck and 
Hurwitz, Prandl and Bernstein.   Many of the later 
seminars were organized jointly with Hilbert and 
Minkowski, whom Klein had attracted to Göttingen 
and who shared his commitment to a close tie between 

mathematics and physics.  Presentations made in the 
seminar were painstakingly recorded in the Seminar-
Protokolle books, just as Göttingen mathematics 
lectures were recorded in other notebooks and 
placed in the library for students’ reference.  These 
notebooks have continued to astonish those who see 
them, and they remain the most complete record of 
a great era of mathematical creativity.

To make these volumes more widely available, 
CMI and Professor Yuri Tschinkel have organized 
a digitization initiative, using the latest in scanning 
technology to digitize the complete Protokolle in 
November of 2006.  They are now being published 
for the first time, in a digital edition available online 
at www.claymath.org/library/historical. The full 
resolution scans are available for study by scholars 
at CMI and at the Göttingen Mathematical Institut at	
www.librarieswithoutwalls.org/klein.html.
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The Klein Protokolle 

Modern technology makes possible 
as never before access for everyone to the classics 
of mathematics.   The Clay Mathematics Institute 
has undertaken several initiatives in cooperation 
with other institutions to digitize and disseminate 
significant historical mathematical works.  The first 
project, entirely funded by CMI, was the digitization 
of the oldest extant copy of Euclid’s Elements. This 
is the d’Orville manuscript, dated to 888 AD, when 
it was copied in Constantinople by Stephen the Clerk 
for Arethas, later bishop of Caesarea Cappadociae. 
The manuscript has been in the collection of the 
Bodleian   Library since 1804.   The photography, 
directed by Chet Grycz of Octavo and Richard 
Ovenden of the Bodleian, took place at Oxford in 
the fall of 2004.  From it resulted a set of 386 digital 
images, one per spread of the mansucript, each with 
a resolution of 639 pixels per inch and a file size 
of 254 megabytes. CMI, the Bodleian Library, and 
Octavo.com maintain copies of the original images 
for use by any interested person.  Online copies are 
available at CMI and the non-profit organization 
Libraries Without Walls.

The next two projects took place in Göttingen with 
the help of Yuri Tschinkel of the Mathematisches 
Institut. Bernhard Riemann’s 1859 manuscript “On 
the number of primes below a fixed bound,” was 
photographed in 2005 by the Niedersächsische  
Staats- und Universitätsbibliothek Göttingen in 
2005 with the assistance of Helmut Rolfing, curator 
of manuscripts.

Much greater in scope was the digitization of the 
Klein Protokolle at the Mathematische Institut in 
Göttingen — twenty-nine volumes comprising 
8600 pages.  The work was carried out by Libraries 
without Walls under the direction of Chet Grycz, 
again with CMI funding.   Ardon Bar Hama, the 
photographer, used a Leaf Aptus 75 camera with a 
digital back and was able to complete the job in three 
days of round-the-clock work at the Matematische 
Institut. The images were captured as high resolution 
camera Raw DNG files for magnification and close 
inspection by scholars using a careful non-intrusive 

handling procedure developed specifically for rare 
and delicate bound material.

Eugene Chislenko, CMI Senior Research Assistant 
on the project, has been facilitating digitization of 
the Klein Protokolle and other historical volumes.  
He is now editing and annotating the digitized 
volumes and is engaged in researching the history of 
mathematics with this material as a primary source.

There is much more of value to be digitized at the 
Mathematische Institut, for long the home of many of 
the world’s best-known mathematicians, from Gauss 
to Hilbert.  A complete catalogue of their manuscript 
holdings was prepared by Jeremy Gray of the Open 
University in a research project supported by CMI.

The most recent CMI digitization project, 
currbibliothek, is the preservation of portions 
of Riemann’s Nachlass at the Staats- und 
Universitätsbibliothek.

Websites:
www.claymath.org/library/historical

www.librarieswithoutwalls.org

www.librarieswithoutwalls.org/klein.html
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Portrait of Felix Klein, Courtesy Mathematisches Institut Georg-August-
Universität, Göttingen.
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Felix Klein, Protokolle, Vol V, p 11, 7  May 1883

Adolf Hurwitz, “Über die Bildung der Modul-Functionen,”  Protokolle, Vol II, 
p. 70, Monday, 6 December 1880

Adolf Hurwitz, “Über eine Reihe neuer Functionen ...,” Protokolle, Vol II, p. 144.
Monday, 21 February, 1887

“Ueber de Analysis Situs,” Protokolle, Vol II, p. 114, Monday, 31 January 1881 
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“Ueber reguläre Körper im vier-dimensionalen Raum,” W.I. Stringham, Felix Klein, Protokolle, Vol . II, p 65, Monday, 29 November 1880.
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“Ueber reguläre Körper im vier-dimensionalen Raum,” W.I. Stringham, Felix Klein, Protokolle, Vol. II, p 59, Monday, 29 November 1880.
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Arithmetic Geometry at the Mathematisches
Institut, Göttingen, Germany
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The 2006 CMI Summer School  was held 
at the Mathematisches Institut of Georg-August-
Universität, Göttingen, Germany.   A leading scientific 
center since the time of Gauss, Göttingen became 
a Mecca for mathematics in the 20th century, with 
Hilbert, Klein and Minkowski, the first three chair-
holders at the Institute.  The Mathematics Institute 
continues to be a leading international center for 
mathematical research, and the 107 participants1 at the 
school enjoyed the excellent facilities and hospitality 
of the Institute from July 17 through August 11.

The main focus of the school was on rational points 
on algebraic varieties over non-algebraically closed 
fields. Do they exist? If not, can this be proven 
efficiently and algorithmically?  When rational 
points do exist, are they finite in number and can 
they be found effectively? When there are infinitely 
many rational points, how are they distributed?

The school was organized around three core coures 
on Curves, Surfaces, and Higher-dimensional
1. In addition to the 107 participants funded by Clay, 
about 50 participants attended using their own funding.  
 

Varieties, supplemented by seminars on Compu-
tational and Algorithmic aspects of Arithmetic  
Geometry, and by mini-courses on more advanced 
topics. For Curves, a cohesive theory addressing 
these questions has emerged in the last few de-
cades. Highlights include Faltings’ finiteness theo-
rem and Wiles’ proof of Fermat’s Last theorem. Key 
techniques are drawn from the theory of elliptic 	
curves, including modular curves and parametriza-
tions, Heegner points and heights. Henri Darmon 
gave five lectures on Key Finiteness Theorems 
(Mordell-Weil theorem, Faltings’ theorem, Modu-
lar curves and Mazur’s theorem, Fermat curves 
and Wiles’ theorem), followed by a more special-
ized set of lectures, focusing on elliptic curves and 
their rational points with special emphasis on the 
Heegner point construction arising from modu-
larity and the theory of complex multiplication.

Brendan Hassett, Andrew Kresch and David Harari 
gave courses on the Arithmetic of Surfaces. Hassett 	
lectured on the geometry of rational surfaces, with 
a view toward arithmetic applications. Kresch 
lectured on the theory of descent and the Brauer-
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Manin obstruction to the Hasse principle and weak 
approximation, and Harari presented concrete 	
applications of the theory of descent. The arithmetic 	
of higher-dimensional varieties is equally rich, 
offering a complex interplay of techniques including 
Shimura varieties, the minimal model program, 
moduli spaces of curves and maps, deformation 
theory, Galois cohomology, harmonic analysis, and 
automorphic functions. Yuri Tschinkel gave eight 
lectures on the distribution of rational points with 
respect to heights, focusing on varieties closely 
related to linear algebraic groups, e.g., equivariant 
compactifications of groups and homogeneous 
spaces.   Topics covered included the circle method 	
and hypersurfaces, toric varieties, height zeta 	
functions of toric varieties, flag varieties, 
compactifications of additive groups, spherical 
varieties and conjectures on rational and integral 
points. Boris Moroz lectured on the classical 
application of the circle method to the Waring 
problem, and then explained how Deligne’s estimates 
on exponential sums lead to Heath-Brown’s theorem 
on cubic forms in ten variables. Jason Starr gave 
three lectures, one on the Tsen-Lang Theorem, one 
on Arithmetic over Function Fields of Curves and 
one on Arithmetic over Function Fields of Surfaces. 
Dan Abramovich lectured on Birational Geometry 
for Number Theorists (Kodaira dimension and the 
birational classification of varieties, the minimal 
model program, the conjectures of Lang and Vojta, 
Campana’s program, and applications to specific 
number-theoretic problems). Finally, Antoine 

Brendan Hassett’s course. 

Chambert-Loir lectured on the distribution of points 
of “small” height on arithmetic varieties. Topics 
covered included equidistribution on the projective 
line, Arakelov geometry and equidistribution, and 
Equidistribution on Berkovich spaces

The school also included a three week-workshop 
on Computational Aspects of Arithmetic Algebraic 
Geometry, as well as advanced mini-courses on 
Moduli of Abelian Varieties and p-Divisible Groups 
(Frans Oort and Ching-Li Chai), Zink’s Theory 
of Displays and Crystalline Dieudonné Theory 
(William Messing), Non-commutative Cartier 
Isomorphism and Hodge-to-de Rham Degeneration  
(Dmitry Kaledin), Classical and Iterated Shimura 
Symbols (Yuri Manin), Geometry over Finite Fields 
(Fedor Bogomolov), André-Oort Conjectures 
(Emmanuel Ullmo), and Varieties over Finite Fields 
(Bjorn Poonen).

 Downtown Göttingen, photo courtesy Ulrich Derenthal.
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The Ross Program at 
Ohio State University

In 2006, the Clay Mathematics Institute 
continued its support of summer programs for 
talented high school students who excel in math by 
sponsoring, in part, the Ross Program at Ohio State 
University and PROMYS at Boston University.  
Both of these programs are distinguished for offering 
the best pre-college learning experiences available 
to American students with a special aptitude for 
mathematics by immersing them in the creative 
world of mathematical discovery.

The Ross program at Ohio State University is an 
eight-week intensive summer course in mathematics 
for bright young students. Spurred by the launch 
of Sputnik and the subsequent surge of interest in 
science education, Dr. Arnold Ross founded his 
program at Notre Dame in 1957.   The program 
moved with Dr. Ross to Ohio State in 1964 and has 
run every summer since then.

The central goal of this program has always been to 
instruct and encourage students in the art of abstract 
thinking and to inspire them to discover for themselves 
that abstract ideas are valuable and important.  
Beginning students who do well are invited back for a 
second summer, and may return as junior counselors 
or counselors in subsequent summers.   Returning 
students and counselors also take advanced courses, 
which vary from year to year.

For the past several years, CMI employed instructors 
and counselors in the Ross Program.  This made it 
possible for the University to recruit top-ranking 
mathematics professors and graduate students to 
teach and coach the work of the enrolled students.  
In 2006, 35 students were involved in the number 
theory course (23 first-year students, 8 second-year 
students, and 4 undergraduates).  These participants 
were assisted in their mathematical work by eight 
Junior Counselors and seven Counselors.

The first-year students (mostly 14 to 18 years old) 
take the basic course in number theory, which Daniel 
Shapiro reported to be “elementary but fast-paced.”  
Each summer’s session starts with the Euclidean 
algorithm and congruences, then moves on to 

prime factorization, Gaussian integers, quadratic 
reciprocity, Möbius inversion, polynomial rings, 
geometry of numbers, etc. Students are expected to 
work through these ideas (with proofs), guided by 
the extensive problem sets.

“To discuss the number theory problems, students 
broke into three seminars taught by retired Ohio State 
University professor Robert Gold and his colleague 
Jim Brown, a postdoc at Ohio State, and Stefan 
Patrikis, one of the senior counselors.   Students 
with a bit more experience also participated in a 
Topics Seminar designed and run by the Counselors.  
Junior Counselors and Counselors attended the two 
advanced courses: Combinatorics taught by Professor 
Kenneth Supowit, and Sums of Square taught by me,” 
explained Shapiro.

In addition to these eight-week courses and seminars, 
there were several “colloquium style” lectures. 
The lecturers in 2006 were Ray Pierrehumbert 
(University of Chicago, geophysical sciences), Paul 
Pollack (Ph.D. student at Dartmouth), Tom Weston 
(University of Massachusetts–Amherst), David 
Pollack (Wesleyan University), Glen Whitney 
(Renaissance Technologies), and Susan Goldstine 
(St. Mary’s College of Maryland).

For each of the past several years, the Ross Program 
has also offered a three-week component for in-
service high school mathematics teachers.   These 
teacher-participants join the others in the number 
theory lecture, but have separate workshops and 
seminars.  A geometry course was introduced in 2006 
for alumni of the teacher program.  There were 19 
teacher-participants involved in the number theory 
course, and 8 joined the geometry course. These 
efforts were supported by funds from the Park City 
Math Institute and the Math Department’s VIGRE 
grant from the National Science Foundation.

“Next summer we will host a 50th Anniversary 
Reunion/Conference, held on July 20–22, 2007,” 
Shapiro reported.   “We will use this event to help 
demonstrate how influential the Ross Program has been 
on the American mathematical community.  It should 
also provide us with some fund-raising opportunities.”
Daniel B. Shapiro is Professor and Vice Chair of the Department 
of Mathematics at Ohio State University.   He was a student in 
the program in the 1960s and took over as director when Dr. Ross 
stepped down in 2000 at the age of 94.
 

“Think deeply of simple things”

 www.math.ohio-state.edu/ross
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that is easily transmitted to the participants.  They 
are the main channel by which the esprit de corps, 
so vital to PROMY’s success, is conveyed,” says 
Glenn Stevens.  Counselors share their knowledge 
and expertise with the high school participants by 
grading their daily homework, engaging in informal 
discussions, and offering mini-courses on themes of 
their choosing.

To ensure that returning students and counselors find 
their experience intellectually stimulating, the CMI/
PROMYS’s partnership offers a variety of advanced 
seminars and research projects each summer. Past 
seminars have included Values of the Riemann zeta 
function, Hyperbolic Geometry; Random Walks on 
Groups, Dirichlet Series, Mathematics of Computer 
Graphics, Graphs and Knots, and The Mathematics 
of Algorithms.   This year, PROMYS and the Clay 
Mathematics Institute are offering advanced 	
seminars in Geometry and Symmetry, Modular 
Forms, and Abstract Algebra.

In 2006, three research mathematicians — Jonathan 
Kanke (Duke University), Kiran Kedlaya (MIT), 
and Paul Gunnells (University of Massachusetts at 
Amherst) — were invited to serve as mentors to 
work with students on advanced research projects.  
Topics for their research projects in the summer 
of 2006 were: Quaternion Algebras, proposed by 
Jonathan Hanke; Combinators, proposed by Ira 
Gessel; Quadratic Forms and Quadratic Fields, 
proposed by Jonathan Hanke; Finiteness Theorems 
for Quadratic Forms, proposed by Jonathan Hanke; 
and Purely Periodic Continued Fractions, proposed 
by Kiran Kedlaya.

Since 1989, Glenn Stevens has directed Boston University’s Program 
in Mathematics for Young Scientists (PROMYS).  Professor Stevens 
is a Professor of Mathematics at Boston University, where he has 
taught and conducted research since 1984.  

Since 1999, the Clay Mathematics Institute 
has sponsored a variety of advanced seminars and 
research projects for returning students enrolled in 
the Program in Mathematics for Young Scientists 
(PROMYS) at Boston University.

Now in its nineteenth year, PROMYS is a six-
week summer program that was developed by BU 	
Professor Glenn Stevens with the aim of engaging 
ambitious high school students in intensive 
mathematics research.   Young students who excel 
in math are invited to explore the creative world of 
mathematics in a supportive community of peers, 
counselors, research mathematicians, and visiting 
scientists.

Students are selected from around the United States 
based on their interest and ability in mathematics.  
PROMYS moves well beyond the high school 
curriculum by offering students the opportunity 
to participate in the process of scientific research.  
First-year participants engage in intensive problem 
solving in elementary number theory.   Returning 
participants study more advanced topics.   These 
participants are divided into “lab groups” of two to 
four students. Each group works together on open-
ended exploratory projects that they will present 
to other PROMYS participants at the end of the 
program.  Throughout the summer,  several research 
mathematicians serve as mentors to the advanced 
students.  Mentors pose new research problems at the 
start of each summer and provide guidance for the 
students.  Their assistance includes hints for getting 
started and references to the pertinent literature.

Behind the scenes, a group of counselors, who 
are also participants in the program, maintain an 	
intensive level of interaction with the high school 
participants.   Counselors are undergraduate math 
majors recruited from the country’s top universities, 
who live and work alongside the younger participants, 
aiding them in their research. “It is no exaggeration to 
say that the success of PROMYS depends primarily 
on the dedication and expertise of the counselor staff.  
They bring an enthusiastic attitude to PROMYS 

PROMYS at Boston University
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http://math.bu.edu/people/promys
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Dmitry Vaintrob wins Siemens 
Competition
On December 4, 2006, former Clay Research 
Academy student Dmitry Vaintrob from Eugene, 
Oregon, won top honors in the 2006–07 Siemens 
Competition in Math, Science and Technology, the 
nation’s premier high school science competition.  
The Siemens Competition, a signature program of 
the Siemens Foundation, is administered by the 
College Board.   The awards were presented by 
U.S. Secretary of Education Margaret Spellings at 
New York University, host of the 2006–07 Siemens 
Competition national finals.

	
	
	
	

Dmitry won the $100,000 Grand Prize scholarship 
in the individual category for exciting research in a 
new area of mathematics called string topology.  His 
mentor for the competition was MIT mathematics 
professor Pavel Etingof, who coached Dmitry over 
a session of the Clay Research Academy in 2004. 
Pavel shares his impressions of Dmitry and recounts 
how such a young student came to win such an 
honor:

“Mitka is an amazing mathematical talent. At 18, he 
knows as much mathematics as graduate students at 
good universities in the beginning or even middle of 
their graduate studies. He is extremely creative, and 
extraordinarily gifted. He was in my representation 
theory group in the 2004 Clay Research Academy 

and did extremely well.   In the summer of 2006 
Mitka worked on a project at the Research Science 
Institute at MIT, under the joint supervision of 
Aaron Tievsky (an MIT mathematics graduate 
student) and myself. This was the most sophisticated 
mathematical research project by a high school 
student that I have ever seen. I suggested it to Mitka 
in June 2006. The project was to calculate explicitly 
the Hochschild cohomology of the group algebra of 
the fundamental group of a closed oriented surface 
(as a Batalin-Vilkovisky algebra) in terms of a certain 
Lie algebra of loops introduced by Goldman. This 
project could have been a part of a Ph.D. thesis in our 
graduate program, and requires a deep knowledge 
of graduate-level topology. Normally it would have 
been insane to give such a project to a high school 
student. But knowing Mitka’s exceptional talent and 
accomplishments, I decided to give it a try, and the 
results were even better than I had expected. Mitka 
not only gave a complete solution to the problem, 
but took the initiative to generalize it from the case 
of surfaces to the case of higher-dimensional closed 
aspherical manifolds. In this case, he found that the 
answer is expressible via the the so-called string 
topology of the manifold, introduced in 1999 by 
Moira Chas and Dennis Sullivan.  Thus in his work 
Mitka obtained original results, which will no doubt 
be of considerable interest to experts working in the 
area and are publishable in a high quality mathematics 
journal. These are all reasons to expect that he will 
become a major research mathematician.”

Dmitry attending Pavel’s course at the 2004 Clay Research Academy.

From left to right: Bettina von Siemens; Siemens Competition Individual 
Winner Dmitry Vaintrob; U.S. Secretary of Education Margaret  
Spellings; George Nolen, President and CEO of Siemens Corporation
Academy.  Photo courtesy the Siemens Foundation.
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Let w be a fixed word of finite length m, and choose and fix integers n ≥ m, as well as a real number
x ∈ [0 , 1]. We can then define N b

n(x ;w) to be the number of times the word w appears continguously
among (x1 , . . . , xn). The reader is invited to verify that N10

n (0.5 , {5}) = N2
n(0.5 , {1}) = 1 for all

n ≥ 1.
A number x is said to be simply normal in base b if

lim
n→∞

N b
n(x ; {j})

n
=
1
b

for all letters j ∈ {0 , . . . , b− 1}. (2)

That is, x is simply normal in base b when, and only when, all possible letters in the alphabet
{0 , . . . , b − 1} are distributed equally in the b-ary representation of x. Balanced numbers are simply
normal in base 2.
More generally, a number x is said to be normal in base b if given any finite word w with letters

from the alphabet {0 , . . . , b− 1},

lim
n→∞

N b
n(x ;w)
n

=
1
b|w| , (3)

where |w| denotes the length of the word m. The number a = 0.101010 · · · is simply normal, but
not normal, in base 2. This can be seen, for example, by inspecting the two-letter word “11.” Still
more generally, we say that x ∈ [0 , 1] is simply normal if it is simply normal in all bases b ≥ 2, and
[absolutely] normal if it is normal in all bases b ≥ 2. These definitions are all due to Borel [4].
The first nonperiodic numbers which are normal in some base b were constructed by Champer-

nowne [9] in 1933. These were the numbers C2 = 0.1011011001010011100101110111 . . . , C10 =
0.1234567891011121314 . . . . etc., obtained by concatenating the base b numerals in their natural
order. Champernowne also conjectured that 0.13571113171923 . . . , obtained by concatenating all
primes, is simply normal in base 10. His conjecture was verified in 1946 by Copeland and Erdős [10].
It is possible to construct numbers that are simply normal in one base, but not in another. For

example, the simply normal binary number a = 0.101010 · · · is not normal in base 10, since a = 2/3 =
0.6̄ in decimal notation.
The Champernowne numbers are admittedly artificial. Are there “natural” normal numbers? Al-

though nothing is known, there are several conjectures. The first of these [5], due to Borel in 1950,
states that all irrational algebraic numbers are normal; see also Mahler’s 1976 lectures [19] wherein
he proved, among other things, that Champernowne’s number is transendental. Unfortunately, not
much further progress has been made in this direction. For example, it is not known whether house-
hold numbers such as e, π, ln 2, or

√
2 are simply normal in any given base. (x > b is said to be

[simply] normal in base b when x/b is [simply] normal in base b.) We do not even know if
√
2 has

infinitely-many 5’s [say] in its decimal expansion!

I hasten to add that there are compelling arguments that support the conjecture that e, π,
√
2, and

a host of other nice algebraic irrationals, are indeed normal; see Bailey and Crandall [1].
The preceding examples, and others, were introduced in order to better understand the remarkable

normal number theorem of Borel [4] from 1909:

Theorem 2.1 (Borel). Almost every number in [0 , 1] is normal.

The veracity of this result is now beyond question. However, to paraphrase Doob [11, p. 591],
Borel’s original derivation contains an “unmendably faulty” error. Borel himself was aware of the gap
in his proof, and asked for a complete argument. His plea was answered a year later by Faber [14, p.
400], and also later by Hausdorff [16].
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continued from page 15
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Theorem 2.1 suggests that it should be easy to find normal numbers. But I am not aware of any
easy-to-describe numbers that are even simply normal. Recently, Becker and Figueira [2] have built
on a constructive proof of Theorem 2.1, due to Sierpiński [25], to prove the existence of computable
normal numbers. Their arguments suggest possible ways for successively listing out the digits of some
normal numbers. But a direct implementation of this program appears to be at best arduous.
Borel’s theorem is generally considered to be one of the first contributions to the modern theory

of mathematical probability; a fact of which Borel himself was aware [4]. In order to describe this
connection to probability, let us select a number X uniformly at random from the interval [0 , 1]. The
key feature of this random selection process is that for all Borel sets A ⊆ [0 , 1],

P{X ∈ A} = Lebesgue measure of A, (4)

where P denotes probability.
We can write X in b-ary form as

∞
j=1 Xjb

−j . Borel’s central observation was that {Xj}∞j=1 is a
collection of independent random variables, each taking the values 0, 1, . . . , b−1 with equal probability.
Then he proceeded to [somewhat erroneously] prove his strong law of large numbers, which was the
first of its kind. Borel’s law of large numbers states that for all letters j ∈ {0 , . . . , b− 1},

P

lim
n→∞

1{X1=j} + · · ·+ 1{Xn=j}

n
=
1
b


= 1, (5)

where 1A denotes the characteristic function of A. It follows readily from (5) that with probability
one X is simply normal in base b. Because there are only a countable number of integers b ≥ 2, this
proves that X is simply normal. Normality of X is proved similarly, but one analyses blocks of digits
in place of single digits at a time.
Let Nb denote the collection of all numbers normal in base b. The preceding argument implies that

P{X ∈ ∩∞b=2 Nb} = 1. This and (4) together imply Theorem 2.1.
We conclude this section by making a few more comments:
(1) In 1916 Weyl [27] described a tantalizing generalization of Theorem 2.1 that is nowadays called

Weyl’s equidistribution theorem. In this connection, we mention also the thesis of Wall [26]. (2)
Riesz [22] devised a slightly more direct proof of Theorem 2.1. His derivation appeals to Birkhoff’s
ergodic theorem in place of Borel’s (or more generally, Kolmogorov’s) strong law of large numbers.
But the general idea is not dissimilar to the proof outlined above. (3) The probabilistic interpretation
of Theorem 2.1 has the following striking implication:

Finite-state, finite-time random number generators do not exist. (6)

Of course, this does not preclude the possibility of generating a random number one digit at a time.
But it justifies our present day use of psuedo random-number generators; see Knuth [17] for more
on this topic. Remarkably, a complexity theory analogue to (6) completely characterizes all normal
numbers; see Schnorr and Stimm [24] and Bourke, Hitchcock, and Vinochandran [6]. In this general
direction, see also the interesting works of Chaitin [8] and Lutz [18].
(4) The proof of Borel’s theorem is more interesting than the theorem itself, because it identifies

the digits of a uniform random variable as independent and identically distributed. Such sequences
have interesting properties that are not described by Theorem 2.1. Next we mention one of the many
possible examples that support our claim.
Let Rn(x) denote the length of the largest run of ones in the first n binary digits of x. [A run of

ones is a continguous sequences of ones.] Then, according to a theorem of Erdős and Rényi [13] from
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1970,

lim
n→∞

Rn(x)
log2(n)

= 1 for almost every x ∈ [0 , 1]. (7)

Because this involves words of arbitrarily large length, it is not a statement about normal number per
se. There are variants of (7) that are valid in all bases, as well.

3. Unbiased sampling

As was implied earlier, one of the perplexing features of normal numbers is that they are abundant
(Theorem 2.1), and yet we do not know of a single concrete number that is normal. This has puzzled
many researchers, but appears to be a fact that goes beyond normal numbers, or even the usual
structure of the real line.
Next we present an example that examines an analogous problem in a similar setting. This example

suggests the following general principle: Quite often, schemes that involve taking “unbiased samples
from large sets” lead to notions of normality that are hard to pinpoint concretely. I believe that this
principle explains our inability in deciding whether or not a given number is normal. But I have no
proof [nor disproof].
Let us consider the ternary Cantor set C, which we can think of as all numbers x ∈ [0 , 1] whose

ternary expansion
∞

j=1 xj3−j consists only of digits xj ∈ {0 , 2}.
In order to take an “unbiased sample” from C, it is necessary and sufficient to find a probability

measure on C that is as “flat” as possible. [We are deliberately being vague here.] There are many
senses in which the most flat probability measure on C can be identified with the restriction mC of
the usual log3(2)-dimensional Hausdorff measure to C. That is, mC is the Cantor–Lebesgue measure.
Now it is not difficult to show that mC can be defined directly as follows:

mC(A) := P




∞
j=1

Xj

3j
∈ A


 for all Borel sets A ⊆ [0 , 1], (8)

where X1, X2, . . . are independent random variables, taking the values zero and two with probability
1/2 each. A ready application of the strong law of large numbers then reveals that the following holds
for mC-almost every x ∈ C:

lim
n→∞

N3
n(x ;w)

n
=

1
2|w|

for all words w ∈
∞

k=1

{0 , 2}k. (9)

We say that a number x ∈ C is normal in the Cantor set C if it satisfies (9). Although mC-
almost every number in C is normal in C, I am not aware of any concrete examples. On the other
hand, I point out that we do not know very many concrete numbers in C at all—be they normal or
otherwise. By analogy, this suggests the sightly uncomfortable fact that we do not know very many
numbers—normal as well as non-normal—in [0 , 1].

4. Non-normal numbers

At first glance, one might imagine that because normal numbers are so complicated, non-normal
numbers are not. Unfortunately, this is not the case. We conclude this article by mentioning two
striking results that showcase some of the complex beauty of non-normal numbers.
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4.1. Eggleston’s theorem. Let us choose and fix a base b ≥ 2 and a probability vector p :=
(p0 , . . . , pb−1); that is, 0 ≤ pj ≤ 1 and p0 + · · ·+ pb−1 = 1. Consider the set

E (p) :=


x ∈ [0 , 1] : lim
n→∞

N b
n(x ; {j})

n
= pj for all j = 0 , . . . , b− 1


. (10)

Note that if any one of the pj ’s is different from 1/b, then all elements of E (p) are non-normal. In
1949, Eggleston [12] confirmed a conjecture of I. J. Good by deriving the following result.

Theorem 4.1 (Eggleston). The Hausdorff dimension of E (p) is precisely the thermodynamic entropy

H(p) := −
b−1
j=0

pj logb(pj), (11)

where 0× logb(0) := 0.

This theorem is true even if p0 = · · · = pb−1 = 1/b, but yields a weaker result than Borel’s theorem
in that case. Ziv and Lempel [29] developed related ideas in the context of source coding.

4.2. Cassels’s theorem. For the second, and final, example of this article we turn to a striking
theorem of Cassels [7] from 1959:

Theorem 4.2 (Cassels). Define the function f : [0 , 1]→ R by

f(x) :=
∞

j=1

xj

3j
, (12)

where x1, x2, . . . denote the binary digits of x. Then, for almost every x ∈ [0 , 1], f(x) is simply normal
with respect to every base b that is not a power of 3.

It is manifestly true that Cassels’s f(x) is not normal in bases 3, 9, etc. Hence, non-normal numbers
too have complicated structure. We end our discussion by making two further remarks:
(1) Cassels’s theorem answered a question of Hugo Steinhaus, and was later extended by Schmidt

[23]. See Pollington [20] for further developments.
(2) Because 2f is a bijection between [0 , 1] and the Cantor set C, Cassels’s theorem constructs an

uncountable number of points in 1
2C that are simply normal with respect to every base b that is not

a power of 3. Not surprisingly, we do not have any concrete examples of such numbers.
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[4] Borel, Émile (1909). Les probabilités dénombrables et leurs applications arithmétiques, Supplemento di rend.
circ. Mat. Palermo 27, 247–271
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are considered once a year and must be submitted 
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“Ehrhart polynomials and stringy Betti numbers,” with 
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Annals of Mathematics 164 (2006), 911–940.

“Exponential mixing for the Teichmüller flow,” with S. 
Gouëzel and J.-C. Yoccoz.  Publications Mathématiques de 
l’IHÉS 104 (2006), 143–211.

BO’AZ KLARTAG

“A central limit theorem for convex sets.” Invent. Math. 
168, (2007), 91–131.

“An example related to Whitney extension with almost 
minimal Cm norm,” with Charles Fefferman.  Manuscript.



CMI ANNUAL REPORT34

 Books & Videos

The Millennium Prize Problems; Editors: James Carlson, 	
Arthur Jaffe, Andrew Wiles.   CMI/AMS, 2006, 165 pp. 	
www.claymath.org/publications/Millennium_Problems. This 
volume gives the official description of each of the seven prob-
lems as well as the rules governing the prizes.  It also contains 
an essay by Jeremy Gray on the history of prize problems in 
mathematics. 

Floer Homology, Gauge Theory, and Low-Dimensional 
Topology; Proceedings of the 2004 CMI Summer School 	
at Rényi Institute of Mathematics, Budapest.   Editors: 	
David Ellwood, Peter Ozsváth, András Stipsicz, and  	
Zoltán   Szábo. CMI/AMS, 2006, 297pp. www.claymath.
org/publications/Floer_Homology.  This volume grew out 
of the summer school that took place in June of 2004 at the 
Alfréd Rényi Institute of Mathematics in Budapest, Hungary.  It  provides a state-of-the-art 
introduction to current research, covering material from Heegaard Floer homology, contact 
geometry, smooth four-manifold topology, and symplectic four-manifolds.

Lecture Notes on Motivic Cohomology; Authors: Carlo Mazza, Vladimir Voevodsky,  
Charles Weibel.  CMI/AMS, 2006, 210 pp. http://www.claymath.org/publications/Motivic_
Cohomology. This book provides an account of the triangulated theory of motives.   Its 
purpose is to introduce the reader to Motivic Cohomology, develop its main properties and 
finally to relate it to other known invariants of algebraic varieties and rings such as Milnor 
K-theory, étale cohomology and Chow groups.

Surveys in Noncommutative Geometry; Editors: Nigel Higson, John Roe.  CMI/AMS, 2006, 189 pp. www.claymath.
org/publications/Noncommutative_Geometry.  In June 2000 a summer school on Noncommutative Geometry, organized 
jointly by the American Mathematical Society and the Clay Mathematics Institute, was held 
at Mount Holyoke College in Massachusetts.  The meeting centered around several series 
of expository lectures intended to introduce key topics in noncommutative geometry to 
mathematicians unfamiliar with the subject. Those expository lectures have been edited and 
are reproduced in this volume.

Harmonic Analysis, the Trace Formula and Shimura Varieties; Proceedings of the 2003 CMI 
Summer School at Fields Institute, Toronto. Editors: James Arthur, David Ellwood, Robert 
Kottwitz. CMI/AMS, 2005, 689 pp.  www.claymath.org/publications/Harmonic_Analysis.  
The subject of this volume is the trace formula and Shimura varieties.  These areas have 
been especially difficult to learn because of a lack of expository material. This volume 
aims to rectify that problem. It is based on the courses given at the 2003 Clay Mathematics 
Institute Summer School. Many of the articles have been expanded into comprehensive 
introductions, either to the trace formula or the theory of Shimura varieties, or to some 
aspect of the interplay and application of the two areas.
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Proceedings of the Clay Mathematics Institute
2003 Summer School, The Fields Institute  
Toronto, Canada, June 2–27, 2003

The modern theory of automorphic forms, embodied in
what has come to be known as the Langlands program,
is an extraordinary unifying force in mathematics. It
proposes fundamental relations that tie arithmetic
information from number theory and algebraic geometry
with analytic information from harmonic analysis and
group representations. These “reciprocity laws”,
conjectured by Langlands, are still largely unproved.
However, their capacity to unite large areas of
mathematics insures that they will be a central area of
study for years to come.

The goal of this volume is to provide an entry point into
this exciting and challenging field. It is directed on the
one hand at graduate students and professional
mathematicians who would like to work in the area. The
longer articles in particular represent an attempt to
enable a reader to master some of the more difficult
techniques. On the other hand, the book will also be
useful to mathematicians who would like simply to
understand something of the subject. They will be able
to consult the expository portions of the various articles.

The volume is centered around the trace formula and
Shimura varieties. These areas are at the heart of the
subject, but they have been especially difficult to learn
because of a lack of expository material. The volume
aims to rectify the problem. It is based on the courses
given at the 2003 Clay Mathematics Institute Summer
School. However, many of the articles have been
expanded into comprehensive introductions, either to
the trace formula or the theory of Shimura varieties, or
to some aspect of the interplay and application of the
two areas.
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Analytic Number Theory; A Tribute to Gauss and Dirichlet; Editors: William Duke, Yuri Tschinkel.  This volume con-
tains the proceedings of the Gauss-Dirichlet Conference held in Göttingen, June 20–24 in 2005, commemorating the 
150th anniversary of the death of Gauss and the 200th anniversary of Dirichlet’s birth.  It begins with a definitive 	
summary of the life and work of Dirichlet by J. Elstrodt and continues with thirteen papers by leading experts on research 
topics of current interest within number theory that were directly influenced by Gauss and Dirichlet.

Ricci Flow and the Poincaré Conjecture; Authors: John Morgan, Gang Tian.  This book 
presents a complete and detailed proof of the Poincaré Conjecture.  This conjecture was 
formulated by Henri Poincaré in 1904 and has remained open until the recent work of 
Grigori Perelman. The arguments given in the book are a detailed version of those that 
appear in Perelman’s three preprints.
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For additional information 
and updates on this book, visit

www.ams.org/bookpages/cmim-3
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GLOBAL
THEORY OF 
MINIMAL
SURFACES
Proceedings of the 
Clay Mathematics Institute 
2001 Summer School 
Mathematical Sciences Research Institute
Berkeley, California
June 25 – July 27, 2001

David Hoffman
Editor

Clay Mathematics Proceedings
Volume 2

American Mathematical Society
Clay Mathematics Institute
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During the Summer of 2001, MSRI
hosted the Clay Mathematics Institute
Summer School on the Global Theory of
Minimal Surfaces, during which 150
mathematicians—undergraduates, post-
doctoral students, young researchers,
and the world's experts—participated in
the most extensive meeting ever held on
the subject in its 250-year history. The
unusual nature of the meeting has made
it possible to assemble a volume of
expository lectures, together with some
specialized reports that give a
panoramic picture of a vital subject,
presented with care by the best people
in the field.

The subjects covered include minimal
and constant-mean-curvature
submanifolds, geometric measure theory
and the double-bubble conjecture,
Lagrangian geometry, numerical
simulation of geometric phenomena,
applications of mean curvature to
general relativity and Riemannian
geometry, the isoperimetric problem, the
geometry of fully nonlinear elliptic
equations, and applications to the
topology of three manifolds.

816 pages • 1 9/16" spine

www.ams.org

www.claymath.org

CMIP/2

4-color process

Strings and Geometry. Proceedings of the 2002 CMI Summer 
School held at the Isaac Newton Institute for Mathematical 
Sciences, UK.   Editors: Michael Douglas, Jerome Gauntlett 
and Mark Gross.  CMI/AMS publication, 376 pp., Paperback, 
ISBN 0-8218-3715-X. List: $69. AMS Member: $55. Order 
code: CMIP/3. To order, visit www.ams.org/bookstore.

Mirror Symmetry. Authors: Kentaro Hori, Sheldon Katz, 	
Albrecht Klemm, Rahul Pandharipande, Richard Thomas, 
Ravi Vakil. Editors: Cumrun Vafa, Eric Zaslow. CMI/AMS 
publication, 929 pp., Hardcover. ISBN 0-8218-2955-6. List: 
$124. AMS Members: $99. CMIM/1. To order, visit www.
ams.org/bookstore.

Strings 2001. Authors: Atish Dabholkar, Sunil Mukhi, Spenta R. Wadia. Tata Institute of 
Fundamental Research. Editor: American Mathematical Society (AMS), 2002, 489 pp., 	
Paperback, ISBN 0-8218-2981-5, List $74. AMS members: $59. Order code: CMIP/1. To 
order, visit www.ams.org/bookstore.

The CMI Millennium Meeting Collection. Authors: Michael Atiyah, Timothy Gowers, John 
Tate, François Tisseyre. Editors: Tom Apostol, Jean-Pierre Bourguignon, Michele Emmer, 
Hans-Christian Hege, Konrad Polthier. Springer VideoMATH, © Clay Mathematics Institute, 
2002. Box set consists of four video cassettes: The CMI Millennium Meeting, a film by 
François Tisseyre; The Importance of Mathematics, a lecture by Timothy Gowers; The Mil-
lennium Prize Problems, a lecture by Michael Atiyah; and The Millennium Prize Problems, a 
lecture by John Tate. VHS/NTSC or PAL. ISBN 3-540-92657-7, List: $119, EUR 104.95. To 
order, visit www.springer-ny.com (in the United States) or www.springer.de (in Europe).

These videos document the Paris meeting at the Collège de France where CMI announced the 
Millennium Prize Problems. For anyone who wants to learn more about these seven grand 
challenges in mathematics. 

Videos of the 2000 Millennium event are available online and in VHS format from
Springer-Verlag. To order the box set or individual tapes, visit  www.springer.com.
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MIRROR SYMMETRY
Kentaro Hori, Sheldon Katz, Albrecht Klemm, 
Rahul Pandharipande, Richard Thomas, 
Cumrun Vafa, Ravi Vakil, Eric Zaslow

Mirror symmetry is a phenomenon arising in string theory in which two very
different manifolds give rise to equivalent physics. Such a correspondence
has significant mathematical consequences, the most familiar of which
involves the enumeration of holomorphic curves inside complex manifolds
by solving differential equations obtained from a “mirror” geometry. The
inclusion of D-brane states in the equivalence has led to further conjectures
involving calibrated submanifolds of the mirror pairs and new (conjectural)
invariants of complex manifolds: the Gopakumar Vafa invariants.

This book aims to give a single, cohesive treatment of mirror symmetry
from both the mathematical and physical viewpoint. Parts I and II develop
the necessary mathematical and physical background “from scratch,” and
are intended for readers trying to learn across disciplines. The treatment
is focussed, developing only the material most necessary for the task. In
Parts III and IV the physical and mathematical proofs of mirror symmetry
are given. From the physics side, this means demonstrating that two
different physical theories give isomorphic physics. Each physical theory
can be described geometrically,

and thus mirror symmetry gives rise to a “pairing” of geometries. The
proof involves applying R ↔ 1/R circle duality to the phases of the fields
in the gauged linear sigma model. The mathematics proof develops
Gromov-Witten theory in the algebraic setting, beginning with the moduli
spaces of curves and maps, and uses localization techniques to show
that certain hypergeometric functions encode the Gromov-Witten invari-
ants in genus zero, as is predicted by mirror symmetry. Part V is devoted
to advanced topics in mirror symmetry, including the role of D-branes in
the context of mirror symmetry, and some of their applications in physics
and mathematics. and mathematics; topological strings and large N
Chern-Simons theory; geometric engineering; mirror symmetry at higher
genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the
mirror phenomenon as an equivalence of categories.

This book grew out of an intense, month-long course on mirror symmetry
at Pine Manor College, sponsored by the Clay Mathematics Institute. The
several lecturers have tried to summarize this course in a coherent,
unified text.

Video Cassettes

Global Theory of Minimal Surfaces. Proceedings of the 2001 CMI Summer School at 
MSRI. Editor: David Hoffman. CMI/AMS, 2005, 800 pp. www.claymath.org/publications/	
Minimal_Surfaces.   This book is the product of the 2001 CMI Summer School held at MSRI. 	
The subjects covered include minimal and constant-mean-curvature   submanifolds,  	
geometric measure theory and the double-bubble conjecture, Lagrangian 	
geometry, numerical simulation of geometric phenomena, applications of mean curvature 	
to general relativity and Riemannian geometry, the isoperimetric problem, the geometry 	
of fully nonlinear elliptic equations, and applications to the topology of three-manifolds.
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JANUARY
  

FEBRAURY

MARCH	
	

    

APRIL  

MAY

    

JUNE 

JULY

AUGUST 	
	

    

SEPTEMBER

OCTOBER

NOVEMBER

DECEMBER	

Semester Long Program in Symplectic Topology at MIT.  January, Spring Semester

Senior Scholar Gang Tian at MSRI: Program on Geometric Evolution Equations.  January–March

School and Workshop in the Geometry and Topology of Singularities at CIMAT.  January 8–27

Senior Scholar Peng Lu at MSRI: Program on Geometric Evolution Equations.  January 8–March 30 

Diophantine and Analytic Problems in Number Theory Conference at Moscow Lomonosov University. 	
January 29–Feb 2

Homological Mirror Symmetry and Applications Conference at IAS.  January 1–April 30

Loday and Stanley Workshop on Hopf Algebras and Props at CMI.  March 5–9	

Conference on Hilbert’s 10th Problem at CMI, including a preview screening of George
Csicsery’s film on Julia Robinson at the Museum of Science, Boston.  March 15–16

Motives and Algebraic Cycles:  A Conference dedicated to the Mathematical Heritage 	
of Spencer J. Bloch at the Fields Institute.  March 19–23

Noncommutative Geometry at IHES in Paris.  April 2–7	
 
Workshop on Symplectic Topology at CMI.  April 20–22 

Clay Public Lecture by Ingrid Daubechies: Surfing with Wavelets.  Stata Center at MIT, 	
Kirsch Auditorium.  April 10

Advances in Algebra and Geometry conference at MSRI in Berkeley, CA.  April 29–May 5

Clay Research Conference, Harvard University Science Center, Cambridge. May 14–15	

Geometry and Imagination Conference at Princeton University. June 7–11	

Summer School on Serre’s Modularity Conjecture at CIRM (Marseille, France). June 7–20
	
Dynamics and Number Theory CMI Summer School in Pisa, Italy. June 11–July 6	

Senior Scholar Andrei Okounkov at PCMI Program on Statistical Mechanics. July 1–21	

Srinivasa Varadhan at PCMI Program on Statistical Mechanics. July 1–21	

Infinite Dimensional Algebras and Quantum Integrable Systems II Conference,	
University of the Algarve, Faro, Portugal. July 23–27	

Conference On Certain L-Functions at Purdue University. July 30–August 3

Alex Eskin, MSRI Program on Teichmuller Theory and Kleinian Groups. August 10–December 14

Solvability and Spectral Instability at CMI. September 18–21

Clay Public Lecture by Terence Speed (Department of Statistics, UC Berkeley and Division 	
of Genetics and Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, 	
Australia) at the Harvard Science Center. October 30

Workshop on Geometry of Moduli Spaces of Rational Curves with applications to 	
Deophantine Problems over Function Fields at CMI.  November 

Clay Lecture Series at the Tata Institute of Fundamental Research (TIFR) in Mumbai, India.
December 11–14
 


