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Another	 major	 change	 this	 year	 concerns	 the	
editorial	 board	 for	 the	 Clay	 Mathematics	 Institute	
Monograph	 Series,	 published	 jointly	 with	 the	
American	Mathematical	Society.		Simon	Donaldson	
and	 Andrew	 Wiles	 will	 serve	 as	 editors-in-chief,	
while	 I	 will	 serve	 as	 managing	 editor.	 Associate	
editors	 are	 Brian	 Conrad,	 Ingrid	 Daubechies,	
Charles	Fefferman,	János	Kollár,	Andrei	Okounkov,	
David	 Morrison,	 Cliff	 Taubes,	 Peter	 Ozsváth,	 and	
Karen	 Smith.	 The	 Monograph	 Series	 publishes	
selected	 expositions	 of	 recent	 developments,	 both	
in	emerging	areas	and	in	older	subjects	transformed	
by	new	insights	or	unifying	ideas.		The	next	volume	
in	 the	 series	 will	 be	 Ricci Flow and the Poincaré 
Conjecture,	by	John	Morgan	and	Gang	Tian.	Their	
book	will	appear	in	the	summer	of	2007.

In	related	publishing	news,	the	Institute	has	had	the	
complete	record	of	the	Göttingen	seminars	of	Felix	
Klein,	1872–1912,	digitized	and	made	available	on	
the	web.		Part	of	this	project,	which	will	play	out	over	
time,	 is	 to	provide	online	annotation,	commentary,	
and	translations	 to	complement	 the	original	source	
material.	 	 The	 same	 will	 be	 done	 with	 the	 results	
of	an	earlier	project	to	digitize	the	888	AD	copy	of	
Euclid’s	Elements.	 	See	www.claymath.org/library/
historical.

Mathematics	 has	 a	 millennia-long	 history	 during	
which	 creative	 activity	 has	 waxed	 and	 waned.		
There	have	been	many	golden	ages,	 among	which	
have figured the schools of Greece and Göttingen.  
The	current	period,	with	the	resolution	of	so	many	
long-standing	problems,	among	which	are		Fermat’s	
last	 theorem,	 the	 Sato-Tate	 conjecture,	 arithmetic	
progressions	 in	 the	 primes,	 and	 the	 Poincaré	
conjecture,	is	arguably	one	of	these.		In	any	case,	we	
live	in	exciting	times	for	mathematics.

	 	
	 	 Sincerely,

	 	
	 	 James	A.	Carlson
	 	 President

Dear	Friends	of	Mathematics,
For the past five years, the annual meeting of the 	
Clay	 Mathematics	 Institute	 has	 been	 a	 one-after-		
noon	 event,	 held	 each	 November	 in	 Cambridge,	
Massachusetts,	 devoted	 to	 presentation	 of	 the	
Clay	 Research	 Awards	 and	 to	 talks	 on	 the	 work	
of	 the	 recipients.	 	 The	 award	 recognizes	 major	
breakthroughs	in	mathematical	research.		Awardees	
receive flexible research support for one year and 
the	bronze	sculpture	“Figureight	Knot	Complement	
vii/CMI”	by	Helaman	Ferguson.		Past	awardees,	in	
reverse	 chronological	 order,	 are	 Manjul	 Bhargava,	
Nils	Dencker,	Ben	Green,	Gérard	Laumon	and	Bao-
Châu	 Ngô,	 Richard	 Hamilton,	 Terence	 Tao,	 Oded	
Schramm,	 Manindra	 Agrawal,	 Edward	 Witten,	
Stanislav	Smirnov,	Alain	Connes,	Laurent	Lafforgue,	
and	Andrew	Wiles.

Beginning	in	2007,	the	annual	meeting	will	be	held	
in	 May,	 alternating	 between	 Harvard	 and	 MIT	 as	
in	 the	past,	with	an	expanded	 two-day	program	of	
talks	 on	 recent	 research	 developments	 in	 addition	
to	presentation	of	the	awards.	The	aim	is	to	offer	a	
series	 of	 high-quality	 expository	 lectures	 that	 will	
inform	mathematicians	regardless	of	specialty.
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Fields Medal Winner Terence Tao

Terence	Tao,	 a	 Clay	 Research	 Fellow	 from	
2000	to	2004,	was	one	of	four	recipients	of	the	Fields	
Medals	 awarded	 August	 22,	 2006.	 	 The	 citation	
read:	 “for	 his	 contributions	 to	 partial	 differential	
equations,	 combinatorics,	 harmonic	 analysis	 and	
additive	number	 theory.”	The	other	awardees	were	
Andrei	Okounkov,	Grigori	Perelman	and	Wendelin	
Werner.

Tao,	born	in	1975,	is	a	native	of	Adelaide,	Australia.		
He	began	learning	calculus	as	a	seven-year-old	high	
school	 student	and	by	age	eleven	was	well	known	
in	international	math	competitions.		After	graduating	
from	Flinders	University	in	Australia	with	a	Masters	
Degree,	 Tao	 earned	 his	 Ph.D.	 from	 Princeton	
University	 under	 the	 direction	 of	 Elias	 Stein.	 He	
then	 joined	UCLA’s	 faculty,	where	he	became	 full	
professor	 at	 age	 twenty-four.	 	 Tao	 has	 also	 held	
professorships	at	the	Mathematical	Sciences	Institute	
and	Australian	National	University	in	Canberra.

Among	 Tao’s	 many	 awards	 are	 the	 Salem	 Prize	
in	 2000,	 the	 Bôcher	 Prize	 in	 2002,	 and	 the	 Clay	
Research	Award	in	2003.		He	is	also	the	recipient	of	
a	MacArthur	Fellowship.

Tao’s	work	is	astonishing	not	only	in	its	depth	and	
originality,	 but	 also	 in	 its	 quantity	 and	 breadth.			
He	is	the	author	of	more	than	140	papers,	about	three-
quarters	of	which	have	been	written	with	one	or	more	
of fifty collaborators.  While  the core of his work to	
date	 has	 been	 concentrated	 in	 harmonic	 analysis		
and	 partial	 differential	 equations,	 it	 ranges	 from			
dynamical	systems	to	combinatorics,	representation	

Terence Tao. Courtesy Reed Hutchinson/UCLA.

theory,	algebraic	geometry,	number	theory,	and	com-	
pressed	sensing,	a	new	area	of	applied	mathematics.			
Of	 special	 note	 is	 his	 joint	 work	 with	 Ben	 Green,	
a	 Clay	 Research	 Fellow	 from	 2005	 through	 2007.		
In	their	2004	paper,	“The	primes	contain	arbitrarily	
long	arithmetic	progressions,”	the	authors	answered	
in the affirmative a long-standing conjecture that had 
resisted	many	attempts.	Vinogradov	settled	the	case	
of	arithmetic	progressions	of	length	3	in	1939.	Since	
then,	 however,	 progress	 had	 stalled,	 and	 even	 the	
case	of	progressions	of	length	4	was	unresolved.		For	
this	and	other	work,	Tao	was	awarded	the	Australian	
Mathematical	Society	Medal.

Tao	is	also	unusual	in	the	attention	that	he	gives	to	
the	exposition	of	mathematics.		At	his	website,	one	
will find, among other things, a list of courses taught 
with	 an	 online	 edition	 of	 his	 textbook	 on	 partial	
differential	 equations	 	 (Math	 251B,	 Spring	 2006),	
and	an	archive	of	over	ninety	notes	on	topics	ranging	
from	 a	 survey	 of	 harmonic	 analysis	 to	 the	 Black-
Scholes formula in mathematical finance.  More 
recently	Tao	started	a	blog.	 	It	makes	for	excellent	
reading	 and	 includes	 many	 of	 his	 recent	 lectures,	
including	the	Simons	Lectures	at	MIT	on	structure	
and	randomness,	the	Ostrowski	lecture	in	Leiden	on	
the	 uniform	 uncertainty	 principle	 and	 compressed	
sensing,	 and	 the	 ACM	 Symposium	 talk	 on	 the	
condition	number	of	 randomly	perturbed	matrices.	
There	are	also	detailed	notes	on	other	lectures,	e.g.,	
Shing-Tung	Yau’s,	What is a Geometric Structure,	in	
the	Distinguished	Lecture	Series	at	UCLA,	as	well	as	
talks	and	notes	intended	for	more	general	audiences:	
The cosmic distance ladder,	a	 talk	given	to	UCLA	
chapter	of	the	Pi	Mu	Epsilon	society,	and	Advice on 
mathematical careers, and mathematical writing.	
Tao	has	also	written	an	article	on	Perelman’s	recent	
spectacular	work.

On	the	web:

Home	page:		www.math.ucla.edu/~tao
Blog:		terrytao.wordpress.com
Article	on	Perelman’s	work:		arXiv:math/0610903
Interview:		www.claymath.org/library
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The	way	 that	 a	magic	 trick	works	 can	be	
just	as	amazing	as	the	trick	itself.		My	favorite	way	
of illustrating this is to talk about shuffling cards.  
In	 this	 article,	 I	 will	 try	 to	 explain	 how	 there	 is	 a	
direct connection between shuffling cards and the 
Riemann	Hypothesis	—	one	of	the	Clay	Mathematics	
Institute’s	Millennium	Prize	Problems.

Let us begin with perfect shuffles.  Magicians and 
gamblers	can	take	an	ordinary	deck	of	cards,	cut	it	
exactly in half, and shuffle the two halves together so 
that they alternate perfectly as in figure one, which 
shows a perfect shuffle of an eight-card deck.  

If the shuffle is repeated eight times with a fifty-two 
card	deck,	the	deck	returns	to	its	original	order.		This	
is one reason that perfect shuffles interest magicians.  
To	 see	 why	 gamblers	 are	 interested,	 suppose	 that	
the	 deck	 begins	 with	 four	 aces	 on	 top.	 	After	 one	
perfect shuffle, the top of the deck is Ace, X, Ace, 
X, Ace, X, Ace, X, where X is an indifferent card.  
After two perfect shuffles, the aces are four cards 
apart.	 	Thus,	 if	 four	 hands	 of	 poker	 are	 dealt,	 the	
dealer’s	 accomplice	gets	 the	 aces.	 	This	motivates	
the	 study	 of	 just	 what	 can	 be	 done	 with	 perfect	
shuffles.  Magicians and gamblers (along with a 
few	mathematicians)	have	been	thinking	about	such	
things	for	at	least	three	hundred	years.

To	see	the	connections	with	mathematics,	consider	
the	problem	of	how	many	 times	 a	deck	 should	be	
shuffled to recycle it.  The answer is eight for a fifty-
two card deck.  The answer is fifty-two for a fifty-
four	 card	 deck	 and	 six	 for	 a	 sixty-four	 card	 deck.		
The number of perfect shuffles needed to recycle 
various	size	decks	is	shown	in	table	one.

	
Can	 the	 reader	 see	 any	 pattern	 in	 these	 numbers?		
Some people find it surprising that sometimes 
larger decks recycle after fewer shuffles.  Decks 
that	have	size	power	of	two	can	be	seen	to	recycle	
particularly	fast.	 	To	understand	 this	better,	 label	a	
deck	of	size	2n,	starting	from	the	top,	as	0,	1,	2,	3,	...,	
2n - 1.  Observe that after one perfect shuffle, the card 
in	position	i moves	to	position	2i.		This	statement	is	
true	 even	 when	 i	 is	 greater	 than	 n/2,	 provided	 we	
take	 the	 remainder	 of	 2i	 when	 divided	 by	 2n -	 1.		
Or,	as	mathematicians	say,	we	compute	2i	modulo		
2n -	1.		Thus,	when	2n	=	52,	the	card	in	position	0	
stays	there.		The	card	in	position	1	moves	to	position	

Mathematics and Magic Tricks

Persi	Diaconis
Department	of	Mathematics	and	Statistics
Stanford	University
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2	(because	we	label	things	starting	at	zero,	position	
2	means	 the	 third	card	 from	the	 top).	 	The	card	 in	
position	28	goes	to	position	56	modulo	51,	that	is,	to	
position	5.		And	so	on.

Returning	to	the	problem	of	a	deck	of	arbitrary	size	n,	
we see that after one shuffle, card i	moves	to	position	
2i	modulo	(2n - 1).  After two shuffles, it moves to 
position	4i	modulo	(2n - 1).  After three shuffles, it 
moves	to	position	8i	modulo	(2n -	1).		Therefore,	the	
deck	recycles	after	k shuffles, where k	is	the	smallest	
power	of	two	such	that	2	raised	to	the	kth	power	is	
one	 modulo	 2n -	 1.	 	 For	 example,	 when	 2n	 =	 52,		
2n -	1	=	51,	and	the	various	powers	of	two	modulo		
2n -	1	are

	 					0		2		4		8		16		32		13		26		1

That	is,	28 = 256 = 1 modulo 51, so fifty-two cards 
recycle after eight shuffles.  For a fifty-four card deck, 
2	raised	to	the	power	52	is	1	modulo	53.		One	sees	
that fifty-two shuffles, but no fewer, are required.  
For	a	sixty-four	card	deck,	2	raised	to	the	power	6	
is 1 modulo 63.  One sees that in six shuffles, but no 
fewer,	the	deck	is	recycled.

F r o m 	t h e s e	
observations,	
it	 is	 natural	 to	
wonder 	what	
the	 longest	 re-	
cycling	 times	
are.	 	 Fermat’s	
little	 	 theorem	
shows	 that	 the	
worst	 that	 can	
happen	 is	 that	
the	 deck	 re-	
c y c l e s 	a f t e r		
2n - 2 shuffles.
Does	this	happen	
for	 arbitrarily	

large	 decks?	 	 No	 one	 knows.	 	 It	 is	 a	 conjecture,	
due	to	Emil	Artin,	with	antecedents	in	the	work	of	
Gauss,	that	2	is	a	primitive	root	for	arbitrarily	large	
primes.		(See	[1,	6]	and	[3,	4]).	This	would	yield	an	
affirmative answer to the card shuffling problem.  It 
has	 been	 rigorously	 proved	 that	 if	 the	 generalized	
Riemann	 Hypothesis	 holds,	 then	 the	 Artin	

conjecture	holds.	But,	alas,	a	proof	of	the	Riemann	
Hypothesis,	 even	 in	 its	original	 form,	continues	 to	
elude	 the	 efforts	 of	 the	 world’s	 mathematicians.

I find these connections wonderful.  It is inspiring, 
indeed awe-inspiring, that a simple card-shuffling 
question	that	fascinated	me	as	a	kid	of	thirteen	can	
lead	to	the	edge	of	mathematics	and	beyond.		If	you	
want to know more about shuffling cards and its 
connections	to	all	sorts	of	mathematics,	see	[2].

References
1. Artin,	E.,	 letter	to	Helmut	Hasse,	September	27,	
1929.		Recorded	in	the	diary	of	Helmut	Hasse.

2.	 Diaconis,	 P.	 and	 Graham,	 R.L.	 (2007)	 “The	
Solutions	 to	Elmsley’s	Problem.”	 	Math Horizons,	
Feb.	2007,	pg.	22	-	27.		See	maa.org.

3.	Gauss,	C-F.,	Disquisitiones Arithmetica,	 articles	
315-317.		1801.	

4.	Li,	Shuguang	and	Pomerance,	C.,	Primitive roots: 
a survey,	 http://www.math.dartmouth.edu/~carlp/
PDF/primitiverootstoo.pdf	

5.	Moree,	P.,	Artin’s	primitive	root	conjecture,	http://
www.math.tau.ac.il/~rudnick/dmv/moree.ps	

6.	Wikipedia,	Artin’s	conjecture	on	primitive	roots,	
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Persi Diaconis delivering his talk at MIT.

The audience assisting in one of Persi’s tricks.
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Clay Lectures at Cambridge University

On	 November	 28,	 2006,	 the	 Clay	
Institute	launched	the	Clay	Lectures	in	Mathematics,	
an	 annual	 series	 of	 talks	 given	 by	 CMI’s	 past	 or	
current	research	fellows.		The	talks,	extending	over	
a	period	of	four	days,	feature	three	research	talks	and	
one	public	lecture	by	each	of	two	fellows.

The	lecture	series	is	aimed	at	young	mathematicians,	
as well as experts from other fields, and aims to 
develop	 a	 theme	 related	 to	 the	 research	 fellows’	
interests.

The	Cambridge	 lectures	were	delivered	November	
28–December	 1,	 by	 fellows	 Ben	 Green	 (2005–07)	
and	 Akshay	 Venkatesh	 (2004–06).	 	 Green	 is	 now	
at	 Cambridge	 University	 and	 Venkatesh	 is	 at	 the	
Courant	 Institute	 of	 Mathematics	 (New	 York	
University).

Venkatesh	gave	 three	 lectures	entitled	Abelian and 
Nonabelian Symmetry in Analytic Number Theory, 
and	 a	 public	 lecture	Adding Square Numbers. The	
operation	of	adding	together	square	numbers	(1,	4,	
9,	 16,	 25,	 ...)	 gives	 rise	 to	 complex	 and	 beautiful	
patterns,	 that	have	motivated	mathematicians	 from	
ancient	times	to	the	present.

Venkatesh’s	talks	began	with	a	discussion	of	harmonic	
analysis	on	the	circle	and	one	of	its	early	triumphs	
in	the	1918	paper	of	Hardy-Ramanujan,	which	gave	
an	exact	formula	for	the	number	of	partitions	of	an	
integer	(e.g.,	4	=	3+1	=	2+1+1	=	2+2	=	1+1+1+1).	
Modular	 forms	 already	 made	 their	 appearance	 in		
the	Hardy-Littlewood	paper;	behind	them	lurks	the	
nonabelian	group	SL2(R).

Green	 gave	 three	 lectures	 entitled	 Themes in 
Additive Combinatorics	and	a	public	lecture,	Adding 
Prime Numbers.	While	 it	 has	 been	noted	 that	 it	 is	
more	natural	 to	multiply	primes	 than	 to	add	 them,	
many	famous	open	problems	in	number	 theory	are	
concerned	with	adding	primes.		The	study	of	these	
problems	has	led	to	some	fascinating	mathematics,	
including	the	question	of	the	existence	and	abundance	
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	Akshay	Venkatesh	(Courant	Institute)

Lecture	Series:	

Abelian	and	Nonabelian	Symmetry	 in	Analytic	Number	
Theory

		Some	theorems	of	Hardy,	Littlewood	and	Ramanujan.	
		Partitions	and	sums	of	squares

		Some	theorems	of	Linnik,	Duke	and	Iwaniec

		A	survey	of	modern	developments	

Public	Lecture:		

Adding	Square	Numbers

Akshay Venkatesh delivering one of the Clay Lectures at DPMMS.

of	arithmetic	progressions	in	the	primes.		The	latter	
question	was	resolved	by	the	recent	work	of	Green	
and	Tao.

Green’s	 lectures	 on	 additive	 combinatorics	 dealt	
with	additive	properties	of	sets	of	integers.	If	a	set	
A	 is	 somewhat	 closed	 under	 addition,	 what	 is	 the	
structure	of	A?		What	do	we	need	to	know	about	A	
in	order	to	be	able	to	locate	very	regular		structures,		
such	as	 arithmetic	 progressions,	 inside	 A?	 	 How	
does	the	Fourier	transform	of	A reflect the additive 
structure	of	A?
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Ben Green delivering one of the Clay Lectures at DPMMS.

Ben	Green	(University	of	Cambridge	/	CMI)

Lecture	Series:	

Themes	in	Additive	Combinatorics

		The	structure	theory	of	set	addition.	
		Freiman’s	theorem

		Gowers	norms	and	nilsequences

		The	idempotent	theorem:	an	application	of	additive	
		combinatorics	to	harmonic	analysis

Public	Lecture:	

Adding	Prime	Numbers

The	public	 lectures	bring	 recent	 research	develop-
ments	 to	 the	 educated	 general	 public.	 	 For	 	 the	
Cambridge	 event,	 the	 Centre	 for	 Mathematical	
Sciences	converted	its	central	atrium	into	a	massive	
lecture	 hall.	 	A	 capacity	 crowd,	 with	 many	 of	 the	
Centre’s	 900	 undergraduate	 mathematics	 majors,	
attended.

The	2007	lectures	will	be	held	at	 the	Tata	Institute	
in	 Mumbai,	 India,	 with	 the	 talks	 to	 be	 given	 by	
fellows	 Elon	 Lindenstrauss	 (2003–05)	 and	 Mircea	
Mustata	 (2001–04).	 	 Lindenstrauss	 and	 Mustata	
are	 at	 Princeton	 University	 and	 the	 University	 of	
Michigan,	respectively.	
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Summary of 2006 Research Activities

The	 activities	 of	 CMI	 researchers	 and	
research	programs	are	described	below.		Researchers	
and programs are selected by the Scientific Advisory 
Board	(see	inside	back	cover).

Clay	Research	Fellows
Artur	Avila	began	his	three-year	appointment	in	July	
2006.	 	He	 is	 currently	working	at	 IMPA	 in	Rio	de	
Janeiro,	Brazil,	where	he	received	his	Ph.D.

Samuel	 Payne	 graduated	 from	 the	 University	 of	
Michigan	 and	 is	 working	 at	 Stanford	 University.		
He	has	a	four-year	appointment	 that	began	in	June	
2006.

Sophie	 Morel	 graduated	 from	 Université	 de	 Paris-
Sud,	where	she	is	currently	conducting	her	work.		She	
began her five-year appointment in October 2006 at 
the	Institute	for	Advanced	Study	in	Princeton.

Avila,	Payne,	and	Morel	joined	CMI’s	current	group		
of	 research	 fellows	 Daniel	 Biss	 (University	 of		
Chicago),		Maria	Chudnovsky	(Columbia	University),	
Ben	 Green	 (MIT),	 Bo’az	 Klartag	 (Princeton	
University),	 Ciprian	 Manolescu	 (Columbia	
University),	 Maryam	 Mirzakhani	 (Princeton	
University),	David	Speyer	(University	of	Michigan),	
András	 Vasy	 (Stanford)	 and	 Akshay	 Venkatesh	
(Courant	Institute).

Research	Scholars	
Wolfgang	 Ziller	 (University	 of	 Pennsylvania).		
September	1,	2005	—June	30,	2006	at	IMPA,	Brazil.

Yaroslav	Vorobets	(Pidstryhach	Institute	for	Applied	
Problems	 of	 Mechanics	 and	 Mathematics	 of	
Ukraine).		September	1,	2005—August	31,	2006	at	
Texas	A&M	University.

Tom	 Coates	 (Harvard	 University).	 	 February	 1—
May	31,	2006.		Research	on	Gromov-Witten	Theory	
at	MSRI.

Dihua	 Jiang	 (University	 of	 Minnesota).	 	 May	 1—
May	 31,	 2006.	 	 Working	 with	 Bao-Châu	 Ngô	 in	
Orsay.
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Alan	Carey	(Australian	National	University).		May	
1—July	30,	2006	at	the	Erwin	Schrodinger	Institute	
in	Vienna.

Ludmil	Katzarkov	(University	of	California,	Irvine).		
June	1–	June	30,	2006	at	the	University	of	Miami.

Mihalis	 Dafermos	 (University	 of	 Cambridge).		
December	31,	2006	–	December	30,	2007.		

Senior	Scholars
Yongbin	Ruan	(University	of	Wisconsin,	Madison).	
January—May	 2006.	 	 MSRI	 program	 on	 New	
Topological	Methods	in	Physics.

Jean-Louis	 Colliot-Thélène	 (Université	 de	 Paris-
Sud).		January	9—May	19,	2006.		MSRI	program	on	
Rational	and	Integral	Points	on	Higher-Dimensional	
Varieties.

Robion	Kirby	(Stanford	University).		June	25–July	
15,	 2006.	 	 PCMI	 program	 on	 Low-Dimensional	
Topology.

Clay Research Fellow Samuel Payne.

Clay Research Fellow Artur Avila.
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Yakov	Eliashberg	(Stanford	University).	 	 June	25–	
July	15,	2006.		PCMI	program	on	Low-Dimensional	
Topology.

Peter	Newstead	(University	of	Liverpool).		October	
2006.		Tufts–BU	joint	semester	on	Vector	Bundles.

John	Milnor	(SUNY,	Stony	Brook).		June	25,	2006–
July	2,	2006.		PCMI	program	on	Low-Dimensional	
Topology.

Book	Fellows
Appointed	 in	 2006	 were	 Ralph	 Greenberg		
(University	 of	 Washington),	 who	 began	 working	
on	 the	 monograph	 Topics in Iwasawa Theory,	 and	
John	 Morgan	 (Columbia	 University)	 and	 Gang	
Tian	 (Princeton	and	MIT),	who	collaborated	on	 the	
monograph	Ricci Flow and the Poincaré Conjecture.	

Liftoff	Fellows

CMI	 appointed	 nineteen	 Liftoff	 Fellows	 for	 the	
summer	 of	 2006.	 	 Clay	 Liftoff	 Fellows	 are	 recent	
Ph.D.	recipients	who	receive	one	month	of	summer	
salary and travel funds before their first academic 
position.		See	www.claymath.org/liftoff.

Research	Programs	Organized	and	Supported
by	CMI

February	1–May	31.	Eigenvarieties	program	at	Harvard	
University.

February	24–27.	Conference	on	Lie	Groups,	Dynamics,	
Rigidity	and	Arithmetic	at	Yale	University.

April	6–12.		Workshop	on	Additive	Combinatorics	at	
CRM	(Montreal).

April	26.		Public	Lecture	by	Persi	Diaconis.

May	10–15.		Eigenvarieties	Workshop	at	CMI.

May	14–16.		Conference	on	Automorphic	Forms	and		
L-Functions	 at	 Weizmann	 Institute	 of	 Science	 (Tel	
Aviv).

May	17–22.		Conference	on	Global	Dynamics	Beyond	
Uniform	Hyperbolicity	at	Northwestern	University.

June	19–24.		Conference	on	Hodge	Theory	at	Venice	
International	University	(Italy).

June	19–July 14.  Workshops on Affine Hecke Algebras 
and	Langlands	Program	at	CIRM	(Luminy,	France).
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Program	Allocation	

Estimated	number	of	persons	supported	by	CMI	in	
selected scientific programs for calendar year 2006:

Research	Fellows,	Research	Awardees,
Senior	Scholars,	Research	Scholars,	
Book	Fellows	and	Public	Lecturers																			30

Summer	School	participants	and	faculty										135

Student	Programs,	participants	
and	faculty					 	 																															100

CMI	Workshops,	Liftoff	program																						60

Participants	attending	joint	programs	and
the	Independent	University	of	Moscow						>	1000

Research	Expenses	for	Fiscal	Year	2006
(comparative allocations change annually based on scientific merit)

Research Fellows

Students & Liftoff

Senior & Research Scholars

Publications & Book Fellows

Workshops, Lectures & Other Programs

Summer School

42 %

16 %

16 %

9 %

9 %

8 %

July	 17–August	 11.	 	 CMI	 Summer	 School	 on	
Arithmetic	Geometry	at	Göttingen,	Germany.

October	5–10.		Moduli	Spaces	of	Vector	Bundles	at	CMI.

October/November.		Clay	Research	Conference.



CMI ANNUAL REPORT�0

	 	

B e n 	G r e e n	
was	 born	 in	 1977	 in	
Bristol,	 England,	 	 and	
educated	 at	 Trinity	
College, Cambridge, first
as	 an	 undergraduate	
and	 later	 as	 a	 research	
student	 of	 Fields		
Medalist	 Tim	 Gowers.		
Since	 2001	 he	 has	

	 been	a	Fellow	of	Trinity	
College,	and	in	that	time	

	 he	 has	 made	 extended	
research	 visits	 to	 Princeton,	 the	 Rényi	 Institute	 in	 Budapest,	 the	 University	 of	 British	 Columbia,	 and	 the	
Pacific Institute of Mathematics (PIMS), where he was a postdoctoral fellow.  In February 2005 Green 
was	 named	 a	 Clay	 Research	 Fellow.	 	 In	 January	 2005,	 he	 took	 up	 a	 Chair	 in	 Pure	 Mathematics	 at	 the	
University of Bristol.  He began his appointment as a Clay Research Fellow in July 2005, the first year 
of	 which	 he	 spent	 at	 MIT.	 	 Ben	 also	 spent	 from	 February	 to	 March	 of	 2006	 at	 CMI	 working	 with	 his	
student	 Tom	 Sanders.	 	 In	 the	 Spring	 of	 2007,	 Ben	 and	 his	 student	 Julia	 Wolf	 visited	 CMI	 for	 two	 weeks.

What first drew you to mathematics?  What are some 
of	your	earliest	memories	of	mathematics?

I	was	always	very	interested	in	numbers	as	a	small	
child	—	my	mother	tells	me	that	I	used	to	demand	
“sums”	from	the	age	of	about	3	and	I	took	an	interest	
in	such	things	as	car	registration	plates	and	distances	
on	signs	which	would	not,	perhaps,	be	regarded	as	
normal	for	a	young	boy.	Apparently	the	head	teacher	
of	my	primary	 school	 (ages	5–11	 in	 the	UK)	used	
me	as	an	example	of	why	it	is	not	a	good	idea	to	try	
to	teach	your	children	at	home,	since	I	had	learnt	to	
subtract	“the	wrong	way”	(I	don’t	recall	the	method	
I	was	using	but,	in	my	parents’	defense,	it	was	one	
I had discovered myself). I first started discovering 
“real”	mathematics	around	the	age	of	 thirteen.	The	
Olympiad	 movement	 —	 taking	 part	 in	 national	
competitions	 —	 was	 very	 important	 to	 me	 in	 this	
respect.	 	 However,	 I	 also	 started	 paying	 regular	
visits	to	the	city	library	in	Bristol,	which	contained	a	
surprisingly	large,	if	somewhat	eccentric,	collection	

Interview with Research Fellow 
Ben Green
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of	mathematics	books.	Thankfully,	my	father	could	
always	be	persuaded	to	take	me	there	so	that	he	could	
indulge	his	interest	in	obscure	folk	and	blues	music	
at	 the	 same	 time.	 Two	 books	 which	 particularly	
influenced me were Richard Guy’s Unsolved 
Problems in Number Theory	 and	 Albert	 Beiler’s	
Recreations in the Theory of Numbers.

Could	you	talk	about	your	mathematical	education	
in	 the	 UK?	 What	 experiences	 and	 people	 were	
especially influential?  Can you comment on your 
experiences	 at	 Cambridge	 as	 an	 undergraduate?	 Is	
there	 something	 special	 in	 the	 college	 system	 that	
had	a	particular	impact	on	your	development?

As	 I	 said	 above,	 the	 Olympiad	 movement	 was	
very	 important	 to	 me.	 I	 was	 very	 lucky	 that	 there	
were	 two	 teachers	 at	 my	 secondary	 school,	 Julie	
Kirby	and	Frank	Burke,	who	took	an	interest	in	my	
mathematical	 development	 and	 ensured	 that	 I	 was	
entered	for	 the	national	competitions.	They	(and	I)	
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that	 keeps	 you	 on	 your	 toes,	 and	 exposes	 you	 to	
some	pretty	interesting	mathematics.	

Did	 you	 have	 a	 mentor?	 	 Who	
helped	you	develop	your	interest	
in	mathematics,	and	how?

I’ve	 mentioned	 a	 few	 great	
teachers	 that	 I	 had	 whilst	 at		
school.	 When	 at	 university	
I was heavily influenced by 

Tim	Gowers,	who	 later	became	my	 thesis	 advisor.	
Towards	 the	 end	 of	 my	 thesis	 I	 gained	 a	 lot	 by	
talking	to	Imre	Ruzsa	in	Budapest	–	I	found	we	were	
interested	in	exactly	the	same	types	of	questions.	

What	 attracted	 you	 to	 the	 particular	 problems	 you	
have	studied?

I	very	nearly	opted	to	do	a	Ph.D.	in	algebraic	number	
theory,	 but	 some	 somewhat	 negative	 experiences	
of	 this	 area	 in	 my	 last	 year	 as	 an	 undergraduate,	
coupled	with	the	recent	award	of	a	Fields	Medal	to	
Tim	Gowers,	persuaded	me	to	work	under	Gowers	in	
the	area	now	known	as	additive	combinatorics.	The	
area	is	appealing	in	that	the	problems	may	be	stated	
quite	easily	 to	a	general	mathematical	audience.	A	
particular	attraction	for	me	was	that	I	could	embark	

on	 research	 straight	
away	–	I	did	not	need	to	
go	and	read	Hartshorne,	
let	alone	SGA.

It	is	hard	to	say	exactly	
what	it	is	that	attracts	me	
to	a	problem	nowadays.	
I	am	particularly	fond	of	

instances	 in	 which	 it	 is	 possible	 to	 extract	 “rigid”	
structure	from	rather	soft	information	–	in	fact	most	
of	the	questions	I	am	working	on	right	now	have	this	
kind of flavor.  A theorem of this type that I very much 
admire	 (though	 I	 don’t	 quite	 know	 how	 to	 prove,	
I’m	 ashamed	 to	 say)	 is	 Marina	 Ratner’s	 theorem	
on the closures of orbits of unipotent flows. She 
related	these	to	exact	subgroups	—	that	is,	she	took	
soft	 information	 (in	 this	 case	 a	 dynamical	 system)	
and	found	algebraic	structure	in	it.	Terry	Tao	and	I	
are	 working	 on	 Freiman’s	 theorem	 and	 on	 inverse	

were	 rather	 surprised	 when	 I	 obtained	 the	 highest	
mark	in	one	of	these	competitions	(for	students	under	
the	age	of	thirteen).		My	school	is	currently	ranked	
somewhere	around	2000th	in	the	UK	academically	so	
we	were	quite	pleased	
to	 have	 scored	 this	
very	 minor	 victory	
over	 the	 famous	
schools	 like	 Eton	
and	 St	 Paul’s.	 This	
was	 when	 I	 realized	
that	I	had	a	particular	
aptitude	for	mathematics	and	started	taking	it	more	
seriously.	 Subsequently	 I	 took	 part	 in	 more	 senior	
mathematics	competitions	and	twice	represented	the	
UK	 at	 the	 International	 Mathematical	 Olympiad.	
In	doing	 this	 I	made	many	 lasting	 friends	and	was	
influenced by several wonderful teachers. Among 
these	I	would	single	out	Tony	Gardiner,	Christopher	
Bradley	and	David	Monk	who	would	regularly	send	
me	sets	of	interesting	problems	by	post.	At	the	time	
the	training	system	in	the	UK	was	delightfully	low-
key	 and	 personal,	 and	 refreshingly	 non-intensive.	
There	 was	 a	 long	 weekend	 at	 Trinity	 College,	
Cambridge,	but	nothing	like	the	“hothouse”	training	
camps	some	other	countries	employ.

Cambridge	is	an	excellent	place	to	be	an	undergraduate	
in	mathematics.	The	course	is	hard	and	interesting,	
and	moreover	 one	 is	 surrounded	by	other	
good	 and	 serious	 students.	 Essentially	 all	
of	my	close	friends	at	university	have	gone	
on	 to	 tenured	 positions	 in	 mathematics	
of	one	kind	or	another.	One	aspect	of	 the	
Cambridge	education	that	I	like	personally	
is	 the	 fact	 that	 it	 is	 quite	 hands-off.	 The	
example	sheets	contain	tough	problems,	and	
one	is	expected	to	bash	one’s	head	against	
them	 repeatedly	 as	one	would	 a	 research	problem.	
You won’t generally find Cambridge supervisors 
(people	who	conduct	tutorials)	giving	away	the	key	
to	 the	more	 interesting	problems	on	a	 sheet	unless	
the	student	has	made	a	real	effort.

The	 collegiate	 system	 gives	 students	 the	
opportunity	 to	 come	 in	 close	 contact	 with	 world-
class mathematicians. When I was a first-year 
undergraduate	I	was	taught	as	one	of	a	pair	by	both	
Tim	 Gowers	 and	 Bela	 Bollobas,	 eight	 times	 each:	
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However,	 I	 also	 started	 paying	 regular	 visits	 to	
the	 city	 library	 in	 Bristol,	 which	 contained	 a	
surprisingly	large,	if	somewhat	eccentric,	collection	
of	mathematics	books.	Thankfully,	my	father	could	
always	be	persuaded	to	take	me	there	so	that	he	could	
indulge	his	interest	in	obscure	folk	and	blues	music.	

At	 the	 time	 the	 training	 system	 in	
the	 UK	 was	 delightfully	 low-key	 and	
personal,	and	refreshingly	non-intensive.	
There	 was	 a	 long	 weekend	 at	 Trinity	
College,	Cambridge,	but	nothing	like	the	
“hothouse”	 training	 camps	 some	 other	
countries	employ.



CMI ANNUAL REPORT��

theorems	 for	 the	 so-called	Gowers	norms	—	 in	both	of	
these	 one	 starts	 with	 something	 very	 combinatorial	 and	
produces	an	algebraic	object	from	it.

Another	 thing	 we	 try	 and	 do	 is	 make	 “robust”	 versions	
of	 algebraic	 results.	 What	 is	 meant	 by	 an	 approximate	
group?	An	 approximate	 homomorphism?	 How	 do	 these	
relate	 to	 the	 corresponding	“exact”	structures?	 Often	
much	can	be	gained	by	enlarging	one’s	universe	to	include	
these	approximate	algebraic	objects,	provided	one	is	able	
to	handle	the	requisite	approximate	algebra.

Of	 course	 I	 am	 also	 motivated	 by	 the	 desire	 to	 prove	
results	on	the	basic	questions	in	number	theory,	say	about	
prime	numbers.	But	my	results	with	Tao	in	this	area	have	
really	come	out	of	an	attempt	to	understand	the	underlying	
structures	in	a	more	general	context.	

Can	you	describe	your	research	in	accessible	terms?		Does	
it	have	applications	to	other	areas?

Right	 now	 I	 am	 working	 with	 Tao	 on	 generalizing	 the	
Hardy-Littlewood	 method	 for	 primes	 as	 far	 as	 we	 can.	
Using	this	method,	Vinogradov	proved	in	1937	
that	every	large	odd	number	N	can	be	written	
as	the	sum	of	three	primes.	We	have	a	program	
which	 should	 eventually	 allow	 us	 to	 count	
solutions	 to	 a	 more-or-less	 arbitrary	 system	
of	 linear	 equations	 in	 primes	 (an	 example	
that	we	have	already	dealt	with	is	the	system	
p1	+	p3	=	2p2,	p2	+	p4	=	2p3, which defines an 
arithmetic	progression	of	four	primes).	There	
is	one	important	exception	—	we	do	not	have	a	feasible	
plan	 for	 handling	 certain	 “degenerate”	 systems,	 which	
include	the	system	p1	–	p2	=	2	(twin	primes)	and	p1	+	p2	=	
N	(Goldbach	conjecture).

Although	 people	 seem	 to	 like	 results	 about	 the	 primes,	
from	 a	 mathematician’s	 point	 of	 view	 the	 underlying	
methods	are	much	more	 interesting.	Our	work,	 together	
with	 the	work	of	many	other	people,	has	hinted	at	deep	
connections	 between	 several	 areas	 of	 mathematics:	
analytic	number	theory,	graph	theory,	ergodic	theory	and	
Lie	groups.

What	research	problems	and	areas	are	you	likely	to	explore	
in	the	future?

There	is	plenty	of	work	left	to	be	done	on	the	program	I	
have	just	described,	and	a	really	serious	amount	of	work	

to	be	done	on	the	general	area	of	“rigidity”	results	
in	 additive	combinatorics	 and	 their	 applications.	A	
proper	 quantitative	 understanding	 of	 	 three	 main	
types	of	result	in	this	vein	(Freiman-type	theorems,	
inverse	 theorems	 for	 Gowers-type	 norms	 and	
Ratner’s	theorem)	is	probably	decades	away.	In	the	
longer	term	I	want	to	become	more	competent	with	
“non-abelian”	 tools	 and	 questions,	 that	 is	 to	 say	
the	 theory	 of	 “multiplicative	 combinatorics”.	Who	
knows	what	may	be	brought	to	bear	here	—	given	the	
prevalence	of	Fourier-analytic	methods	 in	 additive	
combinatorics,	 it	 seems	 likely	 that	 representation	
theory	 will	 have	 a	 major	 role	 to	 play.	 I	 also	 have	
quite	 a	 long	 list	 of	 miscellaneous	 problems	 that	 I	
would	like	to	think	about	at	some	point.

Could	 you	 comment	 on	 collaboration	 versus	 solo	
work	 as	 a	 research	 style?	 Are	 certain	 kinds	 of	
problems	 better	 suited	 to	 collaboration?	 	 What	 do	
you find most rewarding or productive?

I	 just	noticed,	 looking	at	my	webpage,	 that	almost	
all of my first ten papers had just me as an author, 

whereas	 my	
ten	 latest	 are		
all	coauthored.
I	 have	 never	
written	 a	
three-author	
paper,	 but	
have	 found	
collaboration	

in	pairs	very	productive.		It	took	me	a	while	to	realize	
that	collaboration	works	best	when	both	parties	are	
completely	open	to	sharing	their	best	ideas	—	when	I	
was a Ph.D. student I was terrified that people might 
steal	my	ideas,	or	jump	in	on	a	paper	that	I	had	95	
percent finished. That attitude was probably fairly 
sensible	at	that	stage,	but	with	the	luxury	of	a	tenured	
job	I	take	a	much	more	open	position.	My	joint	paper	
with	Tao	on	arithmetic	progressions	of	primes	was	a	
memorable	example	of	collaboration	(it	was	mostly	
done in a rapid-fire exchange of emails). I am sure 
Terry	would	agree	that	this	result	could	never	have	
been	proved	by	either	of	us	individually.	

You	have	taken	on	thesis	students	at	a	very	early	stage	
in	your	career.	Was	that	a	conscious	decision?		How	
did you first start working with research students?  	
	

Although	 people	 seem	 to	 like	 results	 about	 the	
primes,	 from	 a	 mathematician’s	 point	 of	 view	 the	
underlying	methods	are	much	more	 interesting.	Our	
work,	 together	with	 the	work	of	many	other	people,	
has	hinted	at	deep	connections	between	several	areas	
of	mathematics:	analytic	number	theory,	graph	theory,	
ergodic	theory	and	Lie	groups.
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Does	working	with	students	have	rewards	as	well	
as	responsibilities?

I	 currently	 have	 three	 Ph.D.	 students	 and	 also	
talk	 quite	 a	 bit	 to	 other	 students	 in	 additive	
combinatorics	 at	 Cambridge.	 I	 started	 working	
with	Tim	Gowers’	student	Tom	Sanders	about	four	
years	 ago,	 largely	 because	 he	 bugged	 me	 quite	
persistently	 with	 questions	 about	 the	 projects	 he	
was	thinking	about.	After	a	while	I	came	to	realize	
that	I	rather	enjoyed	these	discussions	and	resolved	
to	take	on	a	few	good	students	should	any	come	my	
way.	I	have	a	theory	that	having	two	children	is	less	
work	 than	having	one,	as	 they	can	play	with	one	
another	(I	currently	have	none,	so	this	hasn’t	been	
tested	very	thoroughly).	I	believe	that	this	carries	
over	 in	 a	 reasonably	 obvious	 way	 to	 graduate	
students	—	we	hold	regular	reading	seminars	as	a	
group	and	they	can	talk	amongst	themselves	when	
I	am	not	available.	

How	 has	 the	 Clay	 Fellowship	 made	 a	 difference	
for	you?

It	 allowed	me	 to	 spend	 the	whole	 academic	year	
2005–06	 at	 MIT,	 which	 was	 handy	 since	 my	
girlfriend	is	doing	a	Ph.D.	at	Harvard.	I	was	also	
able	to	bring	Tom	Sanders	over	for	a	few	months	
during	 this	 time,	 and	 we	 had	 a	 very	 productive	
period	 leading	 to	 an	Annals	 paper	 that	 I’m	 very	
happy	with.	There	is	no	doubt	that	the	Clay	Research	
Fellowship	has	some	of	the	best	conditions	of	any	
postdoc	out	there	—	no	teaching	duties,	excellent	
funds	for	travel,	and	so	on	—	and	this	allows	the	
Fellow	to	work	very	intensively	on	research.	

What	 advice	 would	 you	 give	 to	 young	 people	
starting	out	in	math	(i.e.,	high	school	students	and	
young	researchers)?	

A	few	tips	that	I	have	found	handy,	in	no	particular	
order:	 1.	 At	 high	 school,	 it’s	 good	 to	 have	 the	
experience	 of	 tackling	 really	 hard	 problems	 (and	
failing,	 more	 often	 than	 not).	 Real	 mathematics	
is	 not	 as	 “safe”	 as	 Olympiad	 mathematics	 in	
that	 you	 don’t	 have	 an	 a priori	 upper	 bound	 for	
the difficulty of the problem. I’ve listed a few 
books	 that	 I	 enjoyed	 reading	 at	 school	 in	 one	 of	
my	 answers	 below.	 2.	 Follow	 your	 nose,	 not	
necessarily	what	other	people	 tell	you,	when	you	

choose	what	questions	you	work	on.	I	have	worked	
on	 some	 questions	 which	 even	 people	 in	 my	 own	
subject	 would	 probably	 think	 uninteresting.	 I’ve	
certainly	 written	 papers	 on	 questions	 that	 nobody	
(before	 me)	 asked.	 Naturally,	 over	 the	 course	 of	
a	career	 (and	 to	get	a	 job)	you	want	 to	have	some	
results	that	a	lot	of	people	are	interested	in.	Let	me	
just	say,	however,	that	I	can	trace	my	line	of	thought	
that	eventually	 led	 to	my	joint	paper	on	arithmetic	
progressions	of	primes	back	to	a	paper	Ruzsa	and	I	
wrote	in	answer	to	a	question	of	Jacques	Verstraete:	
how	many	of	the	subsets	of	Z/pZ	have	the	form	A	
+	A,	 for	some	set	A	 in	Z/pZ?	 	I	 think	most	people	
would	think	of	that	question	as	more	of	a	“puzzle”	
than a serious problem. 3. Check the ArXiv every 
day	and	use	MathSciNet	obsessively.	The	latter	is	a	
wonderful	resource	—	all	the	papers	in	mathematics	
(certainly	all	those	in	the	last	60	years)	are	indexed,	
cross-linked	and	reviewed.
	
What	advice	would	you	give	laypersons	who	would	
like	to	know	more	about	mathematics	—	what	it	is,	
what	 its	 role	 in	 our	 society	 has	 been	 and	 is,	 etc.?		
What	should	they	read?	How	should	they	proceed?	

Well, I find it hard to do better than recommend 
my	 advisor	 Tim	 Gowers’	 little	 book	 entitled		
Mathematics, A Very Short Introduction,	the	aim	of	
which	is	pretty	much	to	answer	those	questions.		A	
couple	of	books	that	I	really	enjoyed	as	a	teenager,	
long	 before	 I	 had	 any	 real	 understanding	 of	 what	
mathematics	 was	 about,	 are	 The Mathematical 
Experience	by	Davis	and	Hersh	and	Game, Set and 
Math: Enigmas and Conundrums	 by	 Ian	 Stewart.		
Both	 of	 these	 books	 do	 have	 some	 mathematics	
in	 them	 but	 they	 are	 certainly	 accessible	 to	 bright	
high-school	 students.	 Concerning	 the	 history	 of	
mathematics,	 I	 recall	 getting	 a	 lot	 from	Makers of 
Mathematics	by	Stuart	Hollingdale.	Maybe	some	of	
these	choices	are	eccentric	—	perhaps	they	were	just	
the	books	that	Bristol	 library	had	in	stock	—	but	I	
certainly	enjoyed	them	myself.

There	was	a	TV	program	in	Britain	about	Wiles’	proof	of	
Fermat’s	last	theorem	which	gave	a	wonderful	insight	into	
the	personalities	and	mode	of	working	of	mathematicians.1	
I	don’t	know	how	widely	available	it	is.
1.	Ben	refers	to	the	BBC	documentary Fermat’s Last Theorem	that	
was	written	and	produced	by	Simon	Singh	and	John	Lynch.		Later,	
the	 same	 documentary	 (reversioned	 for	 American	 audiences	 and	
renamed	The Proof)	aired	on	PBS	as	part	of	the	NOVA	series.		For	
more	information,	see	http://www.pbs.org/wgbh/nova/proof/.
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To	get	some	sense	of	the	way	mathematicians	talk	to	
one	another,	it	could	be	fun	to	check	out	one	of	the	
increasing	number	of	mathematicians’	blogs.	Terry	
Tao	has	recently	created	one	which	attracts	a	lot	of	
attention,	and	 I	have	 followed	Luca	Trevisan’s	“In	
Theory”	for	a	while.

And	 of	 course	 the	 Clay	 Institute	 has	 some	 pretty	
interesting	 and	 accessible	 lectures	 linked	 from	 its	
website.	

How do you think mathematics benefits culture	
and	society?		

Though	 this	 question	 seems	 like	 an	 invitation	 to	
say	something	wildly	pretentious,	I’ll	try	and	avoid	
doing	 so.	 I	 think	 one	 only	 needs	 to	 look	 at	 the	
attractiveness	of	mathematics	graduates	on	 the	 job	
market	 to	 realize	 that	 the	 mathematician’s	 way	 of	
thinking	is	something	that	can	be	extremely	useful	in	
many	areas	of	society.	I	doubt	that	most	jobs	require	
a specific knowledge of homological algebra (say) 
but the ability to think creatively within the confines 
of	logic	and	to	think	“out	of	the	box”	are	clearly	very	
important	 everywhere.	 Let	 me	 stop	 before	 I	 start	
sounding	like	a	management	consultant.

I personally find that mathematics is a wonderful 
way	of	breaking	down	cultural	barriers.	For	example	
I	 spent	 several	 months	 working	 in	 Hungary	 even	
though	I	speak	(almost)	no	Hungarian.	I	doubt	that	
would	 have	 been	 possible	 in	 many	 other	 walks	 of	
life.

Please	tell	us	about	things	you	enjoy	when	not	doing	
mathematics.

Unlike	 quite	 a	 lot,	 possibly	 even	 most,	 other	
mathematicians,	I	almost	completely	avoid	activities	
like	chess,	bridge	or	computer	programming.		When	
I’m	 not	 doing	mathematics	 I	 like	 to	 do	 something	
that	doesn’t	use	my	brain	so	intensively.	I’m	a	keen	
cyclist	and	outdoor	enthusiast,	I	enjoy	playing	cricket	
(in	the	summer)	and	I	play	jazz	saxophone	to	a	rather	
mediocre	standard.

You	 were	 recently	 appointed	 a	 full	 professor	 at	
Cambridge.	Congratulations!	What	are	you	planning	
next?

Well	I	was	very	pleased	to	get	the	job	at	Cambridge	and	I	
don’t	anticipate	moving	on	for	at	least	ten	years	or	so.		I	
want	to	develop	a	group	of	students	and	postdocs	here,	a	
seminar	series,	and	graduate	courses.	I’m	very	happy	with	
the	way	my	career	has	gone	so	far	but	it	is	important	to	
avoid	burnout.	 I	believe	 that	diversity	 in	 research	 is	 the	
key	to	that	—	I	always	like	to	feel	that	one	of	my	projects	
could	 be	 completely	 taken	 away	 (solved	 by	 someone	
else	or	studied	from	a	totally	new	perspective	that	I	don’t	
understand,	 say)	 and	 I’d	 still	 have	a	decent	portfolio	of	
research	projects.P
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Recent	Research	Articles	

“Linear	Equations	in	primes,”	with	Terence	Tao,	to	appear	
in	Annals of Math.

“A	 quantitative	 version	 of	 the	 idempotent	 theorem	 in	
harmonic	analysis,”	with	T.	Sanders,	to	appear	in	Annals 
of Math. 

“Freiman’s theorem in finite fields via extremal set theory,” 
with  Terence Tao, arXiv:math/0703668

“A	 note	 on	 the	 Freiman	 and	 Balog-Szemeredi-Gowers	
theorems in finite fields,” with Terence Tao, arXiv:
math/0701585

“New	bounds	for	Szemeredi’s	theorem,	II:	A	new	bound	
for	r4(N),” with Terence Tao, arXiv:math/0610604
	

Tom Sanders and Ben Green at the Clay Mathematics Institute.
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Normal Numbers are Normal

By	Davar	Khoshnevisan	
Department	of	Mathematics
University	of	Utah

NORMAL NUMBERS ARE NORMAL

DAVAR KHOSHNEVISAN

Abstract. A number is normal in base b if every sequence of k symbols in the letters 0, 1, . . . , b− 1
occurs in the base-b expansion of the given number with the expected frequency b−k. From an informal
point of view, we can think of numbers normal in base 2 as those produced by flipping a fair coin,
recording 1 for heads and 0 for tails. Normal numbers are those which are normal in every base.
In this expository article, we recall Borel’s result that almost all numbers are normal. Despite the
abundance of such numbers, it is exceedingly difficult to find specific exemplars. While it is known
that the Champernowne number 0.123456789101112131415 · · · is normal in base 10, it is (for example)
unknown whether

√
2 is normal in any base. We sketch a bit of what is known and what is not known

of this peculiar class of numbers, and we discuss connections with areas such as computability theory.

1. Introduction

Let x be a real number between zero and one. We can write it, in binary form, as x = 0.x1x2 · · · ,
where each xj takes the values zero and one. We are interested first of all in “balanced” numbers—
numbers x such that half of their binary digits are zeros and the remaining half are ones. More
precisely, we wish to know about numbers x that satisfy

lim
n→∞

# {1 ≤ j ≤ n : xj = 1}
n

=
1
2
, (1)

where # denotes cardinality.
Equation (1) characterizes some, but not all, numbers between zero and one. For example, x = 0

and x = 1 do not satisfy (1), whereas the following do: 0.10, 0.01, 0.001011. The last three examples
are eventually periodic. It is therefore natural to ask whether there are numbers that satisfy (1) whose
digits are not periodic. Borel’s normal number theorem gives an affirmative answer to this question. In
fact, Borel’s theorem implies, among other things, that the collection of non-normal numbers has zero
length. Surprisingly, this fact is intimately connected to diverse areas in mathematics (probability,
ergodic theory, b-adic analysis, analytic number theory, and logic) and theoretical computer science
(source coding, random number generation, and complexity theory).
In this article, we describe briefly a general form of Borel’s normal-number theorem and some of its

consequences in other areas of mathematics and computer science. Our discussion complements some
related papers by Berkes, Philipp, and Tichy [3], Harman [15], and Queffélec [21].

2. Borel’s theorem

Given an integer b ≥ 2 and a number x between zero and one, we can always write x =
∞

j=1 xjb
−j ,

where the xj ’s take values in {0 , . . . , b− 1}. This representation is unique for all but b-adic rationals;
for those we opt for the representation for all but a finite number of digits xj are zero.
We may think of {0 , . . . , b − 1} as our “alphabet,” in which case a “word” of length m is nothing

but the sequence σ1 . . . σm, where each σj can take any of the values 0 , . . . , b− 1.

	 												continued	on	page	27
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CMI—Göttingen Library Project

Two	plain	 shelves	 in	Göttingen,	 in	 the	
entrance	room	of	the	mathematics	library,	hold	one	
of	the	best-kept	secrets	in	the	history	of	mathematics.	
In	this	locked	Giftschrank,	or	poison	cabinet,		stand	
several	 hundred	 volumes,	 largely	 handwritten	 and	
mostly	unique,	that	form	an	extensive	record	of	one	
of	the	world’s	most	important	mathematical	centers,	
the	 home	 of	 Gauss,	 Riemann,	 Dirichlet,	 Klein,	
Hilbert,	 Minkowski,	 Courant,	 Weyl,	 and	 other	
leading	 mathematicians	 and	 physicists	 of	 the	 19th	
and	 early	 20th	 centuries.	 	A	 recent	 Report on the 
Göttingen Mathematical Institute Archive	 cites	 “a	
range	of	material	unrivalled	in	quantity	and	quality:	
No	 single	 archive	 is	 even	 remotely	 comparable,”		
not	only	because	Göttingen	was	“the	leading	place	
for	mathematics	in	the	world,”	but	also	because	“no	
other	community	has	left	such	a	detailed	record	of	its	
activity	—	usually	we	are	lucky	to	have	lecture	lists,	
with	no	indication	of	the	contents.”		The	collection	
runs	 from	 early	 handwritten	 lectures	 by	 Riemann	
and	Clebsch	through	almost	100	volumes	by	Hilbert	
to	 volumes	 of	 Minkowski	 on	 number	 theory	 and	
Max	Born	on	quantum	mechanics.	 	But	the	largest	
and	 richest	 of	 its	 centerpieces	 is	 the	 Seminar-
Protokolle	 of	 Felix	 Klein:	 a	 detailed	 handwritten	
record,	spanning	over	8,000	pages	in	29	volumes,	of	
40	years	of	seminar	lectures	by	him,	his	colleagues	
and	students,	and	distinguished	visitors.

The	 record	 begins	 in	 1872,	 when	 the	 23-year-old	
Klein	began	his	new	professorship	at	Erlangen	with	
the	 announcement	 of	 his	 revolutionary	 Erlangen	
program,	 unifying	 the	 various	 geometries	 of	 the	
time	 by	 classifying	 them	 by	 their	 corresponding	
groups	of	transformations.		He	had	recently	proved	
that	 non-Euclidean	 geometry	 is	 consistent	 if	 and	
only	if	Euclidean	geometry	is,	and	he	would	go	on	
to	 do	 ground	 breaking	 work	 in	 many	 other	 areas,	
becoming,	 along	 with	 Hilbert	 and	 Poincaré,	 the	
last	of	the	mathematicians	who	could	claim	to	have	
a grasp of the entire field.  Klein then moved to 
Münich, Leipzig and finally Göttingen.  His energy 
and  administrative talent made him the central figure 

in	 Germany’s	 leading	 mathematics	 department	 at	
Göttingen,	the	nation’s	leading	mathematics	journal	
Mathematische Annalen, its first national association 
of	mathematicians,	and	a	program	of	reforms	in	higher	
education	that	became	known	as	the	Klein	reforms.		
His influence on all aspects of mathematical life 
was	unmistakable,	even	in	his	wife’s	wedding	dress,	
patterned	with	arabesques	from	Kummer	surfaces.

Klein’s	 impact	was	especially	 strong	 in	 the	United	
States. By 1875, in the first century after the 
Revolution,	 the	 growing	 network	 of	 American	
universities	had	only	managed	to	award	six	doctoral	
degrees	in	mathematics,	an	average	of	less	than	one	
per decade.  As programs finally began to expand and 
to	look	to	Europe	for	inspiration,	Klein	took	up	the	
challenge,	making	repeated	trips	to	the	United	States	
to	 present	 the	 latest	 in	 modern	 mathematics	 to	 his	
eager	 listeners.	 	His	series	of	 lectures	 in	Evanston,	
Illinois,	held	in	conjunction	with	the	World’s	Fair	in	
Chicago	and	now	known	as	the	Evanston	Colloquium,	
had a legendary influence, as did his tours of the 
universities	on	the	East	Coast.	 	Klein	himself	soon	
became	 convinced	 of	 the	 potential	 of	 American	
mathematics,	and	worked	to	organize	funding	for	the	
brightest	American	students	to	study	in	Göttingen.		He	
was	soon	supporting	a	steady	stream	of	enthusiastic	
American	 visitors.	 Harry	 Walter	 Tyler	 from	 MIT	
wrote,	“I	know	of	no	one	who	can	approach	him	as	a	
lecturer….		He’s	certainly	acute,	fertile	in	resource,	
not	only	understands	other	people,	but	makes	them	

The	Felix	Klein	Protocols	Digitized
by	Eugene	Chislenko

Mathematisches Institut Georg-August-Universität, Göttingen.
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understand him, and seems to have a very broad firm 
grasp	of	the	philosophical	relations	and	bearings	of	
different	 subjects,	 as	 well	 as	 great	 versatility	 and	
acquaintance	with	literature.”

Tyler	 was	 one	 of	 many	 Americans	 to	 be	 marked	
by	 the	breadth	and	power	of	Klein’s	 teaching,	and	
to leave their own mark, first in his Protokolle 
and	then	in	the	world	at	large:	six	of	the	American	
Mathematical	Society’s	early	presidents	and	two	of	
the University of Chicago’s first three mathematics 
professors	were	students	of	Klein.

The	Protokolle	 cover	every	aspect	of	his	 astonish-
ingly wide-ranging activity. The first volume alone 
includes	 presentations	 not	 only	 on	 Lie	 groups,	
icosahedra,	Riemann,	and	Abel’s	Theorem,	but	also	
on	heat	distribution,	crystals,	comets,	and	the	theory	
of	 the	 Northern	 Lights.	 From	 an	 early	 emphasis	
on	 geometry,	 group	 theory,	 and	 function	 theory,	
the	 other	 volumes	 expand	 into	 number	 theory,	
probability	 theory,	mechanics,	astronomy,	geodesy,	
hydrodynamics,	 electricity,	 elasticity	 theory,	 and,	
in	Klein’s	 last	years	before	his	 retirement	 in	1912,	
the	psychology	and	 teaching	of	mathematics.	 	The	
meetings	were	small	and	on	a	high	level.		Participants	
included	the	young	Pauli	and	Zermelo,	Planck	and	
Hurwitz,	 Prandl	 and	Bernstein.	 	 Many	 of	 the	 later	
seminars	 were	 organized	 jointly	 with	 Hilbert	 and	
Minkowski,	whom	Klein	had	attracted	to	Göttingen	
and	who	shared	his	commitment	to	a	close	tie	between	

mathematics	and	physics.		Presentations	made	in	the	
seminar	were	painstakingly	recorded	in	the	Seminar-
Protokolle	 books,	 just	 as	 Göttingen	 mathematics	
lectures	 were	 recorded	 in	 other	 notebooks	 and	
placed	in	the	library	for	students’	reference.		These	
notebooks	have	continued	to	astonish	those	who	see	
them,	and	they	remain	the	most	complete	record	of	
a	great	era	of	mathematical	creativity.

To	 make	 these	 volumes	 more	 widely	 available,	
CMI	 and	 Professor	Yuri	Tschinkel	 have	 organized	
a	digitization	initiative,	using	the	latest	in	scanning	
technology	 to	 digitize	 the	 complete	 Protokolle	 in	
November	of	2006.		They	are	now	being	published	
for the first time, in a digital edition available online 
at	www.claymath.org/library/historical.	 The	 full	
resolution	scans	are	available	for	study	by	scholars	
at	CMI	and	at	the	Göttingen	Mathematical	Institut	at	
www.librarieswithoutwalls.org/klein.html.
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The Klein Protokolle 

Modern	technology	makes	possible	
as	never	before	access	for	everyone	 to	 the	classics	
of	 mathematics.	 	 The	 Clay	 Mathematics	 Institute	
has	 undertaken	 several	 initiatives	 in	 cooperation	
with	 other	 institutions	 to	 digitize	 and	 disseminate	
significant historical mathematical works.  The first 
project,	entirely	funded	by	CMI,	was	the	digitization	
of	the	oldest	extant	copy	of	Euclid’s	Elements.	This	
is	the	d’Orville	manuscript,	dated	to	888	AD,	when	
it	was	copied	in	Constantinople	by	Stephen	the	Clerk	
for	Arethas,	 later	bishop	of	Caesarea	Cappadociae.	
The	 manuscript	 has	 been	 in	 the	 collection	 of	 the	
Bodleian	 	 Library	 since	 1804.	 	 The	 photography,	
directed	 by	 Chet	 Grycz	 of	 Octavo	 and	 Richard	
Ovenden	 of	 the	 Bodleian,	 took	 place	 at	 Oxford	 in	
the	fall	of	2004.		From	it	resulted	a	set	of	386	digital	
images,	one	per	spread	of	the	mansucript,	each	with	
a resolution of 639 pixels per inch and a file size 
of	254	megabytes.	CMI,	 the	Bodleian	Library,	and	
Octavo.com	maintain	copies	of	the	original	images	
for	use	by	any	interested	person.		Online	copies	are	
available at CMI and the non-profit organization 
Libraries	Without	Walls.

The	next	two	projects	took	place	in	Göttingen	with	
the	 help	 of	 Yuri	 Tschinkel	 of	 the	 Mathematisches	
Institut.	Bernhard	Riemann’s	1859	manuscript	“On	
the number of primes below a fixed bound,” was 
photographed	 in	 2005	 by	 the	 Niedersächsische		
Staats-	 und	 Universitätsbibliothek	 Göttingen	 in	
2005 with the assistance of Helmut Rolfing, curator 
of	manuscripts.

Much	 greater	 in	 scope	 was	 the	 digitization	 of	 the	
Klein	 Protokolle	 at	 the	 Mathematische	 Institut	 in	
Göttingen	 —	 twenty-nine	 volumes	 comprising	
8600	pages.		The	work	was	carried	out	by	Libraries	
without	 Walls	 under	 the	 direction	 of	 Chet	 Grycz,	
again	 with	 CMI	 funding.	 	 Ardon	 Bar	 Hama,	 the	
photographer,	used	a	Leaf	Aptus	75	camera	with	a	
digital	back	and	was	able	to	complete	the	job	in	three	
days	of	 round-the-clock	work	at	 the	Matematische	
Institut.	The	images	were	captured	as	high	resolution	
camera Raw DNG files for magnification and close 
inspection	by	scholars	using	a	careful	non-intrusive	

handling procedure developed specifically for rare 
and	delicate	bound	material.

Eugene	Chislenko,	CMI	Senior	Research	Assistant	
on	 the	 project,	 has	 been	 facilitating	 digitization	 of	
the	 Klein	 Protokolle	 and	 other	 historical	 volumes.		
He	 is	 now	 editing	 and	 annotating	 the	 digitized	
volumes	and	is	engaged	in	researching	the	history	of	
mathematics	with	this	material	as	a	primary	source.

There	is	much	more	of	value	to	be	digitized	at	 the	
Mathematische	Institut,	for	long	the	home	of	many	of	
the	world’s	best-known	mathematicians,	from	Gauss	
to	Hilbert.		A	complete	catalogue	of	their	manuscript	
holdings	was	prepared	by	Jeremy	Gray	of	the	Open	
University	in	a	research	project	supported	by	CMI.

The	 most	 recent	 CMI	 digitization	 project,	
currbibliothek,	 is	 the	 preservation	 of	 portions	
of	 Riemann’s	 Nachlass	 at	 the	 Staats-	 und	
Universitätsbibliothek.

Websites:
www.claymath.org/library/historical

www.librarieswithoutwalls.org

www.librarieswithoutwalls.org/klein.html
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Portrait of Felix Klein, Courtesy Mathematisches Institut Georg-August-
Universität, Göttingen.
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Felix Klein, Protokolle, Vol V, p 11, 7  May 1883

Adolf Hurwitz, “Über die Bildung der Modul-Functionen,”  Protokolle, Vol II, 
p. 70, Monday, 6 December 1880

Adolf Hurwitz, “Über eine Reihe neuer Functionen ...,” Protokolle, Vol II, p. 144.
Monday, 21 February, 1887

“Ueber de Analysis Situs,” Protokolle, Vol II, p. 114, Monday, 31 January 1881 
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“Ueber reguläre Körper im vier-dimensionalen Raum,” W.I. Stringham, Felix Klein, Protokolle, Vol . II, p 65, Monday, 29 November 1880.
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“Ueber reguläre Körper im vier-dimensionalen Raum,” W.I. Stringham, Felix Klein, Protokolle, Vol. II, p 59, Monday, 29 November 1880.
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Arithmetic Geometry at the Mathematisches
Institut, Göttingen, Germany
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The	2006	CMI	Summer	School		was	held	
at	 the	 Mathematisches	 Institut	 of	 Georg-August-
Universität, Göttingen, Germany.   A leading scientific 
center	 since	 the	 time	 of	 Gauss,	 Göttingen	 became	
a	Mecca	for	mathematics	 in	 the	20th	century,	with	
Hilbert, Klein and Minkowski, the first three chair-
holders	at	 the	Institute.	 	The	Mathematics	Institute	
continues	 to	 be	 a	 leading	 international	 center	 for	
mathematical	research,	and	the	107	participants1	at	the	
school	enjoyed	the	excellent	facilities	and	hospitality	
of	 the	 Institute	 from	 July	 17	 through	 August	 11.

The	main	focus	of	the	school	was	on	rational	points	
on	algebraic	varieties	over	non-algebraically	closed	
fields. Do they exist? If not, can this be proven 
efficiently and algorithmically?  When rational 
points do exist, are they finite in number and can 
they be found effectively? When there are infinitely 
many	 rational	 points,	 how	 are	 they	 distributed?

The	school	was	organized	around	three	core	coures	
on	 Curves, Surfaces, and Higher-dimensional
1. In addition to the 107 participants funded by Clay, 
about 50 participants attended using their own funding.  
 

Varieties,	 supplemented	 by	 seminars	 on	 Compu-
tational and Algorithmic aspects of Arithmetic  
Geometry,	 and	by	mini-courses	on	more	advanced	
topics.	 For	 Curves,	 a	 cohesive	 theory	 addressing	
these	 questions	 has	 emerged	 in	 the	 last	 few	 de-
cades. Highlights include Faltings’ finiteness theo-
rem	and	Wiles’	proof	of	Fermat’s	Last	theorem.	Key	
techniques	 are	 drawn	 from	 the	 theory	 of	 elliptic		
curves,	 including	modular	curves	and	parametriza-
tions,	 Heegner	 points	 and	 heights.	 Henri	 Darmon	
gave five lectures on Key Finiteness Theorems 
(Mordell-Weil	 theorem,	 Faltings’	 theorem,	 Modu-
lar	 curves	 and	 Mazur’s	 theorem,	 Fermat	 curves	
and	 Wiles’	 theorem),	 followed	 by	 a	 more	 special-
ized	set	of	lectures,	focusing	on	elliptic	curves	and	
their	 rational	 points	 with	 special	 emphasis	 on	 the	
Heegner	 point	 construction	 arising	 from	 modu-
larity	 and	 the	 theory	 of	 complex	 multiplication.

Brendan	Hassett,	Andrew	Kresch	and	David	Harari	
gave	courses	on	the Arithmetic of Surfaces.	Hassett		
lectured	on	 the	geometry	of	rational	surfaces,	with	
a	 view	 toward	 arithmetic	 applications.	 Kresch	
lectured	 on	 the	 theory	 of	 descent	 and	 the	 Brauer-
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Manin	obstruction	to	the	Hasse	principle	and	weak	
approximation,	 and	 Harari	 presented	 concrete		
applications	of	the	theory	of	descent.	The	arithmetic		
of	 higher-dimensional	 varieties	 is	 equally	 rich,	
offering	a	complex	interplay	of	techniques	including	
Shimura	 varieties,	 the	 minimal	 model	 program,	
moduli	 spaces	 of	 curves	 and	 maps,	 deformation	
theory,	Galois	cohomology,	harmonic	analysis,	and	
automorphic	 functions.	 Yuri	 Tschinkel	 gave	 eight	
lectures	 on	 the	 distribution	 of	 rational	 points	 with	
respect	 to	 heights,	 focusing	 on	 varieties	 closely	
related	 to	 linear	 algebraic	groups,	 e.g.,	 equivariant	
compactifications of groups and homogeneous 
spaces.	 	Topics	covered	included	the	circle	method		
and	 hypersurfaces,	 toric	 varieties,	 height	 zeta		
functions of toric varieties, flag varieties, 
compactifications of additive groups, spherical 
varieties	 and	 conjectures	 on	 rational	 and	 integral	
points.	 Boris	 Moroz	 lectured	 on	 the	 classical	
application	 of	 the	 circle	 method	 to	 the	 Waring	
problem,	and	then	explained	how	Deligne’s	estimates	
on	exponential	sums	lead	to	Heath-Brown’s	theorem	
on	 cubic	 forms	 in	 ten	 variables.	 Jason	 Starr	 gave	
three	 lectures,	one	on	 the Tsen-Lang Theorem,	one	
on	 Arithmetic over Function Fields of Curves	 and	
one	on	Arithmetic over Function Fields of Surfaces.	
Dan	Abramovich	 lectured	 on	 Birational Geometry 
for Number Theorists	 (Kodaira	 dimension	 and	 the	
birational classification of varieties, the minimal 
model	program,	the	conjectures	of	Lang	and	Vojta,	
Campana’s program, and applications to specific 
number-theoretic	 problems).	 Finally,	 Antoine	

Brendan Hassett’s course. 

Chambert-Loir	lectured	on	the	distribution	of	points	
of	 “small”	 height	 on	 arithmetic	 varieties.	 Topics	
covered	included	equidistribution	on	the	projective	
line,	 Arakelov	 geometry	 and	 equidistribution,	 and	
Equidistribution	on	Berkovich	spaces

The	 school	 also	 included	 a	 three	 week-workshop	
on	 Computational Aspects of Arithmetic Algebraic 
Geometry,	 as	 well	 as	 advanced	 mini-courses	 on	
Moduli of Abelian Varieties and p-Divisible Groups	
(Frans	 Oort	 and	 Ching-Li	 Chai),	 Zink’s Theory 
of Displays and Crystalline Dieudonné Theory	
(William	 Messing),	 Non-commutative Cartier 
Isomorphism and Hodge-to-de Rham Degeneration  
(Dmitry	 Kaledin),	 Classical and Iterated Shimura 
Symbols (Yuri	Manin),	Geometry over Finite Fields	
(Fedor	 Bogomolov),	 André-Oort Conjectures	
(Emmanuel	Ullmo),	and	Varieties over Finite Fields	
(Bjorn	Poonen).

 Downtown Göttingen, photo courtesy Ulrich Derenthal.
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The Ross Program at 
Ohio State University

In	 2006,	 the	 Clay	 Mathematics	 Institute	
continued	 its	 support	 of	 summer	 programs	 for	
talented	high	school	students	who	excel	in	math	by	
sponsoring,	in	part,	the	Ross	Program	at	Ohio	State	
University	 and	 PROMYS	 at	 Boston	 University.		
Both	of	these	programs	are	distinguished	for	offering	
the	 best	 pre-college	 learning	 experiences	 available	
to	 American	 students	 with	 a	 special	 aptitude	 for	
mathematics	 by	 immersing	 them	 in	 the	 creative	
world	of	mathematical	discovery.

The	 Ross	 program	 at	 Ohio	 State	 University	 is	 an	
eight-week	intensive	summer	course	in	mathematics	
for	 bright	 young	 students.	 Spurred	 by	 the	 launch	
of	 Sputnik	 and	 the	 subsequent	 surge	 of	 interest	 in	
science	 education,	 Dr.	 Arnold	 Ross	 founded	 his	
program	 at	 Notre	 Dame	 in	 1957.	 	 The	 program	
moved	with	Dr.	Ross	to	Ohio	State	in	1964	and	has	
run	every	summer	since	then.

The	central	goal	of	this	program	has	always	been	to	
instruct	and	encourage	students	in	the	art	of	abstract	
thinking	and	to	inspire	them	to	discover	for	themselves	
that	 abstract	 ideas	 are	 valuable	 and	 important.		
Beginning	students	who	do	well	are	invited	back	for	a	
second	summer,	and	may	return	as	junior	counselors	
or	 counselors	 in	 subsequent	 summers.	 	 Returning	
students	and	counselors	also	take	advanced	courses,	
which	vary	from	year	to	year.

For	the	past	several	years,	CMI	employed	instructors	
and	counselors	in	the	Ross	Program.		This	made	it	
possible	 for	 the	 University	 to	 recruit	 top-ranking	
mathematics	 professors	 and	 graduate	 students	 to	
teach	and	coach	 the	work	of	 the	enrolled	students.		
In	2006,	 35	 students	were	 involved	 in	 the	number	
theory course (23 first-year students, 8 second-year 
students,	and	4	undergraduates).		These	participants	
were	 assisted	 in	 their	 mathematical	 work	 by	 eight	
Junior	Counselors	and	seven	Counselors.

The first-year students (mostly 14 to 18 years old) 
take	the	basic	course	in	number	theory,	which	Daniel	
Shapiro	reported	to	be	“elementary	but	fast-paced.”		
Each	 summer’s	 session	 starts	 with	 the	 Euclidean	
algorithm	 and	 congruences,	 then	 moves	 on	 to	

prime	 factorization,	 Gaussian	 integers,	 quadratic	
reciprocity,	 Möbius	 inversion,	 polynomial	 rings,	
geometry	of	numbers,	etc.	Students	are	expected	to	
work	 through	 these	 ideas	 (with	proofs),	 guided	by	
the	extensive	problem	sets.

“To	 discuss	 the	 number	 theory	 problems,	 students	
broke	into	three	seminars	taught	by	retired	Ohio	State	
University	professor	Robert	Gold	and	his	colleague	
Jim	 Brown,	 a	 postdoc	 at	 Ohio	 State,	 and	 Stefan	
Patrikis,	 one	 of	 the	 senior	 counselors.	 	Students	
with	 a	 bit	 more	 experience	 also	 participated	 in	 a	
Topics	Seminar	designed	and	run	by	the	Counselors.		
Junior	Counselors	 and	Counselors	 attended	 the	 two	
advanced	courses:	Combinatorics	taught	by	Professor	
Kenneth	Supowit,	and	Sums	of	Square	taught	by	me,”	
explained	Shapiro.

In	addition	to	these	eight-week	courses	and	seminars,	
there	 were	 several	 “colloquium	 style”	 lectures.	
The	 lecturers	 in	 2006	 were	 Ray	 Pierrehumbert	
(University	of	Chicago,	geophysical	sciences),	Paul	
Pollack	(Ph.D.	student	at	Dartmouth),	Tom	Weston	
(University	 of	 Massachusetts–Amherst),	 David	
Pollack	 (Wesleyan	 University),	 Glen	Whitney	
(Renaissance	 Technologies),	 and	 Susan	 Goldstine	
(St.	Mary’s	College	of	Maryland).

For	each	of	the	past	several	years,	the	Ross	Program	
has	 also	 offered	 a	 three-week	 component	 for	 in-
service	 high	 school	 mathematics	 teachers.	 	 These	
teacher-participants	 join	 the	 others	 in	 the	 number	
theory	 lecture,	 but	 have	 separate	 workshops	 and	
seminars.		A	geometry	course	was	introduced	in	2006	
for	alumni	of	 the	teacher	program.	 	There	were	19	
teacher-participants	 involved	 in	 the	number	 theory	
course,	 and	 8	 joined	 the	 geometry	 course.	 These	
efforts	were	supported	by	funds	from	the	Park	City	
Math	 Institute	 and	 the	Math	Department’s	VIGRE	
grant	from	the	National	Science	Foundation.

“Next	 summer	 we	 will	 host	 a	 50th	 Anniversary	
Reunion/Conference,	 held	 on	 July	 20–22,	 2007,”	
Shapiro	 reported.	 	 “We	 will	 use	 this	 event	 to	 help	
demonstrate how influential the Ross Program has been 
on	the	American	mathematical	community.		It	should	
also	provide	us	with	some	fund-raising	opportunities.”
Daniel B. Shapiro is Professor and Vice Chair of the Department 
of Mathematics at Ohio State University.   He was a student in 
the program in the 1960s and took over as director when Dr. Ross 
stepped down in 2000 at the age of 94.
 

“Think	deeply	of	simple	things”

	www.math.ohio-state.edu/ross
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that	 is	 easily	 transmitted	 to	 the	 participants.		They	
are	the	main	channel	by	which	the	esprit de corps,	
so	 vital	 to	 PROMY’s	 success,	 is	 conveyed,”	 says	
Glenn	Stevens.	 	Counselors	 share	 their	knowledge	
and	 expertise	 with	 the	 high	 school	 participants	 by	
grading	their	daily	homework,	engaging	in	informal	
discussions,	and	offering	mini-courses	on	themes	of	
their	choosing.

To ensure that returning students and counselors find 
their	experience	intellectually	stimulating,	the	CMI/
PROMYS’s	partnership	offers	a	variety	of	advanced	
seminars	 and	 research	 projects	 each	 summer.	 Past	
seminars	have	included	Values of the Riemann zeta 
function, Hyperbolic Geometry; Random Walks on 
Groups, Dirichlet Series, Mathematics of Computer 
Graphics, Graphs and Knots,	and	The Mathematics 
of Algorithms.		 This	 year,	 PROMYS	 and	 the	 Clay	
Mathematics	 Institute	 are	 offering	 advanced		
seminars	 in	 Geometry and Symmetry, Modular 
Forms, and Abstract Algebra.

In	2006,	three	research	mathematicians	—	Jonathan	
Kanke	 (Duke	 University),	 Kiran	 Kedlaya	 (MIT),	
and	Paul	Gunnells	 (University	of	Massachusetts	at	
Amherst)	 —	 were	 invited	 to	 serve	 as	 mentors	 to	
work	with	 students	on	advanced	 research	projects.		
Topics	 for	 their	 research	 projects	 in	 the	 summer	
of	 2006	 were:	 Quaternion Algebras,	 proposed	 by	
Jonathan	 Hanke;	 Combinators,	 proposed	 by	 Ira	
Gessel;	 Quadratic Forms and Quadratic Fields,	
proposed	by	Jonathan	Hanke;	Finiteness Theorems 
for Quadratic Forms,	proposed	by	Jonathan	Hanke;	
and	Purely Periodic Continued Fractions,	proposed	
by	Kiran	Kedlaya.

Since 1989, Glenn Stevens has directed Boston University’s Program 
in Mathematics for Young Scientists (PROMYS).  Professor Stevens 
is a Professor of Mathematics at Boston University, where he has 
taught and conducted research since 1984.  

Since	1999,	 the	Clay	Mathematics	Institute	
has	 sponsored	 a	 variety	 of	 advanced	 seminars	 and	
research	projects	 for	 returning	 students	 enrolled	 in	
the	 Program	 in	 Mathematics	 for	 Young	 Scientists	
(PROMYS)	at	Boston	University.

Now	 in	 its	 nineteenth	 year,	 PROMYS	 is	 a	 six-
week	 summer	program	 that	was	developed	by	BU		
Professor	Glenn	Stevens	with	 the	aim	of	engaging	
ambitious	 high	 school	 students	 in	 intensive	
mathematics	 research.	 	 Young	 students	 who	 excel	
in	math	are	invited	to	explore	the	creative	world	of	
mathematics	 in	 a	 supportive	 community	 of	 peers,	
counselors,	 research	 mathematicians,	 and	 visiting	
scientists.

Students	are	selected	from	around	the	United	States	
based	 on	 their	 interest	 and	 ability	 in	 mathematics.		
PROMYS	 moves	 well	 beyond	 the	 high	 school	
curriculum	 by	 offering	 students	 the	 opportunity	
to participate in the process of scientific research.  
First-year	participants	engage	 in	 intensive	problem	
solving	 in	 elementary	 number	 theory.	 	 Returning	
participants	 study	 more	 advanced	 topics.	 	 These	
participants	are	divided	into	“lab	groups”	of	two	to	
four	students.	Each	group	works	together	on	open-
ended	 exploratory	 projects	 that	 they	 will	 present	
to	 other	 PROMYS	 participants	 at	 the	 end	 of	 the	
program.		Throughout	the	summer,		several	research	
mathematicians	 serve	 as	 mentors	 to	 the	 advanced	
students.		Mentors	pose	new	research	problems	at	the	
start	of	each	summer	and	provide	guidance	for	 the	
students.		Their	assistance	includes	hints	for	getting	
started	and	references	to	the	pertinent	literature.

Behind	 the	 scenes,	 a	 group	 of	 counselors,	 who	
are	 also	 participants	 in	 the	 program,	 maintain	 an		
intensive	 level	 of	 interaction	 with	 the	 high	 school	
participants.	 	 Counselors	 are	 undergraduate	 math	
majors	recruited	from	the	country’s	top	universities,	
who	live	and	work	alongside	the	younger	participants,	
aiding	them	in	their	research.	“It	is	no	exaggeration	to	
say	that	the	success	of	PROMYS	depends	primarily	
on	the	dedication	and	expertise	of	the	counselor	staff.		
They	 bring	 an	 enthusiastic	 attitude	 to	 PROMYS	

PROMYS at Boston University
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Dmitry	 Vaintrob	 wins	 Siemens	
Competition
On	 December	 4,	 2006,	 former	 Clay	 Research	
Academy	 student	 Dmitry	 Vaintrob	 from	 Eugene,	
Oregon,	 won	 top	 honors	 in	 the	 2006–07	 Siemens	
Competition	in	Math,	Science	and	Technology,	 the	
nation’s	 premier	 high	 school	 science	 competition.		
The	 Siemens	 Competition,	 a	 signature	 program	 of	
the	 Siemens	 Foundation,	 is	 administered	 by	 the	
College	 Board.	 	 The	 awards	 were	 presented	 by	
U.S.	 Secretary	 of	 Education	 Margaret	 Spellings	 at	
New	York	University,	host	of	the	2006–07	Siemens	
Competition national finals.

	
	
	
	

Dmitry	won	 the	$100,000	Grand	Prize	scholarship	
in	the	individual	category	for	exciting	research	in	a	
new	area	of	mathematics	called	string	topology.		His	
mentor	 for	 the	 competition	 was	 MIT	 mathematics	
professor	Pavel	Etingof,	who	coached	Dmitry	over	
a	 session	 of	 the	 Clay	 Research	Academy	 in	 2004.	
Pavel	shares	his	impressions	of	Dmitry	and	recounts	
how	 such	 a	 young	 student	 came	 to	 win	 such	 an	
honor:

“Mitka	is	an	amazing	mathematical	talent.	At	18,	he	
knows	as	much	mathematics	as	graduate	students	at	
good	universities	in	the	beginning	or	even	middle	of	
their	graduate	studies.	He	is	extremely	creative,	and	
extraordinarily	gifted.	He	was	in	my	representation	
theory	group	 in	 the	2004	Clay	Research	Academy	

and	 did	 extremely	 well.	 	 In	 the	 summer	 of	 2006	
Mitka	worked	on	a	project	at	the	Research	Science	
Institute	 at	 MIT,	 under	 the	 joint	 supervision	 of	
Aaron	 Tievsky	 (an	 MIT	 mathematics	 graduate	
student)	and	myself.	This	was	the	most	sophisticated	
mathematical	 research	 project	 by	 a	 high	 school	
student	that	I	have	ever	seen.	I	suggested	it	to	Mitka	
in	June	2006.	The	project	was	to	calculate	explicitly	
the	Hochschild	cohomology	of	the	group	algebra	of	
the	fundamental	group	of	a	closed	oriented	surface	
(as	a	Batalin-Vilkovisky	algebra)	in	terms	of	a	certain	
Lie	algebra	of	 loops	 introduced	by	Goldman.	This	
project	could	have	been	a	part	of	a	Ph.D.	thesis	in	our	
graduate	 program,	 and	 requires	 a	 deep	 knowledge	
of	graduate-level	topology.	Normally	it	would	have	
been	insane	to	give	such	a	project	to	a	high	school	
student.	But	knowing	Mitka’s	exceptional	talent	and	
accomplishments,	I	decided	to	give	it	a	try,	and	the	
results	were	even	better	than	I	had	expected.	Mitka	
not	 only	gave	 a	 complete	 solution	 to	 the	problem,	
but	took	the	initiative	to	generalize	it	from	the	case	
of	surfaces	to	the	case	of	higher-dimensional	closed	
aspherical	manifolds.	In	this	case,	he	found	that	the	
answer	 is	 expressible	 via	 the	 the	 so-called	 string	
topology	 of	 the	 manifold,	 introduced	 in	 1999	 by	
Moira	Chas	and	Dennis	Sullivan.		Thus	in	his	work	
Mitka	obtained	original	results,	which	will	no	doubt	
be	of	considerable	interest	to	experts	working	in	the	
area	and	are	publishable	in	a	high	quality	mathematics	
journal.	These	are	all	reasons	to	expect	that	he	will	
become	a	major	research	mathematician.”

Dmitry attending Pavel’s course at the 2004 Clay Research Academy.

From left to right: Bettina von Siemens; Siemens Competition Individual 
Winner Dmitry Vaintrob; U.S. Secretary of Education Margaret  
Spellings; George Nolen, President and CEO of Siemens Corporation
Academy.  Photo courtesy the Siemens Foundation.
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Let w be a fixed word of finite length m, and choose and fix integers n ≥ m, as well as a real number
x ∈ [0 , 1]. We can then define N b

n(x ;w) to be the number of times the word w appears continguously
among (x1 , . . . , xn). The reader is invited to verify that N10

n (0.5 , {5}) = N2
n(0.5 , {1}) = 1 for all

n ≥ 1.
A number x is said to be simply normal in base b if

lim
n→∞

N b
n(x ; {j})

n
=
1
b

for all letters j ∈ {0 , . . . , b− 1}. (2)

That is, x is simply normal in base b when, and only when, all possible letters in the alphabet
{0 , . . . , b − 1} are distributed equally in the b-ary representation of x. Balanced numbers are simply
normal in base 2.
More generally, a number x is said to be normal in base b if given any finite word w with letters

from the alphabet {0 , . . . , b− 1},

lim
n→∞

N b
n(x ;w)
n

=
1
b|w| , (3)

where |w| denotes the length of the word m. The number a = 0.101010 · · · is simply normal, but
not normal, in base 2. This can be seen, for example, by inspecting the two-letter word “11.” Still
more generally, we say that x ∈ [0 , 1] is simply normal if it is simply normal in all bases b ≥ 2, and
[absolutely] normal if it is normal in all bases b ≥ 2. These definitions are all due to Borel [4].
The first nonperiodic numbers which are normal in some base b were constructed by Champer-

nowne [9] in 1933. These were the numbers C2 = 0.1011011001010011100101110111 . . . , C10 =
0.1234567891011121314 . . . . etc., obtained by concatenating the base b numerals in their natural
order. Champernowne also conjectured that 0.13571113171923 . . . , obtained by concatenating all
primes, is simply normal in base 10. His conjecture was verified in 1946 by Copeland and Erdős [10].
It is possible to construct numbers that are simply normal in one base, but not in another. For

example, the simply normal binary number a = 0.101010 · · · is not normal in base 10, since a = 2/3 =
0.6̄ in decimal notation.
The Champernowne numbers are admittedly artificial. Are there “natural” normal numbers? Al-

though nothing is known, there are several conjectures. The first of these [5], due to Borel in 1950,
states that all irrational algebraic numbers are normal; see also Mahler’s 1976 lectures [19] wherein
he proved, among other things, that Champernowne’s number is transendental. Unfortunately, not
much further progress has been made in this direction. For example, it is not known whether house-
hold numbers such as e, π, ln 2, or

√
2 are simply normal in any given base. (x > b is said to be

[simply] normal in base b when x/b is [simply] normal in base b.) We do not even know if
√
2 has

infinitely-many 5’s [say] in its decimal expansion!

I hasten to add that there are compelling arguments that support the conjecture that e, π,
√
2, and

a host of other nice algebraic irrationals, are indeed normal; see Bailey and Crandall [1].
The preceding examples, and others, were introduced in order to better understand the remarkable

normal number theorem of Borel [4] from 1909:

Theorem 2.1 (Borel). Almost every number in [0 , 1] is normal.

The veracity of this result is now beyond question. However, to paraphrase Doob [11, p. 591],
Borel’s original derivation contains an “unmendably faulty” error. Borel himself was aware of the gap
in his proof, and asked for a complete argument. His plea was answered a year later by Faber [14, p.
400], and also later by Hausdorff [16].
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Theorem 2.1 suggests that it should be easy to find normal numbers. But I am not aware of any
easy-to-describe numbers that are even simply normal. Recently, Becker and Figueira [2] have built
on a constructive proof of Theorem 2.1, due to Sierpiński [25], to prove the existence of computable
normal numbers. Their arguments suggest possible ways for successively listing out the digits of some
normal numbers. But a direct implementation of this program appears to be at best arduous.
Borel’s theorem is generally considered to be one of the first contributions to the modern theory

of mathematical probability; a fact of which Borel himself was aware [4]. In order to describe this
connection to probability, let us select a number X uniformly at random from the interval [0 , 1]. The
key feature of this random selection process is that for all Borel sets A ⊆ [0 , 1],

P{X ∈ A} = Lebesgue measure of A, (4)

where P denotes probability.
We can write X in b-ary form as

∞
j=1 Xjb

−j . Borel’s central observation was that {Xj}∞j=1 is a
collection of independent random variables, each taking the values 0, 1, . . . , b−1 with equal probability.
Then he proceeded to [somewhat erroneously] prove his strong law of large numbers, which was the
first of its kind. Borel’s law of large numbers states that for all letters j ∈ {0 , . . . , b− 1},

P

lim
n→∞

1{X1=j} + · · ·+ 1{Xn=j}

n
=
1
b


= 1, (5)

where 1A denotes the characteristic function of A. It follows readily from (5) that with probability
one X is simply normal in base b. Because there are only a countable number of integers b ≥ 2, this
proves that X is simply normal. Normality of X is proved similarly, but one analyses blocks of digits
in place of single digits at a time.
Let Nb denote the collection of all numbers normal in base b. The preceding argument implies that

P{X ∈ ∩∞b=2 Nb} = 1. This and (4) together imply Theorem 2.1.
We conclude this section by making a few more comments:
(1) In 1916 Weyl [27] described a tantalizing generalization of Theorem 2.1 that is nowadays called

Weyl’s equidistribution theorem. In this connection, we mention also the thesis of Wall [26]. (2)
Riesz [22] devised a slightly more direct proof of Theorem 2.1. His derivation appeals to Birkhoff’s
ergodic theorem in place of Borel’s (or more generally, Kolmogorov’s) strong law of large numbers.
But the general idea is not dissimilar to the proof outlined above. (3) The probabilistic interpretation
of Theorem 2.1 has the following striking implication:

Finite-state, finite-time random number generators do not exist. (6)

Of course, this does not preclude the possibility of generating a random number one digit at a time.
But it justifies our present day use of psuedo random-number generators; see Knuth [17] for more
on this topic. Remarkably, a complexity theory analogue to (6) completely characterizes all normal
numbers; see Schnorr and Stimm [24] and Bourke, Hitchcock, and Vinochandran [6]. In this general
direction, see also the interesting works of Chaitin [8] and Lutz [18].
(4) The proof of Borel’s theorem is more interesting than the theorem itself, because it identifies

the digits of a uniform random variable as independent and identically distributed. Such sequences
have interesting properties that are not described by Theorem 2.1. Next we mention one of the many
possible examples that support our claim.
Let Rn(x) denote the length of the largest run of ones in the first n binary digits of x. [A run of

ones is a continguous sequences of ones.] Then, according to a theorem of Erdős and Rényi [13] from
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1970,

lim
n→∞

Rn(x)
log2(n)

= 1 for almost every x ∈ [0 , 1]. (7)

Because this involves words of arbitrarily large length, it is not a statement about normal number per
se. There are variants of (7) that are valid in all bases, as well.

3. Unbiased sampling

As was implied earlier, one of the perplexing features of normal numbers is that they are abundant
(Theorem 2.1), and yet we do not know of a single concrete number that is normal. This has puzzled
many researchers, but appears to be a fact that goes beyond normal numbers, or even the usual
structure of the real line.
Next we present an example that examines an analogous problem in a similar setting. This example

suggests the following general principle: Quite often, schemes that involve taking “unbiased samples
from large sets” lead to notions of normality that are hard to pinpoint concretely. I believe that this
principle explains our inability in deciding whether or not a given number is normal. But I have no
proof [nor disproof].
Let us consider the ternary Cantor set C, which we can think of as all numbers x ∈ [0 , 1] whose

ternary expansion
∞

j=1 xj3−j consists only of digits xj ∈ {0 , 2}.
In order to take an “unbiased sample” from C, it is necessary and sufficient to find a probability

measure on C that is as “flat” as possible. [We are deliberately being vague here.] There are many
senses in which the most flat probability measure on C can be identified with the restriction mC of
the usual log3(2)-dimensional Hausdorff measure to C. That is, mC is the Cantor–Lebesgue measure.
Now it is not difficult to show that mC can be defined directly as follows:

mC(A) := P




∞
j=1

Xj

3j
∈ A


 for all Borel sets A ⊆ [0 , 1], (8)

where X1, X2, . . . are independent random variables, taking the values zero and two with probability
1/2 each. A ready application of the strong law of large numbers then reveals that the following holds
for mC-almost every x ∈ C:

lim
n→∞

N3
n(x ;w)

n
=

1
2|w|

for all words w ∈
∞

k=1

{0 , 2}k. (9)

We say that a number x ∈ C is normal in the Cantor set C if it satisfies (9). Although mC-
almost every number in C is normal in C, I am not aware of any concrete examples. On the other
hand, I point out that we do not know very many concrete numbers in C at all—be they normal or
otherwise. By analogy, this suggests the sightly uncomfortable fact that we do not know very many
numbers—normal as well as non-normal—in [0 , 1].

4. Non-normal numbers

At first glance, one might imagine that because normal numbers are so complicated, non-normal
numbers are not. Unfortunately, this is not the case. We conclude this article by mentioning two
striking results that showcase some of the complex beauty of non-normal numbers.
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4.1. Eggleston’s theorem. Let us choose and fix a base b ≥ 2 and a probability vector p :=
(p0 , . . . , pb−1); that is, 0 ≤ pj ≤ 1 and p0 + · · ·+ pb−1 = 1. Consider the set

E (p) :=


x ∈ [0 , 1] : lim
n→∞

N b
n(x ; {j})

n
= pj for all j = 0 , . . . , b− 1


. (10)

Note that if any one of the pj ’s is different from 1/b, then all elements of E (p) are non-normal. In
1949, Eggleston [12] confirmed a conjecture of I. J. Good by deriving the following result.

Theorem 4.1 (Eggleston). The Hausdorff dimension of E (p) is precisely the thermodynamic entropy

H(p) := −
b−1
j=0

pj logb(pj), (11)

where 0× logb(0) := 0.

This theorem is true even if p0 = · · · = pb−1 = 1/b, but yields a weaker result than Borel’s theorem
in that case. Ziv and Lempel [29] developed related ideas in the context of source coding.

4.2. Cassels’s theorem. For the second, and final, example of this article we turn to a striking
theorem of Cassels [7] from 1959:

Theorem 4.2 (Cassels). Define the function f : [0 , 1]→ R by

f(x) :=
∞

j=1

xj

3j
, (12)

where x1, x2, . . . denote the binary digits of x. Then, for almost every x ∈ [0 , 1], f(x) is simply normal
with respect to every base b that is not a power of 3.

It is manifestly true that Cassels’s f(x) is not normal in bases 3, 9, etc. Hence, non-normal numbers
too have complicated structure. We end our discussion by making two further remarks:
(1) Cassels’s theorem answered a question of Hugo Steinhaus, and was later extended by Schmidt

[23]. See Pollington [20] for further developments.
(2) Because 2f is a bijection between [0 , 1] and the Cantor set C, Cassels’s theorem constructs an

uncountable number of points in 1
2C that are simply normal with respect to every base b that is not

a power of 3. Not surprisingly, we do not have any concrete examples of such numbers.
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Proceedings of the Clay Mathematics Institute
2003 Summer School, The Fields Institute  
Toronto, Canada, June 2–27, 2003

The modern theory of automorphic forms, embodied in
what has come to be known as the Langlands program,
is an extraordinary unifying force in mathematics. It
proposes fundamental relations that tie arithmetic
information from number theory and algebraic geometry
with analytic information from harmonic analysis and
group representations. These “reciprocity laws”,
conjectured by Langlands, are still largely unproved.
However, their capacity to unite large areas of
mathematics insures that they will be a central area of
study for years to come.

The goal of this volume is to provide an entry point into
this exciting and challenging field. It is directed on the
one hand at graduate students and professional
mathematicians who would like to work in the area. The
longer articles in particular represent an attempt to
enable a reader to master some of the more difficult
techniques. On the other hand, the book will also be
useful to mathematicians who would like simply to
understand something of the subject. They will be able
to consult the expository portions of the various articles.

The volume is centered around the trace formula and
Shimura varieties. These areas are at the heart of the
subject, but they have been especially difficult to learn
because of a lack of expository material. The volume
aims to rectify the problem. It is based on the courses
given at the 2003 Clay Mathematics Institute Summer
School. However, many of the articles have been
expanded into comprehensive introductions, either to
the trace formula or the theory of Shimura varieties, or
to some aspect of the interplay and application of the
two areas.
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Analytic Number Theory; A Tribute to Gauss and Dirichlet;	Editors:	William	Duke,	Yuri	Tschinkel.		This	volume	con-
tains	the	proceedings	of	the	Gauss-Dirichlet	Conference	held	in	Göttingen,	June	20–24	in	2005,	commemorating	the	
150th anniversary of the death of Gauss and the 200th anniversary of Dirichlet’s birth.  It begins with a definitive 	
summary	of	the	life	and	work	of	Dirichlet	by	J.	Elstrodt	and	continues	with	thirteen	papers	by	leading	experts	on	research	
topics of current interest within number theory that were directly influenced by Gauss and Dirichlet.

Ricci Flow and the Poincaré Conjecture; Authors:	John	Morgan,	Gang	Tian.		This	book	
presents	a	complete	and	detailed	proof	of	the	Poincaré	Conjecture.		This	conjecture	was	
formulated	by	Henri	Poincaré	 in	1904	and	has	 remained	open	until	 the	 recent	work	of	
Grigori	Perelman.	The	arguments	given	in	the	book	are	a	detailed	version	of	those	that	
appear	in	Perelman’s	three	preprints.
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During the Summer of 2001, MSRI
hosted the Clay Mathematics Institute
Summer School on the Global Theory of
Minimal Surfaces, during which 150
mathematicians—undergraduates, post-
doctoral students, young researchers,
and the world's experts—participated in
the most extensive meeting ever held on
the subject in its 250-year history. The
unusual nature of the meeting has made
it possible to assemble a volume of
expository lectures, together with some
specialized reports that give a
panoramic picture of a vital subject,
presented with care by the best people
in the field.

The subjects covered include minimal
and constant-mean-curvature
submanifolds, geometric measure theory
and the double-bubble conjecture,
Lagrangian geometry, numerical
simulation of geometric phenomena,
applications of mean curvature to
general relativity and Riemannian
geometry, the isoperimetric problem, the
geometry of fully nonlinear elliptic
equations, and applications to the
topology of three manifolds.

816 pages • 1 9/16" spine

www.ams.org
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Strings and Geometry.	Proceedings	of	the	2002	CMI	Summer	
School	 held	 at	 the	 Isaac	 Newton	 Institute	 for	 Mathematical	
Sciences,	 UK.	 	 Editors:	 Michael	 Douglas,	 Jerome	 Gauntlett	
and	Mark	Gross.		CMI/AMS	publication,	376	pp.,	Paperback,	
ISBN 0-8218-3715-X. List: $69. AMS Member: $55. Order 
code:	CMIP/3.	To	order,	visit	www.ams.org/bookstore.

Mirror Symmetry.	 Authors:	 Kentaro	 Hori,	 Sheldon	 Katz,		
Albrecht	 Klemm,	 Rahul	 Pandharipande,	 Richard	 Thomas,	
Ravi	Vakil.	Editors:	Cumrun	Vafa,	Eric	 Zaslow.	CMI/AMS	
publication,	929	pp.,	Hardcover.	ISBN	0-8218-2955-6.	List:	
$124.	AMS	 Members:	 $99.	 CMIM/1.	To	 order,	 visit	 www.
ams.org/bookstore.

Strings 2001.	Authors:	Atish	Dabholkar,	Sunil	Mukhi,	Spenta	R.	Wadia.	Tata	Institute	of	
Fundamental	Research.	Editor:	American	Mathematical	Society	(AMS),	2002,	489	pp.,		
Paperback,	ISBN	0-8218-2981-5,	List	$74.	AMS	members:	$59.	Order	code:	CMIP/1.	To	
order,	visit	www.ams.org/bookstore.

The CMI Millennium Meeting Collection.	Authors:	Michael	Atiyah,	Timothy	Gowers,	John	
Tate,	François	Tisseyre.	Editors:	Tom	Apostol,	 Jean-Pierre	Bourguignon,	Michele	Emmer,	
Hans-Christian	Hege,	Konrad	Polthier.	Springer	VideoMATH,	©	Clay	Mathematics	Institute,	
2002. Box set consists of four video cassettes: The CMI Millennium Meeting, a film by 
François	Tisseyre;	The	Importance	of	Mathematics,	a	lecture	by	Timothy	Gowers;	The	Mil-
lennium	Prize	Problems,	a	lecture	by	Michael	Atiyah;	and	The	Millennium	Prize	Problems,	a	
lecture	by	John	Tate.	VHS/NTSC	or	PAL.	ISBN	3-540-92657-7,	List:	$119,	EUR	104.95.	To	
order,	visit	www.springer-ny.com	(in	the	United	States)	or	www.springer.de	(in	Europe).

These	videos	document	the	Paris	meeting	at	the	Collège	de	France	where	CMI	announced	the	
Millennium	Prize	Problems.	For	anyone	who	wants	to	learn	more	about	these	seven	grand	
challenges	in	mathematics.	

Videos	of	the	2000	Millennium	event	are	available	online	and	in	VHS	format	from
Springer-Verlag.	To	order	the	box	set	or	individual	tapes,	visit		www.springer.com.
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MIRROR SYMMETRY
Kentaro Hori, Sheldon Katz, Albrecht Klemm, 
Rahul Pandharipande, Richard Thomas, 
Cumrun Vafa, Ravi Vakil, Eric Zaslow

Mirror symmetry is a phenomenon arising in string theory in which two very
different manifolds give rise to equivalent physics. Such a correspondence
has significant mathematical consequences, the most familiar of which
involves the enumeration of holomorphic curves inside complex manifolds
by solving differential equations obtained from a “mirror” geometry. The
inclusion of D-brane states in the equivalence has led to further conjectures
involving calibrated submanifolds of the mirror pairs and new (conjectural)
invariants of complex manifolds: the Gopakumar Vafa invariants.

This book aims to give a single, cohesive treatment of mirror symmetry
from both the mathematical and physical viewpoint. Parts I and II develop
the necessary mathematical and physical background “from scratch,” and
are intended for readers trying to learn across disciplines. The treatment
is focussed, developing only the material most necessary for the task. In
Parts III and IV the physical and mathematical proofs of mirror symmetry
are given. From the physics side, this means demonstrating that two
different physical theories give isomorphic physics. Each physical theory
can be described geometrically,

and thus mirror symmetry gives rise to a “pairing” of geometries. The
proof involves applying R ↔ 1/R circle duality to the phases of the fields
in the gauged linear sigma model. The mathematics proof develops
Gromov-Witten theory in the algebraic setting, beginning with the moduli
spaces of curves and maps, and uses localization techniques to show
that certain hypergeometric functions encode the Gromov-Witten invari-
ants in genus zero, as is predicted by mirror symmetry. Part V is devoted
to advanced topics in mirror symmetry, including the role of D-branes in
the context of mirror symmetry, and some of their applications in physics
and mathematics. and mathematics; topological strings and large N
Chern-Simons theory; geometric engineering; mirror symmetry at higher
genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the
mirror phenomenon as an equivalence of categories.

This book grew out of an intense, month-long course on mirror symmetry
at Pine Manor College, sponsored by the Clay Mathematics Institute. The
several lecturers have tried to summarize this course in a coherent,
unified text.
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Global Theory of Minimal Surfaces.	Proceedings	of	 the	2001	CMI	Summer	School	at	
MSRI.	Editor:	David	Hoffman.	CMI/AMS,	2005,	800	pp.	www.claymath.org/publications/	
Minimal_Surfaces.			This	book	is	the	product	of	the	2001	CMI	Summer	School	held	at	MSRI.		
The	 subjects	 covered	 include	 minimal	 and	 constant-mean-curvature	 	 submanifolds,			
geometric	 measure	 theory	 and	 the	 double-bubble	 conjecture,	 Lagrangian		
geometry,	numerical	simulation	of	geometric	phenomena,	applications	of	mean	curvature		
to	general	relativity	and	Riemannian	geometry,	the	isoperimetric	problem,	the	geometry		
of	fully	nonlinear	elliptic	equations,	and	applications	to	the	topology	of	three-manifolds.



CMI ANNUAL REPORT��

 2007 Institute Calendar

A
c
t
i
v
i
t
i
e
s

				

JANUARY
		

FEBRAURY

MARCH	
	

				

APRIL		

MAY

				

JUNE	

JULY

AUGUST		
	

				

SEPTEMBER

OCTOBER

NOVEMBER

DECEMBER	

Semester	Long	Program	in	Symplectic	Topology	at	MIT.		January,	Spring	Semester

Senior	Scholar	Gang	Tian	at	MSRI:	Program	on	Geometric	Evolution	Equations.		January–March

School	and	Workshop	in	the	Geometry	and	Topology	of	Singularities	at	CIMAT.		January	8–27

Senior	Scholar	Peng	Lu	at	MSRI:	Program	on	Geometric	Evolution	Equations.		January	8–March	30	

Diophantine	and	Analytic	Problems	in	Number	Theory	Conference	at	Moscow	Lomonosov	University.		
January	29–Feb	2

Homological	Mirror	Symmetry	and	Applications	Conference	at	IAS.		January	1–April	30

Loday	and	Stanley	Workshop	on	Hopf	Algebras	and	Props	at	CMI.		March	5–9	

Conference	on	Hilbert’s	10th	Problem	at	CMI,	including	a	preview	screening	of	George
Csicsery’s film on Julia Robinson at the Museum of Science, Boston.  March 15–16

Motives	and	Algebraic	Cycles:		A	Conference	dedicated	to	the	Mathematical	Heritage		
of	Spencer	J.	Bloch	at	the	Fields	Institute.		March	19–23

Noncommutative	Geometry	at	IHES	in	Paris.		April	2–7	
	
Workshop	on	Symplectic	Topology	at	CMI.		April	20–22	

Clay Public Lecture by Ingrid Daubechies: Surfing with Wavelets.  Stata Center at MIT, 	
Kirsch	Auditorium.		April	10

Advances	in	Algebra	and	Geometry	conference	at	MSRI	in	Berkeley,	CA.		April	29–May	5

Clay	Research	Conference,	Harvard	University	Science	Center,	Cambridge.	May	14–15	

Geometry	and	Imagination	Conference	at	Princeton	University.	June	7–11	

Summer	School	on	Serre’s	Modularity	Conjecture	at	CIRM	(Marseille,	France).	June	7–20
	
Dynamics	and	Number	Theory	CMI	Summer	School	in	Pisa,	Italy.	June	11–July	6	

Senior	Scholar	Andrei	Okounkov	at	PCMI	Program	on	Statistical	Mechanics.	July	1–21	

Srinivasa	Varadhan	at	PCMI	Program	on	Statistical	Mechanics.	July	1–21	

Infinite Dimensional Algebras and Quantum Integrable Systems II Conference,	
University	of	the	Algarve,	Faro,	Portugal.	July	23–27	

Conference	On	Certain	L-Functions	at	Purdue	University.	July	30–August	3

Alex	Eskin,	MSRI	Program	on	Teichmuller	Theory	and	Kleinian	Groups.	August	10–December	14

Solvability	and	Spectral	Instability	at	CMI.	September	18–21

Clay	Public	Lecture	by	Terence	Speed	(Department	of	Statistics,	UC	Berkeley	and	Division		
of	Genetics	and	Bioinformatics,	Walter	and	Eliza	Hall	Institute	of	Medical	Research,	Melbourne,		
Australia)	at	the	Harvard	Science	Center.	October	30

Workshop	on	Geometry	of	Moduli	Spaces	of	Rational	Curves	with	applications	to		
Deophantine	Problems	over	Function	Fields	at	CMI.		November	

Clay	Lecture	Series	at	the	Tata	Institute	of	Fundamental	Research	(TIFR)	in	Mumbai,	India.
December	11–14
	


