PRIME NUMBERS

$n > 1$ is prime if n is divisible only by 1 and by itself.

(1 is not a prime)

sieve:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

left with primes

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Fundamental theorem of arithmetic:

Every integer $n \geq 2$ factors uniquely into a product of primes

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}, \quad p_i \text{ distinct primes, } e_i > 1.$$
Immediate questions:

- How many primes are there?
- How many pairs of twin primes are there?
- Given a large number \(n \) can one tell quickly if it is prime?
- Is there a 'formula' for the next prime?

I. (Euclid) There infinitely many primes.

Proof: If not list the primes

\[P_1 < P_2 < P_3 \ldots < P_n \]

\(P_n \) the largest.

Set \(N = P_1 P_2 \ldots P_n + 1 \), clearly \(N \) is not divisible by \(P_i \).
(Euler): For \(S > 1 \)

\[
\prod_p \frac{1}{1-p^{-S}} = \frac{1}{(1-p_1^{-S})(1-p_2^{-S}) \cdots}
\]

\[
= \prod_p \left(1 + p^{-S} + p^{-2S} + p^{-3S} + \cdots \right)
\]

\[
= \sum_{j_1, j_2, \ldots} \frac{-e^{iS}}{p_{j_1}^{S} p_{j_2}^{S} \cdots}
\]

\[
= \sum_{n=1}^{\infty} \frac{-S}{n^S} \quad \text{by the basic theorem of arithmetic.}
\]

From calculus,

\[
\sum_{n=1}^{\infty} \frac{1}{n^S} \text{ converges if } S > 1
\]

(compare with \(\int_1^{\infty} x^{-S} \, dx \))

\[
\sum_{n=1}^{\infty} \frac{1}{n} = \infty \quad \text{(harmonic series)}
\]
\[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} \cdots \]
\[\Rightarrow 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} \cdots \]

So in Euler's identity, \(s \to 1 \).

\[\prod_p \left(1 - \frac{1}{p} \right)^{\frac{1}{2}} = \infty \]

(20 in fact \(\sum_{p} \frac{1}{p} = \infty \frac{1}{2} \))

There are a lot of primes!

\textbf{GAUSS: (experiments)}

in an interval of length \(y \)

\[x \quad x+y \quad y/\log y \quad \text{primes.} \]
A page of Gauss's Nachlass.
Legendre's Conjecture (Gauss). For \(x \geq 2 \) define

\[\pi(x) := \text{number of primes} \leq x \]

then

\[\pi(x) \sim \int_{2}^{x} \frac{dt}{\log t} := \text{Li}(x) \]

when \(x \to \infty \).
RIEMANN (1859)

\[zeta(s) \]

- Makes sense if \(\sum_{n=1}^{\infty} n^{-s} \) for all complex numbers \(s \).
- The values \(\rho \) of \(s \) for which \(\sum_{n=1}^{\infty} n^{-s} = 0 \) (zeros) are critical.

Formula: \(x \geq 2 \)

\[\psi(x) = \sum_{p \leq x} \log p + \sum_{p^2 \leq x} \log p + \sum_{p^3 \leq x} \log p + \ldots \]

\[\psi(x) = x - \sum_{\rho} \frac{xe^{\rho}}{\rho} \]

Riemann Hypothesis: All the zeros \(\rho \) have \(\text{Real}(\rho) = \frac{1}{2} \).
PRIME NUMBER THEOREM (HADAMARD - DE LA VALETTE - POUSIN) (1899)

\[\lim_{x \to \infty} \frac{\log x}{x} \pi(x) = 1. \]

(proof uses riemann's formula.)

It appears that \(\pi(x) < \text{Li}(x) \) for all \(x \), but in fact this becomes false at \(x \approx 10^{320} \)!
Primes in Progressions:

 p a prime,

$\text{ p } \equiv \text{ remainder when } p \text{ is divided by 3.}$

either $1, 2 \text{ (or 0 but then } p = 3).$

One might expect that $\frac{1}{2}$ of the primes

$\text{ p } \equiv 1 (3) \text{ remainder}$

and

$\text{ p } \equiv 2 (3).$

Similarly mod 4

$\text{ p } \equiv 2 \text{ or 0 (mod 4) } \Rightarrow \text{ p } = 2.$

How many

$\text{ p } \equiv 1 (4) \text{ ? infinitely}$

$\text{ p } \equiv 3 (4) \text{ ? may }$
In general fix $q \geq 1$ an integer and $(a, q) = gcd$ of a and $q = 1$.

Are there infinitely many primes with $p \equiv a \pmod{q}$?

Theorem (Dirichlet)

Fix a, and q, $(a, q) = 1$ let

$$\Pi(x; q, a) = \# \text{of primes } p \leq x$$

which give remainder a when divided by q.

Then as $x \to \infty$

$$\Pi(x; q, a) \sim \frac{x}{(\log x) \phi(q)}$$

$$\phi(q) = \{1 \leq a \leq q-1; (a, q) = 1\}.$$

$\phi(4) = 2$, $\phi(3) = 2$, ...
There are biases (Chebyshev):

\[q = 3, \text{"there are more primes } P \equiv 2(3) \text{ than } 1(3),\]

\[\equiv 2(3) \quad 2 \quad 5 \quad 11 \quad 17 \quad 23 \quad 29 \]

\[\equiv 1(3) \quad 7 \quad 13 \quad 19 \]

\[\uparrow \]

is

\[\pi(x; 3, 1) < \pi(x; 3, 2) \]

for all \(x? \)

No: first time not is \(x = 6089813029 \) (Bayes-)

If we choose \(x \) at random what would you bet \(\uparrow \) on the event remainder 1 beats remainder 2 mod 3?

M. Rubinstein 95:

\[\text{Prob}(\pi(x; 3, 1) > \pi(x; 3, 2)) = 0.0001... \]
a \mod q \text{ is a quadratic residue if } \exists x \quad x^2 \equiv a \pmod{q} \quad \text{has a solution.}

E.g.: $\mod 3$, 1 is a residue, 2 is not.

"There are more prunes in the classes a which are nonresidues."

There are more subtle biases (with no apparent elementary explanation).

$q = 8$

$a = 3, 5, 7$

all are nonresidues $\mod 8$.

$(x^2 \mod 8)$ is $0, 4 \text{ or } 1$.
race - ie choose x at random large and see which residue classes have the most primes...

(Feuerberger + Martin 2002)

$$\text{Prob}(3 > 7 > 5) = \text{Prob}(5 > 7 > 3) = 0.16...$$

$$\text{Prob}(5 > 3 > 7) = \text{Prob}(7 > 3 > 5) = 0.14...$$

$$\text{Prob}(3 > 5 > 7) = \text{Prob}(7 > 5 > 3) = 0.19...$$

So bet on 5 coming in second!

[All of these + Dirichlet use Zeta functions]
TWIN PRIMES:

It is not known if there are infinitely many.

It is conjectured that (HARDY-LITTLEWOOD)

\[\pi_2(x) = \# \{ p \leq x \mid p \text{ and } p+2 \text{ are prime} \} \]

\[\sim \frac{B x}{(\log x)^3} \quad \text{as } x \to \infty \]

with \(B = 2 \cdot \prod_{p \neq 2} \left(1 - \frac{1}{(p-1)^2} \right) \)

Elementary sieve methods (BRUNN-SELBERG) give upper bounds of the correct order of magnitude:

Theorem:

\[\pi_2(x) \leq 8 \frac{B x}{(\log x)^3} \quad \text{for } x \text{ large.} \]
\[R = \frac{1}{S_{\alpha}} \quad \text{and} \quad S_{\alpha} = \frac{1}{100^{\epsilon}} \quad \text{is a small power} \]

\[1 \leq d \leq R, \quad p_d \in \mathbb{R}, \quad p_1 = 1. \]

\[\sum_{a_i, m = \mathbb{P}, \ldots, a_k, m = \mathbb{P}} \frac{1}{m \leq x} \leq \sum_{m \leq x} \left(\sum_{d \mid (m+a_1), \ldots, (m+a_k) - (m+a_i)} p_d \right)^2 \]

\[\text{# of } (a_1, \ldots, a_k, m) \text{ all prime "k-tuple primes"} \]

\[\prod_{k} (a_1, p_d, x) \]

\[= \sum_{m \leq x} \sum_{d_1 \mid (m+a_1), \ldots, (m+a_k)} \ldots \sum_{d_2 \mid (m+a_1), \ldots, (m+a_k)} p_{d_1} p_{d_2} \]

\[(x) \]
For d_1, d_2 as above fixed

m satisfy congruences mod d_1 and d_2.

hence is determined by a congruences mod

$$[d_1, d_2] = \gcd(d_1, d_2)$$

and for given α

$$\sum_{m \leq x \atop m \equiv \alpha \pmod{[d_1, d_2]}} 1 = \frac{x}{[d_1, d_2]} + \text{small}$$

(bounded)

R.H.S. above is

$$x \sum_{d_1 \leq R \atop d_2 \leq R} \frac{g([d_1, d_2])}{[d_1, d_2]} \rho_1 \rho_2 + \text{"small"}$$

with $g([d_1, d_2])$ an

arithmetic function which counts

the no of solutions to the congruence

$$(m + \alpha_1) \cdots (m + \alpha_k) \equiv 0 \pmod{[d_1, d_2]}$$

"well understood"

Minimize the quadratic form

$$\sum_{d_1 \leq R \atop d_2 \leq R} \frac{g([d_1, d_2])}{[d_1, d_2]} \cdot p_{d_1} p_{d_2}, \quad \text{subject to the linear constraint}$$

$p_1 = 1$.
One can do this explicitly (essentially) and finds basically

\[P_d = \left(\frac{\log R/d}{\log R} \right)^k \mu(d) \]

where \(\mu(d) \) is the Möbius function

\[\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ (-1)^r & \text{if } n = p_1 p_2 \cdots p_r \text{ distinct primes} \\ 0 & \text{otherwise} \end{cases} \]

\[\sum_{d \mid n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases} \]

\[\frac{1}{B(s)} = \sum_{n=1}^{\infty} \mu(n) n^{-s} \]

With this one finds (using the prime number theorem to evaluate sums like)

\[\sum_{d=1}^{\infty} \frac{\mu(d)}{d} = 0 \]

as \(x \to \infty \)

\[\prod_{k=1}^{\infty} (1 + \frac{a_k}{x}) \leq 2^{k-1} B x^{\log x - k} (1 + o(1)) \]

where \(B = \prod_{p} (1 - \frac{\nu(p)}{p})(1 - \frac{1}{p})^{-k} \), \(\nu(p) = \# \text{ of roots of } \nu \text{ mod } p \).
Recent developments: (21st century)

Progressions in primes (Erdos, 1959)

given $k \geq 3$ can one find an arithmetic progression of length k in the primes? I.e.

$$P_1 < P_2 < \ldots < P_k$$

primes

s.t.

$$P_2 - P_1 = P_3 - P_2 = \ldots = P_k - P_{k-1}$$

This is not the most "natural" question about primes, but if we admit twin primes why not this?

THEOREM (2004) Green-Tao

Yes - for each $k \geq 3$ there is a k-term arithmetic progression in the primes.
Their proof uses
- sieve upper bounds as above
- methods from combinatorics
 "Szemerédi's Theorem"
 \[\Rightarrow \] any subset of the integers of positive density
 contains k-term arithmetic progressions.]

Testing primality:

Given a large n, how quickly (ie no. of steps) can we tell if
n is prime?

Elementary sieve \[\rightarrow \] takes
\sqrt{n} steps.

Can one determine primality in a polynomial in the no. of digits of n?
It has been known for some time (Miller) that assuming the Riemann Hypothesis (generalized), that one can test primality in at most \((\log n)^4\) steps.

Theorem: (Agrawal-Saxena-Kayal) 2002

The primality of \(n\) can be checked in \((\log n)^{12}\) steps!

"The set of primes is in \(P\)"

Note:
1. Your computer will test quickly but it can in principle give a false positive.
2. The algorithm does not provide a factorization of \(n\) if it is not prime.
based on a result of Fermat

If p is prime then

$$a^p \equiv a \pmod{p}$$

for all a's.

So given n we test

$$a^n \equiv a \pmod{n} \quad (\star)$$

for many a's. Note (\star) can be computed quickly by repeated squaring.

Now if for some a (\star) fails

\Rightarrow declare n is not prime.

The idea of the proof is to test a variant of (\star) for sufficiently many a's (but only poly/logn many) and to show if all pass $\Rightarrow n$ is prime.