
THE MULTIPLE FACETS OF THE ASSOCIAHEDRON

JEAN-LOUIS LODAY

Abstract. This is a survey of some of the nice properties of the
associahedron (also called Stasheff polytope) from several points
of views: topological, geometrical, combinatorial and algebraic.

1. Introduction

The associahedron Kn is a polytope of dimension n whose vertices
are in one to one correspondence with the parenthesizings of the word
x0x1 . . . xn+1.
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The set of vertices is in one to one correspondence with the planar
binary trees having n + 2 leaves, this is why it is often denoted by
Kn+2. This polytope has numerous properties: geometrical, combina-
torial and algebraic, that we will survey.

First, we construct the associahedron as the convex hull of its vertices
by giving the explicit coordinates of the vertices from the combinato-
rial properties of the trees. As a cellular complex the associahedron is
isomorphic to the Stasheff polytope which plays a key-role in the char-
acterization of spaces homotopically equivalent to loop spaces. Next,
we describe a partial order structure on the set of vertices of the associ-
ahedron. This structure can be read off the euclidean realization of the
polytope. Then, we compare the associahedron to the permutohedron,
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2 J.-L. LODAY

whose vertices are in bijection with the permutations. Algebraically
one can endow the vector space spanned by the planar binary trees the
structure of an associative algebra. This structure can be built from the
partial order. In fact this algebra inherits a finer structure, a dendri-
form algebra structure. Moreover it is the free dendriform algebra on
one generator. One of the advantages of this feature is to permit us to
give a meaning to the notion of series indexed by trees (instead of being
indexed by integers). Finally we show a close relationship between the
associahedron and the inversion of integral series. Among the many
other subjects related to the associahedron one finds renormalization
theory, noncommutative geometry and moduli spaces.

This survey on some properties of the associahedron is essentially a
translation of a previous text “Les multiples facettes de l’associaèdre”
which was written in french. The corresponding talk was delivered
during the Clay Research Academy (April 2005). I thank the Clay
Institute for support and Vida Salahi for her help. Many thanks to
David Ellwood for his generous multi-facets help.

2. Euclidean geometry

Let Yn be the set of planar binary trees with n internal vertices, that
is with n + 1 leaves. So one gets

Y0 = { | } , Y1 =
{ ��

?? }
, Y2 =

{ ??�����

????? ,
�� �����

?????
}

,

Y3 =

{ �� ����
������

?????? ,

??����
������

?????? ,
�� ??������

?????? ,
��????

������

?????? ,

??????
������

??????

}
.

Observe that there is a bijection between the set of trees and the set
of parenthesizings of a word with n + 1 letters:

x0 x1 x2 x3 x4

KKKKKKKKKKKKKK
sss

s

sssssss KKK
K

ssssssssssssss

(((x0x1)x2)(x3x4))

The grafting of t ∈ Yp and of s ∈ Yq is the tree denoted t ∨ s ∈ Yn

obtained by glueing the root of t and the root of s to a new vertex, and
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thereby creating a new root:

t
66

6 s

��
��

t ∨ s =

So we get n = p + 1 + q since the vertices of t ∨ s are those of t, those
of s and the new vertex. For n > 0 any tree t can be written uniquely
as t = tl ∨ tr. This property can be taken as a definition of the set Yn

(union of all the sets Yp × Yq for n = p + 1 + q). Examples :

| ∨ | = ��
??

, | ∨ ��
??

=
??�����

????? , ��
?? ∨ | =

�� �����

????? ,

��
?? ∨ ��

??
=

�� ??������

?????? .

To any tree t ∈ Yn, n > 0, we associate a point M(t) ∈ Rn with
integral coordinates as follows. Let us number the leaves of t from left
to right by 0, 1, . . . , n. So one can number the internal vertices from 1
to n (the vertex number i is in between the leaves i − 1 and i). Let
ai be the number of leaves on the left side of the vertex i and let bi

be the number of leaves on the right side. Observe that these numbers
depend only on the subtree determined by the vertex i. We define:

M(t) := (a1b1, . . . , aibi, . . . , anbn) ∈ Rn .

In low dimension we get:

M( ��
??

) = (1), M
( �� �����

?????
)

= (1, 2), M
( ??�����

?????
)

= (2, 1),

M
( �� ����

������

??????

)
= (1, 2, 3), M

( �� ??������

??????

)
= (1, 4, 1).

For the tree corresponding to the parenthesizing (((x0x1)x2)(x3x4)) (de-
scribed above) one gets the following point (1× 1, 2× 1, 3× 2, 1× 1) =
(1, 2, 6, 1).

Denote by Hn the hyperplane of Rn whose equation is

x1 + · · ·+ xn =
n(n + 1)

2
.

2.1. Lemma. For any tree t ∈ Yn the point M(t) belongs to the hyper-
plane Hn.
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Proof. This is immediate for n = 1. Under the decomposition t =
tl ∨ tr where tl ∈ Yp and tr ∈ Yq one gets

M(t) = (M(tl), (p + 1)(q + 1), M(tr)),

since tl has p + 1 leaves and tr has q + 1 leaves. By induction we get:

i=n∑
i=1

aibi =
p(p + 1)

2
+ (p + 1)(q + 1) +

q(q + 1)

2
=

n(n + 1)

2

since n = p + 1 + q. �

2.2. Definition. For n fixed the associahedron or Stasheff polytope
is the convex hull, denoted Kn−1 (or sometimes Kn+1 in the literature),
of the points M(t) in the hyperplane Hn for t ∈ Yn, cf. [Lo3].

The associahedron Kn is a convex polytope of dimension n:
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It is interesting to determine the affine subspaces which contain the
faces of this polytope. Since Kn−1 is contained in the hyperplane Hn

these subspaces are of codimension 2 and so they are the intersection
of Hn with another hyperplane.

Let i and k be two positive integers satisfying i + k ≤ n + 1. Denote
by Fi,k the hyperplane whose equation is

xi + xi+1 + · · ·+ xi+k−1 =
k(k + 1)

2
.

So one gets F1,n = Hn. One can show that Fi,k ∩Hn contains a face of
Kn−1 and that any face of Kn−1 is contained in an affine subspace of
this type. As a polytope such a face is isomorphic (up to homothety)
to Kk−1 ×Kn−k−1.

Exercice. Find the face of K3 which contains the vertices with coor-
dinates (3, 1, 2, 4), (3, 2, 1, 4), (4, 1, 2, 3), (4, 2, 1, 3).

2.3. Symmetry. There is an obvious involution on the set Yn: start
with a tree t and symmetrize it through the axis passing through the
root. From the definition of the coordinates of M(t) it is clear that the
euclidean realization of Kn−1 is invariant globally under the involution
(x1, x2, . . . , xn) 7→ (xn, . . . , x2, x1).

2.4. Constructing Kn+1 out of Kn. It is fairly simple to construct
the simplex (resp. the hypercube) out of the simplex (resp. the hy-
percube) of lower dimension. For the associahedron it is slightly more
involved, but we can do it by using the following recipe. First, we start
with the associahedron Kn, which is a ball and whose boundary is a
cellular sphere. The cells of the boundary are of the form Kp × Kq

where p+ q = n− 1. Second, we “enlarge” each cell Kp×Kq into a cell
of dimension n by replacing it by Kp+1 ×Kq. We leave the reader the
task of understanding how to glue these polytopes together to make a
new cell complex. Thirdly, we take the cone over this enlargement and
we discover that we have constructed Kn+1.
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Example n = 1:

– K1 ooooo

– K1 enlarged
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– Cone over K1 enlarged = K2
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This construction permits us to “simplicialize” the associahedron,
that is to decompose it as a union of simplices by induction.

Show that for Kn the number of n-simplices is (n + 1)n−1. In a
future article article [Lo4] we will unravel the relationship between
simplicialization of the associahedron and parking functions.

3. Topology

A loop a in a pointed topological space (X, x0) is a continuous map
from the interval I = [0, 1] into X which sends 0 and 1 to the base-point
x0. On can compose two loops a and b to obtain a new loop denoted
ab. It is obtained by running a from 0 to 1

2
and b from 1

2
to 1.
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a b
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Starting with 3 loops a, b, c the products (ab)c and a(bc) are not
equal. Indeed, though their image in X are the same, the parametriza-
tion is not. In the first case one runs a from 0 to 1

4
, b from 1

4
to 1

2
and

c from 1
2

to 1. In the second case one runs a from 0 to 1
2
, b from 1

2

to 3
4

and c from 3
4

to 1. It is easy to check that these two loops are
homotopic :

0 a 1
4 b

1
2

c 1

@@
@@

@@
@@

@@

@@
@@

@@
@@

@@

0 a 1
2 b

3
4

c 1

More precisely there exists a continuous map F : I × I → X such
that F (0,−) : I → X is the loop (ab)c and such that F (1,−) : I → X
is the loop a(bc). In the loopspace ΩX of the pointed space (X, x0)
there is path F : I → ΩX from the point (ab)c to the point a(bc) :

(ab)c %% a(bc)

What happens with 4 loops a, b, c, d ? Then there are 5 different ways
of composing them, one for each parenthesizing of the word abcd, that
is one for each planar binary tree with four leaves. Not only the cor-
responding points are connected by paths (homotopies), but the two
possible compositions of these homotopies, which go from ((ab)c)d to
a(b(cd)) are themselves homotopic (among the paths with fixed end
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points). At this point one sees the appearance of a cellular decompo-
sition of the ball D2 (the disc) and of its boundary (the circle):

((ab)c)d

uullllllllll

##GGGGGGGGGGGGGG

(a(bc))d

��

{{wwwwwwwwwwwwww (ab)(cd)

a((bc)d)
))RRRRRRRRRR

a(b(cd))

Jim Stasheff has proved in 1966 (cf. [Sta1]) that this phenomenon is
quite general. More precisely he showed the existence of a certain cellu-
lar decomposition of the ball Dn for all n which captures the existence
of homotopies between homotopies as soon as one starts with n+2 loops
and one tries to compare all the parenthesizings of a0a1 . . . an+1. The
vertices (0-cells) of this cellular decomposition are in bijection with the
parenthesizings, that is with the planar binary trees with n + 2 leaves.

The 1-cells correspond to elementary homotopies between parenthe-
sizings, the 2-cells to homotopies between homotopies, etc. This is the
space which is called the Stasheff complex. It plays a prominent role
in the recognition of spaces homotopy equivalent to loopspaces (that is
almost topological groups).

In low dimension it is obvious that the Stasheff complex can be
realized as a polytope (pentagon for n = 2). However it is was not
until 1989 that a proof of the general case was published (cf. [Lee]).
Different realizations, some more explicit than others, were obtained.
See for instance Gelfand, Kapranov and Zelevinsky (cf. [GKZ]). Their
realization uses the interpretation of the parenthesizings in terms of
triangulations of polygons. See also the appendix of [Sta2] by Shnider
and Stasheff. The realization described in this article is probably the
most simple of all.

4. Combinatorics

The homotopic interpretation of the Stasheff complex given in the
preceding section suggests the existence of a partial order structure on
the set of vertices, that is on the set of planar binary trees with a given
number of leaves.

4.1. Order structure. Given a partial order structure, denoted <, on
a set E one says that x < y is a covering relation (between x and y) if
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there is no element z, different from x and y, so that x < z < y. An
order structure on a finite set is obviously determined by its covering
relations. One defines a covering relation on the set Yn as follows : for
all t, s ∈ Yn, t is said to be smaller than s, denoted t < s, if s is obtained

from t by replacing, locally, a subtree of t of the form
�� �����

????? by a

subtree of the form
??�����

????? . This covering relation induces a partial

order structure on Yn often called the Tamari order. So one has t < s
for the partial order relation if and only if there exists a sequence

t = t0 < t1 < · · · < tk−1 < tk = s

where ti < ti+1 is a covering relation for all i. It happens that each
covering relation corresponds to an edge of the associahedron. See
above for the pentagon. In dimension 3 one gets:

//cc

GGGGGGGGGGGGGGGGG

����
��
��
��

��

gg

OOOOOOOO

::

ttttttttttttt

����
��
��
��
��
��
��
��
��
��
��
�

cc

GGGGGGGGGGGGGGGGG

��/
//

//
//

//
//

//
//

/

//

����
��
��
��

����
��
��
��
��
��
��
��

��/
//

//
//

/

//__

??
??

??
??

??
??

??
? gg

//

�� ��

??

��
��

��
��

��

//

Recall that any poset (= partially ordered set) admits a geometric re-
alization, which is a cellular complex. In the Tamari poset case this
realization is precisely the Stasheff complex. The euclidean realiza-
tion described in section 2 has the following property with respect to
this order relation. There is a smallest vertex, called the North pole,
which corresponds to the parenthesizing (·((a0a1)a2) · · · an+1). There is
a largest vertex, called the South pole, which corresponds to the paren-
thesizing (a0(a1(· · · (anan+1)·))). If one orientates the polytope so that
the North pole is on top, the partial ordering is given by the latitude
of a vertex, as one runs North-South along the edges. See the picture
in section 3 for K2.
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There exists another polytope with analogous properties, it is called
the permutohedron, and its vertices are in bijection with the permuta-
tions. Let Sn be the symmetric group made of the permutations σ of the
set {1, . . . , n}. Consider M(σ) = (σ(1), . . . , σ(n)) as a point in Rn. All

the points M(σ) lie in the hyperplane Hn since 1+2+ · · ·+n = n(n+1)
2

.
The convex hull of the points M(σ) for σ ∈ Sn forms an (n − 1)-
dimensional polytope denoted Pn−1 and called the permutohedron.
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In low dimension the coordinates of the vertices are:

(1)

•
(1, 2) (2, 1)

(1, 2, 3)

ttttttttt

JJJJJJJJJ

(2, 1, 3) (1, 3, 2)

(3, 1, 2)

JJJJJJJJJ

ttttttttt (2, 3, 1)

(3, 2, 1)

P0 P1 P2

The set of vertices of Pn−1, that is the symmetric group Sn, is
equipped with a partial order such that the covering relations corre-
spond to the edges of Pn−1, this is the weak Bruhat order. It is defined
as follows. Let si be the transposition which exchanges i and i + 1.
The group Sn is presented by the generators si, i = 1, · · · , n − 1, and
the relations 

si
2 = 1,

sisi+1si = si+1sisi+1,

sisj = sjsi si |i− j| ≥ 2.
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One can show that any permutation admits a unique minimal length
writing. The covering relation σ < ω for the weak Bruhat order is
determined by: ω = σsi for some integer i and the minimal length of
ω is strictly greater than the minimal length of σ. Example:

1

yyrrrrrrrrrr

%%LLLLLLLLLL

s1

�� ��

s2

s1s2

%%LLLLLLLLLL

yyrrrrrrrrrr s2s1

s1s2s1 = s2s1s2

We now focus on the close relationship between the permutohedron
and the associahedron. First, note that the polytope Kn contains the
polytope Pn, or, from a more “solid” point of view, Pn can be con-
structed out of Kn by truncation. Here is the trick. The faces of Pn−1

lie in some affine hyperplanes, which can be described using “shuf-
fles”. A (k, n − k)-shuffle is a permutation (ω1, · · · , ωk; ωk+1, · · · , ωn)
of (1, 2, · · · , n) such that ω1 < · · · < ωk and ωk+1 < · · · < ωn. Consider
the polynomial

pω(x1, . . . , xn) :=

(n− k)(xω1 + · · ·+ xωk
)− k(xωk+1

+ · · ·+ xωn) +
1

2
nk(n− k).

Denote by Hω the hyperplane of Rn whose equation is pω(x1, . . . , xn) =
0. The affine hyperplanes of Hn containing the faces of Pn−1 are the
spaces Hω ∩Hn associated to the shuffles ω. When the sequence of in-
tegers (ω1, . . . , ωk) of the shuffle ω is a sequence of consecutive integers,
one observes that Hω ∩ Hn is exactly the affine sub-space Fω1,k ∩ Hn

containing a face of Kn−1. This assertion follows from the comparison
of the equations of these hyperplanes.

One can also built the associahedron from the permutohedron by
the following method. One first builds a set map φ : Sn → Yn as the
composite Sn

∼= Ỹn → Yn where Ỹn is the set of leveled planar binary
trees. The difference between the elements of Ỹn and those of Yn is
that, in Ỹn, two different vertices are located at different levels. So the
two trees
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are distinct in Ỹn but they represent the same element in Yn. It is
easy to see that there is a bijection between Ỹn and Sn: to any leveled
tree one associates the permutation i 7→ level of the ith vertex. The
surjection Ỹn → Yn is simply given by forgetting the levels.

We are now ready to build the euclidean realization of Kn−1 from
the euclidean realization of Pn−1. Let t ∈ Yn be a planar binary tree
and let φ−1(t) be the set of permutations σ in Sn having t as image
under φ. Then one gets the following result.

4.2. Proposition. [Lo3]. Let C the center of the permutohedron Pn−1

whose coordinates are C = (n+1
2

, . . . , n+1
2

). One has the following equal-
ity of vectors:

−−−−→
CM(t) =

∑
σ∈φ−1(t)

−−−−→
CM(σ) .

Hence the point M(t) is obtained from the points M(σ) where σ is
a preimage of t :

ooooo

JJJJJJJJ
??���� //
��?

???

tttttttt

OOOOO

5. Algebra

On the vector space spanned by the planar binary trees there is
associative structure defined inductively by the following formula: for
any t = tl ∨ tr ∈ Yp and s = sl ∨ sr ∈ Yq on puts

t ∗ s := tl ∨ (tr ∗ s) + (t ∗ sl) ∨ sr .

When t or s is equal to | we put t ∗ | = t and | ∗ s = s, and this starts
the induction. So one has

��
?? ∗ ��

??
= |∨(|∗ ��

??
)+( ��

?? ∗|)∨| = |∨ ��
??

+ ��
?? ∨| =

??�����

????? +
�� �����

????? .

Denote by K[Yn] the vector space over K spanned by the elements of
Yn.

5.1. Proposition. The operation ∗ is associative, and so (
⊕

n≥0 K[Yn]), ∗)
is a unital associative algebra over K.
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Proof. By induction ! �

Until now this structure involves only the planar binary trees, that is
the vertices of the associahedron, and the notion of grafting. However
we will see that it is related to the geometrical structure of the polytope,
via the structure of poset. We have seen that, given two trees t and s,
one can graft onto a new root. But one can also define an alternative
grafting. Denote by t/s (read t over s) the tree obtained by identifying
the root of t with the left leaf of s, and denote by t\s (read t under s)
the tree obtained by identifying the root of s with the right leaf of t.
So the number of internal vertices of t/s (as well as t\s) is the sum of
the number of internal vertices of t and of s. For instance:

��
??

/
??�����

????? =
�� ??������

?????? , ��
?? \

??�����

????? =

??????
������

?????? .

For the Tamari partial order one always has

t/s < t\s
or equality if one of the trees is |.

We can show the following result which relates the algebra product
∗ and the Tamari order:

5.2. Theorem. [LR2] For any planar binary trees t and s one has

t ∗ s =
∑

t/s≤x≤t\s

x .

The sum is extended to all the trees which lie in between t/s and
t\s. This subset is called an interval in combinatorics.

In the definition of the product ∗ on
⊕

n K[Yn] one sees two distinct
terms. Let us introduce the two operations ≺, called left, and �, called
right :

t ≺ s := tl ∨ (tr ∗ s) , t � s := (t ∗ sl) ∨ sr .

So we have

t ∗ s := t ≺ s + t � s

by definition, and one says that the associative operation ∗ splits into
two operations. These new operations are not associative, however the
associativity relation of ∗ splits into the following three relations: (x ≺ y) ≺ z = x ≺ (y ∗ z),

(x � y) ≺ z = x � (y ≺ z),
(x ∗ y) � z = x � (y � z).
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A vector space A over K equipped with two binary operations ≺ and
� satisfying the three relations above (where ∗ =≺ + � of course) is
called a dendriform algebra. One sees immediately that a dendriform
algebra is an associative algebra for the product ∗.

It happens that (
⊕

n K[Yn],≺,�) is a very special type of dendri-
form algebra. Indeed, it is the dendriform algebra analogue of the
one variable polynomial algebra (in the theory of associative algebras).
More precisely it is characterized by the following universal property:
for any dendriform algebra A and any element a ∈ A there exists a
unique morphism of dendriform algebras f :

⊕
n K[Yn] −→ A which

sends the tree ��
??

to a. One says that (
⊕

n K[Yn],≺,�) is the free

dendriform algebra on one generator (cf. [Lo1]).

5.3. Dendriform series. This result has many interesting properties.
For instance it permits us to generalize the notion of formal power series∑

n anx
n by replacing the integers n by planar binary trees t. In this

way one can work with series of the form
∑

t atx
t, that is, add them,

multiply them, and even compose them. The crucial point, which is
a consequence of the universal property, consists in giving a meaning
to (

∑
t atx

t)s for any tree s. The process begins by writing s in terms
of the generator, and then replacing this generator by the element we

want to take the power of. For instance if s =
�� ??������

?????? then, since

s = ��
?? � ��

?? ≺ ��
??

, one has

(
∑

t

atx
t)s = (

∑
t

atx
t) � (

∑
t

atx
t) ≺ (

∑
t

atx
t).

For more details see [Lo2] and [BF].

5.4. Zinbiel algebras. One knows that the commutative algebras form
an important class among the associative algebras. One defines a com-
mutative dendriform algebra as being a dendriform algebra which ver-
ifies the commutativity relation x � y = y ≺ x for any x and y. As
a consequence the associative product ∗ is commutative. Since any
right product is also a left product, one can rewrite the three defin-
ing relations with, for instance, the left product. So the first relation
becomes

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (z ≺ y). (Zb)
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One easily verifies that the third relation gives also the relation (Zb)
and that the second relation is a consequence of (Zb). So a commuta-
tive dendriform algebra is defined by a unique operation, that we have
chosen to be ≺, satisfying only one relation, namely (Zb). This struc-
ture was already known in a different context under the name Zinbiel
algebra, cf. [Lo1].

The main feature of Zinbiel algebras is the following: they are to
commutative algebras what associative algebras are to Lie algebras:

Zinbiel algebras −→ commutative algebras
(Z, x ≺ y) 7→ (Z, xy = x ≺ y + y ≺ x)

associative algebras −→ Lie algebras
(A, xy) 7→ (A, [x, y] = xy − yx).

6. Inversion of power series

Let us consider the formal power series

f(x) = x + a1x
2 + a2x

3 + · · ·+ anx
n+1 + · · ·

and let

g(x) = x + b1x
2 + b2x

3 + · · ·+ bnx
n+1 + · · ·

be its inverse for composition, that is f(g(x)) = x. The coefficient bn

is a polynomial in ai, 1 ≤ i ≤ n. In low dimension one gets

b1 = −a1

b2 = 2a2
1 − a2

b3 = −5a3
1 + 5a1a2 − a3

b4 = 14a4
1 − 21a2

1a2 + 6a1a3 + 3a2
2 − a4

and more generally

bn =
∑

(−1)
P

niλ(n1, . . . , nk)a
n1
1 · · · ank

k

where the sum is extended to all the ktuples of integers (n1, . . . , nk) so
that n1 + 2n2 + · · ·+ knk = n. Here the coefficient λ(n1, . . . , nk) is the
number of cells of the associahedron Kn−1 which are isomorphic to the
cartesian product (K0)n1 × · · · × (Kk−1)nk . The translation in terms of
planar trees is the following. To any planar tree t one associates the
ktuple n(t) = (n1(t), . . . , nk(t)) where ni(t) is the number of vertices
of t having one root and i + 1 leaves. So for the corolla one gets
(0, . . . , 0, 1). For a planar binary tree one gets (n) if there are n + 1
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leaves. Then the coefficient λ(n1, . . . , nk) is the number of planar trees
t with n + 1 leaves so that n(t) = (n1, . . . , nk).

For instance λ(n) is the number of planar binary trees with n + 1
leaves, that is the Catalan number Cn = 1

n+1

(
2n
n

)
.

There exists a short operadic proof of the above formula which ex-
plicitly involves the parenthesizings, but it would be interesting to find
one which involves the topological structure of the associahedron.

7. Variations, questions, problems

7.1. Families of polytopes. The simplices, the hypercubes, the asso-
ciahedrons (also called associahedra), the permutohedrons (also called
permutohedra) form families of polytopes whose number of edges in
dimension 2 is respectively 3, 4, 5, 6. How about k ≥ 7 ? Let us
remark that for k = 2 it is natural to consider the family of globular
spaces (2 cells in each dimension, except in the maximal dimension
where there is only one cell), even if they are not polytopes. See the
figure “Polytopes” below.

7.2. Other simple polytopes. In the hyperplane Hn the permutohe-
dron can be defined by inequalities, namely pω(x1, . . . , xn) ≥ 0 where
ω runs over the (k, n − k)-shuffles, cf. 4.1. We have seen that by re-
stricting to some shuffles, we get the associahedron. Another exemple
is given by restriction to ω of the form (1, 2, . . . , k; k + 1, . . . , n) or
(k + 1, . . . , n; 1, 2, . . . , k). The polytope obtained that way is a hyper-
cube (up to an affine transformation (cf. [Lo3]). It is still a simple
polytope, that is a polytope of dimension n − 1 such that any vertex
comes with n edges. Can one characterize the families of shuffles which
give rise to simple polytopes ?

7.3. The trefoil knot. There is a strange relation between the trefoil
knot and the associahedron K3. Let us draw on K3 a path starting from
the center of a square (which may be a rectangle in fact) goes to the
center of an adjacent pentagon, then goes to the other adjacent square,
and so on, until we are back to the starting point (the path goes once
through all the pentagon centers and twice through the square centers).
By replacing (judiciously) the intersection at the centre of the squares
by an under-over crossing, we obtain the trefoil knot.

7.4. Hopf algebras. The dendriform algebra built on the planar bi-
nary trees in section 5 bears a richer structure: it is a Hopf algebra
(cf. [LR1]). In fact it is the non-commutative version of the Connes-
Kreimer Hopf algebra. It is related to the renormalization problem,
cf. [BF].
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Figure 1. Polytopes

7.5. Planar trees. One can ask if the algebraic and combinatorial
properties of the planar binary trees described in section 5 can be
extended to all the planar trees (not just binary trees). First, note
that the family of such trees are in bijective correspondence with the
cells of the associahedron. We already remarked that the vertices are in
one to one correspondence with the planar binary trees. At the other
extreme, the corolla (tree with only one vertex) corresponds to the top
cell.
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For the trees with three leaves we now have three trees:

�� �����

????? ,
??�����

????? ,
�����

????? .

The first two correspond to the operations right and left respectively.
So it is natural to introduce a third operation to take the corolla into
account. Then we obtain a new algebra structure with 3 generating
operations. We can show that they are related by 7 relations (one for
each cell of the triangle). See [LR3] and [PR] for more details.

7.6. Moduli spaces. The real points Mn

0 (R) of the moduli space of
Riemann spheres with n labeled punctures form a space which admits
a tiling by associahedrons, see for instance [Dev].

7.7. Ehrhart polynomial. Here is a question about the associahe-
dron. The Strasbourg mathematician Eugène Ehrhart has defined an
interesting invariant of polytopes, which is now called the Ehrhart poly-
nomial, cf. [E]. Problem: compute the Ehrhart polynomial of the as-
sociahedron. Some computations of the Ehrhart polynomial of the
permutohedron can be found in [BP].

7.8. Physics-Chemistry. Mother Nature offers us numerous exam-
ples of molecules arranged as a tetrahedron or a cube. One can also
find permutohedrons, called Birkhoff cells in this context. Does there
exist a molecule arranged as an associahedron ?
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Institut de Recherche Mathématique Avancée, CNRS and Université
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