
Quantum Computers

Peter Shor

MIT

1

What is the difference between a computer and

a physics experiment?

2

One answer:

A computer answers mathematical questions.

A physics experiment answers physical ques-

tions.

3

Another answer:

A physics experiment is a big, custom-built,

finicky, piece of apparatus.

A computer is a little box that sits on your

desk (or in your briefcase).

4

A third answer:

You don’t need to build a new computer for

each mathematical question you want answered.

5

The mathematical theory of computing started

in the 1930’s (before computers)

After Gödel proved his famous incompleteness

theorem, it was followed by four papers giving

a distinction between computable and uncom-

putable functions

(Church, Turing, Kleene, Post, ca. 1936)

These papers contained three definitions of

computable functions which looked quite dif-

ferent.

6

Universality of computers I.

This led Church and Turing to propose

Church-Turing thesis:
A Turing machine can perform any com-
putation that any (physical) device can
perform.
(Turing, Church, ca. 1936).

Until recently, it was not generally realized this

is a statement about physics, and not about

mathematics.

7

With the development of practical computers,

the distinction between uncomputable and com-

putable become much too coarse.

To be practical, a program must return an an-

swer in a reasonable amount of time (minutes?

days? years?).

8

Theoretical computer scientists consider an al-

gorithm efficient if its running time is a poly-

nomial function of the size n of its input. (n2,

n3, n4, etc.)

The class of problems solvable with polynomial-

time algorithms is called P

This is a reasonable compromise between the-

ory and practice.

9

For the definition of P (polynomial-time solv-

able problems) to be meaningful, you need to

know that it doesn’t depend on the exact type

of computer you use.

10

Universality of computers II.

This led various computer scientists to pro-

pose the

Quantitative Church’s Thesis
A Turing machine can perform efficiently
any computation that any (physical)
device can perform efficiently.
(ca. 1970).

If quantum computers can be built, this would

imply this “folk thesis” is probably not true.

11

Misconceptions about Quantum
Computers

False: Quantum computers would be able to

speed up all computations.

Quantum computers are not just faster ver-

sions of classical computers, but use a differ-

ent paradigm for computation.

They would speed up some problems by large

factors and other problems not at all.

12

What do we know quantum computers are good

for?

• Simulating/exploring quantum

mechanical systems efficiently.

[Richard Feynman/Yuri Manin]

• Finding periodicity.

Simon’s problem [Dan Simon]

Factoring large integers and finding dis-

crete logarithms efficiently [PWS]

Pell’s equation [Sean Hallgren].

• Searching large solution spaces more effi-

ciently [Lov Grover]

Amplifying the success probably of (quan-

tum) algorithms with small success proba-

bilities.

15

Searching

Quantum computers give a quadratic speedup
for exhastive search problems (Lov Grover).
Looking through N possibilities takes

• time N on a classical computer.

• time π/4 √N on a quantum computer.

Factoring an L-bit number

Best classical method is the number field sieve

(Pollard)

time: exp(cL1/3(logL)2/3).

Quantum factoring (PWS): theoretical asymp-

totic time bound cL2(logL)(log logL)

18

Practical implications

Security on the Internet is based on public key

cryptography.

The most widely used (and most trusted) pub-

lic key cryptosystems are based on the difficulty

of factoring and of finding discrete logarithms.

Both of these are vulnerable to attacks by a

quantum computer.

21

The Superposition Principle:

If a quantum system can be in one of two mu-

tually distinguishable states |A〉 and |B〉, it can

be both these states at once. Namely, it can

be in the superposition of states

α |A〉 + β |B〉
where α and β are complex numbers and |α|2+
|β|2 = 1.

If you look at the system, the chance of seeing

it in state |A〉 is |α|2 and in state |B〉 is |β|2.

23

The Superposition Principle (in math-
ematics)

Quantum states are represented by unit vec-

tors in a complex vector space.

Multiplying a quantum states by a unit com-

plex phase does not change the essential quan-

tum state.

Two quantum states are distinguishable if they

are represented by orthogonal vectors.

24

A qubit is a quantum system with 2 distin-

guishable states, i.e., a 2-dimensional state space.

If you have a polarized photon, there can only

be two distinguishable states, for example, ver-

tical | �〉 and horizontal |↔〉 polarizations.

All other states can be made from these two.

| ↗↙ 〉 =
1√
2
|↔〉 +

1√
2
| �〉

| ↘↖〉 =
1√
2
|↔〉 − 1√

2
| �〉

∣∣∣ �⊃
〉
=

1√
2
|↔〉 +

i√
2
| �〉

∣∣∣⊂�
〉
=

1√
2
|↔〉 − i√

2
| �〉

25

If you have two qubits, they can be in any

superposition of the four states

|00〉 |01〉 |10〉 |11〉

This includes states such as an EPR (Einstein-

Podolsky-Rosen) pair:

1√
2
(|01〉 − |10〉),

where neither qubit alone has a definite state.

26

If you have n qubits, their joint state is de-

scribed by a 2n dimensional vector.

The basis states of this vector space are:

|000 . . .00〉 |000 . . .01〉 · · · |111 . . .11〉

The high dimensionality of this space is one of

the places where quantum computing obtains

its power.

27

To compute, we need to

• Put the input into the computer.

• Change the state of the computer.

• Get the output out of the computer.

28

Input

Start the computer in the state corresponding

to the input in binary, e.g.

|100101101〉 .

We may need extra workspace for the algo-

rithm. We then need to add 0s to the starting

configuration.

|100101101〉 ⊗ |0000000000〉 .

29

Output

At the end of the computation, the computer

is in some state

2k−1∑
i=0

αi | i〉

We can NOT measure the state completely,

because of the Heisenberg uncertainty princi-

ple.

We assume that we measure in the canonical

basis. We observe the output i with probability

|αi|2.

30

Output

When we observe the computer, we get a sam-

ple from a probability distribution.

Because of quantum mechanics, this is inher-

ently a probabilistic process. We say that the

computer computes a function correctly if we

are able to get output that gives us the right

answer with high probability.

31

The Linearity Principle

The evolution of an isolated quantum system

is linear.

Evolution of pure states in an isolated quantum

system can be described by a matrix operating

on the state space.

To preserve probabilities, the matrices must

be unitary.

32

Computation

Apply transformations to qubits two at a time.

0 1

0

1

Quantum GateClassical Gate

01 - 10

0+1

By linearity of quantum mechanics, a one-qubit

gate is a 2 × 2 unitary matrix and a two-qubit

gate is a 4 × 4 unitary matrix.

33

A quantum gate is thus a linear transformation

on a 2-dimensional (1-qubit) or 4-dimensional

(2-qubit) vector space.

It is thus a 2 × 2 or 4 × 4 matrix.

In order to preserve probabilities, it must take

unit vectors to unit vectors. This means the

matrix is unitary. That is, if G is the gate,

G† = G−1.

35

A computation (program) is a sequence of quan-

tum gates applied to one or two qubits at a

time.

Why two?

Three doesn’t give any more power, and seems

more complicated experimentally.

Arbitrary many-qubit gates are hopeless, and

theoretically realizable ones don’t seem to add

any extra computational power.

34

Idea behind fast quantum computer algorithms:

Arrange the algorithm to make all the compu-

tational paths that produce the wrong answer

destructively interfere, and the computational

paths that produce the right answer construc-

tively interfere, so as to greatly increase the

probability of obtaining the right answer.

37

Idea Behind All Fast Factoring
Algorithms

To factor a large number N , Find numbers a

and b so that

a2 = b2 mod N

a = ±b mod N

Then

a2 − b2 = (a + b)(a − b) = cN

We now extract one factor from a + b and an-

other from a − b.

38

Example: Factoring 33

Take the numbers a = 7 and b = 4. Then 49

divided by 33 has remainder 16, so

72 = 42 mod 33

Then

72 − 42 = (7 + 4)(7 − 4) = 33

and we find 33 = 3 ∗ 11.

39

Quantum Factoring Idea

To factor a large number N :

Find the smallest r > 0 such that xr ≡ 1 (mod

N).

(xr/2 + 1)(xr/2 − 1) ≡ 0 (mod N).

We now get two factors by taking the greatest

common divisors

gcd(xr/2 + 1, N)

gcd(xr/2 − 1, N)

We can show this gives a non-trivial factor for

at least half of the residues x(mod N).

40

How do we find r with

xr ≡ 1 (mod N)?

Find the period r of the sequence xa (mod N).

41

Need to find the period of xa (mod N).

Idea: Use the Fourier transform

Problem: The sequence has an exponentially

long period

Solution: Use the exponentially large state space

of a quantum computer to take an exponen-

tially large Fourier transform efficiently.

43

Factoring L-bit numbers

We will work with quantum superpositions of

two registers

Register 1 Register 2
2L bits L bits

We will not give the fine details of the algo-

rithms.

These involve more workspace

(3L is easy, o(L) is possible).

44

Reversible Computation

We can do classical computations on a quan-

tum computer as long as we can do these clas-

sical computations reversibly. That is, with

gates each of whose possible outputs maps

uniquely back to the inputs.

Any classical computation can be made re-

versible as long as we keep the input around.

The 3-bit Toffoli gate is a universal gate for

reversible computation

(x, y, z) → (x, y, z ⊕ (x ∧ y))

This Toffoli gate can be implemented as a se-

quence of 2-qubit quantum gates.

46

Quantum Fourier Transform over Z2k

Have k qubits

|x〉 → 1

2k/2

2k−1∑
y=0

exp(
2πixy

2k
) | y〉

This is easily seen to be a unitary transforma-

tion on the 2k-dimensional space of k qubits.

In order to implement this on a quantum com-

puter, we need to break this into a series of

2-qubit gates.

The Cooley-Tukey FFT easily adapts to give

O(k2) steps.

45

|0〉 |0〉

↓ ≈ L steps

1

2L

2L∑
a=0

| a〉 |0〉

↓ ≈ L2 logL log logL steps

1

2L

2L∑
a=0

| a〉 |xa (mod N)〉

↓ ≈ L2 steps

1

2L

2L∑
a=0

2L∑
c=0

| c〉 |xa (mod N)〉 e2πiac/22L

Observe computer.

47

We need to find the probability amplitude on

| c〉 |xa (mod N)〉
in the superposition

1

2L

2L∑
a=0

2L∑
c=0

| c〉 |xa (mod N)〉 e2πiac/22L

Many different values of a give the same value

of xa (mod N).

We have to add the coefficients e2πiac/22L
on

all of them.

48

Let a0 be the smallest non-negative integer
such that

xa0 ≡ xa(mod N).

Then xa0, xa0+r, xa0+2r, ... are all equal (mod
N).

Each contributes to the amplitude on

| c〉 |xa (mod N)〉
with the coefficient e2πi(a0+br)c/22L

.

We observe | c〉 with probability proporitional
to ∣∣∣∣∣∣∣

≈22L/r∑
b=0

e2πibrc/22L

∣∣∣∣∣∣∣

2

This is a geometric sum which is close to 0
unless

rc

22L
= d + O(r/22L)

for some integer d.

49

We know

rc

22L
= d + O(r/22L).

Thus
c

22L
=

d

r
+ O

(
1

N2

)
.

with r < N .

d
r will be one of the closest fractions to c

22L

with numerator and denominator less than N .

We can use continued fractions to find d
r, and

then use r to factor N .

50

Example: Factoring 33

Take x = 5. Then (mod 33) we get

1 5 52 53 54 55 56 57 58 59 510 511

1 5 25 26 31 23 16 14 4 20 1 5

The period r is 10, and

xr/2 = 55 = 23 mod 33.

Then

33 divides (23 + 1)(23 − 1) = 24 ∗ 22

Taking greatest common divisors, 24 gives us

the factor 3, and 22 gives us the factor 11,

and we find 33 = 3 ∗ 11.

42

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 32 64 96 128 160 192 224 256

P

c

Example: Factoring 33

The period r is 10.

51

Difficulties of Quantum Computing

Quantum states are notoriously hard to ma-

nipulate.

To do 1010 steps on a quantum computer with-

out error correction, and still come up with the

right answer, you would need to perform each

step with accuracy one part in 1010.

53

The same objection was raised to scaling up

classical computers in the 1950’s.

Von Neumann showed that you could build reli-

able classical computers out of unreliable clas-

sical components.

Currently, we don’t use many of these tech-

niques because we have extremely reliable in-

tegrated circuits, so we don’t need them.

54

Quantum Computing
Difficulties

Heisenberg Uncertainty Principle:
You cannot measure a quantum state without

changing it.

No-Cloning Theorem:
You cannot duplicate an unknown quantum

state.

56

Main techniques for fault-tolerance

on classical computers.

• Consistency Checks

• Checkpointing

• Error-Correcting Codes

• Massive Redundancy

55

Quantum error correction

Quantum error correcting codes exist.

They can be used to make quantum computers

fault-tolerant. so that you only need to per-

form each step with accuracy approximately

one part in 104.

58

How do quantum error-correcting codes get

around the no-cloning theorem Heisenberg un-

certainty principle?

Measuring one of the qubits gives NO informa-

tion about the encoded state, so the remain-

ing qubits can retain all the information about

the encoded state without violating the non-

cloning theorem.

We design the codes so that we can measure

the error without measuring (or disturbing) the

encoded state.

This means that all likely errors are orthogonal

to the encoded data

We can then fix the error without destroying

the encoded data.

59

Fault Tolerant Computing

Classically:
11 01 1 11 1 11

11 10 1

0

Clean-Up

1 01 1

Quantum Mechanically:
QECC

QECC

QECC

CorrectionCorrection

QECC

QECC

QECC

60

Best current results

If the quantum gates are accurate to around 1
part in 104, you can make fault-tolerant quantum
circuits.

(This estimate uses some heuristic arguments;
the best rigorous result is 1 part in 106.)

The best upper bound is around 1 part in 5.

Open question: What is the right threshold?

