Evolutionary Dynamics

Martin Nowak Harvard University

Evolution Mutation Selection Sequence space Fitness landscapes Evolutionary game dynamics

> Cooperation Fairness

Evolution: major events

- ? Origin of life
- 3500 Bacteria
- 1500 Eukaryotic cells
 - 600 Multicellular organisms
 - 1 Human language

(million years ago)

Evolution needs populations of reproducing individuals.

Evolutionary change occurs by mutation and selection.

Mutation

Genome:

...ACTATACGCCGGCATTACCTTATTATGG...

...ACTATACGCGGGCATTACCTTATTATGG...

Selection

Selection

B out-competes A

Genomes live in sequence space

...ACTATACGCCGGCATTACCTTATTATGG...

Length, L

Arrange all sequences such that nearest neighbors differ by one point mutation. You will need L dimensions.

Genomes live in sequence space

...ACTATACGCCGGCATTACCTTATTATGG...

Length, L

a small virusL= 10000a bacteriumL= 4 millionhumansL= 3.5 billionnewtsL= 19 billion

Genomes live in sequence space

...ACTATACGCCGGCATTACCTTATTATGG...

Length, L

each genome has a reproductive rate (=fitness)

Evolutionary dynamics are given by the quasispecies equation:

$$\mathbf{x}_{i} = \sum_{j} x_{j} f_{j} Q_{ji} - \bar{f} x_{i}$$

Error threshold

Mutation rate (per base) < 1 / Genome length

necessary for adaptation
(=finding peaks in fitness landscape)

A special case: the fitness landscape is constant

In general, the fitness landscape changes as the population moves across

sequence space

In general, the fitness landscape changes as the population moves across

sequence space

Evolutionary game theory

Fitness depends on the relative abundance of different types.

Fitness of type A = 1 Fitness of type B = 1.1

Evolutionary Game Theory

John Maynard Smith

Game Theory

John von Neumann

Oskar Morgenstern

Evolutionarily stable strategy

If every individual of a population adopts the evolutionarily stable strategy, then no mutant can invade.

Nash equilibrium

Successful strategies spread by natural selection. Payoff = fitness.

$$\mathbf{x}_{i} = x_{i}[f_{i}(\mathbf{x}) - \bar{f}(\mathbf{x})] \qquad i = 1,..,n$$

Successful strategies spread by natural selection. Payoff = fitness.

$$\mathbf{x}_{i} = x_{i}[f_{i}(\mathbf{x}) - \bar{f}(\mathbf{x})] \qquad i = 1,..,n$$

$$\bar{f}(\mathbf{x}) = \sum_{i} x_{i} f_{i}(\mathbf{x})$$

Successful strategies spread by natural selection. Payoff = fitness.

$$\mathbf{x}_{i} = x_{i}[f_{i}(\mathbf{x}) - \bar{f}(\mathbf{x})] \qquad i = 1,..,n$$

$$\bar{f}(\mathbf{x}) = \sum_{i} x_{i} f_{i}(\mathbf{x})$$

$$f_i(\mathbf{x}) = \sum_j a_{ij} x_j$$

 $\bar{f}(\mathbf{x}) = \sum_{i} x_{i} f_{i}(\mathbf{x})$

Successful strategies spread by natural selection. Payoff = fitness.

$$\mathbf{X}_{i} = x_{i}[f_{i}(\mathbf{X}) - \bar{f}(\mathbf{X})] \qquad i = 1,..,n$$

 $f_i(\mathbf{x}) = \sum_{i} a_{ij} x_j$

= Lotka Volterra equation of ecology

Social insects

- Workers do not reproduce, but raise the offspring of another individual, the queen.
- How can evolution design such altruistic behavior ?

Evolution of cooperation

Natural selection is based on competition. How can natural selection lead to cooperation?

Charles Darwin

Cooperation between relatives

Hamilton's rule

r > c / b

William Hamilton

- r... coefficient of relatedness
- c... cost of cooperation
- b... benefit of cooperation

Cooperation between relatives

'I will jump into the river to save2 brothers or 8 cousins'

J.B.S Haldane

How to get cooperation between non-relatives ?

Prisoner's Dilemma

cooperate: C

defect: D

C-C 3:3 C-D 0:5 D-C 5:0 D-D 1:1

Rational players choose defection

D - **D** 1 : 1

but cooperation would have been better for both:

C - C 3 : 3

Cooperation is 'irrational'.

Natural selection chooses defection

D wins against C

3 possibilities for the evolution of cooperation

- Direct reciprocity
- Indirect reciprocity
- Spatial reciprocity

Direct reciprocity

I help you, but I expect we will meet again. Then you can help me.

Repeated Prisoner's Dilemma

Player 1 : $C D C D C C C \dots$ Player 2 : $D C D D C C C \dots$

Repeated Prisoner's Dilemma

Player 1 : $C D C D C C C \dots$ Player 2 : $D C D D C C C \dots$

What is a good strategy for the repeated Prisoner's Dilemma?

Robert Axelrod
Tit-for-tat

- If you cooperate, then I will cooperate.
- If you defect, then I will defect.

Anatol Rapaport

Tit-for-tat is too unforgiving

Errors destroy cooperation

Tit-for-tat : CCCCDCDCDCDDDDDD.... Tit-for-tat : CCCDCDCDCDDDDDDD....

Random

Always defect

Tit-for-tat Always defect Random

Generous Tit-for-tat

- If you cooperate, then I will cooperate.
- If you defect, then I will cooperate with probability 1/3.

Never forget a good move. Sometimes forgive a bad move.

Wa	ir ar	nd p	ea	ce

Win-stay, lose-shift

 Win - stay :
 D
 $(3) \dots C$ D
 $(5) \dots D$

 C
 C
 C
 C

 Lose - shift :
 D
 $(1) \dots C$ (probabilistic)

 D
 D
 D

Fudenberg & Maskin

Experimental observations

Manfred Milinski

Direct reciprocity

'I help you, you help me.'

Indirect reciprocity

'I help you, somebody else helps me.'

Natural selection chooses

strategies that base their decision to cooperate on the reputation of the recipient: 'help those who have helped others'

Give and you shall receive.

A rule for indirect reciprocity

q > c / b

q ... probability to know someone's reputationc ... cost of cooperationb ... benefit of cooperation

A universal constant of nature

 0.7380294688... is the maximum fraction of people who can be bad in the beginning such that everyone will be good in the end

Spatial reciprocity

Cooperators Defectors

Spatial reciprocity

Cooperators Defectors

Von Neumann invented both game theory and cellular automata

Fairness

Ultimatum Game

\$1,000,000

Proposer makes an offer.

Ultimatum Game

\$1,000,000

Proposer makes an offer.

Responder says yes or no.

Ultimatum Game

Responder says yes or no.

What does game theory suggest?

- A 'rational' responder should prefer \$1 to \$0.
- Therefore, a 'rational' proposer should offer \$1 and keep almost the whole sum.

What do the experiments show?

- People are not 'rational'.
- Most proposers offer 30-50%.
- Most responders reject offers below 30%.

Strategies *S*(*p*,*q*) *p*...offer when proposer *q*...minimum acceptance level when responder

Strategies *S*(*p*,*q*) *p*...offer when proposer *q*...minimum acceptance level when responder

Strategies *S*(*p*,*q*) *p*...offer when proposer *q*...minimum acceptance level when responder

Strategies *S*(*p*,*q*) *p*...offer when proposer *q*...minimum acceptance level when responder

The fair strategy *S*(*1*/2, *1*/2)

Evolutionary dynamics

Natural selection chooses

- ... low offers, low demands.
- It costs to reject offers, therefore low acceptance levels are favored.
- If acceptance levels decline, then offers will decline too.

How can we explain the evolution of fairness?

Reputation

- Suppose there is a chance that it will become known what offer a person has accepted.
- Accepting low offers increases the probability of receiving reduced offers in the future.
- Rejecting low offers is costly, but buys the reputation of being someone who demands a fair share.

Evolutionary dynamics

The fair strategy *S*(*1*/*2*,*1*/*2*)
The most fascinating game that evolution plays...

... is human language.

Program for Evolutionary dynamics

Games in finite populations Evolutionary graph theory Evolution of language Learning Somatic evolution of cancer Evolution of infectious agents Phenotypic error-thresholds Evolution of multi-cellularity