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Number Theory as Gadfly

B. Mazur, Harvard University

Dr. Mazur received his Ph.D. from Princeton University in 1959, and was
a Junior Fellow at Harvard University from 1961-64. Since then he has
been at Harvard University with frequent visits to I.H.E.S. in France. He is
a member of the U.S. National Academy of Sciences and has received the
Veblen Prize (in geometry) and the Cole Prize (in number theory) from the
AMS.

(This is an expository article which evolved from notes written in preparation for a 40-minute talk
for a general audience at the “Symposium on Number Theory,” held in Washington D.C. on May 4,
1989 under the auspices of the Board on Mathematical Sciences of the National Research Council. To
make the text more informative the original version has been supplemented with lots of commentary, a
section (§4) has been added which may be useful to readers familiar with the classical theory of
modular forms, and an appendix has been added which is meant for an even more specialized audience.
1 am thankful to P. Diaconis, J. Mazur, K. Ribet and J.-P. Serre, who read early drafts of this paper,
and whose suggestions were very helpful to me.)

1. Introduction. When a friend saw the title to my talk he asked if what I had
in mind was the well-known fact that number theory has an annoying habit: the
field produces, without effort, innumerable problems which have a sweet, innocent
air about them, tempting flowers; and yet...the quests for the solutions of these
problems have been known to lead to the creation (from nothing) of theories which
spread their light on all of mathematics!, have been known to goad mathematicians
on to achieve major unifications of their science?, have been known to entail
painful exertion in other branches of mathematics to make those branches
serviceable®. Number theory swarms with bugs, waiting to bite the tempted
flower-lovers who, once bitten, are inspired to excesses of effort!

Well, perhaps that summarizes the general aim of my talk—but, to put it more
gently, I want to spend a few minutes considering one example (a conjecture, in
fact) which shows how Number Theory can sometimes contrive to be a helpful, and
possibly inspirational, goad to the rest of the Mathematical Sciences.

The most celebrated of all deceptively simple (and still unsolved!) problems in
Number Theory is surely Fermat’s Last Theorem®. Its curious history (whose
statement first occurs as a marginal commentary on the equation arising from the
Pythagorean theorem) is so well known, it needn’t be rehearsed here. Professional
mathematicians, after Fermat, have approached Fermat’s Last Theorem with

1e.g., Kummer's theory of ideals
ze.g., Grothendieck’s theory of schemes
3e.g., The theory of group representations, and in particular, the “Langlands program”

“For a detailed account of the recent work on this see Oesterlé’s Bourbaki report [0] listed in the
References for §4.
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an arithmetic elliptic curve. But before we deal with arithmetic elliptic curves we
have some hyperbolic geometry to do.

(III). Periodicity on the (non-Euclidean) hyperbolic plane—the setting for the
classical theory of modular functions.

Let us turn now to hyperbolic geometry, the (independent) discovery of Bolyai,
Gauss, and Lobachevsky.

Hyperbolic geometry is a homogeneous geometry satisfying all the Euclidean
axioms except for the fifth postulate, and possessing many lines through a given
point, parallel to a given line; it now has a number of equivalent concretizations.
The model particularly useful to us is the upper half-plane model.

Here the points of the geometry are the points z = x + iy in the upper half of
the complex plane H, i.e., x can be any real number and y any positive real. The
lines are either vertical straight lines {a + iy} for a fixed real number a and all
positive reals y, or else they are semi-circles abutting on the real axis. The upper
half-plane model inherits a Riemann surface structure, and hence also a conformal
geometry by virtue of its being an open subset in C.

=L

Upper half-plane
model of hyperbolic geometry

“!mcs thmugh a point
P and “parallel” to another
“lmc

The translations T, :z — z + b for any real number b are symmetries of
hyperbolic geometry, but there are many more symmetries (in fact two other
continuous parameters of them'®), perhaps the most important single one being
inversion with respect to the unit circle, S: z —» —1/z.

"8 Consider matrices of real numbers of determinant equal to 1, i.e.,

&
c,d

with ad — be = 1. Then z — az + b/cz + d is an orientation-preserving transformation of the upper
half plane which is a symmetry of its hyperbolic geometry, and any orientation-preserving symmetry is
given by such a matrix.
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Ficure 11 is meant to illustrate the tiling of the hyperbolic plane that is gotten
by systematically applying composites of iterates of the unit translation, T, : z —
z + 1, and of the inversion S (and of their inverses), to the “basic tile,” which is
the shaded region in the figure. Let I' be the group of symmetries of the
hyperbolic plane gotten from such compositions of 7; and S. It is a fact that I’
consists in all transformations of the form z = az + b/cz + d where the coeffi-
cients a, b, ¢, d are all integers and ad — bc = 1. There are a number of striking
differences between I' acting on the hyperbolic plane and a lattice A, generated by
translations 7, and 7, , acting on the complex plane. First, the two translations of
the complex plane 7, and 7,, commute with one another, which is not the case
for translation and inversion of the hyperbolic plane, i.e., I’ is a more interesting,
noncommutative, group. And second, there is a natural way of identifying A with
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If a function f on R is invariant under the translation T,—which means that
f(T,x) = f(x) for all x, ie., f(x + A) = f(x)—we say that f is “periodic” with
period A.

kil £ . |

L] ¥ T

=X 0 A
Graph of a periodic function on the line. Now viewed as function on the orbit space.

Fic. 4

The circle as orbit space is a proper realm on which to consider periodic
functions with period A. Any such function f may be viewed in a natural way as
defined on the orbit space, and conversely any function on the orbit space may be
viewed as coming from a periodic function on R with period A.

(II). Double periodicity on the (Euclidean) complex plane—the setting for the
classical theory of elliptic functions.

Now let us pass from the real line R to the complex plane C. Instead of
considering only one translation, as we did with R, it is natural in this (two-dimen-
sional) context to consider as “symmetries” two translations TM and 1, acting on
the complex plane

L, T2 X N, L, x>z +A;,

/////

Complex
Plane
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(Euclidean) .
Complex Plane 2=

Euclidean
Uniformization

W

AW
Y

Elliptic curve

Fic. 8. The “covering mapping”” which brings the complex plane C to the orbit space C/A may also be
visualized as a two-stage process, where in the first stage the plane is wrapped around a cylinder, and in
the second stage the cylinder is wrapped around a torus.

the orbit space C/A. The mapping which sends each point in the complex plane to
the orbit which contains it is our covering mapping C — C/A:

We wish to think of the orbit space C/A as inheriting a “conformal geometry”
(and an orientation) from the standard Euclidean geometry of the complex plane C
via this natural mapping. A conformal geometry on a smooth surface is a “geome-

Fic. 9. In conformal geometry, there is no invariant notion of “length” of an arc, but there is a notion
of angle.
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to one natural way of counting them, relatively few subgroups of finite index are
congruence subgroups.) But this gives rise to the key.

DEerINITION, Let E be an elliptic curve. A hyperbolic uniformization (of E) of
arithmetic type is a hyperbolic uniformization of the elliptic curve E which is periodic
with respect to a congruence subgroup I" C T..

Although (by Weierstrass) any elliptic curve admits a Euclidean uniformization
(and, in fact with respect to a lattice A c C unique up to complex scalar change),
and (by Bely) an elliptic curve admits a hyperbolic uniformization if and only if it
can be defined by a Weierstrass equation with coefficients A, B which are algebraic
numbers, the Shimura-Taniyama-Weil conjecture asserts, further, that

Any arithmetic elliptic curve (i.e., any elliptic curve whose defining equation can
be taken with coefficients in Q) admits a hyperbolic uniformization of arithmetic

type.23' 24

/
Euclidean f
compex =
plane e
N /
=
<
Euclidean "l =
uniformizer —
constructed by Is there also a <
Weierstrass hyperbolic uniformization

of arithmetic type?

Arithmetic elliptic curve

Fic. 13

BThe formulation we have just given of the conjecture would make it seem “unfalsifiable.” But in
fact, there are more precise versions of the conjecture which predict, given an arithmetic elliptic curve
E, exactly which T'(N) would be involved in a hyperbolic uniformization of arithmetic type for
E—these precise versions are known (by the work of Hecke, Eichler, Shimura, Weil, Deligne, Carayol,
Faltings, and others) to be equivalent to the one given here. A technical point relevant to this
equivalence is treated briefly in an appendix to this expository article. There are also stronger
conjectures by Langlands (concerning automorphic representations of reductive groups) and by Serre
(concerning 2-dimensional representations of Galois groups over @) which imply the conjecture of
Shimura-Taniyama-Weil.

A5 Serre remarked, it might be illuminating to formulate a precise conjectural characterization of
the class of elliptic curves (necessarily definable over @) which admit hyperbolic uniformizations of
arithmetic type. The conjecture of Shimura-Taniyama-Weil asserts, of course, that any elliptic curve
definable over @ admits such a uniformization. Among the elliptic curves definable over quadratic
number fields, for example, a necessary condition for them to have such a uniformization is that they be
C-isogenous to their conjugate (cf. Goro Shimura, Class fields over real quadratic fields and Hecke
operators, 95 (1972) 130-190, where the case of real quadratic fields is analyzed and examples are
given).
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