Cyclic cohomology is the theory of higher traces. Field k, algebra A
associative nonunital. Definition of trace.

Define b and A on multilinear functionals. Define cyclic cocycle.

Example of C*"/%(M), where a (continuous) trace = distribution = 0-
dimensional current. Define k-dimensional current as a continuous linear
functional on the space of k-forms, define the cochain assciated to a current,
state that the cochain is a Hochschild cocycle and that it is a cyclic cocycle
iff the current is closed.

Analytical example. S is the unit circle, H = L%(S,d0/27), e is the
Hardy projector, A = C*™/%(5"). Define the Toeplitz operator Ty for feA to
be the operator Ty = efe operating on eH.

‘P(fyg) = TTeH(Tng - ng) - TTeH(Tng - Tgf)

= Tru(fle,9])

One can show that [e, f] is an operator with smooth kernel, hence it belongs
to the ideal of trace class operators. Moreover

o(f,9) = (1/2xi) [ fdg

Comments on the last equation being a kind of index theorem, since if
g = f1, then one has one of the analytical expressions for the index in
terms of a parametrix on one side, and a cohomological evaluation of it on
the other.

Cochains on A. Set CP(A,V) = Hom(A®?,V). Define the operators
V', A, N , also introduce C{(A, V). Connes double complex.

Cup product of cochains. If R is an algebra, then C'(A, R) with the
differential § = —¥ is a cochain algebra (DGA with differential of degree
+1). Example. Let f : A — — > R be a 1- cochain. Its curvature is the
deviation of f from being an algebra homomorphism.

Trace on the algebra of cochains. Let CX(A,V) be the space of cyclic

p-cochains on A with values in the vector space V. Let 7 : R— — > V be
a trace on R and define

tr. : CP(A,R) — — > C (A, V)
try(f) = N(rf) = 7(Nf)
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Additional comments. Fundamental cyclic cocycle on a compact oriented
manifold. Idea that it might be possible to construct the fundamental cyclic
cohomology class of a quantum field theory without actually having to con-
struct the quantum field theory itself. And one should be able to derive the
topological consequences from the cyclic class.

In the actual lecture, I forgot to do the analytical example of the circle.




Start with the the Fredholm module over the circle. Purpose of the
calculation? Introduce an example of an extension and a lifting into the
extension.

Review the DGA C"(A4, R), § with the trace with values in 2CL\(A, R/[R, R)).
Construct the odd degree cyclic cocycles attached to an extension.

Let I be an ideal in the algebra R, and let 7 : I* — — > V be a linear
map vanishing on [R,I"]. Let p: A — — > R be a linear map which is an
algebra homomorphism modulo I in the sense that

(p + p*)(a1, az) = p(a1)p(az) — p(asas)

has values in I. We wish to construct a cyclic cocycle of degree 2n — 1 on A
with values in V.

We can regard p as a l-cochain with values in R and w — 8p + p? as
a 2-cochain with values in I. Then w" ¢ C**(A,I"). We have the Bianchi
identity
dw = —pw —wp = —[p,w]
hence .
§(w") =D 0 (—pw + wp)w

=1 :

- _pwn n wnp
Thus

—biripu (W) = tr (6(w™)) = tr.(—[p,w"]) =0

Continue to give the formula for the cyclic cocycle. Also the simpler
formula in the case when the trace T vanishes on [, 1" 1].

Remark that by copying the proof that the cohomology class of the char-
acter forms is independent of the choice of connection, one proves that the
cyclic cohomology classes of the above cocycle depends only on the homo-
morphism from A to R/I.

Discussion of the circle case. H, A, e, where e is the Hardy space projector.
The Toeplitz operator is p(f) = efe acting on eH. Lemma: [e,g] is an
operator with smooth kernel, in particular it is of trace class. Formula for
tru(fle,g])- Then one knows that pis a homomorphism modulo I on which

a trace is given, hence one obtains a cyclic I-cocycle. Evaluation of the cyclic
cocycle.




Review: H = L*(§') D C[z] = eH where ¢ is the orthogonal projector
on the Hardy space, A = C°(5).
Lemma: Let f,g € A. Then [g,¢] € LY(H) and

tra(fle,gl) = 5 [ 7 dg

Let B = L(eH),I = LYeH),T = tr.g : I/[R,I] — — > C. The linear
map p: A——> R, p(f) = efe satisfies

(60 + 0*)(£,9) = p(£)r(9) — p(fg) = efege — efge = efle,gle € I
Therefore we obtain the cyclic 1-cocycle ¢ = N 7(6p + p?):

(*) o(f,9) = trea(p(f)p(9) — p(£9)) = treu(p(g)p(f) — p(gf))

Claim: o(f,g) = tru(fle,g])

The proof uses two remarks. 1) If T is of trace class, then trg(el) =
trg(eTe) = treg(eTe). This is clear if one uses the block description of T
with respect to the decomposition H = eH @ (1—¢€)H :

T = matrix with entries eTe , etc.
2) If D is a derivation, and €% = e, then De e + e De = De, so
e De= De(l —e) and Dee = (1 —e)De

In particular, ele,g] = [e, g](1 — e), etc.
Then

treu(p(£)p(9) — p(f9)) = trer(efle, gle) = tru(efle, g])
and
trea(p(9)p(f) = p(9f)) = treu(eg(e — 1) fe) = try(eg(e — 1)f) =

=tru([e,g](e — 1)f) = tru((e — 1) fle, g])

Subtracting these equations proves the claim.




Combining above two results gives a computation of the cyclic 1-cocycle
as an integral

1
o(9) =5 |, fdg
We now show how this can viewed as a kind of index theorem. Recall the
following,.

Definition: An operator P : Hy — — > Hy is called a Fredholm operator
if it is invertible modulo compact operators, that is, if there is an operator
Q : Hy — — > Hj such that 1 — QP and 1 — PQ are compact. Such an
operator @) is called a parametriz for P.

Proposition: If (1 — QP)" and (1 — PQ)* where n > 1 are of trace class,
then

Tnd(P) = tr, (1 — QP)") ~ tr (1 - PQ)")

Let f be an invertible smooth function on the circle. Then the Toeplitz
operator P = p(f) is a Fredholm operator with parametrix Q@ = p(f™).

Applying the above proposition we obtain the following evaluation of the
index

Ind(p(f)) = —p(f™, f) = _%i /f_ldf = winding number of f




Motivation for GNS(p).

Question: Given p: A — B, p(1) =1, can we find an A® B*-module E
together with right B-module maps

(+) BLHELS B

such that ¢*ai(b) = p(a)b? The Gelfand-Neumark-Segal construction does
this when A is a *-algebra, B = C, and p is a positive linear functional.
This construction yields a Hilbert space E on which A operates, where 7, 4*
are given by product and scalar product with a unit vector. The generalized
Stinespring theorem extends the construction to a completely positive map
between C*-algebras (reference to Blackadar).

Given any (E,i,i*) as above, the algebra GN.S (p) operates naturally on
E by (a,b,a)(z) = ai(bi*(az)). It is clearly the minimal algebra of operators
one can build with the given data, which is the reason we call it the GN S-
algebra.

One can show easily that there is a 1-1 correspondence between (E, i, 1*)
as above and factorizations of the canonical A ® B°- module homomorphism

p:A® B — Hom(A,B), pla®b)(a)= p(aa)b

Hence there is a smallest choice for E, namely the image of 5. In the C*-

algebra case the Hilbert module given by the generalized Stinespring theorem
is a completion of this image.

Review the GN S-algebra. It is the semidirect product of A and the free
A-bimodule M = A® B ® A equipped with the product

M@sM—— M , (a,b,a)(d,V,o') = (a, bp(aa')b', o)

Denote it C' = GNS(p). Let & : A — C be the inclusion of §in the semi- A

direct product,/%et ¢ =(1,1,1) € M C C, and let & be the map from B

to C given by[(»)(b) = (1,b,1). Then & is an idempotent in C, and ¢ is (/\)
an algebra isomorphism of B with é0é = 1® B ® 1. Furthermore we have )

(p(a)) = é0(a)e.
Proposition 1. Given (R, e,u, v) where R is an algebra, e is an idempotent
in R, andu:A— R andv: B — eRe are algebra homomorphisms dect Hact

, there is a unique algebra homomorphism Jrom GNS(p) to R carrying V(fc“)) = Elhje
€,U,0 to e,u,v respectively.



The algebra Q4 of noncommutative differential forms over A.

Let A be a (unital) algebra, let A = A/k, and write @ for the image of a
in A. We consider the complex

A——SAQA——>AQA®? _ _ >
with differential

d(ag, @y, ...,8,) = (1,d. - - -, dy)
This complex is acyclic except for a k& in degree zero.

Assertion:  There is a unique multiplication on this complexr making it
into a DGA such that left multiplication by a € A is (*)

a(ao,---,&n) = (aay, - - * )

Furthermore in this DGA we have agday - - - da,, = (@0, @1,-+,@ys).] Proof.
We consider the algebra R of k-linear operators on this complex. It is a
DGA with differential d(u) = (—1)?[d,u], if u is an operator of degree p.
We identify A with the subalgebra of operators of the form (*) and we let
24 be the DG subalgebra of operators generated by these left-multiplication
operators. Thus (14 is the algebra generated by the operators a,da = [d, a] for
a € A. We note that Q4 is spanned by the products aoday - - - da,. In effect
the subspace spanned by these products is stable under left multiplication
by A and by d, hence it is stable under left multiplication by da for a € A.
This means it is a left ideal in 04, and as it contains 1 it coincides with O A-

Next we consider the map from Q4 to the complex () which applies an
operator to 1 € A. We have

dan(1) = [d, a,](1) = (1,@n)
aoday - - - dan(1) = aold,a;]- - - [d, an)(1)

= aold, ay] - - - [d, a;)(1,@qq,- - 3 8n) =+ = (ap, Gy, 5 B )

Since 4 is spanned by the products agday - - - dan, it is clear this map is an
isomorphism.

Reorganize as follows. Define a map

CI>:®A®]1®"____>QA, Q(aoa(—Iq;"';an):aOdal"'dan

n>0



