Obergurgl, Tyrolean Alps, Austria

Commutative Algebra for Singular Algebraic Varieties

O.E. Villamayor U.

Worksheet 1: Basic tools: localizations, blow-ups

On the localization of a ring at a multiplicative set

A subset S in A is a multiplicative set if $1 \in S$ and S closed by the product. Let $\beta : A \to B$ be a homomorphism. Observe that $\beta(S)$ is also a multiplicative set in B.

A first example is given by S = U(A), the units of A, and in this case any homomorphism $\beta : A \to B$ maps U(A) to U(B) (the units of B).

Recall that $A_S = \{\frac{a}{s}, a \in A, s \in S\}$ is a ring, that $\frac{a}{s} = \frac{a'}{s'}$ in A_S if and only if t(s'a - a's) = 0 in A for some $t \in S$; and that $\phi : A \to A_S$, $\phi(a) = \frac{a}{1}$ is an homomorphism. The homomorphism $\phi : A \to A_S$ has the following properties:

- a) The multiplicative set S maps into $U(A_S)$ (the units of A_S) via ϕ .
- b) The homomorphism $\phi: A \to A_S$ is universal with the property stated in a):

Universal Property of the localization. If an homomorphism $\beta: A \to B$ maps the multiplicative set S in U(B) then there is a commutative diagram of homomorphisms

and β' is unique with this property.

- 1. Show that if $\phi': A \to (A_S)'$ also has the universal property, then there is a unique isomorphism of A-algebras between A_S and $(A_S)'$. This uniqueness enables us to identify $\phi: A \to A_S$ with $\phi': A \to (A_S)'$.
- **2.** If S = U(A), then $\phi: A \to A_S$ is $id: A \to A$.
- **3.** If $S \subset T$ in A, then $(A_S)_T = A_T$.

Some (useful) properties

- **4.** $A_S = 0$ if and only if $0 \in S$.
- **5.** If S in A is a multiplicative set and $\beta: A \to B$ be a homomorphism, then there is a natural homomorphism say $\beta_S: A_S \to B_{\beta(S)}$. (FACT: if $\beta: A \to B$ is injective, so is $\beta_S: A_S \to B_{\beta(S)}$.
- **6.** An element $a \in A$ is in ker ϕ if and only if there is $s \in S$ such that $s \cdot a = 0$. Conclude that ϕ is injective if and only if S does not contain zero divisors.
- 7. Find ker ϕ for $S = \{\overline{1}, \overline{3}\}$ in $A = \mathbb{Z}/6\mathbb{Z}$.

8. If A is a domain and $S \subset A \setminus \{0\}$, then A_S is a domain and $A \subset A_S$ (a localization of a domain is a domain). In particular, if K is the quotient field of A, and $S \subset A \setminus \{0\}$, then $A_S \subset K$ (i.e., a localization of a domain is a subring of the quotient field).

Facts:

- Let $\mathfrak{p} \subset A$ be a prime ideal. Then $T = A \setminus \mathfrak{p}$ is a multiplicative set, and we will use the notation $A_T = A_{\mathfrak{p}}$.
- ullet Let spec(A) be the set of prime ideals of a ring A with the Zariski topology. Then

$$spec(A_S) = \{ \mathfrak{p} \in spec(A), \ \mathfrak{p} \cap S = \emptyset \}.$$

- **9.** If $\mathfrak{p} \in spec(A_S)$, show that $(A_S)_{\mathfrak{p}} = A_{\mathfrak{p}}$.
- **9.** Describe $spec(A_{\mathfrak{p}})$. Show that $A_{\mathfrak{p}}$ is a local ring.

Some (useful) examples

- **11.** Let k be a field, and let k[x, y] be the polynomial ring in two variables with coefficients in k. Describe: $spec(k[x, y]_{\langle x, y \rangle}), spec(k[x, y]_{\langle x \rangle}), spec(k[x, y]_{\langle 0 \rangle}).$
- **12.** Let $a \in A$. Then $S = \{1, a, a^2, \dots, a^n, \dots\}$ is a multiplicative set. Then we will use the notation $A_S = A_a$, or $A_S = A[\frac{1}{a}]$. Show that $A \to A_a$ is the same as $A \to A[X]/\langle aX 1 \rangle$ (always using the precious identification).
- 13. Given elements a, b in A, then

$$A_{ab} = (A_a)_b = (A_b)_a$$
.

- **14.** Let $a \in A$. Show that $spec(A_a) \subset spec(A)$ is a Zariski open subset. We consider $Spec(A_a)$ as the restriction of Spec(A) to the Zariski open set $spec(A_a)$.
- **15.** If A is a domain, then (0) is prime and $A_{(0)}$ is the quotient field K of A. Recall that $A \subset K$. Moreover, for any prime \mathfrak{p} , $A \subset A_{\mathfrak{p}} \subset K^1$.

Some facts about reduced rings

16. Let A be a noetherian ring and let $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_r\}$ be the minimal prime ideals. Show that A is reduced if and only if the natural morphism

$$A \longrightarrow A/\mathfrak{p}_1 \oplus \cdots \oplus A/\mathfrak{p}_r$$

is injective. Let $a \in A$ and consider

$$a \longmapsto (a_1, \ldots, a_r).$$

Show that a is a zero divisor if and only if $a_i = 0$ for some $i \in \{1, ..., r\}$.

17. If A is reduced, and S is the complement of the minimal primes of A, then $A \to A_S$ is injective (see exercise 16). In this case A_S is said to be the total quotient ring of A. Show that the total quotient ring of a reduced ring is semilocal, of dimension zero. Describe the prime ideals of $spec(A_S)$ as a subset of spec(A).

Blow-ups

¹Suppose A is the coordinate ring of an affine variety X. By definition this is the ring of regular functions on X, and K is the field of rational functions on X. If \mathfrak{p} is the maximal ideal corresponding to some point $\xi \in X$, then $A_{\mathfrak{p}}$ is the ring of regular functions on \mathfrak{p} , which sits between A and K

18. Let B be an A-algebra, let $f \in A$ suppose that $B \subset A_f$. Show that f is a non-zero divisor in B.

Let $I = \langle f_1, \dots, f_r \rangle$ be an ideal in A. For each $i = 1, \dots, \leq r$, let

$$\boxed{1} \quad (0.0.1) \qquad \qquad A_i = A \left[\frac{f_1}{f_i}, \dots \frac{f_r}{f_i} \right] (\subset A_{f_i})$$

denote the smallest A-subalgebra containing the collection of elements $\left\{\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right\}$ (by abuse of notation, in (0.0.1) we denote by A the image of A in A_{f_i}).

19. Show that the extended ideal IA_i is principal. Moreover, prove that IA_i is a free A_i -module of rank one.

Discussion

With the same notation as before, given two indices, $i, j \in \{1, ..., r\}$, there is a natural identification of the localizations,

$$A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right] \left[\frac{f_i}{f_j}\right] = A\left[\frac{f_1}{f_j}, \dots, \frac{f_r}{f_j}\right] \left[\frac{f_j}{f_i}\right] (\subset A_{f_i f_j})$$

where $A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right]\left[\frac{f_i}{f_j}\right]$ denotes the localization of $A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right]$ at the element $\frac{f_j}{f_i}$, or say

$$A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right] \left[\frac{f_i}{f_j}\right] := A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right]_{\frac{f_j}{f_i}}$$

The blow-up of A at I is the morphism of schemes

$$\operatorname{Spec}(A) \stackrel{\pi}{\leftarrow} X$$

where X is the scheme obtained by patching the affine charts $A_i = A[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}]$ described above, and π is defined by patching the morphisms of affine schemes

$$\operatorname{Spec}(A) \longleftarrow \operatorname{Spec}\left(A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right]\right)$$

(i.e., the homomorphisms $A \to A\left[\frac{f_1}{f_i}, \dots, \frac{f_r}{f_i}\right] (\subset A_{f_i})$). Note that the total transform of I in X is a locally free ideal in X.

- **21.** Show that if $I = \langle f \rangle$ is a principal ideal, then the blow-up is an affine morphism and $X = \operatorname{Spec}(A_1)$ where A_1 is the image of A in A_f .
- 22. Show that the blow-up of A at a nilpotent ideal is the empty set. Describe the blow-up of \mathbb{Z}_4 at the ideal expanded by $\overline{2}$.
- **23.** Show that the blow-up of $\mathbb{Z}/6\mathbb{Z}$ at the ideal spanned by $\overline{2}$ is $\mathbb{Z}/3\mathbb{Z}$
- **24.** Let k be a field and let k[x,y] be the polynomial ring in two variables with coefficients in k. Construct the blow-up at $\langle x, y \rangle$:

$$\mathbb{A}^2_k \stackrel{\pi}{\longleftarrow} X.$$

Let $C := \{x^2 - y^3 = 0\}.$

- (i) What is $\frac{\pi^{-1}(C)?}{\pi^{-1}(C\setminus(0,0))}\subset X?$