Let K be a field of characteristic zero.

Habitat. A habitat is an equidimensional nonsingular variety W together with a finite sequence of divisors (E_1, \ldots, E_n), such that for each point $p \in W$, there is a system u of regular parameters of the local ring of W at p such that for $i = 1, \ldots, n$, either E_i does not pass through p or there is a parameter in u which serves as a local equation of E_i; in addition, we want that these local equations are pairwise distinct (or equivalently, the E_i' are not allowed to have common components).

For any habitat, we define an operator Δ from the set of ideals on W to itself, as follows. For $I \subset K[W]$, $\Delta(I)$ is the ideal generated by I and all first order partial derivatives of elements in I.

Straight subvariety. A subvariety Z of a habitat as above is called straight iff it is pure-dimensional, and for every point $p \in Z$, there is a system u of regular parameters as above which additionally satisfies the condition that Z is locally defined by a subset of u.

Blowup. Let Z be a straight subvariety of a habitat $(W, (E_1, \ldots, E_n))$. The blowup along Z is the habitat $(W', (E'_1, \ldots, E'_n, E_{n+1}))$, where W' is the blowup of W along Z, E'_i is the strict transform of E_i for $i = 1, \ldots, n$, and E_{n+1} is the exceptional divisor.

Singularity. A singularity on a habitat as above is a finitely generated Rees algebra $A = \oplus_{i=0}^{\infty} A_i$ over $A_0 = K[W]$, i.e. sequence of ideals $A_i \subset K[W]$ such that $A_0 = K[W]$ and $A_i \cdot A_j \subseteq A_{i+j}$ and equality holds for sufficiently large indices i, j.

We say a singularity is of ideal-type iff there is a $b > 0$ and ideal I such that $A_{nb} = I^n$ for all indices which are multiples of b, and $A_i = (0)$ otherwise. These singularities are denoted by (I, b).

Singular Locus. The singular locus $\text{Sing}(A)$ of a singularity $A = \oplus_{i=0}^{\infty} A_i$ is the intersection of the zero sets of $\Delta_i^{i-1}(A_i)$, $i > 0$.

Transform. Let Z be a straight subvariety in the singular set of A as above. The transformed singularity on the blowup is $\oplus_{i=0}^{\infty} A'_i$, where A'_i is such that $f^*(A_i) = \text{Ideal}(E_{n+1})^{i} \cdot A'_i$ for $i > 0$.

Resolution. A resolution of a singularity is a sequence of singularity-habitat pairs, where the next is the transform of the previous under blowup of a straight
subvariety in the singular locus, such that the last singularity has empty singular locus.

Monomial Singularity. A monomial singularity is an ideal-type singularity \((I, b)\) such that there exist integers \(a_1, \ldots, a_n\) such that \(I = \prod_{i=0}^n \text{Ideal}(E_i)^{a_i}\).

Equivalence. Two singularities \(A, B\) are equivalent – \(A \approx B\) – iff their singular loci coincide and, for any sequence of blowups in the center in the singular locus, the singular loci of the transforms of \(A\) and \(B\) coincide.

Differential Closure. A singularity \(A = \bigoplus_{i=0}^\infty A_i\) is closed iff \(\Delta(A_{i+1}) \subseteq A_i\) for all \(i > 0\).

The differential closure of a singularity \(A\) is the smallest closed singularity containing \(A\).

Subhabitat. A subhabitat of a habitat \((W, (E_1, \ldots, E_n))\) is a locally closed subvariety \(V \subset W\) intersecting each \(E_i\) transversally, together with the sequence of these transversal intersections.

Restriction. Let \(i : V \rightarrow W\) the inclusion map of a subhabitat \((V, _____)\) of \((W, ____)\).

Let \(i^* : K[W] \rightarrow K[V]\) be the corresponding homomorphism of function rings.

The restriction of a singularity \(B = \bigoplus_{i=0}^\infty B_i\) on \((W, ___)\) to \((V, ___)\) is defined as the singularity \(A = \bigoplus_{i=0}^\infty A_i\) where \(A_i := i^*(B_i)K[V]\).

If \(\text{Ideal}(V)^i\) is contained in \(B_i\) for all \(i > 0\), then we say that \(B\) restricts properly to \(V\). (In this case \(\text{Sing}(A) = \text{Sing}(B)\).)

Extension. Let \(W, V, i\) be as above. Let \(r : W \rightarrow V\) be a left inverse of \(i\).

The extension1 of a singularity \(A = \bigoplus_{i=0}^\infty A_i\) on \((V, ___)\) to \((W, ___)\) is defined as \(B = \bigoplus_{i=0}^\infty B_i\), where \(B_i := r^*(A_i) + \text{Ideal}(V)^i\).

Assume that \(A\) is closed. Then the extension2 is defined as the largest closed algebra which is contained in \(\bigoplus_{i=0}^\infty (r^*)^{-1}(A_i)\) (it may be constructed by induction on \(i\)).