A gallimaufry G on a habitat $(W, (E_1, \ldots, E_n))$ has a singular set $S \subset W$, a dimension $d \leq \dim(W)$, $d \geq 0$, a generating degree $b > 0$, an order $o \in \frac{1}{b} \mathbb{Z} \cup \{\infty\}$, and a monomial factor $a : \{n\} \to \frac{1}{b} \mathbb{Z}$.

The set S has dimension at most d.
Let $\{i_1, \ldots, i_k\}$ be a subset of $\{n\}$. Let $X := E_{i_1} \cap \ldots \cap E_{i_k}$. If $a(i_1) + \ldots + a(i_k) \geq 1$, then $X \subset S$. If $a(i_1) + \ldots + a(i_k) + o < 1$, then $X \cap S = \emptyset$.

Transform. Let G' be the transform of G along an admissible blowup. Then we have $S' \subseteq \pi^{-1}(S)$, $d' = d$, $b' = b$, and $a' : [n + 1] \to \frac{1}{b} \mathbb{Z}$ extends a, and $o(n + 1) \in [a(i_1) + \ldots + a(i_k) - 1, a(i_1) + \ldots + a(i_k) - 1 + o]$ where $\{E_{i_1}, \ldots, E_{i_k}\}$ is the set of hypersurfaces containing the center.

Let G be a gallimaufry with order $o = \infty$. Then S contains an admissible center V_0 of dimension d. For the transform along the blowup of V_0, the order is finite.

Tight. A gallimaufry G is called tight iff $o = 1$ and $a(i) = 0$ for for all i such that E_i intersects the singular locus. The transform of a tight gallimaufry is again tight.

Descent. Let G be a tight gallimaufry. The descent $G \downarrow$, if exists, has the the following properties:

$S \downarrow = S$, $d \downarrow = d - 1$, $b \downarrow = b$.
If $E_i \cap S = \emptyset$ for $i = 1, \ldots, n$, then the descent exists.

Let G be a tight gallimaufry with descent $G \downarrow$. Let G' and $G' \downarrow$ be the transforms along an admissible center. Then $G' \downarrow$ is the descent of G'.

Tightification. A gallimaufry G with $o > 0$ and $o < \infty$ has a tightification $[G]$. We have $[S] \subseteq S$, $[d] = d$, and $[G]$ is tight.

Let G' and $[G]'$ be the transforms on a center Z which is admissible for $[G]$ (hence also for G). Then we have $a'(n + 1) = o + \sum_{i \in E_i} a_i - 1$ and $o' \leq o$. Equality holds if and only if $[S]'$ is not resolved, and in this case $[S]'$ is the tightification of S'.

Intersection. Let G be a gallimaufry on a habitat $(W, (E_1, \ldots, E_n))$. Let $j \leq n$. Then the intersection gallimaufry $G_{\cap j}$ is a tight gallimaufry on the habitat $(W, (E_1, \ldots, E_{j-1}, 0, E_{j+1}, \ldots, E_n))$.

We have $S_{\cap j} = S \cap E_i$, $d_{\cap j} = d$, $b_{\cap j} = b$.

Let G' and $(G_{\cap j})'$ be the transforms along a center Z which is admissible for $G_{\cap j}$. Then it is also admissible for G, and $(G_{\cap j})'$ is the intersection gallimaufry for G'.

Monomial. A gallimaufry G with order $o = 0$ is called monomial. The transform of a monomial gallimaufry is again monomial.