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Introduction

The objective of these notes is to discuss projective morphisms, with particular interest
in the case of the blow-up of an ideal in a ring.

A precise approach to this topic requires some acquaintance with scheme theory. Yet the
aim of this presentation is precisely to discuss this subject avoiding the notions of sheave or
scheme theory. So at some point we will state some properties of schemes, which the reader
should accept, and that should be enough for carrying on with our discussion.

Roughly speaking, the blow-up of a ring at an ideal, is an object obtained by patching a
finite number of new rings. The aim here is to focus on the precise meaning of patching.
Schemes in general are conceived as objects obtained by patching rings in some prescribed
way, and we aim to clarify this point.

Date: May 2012.
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2 A. BRAVO AND ORLANDO E. VILLAMAYOR U.

Here is a brief summary of the contents. In Section 1 we discuss about the meaning of
patching, a point of particular interest for our discussion. Section 2 is devoted to the notion
of locally ringed spaces. Affine schemes are presented as a particular example of ringed
spaces in Section 3. In Section 4 we discuss about patching locally ringed spaces and present
the example of patching affine schemes in Section 5. This is a first step towards the concept
of scheme.

Some properties of schemes are presented in Sections 6 and 9, and coherent modules and
ideals in Section 7. Projective schemes and graded rings are addressed in Section 8.

Blow-ups of ideals, and the study of their universal properties are presented in Section
10. Transformations of ideals by blow-ups are explained in Section 11. The special case of
blow-ups at regular center is treated in Section 12.

All rings are supposed to be commutative, with unity and noetherian. We do not do not
restrict our attention to the case of rings of functions on a variety.

Acknowledgements: We are grateful to Carlos Abad Reigadas and M.L. Garćıa Escamilla
for careful reading these notes. Their various useful suggestions have helped to improve this
presentation.

Part I. Patching affine schemes

1. On the notion of patching

1.1. Patching sets

It is usual in geometry to produce new objects by patching others. Consider, for simplicity,
a surface C, such as a sphere or a torus, that can be entirely covered by finitely many pieces
of cloth, say U1, U2, . . . Ur. We will assume that each Ui, interpreted as a set of points, is
mapped bijectively into its image, say Vi ⊂ C. In other words, assume that points of Ui do
not overlap when they are patched on C, and that C = ∪Vi.

Although Ui and Vi can be identified we consider them separately. Clearly C can be
reconstructed by patching the sets Ui. The task is to extract the essential information
needed to make this reconstruction possible.

This fact is intuitively clear, however some formalism is necessary in order to make this
assertion precise.

There is, of course, a natural surjective map, say

π :
⊔

Ul → C,

where the left hand side is the disjoint union. So C can be obtained as the set of equivalence
classes when we consider the equivalence relation on

⊔
Ul defined by this function. The

drawback of this approach is that it makes use of the existence of C, whereas the question,
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as it arises in geometry, is to reconstruct C. However, this equivalence already contains the
clue to our question, as we shall see below.

There are some observations that grow from the previous map π:

A) Since each Ui can be identified with its image Vi, a subset Uij of Ui is defined by
considering the subset Vi ∩ Vj in Vi. Note here that with this definition Uii = Ui.

B) For any two indices 1 ≤ i, j ≤ r there is a naturally defined bijection

αij : Uij → Uji.

Moreover, the following properties hold:
B1) αji = α−1

ij , and
B2) αii = idUi

(the identity map on Ui).
C) Given indices 1 ≤ i, j, k ≤ r, and points xl ∈ Ul, with l ∈ {i, j, k},

(xi ∈ Uij and αij(xi) = xj) ∧ (xj ∈ Ujk and αjk(xj) = xk)⇒ (xi ∈ Uik and αik(xi) = xk).

The following lemma will settle our question. In fact, it shows that the previous data and
the properties in A), B), and C), are all we need to reconstruct the set C.

Lemma 1.2. (Patching Lemma) Assume we are given subsets U1, U2, . . . Ur, together
with the following information:

A) For each i, j ∈ {1, . . . , r}, a collection of subsets Uij ⊂ Ui, with Uii = Ui;
B) For any two indices 1 ≤ i, j ≤ r a bijection

αij : Uij → Uji,

such that:
B1) αji = α−1

ij , and
B2) αii = idUi

(the identity map on Ui).
C) Given indices 1 ≤ i, j, k ≤ r, and points xl ∈ Ul, with l ∈ {i, j, k},

(xi ∈ Uij and αij(xi) = xj) ∧ (xj ∈ Ujk and αjk(xj) = xk)⇒ (xi ∈ Uik and αik(xi) = xk).

Then:
1) An equivalence relation is defined on the disjoint union

⊔
Ul by setting, for xi ∈ Ui and

yj ∈ Uj:
(1.2.1) xiRyj if xi ∈ Uij, yj ∈ Uji, and αij(xi) = yj.

2) If C denotes the quotient set of
⊔
Ul by R, then the natural map

Ui → C
is injective for each index i.

The Lemma sorts out the precise information needed to construct a set C by patching the
sets Ui, where now C denotes the quotient set of

⊔
Ul by R, the equivalence relation in 1).

The proof of the Patching Lemma is left as an exercise. Note that the transitivity property
of the relation is given by property C). On the other hand 2) follows from property B2).

Remark 1.3. 1) Let Λ = {1, 2, . . . , r} be the set of indices in the Patching Lemma. The
data involved therein are

(Sets): {Ui, i ∈ Λ; Uij, (i, j) ∈ Λ× Λ}
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(Bijections): {αij : Uij → Uji, (i, j) ∈ Λ× Λ},
under the conditions given by A), B) and C). The sets {Ui, i ∈ Λ} are said to cover C, when
the images of these maps cover C. If Γ ⊂ Λ is a subset and the images of {Ui, i ∈ Γ} cover
C, then {Ui, i ∈ Λ; Uij, (i, j) ∈ Γ×Γ} and {αij : Uij → Uji, (i, j) ∈ Γ×Γ}, also fulfill A),B),
and C), and define the same set C.

2) There is also a Topological Patching Lemma, in which each Ui is a topological
space. In this case one requires that each subset Uij be an open subset of Ui, and that each
αij : Uij → Uji be a homeomorphism. Under these conditions the set C can be endowed with
a topology characterized by the following two properties:

i) Each Ui is an open subset;
ii) The restriction of the topology on Ui coincides with that already defined on this set.

Example 1.4. An illustrative example is that of the projective line over C, P1
C, which can

be realized as the topological space obtained by a quotient space of the circle. This can be
covered by open subsets of the complex line with convenient identifications. However, if we
want to study P1

C from the algebraic geometric point of view, we will want to consider open
covers by affine complex lines that respect the underlying algebraic structure. In this case,
not every identification between the two open subsets of the affine lines will be allowed, since
it will have to be compatible with the ring structure attached to each affine open piece. This
motivates the content of the upcoming sections.

2. Locally ringed spaces

Definition 2.1. A locally ringed space (C,OC) is a topological space C in which a local ring,
say OC,x, is assigned to each point x ∈ C. A morphism of locally ringed spaces

δC,D : (C,OC)→ (D,OD)

is a continuous map of the underlying topological spaces,

δC,D : C → D,
together with a homomorphism of local rings for each x ∈ C,

δ∗C,D(x) : OD,δC,D(x) → OC,x.

Example 2.2. Let (C,OC) be a locally ringed space, and let U ⊂ C be an open subset. Then
the inclusion

i : U ↪→ C
induces a morphism of locally ringed spaces in a natural way,

(U,OU)→ (C,OC).
This is usually referred to as a restriction.

It follows readily from the definition that a composition of morphisms is a morphism.

Definition 2.3. A morphism of locally ringed spaces

δC,D : (C,OC)→ (D,OD)

is an isomorphism if δC,D : C → D is an homeomorphism, and δ∗C,D(x) : OD,δC,D(x) → OC,x
is an isomorphism of rings for all x ∈ C. We say that two isomorphic locally ringed spaces,
(C1,OC1) and (C2,OC2), are identified, when we fix an isomorphism between them.
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3. Affine schemes

In algebraic geometry there is a class of locally ringed spaces called schemes. Schemes are
locally ringed spaces that satisfy some important extra conditions. Some of these conditions
will be mentioned in forthcoming sections. There is also a notion of morphism of schemes,
which is, in particular, a morphism of locally ringed spaces. We begin by discussing the
notion of affine scheme and that of morphism of affine schemes.

Affine schemes

Let A be a ring. Then spec(A) is a set endowed with a topology1. Moreover, a local ring
ring Ap can be assigned to each p ∈ spec(A). Hence A determines a locally ringed space which
we denote by (spec(A),Ospec(A)). This is an affine scheme. The notation (spec(A),Ospec(A))
will sometimes be shortened writing Spec(A) instead. However, the reader must be warned
of the abuse of notation as Spec(A) is normally equipped with a structure of sheaf, which
we will not discuss here.

Morphisms of affine schemes

A homomorphism of rings, say B → A, defines a continuous map

f : spec(A)→ spec(B),

and it also defines, for each p ∈ A, a local homomorphism of local rings

Bp → Af(p).

So B → A defines a morphism of affine schemes (of locally ringed spaces)

Spec(A)→ Spec(B).

All morphisms of affine schemes considered through these notes, say Spec(A) → Spec(B),
will be defined by a ring homomorphism B → A.

Two homomorphisms, say C → B and B → A, define morphisms

Spec(A)→ Spec(B)→ Spec(C),

and the composition is the morphism defined by C → A.

A morphism between two B-algebras is denoted by a commutative diagram:

(3.0.1) A
f // C

B

??~~~~~~~

__@@@@@@@

1Recall that spec(A) is the set of prime ideals in A with the Zariski topology. The closed sets are collections
of primes that contain some ideal I ⊂ A; in particular the subsets spec(Af ) ⊂ spec(A), with f ∈ A, form a
basis of open sets in spec(A).
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This induces a commutative diagram of morphisms of affine schemes:

(3.0.2) Spec(A)

&&LLLLLLLLLL
Spec(C)oo

xxrrrrrrrrrr

Spec(B)

3.1. Some illustrative examples: open restrictions and closed immersions

LetA be a ring. There are two basic algebraic constructions with strong geometrical meaning:
a) The localization of A with respect to a multiplicative set S.
b) The quotient of A by an ideal I, say A→ A/I.

Localizations. Given a homomorphism A → B and a multiplicative set S in A, then
AS → BS defines a diagram

(3.1.1) Spec(B)

��

Spec(BS)

��
Spec(A) Spec(AS).oo

Observe that a prime ideal Q in BS is a prime ideal in B mapping to prime ideals in AS. In
addition, (BS)Q = BQ.

The following is an interesting setting within this framework. Fix an element f ∈ A.
Then the morphism A→ Af induces an injective continuous map spec(Af )→ spec(A). The
image is an open set in spec(A), and

(Af )p = Ap

for any p ∈ spec(Af ). So Spec(Af ) is the natural restriction of Spec(A) to the open set
spec(Af ). In this particular case the open restriction of the affine scheme is again an affine
scheme. Restrictions of an affine scheme to arbitrary open sets are not affine in general.

Morphisms can also be restricted in the class of affine schemes. Fix an element f ∈ A. A
ring homomorphism A→ B induces, say Af → Bf , by localization. This defines a diagram

(3.1.2) Spec(B)

��

Spec(Bf )

��
Spec(A) Spec(Af )oo

where the second vertical arrow is interpreted as the restriction of the first to the open set
spec(Af ) (and its pull-back, which is also an affine scheme). To clarify this point just note
that a prime in B maps to a prime in spec(Af ) if, and only if, its image in spec(A) is a prime
ideal not containing f .

Another case of interest is that in which S = A\p for some prime p, namely the localization
at p, denoted by Ap. Here, prime ideals in B ⊗A AP are those mapping to primes included
in p.
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Quotients. Given an ideal I in A and a homomorphism A → B, then the extended ideal
in B, namely IB, is called here the total transform of I to Spec(B). In this case, there is a
natural diagram

(3.1.3) Spec(B)

��

Spec(B/IB)oo

��
Spec(A) Spec(A/I)oo

where both horizontal morphisms are closed immersions. So a prime Q in B is in the closed
subscheme if and only if it maps to a prime in A that contains I. From a set theoretical
point of view, points in Spec(B/I) are the prime ideals in B mapping to the closed set V (I).

Fibers. Finally, and as a combination of (3.1.1) and (3.1.3) one obtains the notion of fiber
over a prime ideal p in A. Let k(p) = Ap/pAp, then there is a natural commutative diagram

(3.1.4) Spec(B)

��

Spec(B ⊗A k(p))oo

��
Spec(A) Spec(k(p))oo

where the points in Spec(B ⊗A k(p)) are identified with the prime ideals in B mapping to
the prime p.

4. Patching locally ringed spaces

4.1. On the identification of rings

The notion of identification has appeared in a set theoretical level in Section 1. There is
also a notion of identification of rings that we will discuss in the following lines. Of course
two rings, say B1 and B2, that are isomorphic can be identified, in the sense that a property
expressed in the language of rings will hold on B1 if and only if it holds on B2. In what
follows, whenever we say that we identify B1 with B2, or say

B1 = B2

what we really mean is that we prescribe a (unique) isomorphism between them. In other
words, that we have fixed an isomorphism, say

β1,2 : B1 → B2,

which should be clearly expressed in the context. One obtains the same identification by
using the isomorphism β2,1 : B2 → B1 where

β2,1 = β−1
1,2 .

An example of identification occurs when considering two multiplicative sets, say S and
T in B, so that S ⊂ T . Here we will say that

BT = (BS)T .
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In this particular case the isomorphism to be considered is the unique isomorphism of B-
algebras arising from the universal property of localization.

We shall also consider a notion of simultaneous identification of several rings, {B1, . . . , Br}.
Consider the set of indices Λ = {1, . . . , r}. An identification is defined by fixing, for each
pair (i, j) ∈ Λ× Λ, an isomorphism

βij : Bi → Bj

with the following conditions
1) βii = idBi

,
2) βji = β−1

ij , and
3) βjkβij = βik. Namely, we require the commutativity of all diagrams of the form:

(4.1.1) Bj

βjk

  A
AA

AA
AA

A

Bi

βik //

βij
>>~~~~~~~~

Bk

Observe that 1), 2), and 3), enable us to define an equivalence relation, say R, on the
disjoint union

∐
i∈I Bi, which defines a set of classes,

(4.1.2) D = (
∐

Bi)/R.

In this way, given an element ai ∈ Bi, one obtains an element aj ∈ Bj for any 1 ≤ j ≤ r.
Moreover, if we fix an index i and two elements, ai, bi ∈ Bi, then ai + bi ∈ Bi is naturally
identified with the element aj + bj ∈ Bj, and the product aibi is naturally identified with the
element ajbj ∈ Bj for any index j ∈ Λ. So D has a natural structure of ring, and D can be
identified with any ring Bi, say

(4.1.3) D = Bi.

The ring D will be our canonical choice of a representative, or say the the ring defined
by the equivalence relation on {B1, . . . , Br}. This allows us to reduce the identification of
several rings, to the case of two rings.

Sometimes the data {Bi, i ∈ Λ; βij, (i, j) ∈ Λ× Λ} will be expressed here simply by:

B1 = B2 = · · · = Br.

Note that if Γ is an non-empty subset of Λ, then the data {Bi, i ∈ Γ, βij, (i, j) ∈ Γ×Γ} also
fulfill properties 1), 2), and 3). The corresponding equivalence relation defines a quotient
set say D′ which is also a ring as indicated above. Clearly D′ can be identified with D. In
other words, there is a naturally defined isomorphism between both rings.

4.2. On the Patching of locally ringed spaces

Let (U1,OU1), (U2,OU2), . . . (Ur,OUr), be locally ringed spaces, and let Λ = {1, . . . , r}. As-
sume that the following data, consisting of subsets and isomorphism, are given:

A) A collection of open subsets, Uij ⊂ Ui, for 1 ≤ i, j ≤ r, with Uii = Ui.
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B) Setting (Uij,OUij
) as the restriction of (Ui,OUi

), an isomorphism of locally ringed
spaces,

αij : (Uij,OUij
)→ (Uji,OUji

)

for all pairs (i, j) ∈ Λ× Λ.

Assume, in addition, that:

i) These data define an equivalence relation on the disjoint union
⊔
Ul (of the underlying

topological spaces) as in Lemma 1.2, so as to define a topological space, say C.
ii) For each x ∈ C, if {xi1 , . . . , xis} is the fiber of x defined by⊔

Ul → C,

and if Λx = {i1, . . . , is}(⊂ Λ), then the corresponding family of local rings

(4.2.1) {OUi1
,xi1
, . . . ,OUir ,xir

}
together with the isomorphisms defined among these local rings,

{α∗inim(xin) : OUim ,xim
→ OUin ,xin

; (in, im) ∈ Λx × Λx},
fulfill conditions 1), 2) and 3) in 4.1.

Then a locally ringed space is defined on C, say

(C,OC),
where, for x ∈ C, OC,x, is the local ring obtained from the equivalence relation, i.e.,

OC,x = (
∐
l∈Λx

OUl,xl)/R

(see 4.1.2).

Remark 4.3. The previous construction provides a natural identification of the locally
ringed space (Ui,OUi

), with that defined by the restriction of (C,OC) to Ui for every i ∈ Λ.

5. Patching affine schemes

The locally ringed spaces that arise in algebraic and arithmetical geometry are those
obtained by patching finitely many affine schemes. In other words, we will focus on locally
ringed spaces obtained by patching spaces (U1,OU1), (U2,OU2), . . . (Ur,OUr), where for i =
1, . . . , r,

(Ui,OUi
) = Spec(Ai).

So implicit in the presentation is the collection of rings {A1, . . . , Ar}. However, more
information is required in order to make this patching possible. A first step in this direction
will be given with the notion of Local-Global data in 5.2.

Definition 5.1. Fix a ring A. We say that an open subset U in spec(A) is an affine open
subset if there is a ring B, and a ring homomorphism

A→ B

so that:
1) The induced map f : spec(B)→ spec(A) is injective with image U ;
2) The naturally induced homomorphism Af(p) → Bp is an isomorphism for any p ∈

spec(B).
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The previous definition can be reformulated by saying that U ⊂ spec(A) is an affine open
subset if there is a morphism of affine schemes, say Spec(B)→ Spec(A), so that the image
of the underlying spaces is the open set U , and Spec(B) is naturally identified with the
restriction of Spec(A) to U . For instance, this occurs when one takes B = Ag for some
element g ∈ A, and the homomorphism is that defined by the localization: A→ Ag.

5.2. Local-Global Data of rings

Let Λ = {1, . . . , r}. Given a collection of rings, homomorphisms, and isomorphisms:

(5.2.1)
(Rings): {Ai, i ∈ Λ; Aij, (i, j) ∈ Λ× Λ}

(Ring homomorphisms): {Ai → Aij : i, j ∈ Λ}
(Isomorphisms): {βij : Aij → Aji, (i, j) ∈ Λ× Λ}.

We say that U1 = Spec(A1), . . . , Ur = Spec(Ar) are patched by the previous data if:
A*) For each pair (i, j) ∈ Λ× Λ, the ring homomorphism

Ai → Aij

defines an affine open subset Uij ⊂ Ui = spec(Ai); with Aii = Ai for 1 ≤ i ≤ r.
B*) For each pair (i, j) ∈ Λ× Λ, the isomorphism

βij : Aij → Aji,

is so that:
B∗1) βji = β−1

ij , and
B∗2) βii = idAi

C*) The sets Ui, Uij and the isomorphisms αij : Uij → Uij, induced by βij : Aij → Aji,
fulfill condition C) as in the Patching Lemma 1.2;

C**) Given x ∈ C, and setting π−1(x) = {xi1 , . . . , xis} and Λx = {i1, . . . , is}, the local
rings

{(Aia)xia , ia ∈ Λx},
and the isomorphisms

(5.2.2) {βia,ib(x) : (Aia)xia → (Aib)xib , (ia, ib) ∈ Λx × Λx},
fulfill conditions 1) 2) and 3) in 4.1.

Under conditions A*-C** an underlying topological space C, together with a map can be
defined,

π :
∐

Ui → C;
and local rings can be constructed by identification,

OC,x =

( ∐
ia∈Λx

(Aia)xia

)
/R.

Here

(5.2.3) (C,OC)
is called the locally ringed space defined by the local-global data in (5.2.1). Note that, by
construction, the restriction of (C,OC) to the open set Ui is Spec(Ai). In particular, given
x ∈ Ui ⊂ C, then

OC,x = (Ai)xi



PROJECTIVE SCHEMES AND BLOW-UPS 11

for some prime ideal xi in Ai (see (4.1.3)).

Remark 5.3. With the same notation as in 5.2, consider a subset Γ of Λ = {1, . . . , r}. Then
the data

{Ai, i ∈ Γ, βij : Aij → Aji, (i, j) ∈ Γ× Γ}
also fulfill the required conditions from Definition 5.2. Moreover, if the open sets spec(Aj)
with j ∈ Γ cover C, then they also define the same locally ringed space (C,OC).

Remark 5.4. A) In all examples to be considered here, the data Λ = {1, . . . , r} and

{Ai, i ∈ Λ; βij : Aij → Aji, (i, j) ∈ Λ× Λ},
in the conditions of 5.2, will arise with the following additional properties:

i) For each index i ∈ Λ, there is a set of r elements

{ai1, . . . , air} ⊂ Ai,

with aii = 1 and such that:
ii) Aij = (Ai)aij (so Uij = spec(Ai)aij ⊂ spec(Ai)), and

Ai → Aij = (Ai)aij

is the localization. In other words, for each (i, j), the ring Aij is the localization of Ai in
some element aij ∈ Ai.

B) One can check that the ideal 〈ar,1, . . . , ar,r−1〉 = Ar if and only if Ur = spec(Ar) is
included in the union of the other open sets, when viewed as open subsets of C. If this is the
case, then, fixing Γ = {1, . . . , r − 1} as set of indices, the rings and isomorphisms

{Ai, i ∈ Γ; βij : Aij → Aji, (i, j) ∈ Γ× Γ}
define the same locally ringed space.

5.5. An illustrative example: Open restrictions

Fix a ring A and an open set U in spec(A). We claim that the restriction of Spec(A) to
the open set U can be endowed of local-global data as in 5.2. To clarify this claim we will
exhibit a family of rings and homomorphisms as in 5.2.

In the first place, since U is open in spec(A), the complement is a closed set, say V (I), for
some ideal I ⊂ A. Assume that 〈f1, . . . fr〉 = I. Then note that U is the union of the affine
open subsets U1 = spec(Af1), . . . , Ur = spec(Afr).

Now, given a pair (i, j), 1 ≤ i, j ≤ r, define

Aij = (Afi)fj

and set
βij : Aij → Aji

as the unique A-algebra homomorphism between them extracted from the universal property
of localization over A.

Finally check that these collection of rings, homomorphisms and isomorphisms fulfill the
conditions stated in 5.2. The outcome is a locally ringed space, denoted by (U,OU), which
is naturally identified with the restriction of Spec(A) to U .
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Now observe that if Γ is a non empty subset of Λ, and if

∪j∈Γspec(Afj) = U

then the local-global data

{Afi , i ∈ Γ, βij : Aij → Aji, (i, j) ∈ Γ× Γ}

also patch and define the same locally ringed space (U,OU). It follows that (U,OU) can also
be defined by elements g1, . . . gs of A, as long as

∪spec(Agi) = U.

5.6. Affine A-schemes and local-global data of A-algebras

Let Λ = {1, . . . , r}, and consider a collection of rings, homomorphisms and isomorphisms as
in 5.2,

(Rings): {Ai, i ∈ Λ;Aij, (i, j) ∈ Λ× Λ}

(Homomorphisms): {Ai → Aij, i, j ∈ Λ}

(Isomorphisms): {βij : Aij → Aji, (i, j) ∈ Λ× Λ}.

Let A be a ring, and assume that for each index 1 ≤ i ≤ r, there is a ring homomorphism

δi : A→ Ai.

Then, for each pair (i, j), a ring homomorphism

A→ Aij

is obtained by composition. If in addition the isomorphisms

βij : Aij → Aji

are compatible with the A-algebra structure A → Aij, for each i, j ∈ Λ, then the different
morphisms of affine schemes

Spec(Ai)→ Spec(A)

define a morphism

(C,OC)→ Spec(A).

In this case, the locally ringed space (C,OC) is said to be an A-scheme. This is the first
example of an A-scheme, as we will see in Section 6.

Example 5.7. 1)Let A be a ring, and let U ⊂ spec(A) be an open subset. Then, using the
same notation as in 5.5, note that the morphisms A→ Afi patch to define a morphism:

(U,OU)→ Spec(A).

2) Let A and C be rings. Then a ring homomorphism, C → A, defines a morphism
Spec(C) → Spec(A), and an open restriction (U,OU) → Spec(A) induces a restriction of
the first.
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Part II. Projective schemes and projective morphisms

6. Properties of A-schemes (I)

Schemes are locally ringed spaces with and additional structure, namely that of a sheaf,
which we will not discuss here. Roughly speaking, a scheme is a locally ringed space obtained
by patching affine schemes, i.e., spaces of the form Spec(B), where B is a ring. Morphisms
among schemes, or say, morphisms of schemes, are those obtained by gluing morphisms of
affine schemes. Now, instead of giving the formal definition of scheme and that of morphism
of schemes, in these notes we choose to describe them by giving some reasonable properties
that they satisfy.

About schemes

A first example of a locally ringed space obtained by patching affine schemes appears in
5.2. But not all schemes are obtained as in. In general, a scheme can be defined by giving an
open cover of affine schemes, that do not necessarily patch along open sets that correspond
to affine schemes. Consider, for instance, the scheme obtained by patching two copies of
the affine plane along the open subset obtained after removing the origin in both of them.
However, one of the properties of schemes is that it is always possible to give an open cover
by a set of affine schemes with the properties stated in 5.2 (see Property (C) below).

About morphisms of schemes

We shall sometimes fix a ring A, and discuss about a subclass in the class of schemes,
which we will refer to as A-schemes. A first example of morphism defined by patching
affine morphisms appears in 5.6, where an example of A-scheme is presented. But not all
morphisms of A-schemes arise patching morphisms of affine A-schemes. This fact already
appears in the notion of morphism of schemes between two affine schemes (see Property (A)
below).

Just to have some intuition. . .

A scheme (C,OC) will be said to be an A-scheme if there is a morphism of locally ringed
spaces

(C,OC)→ Spec(A)

satisfying certain additional properties (see Properties (A) and (C) below, see also Remark
6.1).

Let (C,OC) and (D,OD) be A-schemes. A morphism of locally ringed spaces,

(C,OC)→ (D,OD),

will be a morphism of A-schemes if the diagram of morphisms of locally ringed spaces

(6.0.1) (C,OC) //

%%KKKKKKKKKK
(D,OD)

xxrrrrrrrrrr

Spec(A)
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commutes, and some additional conditions are satisfied. In this section we will describe
morphisms of A-schemes, (C,OC) → (D,OD), when (D,OD) is affine (see Property (D)).
For the general definition we refer to Section 9.

Properties of A-schemes

In the following lines we list some (natural) properties that are required for a locally ringed
space to be an A-scheme, and for a morphism of locally ringed spaces to be a morphism of
A-schemes.

Property (A): Affine A-schemes and morphisms of affine A-schemes
Within the class of affine schemes, affine A-schemes will be the affine schemes defined by
the A-algebras. A morphism of affine A-schemes is simply a morphism defined by a homo-
morphisms of A-algebras. So a morphism of affine A-schemes, say

(6.0.2) Spec(C)

&&LLLLLLLLLL
Spec(B)oo

xxrrrrrrrrrr

Spec(A)

is given by giving a commutative diagram of ring homomorphisms

(6.0.3) C
f // B

A

??~~~~~~~

__@@@@@@@

Note that any affine scheme is a Z-scheme. The role of the ring A will be significant for the
formulation of some of the further properties to be discussed, particularly Property (C),
ii), below. An affine A-scheme of finite type will be one defined by an A-algebra of finite
type.

Property (B): Compositions and restrictions
Although we have not defined yet what a morphism of A-schemes is, it is quite natural to
ask that the following conditions hold:

1) If (C,OC)→ (C1,OC1) and (C1,OC1)→ (C2,OC2) are two morphisms of A-schemes, then
the composition (C,OC)→ (C2,OC2) is also a morphism of A-schemes.

2) The restriction of an A-scheme to an open set is also an A-scheme, and the inclusion is
a morphism of A-schemes.

Property (C): Local-global data for A-schemes
If (C,OC) is an A-scheme, then there is an open cover {Ui, i ∈ Λ} of C, so that:

(i) Each open restriction (Ui,OUi
) is an affine A-scheme, say (Ui,OUi

) = Spec(Ai) for
some A-algebra Ai.

(ii) Each restriction to an open set Ui ∩ Uj, (i, j) ∈ Λ× Λ, is also affine, say

(Ui ∩ Uj,OUi∩Uj
) = Spec(Aij),

and the restrictions Spec(Aij) → Spec(Ai) and Spec(Aij) → Spec(Aj) are morphisms of
affine A-schemes.
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Remark 6.1. We stress here that a given A-scheme may admit different open coverings as in
Property (C). However, Property (C) (ii) is rather a property of the so called separated
schemes, a notion not discussed here. Formally is not required in the definition of scheme.
Not every A-scheme given by local-global data is a separated A-scheme, but those treated
in these notes will be within this class.

Property (D): Morphisms of A-schemes
Let (C,OC) be an A-scheme, let Spec(B) be an affine A-scheme, and let {Ui, i ∈ Λ} be an
open cover of C satisfying properties (i) and (ii) from Property (C). Then a morphism of
A-schemes

(C,OC)→ Spec(B),

induces, by composition (see Property (B)) morphisms of affine A-schemes,

fi : Spec(Ai)→ Spec(B),

so that the diagrams

(6.1.1) Spec(Ai) = (Ui,OUi
)

((RRRRRRRRRRRRRR

Spec(Aij) = (Ui ∩ Uj,OUi∩Uj
)

++VVVVVVVVVVVVVVVVVVV

33hhhhhhhhhhhhhhhhhhh

Spec(B)

Spec(Aj) = (Uj,OUj
)

66lllllllllllll

commute for each pair (i, j) ∈ Λ× Λ. Thus the construction of a morphism of A-schemes

(C,OC)→ Spec(B),

is equivalent to the definition of morphisms of affine A-schemes

fi : Spec(Ai)→ Spec(B),

so that the diagrams as (6.1.1) commute for all (i, j) ∈ Λ× Λ.

By Property (A), this is equivalent to saying that giving a morphism of A-schemes
(C,OC)→ Spec(B) is the same as specifying homomorphisms fi : B → Ai, of A-algebras for
each index i ∈ Λ, producing commutative diagrams

(6.1.2) Ai

~~||
||

||
||

Aij B

__????????

����
��

��
��

Aj

``AAAAAAAA

for each pair (i, j) ∈ Λ× Λ.

6.2. Some illustrative examples: localizations and open restrictions
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Open restrictions are important for the study of local properties. Suppose that a morphism
of A-schemes, (C,OC) → Spec(B), is defined by local-global data of A-algebras and homo-
morphisms of A-algebras as in 5.6 (see also Property (D) above). Fix an open restriction,
(U,OU), of Spec(B), and consider the diagram,

(6.2.1) (C,OC)

��
Spec(B) (U,OU).oo

This induces, by taking the pull-back, an open restriction of (C,OC) to the inverse image of
U in C. Recall that open restrictions of A-schemes are again within the class (see Property
(B) (2)).

Let S be a multiplicative set in B. Observe that the localization B → BS applied to the
local-global data defines a local-global data of AS-algebras

{(Ai)S, i ∈ Λ; (Aij)S, (i, j) ∈ Λ× Λ; βij : (Aij)S → (Aji)S, (ij) ∈ Λ× Λ}
and a morphism of schemes, say

(CS,OCS)→ Spec(BS).

Of particular interest is the case when S is the multiplicative set defined by the powers of
an element a ∈ B. Notice that open sets of the form spec(Ba) form a basis of the topology
on spec(B). Observe that (U,OU) = Spec(Ba) is an open restriction of Spec(B), and there
is a commutative diagram

(6.2.2) (C,OC)

��

(Ca,OCa)oo

��
Spec(B) Spec(Ba)oo

in which (Ca,OCa) is obtained, as above, by localization on the local-global data, and both
horizontal morphisms are open restrictions. In fact, one can easily check that the open
restriction of (C,OC) to the inverse image of spec(Ba) is given by local-global data of A-
algebras. This holds because all homomorphisms are assumed to be of A-algebras.

7. Coherent modules

7.1. Identifications of modules

The identification previously discussed for rings (see Section 4), has a natural extension to
modules. Assume that two rings A and B have been identified, i.e., that an isomorphism
β : A → B has been fixed. We want to define now an identification of modules, which in
some natural way is compatible with this identification of the rings. If N is an A-module,
and M is a B-module, then both are, in particular, abelian groups. We will say that an
isomorphism of abelian groups, say

δ : N →M

is compatible with β : A→ B if for any a ∈ A and n ∈ N ,

δ(a · n) = β(a)δ(n).
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This can be reformulated by saying that δ : N → M is an isomorphism of A-modules,
where M is endowed with an A-module structure via β : A → B. Note that δ−1 : M → N
is compatible with β−1 : B → A.

We will identify N with M by fixing a group isomorphism γ : N → M compatible with
β : A→ B.

Suppose that an identification of several rings has been fixed: Set Λ = {1, . . . , r}, rings
Bi, with i ∈ Λ, and an isomorphism βij : Bi → Bj for each pair (i, j) ∈ Λ × Λ, so that
conditions 1), 2), and 3) from 4.1 hold.

Given now a Bi-module Ni, we define an identification of {N1, . . . , Nr}, compatible with
the previous identification of rings, by fixing an isomorphism of abelian groups, say

γij : Ni → Nj,

compatible with βij : Bi → Bj, for any pair (i, j) ∈ Λ× Λ, and we require that:
1) γii = idNi

,
2) γji = γ−1

ij , and
3) γjk ◦ γij = γik, i.e., we require the commutativity of the diagrams

(7.1.1) Nj

γjk

!!B
BB

BB
BB

B

Ni

γik //

γij
>>}}}}}}}

Nk.

These isomorphisms of abelian groups define an equivalence relation on their disjoint
union,

∐
i∈ΛNi, say R, and a quotient set,

N = (
∐

Ni)/R.

Note that N is an abelian group, and that it has a structure of D-module, where D is the
ring obtained by the equivalence relation on the rings {B1, . . . , Br}. Note also that there is
now a natural identification of each Bi-module Ni with the D-module N .

Example 7.2. An example arises naturally when defining ideals. Following the notation
introduced in 4.1 and 7.1, let Ii be an ideal in Bi for i = 1, . . . , r, and assume that βij(Ii) = Ij.
Then set Ni = Ii and let γij : Ii → Ij be the isomorphism of abelian groups obtained by
restriction of βij. Then N = (

∐
Ni)/R defines an ideal on D.

7.3. Modules over locally ringed spaces

Let (C,OC) be a locally ringed space. An OC-module, say (C,N ), is defined by setting, for
each x ∈ C, an OC,x-module, Nx.

For example, given a ring A and an A-module N , then a Spec(A)-module is naturally
defined by setting Np (localization at p) for any p ∈ spec(A).
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Given two isomorphic locally ringed spaces, say (C1,OC1) and (C2,OC2), an identification
is defined by fixing an isomorphism, say

δC1,C2 : (C1,OC1)→ (C2,OC2).
Given a OC1-module N1, and a OC2-module N2, we define an identification compatible with
δC1,C2 , say

γN1,N2 : N1 → N2,

to be an isomorphism of abelian groups for each x ∈ C1,

γN1,N2(x) : (N2)(δC1,C2 )(x)) → (N1)x,

which is compatible with the isomorphism of local rings δC1,C2(x) : OC2,δC1,C2 (x) → OC1,x in
the sense of 7.1.

Example 7.4. As an example, fix an isomorphism of rings β : A → B, an A-module N , a
B-module M , and an isomorphism of abelian groups, say δ : N → M , compatible with β
as in 7.1. Here β : A → B defines an isomorphism Spec(B) → Spec(A), and δ : N → M
defines an identification, compatible with this isomorphism, between the Spec(B)-module
M defined by M , and the Spec(A)-module N defined by N .

7.5. Coherent modules

Let (C,OC) be an A-scheme. An OC-module N is said to be a coherent OC-module if there is
an open cover {U1, . . . , Ur} of (C,OC) together with A-algebras {A1, . . . , Ar}, and modules
{M1, . . . ,Mr}, so that:

I) {U1, . . . , Ur} and {A1, . . . , Ar} fulfill the conditions in Property (C) from Section 6.
In particular, there is an identification of (Ui,OUi

) with Spec(Ai).
II) Each Mi is a finitely generated Ai-module. In particular, Mi defines a Spec(Ai)-module,

say Mi.
III) There is an identification of the restriction of N to each Ui, say (Ui,NUi

), with Mi,
which is compatible with the identification in (I).

7.6. Three remarks on coherent modules

Let (C,OC) be an A-scheme, and let {Ui, i ∈ Λ} be an open cover as in Property (C) from
Section 6. So we are assuming here that (Ui,OUi

) = Spec(Ai), and that (Ui ∩ Uj,OUi∩Uj
) =

Spec(Aij) for some rings Ai, Aij for all i, j ∈ Λ. Note that if x ∈ C is a point in Ui, then
OC,x = (Ai)p for a suitable prime ideal p in Ai. If x ∈ Ui ∩ Uj, then OC,x = (Ai)p =
(Aij)p. Therefore the homomorphism Ai → Aij is such that spec(Aij) → spec(Ai) is an
open inclusion on spec(Ai), and (Ai)p = (Aij)p for any prime ideal p in spec(Aij). There are
elements g1, . . . , gl in Ai so that {spec((Ai)g1), . . . , spec((Ai)gl)} is an open cover of spec(Aij).
A homomorphism (Ai)gs → (Aij)gs is defined by localization. The previous observations show
that (Ai)gs → (Aij)gs is an isomorphism for every index s.

Observe that:
1) The homomorphism Ai → Aij makes of Aij a flat Ai-algebra. This means that for all

short exact sequence of A-modules

0→M1 →M2 →M3 → 0
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the corresponding sequence

0→M1 ⊗Ai
Aij →M2 ⊗Ai

Aij →M3 ⊗Ai
Aij → 0

is also exact. The claim follows from the fact that localizations of the form Ai → (Ai)gs have
this property.

2) A coherent OC-module as in Definition 7.5 will be given by an Ai-module Mi, i =
1, . . . , r, so that

Mi ⊗Ai
Aij = Mj ⊗Aj

Aij

for 1 ≤ i, j ≤ r. This equality, or say, identification, will appear clearly on the examples, in
particular for the case of coherent modules over projective schemes, to be discussed in the
next section.

3) An OC-ideal will be presented by an ideal Ji in Ai, for i = 1, . . . , r, so that the two
extended ideals coincide, i.e.,

(7.6.1) JiAij = JjAij

where the left hand side is the extension defined by Ai → Aij, and the other by Aj → Aij.

7.7. Closed subschemes

A closed subscheme of an affine scheme Spec(A) is an affine scheme of the form Spec(A/J)
for an ideal J in A. Now let (C,OC) be an A-scheme, and let {Ui, i ∈ Λ} be an open
cover as in Property (C) in Section 6. The notion of OC-ideal leads to the definition of
closed subscheme. In fact, a new scheme can be constructed by patching the affine schemes
Spec(Ai/Ji). The equality in (7.6.1) enables us to replace Ai → Aij by Ai/Ji → Aij/JiAij.
In this way an OC-ideal defines a closed subscheme of (C,OC).

7.8. Coherent modules and local-global data

Let (C,OC) be an A-scheme given by the following local-global data for a given set of indices
Λ = {1, . . . , r}:

(A-algebras) : {Ai, i ∈ Λ; Aij; (i, j) ∈ Λ× Λ}
(Homomorphisms of A-algebras) : {Ai → Aij; i, j ∈ Λ}

(Isomorphisms of A-algebras) : {βij : Aij → Aji; (i, j) ∈ Λ× Λ}.
Then a coherent OC-module, say ON will be presented by giving a finitely generated

Ai-module Ni for each i ∈ Λ, and an isomorphism of abelian groups

γij : Aij ⊗Ni → Aji ⊗Nj

for each (i, j) ∈ Λ× Λ, with the following properties:

i) γij is compatible with βij : Aij → Aji.

Now let Ni be the Spec(Ai)-module obtained from Ni. Note that γij provides an identifi-
cation of the restriction Ni with the restriction of Nj along the open set Ui ∩ Uj. Fix x ∈ C
and consider the set of indices Λx = {i, 1 ≤ i ≤ r, and x ∈ Ui}. Note that (i) ensures that
for each pair (i, j) ∈ Λx × Λx, the isomorphism

γ∗ij(x) : (Ni)x → (Nj)x,
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is compatible with the isomorphism of rings βij(x) : (Ai)x → (Aj)x (see (5.2.2)).

ii) The isomorphisms γij, defined for each pair (i, j) ∈ Λx × Λx, fulfill the conditions of
equivalence for morphisms of abelian groups in 7.1.

A particular example of coherent module over an A-scheme will be that of an ideal. An
ideal will be constructed by fixing an ideal Ii in each ring Ai, so that βij : Aij → Aji maps
IiAij to IjAji.

Remark 7.9. In most examples to be considered Aij will be the localization of Ai at an
element, say aij ∈ Ai. So Ai → Aij will be

Ai → (Ai)aij .

In this case a coherent module is presented by giving a finitely generated Ai-module Ni, and
an isomorphism of abelian groups

γij : (Ni)aij → (Nj)aji

for each (i, j) ∈ Λ× Λ, with the prescribed conditions. Moreover, an OC-ideal will be given
by ideals Ji in Ai, i ∈ I, so that

βij : (Ai)aij → (Aj)aji

maps (Ji)aij to (Jj)aji .

7.10. Total transforms of ideals

Suppose that a morphism of schemes (C,OC)→ Spec(A) is defined by local-global data of A-
algebras and A-homomorphisms as in 5.6. Let J ⊂ A be an ideal and consider the extended
ideal Ji = JAi in each ring Ai. Then an OC-ideal is defined by setting Ni = Ji. This OC
-ideal is called the total transform of the ideal J ⊂ A by the morphism (C,OC)→ Spec(A).

Note, in addition, that the local-global data

{Ai/Ji, i ∈ Λ;Aij/JiAij, (ij) ∈ Λ× Λ; βij : Aij/JiAij → Aji/JiAji, (i, j) ∈ Λ× Λ}

define a scheme, say (C1,OC1) and a morphism

(C1,OC1)→ Spec(A/J).

8. Projective Schemes and projective morphisms

In this section we introduce projective schemes, presented here in terms of local-global
data. We begin by recalling some properties of graded rings and graded morphisms.

8.1. Graded rings and graded modules

We shall fix a totally ordered semi-group (T,+), typically T will be Z, or Z≥N , for some
integer N , or simply the natural numbers N. A T -graded ring R is a ring which is a direct
sum of abelian subgroups, say

R = ⊕i∈TRi,

where RiRj ⊂ Ri+j for all i, j ∈ T .
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An R-module M is said to by T -graded, or simply graded, or homogeneous, if it is a direct
sum of abelian subgroups, say

M = ⊕i∈TMi

and RiMj ⊂Mi+j for all i, j ∈ T .

A non-zero element m ∈Mi is said to be homogeneous of degree i. An R-submodule of M
is also T -graded if it is generated by homogeneous elements.

A morphism between two graded R-modules, say

M = ⊕i∈TMi → N = ⊕i∈TNi

is said to be homogeneous, or graded, if it maps homogeneous elements to homogeneous
elements of the same degree.

If R is T -graded and if r ∈ R is homogeneous, the localization Rr is also endowed with a
natural graded structure, and

R→ Rr

is a (homogeneous) homomorphism of graded rings. The same holds, more generally, when
R is localized in a multiplicative set S in which all elements are homogeneous. Namely, RS

is graded, and

R→ RS

is a homomorphism of graded rings.

Note here that if T = Z≥N , or if T = N, then Rr is Z-graded. Note also that a morphism
of graded R-modules, say

M = ⊕i∈TMi → N = ⊕i∈TNi,

induces, by localization, a morphism of graded RS-modules

MS = ⊕i∈TM ′
i → NS = ⊕i∈TN ′i .

We shall fix some conventions to ease the notion: If M = ⊕i∈TMi is a graded module,
then

[M ]i = Mi,

will denote here the homogeneous part of degree i ∈ T .

8.2. Simple graded rings and the triviality of graded modules

A polynomial ring in one variable over a ring B, say B[X], is graded by N (by the powers of
X).

However, the simplest graded structure is that which is obtained when localizing at the
element X. In this case we get B[X,X−1], which is Z-graded, say

B[X,X−1] = ⊕i∈ZBX i.

Th e simplicity of this structure will be justified in Lemmas 8.3 and 8.4.
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Lemma 8.3. Let B be a ring and let X be an indeterminate. Then:
1) There is a natural correspondence of graded B[X,X−1]-modules with B-modules that

allows us to identify B[X,X−1]-modules and graded morphisms with B-modules and mor-
phisms of B-modules. With this identification exact sequences on one side correspond to
exact sequences on the other.

2) There is a natural identification of homogeneous ideals in B[X,X−1] with ideals in B.
3) In the previous correspondence, prime ideals in B are identified with the homogeneous

prime ideals in B[X,X−1].

Proof: There is a natural homomorphism B → B[X,X−1], which defines, for any B-module
M , the graded B[X,X−1]-module:

M ⊗B B[X,X−1] = ⊕i∈ZMX i

Also, a morphism of B-modules,
f : N →M

induces a homogeneous morphism of graded modules,

F : ⊕i∈ZNX i → ⊕i∈ZMX i.

Moreover, a short exact sequence of B-modules,

0→ N →M → P → 0

induces a short exact sequence of homogeneous morphisms:

0→ ⊕i∈ZNX i → ⊕i∈ZMX i → ⊕i∈ZPX i → 0.

The point is that any graded B[X,X−1]-module, and any homogeneous morphism arises
in this way. In fact, one readily checks that if M = ⊕i∈IMi is a graded B[X,X−1]-module,
then Mi = M0X

i, so M = M0⊗BB[X,X−1]. In this way, graded modules, and homogeneous
morphisms, over the graded ring B[X,X−1], are naturally identified with the modules and
morphisms over the ring B. 	

Lemma 8.4. Let B be a ring and let X be an indeterminate. Then:
1) If S is a multiplicative set of homogeneous elements in B[X,X−1], then there is a

multiplicative set S ′ of B such that

B[X,X−1]S = (BS′)[X,X
−1]

as graded rings.
2) If bXk is homogeneous of degree k, then B[X,X−1]bXk = (Bb)[X,X

−1]

Proof. It suffices to check the claim when S is defined by the powers of a homogeneous
element. A homogeneous element is of the form bXk, for some b ∈ B and k ∈ Z. As X is a
unit, so is Xk, in particular the localization at bXk can be identified with localization at b.
Note finally that B[X,X−1]b is naturally identified with Bb[X,X

−1]. 	

8.5. Graded algebras generated in degree one

Let A be a ring, and consider a graded A-algebra of the form:

R = A[x1, x2, . . . , xl] = ⊕i∈NRi

where:
i) A = R0; and
ii) Each xi is homogeneous of degree one.
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A graded A-algebra with these properties is said to be (finitely) generated in degree one.

An example is that of the polynomials with coefficients in A with the usual grading,
R = A[X1, X2, . . . , Xl]. Any graded A-algebra generated in degree one, can be expressed as
a quotient of A[X1, X2, . . . , Xl] by a homogeneous ideal.

Claim. If L ∈ R = A[x1, x2, . . . , xl] is a homogeneous element of degree one, the localiza-
tion RL is a Z-graded ring of the form B[X,X−1] with B = [RL]0.

Proof of the claim: Observe that the localization of the N-graded ring R = A[x1, x2, . . . , xl]
at a homogeneous element is graded. Now, set B = [RL]0. If ak ∈ [RL]k then

b0 = (ak)L
−k ∈ [RL]0,

and of course ak = (b0)Lk. In other words,

RL = B[L,L−1]

as graded rings. Since L is homogeneous of degree one, L−1 is homogeneous of degree minus
one, and

[B[L,L−1]]k = BLk

for any k ∈ Z. Therefore L is transcendental over B, and hence

RL = B[L,L−1] = B[X,X−1]

as graded rings. 	

8.6. Introducing Proj(R) via local-global data

Consider a graded A-algebra finitely generated in degree one,

R = A[x1, x2, . . . , xl] = ⊕i∈NRi.

Our goal is to attach a locally ringed space to R, which we refer to as the projective scheme
defined by R = A[x1, . . . , xl], and will be denoted by Proj(R). This space will be an A-
scheme, and it will be defined together with a morphism

Proj(R)→ Spec(A).

When R = A[X1, X2, . . . , Xl] is a polynomial ring, then the underlying topological space
of Proj(R) is denoted by Pl−1

A , so

Proj(R) = (Pl−1
A ,OPl−1).

The scheme Proj(R) will be presented by local-global data of A-algebras as in 5.6.

To start the construction, consider the homogeneous ideal spanned by all elements of
degree one:

I = R1A[x1, x2, . . . , xl],

and choose a finite set of generators, {L1, . . . , Ls} ⊂ R1 so that

(8.6.1) I = 〈L1, . . . , Ls〉.
Define the index set Λ = {1, . . . , s}, together with the following rings and homomorphisms

{Ai, i ∈ Λ;Aij, (i, j) ∈ Λ× Λ}
{Ai → Aij; βij : Aij → Aji, (i, j) ∈ Λ× Λ},



24 A. BRAVO AND ORLANDO E. VILLAMAYOR U.

as in 5.2, where:
i) Ai = [RLi

]0,
ii) Aij = [RLiLj

]0, and
iii) βij : Aij → Aji is obtained by restriction to degree zero of the graded isomorphism

(RLi
)Lj
→ (RLj

)Li
.

In the following paragraphs we will show that the local-global data given in (i), (ii) and
(iii) define a scheme of A-algebras, by proving that all the conditions in 5.2 hold, and that
each βij : Aij → Aji is a homomorphism of A-algebras. The proof will be presented in
different steps: 8.7-8.10.

8.7. On the construction of Proj(R): patching two affine schemes

Let R = A[x1, x2, . . . , xl] be as in 8.6, and let L1 and L2 be two homogeneous elements of
degree one. Let [RLi

]0 = Ai, and accordingly, let RLi
= Ai[Li, L

−1
i ] for i = 1, 2. We now

define, from these data, two elements:

a1 ∈ [RL1 ]0 = A1, and a2 ∈ [RL2 ]0 = A2,

and an isomorphism between the localizations, say

β1,2 : ([RL1 ]0)a1 = (A1)a1 → ([RL2 ]0)a2 = (A2)a2 .

Observe that spec((A1)a1) is an open subset in spec(A1), and that spec((A2)a2) is an open
subset in spec(A2). The isomorphism β1,2 will enable us to patch Spec(A1) with Spec(A2)
along these open sets, as it defines an identification of the two restrictions. We proceed
to define this isomorphism in two steps. First consider the homomorphisms defined by
localization:

R→ RLi
, i = 1, 2.

The image of L1 in RL2 is homogeneous of degree one, and L1 = a2L2 ∈ A2[L2, L
−1
2 ] for some

element a2 ∈ A2. Similarly, L2 = a1L1 ∈ A1[L1, L
−1
1 ] for some a1 ∈ A1. Therefore using

Lemma 8.4,
(RL1)L2 = (A1[L1, L

−1
1 ])a1L1 = (A1)a1 [L1, L

−1
1 ].

In the same way,
(RL2)L1 = (A2[L2, L

−1
2 ])a2L2 = (A2)a2 [L2, L

−1
2 ].

Fix the unique isomorphism of R algebras obtained from the universal property of local-
ization,

(8.7.1) β̃1,2 : (RL1)L2 → (RL2)L1 .

Observe that it is an isomorphism of graded rings. Finally, let

(8.7.2) β1,2 : (A1)a1 → (A2)a2

be the isomorphism obtained by restriction of β̃1,2 to degree zero.

Remark 8.8. Let q1 ⊂ (A1)a1 be a prime ideal. This can be identified with a prime q1 ⊂ A1.
Let q2 = β1,2(q1). Then a homomorphism of local rings is obtained by localization in (8.7.2),

(8.8.1) β1,2 : (A1)q1 → (A2)q2 .

The identification defined by (8.7.2) can be expressed as follows: There are natural identi-
fications of (RL1)L2 and (RL2)L1 with RL1L2 . The localizations RL1 → RL1L2 , RL2 .→ RL1L2 ,
and the expressions:
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i) L2 = a1L1 in RL1 ,
ii) L1 = a2L2 in RL2 ,

define identifications of graded R-algebras:

(8.8.2) RL1L2 = (RL1)a1 = (RL2)a2

Each ai is of degree zero, and taking restriction to degree zero:

(8.8.3) (A1)a1 = [RL1L2 ]0 = (A2)a2 .

Notice that A1,2 = (A1)a1 = [RL1L2 ]0 = (A2)a2 = A2,1. Finally observe that (8.8.1) can be
interpreted as a localization of the last equalities at the same prime ideal.

Remark 8.9. By Lemma 8.3 we can identify:
1) Prime ideals of A1 = [RL1 ]0 with homogeneous primes in RL1 .
2) Prime ideals of (A1)a1 , with homogeneous primes in RL1L2 .
3) Prime ideals of (A2)a2 , also correspond to homogeneous primes in RL1L2 .
In addition,
4) RL1L2 has two structures of simple graded ring:

(A1)a1 [L1, L
−1
1 ] = RL1L2 = (A2)a2 [L2, L

−1
2 ],

and a prime in (A1)a1 is in correspondence with a prime in (A2)a2 if and only if both corre-
spond to the same homogeneous prime in RL1L2 .

In other words, a prime p1 ∈ spec(A1) is in correspondence with a prime p2 ∈ spec(A2),
and

(8.9.1) (A1)p1 = (A2)p2 ,

as indicated after (8.8.3), if and only if both primes ideals define the same homogeneous
prime in RL1L2 .

8.10. On the construction of Proj(R): patching three affine schemes

Suppose given three elements L1, L2, L3 ∈ R = A[x1, . . . , xl], all homogeneous of degree one.
Let

Ai = [RLi
]0, i = 1, 2, 3.

We will patch now the three affine schemes: Spec(A1), Spec(A2), and Spec(A3).

As in 8.7, consider the localization

R→ RL1 ,

and attach to the images of L2 and L3 some elements a
(2)
1 , a

(3)
1 ∈ A1 = [RL1 ]0 so that

L2 = a
(2)
1 L1 and L3 = a

(3)
1 L1 in RL1 . Since 1L1 = L1, we set a

(1)
1 = 1, and consider

{a(1)
1 , a

(2)
1 , a

(3)
1 } ⊂ [RL1 ]0 = A1. These elements define, by localization, the rings (A1)

a
(i)
1

=

[RL1Li
]0 = A1,i for i = 1, 2, 3.

More generally, the images of L1, L2, and L3, via

R→ RLi
, i = 1, 2, 3,

define elements a
(1)
i , a

(2)
i , a

(3)
i ∈ [RLi

]0 = Ai, so that Lj = a
(j)
i Li in RLi

. This way, we obtain,
by localization, the rings (Aj)a(i)j

= [RLjLi
]0 = Aj,i for i, j = 1, 2, 3.
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In order to patch three topological spaces U1 = spec(A1), U2 = spec(A2), and U3 =
spec(A3), we must specify open sets Uij(⊂ Ui), for 1 ≤ i, j ≤ 3, and homeomorphisms,
αij : Uij → Uji that fulfill condition C) from the Patching Lemma 1.2: i.e., if αij maps a
point p1 ∈ U1,2 to, say p2 = α(1,2)(p1) ∈ U2, and if p2 is in U2,3, then it is required that:

i) p1 ∈ U1,3, and
ii) α2,3α1,2(p1) = α1,3(p1).

We will check that this condition holds with Ui,j = spec(Aij) = spec([RLiLj
]0), and αi,j

the map induced by the natural ring homomorphisms, βi,j : Ai,j → Aj,i, for i, j = 1, 2, 3.
In addition, if α2,3α1,2(p1) = α1,3(p1) = p3, then there is a commutative diagram of isomor-
phisms:

(8.10.1) (A2)p2
β2,3

$$I
IIIIIIII

(A1)p1
β1,3 //

β1,2
::uuuuuuuuu

(A3)p3

Assumption 1. Suppose that p1 is a prime of A1 and that a
(2)
1 is a unit at the localization

(A1)p1 (or equivalently, that a
(2)
1 /∈ p1).

Since RL1 = A1[L1, L
−1
1 ], p1 defines the homogeneous prime p1RL1 (see Remark 8.9). Clearly

a
(2)
1 is not included in such homogeneous prime, so p1RL1 can be identified with a homogenous

prime at the localization RL1L2 , say p1RL1L2 . In fact:

RL1 → RL1L2 = (RL1)L2 = (RL1)a(2)1
,

and restricting to degree zero we get:

A1 = [RL1 ]0 → [RL1L2 ]0 = (A1)
a
(2)
1
.

Since RL1L2 = (RL2)L1 , the previous arguments applied now to

RL2 → RL1L2 ,

enable us to define, by restriction to degree zero:

A2 = [RL2 ]0 → [RL2L1 ]0 = (A2)
a
(1)
2
.

Briefly, by Assumption 1, the prime p1 can be viewed as a homogeneous prime in both
RL1 , and RL1L2 . Since there are localization maps,

(8.10.2) RL1

##G
GGGGGGG

RL1L2

RL2

;;wwwwwwww

the prime p1RL1L2 contracts to a homogeneous prime in RL2 . Finally, by taking restriction
to degree zero, p1 can be identified with a prime, p2 ∈ A2 = [RL2 ]0 which does not contain
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a
(1)
2 (see Remark 8.9). This is how we have defined the identification,

α1,2 : spec((A1)a21) = spec(A1,2)→ spec((A2)
a
(1)
2

) = spec(A2,1).

Now we have to show that if α1,2(p1) ∈ spec((A2)
a
(3)
2

) = spec(A2,3), then p1 ∈ spec((A1)
a
(3)
1

) =

spec(A1,3), and moreover
α2,3α1,2(p1) = α1,3(p1).

Assumption 2. Suppose that the previous prime p2 ⊂ A2 does not contain a
(3)
2 .

Then arguing as before, p2 can be identified with a homogeneous prime at the localization
RL2L3 via

RL2 → RL2L3 .

So, summarizing, using Assumption 1, we identified p1 with an homogeneous prime in
RL1L2 , and using Assumption 2, we have identified p2 with a homogeneous prime in RL2L3 .
Both rings RL1L2 and RL2L3 have a common homogeneous localization:

(8.10.3) RL1L2

%%JJJJJJJJJ

RL1L2L3

RL2L3

99ttttttttt

Claim 1. Both homogeneous primes, p1RL1L2, and p2RL2L3, extend to homogeneous prime
ideals in the localization RL1L2L3.

Proof: By Assumption 1, p1 can be viewed as a prime in RL1L2 because it did not contain

a
(2)
1 . There is a natural map from A2 to RL1L2 , and Assumption 2 says that a

(3)
2 is not an

element of p1RL1L2 .

Set formally, at RL1L2 :

a
(3)
2 =

L3

L2

=
L3

L1

L1

L2

= a
(3)
1 (a

(2)
1 )−1,

to conclude that p1RL1L2 does not contain a
(3)
1 . So p1 extends to a (proper) homogeneous

prime in RL1L2L3 = (RL1L2)a(3)1
.

Since p2 was defined by contraction of p1RL1L2 via A2 → RL1L2 , it follows that

p1RL1L2L3 = p2RL1L2L3 . 	

On the other hand RL1L2L3 is also a homogeneous localization of RL1L3 , so p1RL1L2L3

induces a homogeneous prime in RL1L3 , and hence a homogeneous prime, say Q
(1)
3 in RL3 .

Similarly , p2RL1L2L3 induces an homogeneous prime in RL2L3 , and hence an homogeneous

prime, say Q
(2)
3 in RL3 .

Claim 2. Q
(1)
3 = Q

(2)
3 .
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Proof: The claim follows from the construction since

Q
(1)
3 RL1L2L3 = p1RL1L2L3 = p2RL1L2L3 = Q

(2)
3 RL1L2L3 . 	

Claim 2 implies that:

α2,3α1,2(p1) = α1,3(p1),

by taking restriction to degree zero. Moreover, one can check that the conditions in 4.1.1
hold, as all three rings coincide when viewed as a localization of the ring [RL1L2L3 ]0.

Remark 8.11. 1) The additional conditions stated in Remark 5.4, A) hold in this context,

where now {a(1)
i , . . . , a

(r)
i } ⊂ Ai, is defined so that a

(j)
i Li = Lj at RLi

for I = 1, . . . , r (see
8.7).

2) The observation in Remark 5.4, B) shows that the scheme obtained from the previous
data is independent of the choice of generators in (8.6.1). In fact if {L1, . . . , Ls} ⊂ R1

and {L′1, . . . , L′r} ⊂ R1 are two different families of generators of I = R1A[x1, x2, . . . , xl],
then so is the union. If we consider the definitions in 8.6 by taking as set of generators
{L1, . . . , Ls, L

′
1, . . . , L

′
r}, then Remark 5.4, B) says that such scheme coincides with that

defined by {L1, . . . , Ls} ⊂ R1, and with that defined by {L′1, . . . , L′r} ⊂ R1.

8.12. On the underlying topological space of Proj(R)

For the graded ring R = A[x1, x2, . . . , xl] = ⊕i∈NRi, there is a natural identification of
the underlying set (topological space) of Proj(R) with a subset of prime ideals in R. We
claim that this set is naturally identified with the subset of homogeneous prime ideals not
containing the homogeneous ideal

I = R1A[x1, x2, . . . , xl].

We have fixed generators {L1, . . . , Ls} ⊂ R1 of this ideal, to provide local-global data
used to construct this scheme. In this construction we have made use of the simplicity of a
localization of the form RLi

, in the sense that it is a graded ring of the form studied in 8.2.

Homogeneous primes in RLi
are identified with homogeneous primes in R not containing

the element Li. Our construction shows that homogeneous primes in RLi
and in RLj

are
identified if and only if they coincide as primes in the localization RLiLj

. In particular, both
prime ideals arise from a same homogeneous prime in R, and this prime does not contain
the product LiLj. This observation already proves our claim.

8.13. Graded R-modules and Coherent modules on Proj(R)

Let R = A[x1, x2, . . . , xl] = ⊕i∈NRi and let M be a finitely generated R-graded module.
We will indicate how to define a coherent Proj(R)-module, say M, in terms of M . The
construction will show that a homogeneous morphism of graded R-modules, say M → N ,
will define a morphism of OProj(R)-modules, sayM→N . Moreover, a short exact sequence
of graded R-modules, say

0→M1 →M2 →M3 → 0

will define a short exact sequence

0→M1 →M2 →M3 → 0,
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in the sense that for any p ∈ Proj(R), there is a short exact sequence 0 → (M1)p →
(M2)p → (M3)p → 0.

Before we start the construction of the Proj-sheaf of modulesM defined by the R-module
M , observe that given a non-zero element L ∈ R1, the localization ML is a graded module
over RL = [RL]0[L,L−1]. In particular ML can be canonically identified with the [RL]0-
module [ML]0. We will follow the notation introduced in 7.5.

We start by describing Proj(R) with local global data as in 8.6. So assume that {L1, . . . , Ls} ⊂
R1 is a finite set of generators of

I = R1A[x1, x2, . . . , xl].

Set Λ = {1, . . . , s}, and the following rings and homomorphisms

{Ai = [RLi
]0; i ∈ Λ;Aij = [RLiLj

]0; (i, j) ∈ Λ× Λ}

{Ai → Aij; βij : Aij → Aji, (i, j) ∈ Λ× Λ},
where Ai = [RLi

]0 → Aij = [RLiLj
]0 is a localization of Ai (in fact [RLiLj

]0 = (Ai)a(j)i

for a suitable degree zero element a
(j)
i ∈ Ai defined by the equation a

(j)
i Li = Lj), and

βij : Aij → Aji is obtained by restriction to degree zero of the graded isomorphism

(RLi
)Lj
→ (RLj

)Li
.

Let Mi be the finite Ai-module [MLi
]0. The localization RLi

→ RLiLj
defines a localization

of modules, say NLi
→ NLiLj

, and

Mi = [MLi
]0 → [MLiLj

]0

is the corresponding localization Mi → (Mi)a(j)i
.

The isomorphism (RLi
)Lj
→ (RLj

)Li
induces an isomorphism of graded abelian groups,

say

(MLi
)Lj
→ (MLj

)Li
.

And the restriction to the degree zero part defines

(Mi)a(j)i
→ (Mj)a(i)j

,

which is naturally compatible with the isomorphism

Aij = (Ai)a(j)i
→ (Aj)a(i)j

= Aji.

If p1 denotes a prime in Aij mapping to p2 in Aji, then set

γij : ((Mi)a(j)i
)p1 → ((Mj)a(i)j

)p2

or equivalently

γij : (Mi)p1 → (Mj)p2

as the naturally induced map.
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Lemma 8.14. 1) A graded R-module M defines a Proj(R)-module, say M.
2) A short exact sequence of graded R-modules, say

0→M1 →M2 →M3 → 0,

defines an exact sequence of Proj(R)-modules:

0→M1 →M2 →M3 → 0.

Proof: The statements are a consequence of the construction described in 8.13, and the fact
that exact sequences of modules are preserved by localization. 	

Corollary 8.15. Let I ⊂ R be a homogenous ideal, and consider the exact sequence of
graded R-modules

0→ I → R→ R→ 0,

then:
1) The Proj(R)-module, defined by the middle term, is simply Proj(R).
2) The Proj(R)-module defined by I is an ideal in Proj(R).
3) Proj(R) can be identified with the Proj(R)-module defined by R. Therefore Proj(R)

is a closed sub-scheme in Proj(R) defined by the Proj(R)-ideal from 2).

Proof: For 2) and 3) observe that the homogeneous ideal I, gives rise to an ideal by the
local-global data that we have introduced to define Proj(R) (see 7.8 and 7.10). 	

Remark 8.16. Given a graded ring generated in degree one, R = A[x1, x2, . . . , xl], we have
defined Proj(R) in terms of data consisting of rings: Ai, Aij, and isomorphisms βij : Aij →
Aji. Recall here that in this construction all rings are endowed with an A-algebra structure,
and the βij are homomorphisms of A-algebras:

1) An ideal J in A defines an ideal JAi for each index i, and these ideals define an ideal
in Proj(R).

On the other hand, as J ⊂ A, is a set of homogeneous elements of degree zero in R =
A[x1, x2, . . . , xl],

I = JA[x1, x2, . . . , xl]

is a homogeneous ideal in R. So I also defines an ideal in Proj(R), as was indicated in
Corollary 8.15. One readily checks, by looking at each Ai, that both Proj(R)-ideals coincide.

2) If S is a multiplicative set in A, then RS = AS[x1, x2, . . . , xl] is a graded AS-algebra
generated in degree one (8.5). Note here that

Proj(RS)→ Spec(AS)

is defined by localization of the local-global data of A-algebras and A-homomorphisms in
8.6.

8.17. Veronese rings

Let R = A[x1, x2, . . . , xl] = ⊕Ri be a graded ring generated in degree one, and let N ≥ 1 be
a positive integer. Then, a new graded ring can be obtained from R,

V (N)(R) = ⊕i∈NR′i
where R′i = Ri if i is a multiple of N , and otherwise R′i = 0. V (N)(R) is called the N-th
Veronese ring of R. It is clearly a subring of R, and the inclusion

V (N)(R) ⊂ R
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is a finite extension as the N -th power of an homogeneous element in R is in the Veronese
subring.

Let

V (N)(R) = ⊕i∈NR∗∗i
where R∗∗i = Ri·N . This provides an expression of V (N)(R) as an A-algebra, which is finitely
generated in degree one. Therefore, one can also define the A-scheme, say

Proj(V (N)(R))→ Spec(A).

Repeating the arguments in 8.6-8.10, local-global data defining Proj(V (N)(R)) can ob-
tained by fixing a set of homogenous elements {H1, . . . , HlN} ⊂ RN , which generate the
A-module RN . In fact, in this case

V (N)(R) = A[H1, . . . , HlN ].

The main property of the Veronese subrings, discussed below, is that they all define the
the same projective schemes, i.e., Proj(V (N)(R)) = Proj(R) as A-schemes for all N ≥ 1.
On the other hand the affine covers, defined by the local-global data, are different. The point
is that as N grows, one obtains different affine covers. An interesting feature of Veronese
rings is the following property: Any open cover of Proj(R) can be refined by the affine cover
obtained by a set {H1, . . . , HlN} ⊂ RN , for all N big enough.

Claim: Proj(V (N)(R)) = Proj(R) for any positive integer N ≥ 1.

Proof: Let {H1, . . . , HlN} be the set of all monomial expressions in {x1, . . . , xs} of degree N .
So V (N)(R) = A[H1, . . . , HlN ]. Express the localization of V (N)(R) at Hi in the form

(V (N)(R))Hi
= Bi[W,W

−1]

where Bi denotes the subring of elements of degree zero.

One can also localize the inclusion V (N)(R) ⊂ R, say

(V (N)(R))Hi
= Bi0 [W,W

−1] ⊂ RHi

which is a finite extension of graded rings. The N -th powers {xN1 , . . . , xNl } are among the
monomials {H1, . . . , HlN}, and there is a natural identification:

RxNi
= Rxi

for i = 1, . . . , l. For those Hi = xNi , there is an inclusion

Bi[W,W
−1] ⊂ Rxi = Bi[T, T

−1]

where W = TN .

The affine charts obtained from {H1, . . . , HlN}, define Proj(V (N)(R)). Among those
charts, the ones obtained from {xN1 , . . . , xNl }, are the same affine charts as that obtained
from {x1, . . . , xl}, which define Proj(R).

Finally, consider, in the graded ring V (N)(R), the inclusion of ideals

〈xN1 , . . . , xNl 〉 ⊂ 〈H1, . . . , HlN 〉,
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and check that
〈xN1 , . . . , xNl 〉 ⊃ 〈H1, . . . , HlN 〉N .

The discussion in 8.12 shows now that Proj(V (N)(R)) can be covered by the charts (local-
global data) defined by the elements {xN1 , . . . , xNl }. Therefore Proj(V (N)(R)) = Proj(R),
and the identification extends to Proj(V (N)(R))→ Spec(A). Summarizing, among the charts
defined by {H1, . . . , HlN}, those corresponding to the N -th powers {xN1 , . . . , xNl }, already
cover the projective scheme. 	

Note, in particular, that all other affine charts defined by {H1, . . . , HlN} are localizations
of the latter. Take, for example N = 2 and Hi = x1x2. In this case one can express formally

[V (2)(R)Mi
]0 = A

[
M1

x1x2

, . . . ,
Ml2

x1x2

]
.

Check, for example, that
x2

1

x1x2

=
x1

x2

;
x2

2

x1x2

=
x2

x1

,

and furthermore, that this ring is a localization of [V (2)(R)x21 ]0 = [(R)x1 ]0. In fact, if we set
formally

[(R)x1 ]0 = A

[
x2

x1

, . . . ,
xl
x1

]
,

then

[V (2)(R)Mi
]0 = A

[
x2

x1

, . . . ,
xl
x1

]
x2
x1

.

9. Properties of A-schemes (II)

Up to this point we have introduced an A-scheme (C,OC) by fixing an open cover {Ui, i ∈
Λ} of C, and affine A-schemes Spec(Ai), so that (Ui,OUi

) = Spec(Ai). This was done in
in Section 6, where A-schemes were presented by local-global data (see Property (C) in
Section 6). However, this relation of the A-scheme with the open cover may be relaxed.
The point is that the same A-scheme admits different covers by affine open sets. A first
step in the clarification of this point is to discuss the notion of affine open restriction of an
A-scheme.

9.1. On affine open restrictions

Assume that the A-scheme (C,OC) is presented by fixing an affine open cover {Ui, i ∈ Λ}
of C, where (Ui,OUi

) = Spec(Ai) (Ui is spec(Ai)), and Ai is an A-algebra (see Section 6,
Property (C)). In this case

Spec(Ai)→ (C,OC)
is an example of an open affine restriction, and hence it is a morphism of A-schemes (see
Section 6, Property (B)). In this case we say that Spec(Ai)(= (Ui,OUi)) is an affine chart
of the given affine cover of (C,OC).

In general, an open restriction (U ,OU) is said to be an affine restriction if (U ,OU) =
Spec(D) for some A-algebra D, and the morphism

(9.1.1) Spec(D)→ (C,OC)
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is a morphism of A-schemes (see Section 6, Property (D)). This last condition is very
strong, and deserves some clarification.

A particular property of A-schemes, and more precisely, of separated A-schemes, is that
the intersection of two open affine restrictions is again an affine restriction. In particular
U ∩ Ui is affine both in Spec(Ai) and in Spec(D). Moreover, there is an A-algebra, say Di,
and a diagram

(9.1.2) Spec(Ai)

Spec(Di)

88qqqqqqqqqq

&&MMMMMMMMMM

Spec(D)

defining the open restrictions in the class of affine A-algebras. This imposes a condition of
compatibility of (9.1.1) with the patching of affine schemes from Property (C) in Section
6. Not every identification of the form (U ,OU) = Spec(D) will fulfill these conditions.

An affine cover of an A-scheme is defined by a cover by affine restrictions. Each such affine
restriction is called a chart (or an affine chart) of the cover.

Let us mention that if the open affine cover in Property (C) from Section 6 is replaced
the by another affine cover, then one obtains the same underlying structure of A-scheme.

Property (E): Given an A-scheme together with an arbitrary open cover of the underlying
topological space (not necessarily by affine open sets), there is a refinement of this cover by
an affine open cover of (C,OC), by affine open sets {Ui, i ∈ Λ} of C.

Property (F): Let (C,OC) and (D,OD) be two A-schemes. A morphism of locally ringed
spaces

(9.1.3) (D,OD)→ (C,OC)

is a morphism of A-schemes if there is an affine cover of (C,OC) by affine open sets {Ui, i ∈ Λ}
as in Property (C) from Section 6, so that taking Vi ⊂ D as the pull back of Ui in C, and
(Vi,OVi) as the restriction of (D,OD), the restriction of the morphism, say

(Vi,OVi)→ (Ui,OUi
) = Spec(Ai)

is a morphism of A-schemes as defined in Property (D) in Section 6, for each index i ∈ Λ.

Here we have fixed an affine cover {Ui, i ∈ Λ} of C, and then we have defined an open
cover of D by setting {Vi = f−1(Ui), i ∈ Λ}, where f : D → C is the continuos map on the
underlying topological spaces.

Recall that the restriction of an A-scheme to an open set is an A-scheme (see Property
(B) in Section 6). So a morphism of A-schemes is obtained by patching morphisms of affine
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A-schemes, or say by commutative diagrams of the form:

(9.1.4) (Vi,OVi) // Spec(Ai)

(Vi ∩ Vj,OVi∩Vj) //

66nnnnnnnnnnnn

((PPPPPPPPPPPP
Spec(Aij)

ffMMMMMMMMMMM

xxqqqqqqqqqqq

(Vj,OVj) // Spec(Aj)

Suppose that Wi0 is an affine chart in Vi, say (Wi0 ,OWi0
) = Spec(Bi0), and that Wj0 is an

affine chart in Vj, and let (Wj0 ,OWj0
) = Spec(Bj0). This situation arises, as above, when we

choose an affine cover of D which refines the open cover {Vi = f−1(Ui), i ∈ I} (by Property
(E)). In this latter case the morphism is characterized by commutative diagrams of the form
(9.1.5)

(Wi0 ,OWi0
) = Spec(Bi0) // Spec(Ai)

(Wi0 ∩Wj0 ,OWi0
∩Wj0

,) = Spec(Bi,j) //

33ggggggggggggggggggggg

++WWWWWWWWWWWWWWWWWWWWW
Spec(Aij)

ffMMMMMMMMMMM

xxqqqqqqqqqqq

(Wj0 ,OWj0
) = Spec(Bj0) // Spec(Aj)

So from this point of view, every A-scheme is obtained by patching affine A-schemes, and
morphisms of A-schemes are obtained by patching morphisms of affine A-schemes.

Remark 9.2. In the formulation of Property (F) we have fixed a morphism of locally
ringed spaces between two A-schemes. However this condition can also be relaxed. This
is due to the fact that morphisms of A-schemes can be glued. Suppose that (D,OD) and
(C,OC) are two A-schemes, and suppose given two covers, on C and D respectively, with the
same index set, say {Ui, i ∈ Λ} of C, and {Vi, i ∈ Λ} of D. Assume, for simplicity, that
{Ui, i ∈ Λ} is an affine cover, say (Ui,OUi

) = Spec(Ai) and that morphisms of A-schemes,
are defined for each i ∈ Λ,

(9.2.1) (Vi,OVi)
fi // Spec(Ai).

The morphisms fi are said to glue when all diagrams (9.1.4) commute. If such is the case,
there is a morphisms of A-schemes, say

(9.2.2) (D,OD)
f // (C,OC)

inducing the morphisms fi by restrictions.

Let us stress that given morphisms as in (9.2.1), the criterion used to ensure that theses
morphisms glue is given by the commutativity of all diagrams (9.1.5). This is possible once
we fix a refinement of the cover {Vi, i ∈ I} by an affine cover of D.
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Part III. Blow-ups

10. The blow-up of an ideal

10.1. The construction of the blow-up

Let A be a ring, let I ⊂ A be an ideal, and consider the ring R = ⊕k∈NIk, where I0 = A.
Note that R is a graded ring. We will usually write

R = ⊕k∈NIkW k

where W is a variable over A used just to recall the grading. Observe that there is an
inclusion of graded rings:

R = ⊕k∈NIkW k ⊂ A[W ].

Now suppose that I = 〈f1, . . . , fr〉. Then

(10.1.1) R = A[f1W, . . . , frW ](⊂ A[W ]).

Define Λ = {1, · · · , r}, and set Li = fiW for i ∈ Λ. Arguing as in 8.6, the following
local-global data can be considered:

i) Ai = [RLi
]0;

ii) Aij = [(RLi
)Lj

]0;
iii) and the isomorphisms βij : Aij → Aji.

This local-global data describes the A-scheme, ProjR as in 8.6, which in this particular
case is referred to as the blow-up of A at the ideal I and denoted by BlI(A). The purpose of
this section is to study some properties of this projective scheme.

10.2. A closer look at the rings Ai = [RLi
]0

Note that Li = fiW is not necessarily a product of two elements in the graded ring R.
However Li is the product of fi ∈ A with W when viewed in A[W ], and therefore

RLi
⊂ A[W ]Li

= Afi [W,W
−1]

as graded rings. In particular

(10.2.1) Ai = [RLi
]0 ⊂ [Afi [W,W

−1]]0 = Afi

Rewrite (10.1.1) as R = A[L1, · · · , Lr], where each Li is homogeneous of degree one. Here
RLi

= A[L1, · · · , Lr]Li
, and set, formally,

[RLi
]0 = A

[
L1

Li
, . . . ,

L1

Li

]
.

Finally, the inclusion (10.2.1) says that

(10.2.2) Ai = [RLi
]0 = A

[
f1

fi
, . . .

fr
fi

]
⊂ Afi .

This expression provides each Ai with a structure of A-algebra together with a precise pre-
sentation of Ai as a subring of the localization Afi ,

(10.2.3) A→ Ai = A

[
f1

fi
, . . .

fr
fi

]
(⊂ Afi).

10.3. A closer look at the rings Aij
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Recall that Bi,j = [(RLi
)Lj

]0. Now

(10.3.1) RLiLj
⊂ A[W ]LiLj

= Afifj [W,W
−1]

¿From the expression R = A[L1, · · · , Lr], we get RLiLj
= A[L1, · · · , Lr]LiLj

and

[RLiLj
]0 = A

[
L1

Li
, . . . ,

L1

Li

] [
Li
Lj

]
= A

[
L1

Lj
, . . . ,

L1

Lj

] [
Lj
Li

]
Finally, the inclusion (10.3.1) gives a precise formulation of the formal expression:

(10.3.2) Aij = [RLiLj
]0 = A

[
f1

fi
, . . .

fr
fi

] [
fi
fj

](
= A

[
f1

fj
, . . .

fr
fj

] [
fj
fi

])
⊂ Afifj .

Here A
[
f1
fi
, . . . fr

fi

] [
fi
fj

]
expresses the localization of Ai = A

[
f1
fi
, . . . fr

fi

]
at the element

fj
fi

, say

(10.3.3) Aij = (Ai) fj
fi

10.4. A closer look at the isomorphisms βij

The equality A
[
f1
fi
, . . . fr

fi

] [
fi
fj

]
= A

[
f1
fj
, . . . fr

fj

] [
fj
fi

]
can be easily checked in the ring Afifj .

It says that

Aij = (Ai) fj
fi

= Aji = (Aj) fi
fj

when viewed as subrings of Afifj . Here βij : Aij → Aji is the isomorphism that defines this
identification, namely:

βij

(
fs
fi

)
=
fs
fj

(
fi
fj

)−1

s = 1, . . . r.

10.5. Towards the Universal Property of the blow-up I

A particular but significant example is that in which the ideal I = 〈f1, . . . , fr〉 of A is a free
A-module, and generated by f1. Then A is a subring of Af1 , as f1 is a non-zero divisor, and

A1 = A

[
f2

f1

, . . .
fr
f1

]
= A.

For any other index i 6= 1, the ring Ai in 10.2.3, can be expressed now as:

A

[
f1

fi
, . . .

fr
fi

]
= A

[
f2

f1

, . . .
fr
f1

] [
f1

fi
, . . .

fr
fi

]
(⊂ Afi).

Note that

A

[
f2

f1

, . . .
fr
f1

] [
f1

fi
, . . .

fr
fi

]
= A

[
f2

f1

, . . .
fr
f1

] [
f1

fi

]
(⊂ Afi).

So for each index i 6= 1, Ai can be identified with the localization of A at the element fi
f1
∈ A.

Therefore, in this particular case Proj(R) = Spec(A), or equivalently, Proj(R)→ Spec(A)
is an isomorphism.

10.6. Towards the Universal Property of the blow-up II
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Let (B,M) be a local ring, and an A-algebra. Assume that IB is free.

Claim 1. If IB generated by f1, then there is a unique morphism of A-algebras

A1 = A

[
f2

f1

, . . .
fr
f1

]
→ B.

Proof: Since f1 is a non-zero divisor in B, there is an inclusion of B in the localization
Bf1 . We claim that the morphism Af1 → Bf1 , defined by localization, maps the subring

A
[
f2
f1
, . . . fr

f1

]
into the subring B. To this end we write a system of r equations:

(10.6.1) fi = Xif1, i = 1, 2, . . . , r.

Since the rings A1, B, and Bf1 are A-algebras, the equations can be formulated on each of
these three rings. In each case the system has a solution, and moreover, such solution is

unique. On the ring A
[
f2
f1
, . . . fr

f1

]
, the unique solution is given by Xi = fi

f1
for i = 1, . . . , r,

so the morphism Af1 → Bf1 maps each fi
f1

to the (unique) solution of equation fi = Xif1

in B. Let {c(1)
1 , . . . , c

(1)
r } be the uniquely defined elements in B which fulfill the equations

(10.6.2), namely,

(10.6.2) fi = c
(1)
i f1, i = 1, . . . , r.

Then the unique morphism of A-algebras is defined as:

(10.6.3)
A
[
f2
f1
, . . . fr

f1

]
−→ B

fi
f1
7−→ c

(1)
i .

This discussion proves the existence of the morphism, and also its uniqueness.

In the previous definition of the morphism (10.6.3) we have assumed that IB is a free B-
module, and generated by f1. Conversely, if IB is free over B, and the morphism is defined,
then {f1} is a basis of IB. In brief, if IB is free, the existence of (10.6.3) is equivalent to
the requirement that {f1} be a basis of IB.

Let q1 ∈ spec
(
A
[
f2
f1
, . . . fr

f1

])
denote the image of M , the maximal ideal of B. Suppose

now that the free module IB is also generated by f2, or equivalently, that c
(1)
2 is a unit in

B. As f2
f1

maps to c
(1)
2 , this will occur if and only if f2

f1
is not an element in q1. Therefore,

{f2} is also a basis of the free B-module IB if and only if

q1 ∈ spec

(
A

[
f2

f1

, . . .
fr
f1

]
f2
f1

)(
⊂ spec(A

[
f2

f1

, . . .
fr
f1

])
,

and in this case a morphism

(10.6.4) A

[
f1

f2

, . . .
fr
f2

]
→ B
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is also defined. Let q2 ∈ spec
(
A
[
f1
f2
, . . . fr

f2

])
denote the image of the maximal ideal M . The

same argument used above says that the system of equations

(10.6.5) fj = Yif2, i = 1, 2, . . . , r,

has a unique solution in B, say Yi = c
(2)
i for i = 1, . . . , r. Thus the morphism in (10.6.4) is

defined by mapping
fj
f2

to c
(j)
2 , and

q2 ∈ spec

(
A

[
f1

f2

, . . .
fr
f2

]
f1
f2

)(
⊂ spec

(
A

[
f2

f1

, . . .
fr
f1

]))
.

So if IB is free, and the two sets, say {f1} and {f2}, are both bases of IB, then the
morphism from (10.6.3) is defined and factors through

(10.6.6) A
[
f2
f1
, . . . fr

f1

]

""E
EEEEEEEEEE

xxqqqqqqqqqqq

A
[
f2
f1
, . . . fr

f1

]
f2
f1

// B

and the morphism from (10.6.4) is also defined, and induces a commutative diagram

(10.6.7) A
[
f1
f2
, . . . fr

f2

]
f1
f2

// B

A
[
f1
f2
, . . . fr

f2

]
.

ffNNNNNNNNNNN

<<xxxxxxxxxxxx

Claim 2. If {f1} and {f2} are two bases of IB, then the morphisms (10.6.6) and (10.6.7)
are compatible with the identification

(10.6.8) A

[
f2

f1

, . . .
fr
f1

]
f2
f1

= A

[
f1

f2

, . . .
fr
f2

]
f1
f2

.

Proof: First notice that the identification (10.6.8) can be expressed by the equalities:

(10.6.9)
fj
f1

=
fj
f2

(
f1

f2

)−1

j = 1, 2, . . . , r

In fact the isomorphism of A-algebras

β1,2 : A

[
f2

f1

, . . .
fr
f1

]
f2
f1

→ A

[
f1

f2

, . . .
fr
f2

]
f1
f2

is defined by

(10.6.10) β1,2

(
fj
f1

)
=
fj
f2

(
f1

f2

)−1

j = 1, 2, . . . , r

We claim that the equalities

(10.6.11) c
(1)
j = c

(2)
j (c

(2)
1 )−1 j = 1, 2, . . . , r



PROJECTIVE SCHEMES AND BLOW-UPS 39

hold in B, and, in particular, that the horizontal morphisms in (10.6.6) and in (10.6.7) are
compatible with the identification.

Recall that {c(1)
1 , . . . , c

(1)
r } are the elements in B which fulfill the equations

(10.6.12) fj = c
(1)
j f1, j = 1, . . . , r,

and {c(2)
1 , . . . , c

(2)
r } fulfill the equations:

(10.6.13) fj = c
(2)
j f2, i = 1, . . . , r.

In particular f1 = c
(2)
1 f2 in B. Recall also that c

(2)
1 is assumed to be a unit. Finally check

that (10.6.11) follow from:

fj = c
(1)
j f1 = c

(1)
j c

(2)
1 f2

and (10.6.13).

The commutativity of the diagram

(10.6.14) A
[
f2
f1
, . . . fr

f1

]

""E
EEEEEEEEEE

uukkkkkkkkkkkkkkk

A
[
f2
f1
, . . . fr

fr

]
f2
f1

= A
[
f1
f2
, . . . fr

f2

]
f1
f2

// B

A
[
f1
f2
, . . . fr

f2

]
iiSSSSSSSSSSSSSSS

<<yyyyyyyyyyy

ensures that q1 = q2 as primes in A
[
f2
f1
, . . . fr

f1

]
f2
f1

= A
[
f1
f2
, . . . fr

f2

]
f1
f2

. Or equivalently, the

isomorphism

β1,2 : A

[
f2

f1

, . . .
fr
f1

]
f2
f1

→ A

[
f1

f2

, . . .
fr
f2

]
f1
f2

maps q1 to q2, and therefore induces an isomorphism

β1,2 : A

[
f2

f1

, . . .
fr
f1

]
q1

→ A

[
f1

f2

, . . .
fr
f2

]
q2

.

10.7. Towards the Universal Property of the blow-up III

Let B be a (non-necessarily local) A-algebra, and let I ⊂ A be the ideal spanned by elements
{f1, . . . , fr}. If the extended ideal IB is free of rank one, and if IB = f1B, then the previous
discussion ensures that there are unique morphisms defining the commutative diagram

(10.7.1) A
[
f2
f1
, . . . fr

f1

]
$$IIIIIIIIII

A //

::uuuuuuuuuu
B
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In addition, if IB = f2B we also get a commutative diagram as in (10.6.14). Recall that
in the study of the commutativity of such diagram, addressed under the assumption that B

was local, a role is played by the fact that c
(2)
1 is a unit at the local ring. Note here that c

(2)
1

is a unit in any localization of B at a prime ideal, so c
(2)
1 must be a unit in B.

Theorem 10.8. The Universal Property of the blow-up. Let A be a ring, let I ⊂ A
be an ideal, and let BlA(I) be the blow-up of A at I. Then:

1) The total transform of I via

BlI(A)→ Spec(A)

is an invertible BlI(A)-ideal.
2) Let (D,OD) be an A-scheme. If the total transform of I in (D,OD) is an invertible
OD-ideal, then there is a factorization

(10.8.1) BlI(A)
i

%%KKKKKKKKKK

(D,OD) //

g
99ssssssssss

Spec(A)

for a unique morphism g of A-algebras.

Proof: 1) The scheme BlI(A) is covered by affine charts of the form Spec(Ai), where

Ai = A
[
f1
fi
, . . . fr

fi

]
, and the restricted morphism Spec(Ai) → Spec(A) is defined by the

homomorphism A → A
[
f1
fi
, . . . fr

fi

]
. Now IAi = 〈fi〉, and the inclusion of Ai in Afi ensures

that fi is a non-zero divisor in Ai. So IAi is a free Ai-module of rank one with basis {f1}.
Since BlI(A) is covered by the open affine charts Spec(Ai), i = 1, . . . , r, it follows that the
BlI(A)-ideal defined by I is invertible.

2) We will show that D can be covered by r open sets, say {V1, . . . , Vr}, and that a
morphism of schemes:

(OVi , Vi)→ Spec(Ai)

is defined, where (OVi , Vi) denotes the restriction of (D,OD), for i = 1, . . . , r. Then we will
prove that these morphisms glue to define a morphism of A-schemes (D,OD) → BlI(A).
The uniqueness will follow from the construction.

Let p ∈ D. Since IOD,p is a freeOD,p-module, IOD,p = fiOD,p for some index i ∈ {1, . . . , r}.
Note that IOD,p = fiOD,p is an open condition. Define

Vi = {p ∈ D, IOD,p = fiOD,p}.
The hypothesis on the total transform of I ensures that {V1, . . . , Vr} is an open cover of
D. Let Di0 be an A-algebra so that Spec(Di0) be an affine open set included in Vi. Then
there is a unique morphism of A-schemes Spec(Di0)→ Spec(Ai) (see 10.7). This uniqueness
ensures that there is a (unique) morphism of schemes defining a commutative diagram

(10.8.2) (Vi,OVi) //

&&LLLLLLLLLL
Spec(Ai)

xxqqqqqqqqqq

Spec(A)
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for i = 1, . . . , r.

Now we use the same notation as in (9.1.5), and argue as there to prove that these
morphisms of schemes glue to define a morphism (D,OD) → BlI(A) (see also 9.2). Let
(Wi0 ,OWi0

) = Spec(Di0) be an affine chart in Vi, let (Wj0 ,OWj0
) = Spec(Dj0) be an affine

chart in Vj, and let

(Wi0 ∩Wj0 ,OWi0
∩Wj0

,) = Spec(Di0,j0).

We claim that IDi0,j0 is free of rank one, and that

IDi0,j0 = fiDi0,j0 = fjDi0,j0 .

This can be checked easily by localizing at every point p ∈ Wi0 ∩Wj0 . The commutativity
of diagrams as in (9.1.5) follow now from the commutativity of homomorphisms

(10.8.3) Di0

||xxxxxxxx
Aioo

  A
AA

AA
AA

A

Di0,j0 Aijoo

Dj0

bbFFFFFFFF

Aj

>>}}}}}}}}
oo

(see (10.6.14)). 	

10.9. Further properties of blow-ups

Let A be a ring, let I ⊂ A be an ideal, and consider he blow-up of A at I, BlI(A).

1. The scheme BlI(A) does not depend on the choice of the generators of I. Since BlI(A) =
Proj(R) for R = A⊕ I ⊕ I2 ⊕ . . . the claim follows from the argument given in 8.11.

2. Let S ⊂ A be a multiplicative subset. Then S is a multiplicative set on R, and the
localization is given by

RS = AS ⊕ IS ⊕ I2
S ⊕ . . . .

Note that IkS is an ideal in AS, and it is the k-th power of IS. In particular, the localization
at S of the blow-up, is the blow-up of AS at IS, and this defines

(10.9.1) BlI(A)

��

BlIS(AS)

��

oo

Spec(A) Spec(AS)oo

Of particular interest is the case in which S consists on the powers of an element a ∈ A:

Spec(A)← Spec(Aa),
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which is an open restriction, and the right column of

(10.9.2) BlI(A)

��

BlIa(Aa)

��

oo

Spec(A) Spec(Aa)oo

is viewed as the restriction of the blow-up at the open set. This notion of restriction is a
natural extension of that discussed in (3.1.2) for morphisms of affine schemes.

Recall that BlI(A) can be presented by by local-global data. If I is the ideal in A generated
by elements {f1, . . . , fr}, then BlI(A) is defined by patching the affine schemes Spec(Ai),

where Ai = A
[
f1
fi
, . . . , fr

fi

]
(⊂ Afi). All rings involved in the local-global data are A-algebras,

and the homomorphisms are also of A-algebras. So the localization applies naturally to the
local-global data. Here we obtain,

(10.9.3) Spec(Ai)

��

Spec((Ai)a)

��
Spec(A) Spec(Aa)oo

and BlIa(Aa) is obtained by patching the affine schemes Spec((Ai)a).

3. If I is an invertible ideal in A, then BlI(A)→ Spec(A) is the identity.

This is a consequence of the universal property of the blow-up. One can check this property
directly by taking an open cover of spec(A) by sets of the form spec(Aa), so that IAa is a
free Aa-module of rank one. If I is generated by elements f1, . . . , fr, we may assume that
IAa = fiAa for some index i, 1 ≤ i ≤ r. In this case BlI(Aa)→ Spec(Aa) is an isomorphism
(see 10.5). As this holds for an open cover of Spec(A), BlI(A)→ Spec(A) is an isomorphism.

4. The morphism BlI(A) → Spec(A) defines an isomorphism when restricted to the open
set spec(A) \ V (I).

Let f1, . . . , fr is a set of generators of I. Then spec(A) \ V (I) is covered by the open sets
spec(Afi), i = 1, . . . , r. Since IAfi = Afi , each BlIAfi

(Afi) → Spec(Afi) is an isomorphism.

Therefore local rings at points of BlI(A) are isomorphic to local rings at points of Spec(A)
except, perhaps, for those points mapping to V (I) ⊂ spec(A).

Proposition 10.10. Let (C,OC) be a k-scheme with an affine open cover Ui, i = 1, . . . , r, and
restrictions (Ui,OUi

) = Spec(Ai). Consider a coherent (C,OC)-ideal, say J , with restrictions
given by ideals Ji in Ai, i = 1, . . . , r. Then the blow-ups

BLJi(Ai)→ Spec(Ai)

glue so as to define a morphism of k-schemes, say

BLJ (C)→ (C,OC).

Proof: We will use the same notation as in Property (C) from Section 6, where (Ui ∩
Uj,OUi∩Uj

) is Spec(Aij), and there are homomorphism Ai → Aij and Aj → Aij. The
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remarks in 7.6 show that the restriction of BlJi(Ai) → Spec(Ai) to the open set Spec(Aij),
is BlJi(Aij). The claim follows now from 7.6.1. 	

Definition 10.11. Let (C,OC) be a scheme and let (Y ,OY) be a closed subscheme defined
by an OC-ideal J . Then blow-up of (C,OC) at (Y ,OY) is the blow-up of (C,OC) at J . This
is also usually referred to as the monoidal transformation of (C,OC) with center Y .

11. On blow-ups and transforms of ideals

Let A be a ring, let I ⊂ A be an ideal, and consider the blow-up of A at I, BlI(A). If
I = 〈f1, . . . , fr〉 then we have seen that

BlI(A)→ Spec(A)

is defined by patching the affine morphisms

Spec(Ai)→ Spec(A),

where Ai = A
[
f1
fi
, . . . , fr

fi

]
(⊂ Afi). Let J ⊂ A be another ideal. We can define two different

transforms of J in BlI(A).

11.1. The total transform of an ideal J ⊂ A in BlI(A)

The total transform of an ideal J ⊂ A is the coherent BlI(A)-ideal defined by patching the
extended ideals ideals JAi in Ai. There is yet another interpretation of the total transform.
In fact this ideal is also defined by the homogeneous ideal JR (see 8.16, 1)). In other words,
the inclusion of graded modules

0→ JR→ R

defines an ideal on BlI(A), which, in each affine chart Spec(Ai), is also the ideal JAi.

11.2. The strict transform of an ideal J ⊂ A in BlI(A)

Let J ⊂ A be an ideal, and let f 1, . . . , f r denote the image of of f1, . . . , fr in B = A/J . So
f 1, . . . , f r are generators of I = IB. Consider

R = B ⊕ I ⊕ I2 ⊕ . . .
and note that there is an exact sequence:

(11.2.1) 0→ H → R→ R = B ⊕ I ⊕ I2 ⊕ . . .→ 0,

for some homogeneous ideal H, and check that

[H]i = I i ∩ J for all i ≥ 0.

The ideal H defines a BlI(A)-ideal which we refer to as the strict transform of J in BlI(A).
The restriction of the strict transform to the affine chart Spec(Ai) is given by an ideal, say
Ji, in Ai. There is an inclusion of homogeneous ideals:

JR ⊂ H

so JAi is contained in Ji, as ideals in Ai, for each index i.
The restriction to the affine chart Spec(Ai) of the exact sequence of BlI(A)-modules

obtained from (11.2.1), is given by:

(11.2.2) 0→ Ji → Ai → Bi → 0
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where

Bi = B

[
f 1

f i
, . . . ,

f r
f i

]
(⊂ Bf i

).

The relation between JAi and Ji becomes clear when we localize: recall that Ai is a subring
of Afi and note that (Ai)fi = Afi . Similarly, Bi is a subring of Bf i

, and (Bi)f i = Bf i
.

Localizing 0→ J → A→ B → 0 at fi, one obtains

0→ JAfi → Afi → Bf i
→ 0.

It follows now that,

Ji = JAfi ∩ Ai,
or, equivalently, that

(11.2.3) Ji = (JAi)fi ∩ Ai.

So the strict transform of J in Ai, namely Ji, is the biggest ideal containing the total
transform JAi, and with the added condition that both coincide at the localization (Ai)fi .

12. On monoidal transformations on regular schemes

A scheme is said to be regular when it can be covered by affine regular schemes, i.e., by
affine schemes defined by regular rings (the definition and further properties of regular rings
can be found in [1]).

Proposition 12.1. The blow-up of a regular scheme (C,OC) at a closed and regular sub-
scheme, (Y ,OY) is again a regular scheme.

Proof: Consider the blow-up of (C,OC) with center Y ,

(C,OC)
π←− (C1,OO1).

To prove the regularity of (C1,OC1), it suffices to consider the case in which (C,OC) is affine.
So suppose that C = spec(A) where A is a regular ring, and let P ⊂ A be the defining
ideal of the closed subscheme (Y ,OY), i.e., Y = spec(A/P ). Also, Y can be assumed to be
irreducible, in which case P is a prime ideal in A, and the quotient A/P is again a regular
ring.

Let R = A⊕ P ⊕ P 2 . . ., and consider the blow-up of A at P ,

Spec(A)←− BlP (A) = ProjR.

Let Q be a point in spec(A). Recall that the blow-up is an isomorphism locally over every
point Q /∈ spec(A/P ), so in order to prove the regularity of BlP (A) it suffices to show that
BlP (A) is regular at any point Q′ ∈ BlP (A) mapping to a point, say Q ∈ spec(A/P ), i.e., a
prime Q ⊃ P .

There is a regular system of parameters, say {x1, . . . , xd, . . . xe}, of AQ, so that PAQ =
〈x1, . . . , xd〉. Moreover, there is a suitable affine neighborhood of the point Q, of the form
Af for some f /∈ Q, so that {x1, . . . , xd, . . . xe} ⊂ Af , and PAf = 〈x1, . . . , xd〉.
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We may therefore replace A by Af and assume that the previous conditions hold at A.
Now Q′ is a point in a chart Ui = Spec(Af [

x1
xi
, . . . , xd

xi
]) for some index i, 1 ≤ i ≤ d, mapping

to the point Q via the morphism

(12.1.1) A→ Ri = A

[
x1

xi
, . . . ,

xd
xi

]
.

It remains to prove that (Ri)Q′ is regular. The construction of Ri ensures that P (Ri)Q′ =
xi(Ri)Q′ , and that xi is a non-zero divisor in that local ring. Therefore:

1) dim((Ri)Q′/xi(Ri)Q′) = dim((Ri)Q′)− 1, and
2) (Ri)Q′ is regular if (Ri)Q′/xi(Ri)Q′ is regular.

The assertion in 1) is a well known theorem of Krull (see [1, Corollary 11.18]). Assertion
2) is a simple consequence of 1) and the definition of regularity for local rings.

Recall here that PRi, the ideal defining the total transform of P at Ri, and the total
transform is also the ideal defined at the affine chart Spec(Ri) by the inclusion of the graded
ideal

0→ PR→ R.

Moreover, one can extend this to the short exact sequence

0→ PR→ R→ grP (A)→ 0

where
grP (A) = A/P ⊕ P/P 2 ⊕ P 2/P 3 ⊕ P 3/P 4 . . .

Let H = Proj(grP (A)), then (Ri)Q′/xi(Ri)Q′ = OH,Q′ for a point Q
′ ∈ H. So it suffices to

prove that H is a regular scheme.

By assumption, grP (A) = (A/P )[X1, . . . , Xd], is a polynomial ring over the regular ring
A/P , where Xi denotes the class of xi in P/P 2. One can easily check, from this description,
that H = Proj(grP (A)) is in fact regular. 	

12.2. Some further properties of monoidal transformations

Consider the blow-up of a regular scheme (C,OC) at a regular center Y ,

(C,OC)
π←− (C1,OC1).

Assume P is the defining ideal of Y in (C,OC). Then:
1) π−1(Y) is naturally identified with H = Proj(grP (A)), as a closed subscheme in

(C1,OC1).
2) The restriction to the open set C \ Y , say

C \ Y π←− C1 \ H
is an isomorphism.

3) H ⊂ C1 is a regular hypersurface which we refer to as the exceptional divisor.

The geometric interpretation is that Y is replaced by a hypersurface, namely by H =
π−1(Y). This interpretation has also an algebraic reformulation in terms of valuations and
valuation rings.
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Observe that every irreducible variety X contains a point x ∈ X , called the generic point
of X , such that x = X . Let P denote the generic point of Y . So if Spec(A) is an affine
chart containing P , then OC,P = AP , which is a local regular ring. The zero ideal of A is
the generic point of C, which clearly lies in C \ Y . So π defines an isomorphism over such
point, which corresponds to the generic point of C1. Therefore the local rings at such points
can be identified with the total quotient ring, say K, of A. This is a particular case of the
so called birational morphisms.

On the other hand H is an irreducible hypersurface on the regular scheme C1. If Q denotes
the generic point of H, and Spec(D) is an affine chart containing Q, then DQ is a discrete
valuation ring. The point is that there is an inclusion

AP ⊂ DQ(⊂ K),

which is an inclusion of local rings (the maximal ideal in DQ dominates the maximal ideal
of AP ). Moreover, the valuation defined by the local regular ring AP in the field K coincides
with that defined by the discrete valuation ring D)Q.

Take, for example A and D = Ri as in (12.1.1). Then Spec(Ri) contains Q, which is the
hight one prime ideal defined by 〈xi〉. In particular if f ∈ A, then

νP (f) ≥ n

if and only if f ∈ 〈xni 〉 in the regular ring Ri.

Example 12.3. Let A = k[X, Y ], let P = 〈X, Y 〉, and let f = X3 − Y 4. Consider the
monomial transformation with center the origin, (i.e., with generic point P = 〈X, Y 〉),

Spec(A)← (C1,OC1).

In this case C1 can be covered by two charts: Spec(A1), and Spec(A2), where

A1 = k

[
X,

Y

X

]
, and A2 = k

[
Y,
X

Y

]
.

In this case the generic point of H lies in both affine charts. It corresponds to the prime
ideal 〈X〉 ⊂ A1, and to the prime ideal 〈Y 〉 ⊂ A2.

The element f ∈ A has order 3 at P . Note that

f = X3

(
1−

(
Y

X

)3

X

)
∈ A1

and that

f = Y 3

((
X

Y

)3

− Y

)
∈ A2

Use finally (11.2.3) to prove that the strict transform of the ideal 〈f〉 is given by the ideal

〈1−
(
Y
X

)3
X〉 in A1, and the ideal 〈(X

Y
)3 − Y 〉 in A2.
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