Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

Book 6 Proposition 6

95v-96r

95v-96r

96v-97r

96v-97r

Ἐὰν δύο τρίγωνα μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχῃ, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, ὑφ' ἃς αἱ ὁμόλογοι πλευραὶ ὑποτείνουσιν. Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ὡς τὴν ΒΑ πρὸς τὴν ΑΓ, οὕτως τὴν ΕΔ πρὸς τὴν ΔΖ: λέγω, ὅτι ἰσογώνιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ καὶ ἴσην ἕξει τὴν ὑπὸ ΑΒΓ γωνίαν τῇ ὑπὸ ΔΕΖ, τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ. Συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ σημείοις τοῖς Δ, Ζ ὁποτέρᾳ μὲν τῶν ὑπὸ ΒΑΓ, ΕΔΖ ἴση ἡ ὑπὸ ΖΔΗ, τῇ δὲ ὑπὸ ΑΓΒ ἴση ἡ ὑπὸ ΔΖΗ: λοιπὴ ἄρα ἡ πρὸς τῷ Β γωνία λοιπῇ τῇ πρὸς τῷ Η ἴση ἐστίν. Ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΗΖ τριγώνῳ. ἀνάλογον ἄρα ἐστὶν ὡς ἡ ΒΑ πρὸς τὴν ΑΓ, οὕτως ἡ ΗΔ πρὸς τὴν ΔΖ. ὑπόκειται δὲ καὶ ὡς ἡ ΒΑ πρὸς τὴν ΑΓ, οὕτως ἡ ΕΔ πρὸς τὴν ΔΖ: καὶ ὡς ἄρα ἡ ΕΔ πρὸς τὴν ΔΖ, οὕτως ἡ ΗΔ πρὸς τὴν ΔΖ. ἴση ἄρα ἡ ΕΔ τῇ ΔΗ: καὶ κοινὴ ἡ ΔΖ: δύο δὴ αἱ ΕΔ, ΔΖ δυσὶ ταῖς ΗΔ, ΔΖ ἴσαι εἰσίν: καὶ γωνία ἡ ὑπὸ ΕΔΖ γωνίᾳ τῇ ὑπὸ ΗΔΖ [ἐστιν] ἴση: βάσις ἄρα ἡ ΕΖ βάσει τῇ ΗΖ ἐστιν ἴση, καὶ τὸ ΔΕΖ τρίγωνον τῷ ΗΔΖ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν. ἴση ἄρα ἐστὶν ἡ μὲν ὑπὸ ΔΖΗ τῇ ὑπὸ ΔΖΕ, ἡ δὲ ὑπὸ ΔΗΖ τῇ ὑπὸ ΔΕΖ. ἀλλ' ἡ ὑπὸ ΔΖΗ τῇ ὑπὸ ΑΓΒ ἐστιν ἴση: καὶ ἡ ὑπὸ ΑΓΒ ἄρα τῇ ὑπὸ ΔΖΕ ἐστιν ἴση. ὑπόκειται δὲ καὶ ἡ ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ ἴση: καὶ λοιπὴ ἄρα ἡ πρὸς τῷ Β λοιπῇ τῇ πρὸς τῷ Ε ἴση ἐστίν: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ. Ἐὰν ἄρα δύο τρίγωνα μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχῃ, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, ὑφ' ἃς αἱ ὁμόλογοι πλευραὶ ὑποτείνουσιν: ὅπερ ἔδει δεῖξαι.

If two triangles have one angle equal to one angle and the sides about the equal angles proportional, the triangles will be equiangular and will have those angles equal which the corresponding sides subtend. Let ABC, DEF be two triangles having one angle BAC equal to one angle EDF and the sides about the equal angles proportional, so that, as BA is to AC, so is ED to DF; I say that the triangle ABC is equiangular with the triangle DEF, and will have the angle ABC equal to the angle DEF, and the angle ACB to the angle DFE. For on the straight line DF, and at the points D, F on it, let there be constructed the angle FDG equal to either of the angles BAC, EDF, and the angle DFG equal to the angle ACB; [I. 23] therefore the remaining angle at B is equal to the remaining angle at G. [I. 32] Therefore the triangle ABC is equiangular with the triangle DGF. Therefore, proportionally, as BA is to AC, so is GD to DF. [VI. 4] But, by hypothesis, as BA is to AC, so also is ED to DF; therefore also, as ED is to DF, so is GD to DF. [V. 11] Therefore ED is equal to DG; [V. 9] and DF is common; therefore the two sides ED, DF are equal to the two sides GD, DF; and the angle EDF is equal to the angle GDF; therefore the base EF is equal to the base GF, and the triangle DEF is equal to the triangle DGF, and the remaining angles will be equal to the remaining angles, namely those which the equal sides subtend. [I. 4] Therefore the angle DFG is equal to the angle DFE, and the angle DGF to the angle DEF. But the angle DFG is equal to the angle ACB; therefore the angle ACB is also equal to the angle DFE. And, by hypothesis, the angle BAC is also equal to the angle EDF; therefore the remaining angle at B is also equal to the remaining angle at E; [I. 32] therefore the triangle ABC is equiangular with the triangle DEF.