# Book 10 Proposition 84

Τῇ μετὰ μέσου μέσον τὸ ὅλον ποιούσῃ μία μόνη προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τό τε συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων μέσον τό τε δὶς ὑπ' αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τῷ συγκειμένῳ ἐκ τῶν ἀπ' αὐτῶν. Ἔστω ἡ μετὰ μέσου μέσον τὸ ὅλον ποιοῦσα ἡ ΑΒ, προσαρμόζουσα δὲ αὐτῇ ἡ ΒΓ: αἱ ἄρα ΑΓ, ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προειρημένα. λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόσει ποιοῦσα τὰ προειρημένα. Εἰ γὰρ δυνατόν, προσαρμοζέτω ἡ ΒΔ, ὥστε καὶ τὰς ΑΔ, ΔΒ δυνάμει ἀσυμμέτρους εἶναι ποιούσας τά τε ἀπὸ τῶν ΑΔ, ΔΒ τετράγωνα ἅμα μέσον καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ μέσον καὶ ἔτι τὰ ἀπὸ τῶν ΑΔ, ΔΒ ἀσύμμετρα τῷ δὶς ὑπὸ τῶν ΑΔ, ΔΒ: καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ τοῖς μὲν ἀπὸ τῶν ΑΓ, ΓΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΗ πλάτος ποιοῦν τὴν ΕΜ, τῷ δὲ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΘΗ πλάτος ποιοῦν τὴν ΘΜ: λοιπὸν ἄρα τὸ ἀπὸ τῆς ΑΒ ἴσον ἐστὶ τῷ ΕΛ: ἡ ἄρα ΑΒ δύναται τὸ ΕΛ. πάλιν τοῖς ἀπὸ τῶν ΑΔ, ΔΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω τὸ ΕΙ πλάτος ποιοῦν τὴν ΕΝ. ἔστι δὲ καὶ τὸ ἀπὸ τῆς ΑΒ ἴσον τῷ ΕΛ: λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ ἴσον [ἐστὶ] τῷ ΘΙ. καὶ ἐπεὶ μέσον ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ καί ἐστιν ἴσον τῷ ΕΗ, μέσον ἄρα ἐστὶ καὶ τὸ ΕΗ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΕΜ: ῥητὴ ἄρα ἐστὶν ἡ ΕΜ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. πάλιν, ἐπεὶ μέσον ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ καί ἐστιν ἴσον τῷ ΘΗ, μέσον ἄρα καὶ τὸ ΘΗ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΘΜ: ῥητὴ ἄρα ἐστὶν ἡ ΘΜ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΓ, ΓΒ τῷ δὶς ὑπὸ τῶν ΑΓ, ΓΒ, ἀσύμμετρόν ἐστι καὶ τὸ ΕΗ τῷ ΘΗ: ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΕΜ τῇ ΜΘ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ἄρα ΕΜ, ΜΘ ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἀποτομὴ ἄρα ἐστὶν ἡ ΕΘ, προσαρμόζουσα δὲ αὐτῇ ἡ ΘΜ. ὁμοίως δὴ δείξομεν, ὅτι ἡ ΕΘ πάλιν ἀποτομή ἐστιν, προσαρμόζουσα δὲ αὐτῇ ἡ ΘΝ. τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει ῥητὴ δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ: ὅπερ ἐδείχθη ἀδύνατον. οὐκ ἄρα τῇ ΑΒ ἑτέρα προσαρμόσει εὐθεῖα. Τῇ ἄρα ΑΒ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ποιοῦσα τά τε ἀπ' αὐτῶν τετράγωνα ἅμα μέσον καὶ τὸ δὶς ὑπ' αὐτῶν μέσον καὶ ἔτι τὰ ἀπ' αὐτῶν τετράγωνα ἀσύμμετρα τῷ δὶς ὑπ' αὐτῶν: ὅπερ ἔδει δεῖξαι.

To a straight line which produces with a medial area a medial whole only one straight line can be annexed which is incommensurable in square with the whole straight line and which with the whole straight line makes the sum of the squares on them medial and twice the rectangle contained by them both medial and also incommensurable with the sum of the squares on them. Let AB be the straight line which produces with a medial area a medial whole, and BC an annex to it; therefore AC, CB are straight lines incommensurable in square which fulfil the aforesaid conditions. [X. 78] I say that no other straight line can be annexed to AB which fulfils the aforesaid conditions. For, if possible, let BD be so annexed, so that AD, DB are also straight lines incommensurable in square which make the squares on AD, DB added together medial, twice the rectangle AD, DB medial, and also the squares on AD, DB incommensurable with twice the rectangle AD, DB. [X. 78] Let a rational straight line EF be set out, let EG equal to the squares on AC, CB be applied to EF, producing EM as breadth, and let HG equal to twice the rectangle AC, CB be applied to EF, producing HM as breadth; therefore the remainder, the square on AB [II. 7], is equal to EL; therefore AB is the “side” of EL. Again, let EI equal to the squares on AD, DB be applied to EF, producing EN as breadth. But the square on AB is also equal to EL; therefore the remainder, twice the rectangle AD, DB [II. 7], is equal to HI. Now, since the sum of the squares on AC, CB is medial and is equal to EG, therefore EG is also medial. And it is applied to the rational straight line EF, producing EM as breadth; therefore EM is rational and incommensurable in length with EF. [X. 22] Again, since twice the rectangle AC, CB is medial and is equal to HG, therefore HG is also medial. And it is applied to the rational straight line EF, producing HM as breadth; therefore HM is rational and incommensurable in length with EF. [X. 22] And, since the squares on AC, CB are incommensurable with twice the rectangle AC, CB, EG is also incommensurable with HG; therefore EM is also incommensurable in length with MH. [VI. 1, X. 11] And both are rational; therefore EM, MH are rational straight lines commensurable in square only; therefore EH is an apotome, and HM an annex to it. [X. 73] Similarly we can prove that EH is again an apotome and HN an annex to it. Therefore to an apotome different rational straight lines are annexed which are commensurable with the wholes in square only: which was proved impossible. [X. 79] Therefore no other straight line can be so annexed to AB.