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(ii) There is a natural isomorphism

H(X,7) ®7 C = Hig(X) .
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(iii) If X is K&hler, then the Hodge-de Rham spectral sequence
EJ = H(X,Qk) = HiZ(X)

degenerates at E;.
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Examples of non-Kahler complex manifolds:

The Hopf surface: Let g € C*, |g| < 1. Then

X = (C*\ {(0,0)})/q" .

One has H*(X,Ox) = C while H°(X,Q}) = 0, so Hodge
symmetry fails. However, the Hodge-de Rham spectral sequence
degenerates at E;.
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The Iwasawa threefold: Let

N =

O O =
o~ ¥
=% %

be the unipotent subgroup of GL3. Then
X := N(C)/N(ZIi]) .

The Hodge-de Rham spectral does not degenerate at E;; in
particular X is non-Kahler.
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Setup: Let K be a p-adic field, i.e. a discretely valued complete
nonarchimedean extension of Q, with perfect residue field k. (l.e.,
K is a finite extension of W(k)[p~!].)

Let C = K be the completed algebraic closure of K.
Theorem (Tate, 1967)

Let A/Ok be an abelian variety. Then there is a natural
Gal(K/K)-equivariant isomorphism

Hi (Ac,Zp) ®z, C = HY(A,04) ®k C & HY (A, Q)(—1) ®k C .
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p-adic Hodge theory: A conjecture

Question (Tate, 1967)

One can ask whether a similar Hodge-like decomposition exists for
the étale cohomology with values in C in all dimensions, for a
scheme X¢ coming from a scheme X projective and smooth over
Ok, or perhaps even over K, or for suitable rigid-analytic spaces.

Such “Hodge-like” decompositions are now called Hodge-Tate
decompositions.
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p-adic Hodge theory: Results

Fontaine-Messing (1985): X projective smooth scheme over
Ok = W(k), p > dim X.

Faltings (1990): X proper smooth scheme over K.
Other proofs given by Tsuji, Niziol, Beilinson.

Rigid-analytic case remained open. Not even finiteness of
H! (Xc,Zp) was known!
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Rigid-analytic varieties: Examples
Let X be a proper smooth rigid-analytic variety over K.

Examples: analytification of proper smooth scheme over K, generic
fibre of non-algebraic deformation of abelian variety or K3 surface
(or other proper smooth scheme over k),

Hopf surface: If g € K*, |g| < 1, let

X = (C*\{(0,0)})/q" .

Thus, there exist “non-Kahler" rigid-analytic varieties. However,
there is no p-adic analogue of the lwasawa manifold. Namely, C
has no cocompact discrete subgroups like Z[i] C C.
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Theorem (S., 2012)

(iii) There is a natural Gal(K/K)-equivariant de Rham
comparison isomorphism

Hi(Xc, Zp) @z, Bar = Hip(X) ®k Bar

preserving filtrations; in particular, Hé;t (Xc,Qp) is de Rham in
the sense of Fontaine.

(iv) The Hodge-de Rham spectral sequence

EF = H(X, Q) = H(X)

degenerates at Ej.
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On finiteness for Z,-cohomology

Finiteness for Z,-cohomology, ¢ # p, known.

Idea: Choose formal model and use finiteness of nearby cycles.
Works for any quasicompact separated smooth rigid-analytic
variety over K. (l.e., without properness.)

Method does not work for £ = p.

In fact, if X closed unit disc over K, then H (Xc,Fp)
infinite-dimensional.

Related to non-finiteness of Hj (A%, F), i.e. Artin-Schreier covers.

Need global argument, using finiteness of coherent cohomology to
control Artin-Schreier type covers.
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Local structure of rigid-analytic varieties

Complex manifolds are locally contractible. In contrast,
rigid-analytic varieties have large étale fundamental group, even
locally. But at least no higher homotopy groups:

Theorem (S., 2012)
Let X be a connected affinoid rigid-analytic variety over C. Then
X is a K(m,1) for p-torsion coefficients, i.e. for all p-torsion local
systems L on X,

HE (X, L) & H!

cont

(7T1(X7 Y)? ]LY) s

where X € X is a geometric base point, and 71(X,X) is the
profinite étale fundamental group.



K(m,1)'s, equal characteristic case

—

Also true for X over equal characteristic field k((t)).




K(m,1)'s, equal characteristic case

—

Also true for X over equal characteristic field k((t)). Easy:




K(m,1)'s, equal characteristic case

—

Also true for X over equal characteristic field k((t)). Easy:

Enough to consider L. = [F,.



K(m,1)'s, equal characteristic case

—

Also true for X over equal characteristic field k((t)). Easy:

Enough to consider . = F,. Consider Artin-Schreier sequence

0—=+F,—=0x —=0x—0,



K(m,1)'s, equal characteristic case

—

Also true for X over equal characteristic field k((t)). Easy:

Enough to consider . = F,. Consider Artin-Schreier sequence
0—=+F,—=0x —=0x—0,

exact sequence of sheaves on X.



K(m,1)'s, equal characteristic case

—

Also true for X over equal characteristic field k((t)). Easy:

Enough to consider . = F,. Consider Artin-Schreier sequence
0—=+F,—=0x —=0x—0,

exact sequence of sheaves on X . As X is affinoid,
H. (X, 0x) =0 for i > 1,
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—

Also true for X over equal characteristic field k((t)). Easy:

Enough to consider . = F,. Consider Artin-Schreier sequence
0—=+F,—=0x —=0x—0,

exact sequence of sheaves on X . As X is affinoid,
Hi (X,0x) =0 for i > 1, get

Hét(Xva) =0

for i > 2.
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K(m,1)'s, equal characteristic case
Moreover, we get a long exact sequence
0 — HR(X,Fp) > R = R — HE&(X,Fp) = 0,

where R = HO(X, Ox). As exactness of Artin-Schreier sequence
needs only finite étale covers, get same result for
H:

cont

(m(X,x%),Lx) .
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Reduce to case of equal characteristic: Use perfectoid spaces.

Definition

A perfectoid C-algebra is a Banach C-algebra R such that the
subring of powerbounded elements R° C R is bounded, and the
Frobenius ® : R°/p — R°/p is surjective.

Recall Fontaine's field

—

C’ = R(C) = Frac (lim Oc/p) = k((=)) -
(0]
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K(m,1)'s, mixed characteristic case
Then:
Theorem (S., 2011)

Perfectoid C-algebras are equivalent to perfectoid C’-algebras.
There exist 'rigid-analytic varieties’ (more precisely: adic spaces)
associated to perfectoid C-, resp. C’-, algebras, called affinoid
perfectoid spaces over C, resp. C°. These categories are
equivalent, X X°. In this situation, Xop = th.

The functor from perfectoid C-algebras R to perfectoid
C’-algebras R’ is given by Fontaine’s construction:

R> = (lim R°/p) Dm_0c/p C .
%
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Want to show: Any connected affinoid rigid-analytic variety X over
Cisa K(m1).
Proof.

» Find affinoid perfectoid space X over C, X — X an inverse

limit of finite étale covers.
(Iterate adjoining p-power roots of units.)

> lts tilt X is affinoid and lives in equal characteristic, hence is
a K(m,1) for p-torsion coefficients.

> As Xz = X3, also X is a K(m,1) for p-torsion coefficients.
» As X — X is pro-finite étale, also X is a K(m,1) for p-torsion
coefficients.
L]



