Representation Theory in Intermediate Characteristic

July 21, 2015
In Algebra (p-locally)
In Algebra \((p\text{-locally})\)

<table>
<thead>
<tr>
<th>Characteristic Zero</th>
<th>Characteristic (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Q})</td>
<td>(\mathbb{F}_p)</td>
</tr>
</tbody>
</table>
In Homotopy Theory (p-locally)
In Homotopy Theory \((p\text{-locally})\)

<table>
<thead>
<tr>
<th>Characteristic Zero</th>
<th>Morava (K)-Theories</th>
<th>Characteristic (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(HQ) = (K(0))</td>
<td>(K(1)) (K(2)) (K(3)) \cdots (K(\infty) = HF_p)</td>
<td></td>
</tr>
</tbody>
</table>
In Homotopy Theory (p-locally)

Characteristic Zero Morava K-Theories Characteristic p

$$HQ = K(0) \quad K(1) \quad K(2) \quad K(3) \quad \cdots \quad K(\infty) = HF_p$$

Question

What happens to the representation theory of finite groups over these intermediate fields?
Representation Theory of Finite Groups (Classical)

G is a finite group.

k is a field.

Study vector spaces V over k with an action $G \triangleright V$.
Representation Theory of Finite Groups (Classical)

G is a finite group.
G is a finite group.

k is a field.
G is a finite group.

k is a field.

Study vector spaces V over k with an action $G \curvearrowright V$.
Representation Theory in Characteristic Zero

In characteristic zero we have complete reducibility:
Every representation V is a direct sum of irreducible representations.
Every exact sequence of representations $0 \rightarrow V_1 \rightarrow V \rightarrow V_2 \rightarrow 0$ splits.

Phenomenon (Complete Reducibility)
For any representation V, the subspace of invariant vectors $V_G = \{ v \in V : g \cdot v = v \}$ is a direct summand of V.
In characteristic zero we have *complete reducibility*:
In characteristic zero we have *complete reducibility*:

- Every representation V is a direct sum of irreducible representations.
In characteristic zero we have complete reducibility:

- Every representation V is a direct sum of irreducible representations.
- Every exact sequence of representations

$$0 \to V' \to V \to V'' \to 0$$

splits.
In characteristic zero we have *complete reducibility*:

- Every representation V is a direct sum of irreducible representations.
- Every exact sequence of representations

$$0 \rightarrow V' \rightarrow V \rightarrow V'' \rightarrow 0$$

splits.

Phenomenon (Complete Reducibility)

For any representation V, the subspace of invariant vectors

$$V^G = \{ v \in V : (\forall g \in G)[gv = v] \}$$

*is a direct summand of V.***
Proof of Complete Reducibility (Characteristic Zero)
Proof of Complete Reducibility (Characteristic Zero)

Define $V_G = V/(gv - v)$.
Define $V_G = V/(gv - v)$.

$V^G \hookrightarrow V \twoheadrightarrow V_G$
Proof of Complete Reducibility (Characteristic Zero)

Define \(V_G = V / (gv - v) \).

\[V^G \leftrightarrow V \rightarrow V_G \]

The construction \(v \mapsto \sum_{g \in G} gv \) factors

\[V \rightarrow V_G \xrightarrow{N_G} V^G \leftarrow V \]
Proof of Complete Reducibility (Characteristic Zero)

Define $V_G = V/(gv - v)$.

$$V^G \leftrightarrow V \twoheadrightarrow V_G$$

The construction $v \mapsto \sum_{g \in G} gv$ factors

$$V \twoheadrightarrow V_G \xrightarrow{N_G} V^G \leftrightarrow V$$

The composition in either direction is multiplication by $|G| \neq 0$.
Proof of Complete Reducibility (Characteristic Zero)

Define $V_G = V/(gv - v)$.

$V^G \hookrightarrow V \twoheadrightarrow V_G$

The construction $v \mapsto \sum_{g \in G} gv$ factors

$V \twoheadrightarrow V_G \xrightarrow{N_G} V^G \hookrightarrow V$

The composition in either direction is multiplication by $|G| \neq 0$.

Phenomenon (Norm Isomorphisms)

For any representation V, the norm map

$N_G : V_G \rightarrow V^G$

is an isomorphism.
Representation Theory in Characteristic p

Complete reducibility fails if $|G| > 0$ in k. If G is a finite p-group for $p > \text{char } k$, we instead get unipotence:

Every irreducible representation of G is trivial.

Phenomenon (Unipotence)

Every representation of G can be built as a successive extension of trivial representations.
Representation Theory in Characteristic p

Complete reducibility fails if $|G| = 0$ in k.
Representation Theory in Characteristic p

Complete reducibility fails if $|G| = 0$ in k.

If G is a finite p-group for $p = \text{char } k$, we instead get unipotence:
Complete reducibility fails if $|G| = 0$ in k.

If G is a finite p-group for $p = \text{char } k$, we instead get unipotence:

- Every irreducible representation of G is trivial.
Representation Theory in Characteristic p

Complete reducibility fails if $|G| = 0$ in k.

If G is a finite p-group for $p = \text{char } k$, we instead get unipotence:

- Every irreducible representation of G is trivial.
- $V \neq 0 \Rightarrow V^G \neq 0$
Complete reducibility fails if $|G| = 0$ in k.

If G is a finite p-group for $p = \text{char } k$, we instead get unipotence:

- Every irreducible representation of G is trivial.
- $V \neq 0 \Rightarrow V^G \neq 0$

Phenomenon (Unipotence)

Every representation of G can be built as a successive extension of trivial representations.
Complete Reducibility vs. Unipotence
Complete Reducibility vs. Unipotence

Let G be a p-group.
Let G be a p-group.

<table>
<thead>
<tr>
<th>Characteristic Zero</th>
<th>Characteristic p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irreducibles are interesting</td>
<td>Irreducibles are trivial</td>
</tr>
<tr>
<td>Extensions are trivial</td>
<td>Extensions are interesting</td>
</tr>
</tbody>
</table>

Question

What happens in between?
Complete Reducibility vs. Unipotence

Let G be a p-group.

<table>
<thead>
<tr>
<th>Characteristic Zero</th>
<th>Characteristic p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Reducibility</td>
<td>Unipotence</td>
</tr>
</tbody>
</table>
Let G be a p-group.

<table>
<thead>
<tr>
<th>Characteristic Zero</th>
<th>Characteristic p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Reducibility</td>
<td>Unipotence</td>
</tr>
<tr>
<td>Irreducibles are interesting</td>
<td>Irreducibles are trivial</td>
</tr>
</tbody>
</table>
Complete Reducibility vs. Unipotence

Let G be a p-group.

<table>
<thead>
<tr>
<th>Characteristic Zero</th>
<th>Characteristic p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Reducibility</td>
<td>Unipotence</td>
</tr>
<tr>
<td>Irreducibles are interesting</td>
<td>Irreducibles are trivial</td>
</tr>
<tr>
<td>Extensions are trivial</td>
<td>Extensions are interesting</td>
</tr>
</tbody>
</table>
Complete Reducibility vs. Unipotence

Let G be a p-group.

<table>
<thead>
<tr>
<th></th>
<th>Characteristic Zero</th>
<th>Characteristic p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Reducibility</td>
<td>Irreducibles are interesting</td>
<td>Unipotence</td>
</tr>
<tr>
<td>Extensions are trivial</td>
<td>Extensions are interesting</td>
<td>Irreducibles are trivial</td>
</tr>
</tbody>
</table>

Question

What happens in between?
Local Systems of Vector Spaces

A local system L of k-vector spaces on a space X assigns:

To each point $x \in X$ a k-vector space L_x.

To each path $p: r \to s \to X$ from $x \to y$ a map $L_p: L_x \to L_y$.

For each 2-simplex $\Delta: r \to s \to t \to X$, we have $L_r \circ L_p = L_t$.

For X connected, local systems on X correspond to representations of $\pi_1(X)$.
Local Systems of Vector Spaces

A *local system* \mathcal{L} of k-vector spaces on a space X assigns:
Local Systems of Vector Spaces

A local system \mathcal{L} of k-vector spaces on a space X assigns:

- To each point $x \in X$ a k-vector space \mathcal{L}_x.

Local Systems of Vector Spaces

A *local system* \mathcal{L} of k-vector spaces on a space X assigns:

- To each point $x \in X$ a k-vector space \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ an isomorphism $\mathcal{L}_p : \mathcal{L}_x \cong \mathcal{L}_y$.
Local Systems of Vector Spaces

A *local system* \mathcal{L} of k-vector spaces on a space X assigns:

- To each point $x \in X$ a k-vector space \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ an isomorphism $\mathcal{L}_p : \mathcal{L}_x \simeq \mathcal{L}_y$.
- For each 2-simplex $\Delta^2 \to X$
A local system \mathcal{L} of k-vector spaces on a space X assigns:

- To each point $x \in X$ a k-vector space \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ an isomorphism $\mathcal{L}_p : \mathcal{L}_x \simeq \mathcal{L}_y$.
- For each 2-simplex $\Delta^2 \to X$

we have $\mathcal{L}_r = \mathcal{L}_q \circ \mathcal{L}_p$.
Local Systems of Vector Spaces

A local system \(L \) of \(k \)-vector spaces on a space \(X \) assigns:

- To each point \(x \in X \) a \(k \)-vector space \(L_x \).
- To each path \(p : [0, 1] \to X \) from \(x = p(0) \) to \(y = p(1) \) an isomorphism \(L_p : L_x \cong L_y \).
- For each 2-simplex \(\Delta^2 \to X \)

\[
\begin{array}{ccc}
& y & \\
p & \downarrow & q \\
\downarrow & & \downarrow \\
X & \rightarrow & z,
\end{array}
\]

we have \(L_r = L_q \circ L_p \).

For \(X \) connected, local systems on \(X \) \(\cong \) representations of \(\pi_1 X \).
Local Systems of $K(n)$-Modules
Local Systems of $K(n)$-Modules

A local system \mathcal{L} of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum L_x.
- To each path $p_0, 1 \to x \to y$ a homotopy equivalence $L_p : L_x \to L_y$.
- For each 2-simplex $\Delta_2 \to X$ a homotopy $L_r \to L_q \circ L_p$.

Analogous data for simplices of all dimensions.

Warning (or Feature) This does not depend only on $\pi_1 X$.
Local Systems of $K(n)$-Modules

A *local system* \mathcal{L} of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum \mathcal{L}_x.

Warning (or Feature)

This does not depend only on $\pi_1 X$.

Local Systems of $K(n)$-Modules

A *local system* \mathcal{L} of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ a homotopy equivalence $\mathcal{L}_p : \mathcal{L}_x \simeq \mathcal{L}_y$.

Warning (or Feature)

This does not depend only on $\pi_1 X$.

Local Systems of $K(n)$-Modules

A local system L of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum L_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ a homotopy equivalence $L_p : L_x \simeq L_y$.
- For each 2-simplex $\Delta^2 \to X$
Local Systems of $K(n)$-Modules

A *local system* \mathcal{L} of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ a homotopy equivalence $\mathcal{L}_p : \mathcal{L}_x \simeq \mathcal{L}_y$.
- For each 2-simplex $\Delta^2 \to X$

\[
\begin{array}{c}
y \\
\downarrow p \\
\downarrow q \\
\leftarrow r \\
\leftarrow z, \\
\end{array}
\]

a homotopy $\mathcal{L}_r \simeq \mathcal{L}_q \circ \mathcal{L}_p$.

Warning (or Feature) This does not depend only on $\pi_1 X$.

Analogous data for simplices of all dimensions.
Local Systems of $K(n)$-Modules

A local system \mathcal{L} of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ a homotopy equivalence $\mathcal{L}_p : \mathcal{L}_x \simeq \mathcal{L}_y$.
- For each 2-simplex $\Delta^2 \to X$

\[
\begin{array}{c}
\text{y} \\
\text{p} \\
\text{x} \\
\text{r} \\
\text{z} \\
\text{q}
\end{array}
\]

a homotopy $\mathcal{L}_r \simeq \mathcal{L}_q \circ \mathcal{L}_p$.

- Analogous data for simplices of all dimensions.
Local Systems of $K(n)$-Modules

A local system \mathcal{L} of $K(n)$-modules on a space X assigns:

- To each point $x \in X$ a $K(n)$-module spectrum \mathcal{L}_x.
- To each path $p : [0, 1] \to X$ from $x = p(0)$ to $y = p(1)$ a homotopy equivalence $\mathcal{L}_p : \mathcal{L}_x \simeq \mathcal{L}_y$.
- For each 2-simplex $\Delta^2 \to X$

\[
\begin{array}{ccc}
X & \xrightarrow{r} & Z, \\
\downarrow{p} & & \downarrow{q} \\
\uparrow{y} & & \\
\end{array}
\]

a homotopy $\mathcal{L}_r \simeq \mathcal{L}_q \circ \mathcal{L}_p$.

- Analogous data for simplices of all dimensions.

Warning (or Feature)

This does not depend only on $\pi_1 X$.

Finiteness Hypotheses

Definition
A space X is π-finite if:

- The set $\pi_0 X$ is finite.
- Each homotopy group $\pi_n X$, x_0 is finite.
- The groups $\pi_n X$, x_0 vanish for $n \neq 0$.

We say X is p-finite if it is π-finite and each $\pi_n X$, x_q is a p-group.
Finiteness Hypotheses

Definition

A space X is π-finite if:

1. The set $\pi^0 X$ is finite.
2. Each homotopy group π^n_{pX}, x_q is finite.
3. The groups π^n_{pX}, x_q vanish for $n \neq 0$.

We say X is p-finite if it is π-finite and each π^n_{pX}, x_q is a p-group.
Definition

A space X is π-finite if:

- The set $\pi_0 X$ is finite.
Finiteness Hypotheses

Definition

A space X is π-finite if:

- The set $\pi_0 X$ is finite.
- Each homotopy group $\pi_n(X,x)$ is finite.
Finiteness Hypotheses

Definition

A space X is π-finite if:

- The set $\pi_0 X$ is finite.
- Each homotopy group $\pi_n(X, x)$ is finite.
- The groups $\pi_n(X, x)$ vanish for $n \gg 0$.
A space X is π-finite if:

- The set $\pi_0 X$ is finite.
- Each homotopy group $\pi_n(X, x)$ is finite.
- The groups $\pi_n(X, x)$ vanish for $n \gg 0$.

We say X is p-finite if it is π-finite and each $\pi_n(X, x)$ is a p-group.
Example

A finite group G is π-finite if BG is π-finite, and a finite p-group G is p-finite if BG is p-finite. Local systems on BG correspond to representations of G.
Example

\(G \) a finite group \(\Rightarrow BG \) is \(\pi \)-finite
Example

G a finite group $\Rightarrow BG$ is π-finite

G a finite p-group $\Rightarrow BG$ is p-finite
Example

\[G \text{ a finite group} \implies BG \text{ is } \pi\text{-finite} \]

\[G \text{ a finite } p\text{-group} \implies BG \text{ is } p\text{-finite} \]

local systems on BG \(\simeq\) “representations of \(G\)”
Invariants and Coinvariants
Invariants and Coinvariants

<table>
<thead>
<tr>
<th>Representations</th>
<th>Local Systems</th>
</tr>
</thead>
</table>

\[\text{Representations} \quad \text{Local Systems} \]
Invariants and Coinvariants

<table>
<thead>
<tr>
<th>Representations</th>
<th>Local Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite group G</td>
<td>Space X</td>
</tr>
</tbody>
</table>
Invariants and Coinvariants

<table>
<thead>
<tr>
<th>Representations</th>
<th>Local Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite group G</td>
<td>Space X</td>
</tr>
<tr>
<td>Representations $G \curvearrowright V$</td>
<td>Local System \mathcal{L}</td>
</tr>
</tbody>
</table>
Invariants and Coinvariants

<table>
<thead>
<tr>
<th>Representations</th>
<th>Local Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite group G</td>
<td>Space X</td>
</tr>
<tr>
<td>Representations $G \curvearrowright V$</td>
<td>Local System \mathcal{L}</td>
</tr>
<tr>
<td>Invariants V^G</td>
<td>$C^*(X; \mathcal{L}) := \lim_{x \in X} \mathcal{L}_x$</td>
</tr>
</tbody>
</table>
Invariants and Coinvariants

<table>
<thead>
<tr>
<th>Representations</th>
<th>Local Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite group G</td>
<td>Space X</td>
</tr>
<tr>
<td>Representations $G \hookrightarrow V$</td>
<td>Local System \mathcal{L}</td>
</tr>
<tr>
<td>Invariants V^G</td>
<td>$C^*(X; \mathcal{L}) := \lim_{x \in X} \mathcal{L}_x$</td>
</tr>
<tr>
<td>Coinvariants V_G</td>
<td>$C_*(X; \mathcal{L}) := \lim_{x \in X} \mathcal{L}_x$</td>
</tr>
</tbody>
</table>
Phenomenon: Norm Isomorphisms
Theorem (Hopkins, L)

Let X be a π-finite space and \mathcal{L} a local system of $K(n)$-modules on X. There is a canonical norm isomorphism $N_X^L : C_\pi^\wedge X; \mathcal{L} \to C_\pi^\wedge X; \mathcal{L}$. Example (Duality) If \mathcal{L} is the trivial local system, then $K^\wedge X \to N K^\wedge X$. In particular, $K^\wedge 0 X$ is finite-dimensional and self-dual.
Phenomenon: Norm Isomorphisms

Theorem (Hopkins, L)

Let X be a π-finite space and \mathcal{L} a local system of $K(n)$-modules on X. There is a canonical norm isomorphism

$$N_X : C_{\ast}(X; \mathcal{L}) \xrightarrow{\sim} C^{\ast}(X; \mathcal{L}).$$
Phenomenon: Norm Isomorphisms

Theorem (Hopkins, L)

Let X be a π-finite space and \mathcal{L} a local system of $K(n)$-modules on X. There is a canonical norm isomorphism

$$N_X : C_*(X; \mathcal{L}) \xrightarrow{\sim} C^*(X; \mathcal{L}).$$

Example (Duality)

If \mathcal{L} is the trivial local system, then

$$K(n)_*X \xrightarrow{\sim} K(n)^*X.$$
Theorem (Hopkins, L)

Let X be a π-finite space and \mathcal{L} a local system of $K(n)$-modules on X. There is a canonical norm isomorphism

$$N_X : C_*(X; \mathcal{L}) \simto C^*(X; \mathcal{L}).$$

Example (Duality)

If \mathcal{L} is the trivial local system, then

$$K(n)_* X \simto K(n)^* X.$$

In particular, $K(n)^0 X$ is finite-dimensional and self-dual.
Example: $K(1) = K/p$

Let G be a finite p-group and let $\text{Rep}(G)$ be its representation ring.
Example: $K(1) = K/p$

Let G be a finite p-group and let $\text{Rep}(G)$ be its representation ring. There is a nondegenerate bilinear form

$$b : \text{Rep}(G) \otimes \text{Rep}(G) \to \mathbb{Z}$$

$$(V, W) \mapsto \dim_{\mathbb{C}} \text{Hom}(V, W)$$
Example: $K(1) = K/p$

Let G be a finite p-group and let $\text{Rep}(G)$ be its representation ring. There is a nondegenerate bilinear form

$$b : \text{Rep}(G) \otimes \text{Rep}(G) \rightarrow \mathbb{Z}$$

$$(V, W) \mapsto \dim_{\mathbb{C}} \text{Hom}(V, W) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g)$$

The Atiyah-Segal completion theorem gives an isomorphism $K_{p1} \cong \text{Rep}(G)_{\mathbb{F}_p}$. The bilinear b gives an identification of $K_{p1} \cong \text{Rep}(G)_{\mathbb{F}_p}$ with its dual (over \mathbb{F}_p). This agrees with the duality map of the previous slide.
Example: \(K(1) = K/p \)

Let \(G \) be a finite \(p \)-group and let \(\text{Rep}(G) \) be its representation ring. There is a nondegenerate bilinear form

\[
b : \text{Rep}(G) \otimes \text{Rep}(G) \to \mathbb{Z}
\]

\[
(V, W) \mapsto \dim_{\mathbb{C}} \text{Hom}(V, W) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g)
\]

The Atiyah-Segal completion theorem gives an isomorphism

\[
K(1)^0 BG \cong \text{Rep}(G) \otimes \mathbf{F}_p.
\]
Example: $K(1) = K/p$

Let G be a finite p-group and let $\text{Rep}(G)$ be its representation ring. There is a nondegenerate bilinear form

$$b : \text{Rep}(G) \otimes \text{Rep}(G) \to \mathbb{Z}$$

$$(V, W) \mapsto \dim_{\mathbb{C}} \text{Hom}(V, W) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g)$$

The Atiyah-Segal completion theorem gives an isomorphism

$$K(1)^0BG \simeq \text{Rep}(G) \otimes \mathbb{F}_p.$$

The bilinear b gives an identification of $K(1)^0BG$ with its dual (over \mathbb{F}_p).
Example: $K(1) = K/p$

Let G be a finite p-group and let $\text{Rep}(G)$ be its representation ring. There is a nondegenerate bilinear form

$$b: \text{Rep}(G) \otimes \text{Rep}(G) \to \mathbb{Z}$$

$$(V, W) \mapsto \dim_{\mathbb{C}} \text{Hom}(V, W) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g)$$

The Atiyah-Segal completion theorem gives an isomorphism

$$K(1)^0BG \simeq \text{Rep}(G) \otimes \mathbb{F}_p.$$

The bilinear b gives an identification of $K(1)^0BG$ with its dual (over \mathbb{F}_p). This agrees with the duality map of the previous slide.
Another Corollary

Let X be any space. The construction $L \Rightarrow C \Rightarrow p X \Rightarrow L_q$ commutes with inverse limits. But usually not with direct limits.

Likewise, $L \Rightarrow C \Rightarrow p X \Rightarrow L_q$ commutes with direct limits.
Another Corollary

Let X be any space.
Another Corollary

Let X be any space.

- The construction $\mathcal{L} \mapsto C^*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with inverse limits.
Another Corollary

Let X be any space.

- The construction $\mathcal{L} \mapsto C^*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with inverse limits. But usually not with direct limits.
Another Corollary

Let X be any space.

- The construction $\mathcal{L} \mapsto C^*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with inverse limits. But usually not with direct limits.

- The construction $\mathcal{L} \mapsto C_*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with direct limits.
Another Corollary

Let X be any space.

- The construction $\mathcal{L} \mapsto \mathcal{C}^*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with inverse limits. But usually not with direct limits.

- The construction $\mathcal{L} \mapsto \mathcal{C}_*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with direct limits. But usually not with inverse limits.
Another Corollary

Let X be any space.

- The construction $\mathcal{L} \mapsto \mathcal{C}^*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with inverse limits. But usually not with direct limits.
- The construction $\mathcal{L} \mapsto \mathcal{C}_*(X; \mathcal{L}) = \varprojlim_{x \in X} \mathcal{L}_x$ commutes with direct limits. But usually not with inverse limits.

Corollary

If X is π-finite, then the construction $\mathcal{L} \mapsto \mathcal{C}^(X; \mathcal{L})$ commutes with direct limits.*
Another Corollary

Let X be any space.

- The construction $\mathcal{L} \mapsto C^*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with inverse limits. But usually not with direct limits.
- The construction $\mathcal{L} \mapsto C_*(X; \mathcal{L}) = \lim_{x \in X} \mathcal{L}_x$ commutes with direct limits. But usually not with inverse limits.

Corollary

If X is π-finite, then the construction $\mathcal{L} \mapsto C^(X; \mathcal{L})$ commutes with direct limits. Likewise, $\mathcal{L} \mapsto C_*(X; \mathcal{L})$ commutes with inverse limits.*
Application: Unipotent Local Systems
Application: Unipotent Local Systems

Definition

A local system \mathcal{L} of $K(n)$-modules on a space X is *unipotent* if it can be built from constant local systems using direct limits.
Definition

A local system \mathcal{L} of $K(n)$-modules on a space X is unipotent if it can be built from constant local systems using direct limits.

Corollary (of Theorem)

If X is π-finite, then every local system \mathcal{L} can be written as an extension

$$\mathcal{L}^{\text{unip}} \to \mathcal{L} \to T$$

where $\mathcal{L}^{\text{unip}}$ is unipotent and $C^*(X; T) \cong 0$.
Application: Unipotent Local Systems

Definition

A local system \mathcal{L} of $K(n)$-modules on a space X is unipotent if it can be built from constant local systems using direct limits.

Corollary (of Theorem)

If X is π-finite, then every local system \mathcal{L} can be written as an extension

$$\mathcal{L}^{\text{unip}} \to \mathcal{L} \to \mathcal{T}$$

where $\mathcal{L}^{\text{unip}}$ is unipotent and $C^*(X;\mathcal{T}) \simeq 0$.

Idea of proof: take $\mathcal{L}^{\text{unip}}$ to be the direct limit of all constant local systems with a map to \mathcal{L}.
Phenomenon: Unipotence
Phenomenon: Unipotence

Theorem (Hopkins, L)

Let X be a p-finite space and assume that $\pi_m X \simeq 0$ for $m > n$.
Theorem (Hopkins, L)

Let X be a p-finite space and assume that $\pi_m X \simeq 0$ for $m > n$. Then every local system of $K(n)$-modules on X is unipotent.
Phenomenon: Unipotence

Theorem (Hopkins, L)

Let X be a p-finite space and assume that $\pi_m X \simeq 0$ for $m > n$. Then every local system of $K(n)$-modules on X is unipotent.

Example

If G is a finite p-group, then every representation of G (on a $K(n)$-module) is unipotent.
Representation Theory in Intermediate Characteristic

Phenomenon: Complete Reducibility

Let X be a π-finite space. Assume $|\pi^m X|$ is not divisible by p for $m \leq n$.

Then:

1. Every unipotent local system on X is constant.
2. For every local system L on X, the extension $L^{\text{unip}} - L^{\text{K}}$ splits.

Remark: If $\pi^m X \rightarrow 0$ for $m \leq n < 1$, then any local system of K_p^n-modules on X is constant.
Phenomenon: Complete Reducibility

Theorem

Let X be a π-finite space.
Phenomenon: Complete Reducibility

Theorem

Let X be a π-finite space. Assume $|\pi_m X|$ is not divisible by p for $m \leq n$. Then:

Every unipotent local system on X is constant.
For every local system L on X, the extension $L_{\text{unip}} \rightarrow L_{\text{K}}$ splits.

Remark: If $\pi_m X \twoheadrightarrow 0$ for $m \leq n$, then any local system of $K_p n_q$-modules on X is constant.
Phenomenon: Complete Reducibility

Theorem

Let X be a π-finite space. Assume $|\pi_m X|$ is not divisible by p for $m \leq n$. Then:

- Every unipotent local system on X is constant.
Phenomenon: Complete Reducibility

Theorem

Let X be a π-finite space. Assume $|\pi_m X|$ is not divisible by p for $m \leq n$. Then:

- Every unipotent local system on X is constant.
- For every local system \mathcal{L} on X, the extension

$$\mathcal{L}^{\text{unip}} \to \mathcal{L} \to \mathcal{K}$$

splits.
 Phenomenon: Complete Reducibility

Theorem

Let X be a π-finite space. Assume $|\pi_m X|$ is not divisible by p for $m \leq n$. Then:

- Every unipotent local system on X is constant.
- For every local system \mathcal{L} on X, the extension

$$\mathcal{L}^{\text{unip}} \rightarrow \mathcal{L} \rightarrow \mathcal{K}$$

splits.

Remark

If $\pi_m X \simeq 0$ for $m \leq n + 1$, then any local system of $K(n)$-modules on X is constant.
Representation Theory in Intermediate Characteristic

For local systems of K_{p^n}-modules on a p-finite space X:

Unipotence

$$\pi_0 X \pi_1 X \cdots \pi_n X$$

Complete Reducibility

$$\pi_n \cdots \pi_1 X$$

Triviality

$$\pi_n \cdots \pi_2 X$$

Slogan

The larger n is, the more unipotence we see. (Because we are getting closer to characteristic p.)
For local systems of $K(n)$-modules on a p-finite space X:
For local systems of $K(n)$-modules on a p-finite space X:

Unipotence

\[
\left\{
\begin{array}{l}
\pi_0 X \\
\pi_1 X \\
\ldots \\
\pi_n X
\end{array}
\right.
\]

(Slogan) The larger n is, the more unipotence we see. (Because we are getting closer to characteristic p.)
For local systems of $K(n)$-modules on a p-finite space X:

- **Unipotence**: \(\pi_0 X, \pi_1 X, \ldots, \pi_n X \)
- **Complete Reducibility**: \(\pi_{n+1} X \)

Slogan: The larger n is, the more unipotence we see. (Because we are getting closer to characteristic p.)
For local systems of $K(n)$-modules on a p-finite space X:

Unipotence

\[
\begin{align*}
\pi_0X \\
\pi_1X \\
\ldots \\
\pi_nX
\end{align*}
\]

Complete Reducibility

\[
\begin{align*}
\pi_{n+1}X
\end{align*}
\]

Triviality

\[
\begin{align*}
\pi_{n+2}X \\
\ldots
\end{align*}
\]

Slogan: The larger n is, the more unipotence we see. (Because we are getting closer to characteristic p.)
For local systems of $K(n)$-modules on a p-finite space X:

Unipotence

\[
\begin{cases}
\pi_0 X \\
\pi_1 X \\
\vdots \\
\pi_n X
\end{cases}
\]

Complete Reducibility

\[
\begin{cases}
\pi_{n+1} X \\
\pi_{n+2} X \\
\vdots
\end{cases}
\]

Triviality

Slogan

The larger n is, the more unipotence we see.
For local systems of $K(n)$-modules on a p-finite space X:

\begin{align*}
\text{Unipotence} & \quad \left\{ \begin{array}{l}
\pi_0 X \\
\pi_1 X \\
\ldots \\
\pi_n X \\
\end{array} \right.
\text{Complete Reducibility} & \quad \left\{ \begin{array}{l}
\pi_{n+1} X \\
\pi_{n+2} X \\
\ldots \\
\end{array} \right.
\text{Triviality}
\end{align*}

Slogan

The larger n is, the more unipotence we see. (Because we are getting closer to characteristic p)