On the boundedness of varieties of general type

Christopher Hacon

University of Utah

July, 2015

Outline of the talk

- 1 Introduction / Review
- 2 Boundedness of log pairs
- 3 The ACC for LCT's

Introduction

 Last time we sketched the proof of the following result for canonical models.

Theorem (Hacon-M^cKernan-Xu)

Fix $n \in \mathbb{N}$, C > 0 and $C \subset [0,1] \cap \mathbb{Q}$ a DCC set, then there exists an integer $r \in \mathbb{N}$ such that if (X,B) is a n-dimensional (S)LC model with $B \in C$ and $(K_X + B)^n = C$, then $r(K_X + B)$ is very ample.

- Today we will see how to adapt the proof of the canonical case to the case of log canonical pairs.
- The key steps of the proof we discussed are:

Review

We first proved birational boundedness of canonical models

Theorem (Tsuji, Hacon-M^cKernan, Takayama)

Fix $n \in \mathbb{N}$, then there exists $m \in \mathbb{N}$ such that if X is a canonical model, dim X = n, then $|mK_X|$ is birational.

- So canonical models with $K_X^n \leq V$ are birationally bounded.
- From this, using Siu's deformation invariance of plurigenera and the existence of canonical models, we deduce the full boundedness statement.

Review

By Tsuji's argument, it suffices to show:

Theorem

Fix $n \in \mathbb{N}$, then there exists A, B, v > 0 such that if X is a canonical model, dim X = n, then

- rK_X is birational for any $r \ge A(K_X^n)^{-1/n} + B$, and
- ② $V(n) =: \{K_X^n\}$ is discrete and $K_X^n \ge v$ for any canonical model X.

The proof, loosely based on an argument of Anhern-Siu is by induction on the dimension and relies on a clever use of **Kawamata subadjunction**.

Outline of the talk

- 1 Introduction / Review
- 2 Boundedness of log pairs
- 3 The ACC for LCT's

- Not surprisingly, the case of log pairs is substantially harder.
 We follow the previous proof highlighting the new ingredients.
- The first step is to show that (for fixed n, C and v), the set \mathcal{LCM} of LC models (X,B) such that $\dim X = n$, $B \in C$, $(K_X + B)^n = v$ are **log birationally** bounded.
- This means that there exists a pair $(\mathcal{Z}, \mathcal{D})$ and a projective morphism $g: \mathcal{Z} \to S$ such that for any $(X, B) \in \mathcal{LCM}$, there is an $s \in S$ and a birational morphism $h: X \dashrightarrow \mathcal{Z}_s$ such that the support of the strict transform of B plus the \mathcal{X}_s/X exeptional divisors are contained in $\operatorname{Supp}(\mathcal{D}_s)$.

- To this end, it suffices to show that there is an integer $m = O(v^{-1/n})$ such that $m(K_X + B)$ is birational.
- Then X is birationally bounded (similarly to what we have seen above for canonical pairs).
- But we must also show that the pairs are log birationally bounded.

- WLOG, we may assume that $g: \mathcal{Z} \to S$ is a smooth morphism.
- Since we are free to replace (X,B) by a higher model $(Y,\mathbf{M}_{B,Y})$, we may assume that each $h:X\to\mathcal{Z}_s$ is a morphism.
- Let $G = \sum B_i$ where B_i are the components of $\operatorname{Supp}(B)$.
- It then suffices to show that if $H = \mathcal{O}_{\mathcal{Z}}(1)$, then $h_*G \cdot H_s^{n-1} = G \cdot h^*H_s^{n-1}$ is bounded from above.

• Since $\min(C)G \leq B \leq G$, it suffices to bound the quantity

$$B \cdot h^* H_s^{n-1} = (K_X + B) \cdot h^* H_s^{n-1} - K_X \cdot h^* H_s^{n-1}.$$

• This follows as $\mathcal{Z} \to S$ is a bounded family, $K_X \cdot h^* H_s^{n-1} = K_{\mathcal{Z}_s} \cdot H_s^{n-1}$ belongs to a finite set and $(K_X + B) \cdot h^* H_s^{n-1} \leq v m^{n-1}$ (where $m = O(v^{-1/n})$).

- Adjunction for log pairs is also more complicated.
- We have $K_X + B$ ample, $B \in \mathcal{C}$ and $D \sim_{\mathbb{Q}} \lambda(K_X + B)$ with $\mathcal{J}(D) = \mathcal{I}_Z$ near $x \in Z \subset X$.
- Since Z may not be of general type, we would like to find $(Z^{\nu},\Theta_{Z^{\nu}})$ LC, $\Theta_{Z^{\nu}}\in \mathcal{C}'$ (a DCC set) and $K_{Z^{\nu}}+\Theta_{Z^{\nu}}$ is big such that $(K_X+D+B)|_{Z^{\nu}}\geq K_{Z^{\nu}}+\Theta_{Z^{\nu}}$.
- We have little control over λ and the coefficients of D, but since x ∈ X is general, we can "pretend" that Z is a fiber of a morphism X → T.
- In this case $K_X|_Z = K_Z$, $\Theta_Z = B|_Z$ and we can ignore D.

- In practice we have to do a delicate Kawamata's subadjunction type argument.
- Let $D(\mathcal{C}) = \{a \le 1 | a = \frac{m-1+f}{m}, \ m \in \mathbb{N}, \ f = \sum f_i, \ f_i \in \mathcal{C} \}$, then $D(\mathcal{C})$ is also a DCC set.
- Let $Z^{\nu} \to Z$ be the normalization and $Z' \to Z^{\nu}$ a resolution.

Theorem

There exists a divisor Θ on Z^{ν} , such that

- **1** Θ ∈ {1 − t|t ∈ $LCT_{n-1}(D(C))$ ∪ 1}
- **2** $(K_X + D + B)|_{Z^{\nu}} (K_{Z^{\nu}} + \Theta)$ is PSEF, and
- If Z is a general member of a covering family, then $K_{Z'} + \mathbf{M}_{\Theta,Z'} \ge (K_X + B)|_{Z'}$ (which is big).

Assume that for all d < n the sets

$$LCT_d(D(C)) = \{LCT(X, B; M) | \dim X = d, B \in D(C), M \in \mathbb{N} \}$$

satisfiy the ACC property (aka the ACC for LCT's). It then follows that:

• Since $K_{Z'} + \mathbf{M}_{\Theta,Z'}$ is LC and big, and the coefficients of $\mathbf{M}_{\Theta,Z'}$ are in the DCC set $\mathcal{C}' = 1 - LCT_d(D(\mathcal{C}))$ (where $d = \dim Z < n$), then by induction on the dimension

$$\operatorname{vol}(K_{Z'} + \mathbf{M}_{\Theta, Z'}) \geq v = v(d, \mathcal{C}') > 0.$$

• Thus $\operatorname{vol}(K_X + B + D)|_{Z^{\nu}} \ge \operatorname{vol}(K_{Z^{\nu}} + \Theta) \ge v$ and we can conclude similarly to the case of canonical models.

- ullet To define Θ we proceed as follows.
- After perturbing D, we may assume that on a neighborhood of the general point of Z, (X, B + D) is log canonical with a unique NKLT place S above Z.

Definition of Θ

• Using the MMP, we may pick a DLT model $f: Y \to X$, that extracts only NKLT places of (X, B + D) including S and is \mathbb{Q} -factorial. Write $\Gamma = f_*^{-1}B + \operatorname{Ex}(Y/X) - S$ and

$$K_Y + S + \Gamma + \Gamma' = g^*(K_X + B + D), K_S + \Phi' = (K_X + S + \Gamma + \Gamma')|_S$$

 $K_Y + S + \Gamma = f^*(K_X + B) + E, K_S + \Phi = (K_X + S + \Gamma)|_S$

- In particular $\Gamma \in \mathcal{C}$ and $\Phi \in D(\mathcal{C})$.
- For any codimension 1 point P ∈ Z^ν, let
 t_P = LCT(S, Φ; f*P) (over the generic point of P).
- Then $\Theta = \sum (1 t_p)P$. Define Θ' similarly for (S, Φ') .
- By Kawamata subadjunction $(K_X + B + D)|_{Z^{\nu}} (K_{Z^{\nu}} + \Theta')$ is PSEF. Since $\Theta \leq \Theta'$ we are done (with the first two claims of the theorem; the last is harder and we skip it).

Good minimal models of LC families

- A second difficulty comes from the fact that once we have a bounded family $(\mathcal{Z},\mathcal{D}) \to S$ such that all $(X,B) \in SLC(c,n,\mathcal{C})$ are birational to a fiber $(\mathcal{Z}_s,\mathcal{D}_s)$,in order to deduce boundedness, we must take $(\mathcal{X},\mathcal{B})$ the relative log canonical model (of a resolution) of $(\mathcal{Z},\mathcal{D})$.
- This would require the LC mmp (and hence abundance!).
- Luckily, we can assume that our families are smooth and a dense set of fibers has a good minimal model. We show:

Good minimal models of LC families

Theorem (Hacon-McKernan-Xu)

If $(\mathcal{Z}, \mathcal{D}) \to S$ is LC and log smooth over S and there is a point $s \in S$ such that the fiber $(\mathcal{Z}_s, \mathcal{D}_s)$ has a good minimal model, then $(\mathcal{Z}, \mathcal{D})$ has a good minimal model over S.

Deformation invariance of log plurigenera

- The key ingredient are results of Siu and Berndtson-Păun on the deformation invariance of log-plurigenera for a KLT pair and a log smooth morphism $(\tilde{\mathcal{X}}, \tilde{\mathcal{B}}) \to S$.
- In particular this implies that the generic fiber has finitely generated LC ring $R(K_{\tilde{\chi}_{\eta}} + \tilde{\mathcal{B}}_{\eta})$.
- So far, the only known proof of this result is analytic.

- From this point on we may assume that our LC models (X, B) (dim X = n, $B \in C$, $(K_X + B)^n \le V$) belong to a birationally bounded family.
- Recall that this means that there is a projective morphism of varieties of finite type $\mathcal{Z} \to S$ and a divisor \mathcal{D} on \mathcal{Z} such that for any (X,B) as above, there is a point $s \in S$ and a birational map $f: X \dashrightarrow \mathcal{Z}_s$ such that \mathcal{D}_s contains the strict transform of B and the \mathcal{Z}_s/X exceptional divisors.

- Blowing up \mathcal{Z} and replacing \mathcal{D} by its strict transform and the exceptional divisors, we may assume that each fiber $(\mathcal{Z}_s, \mathcal{D}_s)$ is SNC.
- Replacing each (X, B) by an appropriate birational model, we may assume that each (X, B) is snc and $f: X \to \mathcal{Z}_s$ is a morphism (but $K_X + B$ is not ample; $\operatorname{vol}(K_X + B) \leq C$).

- We begin by considering the set of all LC SNC pairs (X, B) with $B \in \mathcal{C}$ admitting a morphism to a **fixed** SNC pair $(Z, D) = (\mathcal{Z}_s, \mathcal{D}_s)$ say $f: X \to Z$ such that $f_*B \leq D$.
- Claim: The set $V = {\text{vol}(K_X + B)}$ satisfies the DCC.
- Throughout the proof, we are allowed to replace (X, B) by a birational pair (X', B') such that $R(K_X + B) \cong R(K_{X'} + B')$.

- Suppose that we have a sequence of pairs (X_i, B_i) with $vol(K_{X_i} + B_i) \ge vol(K_{X_{i+1}} + B_{i+1})$.
- Define the b-divisor $\mathbf{D} = \lim \mathbf{M}_{B_i}$ as follows.
- Since the coefficients of \mathbf{M}_{B_i} are in the DCC set \mathcal{C} , after passing to a subsequence, each $\lim \mathbf{M}_{B_i}(\nu)$ is well defined for any divisorial valuation ν .
- Let $\Phi = \mathbf{D}_Z$.
- Suppose that (Z, Φ) is terminal, then we claim that $R(K_{X_i} + B_i) \cong R(K_Z + f_{i,*}B_i)$ for all $i \gg 0$.

- In fact since $f_{i,*}B_i \leq \Phi$ has finitely many components which belong to a DCC set, we may assume that for $i \gg 0$ we have $f_{i,*}B_i \leq \lim f_{i,*}B_i = \Phi$ so $(Z, f_{i,*}B_i)$ is terminal.
- But then $K_{X_i} + B_i = f_i^*(K_Z + f_{i,*}B_i) + E_i$ with $E_i \ge 0$ and f_i -exceptional.
- Thus $H^0(m(K_{X_i} + B_i)) = H^0(m(K_Z + f_{i,*}B_i))$ for all m > 0.
- Thus we may assume that $X_i = Z$ for all $i \gg 0$.
- Suppose that $\operatorname{vol}(K_Z + B_i) \ge \operatorname{vol}(K_Z + B_{i+1})$. Passing to a subsequence, we may assume $B_i \le B_{i+1}$, so that $\operatorname{vol}(K_Z + B_i) \le \operatorname{vol}(K_Z + B_{i+1})$.
- Thus $vol(K_{X_i} + B_i) = vol(K_{X_{i+1}} + B_{i+1})$ for all $i \gg 0$.

 The statement about finiteness of log canonical models is related to a general result of the MMP.

Theorem (Birkar-Cascini-Hacon-McKernan)

Let X be a smooth variety and $B_1 \leq B_2$ effective divisors with SNC such that $K_X + B_1$ is big and $K_X + B_2$ is KLT. Then there is a finite set of birational maps $(\psi_i : X \dashrightarrow W_i)_{i \in I}$ such that for any \mathbb{Q} -divisor $B_1 \leq B \leq B_2$, there exists an index $i \in I$ such that ψ_i is the LCM of (X,B) and in particular $\operatorname{Proj}(R(K_X + B)) \cong W_i$.

• Next we explain how to deal with the case when (Z, Φ) is not terminal.

- Suppose that (Z, Φ) is KLT. Then it is easy to see that blowing up Z finitely many times along strata of Φ (and the exceptional divisors), we obtain a birational morphism $h: Z' \to Z$ such that $K_{Z'} + \Phi' = h^*(K_Z + \Phi)$, $\Phi' \ge 0$, and (Z', Φ') is terminal.
- The hardest case is when (Z, Φ) is log canonical but not KLT. The proof proceeds by induction on the codimension of the smallest LC center.

- If $\mathbf{D} \ge \mathbf{L}_{\Phi}$, then we find a contradiction to $\operatorname{vol}(K_{X_i} + B_i) > \operatorname{vol}(K_{X_{i+1}} + B_{i+1})$.
- Note that then $\operatorname{vol}(K_Z + \Phi) > \operatorname{vol}(K_{X_i} + B_i)$. However $\operatorname{vol}(K_Z + \Phi) = \lim \operatorname{vol}(K_Z + (1 \epsilon)\Phi)$ and so the contradiction follows if we show $\lim \operatorname{vol}(K_{X_i} + B_i) \geq \operatorname{vol}(K_Z + (1 \epsilon)\Phi)$.
- But $(Z,(1-\epsilon)\Phi)$ is KLT and we can use the terminalization trick explained above to get $\mathbf{M}_{B_i,Z'} \geq \mathbf{L}_{(1-\epsilon)\Phi,Z'}$ and hence the required inequality.

- So assume that there is a divisor with valuation ν over Z such that $\mathbf{D}(\nu) < \mathbf{L}_{Z,\Phi}$. In particular $\mathbf{L}_{Z,\Phi} > 0$ and so ν is a toric valuation.
- Let $\mu: Z_{\nu} \to Z$ be the corresponding toric blow up. Set $\Phi_{\nu} = \mu_{*}^{-1}\Phi + d_{\nu}E_{\nu}$ where E_{ν} is the exceptional divisor and $0 \le d_{\nu} = \mathbf{D}(\nu) < 1$.
- We may replace (Z, Φ) by (Z_{ν}, Φ_{ν}) and (X_{i}, B_{i}) by $X_{i,\nu} \to X_{i}$ (extracting the divisor corresponding to ν if necessary) and B_{i} by the strict transform of B_{i} and the exceptional divisor $E_{i,\nu}$ corresponding to ν with $L_{B_{i}}(\nu)$.
- Then the only remaining NKLT centers have codimension > n-1....

Boundedness in families

- We must now show that the analogous statements hold when (X,B) is birational to a fiber of a family $(\mathcal{Z},\mathcal{D}) \to S$.
- Decomposing S in to a finite disjoint union of locally closed subsets (and applying base change), we can assume that each strata of $(\mathcal{Z}, \mathcal{D})$ is smooth with connected fibers over S.

Boundedness in families

- By a result of Siu, Hacon-M°Kernan, Berndtson-Păun, Hacon-M°kernan-Xu, the log plurigenera $h^0(m(K_{Z_s} + \mathcal{B}_s))$ are deformation invariant for any divisor $0 \le \mathcal{B} \le \mathcal{D}$.
- Suppose again for simplicity that $(\mathcal{Z}, \mathcal{B})$ is terminal, then for any (X, B) we have $h^0(m(K_X + B)) = h^0(m(K_{\mathcal{Z}_s} + \mathcal{B}_s))$ and so the set of volumes $V = \{ \operatorname{vol}(K_X + B) \}$ is determined by the volumes of finitely many fibers $(\mathcal{Z}_s, \mathcal{B}_s)$ (one for each component of s).

Outline of the talk

- 1 Introduction / Review
- 2 Boundedness of log pairs
- 3 The ACC for LCT's

Theorem (Hacon-M^cKernan-Xu)

Fix $n \in \mathbb{N}$ and $C \subset [0.1]$ a DCC set. Let $LCT_n(C) = \{LCT(X, B; M)\}$ where (X, B) is LC, $B \in C$, $M \ge 0$ is a \mathbb{Z} -Weil, \mathbb{Q} -Cartier divisor. Then $LCT_n(C)$ satisfies the DCC.

- This is Shokurov's ACC for LCT's conjecture, which was proved in the case that X has bounded singularities by Ein-Mustaţă-de Fernex.
- We will now give a sketch of the proof.

- Suppose that there is a sequence of pairs (X_i, B_i) and divisors M_i as above with $t_i = LCT(X_i, B_i; M_i)$ such that $t_i < t_{i+1}$ for all i > 0.
- We let $t = \lim t_i > t_i$.
- For all i, let $\nu_i: Y_i \to X_i$ be a proper birational morphism extracting a unique divisor of discrepancy -1 with center a minimal NKLT center of $(X_i, B_i + t_i M_i)$.
- By induction on the dimension, we may assume that this minimal NKLT center is a point $x_i \in X_i$.
- We may assume that $\rho(Y_i/X_i) = 1$.

- Define $K_{E_i} + \Delta_i = (K_{Y_i} + E_i + \nu_{i,*}^{-1}(B_i + t_i M_i))|_{E_i} \equiv 0$, and $K_{E_i} + \Delta'_i = (K_{Y_i} + E_i + \nu_{i,*}^{-1}(B_i + t M_i))|_{E_i}$.
- Note that the coefficients of $B_i + t_i M_i$ and $B_i + t M_i$ are in the DCC set $\mathcal{C}' = \mathcal{C} \cup \{t_i | i \in \mathbb{N}\} \cup \{t\mathbb{N}\}$ and hence the coefficients of Δ_i and Δ_i' are in the DCC set $D(\mathcal{C}')$.
- Since $t > t_i$ and $(\nu_{i*}^{-1}M_i)|_{E_i} \neq 0$, then $K_{E_i} + \Delta'_i$ is ample.
- Since $\lim t_i = t$, $K_{E_i} + \Delta'_i$ is LC by the ACC for LCT's in dimension n-1.

- The following consequence of the results on the boundedness of LC models gives an immediate contradiction:
- Claim: There exists a number $\tau < 1$ such that for all i, $K_{E_i} + \tau \Delta'_i$ is big.
- But then since we may assume $au \Delta_i' < \Delta_i$ for $i \gg 0$, it follows that

$$0 < \operatorname{vol}(K_{E_i} + \tau \Delta_i') \le \operatorname{vol}(K_{E_i} + \Delta_i) = 0$$

which is impossible.

• We now verify the claim.

- The idea is that there is an integer m (depending only on the dimension n and the DCC set \mathcal{C}) such that if (X, B) is a LC model with $K_X + B$ ample, then $m(K_X + B)$ is birational (even for \mathbb{R} -divisors).
- But then, $h^0(K_X + (mn+1)(K_X + B)) > 0$.
- Since $K_X + (mn + 1)(K_X + B) = (mn + 2)(K_X + \alpha B)$, where $\alpha = (mn + 1)/(mn + 2) < 1$, we let $\tau = (\alpha + 1)/2$.

- To see this $(h^0(K_X + (mn+1)(K_X + B)) > 0)$, pick a general point $x \in X$ and a divisor $D \sim_{\mathbb{Q}} \frac{n}{n+1}(H_1 + \ldots + H_{n+1})$ where the H_i correspond to general hyperplanes through x.
- It is easy to see that $\mathcal{J}(D) = \mathfrak{m}_x$ near $x \in X$.
- By Nadel vanishing $H^1(K_X + (mn+1)(K_X + B) \otimes \mathcal{J}(D)) = 0$ and hence $K_X + (mn+1)(K_X + B)$ is generated at $X \in X$.